1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/falloc.h> 14 #include <linux/types.h> 15 #include <linux/compat.h> 16 #include <linux/uaccess.h> 17 #include <linux/mount.h> 18 #include <linux/pagevec.h> 19 #include <linux/uio.h> 20 #include <linux/uuid.h> 21 #include <linux/file.h> 22 #include <linux/nls.h> 23 #include <linux/sched/signal.h> 24 #include <linux/fileattr.h> 25 #include <linux/fadvise.h> 26 #include <linux/iomap.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "acl.h" 33 #include "gc.h" 34 #include "iostat.h" 35 #include <trace/events/f2fs.h> 36 #include <uapi/linux/f2fs.h> 37 38 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 39 { 40 struct inode *inode = file_inode(vmf->vma->vm_file); 41 vm_flags_t flags = vmf->vma->vm_flags; 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (ret & VM_FAULT_LOCKED) 46 f2fs_update_iostat(F2FS_I_SB(inode), inode, 47 APP_MAPPED_READ_IO, F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct folio *folio = page_folio(vmf->page); 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = !f2fs_is_pinned_file(inode); 61 int err = 0; 62 vm_fault_t ret; 63 64 if (unlikely(IS_IMMUTABLE(inode))) 65 return VM_FAULT_SIGBUS; 66 67 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 68 err = -EIO; 69 goto out; 70 } 71 72 if (unlikely(f2fs_cp_error(sbi))) { 73 err = -EIO; 74 goto out; 75 } 76 77 if (!f2fs_is_checkpoint_ready(sbi)) { 78 err = -ENOSPC; 79 goto out; 80 } 81 82 err = f2fs_convert_inline_inode(inode); 83 if (err) 84 goto out; 85 86 #ifdef CONFIG_F2FS_FS_COMPRESSION 87 if (f2fs_compressed_file(inode)) { 88 int ret = f2fs_is_compressed_cluster(inode, folio->index); 89 90 if (ret < 0) { 91 err = ret; 92 goto out; 93 } else if (ret) { 94 need_alloc = false; 95 } 96 } 97 #endif 98 /* should do out of any locked page */ 99 if (need_alloc) 100 f2fs_balance_fs(sbi, true); 101 102 sb_start_pagefault(inode->i_sb); 103 104 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 105 106 file_update_time(vmf->vma->vm_file); 107 filemap_invalidate_lock_shared(inode->i_mapping); 108 folio_lock(folio); 109 if (unlikely(folio->mapping != inode->i_mapping || 110 folio_pos(folio) > i_size_read(inode) || 111 !folio_test_uptodate(folio))) { 112 folio_unlock(folio); 113 err = -EFAULT; 114 goto out_sem; 115 } 116 117 set_new_dnode(&dn, inode, NULL, NULL, 0); 118 if (need_alloc) { 119 /* block allocation */ 120 err = f2fs_get_block_locked(&dn, folio->index); 121 } else { 122 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE); 123 f2fs_put_dnode(&dn); 124 if (f2fs_is_pinned_file(inode) && 125 !__is_valid_data_blkaddr(dn.data_blkaddr)) 126 err = -EIO; 127 } 128 129 if (err) { 130 folio_unlock(folio); 131 goto out_sem; 132 } 133 134 f2fs_wait_on_page_writeback(folio_page(folio, 0), DATA, false, true); 135 136 /* wait for GCed page writeback via META_MAPPING */ 137 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 138 139 /* 140 * check to see if the page is mapped already (no holes) 141 */ 142 if (folio_test_mappedtodisk(folio)) 143 goto out_sem; 144 145 /* page is wholly or partially inside EOF */ 146 if (((loff_t)(folio->index + 1) << PAGE_SHIFT) > 147 i_size_read(inode)) { 148 loff_t offset; 149 150 offset = i_size_read(inode) & ~PAGE_MASK; 151 folio_zero_segment(folio, offset, folio_size(folio)); 152 } 153 folio_mark_dirty(folio); 154 155 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE); 156 f2fs_update_time(sbi, REQ_TIME); 157 158 out_sem: 159 filemap_invalidate_unlock_shared(inode->i_mapping); 160 161 sb_end_pagefault(inode->i_sb); 162 out: 163 ret = vmf_fs_error(err); 164 165 trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret); 166 return ret; 167 } 168 169 static const struct vm_operations_struct f2fs_file_vm_ops = { 170 .fault = f2fs_filemap_fault, 171 .map_pages = filemap_map_pages, 172 .page_mkwrite = f2fs_vm_page_mkwrite, 173 }; 174 175 static int get_parent_ino(struct inode *inode, nid_t *pino) 176 { 177 struct dentry *dentry; 178 179 /* 180 * Make sure to get the non-deleted alias. The alias associated with 181 * the open file descriptor being fsync()'ed may be deleted already. 182 */ 183 dentry = d_find_alias(inode); 184 if (!dentry) 185 return 0; 186 187 *pino = d_parent_ino(dentry); 188 dput(dentry); 189 return 1; 190 } 191 192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 193 { 194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 195 enum cp_reason_type cp_reason = CP_NO_NEEDED; 196 197 if (!S_ISREG(inode->i_mode)) 198 cp_reason = CP_NON_REGULAR; 199 else if (f2fs_compressed_file(inode)) 200 cp_reason = CP_COMPRESSED; 201 else if (inode->i_nlink != 1) 202 cp_reason = CP_HARDLINK; 203 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 204 cp_reason = CP_SB_NEED_CP; 205 else if (file_wrong_pino(inode)) 206 cp_reason = CP_WRONG_PINO; 207 else if (!f2fs_space_for_roll_forward(sbi)) 208 cp_reason = CP_NO_SPC_ROLL; 209 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 210 cp_reason = CP_NODE_NEED_CP; 211 else if (test_opt(sbi, FASTBOOT)) 212 cp_reason = CP_FASTBOOT_MODE; 213 else if (F2FS_OPTION(sbi).active_logs == 2) 214 cp_reason = CP_SPEC_LOG_NUM; 215 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 216 f2fs_need_dentry_mark(sbi, inode->i_ino) && 217 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 218 TRANS_DIR_INO)) 219 cp_reason = CP_RECOVER_DIR; 220 else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 221 XATTR_DIR_INO)) 222 cp_reason = CP_XATTR_DIR; 223 224 return cp_reason; 225 } 226 227 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 228 { 229 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 230 bool ret = false; 231 /* But we need to avoid that there are some inode updates */ 232 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 233 ret = true; 234 f2fs_put_page(i, 0); 235 return ret; 236 } 237 238 static void try_to_fix_pino(struct inode *inode) 239 { 240 struct f2fs_inode_info *fi = F2FS_I(inode); 241 nid_t pino; 242 243 f2fs_down_write(&fi->i_sem); 244 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 245 get_parent_ino(inode, &pino)) { 246 f2fs_i_pino_write(inode, pino); 247 file_got_pino(inode); 248 } 249 f2fs_up_write(&fi->i_sem); 250 } 251 252 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 253 int datasync, bool atomic) 254 { 255 struct inode *inode = file->f_mapping->host; 256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 257 nid_t ino = inode->i_ino; 258 int ret = 0; 259 enum cp_reason_type cp_reason = 0; 260 struct writeback_control wbc = { 261 .sync_mode = WB_SYNC_ALL, 262 .nr_to_write = LONG_MAX, 263 .for_reclaim = 0, 264 }; 265 unsigned int seq_id = 0; 266 267 if (unlikely(f2fs_readonly(inode->i_sb))) 268 return 0; 269 270 trace_f2fs_sync_file_enter(inode); 271 272 if (S_ISDIR(inode->i_mode)) 273 goto go_write; 274 275 /* if fdatasync is triggered, let's do in-place-update */ 276 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 277 set_inode_flag(inode, FI_NEED_IPU); 278 ret = file_write_and_wait_range(file, start, end); 279 clear_inode_flag(inode, FI_NEED_IPU); 280 281 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 282 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 283 return ret; 284 } 285 286 /* if the inode is dirty, let's recover all the time */ 287 if (!f2fs_skip_inode_update(inode, datasync)) { 288 f2fs_write_inode(inode, NULL); 289 goto go_write; 290 } 291 292 /* 293 * if there is no written data, don't waste time to write recovery info. 294 */ 295 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 296 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 297 298 /* it may call write_inode just prior to fsync */ 299 if (need_inode_page_update(sbi, ino)) 300 goto go_write; 301 302 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 303 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 304 goto flush_out; 305 goto out; 306 } else { 307 /* 308 * for OPU case, during fsync(), node can be persisted before 309 * data when lower device doesn't support write barrier, result 310 * in data corruption after SPO. 311 * So for strict fsync mode, force to use atomic write semantics 312 * to keep write order in between data/node and last node to 313 * avoid potential data corruption. 314 */ 315 if (F2FS_OPTION(sbi).fsync_mode == 316 FSYNC_MODE_STRICT && !atomic) 317 atomic = true; 318 } 319 go_write: 320 /* 321 * Both of fdatasync() and fsync() are able to be recovered from 322 * sudden-power-off. 323 */ 324 f2fs_down_read(&F2FS_I(inode)->i_sem); 325 cp_reason = need_do_checkpoint(inode); 326 f2fs_up_read(&F2FS_I(inode)->i_sem); 327 328 if (cp_reason) { 329 /* all the dirty node pages should be flushed for POR */ 330 ret = f2fs_sync_fs(inode->i_sb, 1); 331 332 /* 333 * We've secured consistency through sync_fs. Following pino 334 * will be used only for fsynced inodes after checkpoint. 335 */ 336 try_to_fix_pino(inode); 337 clear_inode_flag(inode, FI_APPEND_WRITE); 338 clear_inode_flag(inode, FI_UPDATE_WRITE); 339 goto out; 340 } 341 sync_nodes: 342 atomic_inc(&sbi->wb_sync_req[NODE]); 343 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 344 atomic_dec(&sbi->wb_sync_req[NODE]); 345 if (ret) 346 goto out; 347 348 /* if cp_error was enabled, we should avoid infinite loop */ 349 if (unlikely(f2fs_cp_error(sbi))) { 350 ret = -EIO; 351 goto out; 352 } 353 354 if (f2fs_need_inode_block_update(sbi, ino)) { 355 f2fs_mark_inode_dirty_sync(inode, true); 356 f2fs_write_inode(inode, NULL); 357 goto sync_nodes; 358 } 359 360 /* 361 * If it's atomic_write, it's just fine to keep write ordering. So 362 * here we don't need to wait for node write completion, since we use 363 * node chain which serializes node blocks. If one of node writes are 364 * reordered, we can see simply broken chain, resulting in stopping 365 * roll-forward recovery. It means we'll recover all or none node blocks 366 * given fsync mark. 367 */ 368 if (!atomic) { 369 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 370 if (ret) 371 goto out; 372 } 373 374 /* once recovery info is written, don't need to tack this */ 375 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 376 clear_inode_flag(inode, FI_APPEND_WRITE); 377 flush_out: 378 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 379 ret = f2fs_issue_flush(sbi, inode->i_ino); 380 if (!ret) { 381 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 382 clear_inode_flag(inode, FI_UPDATE_WRITE); 383 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 384 } 385 f2fs_update_time(sbi, REQ_TIME); 386 out: 387 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 388 return ret; 389 } 390 391 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 392 { 393 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 394 return -EIO; 395 return f2fs_do_sync_file(file, start, end, datasync, false); 396 } 397 398 static bool __found_offset(struct address_space *mapping, 399 struct dnode_of_data *dn, pgoff_t index, int whence) 400 { 401 block_t blkaddr = f2fs_data_blkaddr(dn); 402 struct inode *inode = mapping->host; 403 bool compressed_cluster = false; 404 405 if (f2fs_compressed_file(inode)) { 406 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 407 ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size)); 408 409 compressed_cluster = first_blkaddr == COMPRESS_ADDR; 410 } 411 412 switch (whence) { 413 case SEEK_DATA: 414 if (__is_valid_data_blkaddr(blkaddr)) 415 return true; 416 if (blkaddr == NEW_ADDR && 417 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 418 return true; 419 if (compressed_cluster) 420 return true; 421 break; 422 case SEEK_HOLE: 423 if (compressed_cluster) 424 return false; 425 if (blkaddr == NULL_ADDR) 426 return true; 427 break; 428 } 429 return false; 430 } 431 432 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 433 { 434 struct inode *inode = file->f_mapping->host; 435 loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 436 struct dnode_of_data dn; 437 pgoff_t pgofs, end_offset; 438 loff_t data_ofs = offset; 439 loff_t isize; 440 int err = 0; 441 442 inode_lock_shared(inode); 443 444 isize = i_size_read(inode); 445 if (offset >= isize) 446 goto fail; 447 448 /* handle inline data case */ 449 if (f2fs_has_inline_data(inode)) { 450 if (whence == SEEK_HOLE) { 451 data_ofs = isize; 452 goto found; 453 } else if (whence == SEEK_DATA) { 454 data_ofs = offset; 455 goto found; 456 } 457 } 458 459 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 460 461 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 462 set_new_dnode(&dn, inode, NULL, NULL, 0); 463 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 464 if (err && err != -ENOENT) { 465 goto fail; 466 } else if (err == -ENOENT) { 467 /* direct node does not exists */ 468 if (whence == SEEK_DATA) { 469 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 470 continue; 471 } else { 472 goto found; 473 } 474 } 475 476 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 477 478 /* find data/hole in dnode block */ 479 for (; dn.ofs_in_node < end_offset; 480 dn.ofs_in_node++, pgofs++, 481 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 482 block_t blkaddr; 483 484 blkaddr = f2fs_data_blkaddr(&dn); 485 486 if (__is_valid_data_blkaddr(blkaddr) && 487 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 488 blkaddr, DATA_GENERIC_ENHANCE)) { 489 f2fs_put_dnode(&dn); 490 goto fail; 491 } 492 493 if (__found_offset(file->f_mapping, &dn, 494 pgofs, whence)) { 495 f2fs_put_dnode(&dn); 496 goto found; 497 } 498 } 499 f2fs_put_dnode(&dn); 500 } 501 502 if (whence == SEEK_DATA) 503 goto fail; 504 found: 505 if (whence == SEEK_HOLE && data_ofs > isize) 506 data_ofs = isize; 507 inode_unlock_shared(inode); 508 return vfs_setpos(file, data_ofs, maxbytes); 509 fail: 510 inode_unlock_shared(inode); 511 return -ENXIO; 512 } 513 514 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 515 { 516 struct inode *inode = file->f_mapping->host; 517 loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 518 519 switch (whence) { 520 case SEEK_SET: 521 case SEEK_CUR: 522 case SEEK_END: 523 return generic_file_llseek_size(file, offset, whence, 524 maxbytes, i_size_read(inode)); 525 case SEEK_DATA: 526 case SEEK_HOLE: 527 if (offset < 0) 528 return -ENXIO; 529 return f2fs_seek_block(file, offset, whence); 530 } 531 532 return -EINVAL; 533 } 534 535 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 536 { 537 struct inode *inode = file_inode(file); 538 539 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 540 return -EIO; 541 542 if (!f2fs_is_compress_backend_ready(inode)) 543 return -EOPNOTSUPP; 544 545 file_accessed(file); 546 vma->vm_ops = &f2fs_file_vm_ops; 547 548 f2fs_down_read(&F2FS_I(inode)->i_sem); 549 set_inode_flag(inode, FI_MMAP_FILE); 550 f2fs_up_read(&F2FS_I(inode)->i_sem); 551 552 return 0; 553 } 554 555 static int finish_preallocate_blocks(struct inode *inode) 556 { 557 int ret; 558 559 inode_lock(inode); 560 if (is_inode_flag_set(inode, FI_OPENED_FILE)) { 561 inode_unlock(inode); 562 return 0; 563 } 564 565 if (!file_should_truncate(inode)) { 566 set_inode_flag(inode, FI_OPENED_FILE); 567 inode_unlock(inode); 568 return 0; 569 } 570 571 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 572 filemap_invalidate_lock(inode->i_mapping); 573 574 truncate_setsize(inode, i_size_read(inode)); 575 ret = f2fs_truncate(inode); 576 577 filemap_invalidate_unlock(inode->i_mapping); 578 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 579 580 if (!ret) 581 set_inode_flag(inode, FI_OPENED_FILE); 582 583 inode_unlock(inode); 584 if (ret) 585 return ret; 586 587 file_dont_truncate(inode); 588 return 0; 589 } 590 591 static int f2fs_file_open(struct inode *inode, struct file *filp) 592 { 593 int err = fscrypt_file_open(inode, filp); 594 595 if (err) 596 return err; 597 598 if (!f2fs_is_compress_backend_ready(inode)) 599 return -EOPNOTSUPP; 600 601 err = fsverity_file_open(inode, filp); 602 if (err) 603 return err; 604 605 filp->f_mode |= FMODE_NOWAIT; 606 filp->f_mode |= FMODE_CAN_ODIRECT; 607 608 err = dquot_file_open(inode, filp); 609 if (err) 610 return err; 611 612 return finish_preallocate_blocks(inode); 613 } 614 615 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 616 { 617 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 618 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 619 __le32 *addr; 620 bool compressed_cluster = false; 621 int cluster_index = 0, valid_blocks = 0; 622 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 623 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 624 625 addr = get_dnode_addr(dn->inode, dn->node_page) + ofs; 626 627 /* Assumption: truncation starts with cluster */ 628 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 629 block_t blkaddr = le32_to_cpu(*addr); 630 631 if (f2fs_compressed_file(dn->inode) && 632 !(cluster_index & (cluster_size - 1))) { 633 if (compressed_cluster) 634 f2fs_i_compr_blocks_update(dn->inode, 635 valid_blocks, false); 636 compressed_cluster = (blkaddr == COMPRESS_ADDR); 637 valid_blocks = 0; 638 } 639 640 if (blkaddr == NULL_ADDR) 641 continue; 642 643 f2fs_set_data_blkaddr(dn, NULL_ADDR); 644 645 if (__is_valid_data_blkaddr(blkaddr)) { 646 if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE)) 647 continue; 648 if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr, 649 DATA_GENERIC_ENHANCE)) 650 continue; 651 if (compressed_cluster) 652 valid_blocks++; 653 } 654 655 f2fs_invalidate_blocks(sbi, blkaddr); 656 657 if (!released || blkaddr != COMPRESS_ADDR) 658 nr_free++; 659 } 660 661 if (compressed_cluster) 662 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 663 664 if (nr_free) { 665 pgoff_t fofs; 666 /* 667 * once we invalidate valid blkaddr in range [ofs, ofs + count], 668 * we will invalidate all blkaddr in the whole range. 669 */ 670 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 671 dn->inode) + ofs; 672 f2fs_update_read_extent_cache_range(dn, fofs, 0, len); 673 f2fs_update_age_extent_cache_range(dn, fofs, len); 674 dec_valid_block_count(sbi, dn->inode, nr_free); 675 } 676 dn->ofs_in_node = ofs; 677 678 f2fs_update_time(sbi, REQ_TIME); 679 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 680 dn->ofs_in_node, nr_free); 681 } 682 683 static int truncate_partial_data_page(struct inode *inode, u64 from, 684 bool cache_only) 685 { 686 loff_t offset = from & (PAGE_SIZE - 1); 687 pgoff_t index = from >> PAGE_SHIFT; 688 struct address_space *mapping = inode->i_mapping; 689 struct page *page; 690 691 if (!offset && !cache_only) 692 return 0; 693 694 if (cache_only) { 695 page = find_lock_page(mapping, index); 696 if (page && PageUptodate(page)) 697 goto truncate_out; 698 f2fs_put_page(page, 1); 699 return 0; 700 } 701 702 page = f2fs_get_lock_data_page(inode, index, true); 703 if (IS_ERR(page)) 704 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 705 truncate_out: 706 f2fs_wait_on_page_writeback(page, DATA, true, true); 707 zero_user(page, offset, PAGE_SIZE - offset); 708 709 /* An encrypted inode should have a key and truncate the last page. */ 710 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 711 if (!cache_only) 712 set_page_dirty(page); 713 f2fs_put_page(page, 1); 714 return 0; 715 } 716 717 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 718 { 719 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 720 struct dnode_of_data dn; 721 pgoff_t free_from; 722 int count = 0, err = 0; 723 struct page *ipage; 724 bool truncate_page = false; 725 726 trace_f2fs_truncate_blocks_enter(inode, from); 727 728 if (IS_DEVICE_ALIASING(inode) && from) { 729 err = -EINVAL; 730 goto out_err; 731 } 732 733 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 734 735 if (free_from >= max_file_blocks(inode)) 736 goto free_partial; 737 738 if (lock) 739 f2fs_lock_op(sbi); 740 741 ipage = f2fs_get_node_page(sbi, inode->i_ino); 742 if (IS_ERR(ipage)) { 743 err = PTR_ERR(ipage); 744 goto out; 745 } 746 747 if (IS_DEVICE_ALIASING(inode)) { 748 struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ]; 749 struct extent_info ei = et->largest; 750 unsigned int i; 751 752 for (i = 0; i < ei.len; i++) 753 f2fs_invalidate_blocks(sbi, ei.blk + i); 754 755 dec_valid_block_count(sbi, inode, ei.len); 756 f2fs_update_time(sbi, REQ_TIME); 757 758 f2fs_put_page(ipage, 1); 759 goto out; 760 } 761 762 if (f2fs_has_inline_data(inode)) { 763 f2fs_truncate_inline_inode(inode, ipage, from); 764 f2fs_put_page(ipage, 1); 765 truncate_page = true; 766 goto out; 767 } 768 769 set_new_dnode(&dn, inode, ipage, NULL, 0); 770 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 771 if (err) { 772 if (err == -ENOENT) 773 goto free_next; 774 goto out; 775 } 776 777 count = ADDRS_PER_PAGE(dn.node_page, inode); 778 779 count -= dn.ofs_in_node; 780 f2fs_bug_on(sbi, count < 0); 781 782 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 783 f2fs_truncate_data_blocks_range(&dn, count); 784 free_from += count; 785 } 786 787 f2fs_put_dnode(&dn); 788 free_next: 789 err = f2fs_truncate_inode_blocks(inode, free_from); 790 out: 791 if (lock) 792 f2fs_unlock_op(sbi); 793 free_partial: 794 /* lastly zero out the first data page */ 795 if (!err) 796 err = truncate_partial_data_page(inode, from, truncate_page); 797 out_err: 798 trace_f2fs_truncate_blocks_exit(inode, err); 799 return err; 800 } 801 802 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 803 { 804 u64 free_from = from; 805 int err; 806 807 #ifdef CONFIG_F2FS_FS_COMPRESSION 808 /* 809 * for compressed file, only support cluster size 810 * aligned truncation. 811 */ 812 if (f2fs_compressed_file(inode)) 813 free_from = round_up(from, 814 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 815 #endif 816 817 err = f2fs_do_truncate_blocks(inode, free_from, lock); 818 if (err) 819 return err; 820 821 #ifdef CONFIG_F2FS_FS_COMPRESSION 822 /* 823 * For compressed file, after release compress blocks, don't allow write 824 * direct, but we should allow write direct after truncate to zero. 825 */ 826 if (f2fs_compressed_file(inode) && !free_from 827 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 828 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 829 830 if (from != free_from) { 831 err = f2fs_truncate_partial_cluster(inode, from, lock); 832 if (err) 833 return err; 834 } 835 #endif 836 837 return 0; 838 } 839 840 int f2fs_truncate(struct inode *inode) 841 { 842 int err; 843 844 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 845 return -EIO; 846 847 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 848 S_ISLNK(inode->i_mode))) 849 return 0; 850 851 trace_f2fs_truncate(inode); 852 853 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) 854 return -EIO; 855 856 err = f2fs_dquot_initialize(inode); 857 if (err) 858 return err; 859 860 /* we should check inline_data size */ 861 if (!f2fs_may_inline_data(inode)) { 862 err = f2fs_convert_inline_inode(inode); 863 if (err) 864 return err; 865 } 866 867 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 868 if (err) 869 return err; 870 871 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 872 f2fs_mark_inode_dirty_sync(inode, false); 873 return 0; 874 } 875 876 static bool f2fs_force_buffered_io(struct inode *inode, int rw) 877 { 878 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 879 880 if (!fscrypt_dio_supported(inode)) 881 return true; 882 if (fsverity_active(inode)) 883 return true; 884 if (f2fs_compressed_file(inode)) 885 return true; 886 /* 887 * only force direct read to use buffered IO, for direct write, 888 * it expects inline data conversion before committing IO. 889 */ 890 if (f2fs_has_inline_data(inode) && rw == READ) 891 return true; 892 893 /* disallow direct IO if any of devices has unaligned blksize */ 894 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 895 return true; 896 /* 897 * for blkzoned device, fallback direct IO to buffered IO, so 898 * all IOs can be serialized by log-structured write. 899 */ 900 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) && 901 !f2fs_is_pinned_file(inode)) 902 return true; 903 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 904 return true; 905 906 return false; 907 } 908 909 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 910 struct kstat *stat, u32 request_mask, unsigned int query_flags) 911 { 912 struct inode *inode = d_inode(path->dentry); 913 struct f2fs_inode_info *fi = F2FS_I(inode); 914 struct f2fs_inode *ri = NULL; 915 unsigned int flags; 916 917 if (f2fs_has_extra_attr(inode) && 918 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 919 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 920 stat->result_mask |= STATX_BTIME; 921 stat->btime.tv_sec = fi->i_crtime.tv_sec; 922 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 923 } 924 925 /* 926 * Return the DIO alignment restrictions if requested. We only return 927 * this information when requested, since on encrypted files it might 928 * take a fair bit of work to get if the file wasn't opened recently. 929 * 930 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN 931 * cannot represent that, so in that case we report no DIO support. 932 */ 933 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 934 unsigned int bsize = i_blocksize(inode); 935 936 stat->result_mask |= STATX_DIOALIGN; 937 if (!f2fs_force_buffered_io(inode, WRITE)) { 938 stat->dio_mem_align = bsize; 939 stat->dio_offset_align = bsize; 940 } 941 } 942 943 flags = fi->i_flags; 944 if (flags & F2FS_COMPR_FL) 945 stat->attributes |= STATX_ATTR_COMPRESSED; 946 if (flags & F2FS_APPEND_FL) 947 stat->attributes |= STATX_ATTR_APPEND; 948 if (IS_ENCRYPTED(inode)) 949 stat->attributes |= STATX_ATTR_ENCRYPTED; 950 if (flags & F2FS_IMMUTABLE_FL) 951 stat->attributes |= STATX_ATTR_IMMUTABLE; 952 if (flags & F2FS_NODUMP_FL) 953 stat->attributes |= STATX_ATTR_NODUMP; 954 if (IS_VERITY(inode)) 955 stat->attributes |= STATX_ATTR_VERITY; 956 957 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 958 STATX_ATTR_APPEND | 959 STATX_ATTR_ENCRYPTED | 960 STATX_ATTR_IMMUTABLE | 961 STATX_ATTR_NODUMP | 962 STATX_ATTR_VERITY); 963 964 generic_fillattr(idmap, request_mask, inode, stat); 965 966 /* we need to show initial sectors used for inline_data/dentries */ 967 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 968 f2fs_has_inline_dentry(inode)) 969 stat->blocks += (stat->size + 511) >> 9; 970 971 return 0; 972 } 973 974 #ifdef CONFIG_F2FS_FS_POSIX_ACL 975 static void __setattr_copy(struct mnt_idmap *idmap, 976 struct inode *inode, const struct iattr *attr) 977 { 978 unsigned int ia_valid = attr->ia_valid; 979 980 i_uid_update(idmap, attr, inode); 981 i_gid_update(idmap, attr, inode); 982 if (ia_valid & ATTR_ATIME) 983 inode_set_atime_to_ts(inode, attr->ia_atime); 984 if (ia_valid & ATTR_MTIME) 985 inode_set_mtime_to_ts(inode, attr->ia_mtime); 986 if (ia_valid & ATTR_CTIME) 987 inode_set_ctime_to_ts(inode, attr->ia_ctime); 988 if (ia_valid & ATTR_MODE) { 989 umode_t mode = attr->ia_mode; 990 991 if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode))) 992 mode &= ~S_ISGID; 993 set_acl_inode(inode, mode); 994 } 995 } 996 #else 997 #define __setattr_copy setattr_copy 998 #endif 999 1000 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1001 struct iattr *attr) 1002 { 1003 struct inode *inode = d_inode(dentry); 1004 struct f2fs_inode_info *fi = F2FS_I(inode); 1005 int err; 1006 1007 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1008 return -EIO; 1009 1010 if (unlikely(IS_IMMUTABLE(inode))) 1011 return -EPERM; 1012 1013 if (unlikely(IS_APPEND(inode) && 1014 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 1015 ATTR_GID | ATTR_TIMES_SET)))) 1016 return -EPERM; 1017 1018 if ((attr->ia_valid & ATTR_SIZE)) { 1019 if (!f2fs_is_compress_backend_ready(inode) || 1020 IS_DEVICE_ALIASING(inode)) 1021 return -EOPNOTSUPP; 1022 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) && 1023 !IS_ALIGNED(attr->ia_size, 1024 F2FS_BLK_TO_BYTES(fi->i_cluster_size))) 1025 return -EINVAL; 1026 } 1027 1028 err = setattr_prepare(idmap, dentry, attr); 1029 if (err) 1030 return err; 1031 1032 err = fscrypt_prepare_setattr(dentry, attr); 1033 if (err) 1034 return err; 1035 1036 err = fsverity_prepare_setattr(dentry, attr); 1037 if (err) 1038 return err; 1039 1040 if (is_quota_modification(idmap, inode, attr)) { 1041 err = f2fs_dquot_initialize(inode); 1042 if (err) 1043 return err; 1044 } 1045 if (i_uid_needs_update(idmap, attr, inode) || 1046 i_gid_needs_update(idmap, attr, inode)) { 1047 f2fs_lock_op(F2FS_I_SB(inode)); 1048 err = dquot_transfer(idmap, inode, attr); 1049 if (err) { 1050 set_sbi_flag(F2FS_I_SB(inode), 1051 SBI_QUOTA_NEED_REPAIR); 1052 f2fs_unlock_op(F2FS_I_SB(inode)); 1053 return err; 1054 } 1055 /* 1056 * update uid/gid under lock_op(), so that dquot and inode can 1057 * be updated atomically. 1058 */ 1059 i_uid_update(idmap, attr, inode); 1060 i_gid_update(idmap, attr, inode); 1061 f2fs_mark_inode_dirty_sync(inode, true); 1062 f2fs_unlock_op(F2FS_I_SB(inode)); 1063 } 1064 1065 if (attr->ia_valid & ATTR_SIZE) { 1066 loff_t old_size = i_size_read(inode); 1067 1068 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 1069 /* 1070 * should convert inline inode before i_size_write to 1071 * keep smaller than inline_data size with inline flag. 1072 */ 1073 err = f2fs_convert_inline_inode(inode); 1074 if (err) 1075 return err; 1076 } 1077 1078 /* 1079 * wait for inflight dio, blocks should be removed after 1080 * IO completion. 1081 */ 1082 if (attr->ia_size < old_size) 1083 inode_dio_wait(inode); 1084 1085 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 1086 filemap_invalidate_lock(inode->i_mapping); 1087 1088 truncate_setsize(inode, attr->ia_size); 1089 1090 if (attr->ia_size <= old_size) 1091 err = f2fs_truncate(inode); 1092 /* 1093 * do not trim all blocks after i_size if target size is 1094 * larger than i_size. 1095 */ 1096 filemap_invalidate_unlock(inode->i_mapping); 1097 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1098 if (err) 1099 return err; 1100 1101 spin_lock(&fi->i_size_lock); 1102 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1103 fi->last_disk_size = i_size_read(inode); 1104 spin_unlock(&fi->i_size_lock); 1105 } 1106 1107 __setattr_copy(idmap, inode, attr); 1108 1109 if (attr->ia_valid & ATTR_MODE) { 1110 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode)); 1111 1112 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 1113 if (!err) 1114 inode->i_mode = fi->i_acl_mode; 1115 clear_inode_flag(inode, FI_ACL_MODE); 1116 } 1117 } 1118 1119 /* file size may changed here */ 1120 f2fs_mark_inode_dirty_sync(inode, true); 1121 1122 /* inode change will produce dirty node pages flushed by checkpoint */ 1123 f2fs_balance_fs(F2FS_I_SB(inode), true); 1124 1125 return err; 1126 } 1127 1128 const struct inode_operations f2fs_file_inode_operations = { 1129 .getattr = f2fs_getattr, 1130 .setattr = f2fs_setattr, 1131 .get_inode_acl = f2fs_get_acl, 1132 .set_acl = f2fs_set_acl, 1133 .listxattr = f2fs_listxattr, 1134 .fiemap = f2fs_fiemap, 1135 .fileattr_get = f2fs_fileattr_get, 1136 .fileattr_set = f2fs_fileattr_set, 1137 }; 1138 1139 static int fill_zero(struct inode *inode, pgoff_t index, 1140 loff_t start, loff_t len) 1141 { 1142 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1143 struct page *page; 1144 1145 if (!len) 1146 return 0; 1147 1148 f2fs_balance_fs(sbi, true); 1149 1150 f2fs_lock_op(sbi); 1151 page = f2fs_get_new_data_page(inode, NULL, index, false); 1152 f2fs_unlock_op(sbi); 1153 1154 if (IS_ERR(page)) 1155 return PTR_ERR(page); 1156 1157 f2fs_wait_on_page_writeback(page, DATA, true, true); 1158 zero_user(page, start, len); 1159 set_page_dirty(page); 1160 f2fs_put_page(page, 1); 1161 return 0; 1162 } 1163 1164 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1165 { 1166 int err; 1167 1168 while (pg_start < pg_end) { 1169 struct dnode_of_data dn; 1170 pgoff_t end_offset, count; 1171 1172 set_new_dnode(&dn, inode, NULL, NULL, 0); 1173 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1174 if (err) { 1175 if (err == -ENOENT) { 1176 pg_start = f2fs_get_next_page_offset(&dn, 1177 pg_start); 1178 continue; 1179 } 1180 return err; 1181 } 1182 1183 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1184 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1185 1186 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1187 1188 f2fs_truncate_data_blocks_range(&dn, count); 1189 f2fs_put_dnode(&dn); 1190 1191 pg_start += count; 1192 } 1193 return 0; 1194 } 1195 1196 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 1197 { 1198 pgoff_t pg_start, pg_end; 1199 loff_t off_start, off_end; 1200 int ret; 1201 1202 ret = f2fs_convert_inline_inode(inode); 1203 if (ret) 1204 return ret; 1205 1206 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1207 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1208 1209 off_start = offset & (PAGE_SIZE - 1); 1210 off_end = (offset + len) & (PAGE_SIZE - 1); 1211 1212 if (pg_start == pg_end) { 1213 ret = fill_zero(inode, pg_start, off_start, 1214 off_end - off_start); 1215 if (ret) 1216 return ret; 1217 } else { 1218 if (off_start) { 1219 ret = fill_zero(inode, pg_start++, off_start, 1220 PAGE_SIZE - off_start); 1221 if (ret) 1222 return ret; 1223 } 1224 if (off_end) { 1225 ret = fill_zero(inode, pg_end, 0, off_end); 1226 if (ret) 1227 return ret; 1228 } 1229 1230 if (pg_start < pg_end) { 1231 loff_t blk_start, blk_end; 1232 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1233 1234 f2fs_balance_fs(sbi, true); 1235 1236 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1237 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1238 1239 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1240 filemap_invalidate_lock(inode->i_mapping); 1241 1242 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1243 1244 f2fs_lock_op(sbi); 1245 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1246 f2fs_unlock_op(sbi); 1247 1248 filemap_invalidate_unlock(inode->i_mapping); 1249 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1250 } 1251 } 1252 1253 return ret; 1254 } 1255 1256 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1257 int *do_replace, pgoff_t off, pgoff_t len) 1258 { 1259 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1260 struct dnode_of_data dn; 1261 int ret, done, i; 1262 1263 next_dnode: 1264 set_new_dnode(&dn, inode, NULL, NULL, 0); 1265 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1266 if (ret && ret != -ENOENT) { 1267 return ret; 1268 } else if (ret == -ENOENT) { 1269 if (dn.max_level == 0) 1270 return -ENOENT; 1271 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1272 dn.ofs_in_node, len); 1273 blkaddr += done; 1274 do_replace += done; 1275 goto next; 1276 } 1277 1278 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1279 dn.ofs_in_node, len); 1280 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1281 *blkaddr = f2fs_data_blkaddr(&dn); 1282 1283 if (__is_valid_data_blkaddr(*blkaddr) && 1284 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1285 DATA_GENERIC_ENHANCE)) { 1286 f2fs_put_dnode(&dn); 1287 return -EFSCORRUPTED; 1288 } 1289 1290 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1291 1292 if (f2fs_lfs_mode(sbi)) { 1293 f2fs_put_dnode(&dn); 1294 return -EOPNOTSUPP; 1295 } 1296 1297 /* do not invalidate this block address */ 1298 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1299 *do_replace = 1; 1300 } 1301 } 1302 f2fs_put_dnode(&dn); 1303 next: 1304 len -= done; 1305 off += done; 1306 if (len) 1307 goto next_dnode; 1308 return 0; 1309 } 1310 1311 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1312 int *do_replace, pgoff_t off, int len) 1313 { 1314 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1315 struct dnode_of_data dn; 1316 int ret, i; 1317 1318 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1319 if (*do_replace == 0) 1320 continue; 1321 1322 set_new_dnode(&dn, inode, NULL, NULL, 0); 1323 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1324 if (ret) { 1325 dec_valid_block_count(sbi, inode, 1); 1326 f2fs_invalidate_blocks(sbi, *blkaddr); 1327 } else { 1328 f2fs_update_data_blkaddr(&dn, *blkaddr); 1329 } 1330 f2fs_put_dnode(&dn); 1331 } 1332 return 0; 1333 } 1334 1335 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1336 block_t *blkaddr, int *do_replace, 1337 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1338 { 1339 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1340 pgoff_t i = 0; 1341 int ret; 1342 1343 while (i < len) { 1344 if (blkaddr[i] == NULL_ADDR && !full) { 1345 i++; 1346 continue; 1347 } 1348 1349 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1350 struct dnode_of_data dn; 1351 struct node_info ni; 1352 size_t new_size; 1353 pgoff_t ilen; 1354 1355 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1356 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1357 if (ret) 1358 return ret; 1359 1360 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1361 if (ret) { 1362 f2fs_put_dnode(&dn); 1363 return ret; 1364 } 1365 1366 ilen = min((pgoff_t) 1367 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1368 dn.ofs_in_node, len - i); 1369 do { 1370 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1371 f2fs_truncate_data_blocks_range(&dn, 1); 1372 1373 if (do_replace[i]) { 1374 f2fs_i_blocks_write(src_inode, 1375 1, false, false); 1376 f2fs_i_blocks_write(dst_inode, 1377 1, true, false); 1378 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1379 blkaddr[i], ni.version, true, false); 1380 1381 do_replace[i] = 0; 1382 } 1383 dn.ofs_in_node++; 1384 i++; 1385 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1386 if (dst_inode->i_size < new_size) 1387 f2fs_i_size_write(dst_inode, new_size); 1388 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1389 1390 f2fs_put_dnode(&dn); 1391 } else { 1392 struct page *psrc, *pdst; 1393 1394 psrc = f2fs_get_lock_data_page(src_inode, 1395 src + i, true); 1396 if (IS_ERR(psrc)) 1397 return PTR_ERR(psrc); 1398 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1399 true); 1400 if (IS_ERR(pdst)) { 1401 f2fs_put_page(psrc, 1); 1402 return PTR_ERR(pdst); 1403 } 1404 1405 f2fs_wait_on_page_writeback(pdst, DATA, true, true); 1406 1407 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); 1408 set_page_dirty(pdst); 1409 set_page_private_gcing(pdst); 1410 f2fs_put_page(pdst, 1); 1411 f2fs_put_page(psrc, 1); 1412 1413 ret = f2fs_truncate_hole(src_inode, 1414 src + i, src + i + 1); 1415 if (ret) 1416 return ret; 1417 i++; 1418 } 1419 } 1420 return 0; 1421 } 1422 1423 static int __exchange_data_block(struct inode *src_inode, 1424 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1425 pgoff_t len, bool full) 1426 { 1427 block_t *src_blkaddr; 1428 int *do_replace; 1429 pgoff_t olen; 1430 int ret; 1431 1432 while (len) { 1433 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1434 1435 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1436 array_size(olen, sizeof(block_t)), 1437 GFP_NOFS); 1438 if (!src_blkaddr) 1439 return -ENOMEM; 1440 1441 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1442 array_size(olen, sizeof(int)), 1443 GFP_NOFS); 1444 if (!do_replace) { 1445 kvfree(src_blkaddr); 1446 return -ENOMEM; 1447 } 1448 1449 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1450 do_replace, src, olen); 1451 if (ret) 1452 goto roll_back; 1453 1454 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1455 do_replace, src, dst, olen, full); 1456 if (ret) 1457 goto roll_back; 1458 1459 src += olen; 1460 dst += olen; 1461 len -= olen; 1462 1463 kvfree(src_blkaddr); 1464 kvfree(do_replace); 1465 } 1466 return 0; 1467 1468 roll_back: 1469 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1470 kvfree(src_blkaddr); 1471 kvfree(do_replace); 1472 return ret; 1473 } 1474 1475 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1476 { 1477 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1478 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1479 pgoff_t start = offset >> PAGE_SHIFT; 1480 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1481 int ret; 1482 1483 f2fs_balance_fs(sbi, true); 1484 1485 /* avoid gc operation during block exchange */ 1486 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1487 filemap_invalidate_lock(inode->i_mapping); 1488 1489 f2fs_lock_op(sbi); 1490 f2fs_drop_extent_tree(inode); 1491 truncate_pagecache(inode, offset); 1492 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1493 f2fs_unlock_op(sbi); 1494 1495 filemap_invalidate_unlock(inode->i_mapping); 1496 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1497 return ret; 1498 } 1499 1500 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1501 { 1502 loff_t new_size; 1503 int ret; 1504 1505 if (offset + len >= i_size_read(inode)) 1506 return -EINVAL; 1507 1508 /* collapse range should be aligned to block size of f2fs. */ 1509 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1510 return -EINVAL; 1511 1512 ret = f2fs_convert_inline_inode(inode); 1513 if (ret) 1514 return ret; 1515 1516 /* write out all dirty pages from offset */ 1517 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1518 if (ret) 1519 return ret; 1520 1521 ret = f2fs_do_collapse(inode, offset, len); 1522 if (ret) 1523 return ret; 1524 1525 /* write out all moved pages, if possible */ 1526 filemap_invalidate_lock(inode->i_mapping); 1527 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1528 truncate_pagecache(inode, offset); 1529 1530 new_size = i_size_read(inode) - len; 1531 ret = f2fs_truncate_blocks(inode, new_size, true); 1532 filemap_invalidate_unlock(inode->i_mapping); 1533 if (!ret) 1534 f2fs_i_size_write(inode, new_size); 1535 return ret; 1536 } 1537 1538 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1539 pgoff_t end) 1540 { 1541 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1542 pgoff_t index = start; 1543 unsigned int ofs_in_node = dn->ofs_in_node; 1544 blkcnt_t count = 0; 1545 int ret; 1546 1547 for (; index < end; index++, dn->ofs_in_node++) { 1548 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1549 count++; 1550 } 1551 1552 dn->ofs_in_node = ofs_in_node; 1553 ret = f2fs_reserve_new_blocks(dn, count); 1554 if (ret) 1555 return ret; 1556 1557 dn->ofs_in_node = ofs_in_node; 1558 for (index = start; index < end; index++, dn->ofs_in_node++) { 1559 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1560 /* 1561 * f2fs_reserve_new_blocks will not guarantee entire block 1562 * allocation. 1563 */ 1564 if (dn->data_blkaddr == NULL_ADDR) { 1565 ret = -ENOSPC; 1566 break; 1567 } 1568 1569 if (dn->data_blkaddr == NEW_ADDR) 1570 continue; 1571 1572 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1573 DATA_GENERIC_ENHANCE)) { 1574 ret = -EFSCORRUPTED; 1575 break; 1576 } 1577 1578 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1579 f2fs_set_data_blkaddr(dn, NEW_ADDR); 1580 } 1581 1582 f2fs_update_read_extent_cache_range(dn, start, 0, index - start); 1583 f2fs_update_age_extent_cache_range(dn, start, index - start); 1584 1585 return ret; 1586 } 1587 1588 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1589 int mode) 1590 { 1591 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1592 struct address_space *mapping = inode->i_mapping; 1593 pgoff_t index, pg_start, pg_end; 1594 loff_t new_size = i_size_read(inode); 1595 loff_t off_start, off_end; 1596 int ret = 0; 1597 1598 ret = inode_newsize_ok(inode, (len + offset)); 1599 if (ret) 1600 return ret; 1601 1602 ret = f2fs_convert_inline_inode(inode); 1603 if (ret) 1604 return ret; 1605 1606 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1607 if (ret) 1608 return ret; 1609 1610 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1611 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1612 1613 off_start = offset & (PAGE_SIZE - 1); 1614 off_end = (offset + len) & (PAGE_SIZE - 1); 1615 1616 if (pg_start == pg_end) { 1617 ret = fill_zero(inode, pg_start, off_start, 1618 off_end - off_start); 1619 if (ret) 1620 return ret; 1621 1622 new_size = max_t(loff_t, new_size, offset + len); 1623 } else { 1624 if (off_start) { 1625 ret = fill_zero(inode, pg_start++, off_start, 1626 PAGE_SIZE - off_start); 1627 if (ret) 1628 return ret; 1629 1630 new_size = max_t(loff_t, new_size, 1631 (loff_t)pg_start << PAGE_SHIFT); 1632 } 1633 1634 for (index = pg_start; index < pg_end;) { 1635 struct dnode_of_data dn; 1636 unsigned int end_offset; 1637 pgoff_t end; 1638 1639 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1640 filemap_invalidate_lock(mapping); 1641 1642 truncate_pagecache_range(inode, 1643 (loff_t)index << PAGE_SHIFT, 1644 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1645 1646 f2fs_lock_op(sbi); 1647 1648 set_new_dnode(&dn, inode, NULL, NULL, 0); 1649 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1650 if (ret) { 1651 f2fs_unlock_op(sbi); 1652 filemap_invalidate_unlock(mapping); 1653 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1654 goto out; 1655 } 1656 1657 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1658 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1659 1660 ret = f2fs_do_zero_range(&dn, index, end); 1661 f2fs_put_dnode(&dn); 1662 1663 f2fs_unlock_op(sbi); 1664 filemap_invalidate_unlock(mapping); 1665 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1666 1667 f2fs_balance_fs(sbi, dn.node_changed); 1668 1669 if (ret) 1670 goto out; 1671 1672 index = end; 1673 new_size = max_t(loff_t, new_size, 1674 (loff_t)index << PAGE_SHIFT); 1675 } 1676 1677 if (off_end) { 1678 ret = fill_zero(inode, pg_end, 0, off_end); 1679 if (ret) 1680 goto out; 1681 1682 new_size = max_t(loff_t, new_size, offset + len); 1683 } 1684 } 1685 1686 out: 1687 if (new_size > i_size_read(inode)) { 1688 if (mode & FALLOC_FL_KEEP_SIZE) 1689 file_set_keep_isize(inode); 1690 else 1691 f2fs_i_size_write(inode, new_size); 1692 } 1693 return ret; 1694 } 1695 1696 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1697 { 1698 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1699 struct address_space *mapping = inode->i_mapping; 1700 pgoff_t nr, pg_start, pg_end, delta, idx; 1701 loff_t new_size; 1702 int ret = 0; 1703 1704 new_size = i_size_read(inode) + len; 1705 ret = inode_newsize_ok(inode, new_size); 1706 if (ret) 1707 return ret; 1708 1709 if (offset >= i_size_read(inode)) 1710 return -EINVAL; 1711 1712 /* insert range should be aligned to block size of f2fs. */ 1713 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1714 return -EINVAL; 1715 1716 ret = f2fs_convert_inline_inode(inode); 1717 if (ret) 1718 return ret; 1719 1720 f2fs_balance_fs(sbi, true); 1721 1722 filemap_invalidate_lock(mapping); 1723 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1724 filemap_invalidate_unlock(mapping); 1725 if (ret) 1726 return ret; 1727 1728 /* write out all dirty pages from offset */ 1729 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1730 if (ret) 1731 return ret; 1732 1733 pg_start = offset >> PAGE_SHIFT; 1734 pg_end = (offset + len) >> PAGE_SHIFT; 1735 delta = pg_end - pg_start; 1736 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1737 1738 /* avoid gc operation during block exchange */ 1739 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1740 filemap_invalidate_lock(mapping); 1741 truncate_pagecache(inode, offset); 1742 1743 while (!ret && idx > pg_start) { 1744 nr = idx - pg_start; 1745 if (nr > delta) 1746 nr = delta; 1747 idx -= nr; 1748 1749 f2fs_lock_op(sbi); 1750 f2fs_drop_extent_tree(inode); 1751 1752 ret = __exchange_data_block(inode, inode, idx, 1753 idx + delta, nr, false); 1754 f2fs_unlock_op(sbi); 1755 } 1756 filemap_invalidate_unlock(mapping); 1757 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1758 if (ret) 1759 return ret; 1760 1761 /* write out all moved pages, if possible */ 1762 filemap_invalidate_lock(mapping); 1763 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1764 truncate_pagecache(inode, offset); 1765 filemap_invalidate_unlock(mapping); 1766 1767 if (!ret) 1768 f2fs_i_size_write(inode, new_size); 1769 return ret; 1770 } 1771 1772 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset, 1773 loff_t len, int mode) 1774 { 1775 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1776 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1777 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1778 .m_may_create = true }; 1779 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1780 .init_gc_type = FG_GC, 1781 .should_migrate_blocks = false, 1782 .err_gc_skipped = true, 1783 .nr_free_secs = 0 }; 1784 pgoff_t pg_start, pg_end; 1785 loff_t new_size; 1786 loff_t off_end; 1787 block_t expanded = 0; 1788 int err; 1789 1790 err = inode_newsize_ok(inode, (len + offset)); 1791 if (err) 1792 return err; 1793 1794 err = f2fs_convert_inline_inode(inode); 1795 if (err) 1796 return err; 1797 1798 f2fs_balance_fs(sbi, true); 1799 1800 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1801 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1802 off_end = (offset + len) & (PAGE_SIZE - 1); 1803 1804 map.m_lblk = pg_start; 1805 map.m_len = pg_end - pg_start; 1806 if (off_end) 1807 map.m_len++; 1808 1809 if (!map.m_len) 1810 return 0; 1811 1812 if (f2fs_is_pinned_file(inode)) { 1813 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1814 block_t sec_len = roundup(map.m_len, sec_blks); 1815 1816 map.m_len = sec_blks; 1817 next_alloc: 1818 if (has_not_enough_free_secs(sbi, 0, f2fs_sb_has_blkzoned(sbi) ? 1819 ZONED_PIN_SEC_REQUIRED_COUNT : 1820 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1821 f2fs_down_write(&sbi->gc_lock); 1822 stat_inc_gc_call_count(sbi, FOREGROUND); 1823 err = f2fs_gc(sbi, &gc_control); 1824 if (err && err != -ENODATA) 1825 goto out_err; 1826 } 1827 1828 f2fs_down_write(&sbi->pin_sem); 1829 1830 err = f2fs_allocate_pinning_section(sbi); 1831 if (err) { 1832 f2fs_up_write(&sbi->pin_sem); 1833 goto out_err; 1834 } 1835 1836 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1837 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO); 1838 file_dont_truncate(inode); 1839 1840 f2fs_up_write(&sbi->pin_sem); 1841 1842 expanded += map.m_len; 1843 sec_len -= map.m_len; 1844 map.m_lblk += map.m_len; 1845 if (!err && sec_len) 1846 goto next_alloc; 1847 1848 map.m_len = expanded; 1849 } else { 1850 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO); 1851 expanded = map.m_len; 1852 } 1853 out_err: 1854 if (err) { 1855 pgoff_t last_off; 1856 1857 if (!expanded) 1858 return err; 1859 1860 last_off = pg_start + expanded - 1; 1861 1862 /* update new size to the failed position */ 1863 new_size = (last_off == pg_end) ? offset + len : 1864 (loff_t)(last_off + 1) << PAGE_SHIFT; 1865 } else { 1866 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1867 } 1868 1869 if (new_size > i_size_read(inode)) { 1870 if (mode & FALLOC_FL_KEEP_SIZE) 1871 file_set_keep_isize(inode); 1872 else 1873 f2fs_i_size_write(inode, new_size); 1874 } 1875 1876 return err; 1877 } 1878 1879 static long f2fs_fallocate(struct file *file, int mode, 1880 loff_t offset, loff_t len) 1881 { 1882 struct inode *inode = file_inode(file); 1883 long ret = 0; 1884 1885 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1886 return -EIO; 1887 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1888 return -ENOSPC; 1889 if (!f2fs_is_compress_backend_ready(inode) || IS_DEVICE_ALIASING(inode)) 1890 return -EOPNOTSUPP; 1891 1892 /* f2fs only support ->fallocate for regular file */ 1893 if (!S_ISREG(inode->i_mode)) 1894 return -EINVAL; 1895 1896 if (IS_ENCRYPTED(inode) && 1897 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1898 return -EOPNOTSUPP; 1899 1900 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1901 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1902 FALLOC_FL_INSERT_RANGE)) 1903 return -EOPNOTSUPP; 1904 1905 inode_lock(inode); 1906 1907 /* 1908 * Pinned file should not support partial truncation since the block 1909 * can be used by applications. 1910 */ 1911 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1912 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1913 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) { 1914 ret = -EOPNOTSUPP; 1915 goto out; 1916 } 1917 1918 ret = file_modified(file); 1919 if (ret) 1920 goto out; 1921 1922 /* 1923 * wait for inflight dio, blocks should be removed after IO 1924 * completion. 1925 */ 1926 inode_dio_wait(inode); 1927 1928 if (mode & FALLOC_FL_PUNCH_HOLE) { 1929 if (offset >= inode->i_size) 1930 goto out; 1931 1932 ret = f2fs_punch_hole(inode, offset, len); 1933 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1934 ret = f2fs_collapse_range(inode, offset, len); 1935 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1936 ret = f2fs_zero_range(inode, offset, len, mode); 1937 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1938 ret = f2fs_insert_range(inode, offset, len); 1939 } else { 1940 ret = f2fs_expand_inode_data(inode, offset, len, mode); 1941 } 1942 1943 if (!ret) { 1944 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1945 f2fs_mark_inode_dirty_sync(inode, false); 1946 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1947 } 1948 1949 out: 1950 inode_unlock(inode); 1951 1952 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1953 return ret; 1954 } 1955 1956 static int f2fs_release_file(struct inode *inode, struct file *filp) 1957 { 1958 /* 1959 * f2fs_release_file is called at every close calls. So we should 1960 * not drop any inmemory pages by close called by other process. 1961 */ 1962 if (!(filp->f_mode & FMODE_WRITE) || 1963 atomic_read(&inode->i_writecount) != 1) 1964 return 0; 1965 1966 inode_lock(inode); 1967 f2fs_abort_atomic_write(inode, true); 1968 inode_unlock(inode); 1969 1970 return 0; 1971 } 1972 1973 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1974 { 1975 struct inode *inode = file_inode(file); 1976 1977 /* 1978 * If the process doing a transaction is crashed, we should do 1979 * roll-back. Otherwise, other reader/write can see corrupted database 1980 * until all the writers close its file. Since this should be done 1981 * before dropping file lock, it needs to do in ->flush. 1982 */ 1983 if (F2FS_I(inode)->atomic_write_task == current && 1984 (current->flags & PF_EXITING)) { 1985 inode_lock(inode); 1986 f2fs_abort_atomic_write(inode, true); 1987 inode_unlock(inode); 1988 } 1989 1990 return 0; 1991 } 1992 1993 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1994 { 1995 struct f2fs_inode_info *fi = F2FS_I(inode); 1996 u32 masked_flags = fi->i_flags & mask; 1997 1998 /* mask can be shrunk by flags_valid selector */ 1999 iflags &= mask; 2000 2001 /* Is it quota file? Do not allow user to mess with it */ 2002 if (IS_NOQUOTA(inode)) 2003 return -EPERM; 2004 2005 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 2006 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 2007 return -EOPNOTSUPP; 2008 if (!f2fs_empty_dir(inode)) 2009 return -ENOTEMPTY; 2010 } 2011 2012 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 2013 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 2014 return -EOPNOTSUPP; 2015 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 2016 return -EINVAL; 2017 } 2018 2019 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 2020 if (masked_flags & F2FS_COMPR_FL) { 2021 if (!f2fs_disable_compressed_file(inode)) 2022 return -EINVAL; 2023 } else { 2024 /* try to convert inline_data to support compression */ 2025 int err = f2fs_convert_inline_inode(inode); 2026 if (err) 2027 return err; 2028 2029 f2fs_down_write(&fi->i_sem); 2030 if (!f2fs_may_compress(inode) || 2031 (S_ISREG(inode->i_mode) && 2032 F2FS_HAS_BLOCKS(inode))) { 2033 f2fs_up_write(&fi->i_sem); 2034 return -EINVAL; 2035 } 2036 err = set_compress_context(inode); 2037 f2fs_up_write(&fi->i_sem); 2038 2039 if (err) 2040 return err; 2041 } 2042 } 2043 2044 fi->i_flags = iflags | (fi->i_flags & ~mask); 2045 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 2046 (fi->i_flags & F2FS_NOCOMP_FL)); 2047 2048 if (fi->i_flags & F2FS_PROJINHERIT_FL) 2049 set_inode_flag(inode, FI_PROJ_INHERIT); 2050 else 2051 clear_inode_flag(inode, FI_PROJ_INHERIT); 2052 2053 inode_set_ctime_current(inode); 2054 f2fs_set_inode_flags(inode); 2055 f2fs_mark_inode_dirty_sync(inode, true); 2056 return 0; 2057 } 2058 2059 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 2060 2061 /* 2062 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 2063 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 2064 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 2065 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 2066 * 2067 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 2068 * FS_IOC_FSSETXATTR is done by the VFS. 2069 */ 2070 2071 static const struct { 2072 u32 iflag; 2073 u32 fsflag; 2074 } f2fs_fsflags_map[] = { 2075 { F2FS_COMPR_FL, FS_COMPR_FL }, 2076 { F2FS_SYNC_FL, FS_SYNC_FL }, 2077 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 2078 { F2FS_APPEND_FL, FS_APPEND_FL }, 2079 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 2080 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 2081 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 2082 { F2FS_INDEX_FL, FS_INDEX_FL }, 2083 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 2084 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 2085 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 2086 }; 2087 2088 #define F2FS_GETTABLE_FS_FL ( \ 2089 FS_COMPR_FL | \ 2090 FS_SYNC_FL | \ 2091 FS_IMMUTABLE_FL | \ 2092 FS_APPEND_FL | \ 2093 FS_NODUMP_FL | \ 2094 FS_NOATIME_FL | \ 2095 FS_NOCOMP_FL | \ 2096 FS_INDEX_FL | \ 2097 FS_DIRSYNC_FL | \ 2098 FS_PROJINHERIT_FL | \ 2099 FS_ENCRYPT_FL | \ 2100 FS_INLINE_DATA_FL | \ 2101 FS_NOCOW_FL | \ 2102 FS_VERITY_FL | \ 2103 FS_CASEFOLD_FL) 2104 2105 #define F2FS_SETTABLE_FS_FL ( \ 2106 FS_COMPR_FL | \ 2107 FS_SYNC_FL | \ 2108 FS_IMMUTABLE_FL | \ 2109 FS_APPEND_FL | \ 2110 FS_NODUMP_FL | \ 2111 FS_NOATIME_FL | \ 2112 FS_NOCOMP_FL | \ 2113 FS_DIRSYNC_FL | \ 2114 FS_PROJINHERIT_FL | \ 2115 FS_CASEFOLD_FL) 2116 2117 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 2118 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 2119 { 2120 u32 fsflags = 0; 2121 int i; 2122 2123 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2124 if (iflags & f2fs_fsflags_map[i].iflag) 2125 fsflags |= f2fs_fsflags_map[i].fsflag; 2126 2127 return fsflags; 2128 } 2129 2130 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 2131 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 2132 { 2133 u32 iflags = 0; 2134 int i; 2135 2136 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2137 if (fsflags & f2fs_fsflags_map[i].fsflag) 2138 iflags |= f2fs_fsflags_map[i].iflag; 2139 2140 return iflags; 2141 } 2142 2143 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2144 { 2145 struct inode *inode = file_inode(filp); 2146 2147 return put_user(inode->i_generation, (int __user *)arg); 2148 } 2149 2150 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate) 2151 { 2152 struct inode *inode = file_inode(filp); 2153 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2154 struct f2fs_inode_info *fi = F2FS_I(inode); 2155 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2156 loff_t isize; 2157 int ret; 2158 2159 if (!(filp->f_mode & FMODE_WRITE)) 2160 return -EBADF; 2161 2162 if (!inode_owner_or_capable(idmap, inode)) 2163 return -EACCES; 2164 2165 if (!S_ISREG(inode->i_mode)) 2166 return -EINVAL; 2167 2168 if (filp->f_flags & O_DIRECT) 2169 return -EINVAL; 2170 2171 ret = mnt_want_write_file(filp); 2172 if (ret) 2173 return ret; 2174 2175 inode_lock(inode); 2176 2177 if (!f2fs_disable_compressed_file(inode) || 2178 f2fs_is_pinned_file(inode)) { 2179 ret = -EINVAL; 2180 goto out; 2181 } 2182 2183 if (f2fs_is_atomic_file(inode)) 2184 goto out; 2185 2186 ret = f2fs_convert_inline_inode(inode); 2187 if (ret) 2188 goto out; 2189 2190 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2191 f2fs_down_write(&fi->i_gc_rwsem[READ]); 2192 2193 /* 2194 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2195 * f2fs_is_atomic_file. 2196 */ 2197 if (get_dirty_pages(inode)) 2198 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2199 inode->i_ino, get_dirty_pages(inode)); 2200 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2201 if (ret) 2202 goto out_unlock; 2203 2204 /* Check if the inode already has a COW inode */ 2205 if (fi->cow_inode == NULL) { 2206 /* Create a COW inode for atomic write */ 2207 struct dentry *dentry = file_dentry(filp); 2208 struct inode *dir = d_inode(dentry->d_parent); 2209 2210 ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode); 2211 if (ret) 2212 goto out_unlock; 2213 2214 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2215 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2216 2217 /* Set the COW inode's atomic_inode to the atomic inode */ 2218 F2FS_I(fi->cow_inode)->atomic_inode = inode; 2219 } else { 2220 /* Reuse the already created COW inode */ 2221 f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode)); 2222 2223 invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1); 2224 2225 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true); 2226 if (ret) 2227 goto out_unlock; 2228 } 2229 2230 f2fs_write_inode(inode, NULL); 2231 2232 stat_inc_atomic_inode(inode); 2233 2234 set_inode_flag(inode, FI_ATOMIC_FILE); 2235 2236 isize = i_size_read(inode); 2237 fi->original_i_size = isize; 2238 if (truncate) { 2239 set_inode_flag(inode, FI_ATOMIC_REPLACE); 2240 truncate_inode_pages_final(inode->i_mapping); 2241 f2fs_i_size_write(inode, 0); 2242 isize = 0; 2243 } 2244 f2fs_i_size_write(fi->cow_inode, isize); 2245 2246 out_unlock: 2247 f2fs_up_write(&fi->i_gc_rwsem[READ]); 2248 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2249 if (ret) 2250 goto out; 2251 2252 f2fs_update_time(sbi, REQ_TIME); 2253 fi->atomic_write_task = current; 2254 stat_update_max_atomic_write(inode); 2255 fi->atomic_write_cnt = 0; 2256 out: 2257 inode_unlock(inode); 2258 mnt_drop_write_file(filp); 2259 return ret; 2260 } 2261 2262 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2263 { 2264 struct inode *inode = file_inode(filp); 2265 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2266 int ret; 2267 2268 if (!(filp->f_mode & FMODE_WRITE)) 2269 return -EBADF; 2270 2271 if (!inode_owner_or_capable(idmap, inode)) 2272 return -EACCES; 2273 2274 ret = mnt_want_write_file(filp); 2275 if (ret) 2276 return ret; 2277 2278 f2fs_balance_fs(F2FS_I_SB(inode), true); 2279 2280 inode_lock(inode); 2281 2282 if (f2fs_is_atomic_file(inode)) { 2283 ret = f2fs_commit_atomic_write(inode); 2284 if (!ret) 2285 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2286 2287 f2fs_abort_atomic_write(inode, ret); 2288 } else { 2289 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2290 } 2291 2292 inode_unlock(inode); 2293 mnt_drop_write_file(filp); 2294 return ret; 2295 } 2296 2297 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2298 { 2299 struct inode *inode = file_inode(filp); 2300 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2301 int ret; 2302 2303 if (!(filp->f_mode & FMODE_WRITE)) 2304 return -EBADF; 2305 2306 if (!inode_owner_or_capable(idmap, inode)) 2307 return -EACCES; 2308 2309 ret = mnt_want_write_file(filp); 2310 if (ret) 2311 return ret; 2312 2313 inode_lock(inode); 2314 2315 f2fs_abort_atomic_write(inode, true); 2316 2317 inode_unlock(inode); 2318 2319 mnt_drop_write_file(filp); 2320 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2321 return ret; 2322 } 2323 2324 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag, 2325 bool readonly, bool need_lock) 2326 { 2327 struct super_block *sb = sbi->sb; 2328 int ret = 0; 2329 2330 switch (flag) { 2331 case F2FS_GOING_DOWN_FULLSYNC: 2332 ret = bdev_freeze(sb->s_bdev); 2333 if (ret) 2334 goto out; 2335 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2336 bdev_thaw(sb->s_bdev); 2337 break; 2338 case F2FS_GOING_DOWN_METASYNC: 2339 /* do checkpoint only */ 2340 ret = f2fs_sync_fs(sb, 1); 2341 if (ret) { 2342 if (ret == -EIO) 2343 ret = 0; 2344 goto out; 2345 } 2346 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2347 break; 2348 case F2FS_GOING_DOWN_NOSYNC: 2349 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2350 break; 2351 case F2FS_GOING_DOWN_METAFLUSH: 2352 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2353 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2354 break; 2355 case F2FS_GOING_DOWN_NEED_FSCK: 2356 set_sbi_flag(sbi, SBI_NEED_FSCK); 2357 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2358 set_sbi_flag(sbi, SBI_IS_DIRTY); 2359 /* do checkpoint only */ 2360 ret = f2fs_sync_fs(sb, 1); 2361 if (ret == -EIO) 2362 ret = 0; 2363 goto out; 2364 default: 2365 ret = -EINVAL; 2366 goto out; 2367 } 2368 2369 if (readonly) 2370 goto out; 2371 2372 /* 2373 * grab sb->s_umount to avoid racing w/ remount() and other shutdown 2374 * paths. 2375 */ 2376 if (need_lock) 2377 down_write(&sbi->sb->s_umount); 2378 2379 f2fs_stop_gc_thread(sbi); 2380 f2fs_stop_discard_thread(sbi); 2381 2382 f2fs_drop_discard_cmd(sbi); 2383 clear_opt(sbi, DISCARD); 2384 2385 if (need_lock) 2386 up_write(&sbi->sb->s_umount); 2387 2388 f2fs_update_time(sbi, REQ_TIME); 2389 out: 2390 2391 trace_f2fs_shutdown(sbi, flag, ret); 2392 2393 return ret; 2394 } 2395 2396 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2397 { 2398 struct inode *inode = file_inode(filp); 2399 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2400 __u32 in; 2401 int ret; 2402 bool need_drop = false, readonly = false; 2403 2404 if (!capable(CAP_SYS_ADMIN)) 2405 return -EPERM; 2406 2407 if (get_user(in, (__u32 __user *)arg)) 2408 return -EFAULT; 2409 2410 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2411 ret = mnt_want_write_file(filp); 2412 if (ret) { 2413 if (ret != -EROFS) 2414 return ret; 2415 2416 /* fallback to nosync shutdown for readonly fs */ 2417 in = F2FS_GOING_DOWN_NOSYNC; 2418 readonly = true; 2419 } else { 2420 need_drop = true; 2421 } 2422 } 2423 2424 ret = f2fs_do_shutdown(sbi, in, readonly, true); 2425 2426 if (need_drop) 2427 mnt_drop_write_file(filp); 2428 2429 return ret; 2430 } 2431 2432 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2433 { 2434 struct inode *inode = file_inode(filp); 2435 struct super_block *sb = inode->i_sb; 2436 struct fstrim_range range; 2437 int ret; 2438 2439 if (!capable(CAP_SYS_ADMIN)) 2440 return -EPERM; 2441 2442 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2443 return -EOPNOTSUPP; 2444 2445 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2446 sizeof(range))) 2447 return -EFAULT; 2448 2449 ret = mnt_want_write_file(filp); 2450 if (ret) 2451 return ret; 2452 2453 range.minlen = max((unsigned int)range.minlen, 2454 bdev_discard_granularity(sb->s_bdev)); 2455 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2456 mnt_drop_write_file(filp); 2457 if (ret < 0) 2458 return ret; 2459 2460 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2461 sizeof(range))) 2462 return -EFAULT; 2463 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2464 return 0; 2465 } 2466 2467 static bool uuid_is_nonzero(__u8 u[16]) 2468 { 2469 int i; 2470 2471 for (i = 0; i < 16; i++) 2472 if (u[i]) 2473 return true; 2474 return false; 2475 } 2476 2477 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2478 { 2479 struct inode *inode = file_inode(filp); 2480 int ret; 2481 2482 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2483 return -EOPNOTSUPP; 2484 2485 ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2486 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2487 return ret; 2488 } 2489 2490 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2491 { 2492 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2493 return -EOPNOTSUPP; 2494 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2495 } 2496 2497 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2498 { 2499 struct inode *inode = file_inode(filp); 2500 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2501 u8 encrypt_pw_salt[16]; 2502 int err; 2503 2504 if (!f2fs_sb_has_encrypt(sbi)) 2505 return -EOPNOTSUPP; 2506 2507 err = mnt_want_write_file(filp); 2508 if (err) 2509 return err; 2510 2511 f2fs_down_write(&sbi->sb_lock); 2512 2513 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2514 goto got_it; 2515 2516 /* update superblock with uuid */ 2517 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2518 2519 err = f2fs_commit_super(sbi, false); 2520 if (err) { 2521 /* undo new data */ 2522 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2523 goto out_err; 2524 } 2525 got_it: 2526 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16); 2527 out_err: 2528 f2fs_up_write(&sbi->sb_lock); 2529 mnt_drop_write_file(filp); 2530 2531 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16)) 2532 err = -EFAULT; 2533 2534 return err; 2535 } 2536 2537 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2538 unsigned long arg) 2539 { 2540 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2541 return -EOPNOTSUPP; 2542 2543 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2544 } 2545 2546 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2547 { 2548 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2549 return -EOPNOTSUPP; 2550 2551 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2552 } 2553 2554 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2555 { 2556 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2557 return -EOPNOTSUPP; 2558 2559 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2560 } 2561 2562 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2563 unsigned long arg) 2564 { 2565 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2566 return -EOPNOTSUPP; 2567 2568 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2569 } 2570 2571 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2572 unsigned long arg) 2573 { 2574 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2575 return -EOPNOTSUPP; 2576 2577 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2578 } 2579 2580 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2581 { 2582 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2583 return -EOPNOTSUPP; 2584 2585 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2586 } 2587 2588 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2589 { 2590 struct inode *inode = file_inode(filp); 2591 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2592 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2593 .no_bg_gc = false, 2594 .should_migrate_blocks = false, 2595 .nr_free_secs = 0 }; 2596 __u32 sync; 2597 int ret; 2598 2599 if (!capable(CAP_SYS_ADMIN)) 2600 return -EPERM; 2601 2602 if (get_user(sync, (__u32 __user *)arg)) 2603 return -EFAULT; 2604 2605 if (f2fs_readonly(sbi->sb)) 2606 return -EROFS; 2607 2608 ret = mnt_want_write_file(filp); 2609 if (ret) 2610 return ret; 2611 2612 if (!sync) { 2613 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2614 ret = -EBUSY; 2615 goto out; 2616 } 2617 } else { 2618 f2fs_down_write(&sbi->gc_lock); 2619 } 2620 2621 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2622 gc_control.err_gc_skipped = sync; 2623 stat_inc_gc_call_count(sbi, FOREGROUND); 2624 ret = f2fs_gc(sbi, &gc_control); 2625 out: 2626 mnt_drop_write_file(filp); 2627 return ret; 2628 } 2629 2630 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2631 { 2632 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2633 struct f2fs_gc_control gc_control = { 2634 .init_gc_type = range->sync ? FG_GC : BG_GC, 2635 .no_bg_gc = false, 2636 .should_migrate_blocks = false, 2637 .err_gc_skipped = range->sync, 2638 .nr_free_secs = 0 }; 2639 u64 end; 2640 int ret; 2641 2642 if (!capable(CAP_SYS_ADMIN)) 2643 return -EPERM; 2644 if (f2fs_readonly(sbi->sb)) 2645 return -EROFS; 2646 2647 end = range->start + range->len; 2648 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2649 end >= MAX_BLKADDR(sbi)) 2650 return -EINVAL; 2651 2652 ret = mnt_want_write_file(filp); 2653 if (ret) 2654 return ret; 2655 2656 do_more: 2657 if (!range->sync) { 2658 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2659 ret = -EBUSY; 2660 goto out; 2661 } 2662 } else { 2663 f2fs_down_write(&sbi->gc_lock); 2664 } 2665 2666 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2667 stat_inc_gc_call_count(sbi, FOREGROUND); 2668 ret = f2fs_gc(sbi, &gc_control); 2669 if (ret) { 2670 if (ret == -EBUSY) 2671 ret = -EAGAIN; 2672 goto out; 2673 } 2674 range->start += CAP_BLKS_PER_SEC(sbi); 2675 if (range->start <= end) 2676 goto do_more; 2677 out: 2678 mnt_drop_write_file(filp); 2679 return ret; 2680 } 2681 2682 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2683 { 2684 struct f2fs_gc_range range; 2685 2686 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2687 sizeof(range))) 2688 return -EFAULT; 2689 return __f2fs_ioc_gc_range(filp, &range); 2690 } 2691 2692 static int f2fs_ioc_write_checkpoint(struct file *filp) 2693 { 2694 struct inode *inode = file_inode(filp); 2695 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2696 int ret; 2697 2698 if (!capable(CAP_SYS_ADMIN)) 2699 return -EPERM; 2700 2701 if (f2fs_readonly(sbi->sb)) 2702 return -EROFS; 2703 2704 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2705 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2706 return -EINVAL; 2707 } 2708 2709 ret = mnt_want_write_file(filp); 2710 if (ret) 2711 return ret; 2712 2713 ret = f2fs_sync_fs(sbi->sb, 1); 2714 2715 mnt_drop_write_file(filp); 2716 return ret; 2717 } 2718 2719 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2720 struct file *filp, 2721 struct f2fs_defragment *range) 2722 { 2723 struct inode *inode = file_inode(filp); 2724 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2725 .m_seg_type = NO_CHECK_TYPE, 2726 .m_may_create = false }; 2727 struct extent_info ei = {}; 2728 pgoff_t pg_start, pg_end, next_pgofs; 2729 unsigned int total = 0, sec_num; 2730 block_t blk_end = 0; 2731 bool fragmented = false; 2732 int err; 2733 2734 f2fs_balance_fs(sbi, true); 2735 2736 inode_lock(inode); 2737 pg_start = range->start >> PAGE_SHIFT; 2738 pg_end = min_t(pgoff_t, 2739 (range->start + range->len) >> PAGE_SHIFT, 2740 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 2741 2742 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) || 2743 f2fs_is_atomic_file(inode)) { 2744 err = -EINVAL; 2745 goto unlock_out; 2746 } 2747 2748 /* if in-place-update policy is enabled, don't waste time here */ 2749 set_inode_flag(inode, FI_OPU_WRITE); 2750 if (f2fs_should_update_inplace(inode, NULL)) { 2751 err = -EINVAL; 2752 goto out; 2753 } 2754 2755 /* writeback all dirty pages in the range */ 2756 err = filemap_write_and_wait_range(inode->i_mapping, 2757 pg_start << PAGE_SHIFT, 2758 (pg_end << PAGE_SHIFT) - 1); 2759 if (err) 2760 goto out; 2761 2762 /* 2763 * lookup mapping info in extent cache, skip defragmenting if physical 2764 * block addresses are continuous. 2765 */ 2766 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) { 2767 if ((pgoff_t)ei.fofs + ei.len >= pg_end) 2768 goto out; 2769 } 2770 2771 map.m_lblk = pg_start; 2772 map.m_next_pgofs = &next_pgofs; 2773 2774 /* 2775 * lookup mapping info in dnode page cache, skip defragmenting if all 2776 * physical block addresses are continuous even if there are hole(s) 2777 * in logical blocks. 2778 */ 2779 while (map.m_lblk < pg_end) { 2780 map.m_len = pg_end - map.m_lblk; 2781 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2782 if (err) 2783 goto out; 2784 2785 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2786 map.m_lblk = next_pgofs; 2787 continue; 2788 } 2789 2790 if (blk_end && blk_end != map.m_pblk) 2791 fragmented = true; 2792 2793 /* record total count of block that we're going to move */ 2794 total += map.m_len; 2795 2796 blk_end = map.m_pblk + map.m_len; 2797 2798 map.m_lblk += map.m_len; 2799 } 2800 2801 if (!fragmented) { 2802 total = 0; 2803 goto out; 2804 } 2805 2806 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2807 2808 /* 2809 * make sure there are enough free section for LFS allocation, this can 2810 * avoid defragment running in SSR mode when free section are allocated 2811 * intensively 2812 */ 2813 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2814 err = -EAGAIN; 2815 goto out; 2816 } 2817 2818 map.m_lblk = pg_start; 2819 map.m_len = pg_end - pg_start; 2820 total = 0; 2821 2822 while (map.m_lblk < pg_end) { 2823 pgoff_t idx; 2824 int cnt = 0; 2825 2826 do_map: 2827 map.m_len = pg_end - map.m_lblk; 2828 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2829 if (err) 2830 goto clear_out; 2831 2832 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2833 map.m_lblk = next_pgofs; 2834 goto check; 2835 } 2836 2837 set_inode_flag(inode, FI_SKIP_WRITES); 2838 2839 idx = map.m_lblk; 2840 while (idx < map.m_lblk + map.m_len && 2841 cnt < BLKS_PER_SEG(sbi)) { 2842 struct page *page; 2843 2844 page = f2fs_get_lock_data_page(inode, idx, true); 2845 if (IS_ERR(page)) { 2846 err = PTR_ERR(page); 2847 goto clear_out; 2848 } 2849 2850 f2fs_wait_on_page_writeback(page, DATA, true, true); 2851 2852 set_page_dirty(page); 2853 set_page_private_gcing(page); 2854 f2fs_put_page(page, 1); 2855 2856 idx++; 2857 cnt++; 2858 total++; 2859 } 2860 2861 map.m_lblk = idx; 2862 check: 2863 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi)) 2864 goto do_map; 2865 2866 clear_inode_flag(inode, FI_SKIP_WRITES); 2867 2868 err = filemap_fdatawrite(inode->i_mapping); 2869 if (err) 2870 goto out; 2871 } 2872 clear_out: 2873 clear_inode_flag(inode, FI_SKIP_WRITES); 2874 out: 2875 clear_inode_flag(inode, FI_OPU_WRITE); 2876 unlock_out: 2877 inode_unlock(inode); 2878 if (!err) 2879 range->len = (u64)total << PAGE_SHIFT; 2880 return err; 2881 } 2882 2883 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2884 { 2885 struct inode *inode = file_inode(filp); 2886 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2887 struct f2fs_defragment range; 2888 int err; 2889 2890 if (!capable(CAP_SYS_ADMIN)) 2891 return -EPERM; 2892 2893 if (!S_ISREG(inode->i_mode)) 2894 return -EINVAL; 2895 2896 if (f2fs_readonly(sbi->sb)) 2897 return -EROFS; 2898 2899 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2900 sizeof(range))) 2901 return -EFAULT; 2902 2903 /* verify alignment of offset & size */ 2904 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2905 return -EINVAL; 2906 2907 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2908 max_file_blocks(inode))) 2909 return -EINVAL; 2910 2911 err = mnt_want_write_file(filp); 2912 if (err) 2913 return err; 2914 2915 err = f2fs_defragment_range(sbi, filp, &range); 2916 mnt_drop_write_file(filp); 2917 2918 if (range.len) 2919 f2fs_update_time(sbi, REQ_TIME); 2920 if (err < 0) 2921 return err; 2922 2923 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2924 sizeof(range))) 2925 return -EFAULT; 2926 2927 return 0; 2928 } 2929 2930 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2931 struct file *file_out, loff_t pos_out, size_t len) 2932 { 2933 struct inode *src = file_inode(file_in); 2934 struct inode *dst = file_inode(file_out); 2935 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2936 size_t olen = len, dst_max_i_size = 0; 2937 size_t dst_osize; 2938 int ret; 2939 2940 if (file_in->f_path.mnt != file_out->f_path.mnt || 2941 src->i_sb != dst->i_sb) 2942 return -EXDEV; 2943 2944 if (unlikely(f2fs_readonly(src->i_sb))) 2945 return -EROFS; 2946 2947 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2948 return -EINVAL; 2949 2950 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2951 return -EOPNOTSUPP; 2952 2953 if (pos_out < 0 || pos_in < 0) 2954 return -EINVAL; 2955 2956 if (src == dst) { 2957 if (pos_in == pos_out) 2958 return 0; 2959 if (pos_out > pos_in && pos_out < pos_in + len) 2960 return -EINVAL; 2961 } 2962 2963 inode_lock(src); 2964 if (src != dst) { 2965 ret = -EBUSY; 2966 if (!inode_trylock(dst)) 2967 goto out; 2968 } 2969 2970 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) || 2971 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) { 2972 ret = -EOPNOTSUPP; 2973 goto out_unlock; 2974 } 2975 2976 if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) { 2977 ret = -EINVAL; 2978 goto out_unlock; 2979 } 2980 2981 ret = -EINVAL; 2982 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2983 goto out_unlock; 2984 if (len == 0) 2985 olen = len = src->i_size - pos_in; 2986 if (pos_in + len == src->i_size) 2987 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2988 if (len == 0) { 2989 ret = 0; 2990 goto out_unlock; 2991 } 2992 2993 dst_osize = dst->i_size; 2994 if (pos_out + olen > dst->i_size) 2995 dst_max_i_size = pos_out + olen; 2996 2997 /* verify the end result is block aligned */ 2998 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2999 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 3000 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 3001 goto out_unlock; 3002 3003 ret = f2fs_convert_inline_inode(src); 3004 if (ret) 3005 goto out_unlock; 3006 3007 ret = f2fs_convert_inline_inode(dst); 3008 if (ret) 3009 goto out_unlock; 3010 3011 /* write out all dirty pages from offset */ 3012 ret = filemap_write_and_wait_range(src->i_mapping, 3013 pos_in, pos_in + len); 3014 if (ret) 3015 goto out_unlock; 3016 3017 ret = filemap_write_and_wait_range(dst->i_mapping, 3018 pos_out, pos_out + len); 3019 if (ret) 3020 goto out_unlock; 3021 3022 f2fs_balance_fs(sbi, true); 3023 3024 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 3025 if (src != dst) { 3026 ret = -EBUSY; 3027 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 3028 goto out_src; 3029 } 3030 3031 f2fs_lock_op(sbi); 3032 ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in), 3033 F2FS_BYTES_TO_BLK(pos_out), 3034 F2FS_BYTES_TO_BLK(len), false); 3035 3036 if (!ret) { 3037 if (dst_max_i_size) 3038 f2fs_i_size_write(dst, dst_max_i_size); 3039 else if (dst_osize != dst->i_size) 3040 f2fs_i_size_write(dst, dst_osize); 3041 } 3042 f2fs_unlock_op(sbi); 3043 3044 if (src != dst) 3045 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 3046 out_src: 3047 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 3048 if (ret) 3049 goto out_unlock; 3050 3051 inode_set_mtime_to_ts(src, inode_set_ctime_current(src)); 3052 f2fs_mark_inode_dirty_sync(src, false); 3053 if (src != dst) { 3054 inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst)); 3055 f2fs_mark_inode_dirty_sync(dst, false); 3056 } 3057 f2fs_update_time(sbi, REQ_TIME); 3058 3059 out_unlock: 3060 if (src != dst) 3061 inode_unlock(dst); 3062 out: 3063 inode_unlock(src); 3064 return ret; 3065 } 3066 3067 static int __f2fs_ioc_move_range(struct file *filp, 3068 struct f2fs_move_range *range) 3069 { 3070 int err; 3071 3072 if (!(filp->f_mode & FMODE_READ) || 3073 !(filp->f_mode & FMODE_WRITE)) 3074 return -EBADF; 3075 3076 CLASS(fd, dst)(range->dst_fd); 3077 if (fd_empty(dst)) 3078 return -EBADF; 3079 3080 if (!(fd_file(dst)->f_mode & FMODE_WRITE)) 3081 return -EBADF; 3082 3083 err = mnt_want_write_file(filp); 3084 if (err) 3085 return err; 3086 3087 err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst), 3088 range->pos_out, range->len); 3089 3090 mnt_drop_write_file(filp); 3091 return err; 3092 } 3093 3094 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 3095 { 3096 struct f2fs_move_range range; 3097 3098 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 3099 sizeof(range))) 3100 return -EFAULT; 3101 return __f2fs_ioc_move_range(filp, &range); 3102 } 3103 3104 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 3105 { 3106 struct inode *inode = file_inode(filp); 3107 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3108 struct sit_info *sm = SIT_I(sbi); 3109 unsigned int start_segno = 0, end_segno = 0; 3110 unsigned int dev_start_segno = 0, dev_end_segno = 0; 3111 struct f2fs_flush_device range; 3112 struct f2fs_gc_control gc_control = { 3113 .init_gc_type = FG_GC, 3114 .should_migrate_blocks = true, 3115 .err_gc_skipped = true, 3116 .nr_free_secs = 0 }; 3117 int ret; 3118 3119 if (!capable(CAP_SYS_ADMIN)) 3120 return -EPERM; 3121 3122 if (f2fs_readonly(sbi->sb)) 3123 return -EROFS; 3124 3125 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3126 return -EINVAL; 3127 3128 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 3129 sizeof(range))) 3130 return -EFAULT; 3131 3132 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 3133 __is_large_section(sbi)) { 3134 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1", 3135 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi)); 3136 return -EINVAL; 3137 } 3138 3139 ret = mnt_want_write_file(filp); 3140 if (ret) 3141 return ret; 3142 3143 if (range.dev_num != 0) 3144 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 3145 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 3146 3147 start_segno = sm->last_victim[FLUSH_DEVICE]; 3148 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 3149 start_segno = dev_start_segno; 3150 end_segno = min(start_segno + range.segments, dev_end_segno); 3151 3152 while (start_segno < end_segno) { 3153 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 3154 ret = -EBUSY; 3155 goto out; 3156 } 3157 sm->last_victim[GC_CB] = end_segno + 1; 3158 sm->last_victim[GC_GREEDY] = end_segno + 1; 3159 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 3160 3161 gc_control.victim_segno = start_segno; 3162 stat_inc_gc_call_count(sbi, FOREGROUND); 3163 ret = f2fs_gc(sbi, &gc_control); 3164 if (ret == -EAGAIN) 3165 ret = 0; 3166 else if (ret < 0) 3167 break; 3168 start_segno++; 3169 } 3170 out: 3171 mnt_drop_write_file(filp); 3172 return ret; 3173 } 3174 3175 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 3176 { 3177 struct inode *inode = file_inode(filp); 3178 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 3179 3180 /* Must validate to set it with SQLite behavior in Android. */ 3181 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 3182 3183 return put_user(sb_feature, (u32 __user *)arg); 3184 } 3185 3186 #ifdef CONFIG_QUOTA 3187 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3188 { 3189 struct dquot *transfer_to[MAXQUOTAS] = {}; 3190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3191 struct super_block *sb = sbi->sb; 3192 int err; 3193 3194 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 3195 if (IS_ERR(transfer_to[PRJQUOTA])) 3196 return PTR_ERR(transfer_to[PRJQUOTA]); 3197 3198 err = __dquot_transfer(inode, transfer_to); 3199 if (err) 3200 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3201 dqput(transfer_to[PRJQUOTA]); 3202 return err; 3203 } 3204 3205 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3206 { 3207 struct f2fs_inode_info *fi = F2FS_I(inode); 3208 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3209 struct f2fs_inode *ri = NULL; 3210 kprojid_t kprojid; 3211 int err; 3212 3213 if (!f2fs_sb_has_project_quota(sbi)) { 3214 if (projid != F2FS_DEF_PROJID) 3215 return -EOPNOTSUPP; 3216 else 3217 return 0; 3218 } 3219 3220 if (!f2fs_has_extra_attr(inode)) 3221 return -EOPNOTSUPP; 3222 3223 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3224 3225 if (projid_eq(kprojid, fi->i_projid)) 3226 return 0; 3227 3228 err = -EPERM; 3229 /* Is it quota file? Do not allow user to mess with it */ 3230 if (IS_NOQUOTA(inode)) 3231 return err; 3232 3233 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 3234 return -EOVERFLOW; 3235 3236 err = f2fs_dquot_initialize(inode); 3237 if (err) 3238 return err; 3239 3240 f2fs_lock_op(sbi); 3241 err = f2fs_transfer_project_quota(inode, kprojid); 3242 if (err) 3243 goto out_unlock; 3244 3245 fi->i_projid = kprojid; 3246 inode_set_ctime_current(inode); 3247 f2fs_mark_inode_dirty_sync(inode, true); 3248 out_unlock: 3249 f2fs_unlock_op(sbi); 3250 return err; 3251 } 3252 #else 3253 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3254 { 3255 return 0; 3256 } 3257 3258 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3259 { 3260 if (projid != F2FS_DEF_PROJID) 3261 return -EOPNOTSUPP; 3262 return 0; 3263 } 3264 #endif 3265 3266 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3267 { 3268 struct inode *inode = d_inode(dentry); 3269 struct f2fs_inode_info *fi = F2FS_I(inode); 3270 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3271 3272 if (IS_ENCRYPTED(inode)) 3273 fsflags |= FS_ENCRYPT_FL; 3274 if (IS_VERITY(inode)) 3275 fsflags |= FS_VERITY_FL; 3276 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3277 fsflags |= FS_INLINE_DATA_FL; 3278 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3279 fsflags |= FS_NOCOW_FL; 3280 3281 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3282 3283 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3284 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3285 3286 return 0; 3287 } 3288 3289 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3290 struct dentry *dentry, struct fileattr *fa) 3291 { 3292 struct inode *inode = d_inode(dentry); 3293 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3294 u32 iflags; 3295 int err; 3296 3297 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3298 return -EIO; 3299 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3300 return -ENOSPC; 3301 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3302 return -EOPNOTSUPP; 3303 fsflags &= F2FS_SETTABLE_FS_FL; 3304 if (!fa->flags_valid) 3305 mask &= FS_COMMON_FL; 3306 3307 iflags = f2fs_fsflags_to_iflags(fsflags); 3308 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3309 return -EOPNOTSUPP; 3310 3311 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3312 if (!err) 3313 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3314 3315 return err; 3316 } 3317 3318 int f2fs_pin_file_control(struct inode *inode, bool inc) 3319 { 3320 struct f2fs_inode_info *fi = F2FS_I(inode); 3321 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3322 3323 if (IS_DEVICE_ALIASING(inode)) 3324 return -EINVAL; 3325 3326 if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) { 3327 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3328 __func__, inode->i_ino, fi->i_gc_failures); 3329 clear_inode_flag(inode, FI_PIN_FILE); 3330 return -EAGAIN; 3331 } 3332 3333 /* Use i_gc_failures for normal file as a risk signal. */ 3334 if (inc) 3335 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1); 3336 3337 return 0; 3338 } 3339 3340 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3341 { 3342 struct inode *inode = file_inode(filp); 3343 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3344 __u32 pin; 3345 int ret = 0; 3346 3347 if (get_user(pin, (__u32 __user *)arg)) 3348 return -EFAULT; 3349 3350 if (!S_ISREG(inode->i_mode)) 3351 return -EINVAL; 3352 3353 if (f2fs_readonly(sbi->sb)) 3354 return -EROFS; 3355 3356 if (!pin && IS_DEVICE_ALIASING(inode)) 3357 return -EOPNOTSUPP; 3358 3359 ret = mnt_want_write_file(filp); 3360 if (ret) 3361 return ret; 3362 3363 inode_lock(inode); 3364 3365 if (f2fs_is_atomic_file(inode)) { 3366 ret = -EINVAL; 3367 goto out; 3368 } 3369 3370 if (!pin) { 3371 clear_inode_flag(inode, FI_PIN_FILE); 3372 f2fs_i_gc_failures_write(inode, 0); 3373 goto done; 3374 } else if (f2fs_is_pinned_file(inode)) { 3375 goto done; 3376 } 3377 3378 if (F2FS_HAS_BLOCKS(inode)) { 3379 ret = -EFBIG; 3380 goto out; 3381 } 3382 3383 /* Let's allow file pinning on zoned device. */ 3384 if (!f2fs_sb_has_blkzoned(sbi) && 3385 f2fs_should_update_outplace(inode, NULL)) { 3386 ret = -EINVAL; 3387 goto out; 3388 } 3389 3390 if (f2fs_pin_file_control(inode, false)) { 3391 ret = -EAGAIN; 3392 goto out; 3393 } 3394 3395 ret = f2fs_convert_inline_inode(inode); 3396 if (ret) 3397 goto out; 3398 3399 if (!f2fs_disable_compressed_file(inode)) { 3400 ret = -EOPNOTSUPP; 3401 goto out; 3402 } 3403 3404 set_inode_flag(inode, FI_PIN_FILE); 3405 ret = F2FS_I(inode)->i_gc_failures; 3406 done: 3407 f2fs_update_time(sbi, REQ_TIME); 3408 out: 3409 inode_unlock(inode); 3410 mnt_drop_write_file(filp); 3411 return ret; 3412 } 3413 3414 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3415 { 3416 struct inode *inode = file_inode(filp); 3417 __u32 pin = 0; 3418 3419 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3420 pin = F2FS_I(inode)->i_gc_failures; 3421 return put_user(pin, (u32 __user *)arg); 3422 } 3423 3424 static int f2fs_ioc_get_dev_alias_file(struct file *filp, unsigned long arg) 3425 { 3426 return put_user(IS_DEVICE_ALIASING(file_inode(filp)) ? 1 : 0, 3427 (u32 __user *)arg); 3428 } 3429 3430 int f2fs_precache_extents(struct inode *inode) 3431 { 3432 struct f2fs_inode_info *fi = F2FS_I(inode); 3433 struct f2fs_map_blocks map; 3434 pgoff_t m_next_extent; 3435 loff_t end; 3436 int err; 3437 3438 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3439 return -EOPNOTSUPP; 3440 3441 map.m_lblk = 0; 3442 map.m_pblk = 0; 3443 map.m_next_pgofs = NULL; 3444 map.m_next_extent = &m_next_extent; 3445 map.m_seg_type = NO_CHECK_TYPE; 3446 map.m_may_create = false; 3447 end = F2FS_BLK_ALIGN(i_size_read(inode)); 3448 3449 while (map.m_lblk < end) { 3450 map.m_len = end - map.m_lblk; 3451 3452 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3453 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE); 3454 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3455 if (err || !map.m_len) 3456 return err; 3457 3458 map.m_lblk = m_next_extent; 3459 } 3460 3461 return 0; 3462 } 3463 3464 static int f2fs_ioc_precache_extents(struct file *filp) 3465 { 3466 return f2fs_precache_extents(file_inode(filp)); 3467 } 3468 3469 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3470 { 3471 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3472 __u64 block_count; 3473 3474 if (!capable(CAP_SYS_ADMIN)) 3475 return -EPERM; 3476 3477 if (f2fs_readonly(sbi->sb)) 3478 return -EROFS; 3479 3480 if (copy_from_user(&block_count, (void __user *)arg, 3481 sizeof(block_count))) 3482 return -EFAULT; 3483 3484 return f2fs_resize_fs(filp, block_count); 3485 } 3486 3487 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3488 { 3489 struct inode *inode = file_inode(filp); 3490 3491 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3492 3493 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3494 f2fs_warn(F2FS_I_SB(inode), 3495 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3496 inode->i_ino); 3497 return -EOPNOTSUPP; 3498 } 3499 3500 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3501 } 3502 3503 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3504 { 3505 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3506 return -EOPNOTSUPP; 3507 3508 return fsverity_ioctl_measure(filp, (void __user *)arg); 3509 } 3510 3511 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3512 { 3513 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3514 return -EOPNOTSUPP; 3515 3516 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3517 } 3518 3519 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3520 { 3521 struct inode *inode = file_inode(filp); 3522 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3523 char *vbuf; 3524 int count; 3525 int err = 0; 3526 3527 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3528 if (!vbuf) 3529 return -ENOMEM; 3530 3531 f2fs_down_read(&sbi->sb_lock); 3532 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3533 ARRAY_SIZE(sbi->raw_super->volume_name), 3534 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3535 f2fs_up_read(&sbi->sb_lock); 3536 3537 if (copy_to_user((char __user *)arg, vbuf, 3538 min(FSLABEL_MAX, count))) 3539 err = -EFAULT; 3540 3541 kfree(vbuf); 3542 return err; 3543 } 3544 3545 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3546 { 3547 struct inode *inode = file_inode(filp); 3548 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3549 char *vbuf; 3550 int err = 0; 3551 3552 if (!capable(CAP_SYS_ADMIN)) 3553 return -EPERM; 3554 3555 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3556 if (IS_ERR(vbuf)) 3557 return PTR_ERR(vbuf); 3558 3559 err = mnt_want_write_file(filp); 3560 if (err) 3561 goto out; 3562 3563 f2fs_down_write(&sbi->sb_lock); 3564 3565 memset(sbi->raw_super->volume_name, 0, 3566 sizeof(sbi->raw_super->volume_name)); 3567 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3568 sbi->raw_super->volume_name, 3569 ARRAY_SIZE(sbi->raw_super->volume_name)); 3570 3571 err = f2fs_commit_super(sbi, false); 3572 3573 f2fs_up_write(&sbi->sb_lock); 3574 3575 mnt_drop_write_file(filp); 3576 out: 3577 kfree(vbuf); 3578 return err; 3579 } 3580 3581 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks) 3582 { 3583 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3584 return -EOPNOTSUPP; 3585 3586 if (!f2fs_compressed_file(inode)) 3587 return -EINVAL; 3588 3589 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3590 3591 return 0; 3592 } 3593 3594 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg) 3595 { 3596 struct inode *inode = file_inode(filp); 3597 __u64 blocks; 3598 int ret; 3599 3600 ret = f2fs_get_compress_blocks(inode, &blocks); 3601 if (ret < 0) 3602 return ret; 3603 3604 return put_user(blocks, (u64 __user *)arg); 3605 } 3606 3607 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3608 { 3609 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3610 unsigned int released_blocks = 0; 3611 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3612 block_t blkaddr; 3613 int i; 3614 3615 for (i = 0; i < count; i++) { 3616 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3617 dn->ofs_in_node + i); 3618 3619 if (!__is_valid_data_blkaddr(blkaddr)) 3620 continue; 3621 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3622 DATA_GENERIC_ENHANCE))) 3623 return -EFSCORRUPTED; 3624 } 3625 3626 while (count) { 3627 int compr_blocks = 0; 3628 3629 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3630 blkaddr = f2fs_data_blkaddr(dn); 3631 3632 if (i == 0) { 3633 if (blkaddr == COMPRESS_ADDR) 3634 continue; 3635 dn->ofs_in_node += cluster_size; 3636 goto next; 3637 } 3638 3639 if (__is_valid_data_blkaddr(blkaddr)) 3640 compr_blocks++; 3641 3642 if (blkaddr != NEW_ADDR) 3643 continue; 3644 3645 f2fs_set_data_blkaddr(dn, NULL_ADDR); 3646 } 3647 3648 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3649 dec_valid_block_count(sbi, dn->inode, 3650 cluster_size - compr_blocks); 3651 3652 released_blocks += cluster_size - compr_blocks; 3653 next: 3654 count -= cluster_size; 3655 } 3656 3657 return released_blocks; 3658 } 3659 3660 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3661 { 3662 struct inode *inode = file_inode(filp); 3663 struct f2fs_inode_info *fi = F2FS_I(inode); 3664 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3665 pgoff_t page_idx = 0, last_idx; 3666 unsigned int released_blocks = 0; 3667 int ret; 3668 int writecount; 3669 3670 if (!f2fs_sb_has_compression(sbi)) 3671 return -EOPNOTSUPP; 3672 3673 if (f2fs_readonly(sbi->sb)) 3674 return -EROFS; 3675 3676 ret = mnt_want_write_file(filp); 3677 if (ret) 3678 return ret; 3679 3680 f2fs_balance_fs(sbi, true); 3681 3682 inode_lock(inode); 3683 3684 writecount = atomic_read(&inode->i_writecount); 3685 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3686 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3687 ret = -EBUSY; 3688 goto out; 3689 } 3690 3691 if (!f2fs_compressed_file(inode) || 3692 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3693 ret = -EINVAL; 3694 goto out; 3695 } 3696 3697 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3698 if (ret) 3699 goto out; 3700 3701 if (!atomic_read(&fi->i_compr_blocks)) { 3702 ret = -EPERM; 3703 goto out; 3704 } 3705 3706 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3707 inode_set_ctime_current(inode); 3708 f2fs_mark_inode_dirty_sync(inode, true); 3709 3710 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3711 filemap_invalidate_lock(inode->i_mapping); 3712 3713 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3714 3715 while (page_idx < last_idx) { 3716 struct dnode_of_data dn; 3717 pgoff_t end_offset, count; 3718 3719 f2fs_lock_op(sbi); 3720 3721 set_new_dnode(&dn, inode, NULL, NULL, 0); 3722 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3723 if (ret) { 3724 f2fs_unlock_op(sbi); 3725 if (ret == -ENOENT) { 3726 page_idx = f2fs_get_next_page_offset(&dn, 3727 page_idx); 3728 ret = 0; 3729 continue; 3730 } 3731 break; 3732 } 3733 3734 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3735 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3736 count = round_up(count, fi->i_cluster_size); 3737 3738 ret = release_compress_blocks(&dn, count); 3739 3740 f2fs_put_dnode(&dn); 3741 3742 f2fs_unlock_op(sbi); 3743 3744 if (ret < 0) 3745 break; 3746 3747 page_idx += count; 3748 released_blocks += ret; 3749 } 3750 3751 filemap_invalidate_unlock(inode->i_mapping); 3752 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3753 out: 3754 if (released_blocks) 3755 f2fs_update_time(sbi, REQ_TIME); 3756 inode_unlock(inode); 3757 3758 mnt_drop_write_file(filp); 3759 3760 if (ret >= 0) { 3761 ret = put_user(released_blocks, (u64 __user *)arg); 3762 } else if (released_blocks && 3763 atomic_read(&fi->i_compr_blocks)) { 3764 set_sbi_flag(sbi, SBI_NEED_FSCK); 3765 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3766 "iblocks=%llu, released=%u, compr_blocks=%u, " 3767 "run fsck to fix.", 3768 __func__, inode->i_ino, inode->i_blocks, 3769 released_blocks, 3770 atomic_read(&fi->i_compr_blocks)); 3771 } 3772 3773 return ret; 3774 } 3775 3776 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count, 3777 unsigned int *reserved_blocks) 3778 { 3779 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3780 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3781 block_t blkaddr; 3782 int i; 3783 3784 for (i = 0; i < count; i++) { 3785 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3786 dn->ofs_in_node + i); 3787 3788 if (!__is_valid_data_blkaddr(blkaddr)) 3789 continue; 3790 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3791 DATA_GENERIC_ENHANCE))) 3792 return -EFSCORRUPTED; 3793 } 3794 3795 while (count) { 3796 int compr_blocks = 0; 3797 blkcnt_t reserved = 0; 3798 blkcnt_t to_reserved; 3799 int ret; 3800 3801 for (i = 0; i < cluster_size; i++) { 3802 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3803 dn->ofs_in_node + i); 3804 3805 if (i == 0) { 3806 if (blkaddr != COMPRESS_ADDR) { 3807 dn->ofs_in_node += cluster_size; 3808 goto next; 3809 } 3810 continue; 3811 } 3812 3813 /* 3814 * compressed cluster was not released due to it 3815 * fails in release_compress_blocks(), so NEW_ADDR 3816 * is a possible case. 3817 */ 3818 if (blkaddr == NEW_ADDR) { 3819 reserved++; 3820 continue; 3821 } 3822 if (__is_valid_data_blkaddr(blkaddr)) { 3823 compr_blocks++; 3824 continue; 3825 } 3826 } 3827 3828 to_reserved = cluster_size - compr_blocks - reserved; 3829 3830 /* for the case all blocks in cluster were reserved */ 3831 if (reserved && to_reserved == 1) { 3832 dn->ofs_in_node += cluster_size; 3833 goto next; 3834 } 3835 3836 ret = inc_valid_block_count(sbi, dn->inode, 3837 &to_reserved, false); 3838 if (unlikely(ret)) 3839 return ret; 3840 3841 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3842 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 3843 f2fs_set_data_blkaddr(dn, NEW_ADDR); 3844 } 3845 3846 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3847 3848 *reserved_blocks += to_reserved; 3849 next: 3850 count -= cluster_size; 3851 } 3852 3853 return 0; 3854 } 3855 3856 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3857 { 3858 struct inode *inode = file_inode(filp); 3859 struct f2fs_inode_info *fi = F2FS_I(inode); 3860 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3861 pgoff_t page_idx = 0, last_idx; 3862 unsigned int reserved_blocks = 0; 3863 int ret; 3864 3865 if (!f2fs_sb_has_compression(sbi)) 3866 return -EOPNOTSUPP; 3867 3868 if (f2fs_readonly(sbi->sb)) 3869 return -EROFS; 3870 3871 ret = mnt_want_write_file(filp); 3872 if (ret) 3873 return ret; 3874 3875 f2fs_balance_fs(sbi, true); 3876 3877 inode_lock(inode); 3878 3879 if (!f2fs_compressed_file(inode) || 3880 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3881 ret = -EINVAL; 3882 goto unlock_inode; 3883 } 3884 3885 if (atomic_read(&fi->i_compr_blocks)) 3886 goto unlock_inode; 3887 3888 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3889 filemap_invalidate_lock(inode->i_mapping); 3890 3891 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3892 3893 while (page_idx < last_idx) { 3894 struct dnode_of_data dn; 3895 pgoff_t end_offset, count; 3896 3897 f2fs_lock_op(sbi); 3898 3899 set_new_dnode(&dn, inode, NULL, NULL, 0); 3900 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3901 if (ret) { 3902 f2fs_unlock_op(sbi); 3903 if (ret == -ENOENT) { 3904 page_idx = f2fs_get_next_page_offset(&dn, 3905 page_idx); 3906 ret = 0; 3907 continue; 3908 } 3909 break; 3910 } 3911 3912 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3913 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3914 count = round_up(count, fi->i_cluster_size); 3915 3916 ret = reserve_compress_blocks(&dn, count, &reserved_blocks); 3917 3918 f2fs_put_dnode(&dn); 3919 3920 f2fs_unlock_op(sbi); 3921 3922 if (ret < 0) 3923 break; 3924 3925 page_idx += count; 3926 } 3927 3928 filemap_invalidate_unlock(inode->i_mapping); 3929 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3930 3931 if (!ret) { 3932 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3933 inode_set_ctime_current(inode); 3934 f2fs_mark_inode_dirty_sync(inode, true); 3935 } 3936 unlock_inode: 3937 if (reserved_blocks) 3938 f2fs_update_time(sbi, REQ_TIME); 3939 inode_unlock(inode); 3940 mnt_drop_write_file(filp); 3941 3942 if (!ret) { 3943 ret = put_user(reserved_blocks, (u64 __user *)arg); 3944 } else if (reserved_blocks && 3945 atomic_read(&fi->i_compr_blocks)) { 3946 set_sbi_flag(sbi, SBI_NEED_FSCK); 3947 f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx " 3948 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3949 "run fsck to fix.", 3950 __func__, inode->i_ino, inode->i_blocks, 3951 reserved_blocks, 3952 atomic_read(&fi->i_compr_blocks)); 3953 } 3954 3955 return ret; 3956 } 3957 3958 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3959 pgoff_t off, block_t block, block_t len, u32 flags) 3960 { 3961 sector_t sector = SECTOR_FROM_BLOCK(block); 3962 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3963 int ret = 0; 3964 3965 if (flags & F2FS_TRIM_FILE_DISCARD) { 3966 if (bdev_max_secure_erase_sectors(bdev)) 3967 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3968 GFP_NOFS); 3969 else 3970 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3971 GFP_NOFS); 3972 } 3973 3974 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3975 if (IS_ENCRYPTED(inode)) 3976 ret = fscrypt_zeroout_range(inode, off, block, len); 3977 else 3978 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3979 GFP_NOFS, 0); 3980 } 3981 3982 return ret; 3983 } 3984 3985 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3986 { 3987 struct inode *inode = file_inode(filp); 3988 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3989 struct address_space *mapping = inode->i_mapping; 3990 struct block_device *prev_bdev = NULL; 3991 struct f2fs_sectrim_range range; 3992 pgoff_t index, pg_end, prev_index = 0; 3993 block_t prev_block = 0, len = 0; 3994 loff_t end_addr; 3995 bool to_end = false; 3996 int ret = 0; 3997 3998 if (!(filp->f_mode & FMODE_WRITE)) 3999 return -EBADF; 4000 4001 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 4002 sizeof(range))) 4003 return -EFAULT; 4004 4005 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 4006 !S_ISREG(inode->i_mode)) 4007 return -EINVAL; 4008 4009 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 4010 !f2fs_hw_support_discard(sbi)) || 4011 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 4012 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 4013 return -EOPNOTSUPP; 4014 4015 ret = mnt_want_write_file(filp); 4016 if (ret) 4017 return ret; 4018 inode_lock(inode); 4019 4020 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 4021 range.start >= inode->i_size) { 4022 ret = -EINVAL; 4023 goto err; 4024 } 4025 4026 if (range.len == 0) 4027 goto err; 4028 4029 if (inode->i_size - range.start > range.len) { 4030 end_addr = range.start + range.len; 4031 } else { 4032 end_addr = range.len == (u64)-1 ? 4033 sbi->sb->s_maxbytes : inode->i_size; 4034 to_end = true; 4035 } 4036 4037 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 4038 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 4039 ret = -EINVAL; 4040 goto err; 4041 } 4042 4043 index = F2FS_BYTES_TO_BLK(range.start); 4044 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 4045 4046 ret = f2fs_convert_inline_inode(inode); 4047 if (ret) 4048 goto err; 4049 4050 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4051 filemap_invalidate_lock(mapping); 4052 4053 ret = filemap_write_and_wait_range(mapping, range.start, 4054 to_end ? LLONG_MAX : end_addr - 1); 4055 if (ret) 4056 goto out; 4057 4058 truncate_inode_pages_range(mapping, range.start, 4059 to_end ? -1 : end_addr - 1); 4060 4061 while (index < pg_end) { 4062 struct dnode_of_data dn; 4063 pgoff_t end_offset, count; 4064 int i; 4065 4066 set_new_dnode(&dn, inode, NULL, NULL, 0); 4067 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 4068 if (ret) { 4069 if (ret == -ENOENT) { 4070 index = f2fs_get_next_page_offset(&dn, index); 4071 continue; 4072 } 4073 goto out; 4074 } 4075 4076 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 4077 count = min(end_offset - dn.ofs_in_node, pg_end - index); 4078 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 4079 struct block_device *cur_bdev; 4080 block_t blkaddr = f2fs_data_blkaddr(&dn); 4081 4082 if (!__is_valid_data_blkaddr(blkaddr)) 4083 continue; 4084 4085 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 4086 DATA_GENERIC_ENHANCE)) { 4087 ret = -EFSCORRUPTED; 4088 f2fs_put_dnode(&dn); 4089 goto out; 4090 } 4091 4092 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 4093 if (f2fs_is_multi_device(sbi)) { 4094 int di = f2fs_target_device_index(sbi, blkaddr); 4095 4096 blkaddr -= FDEV(di).start_blk; 4097 } 4098 4099 if (len) { 4100 if (prev_bdev == cur_bdev && 4101 index == prev_index + len && 4102 blkaddr == prev_block + len) { 4103 len++; 4104 } else { 4105 ret = f2fs_secure_erase(prev_bdev, 4106 inode, prev_index, prev_block, 4107 len, range.flags); 4108 if (ret) { 4109 f2fs_put_dnode(&dn); 4110 goto out; 4111 } 4112 4113 len = 0; 4114 } 4115 } 4116 4117 if (!len) { 4118 prev_bdev = cur_bdev; 4119 prev_index = index; 4120 prev_block = blkaddr; 4121 len = 1; 4122 } 4123 } 4124 4125 f2fs_put_dnode(&dn); 4126 4127 if (fatal_signal_pending(current)) { 4128 ret = -EINTR; 4129 goto out; 4130 } 4131 cond_resched(); 4132 } 4133 4134 if (len) 4135 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 4136 prev_block, len, range.flags); 4137 f2fs_update_time(sbi, REQ_TIME); 4138 out: 4139 filemap_invalidate_unlock(mapping); 4140 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4141 err: 4142 inode_unlock(inode); 4143 mnt_drop_write_file(filp); 4144 4145 return ret; 4146 } 4147 4148 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 4149 { 4150 struct inode *inode = file_inode(filp); 4151 struct f2fs_comp_option option; 4152 4153 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 4154 return -EOPNOTSUPP; 4155 4156 inode_lock_shared(inode); 4157 4158 if (!f2fs_compressed_file(inode)) { 4159 inode_unlock_shared(inode); 4160 return -ENODATA; 4161 } 4162 4163 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 4164 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 4165 4166 inode_unlock_shared(inode); 4167 4168 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 4169 sizeof(option))) 4170 return -EFAULT; 4171 4172 return 0; 4173 } 4174 4175 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 4176 { 4177 struct inode *inode = file_inode(filp); 4178 struct f2fs_inode_info *fi = F2FS_I(inode); 4179 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4180 struct f2fs_comp_option option; 4181 int ret = 0; 4182 4183 if (!f2fs_sb_has_compression(sbi)) 4184 return -EOPNOTSUPP; 4185 4186 if (!(filp->f_mode & FMODE_WRITE)) 4187 return -EBADF; 4188 4189 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 4190 sizeof(option))) 4191 return -EFAULT; 4192 4193 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 4194 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 4195 option.algorithm >= COMPRESS_MAX) 4196 return -EINVAL; 4197 4198 ret = mnt_want_write_file(filp); 4199 if (ret) 4200 return ret; 4201 inode_lock(inode); 4202 4203 f2fs_down_write(&F2FS_I(inode)->i_sem); 4204 if (!f2fs_compressed_file(inode)) { 4205 ret = -EINVAL; 4206 goto out; 4207 } 4208 4209 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 4210 ret = -EBUSY; 4211 goto out; 4212 } 4213 4214 if (F2FS_HAS_BLOCKS(inode)) { 4215 ret = -EFBIG; 4216 goto out; 4217 } 4218 4219 fi->i_compress_algorithm = option.algorithm; 4220 fi->i_log_cluster_size = option.log_cluster_size; 4221 fi->i_cluster_size = BIT(option.log_cluster_size); 4222 /* Set default level */ 4223 if (fi->i_compress_algorithm == COMPRESS_ZSTD) 4224 fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 4225 else 4226 fi->i_compress_level = 0; 4227 /* Adjust mount option level */ 4228 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm && 4229 F2FS_OPTION(sbi).compress_level) 4230 fi->i_compress_level = F2FS_OPTION(sbi).compress_level; 4231 f2fs_mark_inode_dirty_sync(inode, true); 4232 4233 if (!f2fs_is_compress_backend_ready(inode)) 4234 f2fs_warn(sbi, "compression algorithm is successfully set, " 4235 "but current kernel doesn't support this algorithm."); 4236 out: 4237 f2fs_up_write(&fi->i_sem); 4238 inode_unlock(inode); 4239 mnt_drop_write_file(filp); 4240 4241 return ret; 4242 } 4243 4244 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 4245 { 4246 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 4247 struct address_space *mapping = inode->i_mapping; 4248 struct page *page; 4249 pgoff_t redirty_idx = page_idx; 4250 int i, page_len = 0, ret = 0; 4251 4252 page_cache_ra_unbounded(&ractl, len, 0); 4253 4254 for (i = 0; i < len; i++, page_idx++) { 4255 page = read_cache_page(mapping, page_idx, NULL, NULL); 4256 if (IS_ERR(page)) { 4257 ret = PTR_ERR(page); 4258 break; 4259 } 4260 page_len++; 4261 } 4262 4263 for (i = 0; i < page_len; i++, redirty_idx++) { 4264 page = find_lock_page(mapping, redirty_idx); 4265 4266 /* It will never fail, when page has pinned above */ 4267 f2fs_bug_on(F2FS_I_SB(inode), !page); 4268 4269 f2fs_wait_on_page_writeback(page, DATA, true, true); 4270 4271 set_page_dirty(page); 4272 set_page_private_gcing(page); 4273 f2fs_put_page(page, 1); 4274 f2fs_put_page(page, 0); 4275 } 4276 4277 return ret; 4278 } 4279 4280 static int f2fs_ioc_decompress_file(struct file *filp) 4281 { 4282 struct inode *inode = file_inode(filp); 4283 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4284 struct f2fs_inode_info *fi = F2FS_I(inode); 4285 pgoff_t page_idx = 0, last_idx, cluster_idx; 4286 int ret; 4287 4288 if (!f2fs_sb_has_compression(sbi) || 4289 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4290 return -EOPNOTSUPP; 4291 4292 if (!(filp->f_mode & FMODE_WRITE)) 4293 return -EBADF; 4294 4295 f2fs_balance_fs(sbi, true); 4296 4297 ret = mnt_want_write_file(filp); 4298 if (ret) 4299 return ret; 4300 inode_lock(inode); 4301 4302 if (!f2fs_is_compress_backend_ready(inode)) { 4303 ret = -EOPNOTSUPP; 4304 goto out; 4305 } 4306 4307 if (!f2fs_compressed_file(inode) || 4308 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4309 ret = -EINVAL; 4310 goto out; 4311 } 4312 4313 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4314 if (ret) 4315 goto out; 4316 4317 if (!atomic_read(&fi->i_compr_blocks)) 4318 goto out; 4319 4320 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4321 last_idx >>= fi->i_log_cluster_size; 4322 4323 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) { 4324 page_idx = cluster_idx << fi->i_log_cluster_size; 4325 4326 if (!f2fs_is_compressed_cluster(inode, page_idx)) 4327 continue; 4328 4329 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size); 4330 if (ret < 0) 4331 break; 4332 4333 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) { 4334 ret = filemap_fdatawrite(inode->i_mapping); 4335 if (ret < 0) 4336 break; 4337 } 4338 4339 cond_resched(); 4340 if (fatal_signal_pending(current)) { 4341 ret = -EINTR; 4342 break; 4343 } 4344 } 4345 4346 if (!ret) 4347 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4348 LLONG_MAX); 4349 4350 if (ret) 4351 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4352 __func__, ret); 4353 f2fs_update_time(sbi, REQ_TIME); 4354 out: 4355 inode_unlock(inode); 4356 mnt_drop_write_file(filp); 4357 4358 return ret; 4359 } 4360 4361 static int f2fs_ioc_compress_file(struct file *filp) 4362 { 4363 struct inode *inode = file_inode(filp); 4364 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4365 struct f2fs_inode_info *fi = F2FS_I(inode); 4366 pgoff_t page_idx = 0, last_idx, cluster_idx; 4367 int ret; 4368 4369 if (!f2fs_sb_has_compression(sbi) || 4370 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4371 return -EOPNOTSUPP; 4372 4373 if (!(filp->f_mode & FMODE_WRITE)) 4374 return -EBADF; 4375 4376 f2fs_balance_fs(sbi, true); 4377 4378 ret = mnt_want_write_file(filp); 4379 if (ret) 4380 return ret; 4381 inode_lock(inode); 4382 4383 if (!f2fs_is_compress_backend_ready(inode)) { 4384 ret = -EOPNOTSUPP; 4385 goto out; 4386 } 4387 4388 if (!f2fs_compressed_file(inode) || 4389 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4390 ret = -EINVAL; 4391 goto out; 4392 } 4393 4394 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4395 if (ret) 4396 goto out; 4397 4398 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4399 4400 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4401 last_idx >>= fi->i_log_cluster_size; 4402 4403 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) { 4404 page_idx = cluster_idx << fi->i_log_cluster_size; 4405 4406 if (f2fs_is_sparse_cluster(inode, page_idx)) 4407 continue; 4408 4409 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size); 4410 if (ret < 0) 4411 break; 4412 4413 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) { 4414 ret = filemap_fdatawrite(inode->i_mapping); 4415 if (ret < 0) 4416 break; 4417 } 4418 4419 cond_resched(); 4420 if (fatal_signal_pending(current)) { 4421 ret = -EINTR; 4422 break; 4423 } 4424 } 4425 4426 if (!ret) 4427 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4428 LLONG_MAX); 4429 4430 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4431 4432 if (ret) 4433 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4434 __func__, ret); 4435 f2fs_update_time(sbi, REQ_TIME); 4436 out: 4437 inode_unlock(inode); 4438 mnt_drop_write_file(filp); 4439 4440 return ret; 4441 } 4442 4443 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4444 { 4445 switch (cmd) { 4446 case FS_IOC_GETVERSION: 4447 return f2fs_ioc_getversion(filp, arg); 4448 case F2FS_IOC_START_ATOMIC_WRITE: 4449 return f2fs_ioc_start_atomic_write(filp, false); 4450 case F2FS_IOC_START_ATOMIC_REPLACE: 4451 return f2fs_ioc_start_atomic_write(filp, true); 4452 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4453 return f2fs_ioc_commit_atomic_write(filp); 4454 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4455 return f2fs_ioc_abort_atomic_write(filp); 4456 case F2FS_IOC_START_VOLATILE_WRITE: 4457 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4458 return -EOPNOTSUPP; 4459 case F2FS_IOC_SHUTDOWN: 4460 return f2fs_ioc_shutdown(filp, arg); 4461 case FITRIM: 4462 return f2fs_ioc_fitrim(filp, arg); 4463 case FS_IOC_SET_ENCRYPTION_POLICY: 4464 return f2fs_ioc_set_encryption_policy(filp, arg); 4465 case FS_IOC_GET_ENCRYPTION_POLICY: 4466 return f2fs_ioc_get_encryption_policy(filp, arg); 4467 case FS_IOC_GET_ENCRYPTION_PWSALT: 4468 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4469 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4470 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4471 case FS_IOC_ADD_ENCRYPTION_KEY: 4472 return f2fs_ioc_add_encryption_key(filp, arg); 4473 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4474 return f2fs_ioc_remove_encryption_key(filp, arg); 4475 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4476 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4477 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4478 return f2fs_ioc_get_encryption_key_status(filp, arg); 4479 case FS_IOC_GET_ENCRYPTION_NONCE: 4480 return f2fs_ioc_get_encryption_nonce(filp, arg); 4481 case F2FS_IOC_GARBAGE_COLLECT: 4482 return f2fs_ioc_gc(filp, arg); 4483 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4484 return f2fs_ioc_gc_range(filp, arg); 4485 case F2FS_IOC_WRITE_CHECKPOINT: 4486 return f2fs_ioc_write_checkpoint(filp); 4487 case F2FS_IOC_DEFRAGMENT: 4488 return f2fs_ioc_defragment(filp, arg); 4489 case F2FS_IOC_MOVE_RANGE: 4490 return f2fs_ioc_move_range(filp, arg); 4491 case F2FS_IOC_FLUSH_DEVICE: 4492 return f2fs_ioc_flush_device(filp, arg); 4493 case F2FS_IOC_GET_FEATURES: 4494 return f2fs_ioc_get_features(filp, arg); 4495 case F2FS_IOC_GET_PIN_FILE: 4496 return f2fs_ioc_get_pin_file(filp, arg); 4497 case F2FS_IOC_SET_PIN_FILE: 4498 return f2fs_ioc_set_pin_file(filp, arg); 4499 case F2FS_IOC_PRECACHE_EXTENTS: 4500 return f2fs_ioc_precache_extents(filp); 4501 case F2FS_IOC_RESIZE_FS: 4502 return f2fs_ioc_resize_fs(filp, arg); 4503 case FS_IOC_ENABLE_VERITY: 4504 return f2fs_ioc_enable_verity(filp, arg); 4505 case FS_IOC_MEASURE_VERITY: 4506 return f2fs_ioc_measure_verity(filp, arg); 4507 case FS_IOC_READ_VERITY_METADATA: 4508 return f2fs_ioc_read_verity_metadata(filp, arg); 4509 case FS_IOC_GETFSLABEL: 4510 return f2fs_ioc_getfslabel(filp, arg); 4511 case FS_IOC_SETFSLABEL: 4512 return f2fs_ioc_setfslabel(filp, arg); 4513 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4514 return f2fs_ioc_get_compress_blocks(filp, arg); 4515 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4516 return f2fs_release_compress_blocks(filp, arg); 4517 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4518 return f2fs_reserve_compress_blocks(filp, arg); 4519 case F2FS_IOC_SEC_TRIM_FILE: 4520 return f2fs_sec_trim_file(filp, arg); 4521 case F2FS_IOC_GET_COMPRESS_OPTION: 4522 return f2fs_ioc_get_compress_option(filp, arg); 4523 case F2FS_IOC_SET_COMPRESS_OPTION: 4524 return f2fs_ioc_set_compress_option(filp, arg); 4525 case F2FS_IOC_DECOMPRESS_FILE: 4526 return f2fs_ioc_decompress_file(filp); 4527 case F2FS_IOC_COMPRESS_FILE: 4528 return f2fs_ioc_compress_file(filp); 4529 case F2FS_IOC_GET_DEV_ALIAS_FILE: 4530 return f2fs_ioc_get_dev_alias_file(filp, arg); 4531 default: 4532 return -ENOTTY; 4533 } 4534 } 4535 4536 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4537 { 4538 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4539 return -EIO; 4540 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4541 return -ENOSPC; 4542 4543 return __f2fs_ioctl(filp, cmd, arg); 4544 } 4545 4546 /* 4547 * Return %true if the given read or write request should use direct I/O, or 4548 * %false if it should use buffered I/O. 4549 */ 4550 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4551 struct iov_iter *iter) 4552 { 4553 unsigned int align; 4554 4555 if (!(iocb->ki_flags & IOCB_DIRECT)) 4556 return false; 4557 4558 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) 4559 return false; 4560 4561 /* 4562 * Direct I/O not aligned to the disk's logical_block_size will be 4563 * attempted, but will fail with -EINVAL. 4564 * 4565 * f2fs additionally requires that direct I/O be aligned to the 4566 * filesystem block size, which is often a stricter requirement. 4567 * However, f2fs traditionally falls back to buffered I/O on requests 4568 * that are logical_block_size-aligned but not fs-block aligned. 4569 * 4570 * The below logic implements this behavior. 4571 */ 4572 align = iocb->ki_pos | iov_iter_alignment(iter); 4573 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4574 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4575 return false; 4576 4577 return true; 4578 } 4579 4580 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4581 unsigned int flags) 4582 { 4583 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4584 4585 dec_page_count(sbi, F2FS_DIO_READ); 4586 if (error) 4587 return error; 4588 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size); 4589 return 0; 4590 } 4591 4592 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4593 .end_io = f2fs_dio_read_end_io, 4594 }; 4595 4596 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4597 { 4598 struct file *file = iocb->ki_filp; 4599 struct inode *inode = file_inode(file); 4600 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4601 struct f2fs_inode_info *fi = F2FS_I(inode); 4602 const loff_t pos = iocb->ki_pos; 4603 const size_t count = iov_iter_count(to); 4604 struct iomap_dio *dio; 4605 ssize_t ret; 4606 4607 if (count == 0) 4608 return 0; /* skip atime update */ 4609 4610 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4611 4612 if (iocb->ki_flags & IOCB_NOWAIT) { 4613 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4614 ret = -EAGAIN; 4615 goto out; 4616 } 4617 } else { 4618 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4619 } 4620 4621 /* dio is not compatible w/ atomic file */ 4622 if (f2fs_is_atomic_file(inode)) { 4623 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4624 ret = -EOPNOTSUPP; 4625 goto out; 4626 } 4627 4628 /* 4629 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4630 * the higher-level function iomap_dio_rw() in order to ensure that the 4631 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4632 */ 4633 inc_page_count(sbi, F2FS_DIO_READ); 4634 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4635 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4636 if (IS_ERR_OR_NULL(dio)) { 4637 ret = PTR_ERR_OR_ZERO(dio); 4638 if (ret != -EIOCBQUEUED) 4639 dec_page_count(sbi, F2FS_DIO_READ); 4640 } else { 4641 ret = iomap_dio_complete(dio); 4642 } 4643 4644 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4645 4646 file_accessed(file); 4647 out: 4648 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4649 return ret; 4650 } 4651 4652 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count, 4653 int rw) 4654 { 4655 struct inode *inode = file_inode(file); 4656 char *buf, *path; 4657 4658 buf = f2fs_getname(F2FS_I_SB(inode)); 4659 if (!buf) 4660 return; 4661 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX); 4662 if (IS_ERR(path)) 4663 goto free_buf; 4664 if (rw == WRITE) 4665 trace_f2fs_datawrite_start(inode, pos, count, 4666 current->pid, path, current->comm); 4667 else 4668 trace_f2fs_dataread_start(inode, pos, count, 4669 current->pid, path, current->comm); 4670 free_buf: 4671 f2fs_putname(buf); 4672 } 4673 4674 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4675 { 4676 struct inode *inode = file_inode(iocb->ki_filp); 4677 const loff_t pos = iocb->ki_pos; 4678 ssize_t ret; 4679 4680 if (!f2fs_is_compress_backend_ready(inode)) 4681 return -EOPNOTSUPP; 4682 4683 if (trace_f2fs_dataread_start_enabled()) 4684 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 4685 iov_iter_count(to), READ); 4686 4687 /* In LFS mode, if there is inflight dio, wait for its completion */ 4688 if (f2fs_lfs_mode(F2FS_I_SB(inode)) && 4689 get_pages(F2FS_I_SB(inode), F2FS_DIO_WRITE)) 4690 inode_dio_wait(inode); 4691 4692 if (f2fs_should_use_dio(inode, iocb, to)) { 4693 ret = f2fs_dio_read_iter(iocb, to); 4694 } else { 4695 ret = filemap_read(iocb, to, 0); 4696 if (ret > 0) 4697 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4698 APP_BUFFERED_READ_IO, ret); 4699 } 4700 if (trace_f2fs_dataread_end_enabled()) 4701 trace_f2fs_dataread_end(inode, pos, ret); 4702 return ret; 4703 } 4704 4705 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos, 4706 struct pipe_inode_info *pipe, 4707 size_t len, unsigned int flags) 4708 { 4709 struct inode *inode = file_inode(in); 4710 const loff_t pos = *ppos; 4711 ssize_t ret; 4712 4713 if (!f2fs_is_compress_backend_ready(inode)) 4714 return -EOPNOTSUPP; 4715 4716 if (trace_f2fs_dataread_start_enabled()) 4717 f2fs_trace_rw_file_path(in, pos, len, READ); 4718 4719 ret = filemap_splice_read(in, ppos, pipe, len, flags); 4720 if (ret > 0) 4721 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4722 APP_BUFFERED_READ_IO, ret); 4723 4724 if (trace_f2fs_dataread_end_enabled()) 4725 trace_f2fs_dataread_end(inode, pos, ret); 4726 return ret; 4727 } 4728 4729 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4730 { 4731 struct file *file = iocb->ki_filp; 4732 struct inode *inode = file_inode(file); 4733 ssize_t count; 4734 int err; 4735 4736 if (IS_IMMUTABLE(inode)) 4737 return -EPERM; 4738 4739 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4740 return -EPERM; 4741 4742 count = generic_write_checks(iocb, from); 4743 if (count <= 0) 4744 return count; 4745 4746 err = file_modified(file); 4747 if (err) 4748 return err; 4749 return count; 4750 } 4751 4752 /* 4753 * Preallocate blocks for a write request, if it is possible and helpful to do 4754 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4755 * blocks were preallocated, or a negative errno value if something went 4756 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4757 * requested blocks (not just some of them) have been allocated. 4758 */ 4759 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4760 bool dio) 4761 { 4762 struct inode *inode = file_inode(iocb->ki_filp); 4763 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4764 const loff_t pos = iocb->ki_pos; 4765 const size_t count = iov_iter_count(iter); 4766 struct f2fs_map_blocks map = {}; 4767 int flag; 4768 int ret; 4769 4770 /* If it will be an out-of-place direct write, don't bother. */ 4771 if (dio && f2fs_lfs_mode(sbi)) 4772 return 0; 4773 /* 4774 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4775 * buffered IO, if DIO meets any holes. 4776 */ 4777 if (dio && i_size_read(inode) && 4778 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4779 return 0; 4780 4781 /* No-wait I/O can't allocate blocks. */ 4782 if (iocb->ki_flags & IOCB_NOWAIT) 4783 return 0; 4784 4785 /* If it will be a short write, don't bother. */ 4786 if (fault_in_iov_iter_readable(iter, count)) 4787 return 0; 4788 4789 if (f2fs_has_inline_data(inode)) { 4790 /* If the data will fit inline, don't bother. */ 4791 if (pos + count <= MAX_INLINE_DATA(inode)) 4792 return 0; 4793 ret = f2fs_convert_inline_inode(inode); 4794 if (ret) 4795 return ret; 4796 } 4797 4798 /* Do not preallocate blocks that will be written partially in 4KB. */ 4799 map.m_lblk = F2FS_BLK_ALIGN(pos); 4800 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4801 if (map.m_len > map.m_lblk) 4802 map.m_len -= map.m_lblk; 4803 else 4804 return 0; 4805 4806 if (!IS_DEVICE_ALIASING(inode)) 4807 map.m_may_create = true; 4808 if (dio) { 4809 map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi, 4810 inode->i_write_hint); 4811 flag = F2FS_GET_BLOCK_PRE_DIO; 4812 } else { 4813 map.m_seg_type = NO_CHECK_TYPE; 4814 flag = F2FS_GET_BLOCK_PRE_AIO; 4815 } 4816 4817 ret = f2fs_map_blocks(inode, &map, flag); 4818 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4819 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4820 return ret; 4821 if (ret == 0) 4822 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4823 return map.m_len; 4824 } 4825 4826 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4827 struct iov_iter *from) 4828 { 4829 struct file *file = iocb->ki_filp; 4830 struct inode *inode = file_inode(file); 4831 ssize_t ret; 4832 4833 if (iocb->ki_flags & IOCB_NOWAIT) 4834 return -EOPNOTSUPP; 4835 4836 ret = generic_perform_write(iocb, from); 4837 4838 if (ret > 0) { 4839 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4840 APP_BUFFERED_IO, ret); 4841 } 4842 return ret; 4843 } 4844 4845 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4846 unsigned int flags) 4847 { 4848 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4849 4850 dec_page_count(sbi, F2FS_DIO_WRITE); 4851 if (error) 4852 return error; 4853 f2fs_update_time(sbi, REQ_TIME); 4854 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size); 4855 return 0; 4856 } 4857 4858 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter, 4859 struct bio *bio, loff_t file_offset) 4860 { 4861 struct inode *inode = iter->inode; 4862 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4863 enum log_type type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint); 4864 enum temp_type temp = f2fs_get_segment_temp(sbi, type); 4865 4866 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp); 4867 submit_bio(bio); 4868 } 4869 4870 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4871 .end_io = f2fs_dio_write_end_io, 4872 .submit_io = f2fs_dio_write_submit_io, 4873 }; 4874 4875 static void f2fs_flush_buffered_write(struct address_space *mapping, 4876 loff_t start_pos, loff_t end_pos) 4877 { 4878 int ret; 4879 4880 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos); 4881 if (ret < 0) 4882 return; 4883 invalidate_mapping_pages(mapping, 4884 start_pos >> PAGE_SHIFT, 4885 end_pos >> PAGE_SHIFT); 4886 } 4887 4888 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4889 bool *may_need_sync) 4890 { 4891 struct file *file = iocb->ki_filp; 4892 struct inode *inode = file_inode(file); 4893 struct f2fs_inode_info *fi = F2FS_I(inode); 4894 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4895 const bool do_opu = f2fs_lfs_mode(sbi); 4896 const loff_t pos = iocb->ki_pos; 4897 const ssize_t count = iov_iter_count(from); 4898 unsigned int dio_flags; 4899 struct iomap_dio *dio; 4900 ssize_t ret; 4901 4902 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4903 4904 if (iocb->ki_flags & IOCB_NOWAIT) { 4905 /* f2fs_convert_inline_inode() and block allocation can block */ 4906 if (f2fs_has_inline_data(inode) || 4907 !f2fs_overwrite_io(inode, pos, count)) { 4908 ret = -EAGAIN; 4909 goto out; 4910 } 4911 4912 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4913 ret = -EAGAIN; 4914 goto out; 4915 } 4916 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4917 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4918 ret = -EAGAIN; 4919 goto out; 4920 } 4921 } else { 4922 ret = f2fs_convert_inline_inode(inode); 4923 if (ret) 4924 goto out; 4925 4926 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4927 if (do_opu) 4928 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4929 } 4930 4931 /* 4932 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4933 * the higher-level function iomap_dio_rw() in order to ensure that the 4934 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4935 */ 4936 inc_page_count(sbi, F2FS_DIO_WRITE); 4937 dio_flags = 0; 4938 if (pos + count > inode->i_size) 4939 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4940 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4941 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4942 if (IS_ERR_OR_NULL(dio)) { 4943 ret = PTR_ERR_OR_ZERO(dio); 4944 if (ret == -ENOTBLK) 4945 ret = 0; 4946 if (ret != -EIOCBQUEUED) 4947 dec_page_count(sbi, F2FS_DIO_WRITE); 4948 } else { 4949 ret = iomap_dio_complete(dio); 4950 } 4951 4952 if (do_opu) 4953 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4954 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4955 4956 if (ret < 0) 4957 goto out; 4958 if (pos + ret > inode->i_size) 4959 f2fs_i_size_write(inode, pos + ret); 4960 if (!do_opu) 4961 set_inode_flag(inode, FI_UPDATE_WRITE); 4962 4963 if (iov_iter_count(from)) { 4964 ssize_t ret2; 4965 loff_t bufio_start_pos = iocb->ki_pos; 4966 4967 /* 4968 * The direct write was partial, so we need to fall back to a 4969 * buffered write for the remainder. 4970 */ 4971 4972 ret2 = f2fs_buffered_write_iter(iocb, from); 4973 if (iov_iter_count(from)) 4974 f2fs_write_failed(inode, iocb->ki_pos); 4975 if (ret2 < 0) 4976 goto out; 4977 4978 /* 4979 * Ensure that the pagecache pages are written to disk and 4980 * invalidated to preserve the expected O_DIRECT semantics. 4981 */ 4982 if (ret2 > 0) { 4983 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4984 4985 ret += ret2; 4986 4987 f2fs_flush_buffered_write(file->f_mapping, 4988 bufio_start_pos, 4989 bufio_end_pos); 4990 } 4991 } else { 4992 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4993 *may_need_sync = false; 4994 } 4995 out: 4996 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4997 return ret; 4998 } 4999 5000 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 5001 { 5002 struct inode *inode = file_inode(iocb->ki_filp); 5003 const loff_t orig_pos = iocb->ki_pos; 5004 const size_t orig_count = iov_iter_count(from); 5005 loff_t target_size; 5006 bool dio; 5007 bool may_need_sync = true; 5008 int preallocated; 5009 const loff_t pos = iocb->ki_pos; 5010 const ssize_t count = iov_iter_count(from); 5011 ssize_t ret; 5012 5013 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 5014 ret = -EIO; 5015 goto out; 5016 } 5017 5018 if (!f2fs_is_compress_backend_ready(inode)) { 5019 ret = -EOPNOTSUPP; 5020 goto out; 5021 } 5022 5023 if (iocb->ki_flags & IOCB_NOWAIT) { 5024 if (!inode_trylock(inode)) { 5025 ret = -EAGAIN; 5026 goto out; 5027 } 5028 } else { 5029 inode_lock(inode); 5030 } 5031 5032 if (f2fs_is_pinned_file(inode) && 5033 !f2fs_overwrite_io(inode, pos, count)) { 5034 ret = -EIO; 5035 goto out_unlock; 5036 } 5037 5038 ret = f2fs_write_checks(iocb, from); 5039 if (ret <= 0) 5040 goto out_unlock; 5041 5042 /* Determine whether we will do a direct write or a buffered write. */ 5043 dio = f2fs_should_use_dio(inode, iocb, from); 5044 5045 /* dio is not compatible w/ atomic write */ 5046 if (dio && f2fs_is_atomic_file(inode)) { 5047 ret = -EOPNOTSUPP; 5048 goto out_unlock; 5049 } 5050 5051 /* Possibly preallocate the blocks for the write. */ 5052 target_size = iocb->ki_pos + iov_iter_count(from); 5053 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 5054 if (preallocated < 0) { 5055 ret = preallocated; 5056 } else { 5057 if (trace_f2fs_datawrite_start_enabled()) 5058 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 5059 orig_count, WRITE); 5060 5061 /* Do the actual write. */ 5062 ret = dio ? 5063 f2fs_dio_write_iter(iocb, from, &may_need_sync) : 5064 f2fs_buffered_write_iter(iocb, from); 5065 5066 if (trace_f2fs_datawrite_end_enabled()) 5067 trace_f2fs_datawrite_end(inode, orig_pos, ret); 5068 } 5069 5070 /* Don't leave any preallocated blocks around past i_size. */ 5071 if (preallocated && i_size_read(inode) < target_size) { 5072 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 5073 filemap_invalidate_lock(inode->i_mapping); 5074 if (!f2fs_truncate(inode)) 5075 file_dont_truncate(inode); 5076 filemap_invalidate_unlock(inode->i_mapping); 5077 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 5078 } else { 5079 file_dont_truncate(inode); 5080 } 5081 5082 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 5083 out_unlock: 5084 inode_unlock(inode); 5085 out: 5086 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 5087 5088 if (ret > 0 && may_need_sync) 5089 ret = generic_write_sync(iocb, ret); 5090 5091 /* If buffered IO was forced, flush and drop the data from 5092 * the page cache to preserve O_DIRECT semantics 5093 */ 5094 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT)) 5095 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping, 5096 orig_pos, 5097 orig_pos + ret - 1); 5098 5099 return ret; 5100 } 5101 5102 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 5103 int advice) 5104 { 5105 struct address_space *mapping; 5106 struct backing_dev_info *bdi; 5107 struct inode *inode = file_inode(filp); 5108 int err; 5109 5110 if (advice == POSIX_FADV_SEQUENTIAL) { 5111 if (S_ISFIFO(inode->i_mode)) 5112 return -ESPIPE; 5113 5114 mapping = filp->f_mapping; 5115 if (!mapping || len < 0) 5116 return -EINVAL; 5117 5118 bdi = inode_to_bdi(mapping->host); 5119 filp->f_ra.ra_pages = bdi->ra_pages * 5120 F2FS_I_SB(inode)->seq_file_ra_mul; 5121 spin_lock(&filp->f_lock); 5122 filp->f_mode &= ~FMODE_RANDOM; 5123 spin_unlock(&filp->f_lock); 5124 return 0; 5125 } else if (advice == POSIX_FADV_WILLNEED && offset == 0) { 5126 /* Load extent cache at the first readahead. */ 5127 f2fs_precache_extents(inode); 5128 } 5129 5130 err = generic_fadvise(filp, offset, len, advice); 5131 if (!err && advice == POSIX_FADV_DONTNEED && 5132 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 5133 f2fs_compressed_file(inode)) 5134 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 5135 5136 return err; 5137 } 5138 5139 #ifdef CONFIG_COMPAT 5140 struct compat_f2fs_gc_range { 5141 u32 sync; 5142 compat_u64 start; 5143 compat_u64 len; 5144 }; 5145 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 5146 struct compat_f2fs_gc_range) 5147 5148 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 5149 { 5150 struct compat_f2fs_gc_range __user *urange; 5151 struct f2fs_gc_range range; 5152 int err; 5153 5154 urange = compat_ptr(arg); 5155 err = get_user(range.sync, &urange->sync); 5156 err |= get_user(range.start, &urange->start); 5157 err |= get_user(range.len, &urange->len); 5158 if (err) 5159 return -EFAULT; 5160 5161 return __f2fs_ioc_gc_range(file, &range); 5162 } 5163 5164 struct compat_f2fs_move_range { 5165 u32 dst_fd; 5166 compat_u64 pos_in; 5167 compat_u64 pos_out; 5168 compat_u64 len; 5169 }; 5170 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 5171 struct compat_f2fs_move_range) 5172 5173 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 5174 { 5175 struct compat_f2fs_move_range __user *urange; 5176 struct f2fs_move_range range; 5177 int err; 5178 5179 urange = compat_ptr(arg); 5180 err = get_user(range.dst_fd, &urange->dst_fd); 5181 err |= get_user(range.pos_in, &urange->pos_in); 5182 err |= get_user(range.pos_out, &urange->pos_out); 5183 err |= get_user(range.len, &urange->len); 5184 if (err) 5185 return -EFAULT; 5186 5187 return __f2fs_ioc_move_range(file, &range); 5188 } 5189 5190 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5191 { 5192 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 5193 return -EIO; 5194 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 5195 return -ENOSPC; 5196 5197 switch (cmd) { 5198 case FS_IOC32_GETVERSION: 5199 cmd = FS_IOC_GETVERSION; 5200 break; 5201 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 5202 return f2fs_compat_ioc_gc_range(file, arg); 5203 case F2FS_IOC32_MOVE_RANGE: 5204 return f2fs_compat_ioc_move_range(file, arg); 5205 case F2FS_IOC_START_ATOMIC_WRITE: 5206 case F2FS_IOC_START_ATOMIC_REPLACE: 5207 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 5208 case F2FS_IOC_START_VOLATILE_WRITE: 5209 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 5210 case F2FS_IOC_ABORT_ATOMIC_WRITE: 5211 case F2FS_IOC_SHUTDOWN: 5212 case FITRIM: 5213 case FS_IOC_SET_ENCRYPTION_POLICY: 5214 case FS_IOC_GET_ENCRYPTION_PWSALT: 5215 case FS_IOC_GET_ENCRYPTION_POLICY: 5216 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 5217 case FS_IOC_ADD_ENCRYPTION_KEY: 5218 case FS_IOC_REMOVE_ENCRYPTION_KEY: 5219 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 5220 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 5221 case FS_IOC_GET_ENCRYPTION_NONCE: 5222 case F2FS_IOC_GARBAGE_COLLECT: 5223 case F2FS_IOC_WRITE_CHECKPOINT: 5224 case F2FS_IOC_DEFRAGMENT: 5225 case F2FS_IOC_FLUSH_DEVICE: 5226 case F2FS_IOC_GET_FEATURES: 5227 case F2FS_IOC_GET_PIN_FILE: 5228 case F2FS_IOC_SET_PIN_FILE: 5229 case F2FS_IOC_PRECACHE_EXTENTS: 5230 case F2FS_IOC_RESIZE_FS: 5231 case FS_IOC_ENABLE_VERITY: 5232 case FS_IOC_MEASURE_VERITY: 5233 case FS_IOC_READ_VERITY_METADATA: 5234 case FS_IOC_GETFSLABEL: 5235 case FS_IOC_SETFSLABEL: 5236 case F2FS_IOC_GET_COMPRESS_BLOCKS: 5237 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 5238 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 5239 case F2FS_IOC_SEC_TRIM_FILE: 5240 case F2FS_IOC_GET_COMPRESS_OPTION: 5241 case F2FS_IOC_SET_COMPRESS_OPTION: 5242 case F2FS_IOC_DECOMPRESS_FILE: 5243 case F2FS_IOC_COMPRESS_FILE: 5244 case F2FS_IOC_GET_DEV_ALIAS_FILE: 5245 break; 5246 default: 5247 return -ENOIOCTLCMD; 5248 } 5249 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5250 } 5251 #endif 5252 5253 const struct file_operations f2fs_file_operations = { 5254 .llseek = f2fs_llseek, 5255 .read_iter = f2fs_file_read_iter, 5256 .write_iter = f2fs_file_write_iter, 5257 .iopoll = iocb_bio_iopoll, 5258 .open = f2fs_file_open, 5259 .release = f2fs_release_file, 5260 .mmap = f2fs_file_mmap, 5261 .flush = f2fs_file_flush, 5262 .fsync = f2fs_sync_file, 5263 .fallocate = f2fs_fallocate, 5264 .unlocked_ioctl = f2fs_ioctl, 5265 #ifdef CONFIG_COMPAT 5266 .compat_ioctl = f2fs_compat_ioctl, 5267 #endif 5268 .splice_read = f2fs_file_splice_read, 5269 .splice_write = iter_file_splice_write, 5270 .fadvise = f2fs_file_fadvise, 5271 .fop_flags = FOP_BUFFER_RASYNC, 5272 }; 5273