1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/falloc.h> 14 #include <linux/types.h> 15 #include <linux/compat.h> 16 #include <linux/uaccess.h> 17 #include <linux/mount.h> 18 #include <linux/pagevec.h> 19 #include <linux/uio.h> 20 #include <linux/uuid.h> 21 #include <linux/file.h> 22 #include <linux/nls.h> 23 #include <linux/sched/signal.h> 24 #include <linux/fileattr.h> 25 #include <linux/fadvise.h> 26 #include <linux/iomap.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "acl.h" 33 #include "gc.h" 34 #include "iostat.h" 35 #include <trace/events/f2fs.h> 36 #include <uapi/linux/f2fs.h> 37 38 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 39 { 40 struct inode *inode = file_inode(vmf->vma->vm_file); 41 vm_flags_t flags = vmf->vma->vm_flags; 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (ret & VM_FAULT_LOCKED) 46 f2fs_update_iostat(F2FS_I_SB(inode), inode, 47 APP_MAPPED_READ_IO, F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct folio *folio = page_folio(vmf->page); 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = !f2fs_is_pinned_file(inode); 61 int err = 0; 62 vm_fault_t ret; 63 64 if (unlikely(IS_IMMUTABLE(inode))) 65 return VM_FAULT_SIGBUS; 66 67 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 68 err = -EIO; 69 goto out; 70 } 71 72 if (unlikely(f2fs_cp_error(sbi))) { 73 err = -EIO; 74 goto out; 75 } 76 77 if (!f2fs_is_checkpoint_ready(sbi)) { 78 err = -ENOSPC; 79 goto out; 80 } 81 82 err = f2fs_convert_inline_inode(inode); 83 if (err) 84 goto out; 85 86 #ifdef CONFIG_F2FS_FS_COMPRESSION 87 if (f2fs_compressed_file(inode)) { 88 int ret = f2fs_is_compressed_cluster(inode, folio->index); 89 90 if (ret < 0) { 91 err = ret; 92 goto out; 93 } else if (ret) { 94 need_alloc = false; 95 } 96 } 97 #endif 98 /* should do out of any locked page */ 99 if (need_alloc) 100 f2fs_balance_fs(sbi, true); 101 102 sb_start_pagefault(inode->i_sb); 103 104 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 105 106 file_update_time(vmf->vma->vm_file); 107 filemap_invalidate_lock_shared(inode->i_mapping); 108 folio_lock(folio); 109 if (unlikely(folio->mapping != inode->i_mapping || 110 folio_pos(folio) > i_size_read(inode) || 111 !folio_test_uptodate(folio))) { 112 folio_unlock(folio); 113 err = -EFAULT; 114 goto out_sem; 115 } 116 117 set_new_dnode(&dn, inode, NULL, NULL, 0); 118 if (need_alloc) { 119 /* block allocation */ 120 err = f2fs_get_block_locked(&dn, folio->index); 121 } else { 122 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE); 123 f2fs_put_dnode(&dn); 124 if (f2fs_is_pinned_file(inode) && 125 !__is_valid_data_blkaddr(dn.data_blkaddr)) 126 err = -EIO; 127 } 128 129 if (err) { 130 folio_unlock(folio); 131 goto out_sem; 132 } 133 134 f2fs_wait_on_page_writeback(folio_page(folio, 0), DATA, false, true); 135 136 /* wait for GCed page writeback via META_MAPPING */ 137 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 138 139 /* 140 * check to see if the page is mapped already (no holes) 141 */ 142 if (folio_test_mappedtodisk(folio)) 143 goto out_sem; 144 145 /* page is wholly or partially inside EOF */ 146 if (((loff_t)(folio->index + 1) << PAGE_SHIFT) > 147 i_size_read(inode)) { 148 loff_t offset; 149 150 offset = i_size_read(inode) & ~PAGE_MASK; 151 folio_zero_segment(folio, offset, folio_size(folio)); 152 } 153 folio_mark_dirty(folio); 154 155 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE); 156 f2fs_update_time(sbi, REQ_TIME); 157 158 out_sem: 159 filemap_invalidate_unlock_shared(inode->i_mapping); 160 161 sb_end_pagefault(inode->i_sb); 162 out: 163 ret = vmf_fs_error(err); 164 165 trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret); 166 return ret; 167 } 168 169 static const struct vm_operations_struct f2fs_file_vm_ops = { 170 .fault = f2fs_filemap_fault, 171 .map_pages = filemap_map_pages, 172 .page_mkwrite = f2fs_vm_page_mkwrite, 173 }; 174 175 static int get_parent_ino(struct inode *inode, nid_t *pino) 176 { 177 struct dentry *dentry; 178 179 /* 180 * Make sure to get the non-deleted alias. The alias associated with 181 * the open file descriptor being fsync()'ed may be deleted already. 182 */ 183 dentry = d_find_alias(inode); 184 if (!dentry) 185 return 0; 186 187 *pino = d_parent_ino(dentry); 188 dput(dentry); 189 return 1; 190 } 191 192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 193 { 194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 195 enum cp_reason_type cp_reason = CP_NO_NEEDED; 196 197 if (!S_ISREG(inode->i_mode)) 198 cp_reason = CP_NON_REGULAR; 199 else if (f2fs_compressed_file(inode)) 200 cp_reason = CP_COMPRESSED; 201 else if (inode->i_nlink != 1) 202 cp_reason = CP_HARDLINK; 203 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 204 cp_reason = CP_SB_NEED_CP; 205 else if (file_wrong_pino(inode)) 206 cp_reason = CP_WRONG_PINO; 207 else if (!f2fs_space_for_roll_forward(sbi)) 208 cp_reason = CP_NO_SPC_ROLL; 209 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 210 cp_reason = CP_NODE_NEED_CP; 211 else if (test_opt(sbi, FASTBOOT)) 212 cp_reason = CP_FASTBOOT_MODE; 213 else if (F2FS_OPTION(sbi).active_logs == 2) 214 cp_reason = CP_SPEC_LOG_NUM; 215 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 216 f2fs_need_dentry_mark(sbi, inode->i_ino) && 217 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 218 TRANS_DIR_INO)) 219 cp_reason = CP_RECOVER_DIR; 220 else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 221 XATTR_DIR_INO)) 222 cp_reason = CP_XATTR_DIR; 223 224 return cp_reason; 225 } 226 227 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 228 { 229 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 230 bool ret = false; 231 /* But we need to avoid that there are some inode updates */ 232 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 233 ret = true; 234 f2fs_put_page(i, 0); 235 return ret; 236 } 237 238 static void try_to_fix_pino(struct inode *inode) 239 { 240 struct f2fs_inode_info *fi = F2FS_I(inode); 241 nid_t pino; 242 243 f2fs_down_write(&fi->i_sem); 244 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 245 get_parent_ino(inode, &pino)) { 246 f2fs_i_pino_write(inode, pino); 247 file_got_pino(inode); 248 } 249 f2fs_up_write(&fi->i_sem); 250 } 251 252 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 253 int datasync, bool atomic) 254 { 255 struct inode *inode = file->f_mapping->host; 256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 257 nid_t ino = inode->i_ino; 258 int ret = 0; 259 enum cp_reason_type cp_reason = 0; 260 struct writeback_control wbc = { 261 .sync_mode = WB_SYNC_ALL, 262 .nr_to_write = LONG_MAX, 263 .for_reclaim = 0, 264 }; 265 unsigned int seq_id = 0; 266 267 if (unlikely(f2fs_readonly(inode->i_sb))) 268 return 0; 269 270 trace_f2fs_sync_file_enter(inode); 271 272 if (S_ISDIR(inode->i_mode)) 273 goto go_write; 274 275 /* if fdatasync is triggered, let's do in-place-update */ 276 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 277 set_inode_flag(inode, FI_NEED_IPU); 278 ret = file_write_and_wait_range(file, start, end); 279 clear_inode_flag(inode, FI_NEED_IPU); 280 281 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 282 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 283 return ret; 284 } 285 286 /* if the inode is dirty, let's recover all the time */ 287 if (!f2fs_skip_inode_update(inode, datasync)) { 288 f2fs_write_inode(inode, NULL); 289 goto go_write; 290 } 291 292 /* 293 * if there is no written data, don't waste time to write recovery info. 294 */ 295 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 296 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 297 298 /* it may call write_inode just prior to fsync */ 299 if (need_inode_page_update(sbi, ino)) 300 goto go_write; 301 302 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 303 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 304 goto flush_out; 305 goto out; 306 } else { 307 /* 308 * for OPU case, during fsync(), node can be persisted before 309 * data when lower device doesn't support write barrier, result 310 * in data corruption after SPO. 311 * So for strict fsync mode, force to use atomic write semantics 312 * to keep write order in between data/node and last node to 313 * avoid potential data corruption. 314 */ 315 if (F2FS_OPTION(sbi).fsync_mode == 316 FSYNC_MODE_STRICT && !atomic) 317 atomic = true; 318 } 319 go_write: 320 /* 321 * Both of fdatasync() and fsync() are able to be recovered from 322 * sudden-power-off. 323 */ 324 f2fs_down_read(&F2FS_I(inode)->i_sem); 325 cp_reason = need_do_checkpoint(inode); 326 f2fs_up_read(&F2FS_I(inode)->i_sem); 327 328 if (cp_reason) { 329 /* all the dirty node pages should be flushed for POR */ 330 ret = f2fs_sync_fs(inode->i_sb, 1); 331 332 /* 333 * We've secured consistency through sync_fs. Following pino 334 * will be used only for fsynced inodes after checkpoint. 335 */ 336 try_to_fix_pino(inode); 337 clear_inode_flag(inode, FI_APPEND_WRITE); 338 clear_inode_flag(inode, FI_UPDATE_WRITE); 339 goto out; 340 } 341 sync_nodes: 342 atomic_inc(&sbi->wb_sync_req[NODE]); 343 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 344 atomic_dec(&sbi->wb_sync_req[NODE]); 345 if (ret) 346 goto out; 347 348 /* if cp_error was enabled, we should avoid infinite loop */ 349 if (unlikely(f2fs_cp_error(sbi))) { 350 ret = -EIO; 351 goto out; 352 } 353 354 if (f2fs_need_inode_block_update(sbi, ino)) { 355 f2fs_mark_inode_dirty_sync(inode, true); 356 f2fs_write_inode(inode, NULL); 357 goto sync_nodes; 358 } 359 360 /* 361 * If it's atomic_write, it's just fine to keep write ordering. So 362 * here we don't need to wait for node write completion, since we use 363 * node chain which serializes node blocks. If one of node writes are 364 * reordered, we can see simply broken chain, resulting in stopping 365 * roll-forward recovery. It means we'll recover all or none node blocks 366 * given fsync mark. 367 */ 368 if (!atomic) { 369 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 370 if (ret) 371 goto out; 372 } 373 374 /* once recovery info is written, don't need to tack this */ 375 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 376 clear_inode_flag(inode, FI_APPEND_WRITE); 377 flush_out: 378 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 379 ret = f2fs_issue_flush(sbi, inode->i_ino); 380 if (!ret) { 381 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 382 clear_inode_flag(inode, FI_UPDATE_WRITE); 383 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 384 } 385 f2fs_update_time(sbi, REQ_TIME); 386 out: 387 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 388 return ret; 389 } 390 391 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 392 { 393 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 394 return -EIO; 395 return f2fs_do_sync_file(file, start, end, datasync, false); 396 } 397 398 static bool __found_offset(struct address_space *mapping, 399 struct dnode_of_data *dn, pgoff_t index, int whence) 400 { 401 block_t blkaddr = f2fs_data_blkaddr(dn); 402 struct inode *inode = mapping->host; 403 bool compressed_cluster = false; 404 405 if (f2fs_compressed_file(inode)) { 406 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page, 407 ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size)); 408 409 compressed_cluster = first_blkaddr == COMPRESS_ADDR; 410 } 411 412 switch (whence) { 413 case SEEK_DATA: 414 if (__is_valid_data_blkaddr(blkaddr)) 415 return true; 416 if (blkaddr == NEW_ADDR && 417 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 418 return true; 419 if (compressed_cluster) 420 return true; 421 break; 422 case SEEK_HOLE: 423 if (compressed_cluster) 424 return false; 425 if (blkaddr == NULL_ADDR) 426 return true; 427 break; 428 } 429 return false; 430 } 431 432 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 433 { 434 struct inode *inode = file->f_mapping->host; 435 loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 436 struct dnode_of_data dn; 437 pgoff_t pgofs, end_offset; 438 loff_t data_ofs = offset; 439 loff_t isize; 440 int err = 0; 441 442 inode_lock_shared(inode); 443 444 isize = i_size_read(inode); 445 if (offset >= isize) 446 goto fail; 447 448 /* handle inline data case */ 449 if (f2fs_has_inline_data(inode)) { 450 if (whence == SEEK_HOLE) { 451 data_ofs = isize; 452 goto found; 453 } else if (whence == SEEK_DATA) { 454 data_ofs = offset; 455 goto found; 456 } 457 } 458 459 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 460 461 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 462 set_new_dnode(&dn, inode, NULL, NULL, 0); 463 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 464 if (err && err != -ENOENT) { 465 goto fail; 466 } else if (err == -ENOENT) { 467 /* direct node does not exists */ 468 if (whence == SEEK_DATA) { 469 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 470 continue; 471 } else { 472 goto found; 473 } 474 } 475 476 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 477 478 /* find data/hole in dnode block */ 479 for (; dn.ofs_in_node < end_offset; 480 dn.ofs_in_node++, pgofs++, 481 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 482 block_t blkaddr; 483 484 blkaddr = f2fs_data_blkaddr(&dn); 485 486 if (__is_valid_data_blkaddr(blkaddr) && 487 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 488 blkaddr, DATA_GENERIC_ENHANCE)) { 489 f2fs_put_dnode(&dn); 490 goto fail; 491 } 492 493 if (__found_offset(file->f_mapping, &dn, 494 pgofs, whence)) { 495 f2fs_put_dnode(&dn); 496 goto found; 497 } 498 } 499 f2fs_put_dnode(&dn); 500 } 501 502 if (whence == SEEK_DATA) 503 goto fail; 504 found: 505 if (whence == SEEK_HOLE && data_ofs > isize) 506 data_ofs = isize; 507 inode_unlock_shared(inode); 508 return vfs_setpos(file, data_ofs, maxbytes); 509 fail: 510 inode_unlock_shared(inode); 511 return -ENXIO; 512 } 513 514 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 515 { 516 struct inode *inode = file->f_mapping->host; 517 loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 518 519 switch (whence) { 520 case SEEK_SET: 521 case SEEK_CUR: 522 case SEEK_END: 523 return generic_file_llseek_size(file, offset, whence, 524 maxbytes, i_size_read(inode)); 525 case SEEK_DATA: 526 case SEEK_HOLE: 527 if (offset < 0) 528 return -ENXIO; 529 return f2fs_seek_block(file, offset, whence); 530 } 531 532 return -EINVAL; 533 } 534 535 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 536 { 537 struct inode *inode = file_inode(file); 538 539 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 540 return -EIO; 541 542 if (!f2fs_is_compress_backend_ready(inode)) 543 return -EOPNOTSUPP; 544 545 file_accessed(file); 546 vma->vm_ops = &f2fs_file_vm_ops; 547 548 f2fs_down_read(&F2FS_I(inode)->i_sem); 549 set_inode_flag(inode, FI_MMAP_FILE); 550 f2fs_up_read(&F2FS_I(inode)->i_sem); 551 552 return 0; 553 } 554 555 static int finish_preallocate_blocks(struct inode *inode) 556 { 557 int ret; 558 559 inode_lock(inode); 560 if (is_inode_flag_set(inode, FI_OPENED_FILE)) { 561 inode_unlock(inode); 562 return 0; 563 } 564 565 if (!file_should_truncate(inode)) { 566 set_inode_flag(inode, FI_OPENED_FILE); 567 inode_unlock(inode); 568 return 0; 569 } 570 571 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 572 filemap_invalidate_lock(inode->i_mapping); 573 574 truncate_setsize(inode, i_size_read(inode)); 575 ret = f2fs_truncate(inode); 576 577 filemap_invalidate_unlock(inode->i_mapping); 578 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 579 580 if (!ret) 581 set_inode_flag(inode, FI_OPENED_FILE); 582 583 inode_unlock(inode); 584 if (ret) 585 return ret; 586 587 file_dont_truncate(inode); 588 return 0; 589 } 590 591 static int f2fs_file_open(struct inode *inode, struct file *filp) 592 { 593 int err = fscrypt_file_open(inode, filp); 594 595 if (err) 596 return err; 597 598 if (!f2fs_is_compress_backend_ready(inode)) 599 return -EOPNOTSUPP; 600 601 err = fsverity_file_open(inode, filp); 602 if (err) 603 return err; 604 605 filp->f_mode |= FMODE_NOWAIT; 606 filp->f_mode |= FMODE_CAN_ODIRECT; 607 608 err = dquot_file_open(inode, filp); 609 if (err) 610 return err; 611 612 return finish_preallocate_blocks(inode); 613 } 614 615 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 616 { 617 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 618 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 619 __le32 *addr; 620 bool compressed_cluster = false; 621 int cluster_index = 0, valid_blocks = 0; 622 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 623 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 624 625 addr = get_dnode_addr(dn->inode, dn->node_page) + ofs; 626 627 /* Assumption: truncation starts with cluster */ 628 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 629 block_t blkaddr = le32_to_cpu(*addr); 630 631 if (f2fs_compressed_file(dn->inode) && 632 !(cluster_index & (cluster_size - 1))) { 633 if (compressed_cluster) 634 f2fs_i_compr_blocks_update(dn->inode, 635 valid_blocks, false); 636 compressed_cluster = (blkaddr == COMPRESS_ADDR); 637 valid_blocks = 0; 638 } 639 640 if (blkaddr == NULL_ADDR) 641 continue; 642 643 f2fs_set_data_blkaddr(dn, NULL_ADDR); 644 645 if (__is_valid_data_blkaddr(blkaddr)) { 646 if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE)) 647 continue; 648 if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr, 649 DATA_GENERIC_ENHANCE)) 650 continue; 651 if (compressed_cluster) 652 valid_blocks++; 653 } 654 655 f2fs_invalidate_blocks(sbi, blkaddr); 656 657 if (!released || blkaddr != COMPRESS_ADDR) 658 nr_free++; 659 } 660 661 if (compressed_cluster) 662 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 663 664 if (nr_free) { 665 pgoff_t fofs; 666 /* 667 * once we invalidate valid blkaddr in range [ofs, ofs + count], 668 * we will invalidate all blkaddr in the whole range. 669 */ 670 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 671 dn->inode) + ofs; 672 f2fs_update_read_extent_cache_range(dn, fofs, 0, len); 673 f2fs_update_age_extent_cache_range(dn, fofs, len); 674 dec_valid_block_count(sbi, dn->inode, nr_free); 675 } 676 dn->ofs_in_node = ofs; 677 678 f2fs_update_time(sbi, REQ_TIME); 679 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 680 dn->ofs_in_node, nr_free); 681 } 682 683 static int truncate_partial_data_page(struct inode *inode, u64 from, 684 bool cache_only) 685 { 686 loff_t offset = from & (PAGE_SIZE - 1); 687 pgoff_t index = from >> PAGE_SHIFT; 688 struct address_space *mapping = inode->i_mapping; 689 struct page *page; 690 691 if (!offset && !cache_only) 692 return 0; 693 694 if (cache_only) { 695 page = find_lock_page(mapping, index); 696 if (page && PageUptodate(page)) 697 goto truncate_out; 698 f2fs_put_page(page, 1); 699 return 0; 700 } 701 702 page = f2fs_get_lock_data_page(inode, index, true); 703 if (IS_ERR(page)) 704 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 705 truncate_out: 706 f2fs_wait_on_page_writeback(page, DATA, true, true); 707 zero_user(page, offset, PAGE_SIZE - offset); 708 709 /* An encrypted inode should have a key and truncate the last page. */ 710 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 711 if (!cache_only) 712 set_page_dirty(page); 713 f2fs_put_page(page, 1); 714 return 0; 715 } 716 717 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 718 { 719 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 720 struct dnode_of_data dn; 721 pgoff_t free_from; 722 int count = 0, err = 0; 723 struct page *ipage; 724 bool truncate_page = false; 725 726 trace_f2fs_truncate_blocks_enter(inode, from); 727 728 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 729 730 if (free_from >= max_file_blocks(inode)) 731 goto free_partial; 732 733 if (lock) 734 f2fs_lock_op(sbi); 735 736 ipage = f2fs_get_node_page(sbi, inode->i_ino); 737 if (IS_ERR(ipage)) { 738 err = PTR_ERR(ipage); 739 goto out; 740 } 741 742 if (f2fs_has_inline_data(inode)) { 743 f2fs_truncate_inline_inode(inode, ipage, from); 744 f2fs_put_page(ipage, 1); 745 truncate_page = true; 746 goto out; 747 } 748 749 set_new_dnode(&dn, inode, ipage, NULL, 0); 750 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 751 if (err) { 752 if (err == -ENOENT) 753 goto free_next; 754 goto out; 755 } 756 757 count = ADDRS_PER_PAGE(dn.node_page, inode); 758 759 count -= dn.ofs_in_node; 760 f2fs_bug_on(sbi, count < 0); 761 762 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 763 f2fs_truncate_data_blocks_range(&dn, count); 764 free_from += count; 765 } 766 767 f2fs_put_dnode(&dn); 768 free_next: 769 err = f2fs_truncate_inode_blocks(inode, free_from); 770 out: 771 if (lock) 772 f2fs_unlock_op(sbi); 773 free_partial: 774 /* lastly zero out the first data page */ 775 if (!err) 776 err = truncate_partial_data_page(inode, from, truncate_page); 777 778 trace_f2fs_truncate_blocks_exit(inode, err); 779 return err; 780 } 781 782 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 783 { 784 u64 free_from = from; 785 int err; 786 787 #ifdef CONFIG_F2FS_FS_COMPRESSION 788 /* 789 * for compressed file, only support cluster size 790 * aligned truncation. 791 */ 792 if (f2fs_compressed_file(inode)) 793 free_from = round_up(from, 794 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 795 #endif 796 797 err = f2fs_do_truncate_blocks(inode, free_from, lock); 798 if (err) 799 return err; 800 801 #ifdef CONFIG_F2FS_FS_COMPRESSION 802 /* 803 * For compressed file, after release compress blocks, don't allow write 804 * direct, but we should allow write direct after truncate to zero. 805 */ 806 if (f2fs_compressed_file(inode) && !free_from 807 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 808 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 809 810 if (from != free_from) { 811 err = f2fs_truncate_partial_cluster(inode, from, lock); 812 if (err) 813 return err; 814 } 815 #endif 816 817 return 0; 818 } 819 820 int f2fs_truncate(struct inode *inode) 821 { 822 int err; 823 824 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 825 return -EIO; 826 827 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 828 S_ISLNK(inode->i_mode))) 829 return 0; 830 831 trace_f2fs_truncate(inode); 832 833 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) 834 return -EIO; 835 836 err = f2fs_dquot_initialize(inode); 837 if (err) 838 return err; 839 840 /* we should check inline_data size */ 841 if (!f2fs_may_inline_data(inode)) { 842 err = f2fs_convert_inline_inode(inode); 843 if (err) 844 return err; 845 } 846 847 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 848 if (err) 849 return err; 850 851 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 852 f2fs_mark_inode_dirty_sync(inode, false); 853 return 0; 854 } 855 856 static bool f2fs_force_buffered_io(struct inode *inode, int rw) 857 { 858 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 859 860 if (!fscrypt_dio_supported(inode)) 861 return true; 862 if (fsverity_active(inode)) 863 return true; 864 if (f2fs_compressed_file(inode)) 865 return true; 866 if (f2fs_has_inline_data(inode)) 867 return true; 868 869 /* disallow direct IO if any of devices has unaligned blksize */ 870 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 871 return true; 872 /* 873 * for blkzoned device, fallback direct IO to buffered IO, so 874 * all IOs can be serialized by log-structured write. 875 */ 876 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) && 877 !f2fs_is_pinned_file(inode)) 878 return true; 879 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 880 return true; 881 882 return false; 883 } 884 885 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 886 struct kstat *stat, u32 request_mask, unsigned int query_flags) 887 { 888 struct inode *inode = d_inode(path->dentry); 889 struct f2fs_inode_info *fi = F2FS_I(inode); 890 struct f2fs_inode *ri = NULL; 891 unsigned int flags; 892 893 if (f2fs_has_extra_attr(inode) && 894 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 895 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 896 stat->result_mask |= STATX_BTIME; 897 stat->btime.tv_sec = fi->i_crtime.tv_sec; 898 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 899 } 900 901 /* 902 * Return the DIO alignment restrictions if requested. We only return 903 * this information when requested, since on encrypted files it might 904 * take a fair bit of work to get if the file wasn't opened recently. 905 * 906 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN 907 * cannot represent that, so in that case we report no DIO support. 908 */ 909 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 910 unsigned int bsize = i_blocksize(inode); 911 912 stat->result_mask |= STATX_DIOALIGN; 913 if (!f2fs_force_buffered_io(inode, WRITE)) { 914 stat->dio_mem_align = bsize; 915 stat->dio_offset_align = bsize; 916 } 917 } 918 919 flags = fi->i_flags; 920 if (flags & F2FS_COMPR_FL) 921 stat->attributes |= STATX_ATTR_COMPRESSED; 922 if (flags & F2FS_APPEND_FL) 923 stat->attributes |= STATX_ATTR_APPEND; 924 if (IS_ENCRYPTED(inode)) 925 stat->attributes |= STATX_ATTR_ENCRYPTED; 926 if (flags & F2FS_IMMUTABLE_FL) 927 stat->attributes |= STATX_ATTR_IMMUTABLE; 928 if (flags & F2FS_NODUMP_FL) 929 stat->attributes |= STATX_ATTR_NODUMP; 930 if (IS_VERITY(inode)) 931 stat->attributes |= STATX_ATTR_VERITY; 932 933 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 934 STATX_ATTR_APPEND | 935 STATX_ATTR_ENCRYPTED | 936 STATX_ATTR_IMMUTABLE | 937 STATX_ATTR_NODUMP | 938 STATX_ATTR_VERITY); 939 940 generic_fillattr(idmap, request_mask, inode, stat); 941 942 /* we need to show initial sectors used for inline_data/dentries */ 943 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 944 f2fs_has_inline_dentry(inode)) 945 stat->blocks += (stat->size + 511) >> 9; 946 947 return 0; 948 } 949 950 #ifdef CONFIG_F2FS_FS_POSIX_ACL 951 static void __setattr_copy(struct mnt_idmap *idmap, 952 struct inode *inode, const struct iattr *attr) 953 { 954 unsigned int ia_valid = attr->ia_valid; 955 956 i_uid_update(idmap, attr, inode); 957 i_gid_update(idmap, attr, inode); 958 if (ia_valid & ATTR_ATIME) 959 inode_set_atime_to_ts(inode, attr->ia_atime); 960 if (ia_valid & ATTR_MTIME) 961 inode_set_mtime_to_ts(inode, attr->ia_mtime); 962 if (ia_valid & ATTR_CTIME) 963 inode_set_ctime_to_ts(inode, attr->ia_ctime); 964 if (ia_valid & ATTR_MODE) { 965 umode_t mode = attr->ia_mode; 966 967 if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode))) 968 mode &= ~S_ISGID; 969 set_acl_inode(inode, mode); 970 } 971 } 972 #else 973 #define __setattr_copy setattr_copy 974 #endif 975 976 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 977 struct iattr *attr) 978 { 979 struct inode *inode = d_inode(dentry); 980 struct f2fs_inode_info *fi = F2FS_I(inode); 981 int err; 982 983 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 984 return -EIO; 985 986 if (unlikely(IS_IMMUTABLE(inode))) 987 return -EPERM; 988 989 if (unlikely(IS_APPEND(inode) && 990 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 991 ATTR_GID | ATTR_TIMES_SET)))) 992 return -EPERM; 993 994 if ((attr->ia_valid & ATTR_SIZE)) { 995 if (!f2fs_is_compress_backend_ready(inode)) 996 return -EOPNOTSUPP; 997 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) && 998 !IS_ALIGNED(attr->ia_size, 999 F2FS_BLK_TO_BYTES(fi->i_cluster_size))) 1000 return -EINVAL; 1001 } 1002 1003 err = setattr_prepare(idmap, dentry, attr); 1004 if (err) 1005 return err; 1006 1007 err = fscrypt_prepare_setattr(dentry, attr); 1008 if (err) 1009 return err; 1010 1011 err = fsverity_prepare_setattr(dentry, attr); 1012 if (err) 1013 return err; 1014 1015 if (is_quota_modification(idmap, inode, attr)) { 1016 err = f2fs_dquot_initialize(inode); 1017 if (err) 1018 return err; 1019 } 1020 if (i_uid_needs_update(idmap, attr, inode) || 1021 i_gid_needs_update(idmap, attr, inode)) { 1022 f2fs_lock_op(F2FS_I_SB(inode)); 1023 err = dquot_transfer(idmap, inode, attr); 1024 if (err) { 1025 set_sbi_flag(F2FS_I_SB(inode), 1026 SBI_QUOTA_NEED_REPAIR); 1027 f2fs_unlock_op(F2FS_I_SB(inode)); 1028 return err; 1029 } 1030 /* 1031 * update uid/gid under lock_op(), so that dquot and inode can 1032 * be updated atomically. 1033 */ 1034 i_uid_update(idmap, attr, inode); 1035 i_gid_update(idmap, attr, inode); 1036 f2fs_mark_inode_dirty_sync(inode, true); 1037 f2fs_unlock_op(F2FS_I_SB(inode)); 1038 } 1039 1040 if (attr->ia_valid & ATTR_SIZE) { 1041 loff_t old_size = i_size_read(inode); 1042 1043 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 1044 /* 1045 * should convert inline inode before i_size_write to 1046 * keep smaller than inline_data size with inline flag. 1047 */ 1048 err = f2fs_convert_inline_inode(inode); 1049 if (err) 1050 return err; 1051 } 1052 1053 /* 1054 * wait for inflight dio, blocks should be removed after 1055 * IO completion. 1056 */ 1057 if (attr->ia_size < old_size) 1058 inode_dio_wait(inode); 1059 1060 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 1061 filemap_invalidate_lock(inode->i_mapping); 1062 1063 truncate_setsize(inode, attr->ia_size); 1064 1065 if (attr->ia_size <= old_size) 1066 err = f2fs_truncate(inode); 1067 /* 1068 * do not trim all blocks after i_size if target size is 1069 * larger than i_size. 1070 */ 1071 filemap_invalidate_unlock(inode->i_mapping); 1072 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1073 if (err) 1074 return err; 1075 1076 spin_lock(&fi->i_size_lock); 1077 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1078 fi->last_disk_size = i_size_read(inode); 1079 spin_unlock(&fi->i_size_lock); 1080 } 1081 1082 __setattr_copy(idmap, inode, attr); 1083 1084 if (attr->ia_valid & ATTR_MODE) { 1085 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode)); 1086 1087 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 1088 if (!err) 1089 inode->i_mode = fi->i_acl_mode; 1090 clear_inode_flag(inode, FI_ACL_MODE); 1091 } 1092 } 1093 1094 /* file size may changed here */ 1095 f2fs_mark_inode_dirty_sync(inode, true); 1096 1097 /* inode change will produce dirty node pages flushed by checkpoint */ 1098 f2fs_balance_fs(F2FS_I_SB(inode), true); 1099 1100 return err; 1101 } 1102 1103 const struct inode_operations f2fs_file_inode_operations = { 1104 .getattr = f2fs_getattr, 1105 .setattr = f2fs_setattr, 1106 .get_inode_acl = f2fs_get_acl, 1107 .set_acl = f2fs_set_acl, 1108 .listxattr = f2fs_listxattr, 1109 .fiemap = f2fs_fiemap, 1110 .fileattr_get = f2fs_fileattr_get, 1111 .fileattr_set = f2fs_fileattr_set, 1112 }; 1113 1114 static int fill_zero(struct inode *inode, pgoff_t index, 1115 loff_t start, loff_t len) 1116 { 1117 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1118 struct page *page; 1119 1120 if (!len) 1121 return 0; 1122 1123 f2fs_balance_fs(sbi, true); 1124 1125 f2fs_lock_op(sbi); 1126 page = f2fs_get_new_data_page(inode, NULL, index, false); 1127 f2fs_unlock_op(sbi); 1128 1129 if (IS_ERR(page)) 1130 return PTR_ERR(page); 1131 1132 f2fs_wait_on_page_writeback(page, DATA, true, true); 1133 zero_user(page, start, len); 1134 set_page_dirty(page); 1135 f2fs_put_page(page, 1); 1136 return 0; 1137 } 1138 1139 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1140 { 1141 int err; 1142 1143 while (pg_start < pg_end) { 1144 struct dnode_of_data dn; 1145 pgoff_t end_offset, count; 1146 1147 set_new_dnode(&dn, inode, NULL, NULL, 0); 1148 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1149 if (err) { 1150 if (err == -ENOENT) { 1151 pg_start = f2fs_get_next_page_offset(&dn, 1152 pg_start); 1153 continue; 1154 } 1155 return err; 1156 } 1157 1158 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1159 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1160 1161 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1162 1163 f2fs_truncate_data_blocks_range(&dn, count); 1164 f2fs_put_dnode(&dn); 1165 1166 pg_start += count; 1167 } 1168 return 0; 1169 } 1170 1171 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 1172 { 1173 pgoff_t pg_start, pg_end; 1174 loff_t off_start, off_end; 1175 int ret; 1176 1177 ret = f2fs_convert_inline_inode(inode); 1178 if (ret) 1179 return ret; 1180 1181 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1182 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1183 1184 off_start = offset & (PAGE_SIZE - 1); 1185 off_end = (offset + len) & (PAGE_SIZE - 1); 1186 1187 if (pg_start == pg_end) { 1188 ret = fill_zero(inode, pg_start, off_start, 1189 off_end - off_start); 1190 if (ret) 1191 return ret; 1192 } else { 1193 if (off_start) { 1194 ret = fill_zero(inode, pg_start++, off_start, 1195 PAGE_SIZE - off_start); 1196 if (ret) 1197 return ret; 1198 } 1199 if (off_end) { 1200 ret = fill_zero(inode, pg_end, 0, off_end); 1201 if (ret) 1202 return ret; 1203 } 1204 1205 if (pg_start < pg_end) { 1206 loff_t blk_start, blk_end; 1207 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1208 1209 f2fs_balance_fs(sbi, true); 1210 1211 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1212 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1213 1214 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1215 filemap_invalidate_lock(inode->i_mapping); 1216 1217 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1218 1219 f2fs_lock_op(sbi); 1220 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1221 f2fs_unlock_op(sbi); 1222 1223 filemap_invalidate_unlock(inode->i_mapping); 1224 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1225 } 1226 } 1227 1228 return ret; 1229 } 1230 1231 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1232 int *do_replace, pgoff_t off, pgoff_t len) 1233 { 1234 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1235 struct dnode_of_data dn; 1236 int ret, done, i; 1237 1238 next_dnode: 1239 set_new_dnode(&dn, inode, NULL, NULL, 0); 1240 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1241 if (ret && ret != -ENOENT) { 1242 return ret; 1243 } else if (ret == -ENOENT) { 1244 if (dn.max_level == 0) 1245 return -ENOENT; 1246 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1247 dn.ofs_in_node, len); 1248 blkaddr += done; 1249 do_replace += done; 1250 goto next; 1251 } 1252 1253 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1254 dn.ofs_in_node, len); 1255 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1256 *blkaddr = f2fs_data_blkaddr(&dn); 1257 1258 if (__is_valid_data_blkaddr(*blkaddr) && 1259 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1260 DATA_GENERIC_ENHANCE)) { 1261 f2fs_put_dnode(&dn); 1262 return -EFSCORRUPTED; 1263 } 1264 1265 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1266 1267 if (f2fs_lfs_mode(sbi)) { 1268 f2fs_put_dnode(&dn); 1269 return -EOPNOTSUPP; 1270 } 1271 1272 /* do not invalidate this block address */ 1273 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1274 *do_replace = 1; 1275 } 1276 } 1277 f2fs_put_dnode(&dn); 1278 next: 1279 len -= done; 1280 off += done; 1281 if (len) 1282 goto next_dnode; 1283 return 0; 1284 } 1285 1286 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1287 int *do_replace, pgoff_t off, int len) 1288 { 1289 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1290 struct dnode_of_data dn; 1291 int ret, i; 1292 1293 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1294 if (*do_replace == 0) 1295 continue; 1296 1297 set_new_dnode(&dn, inode, NULL, NULL, 0); 1298 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1299 if (ret) { 1300 dec_valid_block_count(sbi, inode, 1); 1301 f2fs_invalidate_blocks(sbi, *blkaddr); 1302 } else { 1303 f2fs_update_data_blkaddr(&dn, *blkaddr); 1304 } 1305 f2fs_put_dnode(&dn); 1306 } 1307 return 0; 1308 } 1309 1310 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1311 block_t *blkaddr, int *do_replace, 1312 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1313 { 1314 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1315 pgoff_t i = 0; 1316 int ret; 1317 1318 while (i < len) { 1319 if (blkaddr[i] == NULL_ADDR && !full) { 1320 i++; 1321 continue; 1322 } 1323 1324 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1325 struct dnode_of_data dn; 1326 struct node_info ni; 1327 size_t new_size; 1328 pgoff_t ilen; 1329 1330 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1331 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1332 if (ret) 1333 return ret; 1334 1335 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1336 if (ret) { 1337 f2fs_put_dnode(&dn); 1338 return ret; 1339 } 1340 1341 ilen = min((pgoff_t) 1342 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1343 dn.ofs_in_node, len - i); 1344 do { 1345 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1346 f2fs_truncate_data_blocks_range(&dn, 1); 1347 1348 if (do_replace[i]) { 1349 f2fs_i_blocks_write(src_inode, 1350 1, false, false); 1351 f2fs_i_blocks_write(dst_inode, 1352 1, true, false); 1353 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1354 blkaddr[i], ni.version, true, false); 1355 1356 do_replace[i] = 0; 1357 } 1358 dn.ofs_in_node++; 1359 i++; 1360 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1361 if (dst_inode->i_size < new_size) 1362 f2fs_i_size_write(dst_inode, new_size); 1363 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1364 1365 f2fs_put_dnode(&dn); 1366 } else { 1367 struct page *psrc, *pdst; 1368 1369 psrc = f2fs_get_lock_data_page(src_inode, 1370 src + i, true); 1371 if (IS_ERR(psrc)) 1372 return PTR_ERR(psrc); 1373 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1374 true); 1375 if (IS_ERR(pdst)) { 1376 f2fs_put_page(psrc, 1); 1377 return PTR_ERR(pdst); 1378 } 1379 1380 f2fs_wait_on_page_writeback(pdst, DATA, true, true); 1381 1382 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); 1383 set_page_dirty(pdst); 1384 set_page_private_gcing(pdst); 1385 f2fs_put_page(pdst, 1); 1386 f2fs_put_page(psrc, 1); 1387 1388 ret = f2fs_truncate_hole(src_inode, 1389 src + i, src + i + 1); 1390 if (ret) 1391 return ret; 1392 i++; 1393 } 1394 } 1395 return 0; 1396 } 1397 1398 static int __exchange_data_block(struct inode *src_inode, 1399 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1400 pgoff_t len, bool full) 1401 { 1402 block_t *src_blkaddr; 1403 int *do_replace; 1404 pgoff_t olen; 1405 int ret; 1406 1407 while (len) { 1408 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1409 1410 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1411 array_size(olen, sizeof(block_t)), 1412 GFP_NOFS); 1413 if (!src_blkaddr) 1414 return -ENOMEM; 1415 1416 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1417 array_size(olen, sizeof(int)), 1418 GFP_NOFS); 1419 if (!do_replace) { 1420 kvfree(src_blkaddr); 1421 return -ENOMEM; 1422 } 1423 1424 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1425 do_replace, src, olen); 1426 if (ret) 1427 goto roll_back; 1428 1429 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1430 do_replace, src, dst, olen, full); 1431 if (ret) 1432 goto roll_back; 1433 1434 src += olen; 1435 dst += olen; 1436 len -= olen; 1437 1438 kvfree(src_blkaddr); 1439 kvfree(do_replace); 1440 } 1441 return 0; 1442 1443 roll_back: 1444 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1445 kvfree(src_blkaddr); 1446 kvfree(do_replace); 1447 return ret; 1448 } 1449 1450 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1451 { 1452 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1453 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1454 pgoff_t start = offset >> PAGE_SHIFT; 1455 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1456 int ret; 1457 1458 f2fs_balance_fs(sbi, true); 1459 1460 /* avoid gc operation during block exchange */ 1461 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1462 filemap_invalidate_lock(inode->i_mapping); 1463 1464 f2fs_lock_op(sbi); 1465 f2fs_drop_extent_tree(inode); 1466 truncate_pagecache(inode, offset); 1467 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1468 f2fs_unlock_op(sbi); 1469 1470 filemap_invalidate_unlock(inode->i_mapping); 1471 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1472 return ret; 1473 } 1474 1475 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1476 { 1477 loff_t new_size; 1478 int ret; 1479 1480 if (offset + len >= i_size_read(inode)) 1481 return -EINVAL; 1482 1483 /* collapse range should be aligned to block size of f2fs. */ 1484 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1485 return -EINVAL; 1486 1487 ret = f2fs_convert_inline_inode(inode); 1488 if (ret) 1489 return ret; 1490 1491 /* write out all dirty pages from offset */ 1492 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1493 if (ret) 1494 return ret; 1495 1496 ret = f2fs_do_collapse(inode, offset, len); 1497 if (ret) 1498 return ret; 1499 1500 /* write out all moved pages, if possible */ 1501 filemap_invalidate_lock(inode->i_mapping); 1502 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1503 truncate_pagecache(inode, offset); 1504 1505 new_size = i_size_read(inode) - len; 1506 ret = f2fs_truncate_blocks(inode, new_size, true); 1507 filemap_invalidate_unlock(inode->i_mapping); 1508 if (!ret) 1509 f2fs_i_size_write(inode, new_size); 1510 return ret; 1511 } 1512 1513 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1514 pgoff_t end) 1515 { 1516 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1517 pgoff_t index = start; 1518 unsigned int ofs_in_node = dn->ofs_in_node; 1519 blkcnt_t count = 0; 1520 int ret; 1521 1522 for (; index < end; index++, dn->ofs_in_node++) { 1523 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1524 count++; 1525 } 1526 1527 dn->ofs_in_node = ofs_in_node; 1528 ret = f2fs_reserve_new_blocks(dn, count); 1529 if (ret) 1530 return ret; 1531 1532 dn->ofs_in_node = ofs_in_node; 1533 for (index = start; index < end; index++, dn->ofs_in_node++) { 1534 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1535 /* 1536 * f2fs_reserve_new_blocks will not guarantee entire block 1537 * allocation. 1538 */ 1539 if (dn->data_blkaddr == NULL_ADDR) { 1540 ret = -ENOSPC; 1541 break; 1542 } 1543 1544 if (dn->data_blkaddr == NEW_ADDR) 1545 continue; 1546 1547 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1548 DATA_GENERIC_ENHANCE)) { 1549 ret = -EFSCORRUPTED; 1550 break; 1551 } 1552 1553 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1554 f2fs_set_data_blkaddr(dn, NEW_ADDR); 1555 } 1556 1557 f2fs_update_read_extent_cache_range(dn, start, 0, index - start); 1558 f2fs_update_age_extent_cache_range(dn, start, index - start); 1559 1560 return ret; 1561 } 1562 1563 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1564 int mode) 1565 { 1566 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1567 struct address_space *mapping = inode->i_mapping; 1568 pgoff_t index, pg_start, pg_end; 1569 loff_t new_size = i_size_read(inode); 1570 loff_t off_start, off_end; 1571 int ret = 0; 1572 1573 ret = inode_newsize_ok(inode, (len + offset)); 1574 if (ret) 1575 return ret; 1576 1577 ret = f2fs_convert_inline_inode(inode); 1578 if (ret) 1579 return ret; 1580 1581 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1582 if (ret) 1583 return ret; 1584 1585 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1586 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1587 1588 off_start = offset & (PAGE_SIZE - 1); 1589 off_end = (offset + len) & (PAGE_SIZE - 1); 1590 1591 if (pg_start == pg_end) { 1592 ret = fill_zero(inode, pg_start, off_start, 1593 off_end - off_start); 1594 if (ret) 1595 return ret; 1596 1597 new_size = max_t(loff_t, new_size, offset + len); 1598 } else { 1599 if (off_start) { 1600 ret = fill_zero(inode, pg_start++, off_start, 1601 PAGE_SIZE - off_start); 1602 if (ret) 1603 return ret; 1604 1605 new_size = max_t(loff_t, new_size, 1606 (loff_t)pg_start << PAGE_SHIFT); 1607 } 1608 1609 for (index = pg_start; index < pg_end;) { 1610 struct dnode_of_data dn; 1611 unsigned int end_offset; 1612 pgoff_t end; 1613 1614 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1615 filemap_invalidate_lock(mapping); 1616 1617 truncate_pagecache_range(inode, 1618 (loff_t)index << PAGE_SHIFT, 1619 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1620 1621 f2fs_lock_op(sbi); 1622 1623 set_new_dnode(&dn, inode, NULL, NULL, 0); 1624 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1625 if (ret) { 1626 f2fs_unlock_op(sbi); 1627 filemap_invalidate_unlock(mapping); 1628 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1629 goto out; 1630 } 1631 1632 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1633 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1634 1635 ret = f2fs_do_zero_range(&dn, index, end); 1636 f2fs_put_dnode(&dn); 1637 1638 f2fs_unlock_op(sbi); 1639 filemap_invalidate_unlock(mapping); 1640 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1641 1642 f2fs_balance_fs(sbi, dn.node_changed); 1643 1644 if (ret) 1645 goto out; 1646 1647 index = end; 1648 new_size = max_t(loff_t, new_size, 1649 (loff_t)index << PAGE_SHIFT); 1650 } 1651 1652 if (off_end) { 1653 ret = fill_zero(inode, pg_end, 0, off_end); 1654 if (ret) 1655 goto out; 1656 1657 new_size = max_t(loff_t, new_size, offset + len); 1658 } 1659 } 1660 1661 out: 1662 if (new_size > i_size_read(inode)) { 1663 if (mode & FALLOC_FL_KEEP_SIZE) 1664 file_set_keep_isize(inode); 1665 else 1666 f2fs_i_size_write(inode, new_size); 1667 } 1668 return ret; 1669 } 1670 1671 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1672 { 1673 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1674 struct address_space *mapping = inode->i_mapping; 1675 pgoff_t nr, pg_start, pg_end, delta, idx; 1676 loff_t new_size; 1677 int ret = 0; 1678 1679 new_size = i_size_read(inode) + len; 1680 ret = inode_newsize_ok(inode, new_size); 1681 if (ret) 1682 return ret; 1683 1684 if (offset >= i_size_read(inode)) 1685 return -EINVAL; 1686 1687 /* insert range should be aligned to block size of f2fs. */ 1688 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1689 return -EINVAL; 1690 1691 ret = f2fs_convert_inline_inode(inode); 1692 if (ret) 1693 return ret; 1694 1695 f2fs_balance_fs(sbi, true); 1696 1697 filemap_invalidate_lock(mapping); 1698 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1699 filemap_invalidate_unlock(mapping); 1700 if (ret) 1701 return ret; 1702 1703 /* write out all dirty pages from offset */ 1704 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1705 if (ret) 1706 return ret; 1707 1708 pg_start = offset >> PAGE_SHIFT; 1709 pg_end = (offset + len) >> PAGE_SHIFT; 1710 delta = pg_end - pg_start; 1711 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1712 1713 /* avoid gc operation during block exchange */ 1714 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1715 filemap_invalidate_lock(mapping); 1716 truncate_pagecache(inode, offset); 1717 1718 while (!ret && idx > pg_start) { 1719 nr = idx - pg_start; 1720 if (nr > delta) 1721 nr = delta; 1722 idx -= nr; 1723 1724 f2fs_lock_op(sbi); 1725 f2fs_drop_extent_tree(inode); 1726 1727 ret = __exchange_data_block(inode, inode, idx, 1728 idx + delta, nr, false); 1729 f2fs_unlock_op(sbi); 1730 } 1731 filemap_invalidate_unlock(mapping); 1732 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1733 if (ret) 1734 return ret; 1735 1736 /* write out all moved pages, if possible */ 1737 filemap_invalidate_lock(mapping); 1738 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1739 truncate_pagecache(inode, offset); 1740 filemap_invalidate_unlock(mapping); 1741 1742 if (!ret) 1743 f2fs_i_size_write(inode, new_size); 1744 return ret; 1745 } 1746 1747 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset, 1748 loff_t len, int mode) 1749 { 1750 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1751 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1752 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1753 .m_may_create = true }; 1754 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1755 .init_gc_type = FG_GC, 1756 .should_migrate_blocks = false, 1757 .err_gc_skipped = true, 1758 .nr_free_secs = 0 }; 1759 pgoff_t pg_start, pg_end; 1760 loff_t new_size; 1761 loff_t off_end; 1762 block_t expanded = 0; 1763 int err; 1764 1765 err = inode_newsize_ok(inode, (len + offset)); 1766 if (err) 1767 return err; 1768 1769 err = f2fs_convert_inline_inode(inode); 1770 if (err) 1771 return err; 1772 1773 f2fs_balance_fs(sbi, true); 1774 1775 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1776 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1777 off_end = (offset + len) & (PAGE_SIZE - 1); 1778 1779 map.m_lblk = pg_start; 1780 map.m_len = pg_end - pg_start; 1781 if (off_end) 1782 map.m_len++; 1783 1784 if (!map.m_len) 1785 return 0; 1786 1787 if (f2fs_is_pinned_file(inode)) { 1788 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1789 block_t sec_len = roundup(map.m_len, sec_blks); 1790 1791 map.m_len = sec_blks; 1792 next_alloc: 1793 if (has_not_enough_free_secs(sbi, 0, 1794 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1795 f2fs_down_write(&sbi->gc_lock); 1796 stat_inc_gc_call_count(sbi, FOREGROUND); 1797 err = f2fs_gc(sbi, &gc_control); 1798 if (err && err != -ENODATA) 1799 goto out_err; 1800 } 1801 1802 f2fs_down_write(&sbi->pin_sem); 1803 1804 err = f2fs_allocate_pinning_section(sbi); 1805 if (err) { 1806 f2fs_up_write(&sbi->pin_sem); 1807 goto out_err; 1808 } 1809 1810 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1811 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO); 1812 file_dont_truncate(inode); 1813 1814 f2fs_up_write(&sbi->pin_sem); 1815 1816 expanded += map.m_len; 1817 sec_len -= map.m_len; 1818 map.m_lblk += map.m_len; 1819 if (!err && sec_len) 1820 goto next_alloc; 1821 1822 map.m_len = expanded; 1823 } else { 1824 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO); 1825 expanded = map.m_len; 1826 } 1827 out_err: 1828 if (err) { 1829 pgoff_t last_off; 1830 1831 if (!expanded) 1832 return err; 1833 1834 last_off = pg_start + expanded - 1; 1835 1836 /* update new size to the failed position */ 1837 new_size = (last_off == pg_end) ? offset + len : 1838 (loff_t)(last_off + 1) << PAGE_SHIFT; 1839 } else { 1840 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1841 } 1842 1843 if (new_size > i_size_read(inode)) { 1844 if (mode & FALLOC_FL_KEEP_SIZE) 1845 file_set_keep_isize(inode); 1846 else 1847 f2fs_i_size_write(inode, new_size); 1848 } 1849 1850 return err; 1851 } 1852 1853 static long f2fs_fallocate(struct file *file, int mode, 1854 loff_t offset, loff_t len) 1855 { 1856 struct inode *inode = file_inode(file); 1857 long ret = 0; 1858 1859 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1860 return -EIO; 1861 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1862 return -ENOSPC; 1863 if (!f2fs_is_compress_backend_ready(inode)) 1864 return -EOPNOTSUPP; 1865 1866 /* f2fs only support ->fallocate for regular file */ 1867 if (!S_ISREG(inode->i_mode)) 1868 return -EINVAL; 1869 1870 if (IS_ENCRYPTED(inode) && 1871 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1872 return -EOPNOTSUPP; 1873 1874 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1875 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1876 FALLOC_FL_INSERT_RANGE)) 1877 return -EOPNOTSUPP; 1878 1879 inode_lock(inode); 1880 1881 /* 1882 * Pinned file should not support partial truncation since the block 1883 * can be used by applications. 1884 */ 1885 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1886 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1887 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) { 1888 ret = -EOPNOTSUPP; 1889 goto out; 1890 } 1891 1892 ret = file_modified(file); 1893 if (ret) 1894 goto out; 1895 1896 /* 1897 * wait for inflight dio, blocks should be removed after IO 1898 * completion. 1899 */ 1900 inode_dio_wait(inode); 1901 1902 if (mode & FALLOC_FL_PUNCH_HOLE) { 1903 if (offset >= inode->i_size) 1904 goto out; 1905 1906 ret = f2fs_punch_hole(inode, offset, len); 1907 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1908 ret = f2fs_collapse_range(inode, offset, len); 1909 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1910 ret = f2fs_zero_range(inode, offset, len, mode); 1911 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1912 ret = f2fs_insert_range(inode, offset, len); 1913 } else { 1914 ret = f2fs_expand_inode_data(inode, offset, len, mode); 1915 } 1916 1917 if (!ret) { 1918 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1919 f2fs_mark_inode_dirty_sync(inode, false); 1920 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1921 } 1922 1923 out: 1924 inode_unlock(inode); 1925 1926 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1927 return ret; 1928 } 1929 1930 static int f2fs_release_file(struct inode *inode, struct file *filp) 1931 { 1932 /* 1933 * f2fs_release_file is called at every close calls. So we should 1934 * not drop any inmemory pages by close called by other process. 1935 */ 1936 if (!(filp->f_mode & FMODE_WRITE) || 1937 atomic_read(&inode->i_writecount) != 1) 1938 return 0; 1939 1940 inode_lock(inode); 1941 f2fs_abort_atomic_write(inode, true); 1942 inode_unlock(inode); 1943 1944 return 0; 1945 } 1946 1947 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1948 { 1949 struct inode *inode = file_inode(file); 1950 1951 /* 1952 * If the process doing a transaction is crashed, we should do 1953 * roll-back. Otherwise, other reader/write can see corrupted database 1954 * until all the writers close its file. Since this should be done 1955 * before dropping file lock, it needs to do in ->flush. 1956 */ 1957 if (F2FS_I(inode)->atomic_write_task == current && 1958 (current->flags & PF_EXITING)) { 1959 inode_lock(inode); 1960 f2fs_abort_atomic_write(inode, true); 1961 inode_unlock(inode); 1962 } 1963 1964 return 0; 1965 } 1966 1967 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1968 { 1969 struct f2fs_inode_info *fi = F2FS_I(inode); 1970 u32 masked_flags = fi->i_flags & mask; 1971 1972 /* mask can be shrunk by flags_valid selector */ 1973 iflags &= mask; 1974 1975 /* Is it quota file? Do not allow user to mess with it */ 1976 if (IS_NOQUOTA(inode)) 1977 return -EPERM; 1978 1979 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1980 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1981 return -EOPNOTSUPP; 1982 if (!f2fs_empty_dir(inode)) 1983 return -ENOTEMPTY; 1984 } 1985 1986 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1987 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1988 return -EOPNOTSUPP; 1989 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1990 return -EINVAL; 1991 } 1992 1993 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1994 if (masked_flags & F2FS_COMPR_FL) { 1995 if (!f2fs_disable_compressed_file(inode)) 1996 return -EINVAL; 1997 } else { 1998 /* try to convert inline_data to support compression */ 1999 int err = f2fs_convert_inline_inode(inode); 2000 if (err) 2001 return err; 2002 2003 f2fs_down_write(&fi->i_sem); 2004 if (!f2fs_may_compress(inode) || 2005 (S_ISREG(inode->i_mode) && 2006 F2FS_HAS_BLOCKS(inode))) { 2007 f2fs_up_write(&fi->i_sem); 2008 return -EINVAL; 2009 } 2010 err = set_compress_context(inode); 2011 f2fs_up_write(&fi->i_sem); 2012 2013 if (err) 2014 return err; 2015 } 2016 } 2017 2018 fi->i_flags = iflags | (fi->i_flags & ~mask); 2019 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 2020 (fi->i_flags & F2FS_NOCOMP_FL)); 2021 2022 if (fi->i_flags & F2FS_PROJINHERIT_FL) 2023 set_inode_flag(inode, FI_PROJ_INHERIT); 2024 else 2025 clear_inode_flag(inode, FI_PROJ_INHERIT); 2026 2027 inode_set_ctime_current(inode); 2028 f2fs_set_inode_flags(inode); 2029 f2fs_mark_inode_dirty_sync(inode, true); 2030 return 0; 2031 } 2032 2033 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 2034 2035 /* 2036 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 2037 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 2038 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 2039 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 2040 * 2041 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 2042 * FS_IOC_FSSETXATTR is done by the VFS. 2043 */ 2044 2045 static const struct { 2046 u32 iflag; 2047 u32 fsflag; 2048 } f2fs_fsflags_map[] = { 2049 { F2FS_COMPR_FL, FS_COMPR_FL }, 2050 { F2FS_SYNC_FL, FS_SYNC_FL }, 2051 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 2052 { F2FS_APPEND_FL, FS_APPEND_FL }, 2053 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 2054 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 2055 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 2056 { F2FS_INDEX_FL, FS_INDEX_FL }, 2057 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 2058 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 2059 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 2060 }; 2061 2062 #define F2FS_GETTABLE_FS_FL ( \ 2063 FS_COMPR_FL | \ 2064 FS_SYNC_FL | \ 2065 FS_IMMUTABLE_FL | \ 2066 FS_APPEND_FL | \ 2067 FS_NODUMP_FL | \ 2068 FS_NOATIME_FL | \ 2069 FS_NOCOMP_FL | \ 2070 FS_INDEX_FL | \ 2071 FS_DIRSYNC_FL | \ 2072 FS_PROJINHERIT_FL | \ 2073 FS_ENCRYPT_FL | \ 2074 FS_INLINE_DATA_FL | \ 2075 FS_NOCOW_FL | \ 2076 FS_VERITY_FL | \ 2077 FS_CASEFOLD_FL) 2078 2079 #define F2FS_SETTABLE_FS_FL ( \ 2080 FS_COMPR_FL | \ 2081 FS_SYNC_FL | \ 2082 FS_IMMUTABLE_FL | \ 2083 FS_APPEND_FL | \ 2084 FS_NODUMP_FL | \ 2085 FS_NOATIME_FL | \ 2086 FS_NOCOMP_FL | \ 2087 FS_DIRSYNC_FL | \ 2088 FS_PROJINHERIT_FL | \ 2089 FS_CASEFOLD_FL) 2090 2091 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 2092 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 2093 { 2094 u32 fsflags = 0; 2095 int i; 2096 2097 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2098 if (iflags & f2fs_fsflags_map[i].iflag) 2099 fsflags |= f2fs_fsflags_map[i].fsflag; 2100 2101 return fsflags; 2102 } 2103 2104 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 2105 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 2106 { 2107 u32 iflags = 0; 2108 int i; 2109 2110 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2111 if (fsflags & f2fs_fsflags_map[i].fsflag) 2112 iflags |= f2fs_fsflags_map[i].iflag; 2113 2114 return iflags; 2115 } 2116 2117 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2118 { 2119 struct inode *inode = file_inode(filp); 2120 2121 return put_user(inode->i_generation, (int __user *)arg); 2122 } 2123 2124 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate) 2125 { 2126 struct inode *inode = file_inode(filp); 2127 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2128 struct f2fs_inode_info *fi = F2FS_I(inode); 2129 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2130 loff_t isize; 2131 int ret; 2132 2133 if (!(filp->f_mode & FMODE_WRITE)) 2134 return -EBADF; 2135 2136 if (!inode_owner_or_capable(idmap, inode)) 2137 return -EACCES; 2138 2139 if (!S_ISREG(inode->i_mode)) 2140 return -EINVAL; 2141 2142 if (filp->f_flags & O_DIRECT) 2143 return -EINVAL; 2144 2145 ret = mnt_want_write_file(filp); 2146 if (ret) 2147 return ret; 2148 2149 inode_lock(inode); 2150 2151 if (!f2fs_disable_compressed_file(inode) || 2152 f2fs_is_pinned_file(inode)) { 2153 ret = -EINVAL; 2154 goto out; 2155 } 2156 2157 if (f2fs_is_atomic_file(inode)) 2158 goto out; 2159 2160 ret = f2fs_convert_inline_inode(inode); 2161 if (ret) 2162 goto out; 2163 2164 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2165 f2fs_down_write(&fi->i_gc_rwsem[READ]); 2166 2167 /* 2168 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2169 * f2fs_is_atomic_file. 2170 */ 2171 if (get_dirty_pages(inode)) 2172 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2173 inode->i_ino, get_dirty_pages(inode)); 2174 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2175 if (ret) 2176 goto out_unlock; 2177 2178 /* Check if the inode already has a COW inode */ 2179 if (fi->cow_inode == NULL) { 2180 /* Create a COW inode for atomic write */ 2181 struct dentry *dentry = file_dentry(filp); 2182 struct inode *dir = d_inode(dentry->d_parent); 2183 2184 ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode); 2185 if (ret) 2186 goto out_unlock; 2187 2188 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2189 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2190 2191 /* Set the COW inode's atomic_inode to the atomic inode */ 2192 F2FS_I(fi->cow_inode)->atomic_inode = inode; 2193 } else { 2194 /* Reuse the already created COW inode */ 2195 f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode)); 2196 2197 invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1); 2198 2199 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true); 2200 if (ret) 2201 goto out_unlock; 2202 } 2203 2204 f2fs_write_inode(inode, NULL); 2205 2206 stat_inc_atomic_inode(inode); 2207 2208 set_inode_flag(inode, FI_ATOMIC_FILE); 2209 2210 isize = i_size_read(inode); 2211 fi->original_i_size = isize; 2212 if (truncate) { 2213 set_inode_flag(inode, FI_ATOMIC_REPLACE); 2214 truncate_inode_pages_final(inode->i_mapping); 2215 f2fs_i_size_write(inode, 0); 2216 isize = 0; 2217 } 2218 f2fs_i_size_write(fi->cow_inode, isize); 2219 2220 out_unlock: 2221 f2fs_up_write(&fi->i_gc_rwsem[READ]); 2222 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2223 if (ret) 2224 goto out; 2225 2226 f2fs_update_time(sbi, REQ_TIME); 2227 fi->atomic_write_task = current; 2228 stat_update_max_atomic_write(inode); 2229 fi->atomic_write_cnt = 0; 2230 out: 2231 inode_unlock(inode); 2232 mnt_drop_write_file(filp); 2233 return ret; 2234 } 2235 2236 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2237 { 2238 struct inode *inode = file_inode(filp); 2239 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2240 int ret; 2241 2242 if (!(filp->f_mode & FMODE_WRITE)) 2243 return -EBADF; 2244 2245 if (!inode_owner_or_capable(idmap, inode)) 2246 return -EACCES; 2247 2248 ret = mnt_want_write_file(filp); 2249 if (ret) 2250 return ret; 2251 2252 f2fs_balance_fs(F2FS_I_SB(inode), true); 2253 2254 inode_lock(inode); 2255 2256 if (f2fs_is_atomic_file(inode)) { 2257 ret = f2fs_commit_atomic_write(inode); 2258 if (!ret) 2259 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2260 2261 f2fs_abort_atomic_write(inode, ret); 2262 } else { 2263 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2264 } 2265 2266 inode_unlock(inode); 2267 mnt_drop_write_file(filp); 2268 return ret; 2269 } 2270 2271 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2272 { 2273 struct inode *inode = file_inode(filp); 2274 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2275 int ret; 2276 2277 if (!(filp->f_mode & FMODE_WRITE)) 2278 return -EBADF; 2279 2280 if (!inode_owner_or_capable(idmap, inode)) 2281 return -EACCES; 2282 2283 ret = mnt_want_write_file(filp); 2284 if (ret) 2285 return ret; 2286 2287 inode_lock(inode); 2288 2289 f2fs_abort_atomic_write(inode, true); 2290 2291 inode_unlock(inode); 2292 2293 mnt_drop_write_file(filp); 2294 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2295 return ret; 2296 } 2297 2298 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag, 2299 bool readonly, bool need_lock) 2300 { 2301 struct super_block *sb = sbi->sb; 2302 int ret = 0; 2303 2304 switch (flag) { 2305 case F2FS_GOING_DOWN_FULLSYNC: 2306 ret = bdev_freeze(sb->s_bdev); 2307 if (ret) 2308 goto out; 2309 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2310 bdev_thaw(sb->s_bdev); 2311 break; 2312 case F2FS_GOING_DOWN_METASYNC: 2313 /* do checkpoint only */ 2314 ret = f2fs_sync_fs(sb, 1); 2315 if (ret) { 2316 if (ret == -EIO) 2317 ret = 0; 2318 goto out; 2319 } 2320 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2321 break; 2322 case F2FS_GOING_DOWN_NOSYNC: 2323 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2324 break; 2325 case F2FS_GOING_DOWN_METAFLUSH: 2326 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2327 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2328 break; 2329 case F2FS_GOING_DOWN_NEED_FSCK: 2330 set_sbi_flag(sbi, SBI_NEED_FSCK); 2331 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2332 set_sbi_flag(sbi, SBI_IS_DIRTY); 2333 /* do checkpoint only */ 2334 ret = f2fs_sync_fs(sb, 1); 2335 if (ret == -EIO) 2336 ret = 0; 2337 goto out; 2338 default: 2339 ret = -EINVAL; 2340 goto out; 2341 } 2342 2343 if (readonly) 2344 goto out; 2345 2346 /* grab sb->s_umount to avoid racing w/ remount() */ 2347 if (need_lock) 2348 down_read(&sbi->sb->s_umount); 2349 2350 f2fs_stop_gc_thread(sbi); 2351 f2fs_stop_discard_thread(sbi); 2352 2353 f2fs_drop_discard_cmd(sbi); 2354 clear_opt(sbi, DISCARD); 2355 2356 if (need_lock) 2357 up_read(&sbi->sb->s_umount); 2358 2359 f2fs_update_time(sbi, REQ_TIME); 2360 out: 2361 2362 trace_f2fs_shutdown(sbi, flag, ret); 2363 2364 return ret; 2365 } 2366 2367 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2368 { 2369 struct inode *inode = file_inode(filp); 2370 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2371 __u32 in; 2372 int ret; 2373 bool need_drop = false, readonly = false; 2374 2375 if (!capable(CAP_SYS_ADMIN)) 2376 return -EPERM; 2377 2378 if (get_user(in, (__u32 __user *)arg)) 2379 return -EFAULT; 2380 2381 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2382 ret = mnt_want_write_file(filp); 2383 if (ret) { 2384 if (ret != -EROFS) 2385 return ret; 2386 2387 /* fallback to nosync shutdown for readonly fs */ 2388 in = F2FS_GOING_DOWN_NOSYNC; 2389 readonly = true; 2390 } else { 2391 need_drop = true; 2392 } 2393 } 2394 2395 ret = f2fs_do_shutdown(sbi, in, readonly, true); 2396 2397 if (need_drop) 2398 mnt_drop_write_file(filp); 2399 2400 return ret; 2401 } 2402 2403 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2404 { 2405 struct inode *inode = file_inode(filp); 2406 struct super_block *sb = inode->i_sb; 2407 struct fstrim_range range; 2408 int ret; 2409 2410 if (!capable(CAP_SYS_ADMIN)) 2411 return -EPERM; 2412 2413 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2414 return -EOPNOTSUPP; 2415 2416 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2417 sizeof(range))) 2418 return -EFAULT; 2419 2420 ret = mnt_want_write_file(filp); 2421 if (ret) 2422 return ret; 2423 2424 range.minlen = max((unsigned int)range.minlen, 2425 bdev_discard_granularity(sb->s_bdev)); 2426 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2427 mnt_drop_write_file(filp); 2428 if (ret < 0) 2429 return ret; 2430 2431 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2432 sizeof(range))) 2433 return -EFAULT; 2434 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2435 return 0; 2436 } 2437 2438 static bool uuid_is_nonzero(__u8 u[16]) 2439 { 2440 int i; 2441 2442 for (i = 0; i < 16; i++) 2443 if (u[i]) 2444 return true; 2445 return false; 2446 } 2447 2448 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2449 { 2450 struct inode *inode = file_inode(filp); 2451 int ret; 2452 2453 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2454 return -EOPNOTSUPP; 2455 2456 ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2457 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2458 return ret; 2459 } 2460 2461 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2462 { 2463 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2464 return -EOPNOTSUPP; 2465 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2466 } 2467 2468 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2469 { 2470 struct inode *inode = file_inode(filp); 2471 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2472 u8 encrypt_pw_salt[16]; 2473 int err; 2474 2475 if (!f2fs_sb_has_encrypt(sbi)) 2476 return -EOPNOTSUPP; 2477 2478 err = mnt_want_write_file(filp); 2479 if (err) 2480 return err; 2481 2482 f2fs_down_write(&sbi->sb_lock); 2483 2484 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2485 goto got_it; 2486 2487 /* update superblock with uuid */ 2488 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2489 2490 err = f2fs_commit_super(sbi, false); 2491 if (err) { 2492 /* undo new data */ 2493 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2494 goto out_err; 2495 } 2496 got_it: 2497 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16); 2498 out_err: 2499 f2fs_up_write(&sbi->sb_lock); 2500 mnt_drop_write_file(filp); 2501 2502 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16)) 2503 err = -EFAULT; 2504 2505 return err; 2506 } 2507 2508 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2509 unsigned long arg) 2510 { 2511 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2512 return -EOPNOTSUPP; 2513 2514 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2515 } 2516 2517 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2518 { 2519 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2520 return -EOPNOTSUPP; 2521 2522 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2523 } 2524 2525 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2526 { 2527 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2528 return -EOPNOTSUPP; 2529 2530 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2531 } 2532 2533 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2534 unsigned long arg) 2535 { 2536 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2537 return -EOPNOTSUPP; 2538 2539 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2540 } 2541 2542 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2543 unsigned long arg) 2544 { 2545 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2546 return -EOPNOTSUPP; 2547 2548 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2549 } 2550 2551 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2552 { 2553 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2554 return -EOPNOTSUPP; 2555 2556 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2557 } 2558 2559 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2560 { 2561 struct inode *inode = file_inode(filp); 2562 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2563 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2564 .no_bg_gc = false, 2565 .should_migrate_blocks = false, 2566 .nr_free_secs = 0 }; 2567 __u32 sync; 2568 int ret; 2569 2570 if (!capable(CAP_SYS_ADMIN)) 2571 return -EPERM; 2572 2573 if (get_user(sync, (__u32 __user *)arg)) 2574 return -EFAULT; 2575 2576 if (f2fs_readonly(sbi->sb)) 2577 return -EROFS; 2578 2579 ret = mnt_want_write_file(filp); 2580 if (ret) 2581 return ret; 2582 2583 if (!sync) { 2584 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2585 ret = -EBUSY; 2586 goto out; 2587 } 2588 } else { 2589 f2fs_down_write(&sbi->gc_lock); 2590 } 2591 2592 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2593 gc_control.err_gc_skipped = sync; 2594 stat_inc_gc_call_count(sbi, FOREGROUND); 2595 ret = f2fs_gc(sbi, &gc_control); 2596 out: 2597 mnt_drop_write_file(filp); 2598 return ret; 2599 } 2600 2601 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2602 { 2603 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2604 struct f2fs_gc_control gc_control = { 2605 .init_gc_type = range->sync ? FG_GC : BG_GC, 2606 .no_bg_gc = false, 2607 .should_migrate_blocks = false, 2608 .err_gc_skipped = range->sync, 2609 .nr_free_secs = 0 }; 2610 u64 end; 2611 int ret; 2612 2613 if (!capable(CAP_SYS_ADMIN)) 2614 return -EPERM; 2615 if (f2fs_readonly(sbi->sb)) 2616 return -EROFS; 2617 2618 end = range->start + range->len; 2619 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2620 end >= MAX_BLKADDR(sbi)) 2621 return -EINVAL; 2622 2623 ret = mnt_want_write_file(filp); 2624 if (ret) 2625 return ret; 2626 2627 do_more: 2628 if (!range->sync) { 2629 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2630 ret = -EBUSY; 2631 goto out; 2632 } 2633 } else { 2634 f2fs_down_write(&sbi->gc_lock); 2635 } 2636 2637 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2638 stat_inc_gc_call_count(sbi, FOREGROUND); 2639 ret = f2fs_gc(sbi, &gc_control); 2640 if (ret) { 2641 if (ret == -EBUSY) 2642 ret = -EAGAIN; 2643 goto out; 2644 } 2645 range->start += CAP_BLKS_PER_SEC(sbi); 2646 if (range->start <= end) 2647 goto do_more; 2648 out: 2649 mnt_drop_write_file(filp); 2650 return ret; 2651 } 2652 2653 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2654 { 2655 struct f2fs_gc_range range; 2656 2657 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2658 sizeof(range))) 2659 return -EFAULT; 2660 return __f2fs_ioc_gc_range(filp, &range); 2661 } 2662 2663 static int f2fs_ioc_write_checkpoint(struct file *filp) 2664 { 2665 struct inode *inode = file_inode(filp); 2666 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2667 int ret; 2668 2669 if (!capable(CAP_SYS_ADMIN)) 2670 return -EPERM; 2671 2672 if (f2fs_readonly(sbi->sb)) 2673 return -EROFS; 2674 2675 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2676 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2677 return -EINVAL; 2678 } 2679 2680 ret = mnt_want_write_file(filp); 2681 if (ret) 2682 return ret; 2683 2684 ret = f2fs_sync_fs(sbi->sb, 1); 2685 2686 mnt_drop_write_file(filp); 2687 return ret; 2688 } 2689 2690 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2691 struct file *filp, 2692 struct f2fs_defragment *range) 2693 { 2694 struct inode *inode = file_inode(filp); 2695 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2696 .m_seg_type = NO_CHECK_TYPE, 2697 .m_may_create = false }; 2698 struct extent_info ei = {}; 2699 pgoff_t pg_start, pg_end, next_pgofs; 2700 unsigned int total = 0, sec_num; 2701 block_t blk_end = 0; 2702 bool fragmented = false; 2703 int err; 2704 2705 f2fs_balance_fs(sbi, true); 2706 2707 inode_lock(inode); 2708 pg_start = range->start >> PAGE_SHIFT; 2709 pg_end = min_t(pgoff_t, 2710 (range->start + range->len) >> PAGE_SHIFT, 2711 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 2712 2713 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) || 2714 f2fs_is_atomic_file(inode)) { 2715 err = -EINVAL; 2716 goto unlock_out; 2717 } 2718 2719 /* if in-place-update policy is enabled, don't waste time here */ 2720 set_inode_flag(inode, FI_OPU_WRITE); 2721 if (f2fs_should_update_inplace(inode, NULL)) { 2722 err = -EINVAL; 2723 goto out; 2724 } 2725 2726 /* writeback all dirty pages in the range */ 2727 err = filemap_write_and_wait_range(inode->i_mapping, 2728 pg_start << PAGE_SHIFT, 2729 (pg_end << PAGE_SHIFT) - 1); 2730 if (err) 2731 goto out; 2732 2733 /* 2734 * lookup mapping info in extent cache, skip defragmenting if physical 2735 * block addresses are continuous. 2736 */ 2737 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) { 2738 if ((pgoff_t)ei.fofs + ei.len >= pg_end) 2739 goto out; 2740 } 2741 2742 map.m_lblk = pg_start; 2743 map.m_next_pgofs = &next_pgofs; 2744 2745 /* 2746 * lookup mapping info in dnode page cache, skip defragmenting if all 2747 * physical block addresses are continuous even if there are hole(s) 2748 * in logical blocks. 2749 */ 2750 while (map.m_lblk < pg_end) { 2751 map.m_len = pg_end - map.m_lblk; 2752 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2753 if (err) 2754 goto out; 2755 2756 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2757 map.m_lblk = next_pgofs; 2758 continue; 2759 } 2760 2761 if (blk_end && blk_end != map.m_pblk) 2762 fragmented = true; 2763 2764 /* record total count of block that we're going to move */ 2765 total += map.m_len; 2766 2767 blk_end = map.m_pblk + map.m_len; 2768 2769 map.m_lblk += map.m_len; 2770 } 2771 2772 if (!fragmented) { 2773 total = 0; 2774 goto out; 2775 } 2776 2777 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2778 2779 /* 2780 * make sure there are enough free section for LFS allocation, this can 2781 * avoid defragment running in SSR mode when free section are allocated 2782 * intensively 2783 */ 2784 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2785 err = -EAGAIN; 2786 goto out; 2787 } 2788 2789 map.m_lblk = pg_start; 2790 map.m_len = pg_end - pg_start; 2791 total = 0; 2792 2793 while (map.m_lblk < pg_end) { 2794 pgoff_t idx; 2795 int cnt = 0; 2796 2797 do_map: 2798 map.m_len = pg_end - map.m_lblk; 2799 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2800 if (err) 2801 goto clear_out; 2802 2803 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2804 map.m_lblk = next_pgofs; 2805 goto check; 2806 } 2807 2808 set_inode_flag(inode, FI_SKIP_WRITES); 2809 2810 idx = map.m_lblk; 2811 while (idx < map.m_lblk + map.m_len && 2812 cnt < BLKS_PER_SEG(sbi)) { 2813 struct page *page; 2814 2815 page = f2fs_get_lock_data_page(inode, idx, true); 2816 if (IS_ERR(page)) { 2817 err = PTR_ERR(page); 2818 goto clear_out; 2819 } 2820 2821 f2fs_wait_on_page_writeback(page, DATA, true, true); 2822 2823 set_page_dirty(page); 2824 set_page_private_gcing(page); 2825 f2fs_put_page(page, 1); 2826 2827 idx++; 2828 cnt++; 2829 total++; 2830 } 2831 2832 map.m_lblk = idx; 2833 check: 2834 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi)) 2835 goto do_map; 2836 2837 clear_inode_flag(inode, FI_SKIP_WRITES); 2838 2839 err = filemap_fdatawrite(inode->i_mapping); 2840 if (err) 2841 goto out; 2842 } 2843 clear_out: 2844 clear_inode_flag(inode, FI_SKIP_WRITES); 2845 out: 2846 clear_inode_flag(inode, FI_OPU_WRITE); 2847 unlock_out: 2848 inode_unlock(inode); 2849 if (!err) 2850 range->len = (u64)total << PAGE_SHIFT; 2851 return err; 2852 } 2853 2854 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2855 { 2856 struct inode *inode = file_inode(filp); 2857 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2858 struct f2fs_defragment range; 2859 int err; 2860 2861 if (!capable(CAP_SYS_ADMIN)) 2862 return -EPERM; 2863 2864 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2865 return -EINVAL; 2866 2867 if (f2fs_readonly(sbi->sb)) 2868 return -EROFS; 2869 2870 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2871 sizeof(range))) 2872 return -EFAULT; 2873 2874 /* verify alignment of offset & size */ 2875 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2876 return -EINVAL; 2877 2878 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2879 max_file_blocks(inode))) 2880 return -EINVAL; 2881 2882 err = mnt_want_write_file(filp); 2883 if (err) 2884 return err; 2885 2886 err = f2fs_defragment_range(sbi, filp, &range); 2887 mnt_drop_write_file(filp); 2888 2889 if (range.len) 2890 f2fs_update_time(sbi, REQ_TIME); 2891 if (err < 0) 2892 return err; 2893 2894 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2895 sizeof(range))) 2896 return -EFAULT; 2897 2898 return 0; 2899 } 2900 2901 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2902 struct file *file_out, loff_t pos_out, size_t len) 2903 { 2904 struct inode *src = file_inode(file_in); 2905 struct inode *dst = file_inode(file_out); 2906 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2907 size_t olen = len, dst_max_i_size = 0; 2908 size_t dst_osize; 2909 int ret; 2910 2911 if (file_in->f_path.mnt != file_out->f_path.mnt || 2912 src->i_sb != dst->i_sb) 2913 return -EXDEV; 2914 2915 if (unlikely(f2fs_readonly(src->i_sb))) 2916 return -EROFS; 2917 2918 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2919 return -EINVAL; 2920 2921 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2922 return -EOPNOTSUPP; 2923 2924 if (pos_out < 0 || pos_in < 0) 2925 return -EINVAL; 2926 2927 if (src == dst) { 2928 if (pos_in == pos_out) 2929 return 0; 2930 if (pos_out > pos_in && pos_out < pos_in + len) 2931 return -EINVAL; 2932 } 2933 2934 inode_lock(src); 2935 if (src != dst) { 2936 ret = -EBUSY; 2937 if (!inode_trylock(dst)) 2938 goto out; 2939 } 2940 2941 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) || 2942 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) { 2943 ret = -EOPNOTSUPP; 2944 goto out_unlock; 2945 } 2946 2947 if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) { 2948 ret = -EINVAL; 2949 goto out_unlock; 2950 } 2951 2952 ret = -EINVAL; 2953 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2954 goto out_unlock; 2955 if (len == 0) 2956 olen = len = src->i_size - pos_in; 2957 if (pos_in + len == src->i_size) 2958 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2959 if (len == 0) { 2960 ret = 0; 2961 goto out_unlock; 2962 } 2963 2964 dst_osize = dst->i_size; 2965 if (pos_out + olen > dst->i_size) 2966 dst_max_i_size = pos_out + olen; 2967 2968 /* verify the end result is block aligned */ 2969 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2970 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2971 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2972 goto out_unlock; 2973 2974 ret = f2fs_convert_inline_inode(src); 2975 if (ret) 2976 goto out_unlock; 2977 2978 ret = f2fs_convert_inline_inode(dst); 2979 if (ret) 2980 goto out_unlock; 2981 2982 /* write out all dirty pages from offset */ 2983 ret = filemap_write_and_wait_range(src->i_mapping, 2984 pos_in, pos_in + len); 2985 if (ret) 2986 goto out_unlock; 2987 2988 ret = filemap_write_and_wait_range(dst->i_mapping, 2989 pos_out, pos_out + len); 2990 if (ret) 2991 goto out_unlock; 2992 2993 f2fs_balance_fs(sbi, true); 2994 2995 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2996 if (src != dst) { 2997 ret = -EBUSY; 2998 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2999 goto out_src; 3000 } 3001 3002 f2fs_lock_op(sbi); 3003 ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in), 3004 F2FS_BYTES_TO_BLK(pos_out), 3005 F2FS_BYTES_TO_BLK(len), false); 3006 3007 if (!ret) { 3008 if (dst_max_i_size) 3009 f2fs_i_size_write(dst, dst_max_i_size); 3010 else if (dst_osize != dst->i_size) 3011 f2fs_i_size_write(dst, dst_osize); 3012 } 3013 f2fs_unlock_op(sbi); 3014 3015 if (src != dst) 3016 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 3017 out_src: 3018 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 3019 if (ret) 3020 goto out_unlock; 3021 3022 inode_set_mtime_to_ts(src, inode_set_ctime_current(src)); 3023 f2fs_mark_inode_dirty_sync(src, false); 3024 if (src != dst) { 3025 inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst)); 3026 f2fs_mark_inode_dirty_sync(dst, false); 3027 } 3028 f2fs_update_time(sbi, REQ_TIME); 3029 3030 out_unlock: 3031 if (src != dst) 3032 inode_unlock(dst); 3033 out: 3034 inode_unlock(src); 3035 return ret; 3036 } 3037 3038 static int __f2fs_ioc_move_range(struct file *filp, 3039 struct f2fs_move_range *range) 3040 { 3041 struct fd dst; 3042 int err; 3043 3044 if (!(filp->f_mode & FMODE_READ) || 3045 !(filp->f_mode & FMODE_WRITE)) 3046 return -EBADF; 3047 3048 dst = fdget(range->dst_fd); 3049 if (!fd_file(dst)) 3050 return -EBADF; 3051 3052 if (!(fd_file(dst)->f_mode & FMODE_WRITE)) { 3053 err = -EBADF; 3054 goto err_out; 3055 } 3056 3057 err = mnt_want_write_file(filp); 3058 if (err) 3059 goto err_out; 3060 3061 err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst), 3062 range->pos_out, range->len); 3063 3064 mnt_drop_write_file(filp); 3065 err_out: 3066 fdput(dst); 3067 return err; 3068 } 3069 3070 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 3071 { 3072 struct f2fs_move_range range; 3073 3074 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 3075 sizeof(range))) 3076 return -EFAULT; 3077 return __f2fs_ioc_move_range(filp, &range); 3078 } 3079 3080 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 3081 { 3082 struct inode *inode = file_inode(filp); 3083 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3084 struct sit_info *sm = SIT_I(sbi); 3085 unsigned int start_segno = 0, end_segno = 0; 3086 unsigned int dev_start_segno = 0, dev_end_segno = 0; 3087 struct f2fs_flush_device range; 3088 struct f2fs_gc_control gc_control = { 3089 .init_gc_type = FG_GC, 3090 .should_migrate_blocks = true, 3091 .err_gc_skipped = true, 3092 .nr_free_secs = 0 }; 3093 int ret; 3094 3095 if (!capable(CAP_SYS_ADMIN)) 3096 return -EPERM; 3097 3098 if (f2fs_readonly(sbi->sb)) 3099 return -EROFS; 3100 3101 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3102 return -EINVAL; 3103 3104 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 3105 sizeof(range))) 3106 return -EFAULT; 3107 3108 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 3109 __is_large_section(sbi)) { 3110 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1", 3111 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi)); 3112 return -EINVAL; 3113 } 3114 3115 ret = mnt_want_write_file(filp); 3116 if (ret) 3117 return ret; 3118 3119 if (range.dev_num != 0) 3120 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 3121 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 3122 3123 start_segno = sm->last_victim[FLUSH_DEVICE]; 3124 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 3125 start_segno = dev_start_segno; 3126 end_segno = min(start_segno + range.segments, dev_end_segno); 3127 3128 while (start_segno < end_segno) { 3129 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 3130 ret = -EBUSY; 3131 goto out; 3132 } 3133 sm->last_victim[GC_CB] = end_segno + 1; 3134 sm->last_victim[GC_GREEDY] = end_segno + 1; 3135 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 3136 3137 gc_control.victim_segno = start_segno; 3138 stat_inc_gc_call_count(sbi, FOREGROUND); 3139 ret = f2fs_gc(sbi, &gc_control); 3140 if (ret == -EAGAIN) 3141 ret = 0; 3142 else if (ret < 0) 3143 break; 3144 start_segno++; 3145 } 3146 out: 3147 mnt_drop_write_file(filp); 3148 return ret; 3149 } 3150 3151 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 3152 { 3153 struct inode *inode = file_inode(filp); 3154 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 3155 3156 /* Must validate to set it with SQLite behavior in Android. */ 3157 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 3158 3159 return put_user(sb_feature, (u32 __user *)arg); 3160 } 3161 3162 #ifdef CONFIG_QUOTA 3163 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3164 { 3165 struct dquot *transfer_to[MAXQUOTAS] = {}; 3166 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3167 struct super_block *sb = sbi->sb; 3168 int err; 3169 3170 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 3171 if (IS_ERR(transfer_to[PRJQUOTA])) 3172 return PTR_ERR(transfer_to[PRJQUOTA]); 3173 3174 err = __dquot_transfer(inode, transfer_to); 3175 if (err) 3176 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3177 dqput(transfer_to[PRJQUOTA]); 3178 return err; 3179 } 3180 3181 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3182 { 3183 struct f2fs_inode_info *fi = F2FS_I(inode); 3184 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3185 struct f2fs_inode *ri = NULL; 3186 kprojid_t kprojid; 3187 int err; 3188 3189 if (!f2fs_sb_has_project_quota(sbi)) { 3190 if (projid != F2FS_DEF_PROJID) 3191 return -EOPNOTSUPP; 3192 else 3193 return 0; 3194 } 3195 3196 if (!f2fs_has_extra_attr(inode)) 3197 return -EOPNOTSUPP; 3198 3199 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3200 3201 if (projid_eq(kprojid, fi->i_projid)) 3202 return 0; 3203 3204 err = -EPERM; 3205 /* Is it quota file? Do not allow user to mess with it */ 3206 if (IS_NOQUOTA(inode)) 3207 return err; 3208 3209 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 3210 return -EOVERFLOW; 3211 3212 err = f2fs_dquot_initialize(inode); 3213 if (err) 3214 return err; 3215 3216 f2fs_lock_op(sbi); 3217 err = f2fs_transfer_project_quota(inode, kprojid); 3218 if (err) 3219 goto out_unlock; 3220 3221 fi->i_projid = kprojid; 3222 inode_set_ctime_current(inode); 3223 f2fs_mark_inode_dirty_sync(inode, true); 3224 out_unlock: 3225 f2fs_unlock_op(sbi); 3226 return err; 3227 } 3228 #else 3229 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3230 { 3231 return 0; 3232 } 3233 3234 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3235 { 3236 if (projid != F2FS_DEF_PROJID) 3237 return -EOPNOTSUPP; 3238 return 0; 3239 } 3240 #endif 3241 3242 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3243 { 3244 struct inode *inode = d_inode(dentry); 3245 struct f2fs_inode_info *fi = F2FS_I(inode); 3246 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3247 3248 if (IS_ENCRYPTED(inode)) 3249 fsflags |= FS_ENCRYPT_FL; 3250 if (IS_VERITY(inode)) 3251 fsflags |= FS_VERITY_FL; 3252 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3253 fsflags |= FS_INLINE_DATA_FL; 3254 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3255 fsflags |= FS_NOCOW_FL; 3256 3257 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3258 3259 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3260 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3261 3262 return 0; 3263 } 3264 3265 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3266 struct dentry *dentry, struct fileattr *fa) 3267 { 3268 struct inode *inode = d_inode(dentry); 3269 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3270 u32 iflags; 3271 int err; 3272 3273 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3274 return -EIO; 3275 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3276 return -ENOSPC; 3277 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3278 return -EOPNOTSUPP; 3279 fsflags &= F2FS_SETTABLE_FS_FL; 3280 if (!fa->flags_valid) 3281 mask &= FS_COMMON_FL; 3282 3283 iflags = f2fs_fsflags_to_iflags(fsflags); 3284 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3285 return -EOPNOTSUPP; 3286 3287 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3288 if (!err) 3289 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3290 3291 return err; 3292 } 3293 3294 int f2fs_pin_file_control(struct inode *inode, bool inc) 3295 { 3296 struct f2fs_inode_info *fi = F2FS_I(inode); 3297 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3298 3299 if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) { 3300 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3301 __func__, inode->i_ino, fi->i_gc_failures); 3302 clear_inode_flag(inode, FI_PIN_FILE); 3303 return -EAGAIN; 3304 } 3305 3306 /* Use i_gc_failures for normal file as a risk signal. */ 3307 if (inc) 3308 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1); 3309 3310 return 0; 3311 } 3312 3313 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3314 { 3315 struct inode *inode = file_inode(filp); 3316 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3317 __u32 pin; 3318 int ret = 0; 3319 3320 if (get_user(pin, (__u32 __user *)arg)) 3321 return -EFAULT; 3322 3323 if (!S_ISREG(inode->i_mode)) 3324 return -EINVAL; 3325 3326 if (f2fs_readonly(sbi->sb)) 3327 return -EROFS; 3328 3329 ret = mnt_want_write_file(filp); 3330 if (ret) 3331 return ret; 3332 3333 inode_lock(inode); 3334 3335 if (f2fs_is_atomic_file(inode)) { 3336 ret = -EINVAL; 3337 goto out; 3338 } 3339 3340 if (!pin) { 3341 clear_inode_flag(inode, FI_PIN_FILE); 3342 f2fs_i_gc_failures_write(inode, 0); 3343 goto done; 3344 } else if (f2fs_is_pinned_file(inode)) { 3345 goto done; 3346 } 3347 3348 if (F2FS_HAS_BLOCKS(inode)) { 3349 ret = -EFBIG; 3350 goto out; 3351 } 3352 3353 /* Let's allow file pinning on zoned device. */ 3354 if (!f2fs_sb_has_blkzoned(sbi) && 3355 f2fs_should_update_outplace(inode, NULL)) { 3356 ret = -EINVAL; 3357 goto out; 3358 } 3359 3360 if (f2fs_pin_file_control(inode, false)) { 3361 ret = -EAGAIN; 3362 goto out; 3363 } 3364 3365 ret = f2fs_convert_inline_inode(inode); 3366 if (ret) 3367 goto out; 3368 3369 if (!f2fs_disable_compressed_file(inode)) { 3370 ret = -EOPNOTSUPP; 3371 goto out; 3372 } 3373 3374 set_inode_flag(inode, FI_PIN_FILE); 3375 ret = F2FS_I(inode)->i_gc_failures; 3376 done: 3377 f2fs_update_time(sbi, REQ_TIME); 3378 out: 3379 inode_unlock(inode); 3380 mnt_drop_write_file(filp); 3381 return ret; 3382 } 3383 3384 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3385 { 3386 struct inode *inode = file_inode(filp); 3387 __u32 pin = 0; 3388 3389 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3390 pin = F2FS_I(inode)->i_gc_failures; 3391 return put_user(pin, (u32 __user *)arg); 3392 } 3393 3394 int f2fs_precache_extents(struct inode *inode) 3395 { 3396 struct f2fs_inode_info *fi = F2FS_I(inode); 3397 struct f2fs_map_blocks map; 3398 pgoff_t m_next_extent; 3399 loff_t end; 3400 int err; 3401 3402 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3403 return -EOPNOTSUPP; 3404 3405 map.m_lblk = 0; 3406 map.m_pblk = 0; 3407 map.m_next_pgofs = NULL; 3408 map.m_next_extent = &m_next_extent; 3409 map.m_seg_type = NO_CHECK_TYPE; 3410 map.m_may_create = false; 3411 end = F2FS_BLK_ALIGN(i_size_read(inode)); 3412 3413 while (map.m_lblk < end) { 3414 map.m_len = end - map.m_lblk; 3415 3416 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3417 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE); 3418 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3419 if (err || !map.m_len) 3420 return err; 3421 3422 map.m_lblk = m_next_extent; 3423 } 3424 3425 return 0; 3426 } 3427 3428 static int f2fs_ioc_precache_extents(struct file *filp) 3429 { 3430 return f2fs_precache_extents(file_inode(filp)); 3431 } 3432 3433 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3434 { 3435 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3436 __u64 block_count; 3437 3438 if (!capable(CAP_SYS_ADMIN)) 3439 return -EPERM; 3440 3441 if (f2fs_readonly(sbi->sb)) 3442 return -EROFS; 3443 3444 if (copy_from_user(&block_count, (void __user *)arg, 3445 sizeof(block_count))) 3446 return -EFAULT; 3447 3448 return f2fs_resize_fs(filp, block_count); 3449 } 3450 3451 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3452 { 3453 struct inode *inode = file_inode(filp); 3454 3455 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3456 3457 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3458 f2fs_warn(F2FS_I_SB(inode), 3459 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3460 inode->i_ino); 3461 return -EOPNOTSUPP; 3462 } 3463 3464 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3465 } 3466 3467 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3468 { 3469 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3470 return -EOPNOTSUPP; 3471 3472 return fsverity_ioctl_measure(filp, (void __user *)arg); 3473 } 3474 3475 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3476 { 3477 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3478 return -EOPNOTSUPP; 3479 3480 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3481 } 3482 3483 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3484 { 3485 struct inode *inode = file_inode(filp); 3486 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3487 char *vbuf; 3488 int count; 3489 int err = 0; 3490 3491 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3492 if (!vbuf) 3493 return -ENOMEM; 3494 3495 f2fs_down_read(&sbi->sb_lock); 3496 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3497 ARRAY_SIZE(sbi->raw_super->volume_name), 3498 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3499 f2fs_up_read(&sbi->sb_lock); 3500 3501 if (copy_to_user((char __user *)arg, vbuf, 3502 min(FSLABEL_MAX, count))) 3503 err = -EFAULT; 3504 3505 kfree(vbuf); 3506 return err; 3507 } 3508 3509 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3510 { 3511 struct inode *inode = file_inode(filp); 3512 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3513 char *vbuf; 3514 int err = 0; 3515 3516 if (!capable(CAP_SYS_ADMIN)) 3517 return -EPERM; 3518 3519 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3520 if (IS_ERR(vbuf)) 3521 return PTR_ERR(vbuf); 3522 3523 err = mnt_want_write_file(filp); 3524 if (err) 3525 goto out; 3526 3527 f2fs_down_write(&sbi->sb_lock); 3528 3529 memset(sbi->raw_super->volume_name, 0, 3530 sizeof(sbi->raw_super->volume_name)); 3531 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3532 sbi->raw_super->volume_name, 3533 ARRAY_SIZE(sbi->raw_super->volume_name)); 3534 3535 err = f2fs_commit_super(sbi, false); 3536 3537 f2fs_up_write(&sbi->sb_lock); 3538 3539 mnt_drop_write_file(filp); 3540 out: 3541 kfree(vbuf); 3542 return err; 3543 } 3544 3545 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks) 3546 { 3547 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3548 return -EOPNOTSUPP; 3549 3550 if (!f2fs_compressed_file(inode)) 3551 return -EINVAL; 3552 3553 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3554 3555 return 0; 3556 } 3557 3558 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg) 3559 { 3560 struct inode *inode = file_inode(filp); 3561 __u64 blocks; 3562 int ret; 3563 3564 ret = f2fs_get_compress_blocks(inode, &blocks); 3565 if (ret < 0) 3566 return ret; 3567 3568 return put_user(blocks, (u64 __user *)arg); 3569 } 3570 3571 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3572 { 3573 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3574 unsigned int released_blocks = 0; 3575 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3576 block_t blkaddr; 3577 int i; 3578 3579 for (i = 0; i < count; i++) { 3580 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3581 dn->ofs_in_node + i); 3582 3583 if (!__is_valid_data_blkaddr(blkaddr)) 3584 continue; 3585 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3586 DATA_GENERIC_ENHANCE))) 3587 return -EFSCORRUPTED; 3588 } 3589 3590 while (count) { 3591 int compr_blocks = 0; 3592 3593 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3594 blkaddr = f2fs_data_blkaddr(dn); 3595 3596 if (i == 0) { 3597 if (blkaddr == COMPRESS_ADDR) 3598 continue; 3599 dn->ofs_in_node += cluster_size; 3600 goto next; 3601 } 3602 3603 if (__is_valid_data_blkaddr(blkaddr)) 3604 compr_blocks++; 3605 3606 if (blkaddr != NEW_ADDR) 3607 continue; 3608 3609 f2fs_set_data_blkaddr(dn, NULL_ADDR); 3610 } 3611 3612 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3613 dec_valid_block_count(sbi, dn->inode, 3614 cluster_size - compr_blocks); 3615 3616 released_blocks += cluster_size - compr_blocks; 3617 next: 3618 count -= cluster_size; 3619 } 3620 3621 return released_blocks; 3622 } 3623 3624 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3625 { 3626 struct inode *inode = file_inode(filp); 3627 struct f2fs_inode_info *fi = F2FS_I(inode); 3628 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3629 pgoff_t page_idx = 0, last_idx; 3630 unsigned int released_blocks = 0; 3631 int ret; 3632 int writecount; 3633 3634 if (!f2fs_sb_has_compression(sbi)) 3635 return -EOPNOTSUPP; 3636 3637 if (f2fs_readonly(sbi->sb)) 3638 return -EROFS; 3639 3640 ret = mnt_want_write_file(filp); 3641 if (ret) 3642 return ret; 3643 3644 f2fs_balance_fs(sbi, true); 3645 3646 inode_lock(inode); 3647 3648 writecount = atomic_read(&inode->i_writecount); 3649 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3650 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3651 ret = -EBUSY; 3652 goto out; 3653 } 3654 3655 if (!f2fs_compressed_file(inode) || 3656 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3657 ret = -EINVAL; 3658 goto out; 3659 } 3660 3661 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3662 if (ret) 3663 goto out; 3664 3665 if (!atomic_read(&fi->i_compr_blocks)) { 3666 ret = -EPERM; 3667 goto out; 3668 } 3669 3670 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3671 inode_set_ctime_current(inode); 3672 f2fs_mark_inode_dirty_sync(inode, true); 3673 3674 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3675 filemap_invalidate_lock(inode->i_mapping); 3676 3677 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3678 3679 while (page_idx < last_idx) { 3680 struct dnode_of_data dn; 3681 pgoff_t end_offset, count; 3682 3683 f2fs_lock_op(sbi); 3684 3685 set_new_dnode(&dn, inode, NULL, NULL, 0); 3686 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3687 if (ret) { 3688 f2fs_unlock_op(sbi); 3689 if (ret == -ENOENT) { 3690 page_idx = f2fs_get_next_page_offset(&dn, 3691 page_idx); 3692 ret = 0; 3693 continue; 3694 } 3695 break; 3696 } 3697 3698 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3699 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3700 count = round_up(count, fi->i_cluster_size); 3701 3702 ret = release_compress_blocks(&dn, count); 3703 3704 f2fs_put_dnode(&dn); 3705 3706 f2fs_unlock_op(sbi); 3707 3708 if (ret < 0) 3709 break; 3710 3711 page_idx += count; 3712 released_blocks += ret; 3713 } 3714 3715 filemap_invalidate_unlock(inode->i_mapping); 3716 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3717 out: 3718 if (released_blocks) 3719 f2fs_update_time(sbi, REQ_TIME); 3720 inode_unlock(inode); 3721 3722 mnt_drop_write_file(filp); 3723 3724 if (ret >= 0) { 3725 ret = put_user(released_blocks, (u64 __user *)arg); 3726 } else if (released_blocks && 3727 atomic_read(&fi->i_compr_blocks)) { 3728 set_sbi_flag(sbi, SBI_NEED_FSCK); 3729 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3730 "iblocks=%llu, released=%u, compr_blocks=%u, " 3731 "run fsck to fix.", 3732 __func__, inode->i_ino, inode->i_blocks, 3733 released_blocks, 3734 atomic_read(&fi->i_compr_blocks)); 3735 } 3736 3737 return ret; 3738 } 3739 3740 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count, 3741 unsigned int *reserved_blocks) 3742 { 3743 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3744 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3745 block_t blkaddr; 3746 int i; 3747 3748 for (i = 0; i < count; i++) { 3749 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3750 dn->ofs_in_node + i); 3751 3752 if (!__is_valid_data_blkaddr(blkaddr)) 3753 continue; 3754 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3755 DATA_GENERIC_ENHANCE))) 3756 return -EFSCORRUPTED; 3757 } 3758 3759 while (count) { 3760 int compr_blocks = 0; 3761 blkcnt_t reserved = 0; 3762 blkcnt_t to_reserved; 3763 int ret; 3764 3765 for (i = 0; i < cluster_size; i++) { 3766 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3767 dn->ofs_in_node + i); 3768 3769 if (i == 0) { 3770 if (blkaddr != COMPRESS_ADDR) { 3771 dn->ofs_in_node += cluster_size; 3772 goto next; 3773 } 3774 continue; 3775 } 3776 3777 /* 3778 * compressed cluster was not released due to it 3779 * fails in release_compress_blocks(), so NEW_ADDR 3780 * is a possible case. 3781 */ 3782 if (blkaddr == NEW_ADDR) { 3783 reserved++; 3784 continue; 3785 } 3786 if (__is_valid_data_blkaddr(blkaddr)) { 3787 compr_blocks++; 3788 continue; 3789 } 3790 } 3791 3792 to_reserved = cluster_size - compr_blocks - reserved; 3793 3794 /* for the case all blocks in cluster were reserved */ 3795 if (to_reserved == 1) { 3796 dn->ofs_in_node += cluster_size; 3797 goto next; 3798 } 3799 3800 ret = inc_valid_block_count(sbi, dn->inode, 3801 &to_reserved, false); 3802 if (unlikely(ret)) 3803 return ret; 3804 3805 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3806 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 3807 f2fs_set_data_blkaddr(dn, NEW_ADDR); 3808 } 3809 3810 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3811 3812 *reserved_blocks += to_reserved; 3813 next: 3814 count -= cluster_size; 3815 } 3816 3817 return 0; 3818 } 3819 3820 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3821 { 3822 struct inode *inode = file_inode(filp); 3823 struct f2fs_inode_info *fi = F2FS_I(inode); 3824 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3825 pgoff_t page_idx = 0, last_idx; 3826 unsigned int reserved_blocks = 0; 3827 int ret; 3828 3829 if (!f2fs_sb_has_compression(sbi)) 3830 return -EOPNOTSUPP; 3831 3832 if (f2fs_readonly(sbi->sb)) 3833 return -EROFS; 3834 3835 ret = mnt_want_write_file(filp); 3836 if (ret) 3837 return ret; 3838 3839 f2fs_balance_fs(sbi, true); 3840 3841 inode_lock(inode); 3842 3843 if (!f2fs_compressed_file(inode) || 3844 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3845 ret = -EINVAL; 3846 goto unlock_inode; 3847 } 3848 3849 if (atomic_read(&fi->i_compr_blocks)) 3850 goto unlock_inode; 3851 3852 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3853 filemap_invalidate_lock(inode->i_mapping); 3854 3855 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3856 3857 while (page_idx < last_idx) { 3858 struct dnode_of_data dn; 3859 pgoff_t end_offset, count; 3860 3861 f2fs_lock_op(sbi); 3862 3863 set_new_dnode(&dn, inode, NULL, NULL, 0); 3864 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3865 if (ret) { 3866 f2fs_unlock_op(sbi); 3867 if (ret == -ENOENT) { 3868 page_idx = f2fs_get_next_page_offset(&dn, 3869 page_idx); 3870 ret = 0; 3871 continue; 3872 } 3873 break; 3874 } 3875 3876 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3877 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3878 count = round_up(count, fi->i_cluster_size); 3879 3880 ret = reserve_compress_blocks(&dn, count, &reserved_blocks); 3881 3882 f2fs_put_dnode(&dn); 3883 3884 f2fs_unlock_op(sbi); 3885 3886 if (ret < 0) 3887 break; 3888 3889 page_idx += count; 3890 } 3891 3892 filemap_invalidate_unlock(inode->i_mapping); 3893 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3894 3895 if (!ret) { 3896 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3897 inode_set_ctime_current(inode); 3898 f2fs_mark_inode_dirty_sync(inode, true); 3899 } 3900 unlock_inode: 3901 if (reserved_blocks) 3902 f2fs_update_time(sbi, REQ_TIME); 3903 inode_unlock(inode); 3904 mnt_drop_write_file(filp); 3905 3906 if (!ret) { 3907 ret = put_user(reserved_blocks, (u64 __user *)arg); 3908 } else if (reserved_blocks && 3909 atomic_read(&fi->i_compr_blocks)) { 3910 set_sbi_flag(sbi, SBI_NEED_FSCK); 3911 f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx " 3912 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3913 "run fsck to fix.", 3914 __func__, inode->i_ino, inode->i_blocks, 3915 reserved_blocks, 3916 atomic_read(&fi->i_compr_blocks)); 3917 } 3918 3919 return ret; 3920 } 3921 3922 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3923 pgoff_t off, block_t block, block_t len, u32 flags) 3924 { 3925 sector_t sector = SECTOR_FROM_BLOCK(block); 3926 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3927 int ret = 0; 3928 3929 if (flags & F2FS_TRIM_FILE_DISCARD) { 3930 if (bdev_max_secure_erase_sectors(bdev)) 3931 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3932 GFP_NOFS); 3933 else 3934 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3935 GFP_NOFS); 3936 } 3937 3938 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3939 if (IS_ENCRYPTED(inode)) 3940 ret = fscrypt_zeroout_range(inode, off, block, len); 3941 else 3942 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3943 GFP_NOFS, 0); 3944 } 3945 3946 return ret; 3947 } 3948 3949 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3950 { 3951 struct inode *inode = file_inode(filp); 3952 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3953 struct address_space *mapping = inode->i_mapping; 3954 struct block_device *prev_bdev = NULL; 3955 struct f2fs_sectrim_range range; 3956 pgoff_t index, pg_end, prev_index = 0; 3957 block_t prev_block = 0, len = 0; 3958 loff_t end_addr; 3959 bool to_end = false; 3960 int ret = 0; 3961 3962 if (!(filp->f_mode & FMODE_WRITE)) 3963 return -EBADF; 3964 3965 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3966 sizeof(range))) 3967 return -EFAULT; 3968 3969 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3970 !S_ISREG(inode->i_mode)) 3971 return -EINVAL; 3972 3973 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3974 !f2fs_hw_support_discard(sbi)) || 3975 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3976 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3977 return -EOPNOTSUPP; 3978 3979 ret = mnt_want_write_file(filp); 3980 if (ret) 3981 return ret; 3982 inode_lock(inode); 3983 3984 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3985 range.start >= inode->i_size) { 3986 ret = -EINVAL; 3987 goto err; 3988 } 3989 3990 if (range.len == 0) 3991 goto err; 3992 3993 if (inode->i_size - range.start > range.len) { 3994 end_addr = range.start + range.len; 3995 } else { 3996 end_addr = range.len == (u64)-1 ? 3997 sbi->sb->s_maxbytes : inode->i_size; 3998 to_end = true; 3999 } 4000 4001 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 4002 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 4003 ret = -EINVAL; 4004 goto err; 4005 } 4006 4007 index = F2FS_BYTES_TO_BLK(range.start); 4008 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 4009 4010 ret = f2fs_convert_inline_inode(inode); 4011 if (ret) 4012 goto err; 4013 4014 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4015 filemap_invalidate_lock(mapping); 4016 4017 ret = filemap_write_and_wait_range(mapping, range.start, 4018 to_end ? LLONG_MAX : end_addr - 1); 4019 if (ret) 4020 goto out; 4021 4022 truncate_inode_pages_range(mapping, range.start, 4023 to_end ? -1 : end_addr - 1); 4024 4025 while (index < pg_end) { 4026 struct dnode_of_data dn; 4027 pgoff_t end_offset, count; 4028 int i; 4029 4030 set_new_dnode(&dn, inode, NULL, NULL, 0); 4031 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 4032 if (ret) { 4033 if (ret == -ENOENT) { 4034 index = f2fs_get_next_page_offset(&dn, index); 4035 continue; 4036 } 4037 goto out; 4038 } 4039 4040 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 4041 count = min(end_offset - dn.ofs_in_node, pg_end - index); 4042 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 4043 struct block_device *cur_bdev; 4044 block_t blkaddr = f2fs_data_blkaddr(&dn); 4045 4046 if (!__is_valid_data_blkaddr(blkaddr)) 4047 continue; 4048 4049 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 4050 DATA_GENERIC_ENHANCE)) { 4051 ret = -EFSCORRUPTED; 4052 f2fs_put_dnode(&dn); 4053 goto out; 4054 } 4055 4056 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 4057 if (f2fs_is_multi_device(sbi)) { 4058 int di = f2fs_target_device_index(sbi, blkaddr); 4059 4060 blkaddr -= FDEV(di).start_blk; 4061 } 4062 4063 if (len) { 4064 if (prev_bdev == cur_bdev && 4065 index == prev_index + len && 4066 blkaddr == prev_block + len) { 4067 len++; 4068 } else { 4069 ret = f2fs_secure_erase(prev_bdev, 4070 inode, prev_index, prev_block, 4071 len, range.flags); 4072 if (ret) { 4073 f2fs_put_dnode(&dn); 4074 goto out; 4075 } 4076 4077 len = 0; 4078 } 4079 } 4080 4081 if (!len) { 4082 prev_bdev = cur_bdev; 4083 prev_index = index; 4084 prev_block = blkaddr; 4085 len = 1; 4086 } 4087 } 4088 4089 f2fs_put_dnode(&dn); 4090 4091 if (fatal_signal_pending(current)) { 4092 ret = -EINTR; 4093 goto out; 4094 } 4095 cond_resched(); 4096 } 4097 4098 if (len) 4099 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 4100 prev_block, len, range.flags); 4101 f2fs_update_time(sbi, REQ_TIME); 4102 out: 4103 filemap_invalidate_unlock(mapping); 4104 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4105 err: 4106 inode_unlock(inode); 4107 mnt_drop_write_file(filp); 4108 4109 return ret; 4110 } 4111 4112 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 4113 { 4114 struct inode *inode = file_inode(filp); 4115 struct f2fs_comp_option option; 4116 4117 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 4118 return -EOPNOTSUPP; 4119 4120 inode_lock_shared(inode); 4121 4122 if (!f2fs_compressed_file(inode)) { 4123 inode_unlock_shared(inode); 4124 return -ENODATA; 4125 } 4126 4127 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 4128 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 4129 4130 inode_unlock_shared(inode); 4131 4132 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 4133 sizeof(option))) 4134 return -EFAULT; 4135 4136 return 0; 4137 } 4138 4139 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 4140 { 4141 struct inode *inode = file_inode(filp); 4142 struct f2fs_inode_info *fi = F2FS_I(inode); 4143 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4144 struct f2fs_comp_option option; 4145 int ret = 0; 4146 4147 if (!f2fs_sb_has_compression(sbi)) 4148 return -EOPNOTSUPP; 4149 4150 if (!(filp->f_mode & FMODE_WRITE)) 4151 return -EBADF; 4152 4153 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 4154 sizeof(option))) 4155 return -EFAULT; 4156 4157 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 4158 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 4159 option.algorithm >= COMPRESS_MAX) 4160 return -EINVAL; 4161 4162 ret = mnt_want_write_file(filp); 4163 if (ret) 4164 return ret; 4165 inode_lock(inode); 4166 4167 f2fs_down_write(&F2FS_I(inode)->i_sem); 4168 if (!f2fs_compressed_file(inode)) { 4169 ret = -EINVAL; 4170 goto out; 4171 } 4172 4173 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 4174 ret = -EBUSY; 4175 goto out; 4176 } 4177 4178 if (F2FS_HAS_BLOCKS(inode)) { 4179 ret = -EFBIG; 4180 goto out; 4181 } 4182 4183 fi->i_compress_algorithm = option.algorithm; 4184 fi->i_log_cluster_size = option.log_cluster_size; 4185 fi->i_cluster_size = BIT(option.log_cluster_size); 4186 /* Set default level */ 4187 if (fi->i_compress_algorithm == COMPRESS_ZSTD) 4188 fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 4189 else 4190 fi->i_compress_level = 0; 4191 /* Adjust mount option level */ 4192 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm && 4193 F2FS_OPTION(sbi).compress_level) 4194 fi->i_compress_level = F2FS_OPTION(sbi).compress_level; 4195 f2fs_mark_inode_dirty_sync(inode, true); 4196 4197 if (!f2fs_is_compress_backend_ready(inode)) 4198 f2fs_warn(sbi, "compression algorithm is successfully set, " 4199 "but current kernel doesn't support this algorithm."); 4200 out: 4201 f2fs_up_write(&fi->i_sem); 4202 inode_unlock(inode); 4203 mnt_drop_write_file(filp); 4204 4205 return ret; 4206 } 4207 4208 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 4209 { 4210 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 4211 struct address_space *mapping = inode->i_mapping; 4212 struct page *page; 4213 pgoff_t redirty_idx = page_idx; 4214 int i, page_len = 0, ret = 0; 4215 4216 page_cache_ra_unbounded(&ractl, len, 0); 4217 4218 for (i = 0; i < len; i++, page_idx++) { 4219 page = read_cache_page(mapping, page_idx, NULL, NULL); 4220 if (IS_ERR(page)) { 4221 ret = PTR_ERR(page); 4222 break; 4223 } 4224 page_len++; 4225 } 4226 4227 for (i = 0; i < page_len; i++, redirty_idx++) { 4228 page = find_lock_page(mapping, redirty_idx); 4229 4230 /* It will never fail, when page has pinned above */ 4231 f2fs_bug_on(F2FS_I_SB(inode), !page); 4232 4233 f2fs_wait_on_page_writeback(page, DATA, true, true); 4234 4235 set_page_dirty(page); 4236 set_page_private_gcing(page); 4237 f2fs_put_page(page, 1); 4238 f2fs_put_page(page, 0); 4239 } 4240 4241 return ret; 4242 } 4243 4244 static int f2fs_ioc_decompress_file(struct file *filp) 4245 { 4246 struct inode *inode = file_inode(filp); 4247 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4248 struct f2fs_inode_info *fi = F2FS_I(inode); 4249 pgoff_t page_idx = 0, last_idx, cluster_idx; 4250 int ret; 4251 4252 if (!f2fs_sb_has_compression(sbi) || 4253 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4254 return -EOPNOTSUPP; 4255 4256 if (!(filp->f_mode & FMODE_WRITE)) 4257 return -EBADF; 4258 4259 f2fs_balance_fs(sbi, true); 4260 4261 ret = mnt_want_write_file(filp); 4262 if (ret) 4263 return ret; 4264 inode_lock(inode); 4265 4266 if (!f2fs_is_compress_backend_ready(inode)) { 4267 ret = -EOPNOTSUPP; 4268 goto out; 4269 } 4270 4271 if (!f2fs_compressed_file(inode) || 4272 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4273 ret = -EINVAL; 4274 goto out; 4275 } 4276 4277 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4278 if (ret) 4279 goto out; 4280 4281 if (!atomic_read(&fi->i_compr_blocks)) 4282 goto out; 4283 4284 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4285 last_idx >>= fi->i_log_cluster_size; 4286 4287 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) { 4288 page_idx = cluster_idx << fi->i_log_cluster_size; 4289 4290 if (!f2fs_is_compressed_cluster(inode, page_idx)) 4291 continue; 4292 4293 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size); 4294 if (ret < 0) 4295 break; 4296 4297 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) { 4298 ret = filemap_fdatawrite(inode->i_mapping); 4299 if (ret < 0) 4300 break; 4301 } 4302 4303 cond_resched(); 4304 if (fatal_signal_pending(current)) { 4305 ret = -EINTR; 4306 break; 4307 } 4308 } 4309 4310 if (!ret) 4311 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4312 LLONG_MAX); 4313 4314 if (ret) 4315 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4316 __func__, ret); 4317 f2fs_update_time(sbi, REQ_TIME); 4318 out: 4319 inode_unlock(inode); 4320 mnt_drop_write_file(filp); 4321 4322 return ret; 4323 } 4324 4325 static int f2fs_ioc_compress_file(struct file *filp) 4326 { 4327 struct inode *inode = file_inode(filp); 4328 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4329 struct f2fs_inode_info *fi = F2FS_I(inode); 4330 pgoff_t page_idx = 0, last_idx, cluster_idx; 4331 int ret; 4332 4333 if (!f2fs_sb_has_compression(sbi) || 4334 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4335 return -EOPNOTSUPP; 4336 4337 if (!(filp->f_mode & FMODE_WRITE)) 4338 return -EBADF; 4339 4340 f2fs_balance_fs(sbi, true); 4341 4342 ret = mnt_want_write_file(filp); 4343 if (ret) 4344 return ret; 4345 inode_lock(inode); 4346 4347 if (!f2fs_is_compress_backend_ready(inode)) { 4348 ret = -EOPNOTSUPP; 4349 goto out; 4350 } 4351 4352 if (!f2fs_compressed_file(inode) || 4353 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4354 ret = -EINVAL; 4355 goto out; 4356 } 4357 4358 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4359 if (ret) 4360 goto out; 4361 4362 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4363 4364 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4365 last_idx >>= fi->i_log_cluster_size; 4366 4367 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) { 4368 page_idx = cluster_idx << fi->i_log_cluster_size; 4369 4370 if (f2fs_is_sparse_cluster(inode, page_idx)) 4371 continue; 4372 4373 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size); 4374 if (ret < 0) 4375 break; 4376 4377 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) { 4378 ret = filemap_fdatawrite(inode->i_mapping); 4379 if (ret < 0) 4380 break; 4381 } 4382 4383 cond_resched(); 4384 if (fatal_signal_pending(current)) { 4385 ret = -EINTR; 4386 break; 4387 } 4388 } 4389 4390 if (!ret) 4391 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4392 LLONG_MAX); 4393 4394 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4395 4396 if (ret) 4397 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4398 __func__, ret); 4399 f2fs_update_time(sbi, REQ_TIME); 4400 out: 4401 inode_unlock(inode); 4402 mnt_drop_write_file(filp); 4403 4404 return ret; 4405 } 4406 4407 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4408 { 4409 switch (cmd) { 4410 case FS_IOC_GETVERSION: 4411 return f2fs_ioc_getversion(filp, arg); 4412 case F2FS_IOC_START_ATOMIC_WRITE: 4413 return f2fs_ioc_start_atomic_write(filp, false); 4414 case F2FS_IOC_START_ATOMIC_REPLACE: 4415 return f2fs_ioc_start_atomic_write(filp, true); 4416 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4417 return f2fs_ioc_commit_atomic_write(filp); 4418 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4419 return f2fs_ioc_abort_atomic_write(filp); 4420 case F2FS_IOC_START_VOLATILE_WRITE: 4421 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4422 return -EOPNOTSUPP; 4423 case F2FS_IOC_SHUTDOWN: 4424 return f2fs_ioc_shutdown(filp, arg); 4425 case FITRIM: 4426 return f2fs_ioc_fitrim(filp, arg); 4427 case FS_IOC_SET_ENCRYPTION_POLICY: 4428 return f2fs_ioc_set_encryption_policy(filp, arg); 4429 case FS_IOC_GET_ENCRYPTION_POLICY: 4430 return f2fs_ioc_get_encryption_policy(filp, arg); 4431 case FS_IOC_GET_ENCRYPTION_PWSALT: 4432 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4433 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4434 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4435 case FS_IOC_ADD_ENCRYPTION_KEY: 4436 return f2fs_ioc_add_encryption_key(filp, arg); 4437 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4438 return f2fs_ioc_remove_encryption_key(filp, arg); 4439 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4440 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4441 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4442 return f2fs_ioc_get_encryption_key_status(filp, arg); 4443 case FS_IOC_GET_ENCRYPTION_NONCE: 4444 return f2fs_ioc_get_encryption_nonce(filp, arg); 4445 case F2FS_IOC_GARBAGE_COLLECT: 4446 return f2fs_ioc_gc(filp, arg); 4447 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4448 return f2fs_ioc_gc_range(filp, arg); 4449 case F2FS_IOC_WRITE_CHECKPOINT: 4450 return f2fs_ioc_write_checkpoint(filp); 4451 case F2FS_IOC_DEFRAGMENT: 4452 return f2fs_ioc_defragment(filp, arg); 4453 case F2FS_IOC_MOVE_RANGE: 4454 return f2fs_ioc_move_range(filp, arg); 4455 case F2FS_IOC_FLUSH_DEVICE: 4456 return f2fs_ioc_flush_device(filp, arg); 4457 case F2FS_IOC_GET_FEATURES: 4458 return f2fs_ioc_get_features(filp, arg); 4459 case F2FS_IOC_GET_PIN_FILE: 4460 return f2fs_ioc_get_pin_file(filp, arg); 4461 case F2FS_IOC_SET_PIN_FILE: 4462 return f2fs_ioc_set_pin_file(filp, arg); 4463 case F2FS_IOC_PRECACHE_EXTENTS: 4464 return f2fs_ioc_precache_extents(filp); 4465 case F2FS_IOC_RESIZE_FS: 4466 return f2fs_ioc_resize_fs(filp, arg); 4467 case FS_IOC_ENABLE_VERITY: 4468 return f2fs_ioc_enable_verity(filp, arg); 4469 case FS_IOC_MEASURE_VERITY: 4470 return f2fs_ioc_measure_verity(filp, arg); 4471 case FS_IOC_READ_VERITY_METADATA: 4472 return f2fs_ioc_read_verity_metadata(filp, arg); 4473 case FS_IOC_GETFSLABEL: 4474 return f2fs_ioc_getfslabel(filp, arg); 4475 case FS_IOC_SETFSLABEL: 4476 return f2fs_ioc_setfslabel(filp, arg); 4477 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4478 return f2fs_ioc_get_compress_blocks(filp, arg); 4479 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4480 return f2fs_release_compress_blocks(filp, arg); 4481 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4482 return f2fs_reserve_compress_blocks(filp, arg); 4483 case F2FS_IOC_SEC_TRIM_FILE: 4484 return f2fs_sec_trim_file(filp, arg); 4485 case F2FS_IOC_GET_COMPRESS_OPTION: 4486 return f2fs_ioc_get_compress_option(filp, arg); 4487 case F2FS_IOC_SET_COMPRESS_OPTION: 4488 return f2fs_ioc_set_compress_option(filp, arg); 4489 case F2FS_IOC_DECOMPRESS_FILE: 4490 return f2fs_ioc_decompress_file(filp); 4491 case F2FS_IOC_COMPRESS_FILE: 4492 return f2fs_ioc_compress_file(filp); 4493 default: 4494 return -ENOTTY; 4495 } 4496 } 4497 4498 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4499 { 4500 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4501 return -EIO; 4502 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4503 return -ENOSPC; 4504 4505 return __f2fs_ioctl(filp, cmd, arg); 4506 } 4507 4508 /* 4509 * Return %true if the given read or write request should use direct I/O, or 4510 * %false if it should use buffered I/O. 4511 */ 4512 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4513 struct iov_iter *iter) 4514 { 4515 unsigned int align; 4516 4517 if (!(iocb->ki_flags & IOCB_DIRECT)) 4518 return false; 4519 4520 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) 4521 return false; 4522 4523 /* 4524 * Direct I/O not aligned to the disk's logical_block_size will be 4525 * attempted, but will fail with -EINVAL. 4526 * 4527 * f2fs additionally requires that direct I/O be aligned to the 4528 * filesystem block size, which is often a stricter requirement. 4529 * However, f2fs traditionally falls back to buffered I/O on requests 4530 * that are logical_block_size-aligned but not fs-block aligned. 4531 * 4532 * The below logic implements this behavior. 4533 */ 4534 align = iocb->ki_pos | iov_iter_alignment(iter); 4535 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4536 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4537 return false; 4538 4539 return true; 4540 } 4541 4542 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4543 unsigned int flags) 4544 { 4545 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4546 4547 dec_page_count(sbi, F2FS_DIO_READ); 4548 if (error) 4549 return error; 4550 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size); 4551 return 0; 4552 } 4553 4554 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4555 .end_io = f2fs_dio_read_end_io, 4556 }; 4557 4558 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4559 { 4560 struct file *file = iocb->ki_filp; 4561 struct inode *inode = file_inode(file); 4562 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4563 struct f2fs_inode_info *fi = F2FS_I(inode); 4564 const loff_t pos = iocb->ki_pos; 4565 const size_t count = iov_iter_count(to); 4566 struct iomap_dio *dio; 4567 ssize_t ret; 4568 4569 if (count == 0) 4570 return 0; /* skip atime update */ 4571 4572 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4573 4574 if (iocb->ki_flags & IOCB_NOWAIT) { 4575 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4576 ret = -EAGAIN; 4577 goto out; 4578 } 4579 } else { 4580 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4581 } 4582 4583 /* dio is not compatible w/ atomic file */ 4584 if (f2fs_is_atomic_file(inode)) { 4585 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4586 ret = -EOPNOTSUPP; 4587 goto out; 4588 } 4589 4590 /* 4591 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4592 * the higher-level function iomap_dio_rw() in order to ensure that the 4593 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4594 */ 4595 inc_page_count(sbi, F2FS_DIO_READ); 4596 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4597 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4598 if (IS_ERR_OR_NULL(dio)) { 4599 ret = PTR_ERR_OR_ZERO(dio); 4600 if (ret != -EIOCBQUEUED) 4601 dec_page_count(sbi, F2FS_DIO_READ); 4602 } else { 4603 ret = iomap_dio_complete(dio); 4604 } 4605 4606 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4607 4608 file_accessed(file); 4609 out: 4610 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4611 return ret; 4612 } 4613 4614 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count, 4615 int rw) 4616 { 4617 struct inode *inode = file_inode(file); 4618 char *buf, *path; 4619 4620 buf = f2fs_getname(F2FS_I_SB(inode)); 4621 if (!buf) 4622 return; 4623 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX); 4624 if (IS_ERR(path)) 4625 goto free_buf; 4626 if (rw == WRITE) 4627 trace_f2fs_datawrite_start(inode, pos, count, 4628 current->pid, path, current->comm); 4629 else 4630 trace_f2fs_dataread_start(inode, pos, count, 4631 current->pid, path, current->comm); 4632 free_buf: 4633 f2fs_putname(buf); 4634 } 4635 4636 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4637 { 4638 struct inode *inode = file_inode(iocb->ki_filp); 4639 const loff_t pos = iocb->ki_pos; 4640 ssize_t ret; 4641 4642 if (!f2fs_is_compress_backend_ready(inode)) 4643 return -EOPNOTSUPP; 4644 4645 if (trace_f2fs_dataread_start_enabled()) 4646 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 4647 iov_iter_count(to), READ); 4648 4649 /* In LFS mode, if there is inflight dio, wait for its completion */ 4650 if (f2fs_lfs_mode(F2FS_I_SB(inode))) 4651 inode_dio_wait(inode); 4652 4653 if (f2fs_should_use_dio(inode, iocb, to)) { 4654 ret = f2fs_dio_read_iter(iocb, to); 4655 } else { 4656 ret = filemap_read(iocb, to, 0); 4657 if (ret > 0) 4658 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4659 APP_BUFFERED_READ_IO, ret); 4660 } 4661 if (trace_f2fs_dataread_end_enabled()) 4662 trace_f2fs_dataread_end(inode, pos, ret); 4663 return ret; 4664 } 4665 4666 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos, 4667 struct pipe_inode_info *pipe, 4668 size_t len, unsigned int flags) 4669 { 4670 struct inode *inode = file_inode(in); 4671 const loff_t pos = *ppos; 4672 ssize_t ret; 4673 4674 if (!f2fs_is_compress_backend_ready(inode)) 4675 return -EOPNOTSUPP; 4676 4677 if (trace_f2fs_dataread_start_enabled()) 4678 f2fs_trace_rw_file_path(in, pos, len, READ); 4679 4680 ret = filemap_splice_read(in, ppos, pipe, len, flags); 4681 if (ret > 0) 4682 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4683 APP_BUFFERED_READ_IO, ret); 4684 4685 if (trace_f2fs_dataread_end_enabled()) 4686 trace_f2fs_dataread_end(inode, pos, ret); 4687 return ret; 4688 } 4689 4690 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4691 { 4692 struct file *file = iocb->ki_filp; 4693 struct inode *inode = file_inode(file); 4694 ssize_t count; 4695 int err; 4696 4697 if (IS_IMMUTABLE(inode)) 4698 return -EPERM; 4699 4700 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4701 return -EPERM; 4702 4703 count = generic_write_checks(iocb, from); 4704 if (count <= 0) 4705 return count; 4706 4707 err = file_modified(file); 4708 if (err) 4709 return err; 4710 return count; 4711 } 4712 4713 /* 4714 * Preallocate blocks for a write request, if it is possible and helpful to do 4715 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4716 * blocks were preallocated, or a negative errno value if something went 4717 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4718 * requested blocks (not just some of them) have been allocated. 4719 */ 4720 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4721 bool dio) 4722 { 4723 struct inode *inode = file_inode(iocb->ki_filp); 4724 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4725 const loff_t pos = iocb->ki_pos; 4726 const size_t count = iov_iter_count(iter); 4727 struct f2fs_map_blocks map = {}; 4728 int flag; 4729 int ret; 4730 4731 /* If it will be an out-of-place direct write, don't bother. */ 4732 if (dio && f2fs_lfs_mode(sbi)) 4733 return 0; 4734 /* 4735 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4736 * buffered IO, if DIO meets any holes. 4737 */ 4738 if (dio && i_size_read(inode) && 4739 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4740 return 0; 4741 4742 /* No-wait I/O can't allocate blocks. */ 4743 if (iocb->ki_flags & IOCB_NOWAIT) 4744 return 0; 4745 4746 /* If it will be a short write, don't bother. */ 4747 if (fault_in_iov_iter_readable(iter, count)) 4748 return 0; 4749 4750 if (f2fs_has_inline_data(inode)) { 4751 /* If the data will fit inline, don't bother. */ 4752 if (pos + count <= MAX_INLINE_DATA(inode)) 4753 return 0; 4754 ret = f2fs_convert_inline_inode(inode); 4755 if (ret) 4756 return ret; 4757 } 4758 4759 /* Do not preallocate blocks that will be written partially in 4KB. */ 4760 map.m_lblk = F2FS_BLK_ALIGN(pos); 4761 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4762 if (map.m_len > map.m_lblk) 4763 map.m_len -= map.m_lblk; 4764 else 4765 return 0; 4766 4767 map.m_may_create = true; 4768 if (dio) { 4769 map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi, 4770 inode->i_write_hint); 4771 flag = F2FS_GET_BLOCK_PRE_DIO; 4772 } else { 4773 map.m_seg_type = NO_CHECK_TYPE; 4774 flag = F2FS_GET_BLOCK_PRE_AIO; 4775 } 4776 4777 ret = f2fs_map_blocks(inode, &map, flag); 4778 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4779 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4780 return ret; 4781 if (ret == 0) 4782 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4783 return map.m_len; 4784 } 4785 4786 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4787 struct iov_iter *from) 4788 { 4789 struct file *file = iocb->ki_filp; 4790 struct inode *inode = file_inode(file); 4791 ssize_t ret; 4792 4793 if (iocb->ki_flags & IOCB_NOWAIT) 4794 return -EOPNOTSUPP; 4795 4796 ret = generic_perform_write(iocb, from); 4797 4798 if (ret > 0) { 4799 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4800 APP_BUFFERED_IO, ret); 4801 } 4802 return ret; 4803 } 4804 4805 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4806 unsigned int flags) 4807 { 4808 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4809 4810 dec_page_count(sbi, F2FS_DIO_WRITE); 4811 if (error) 4812 return error; 4813 f2fs_update_time(sbi, REQ_TIME); 4814 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size); 4815 return 0; 4816 } 4817 4818 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter, 4819 struct bio *bio, loff_t file_offset) 4820 { 4821 struct inode *inode = iter->inode; 4822 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4823 int seg_type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint); 4824 enum temp_type temp = f2fs_get_segment_temp(seg_type); 4825 4826 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp); 4827 submit_bio(bio); 4828 } 4829 4830 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4831 .end_io = f2fs_dio_write_end_io, 4832 .submit_io = f2fs_dio_write_submit_io, 4833 }; 4834 4835 static void f2fs_flush_buffered_write(struct address_space *mapping, 4836 loff_t start_pos, loff_t end_pos) 4837 { 4838 int ret; 4839 4840 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos); 4841 if (ret < 0) 4842 return; 4843 invalidate_mapping_pages(mapping, 4844 start_pos >> PAGE_SHIFT, 4845 end_pos >> PAGE_SHIFT); 4846 } 4847 4848 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4849 bool *may_need_sync) 4850 { 4851 struct file *file = iocb->ki_filp; 4852 struct inode *inode = file_inode(file); 4853 struct f2fs_inode_info *fi = F2FS_I(inode); 4854 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4855 const bool do_opu = f2fs_lfs_mode(sbi); 4856 const loff_t pos = iocb->ki_pos; 4857 const ssize_t count = iov_iter_count(from); 4858 unsigned int dio_flags; 4859 struct iomap_dio *dio; 4860 ssize_t ret; 4861 4862 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4863 4864 if (iocb->ki_flags & IOCB_NOWAIT) { 4865 /* f2fs_convert_inline_inode() and block allocation can block */ 4866 if (f2fs_has_inline_data(inode) || 4867 !f2fs_overwrite_io(inode, pos, count)) { 4868 ret = -EAGAIN; 4869 goto out; 4870 } 4871 4872 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4873 ret = -EAGAIN; 4874 goto out; 4875 } 4876 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4877 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4878 ret = -EAGAIN; 4879 goto out; 4880 } 4881 } else { 4882 ret = f2fs_convert_inline_inode(inode); 4883 if (ret) 4884 goto out; 4885 4886 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4887 if (do_opu) 4888 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4889 } 4890 4891 /* 4892 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4893 * the higher-level function iomap_dio_rw() in order to ensure that the 4894 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4895 */ 4896 inc_page_count(sbi, F2FS_DIO_WRITE); 4897 dio_flags = 0; 4898 if (pos + count > inode->i_size) 4899 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4900 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4901 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4902 if (IS_ERR_OR_NULL(dio)) { 4903 ret = PTR_ERR_OR_ZERO(dio); 4904 if (ret == -ENOTBLK) 4905 ret = 0; 4906 if (ret != -EIOCBQUEUED) 4907 dec_page_count(sbi, F2FS_DIO_WRITE); 4908 } else { 4909 ret = iomap_dio_complete(dio); 4910 } 4911 4912 if (do_opu) 4913 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4914 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4915 4916 if (ret < 0) 4917 goto out; 4918 if (pos + ret > inode->i_size) 4919 f2fs_i_size_write(inode, pos + ret); 4920 if (!do_opu) 4921 set_inode_flag(inode, FI_UPDATE_WRITE); 4922 4923 if (iov_iter_count(from)) { 4924 ssize_t ret2; 4925 loff_t bufio_start_pos = iocb->ki_pos; 4926 4927 /* 4928 * The direct write was partial, so we need to fall back to a 4929 * buffered write for the remainder. 4930 */ 4931 4932 ret2 = f2fs_buffered_write_iter(iocb, from); 4933 if (iov_iter_count(from)) 4934 f2fs_write_failed(inode, iocb->ki_pos); 4935 if (ret2 < 0) 4936 goto out; 4937 4938 /* 4939 * Ensure that the pagecache pages are written to disk and 4940 * invalidated to preserve the expected O_DIRECT semantics. 4941 */ 4942 if (ret2 > 0) { 4943 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4944 4945 ret += ret2; 4946 4947 f2fs_flush_buffered_write(file->f_mapping, 4948 bufio_start_pos, 4949 bufio_end_pos); 4950 } 4951 } else { 4952 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4953 *may_need_sync = false; 4954 } 4955 out: 4956 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4957 return ret; 4958 } 4959 4960 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4961 { 4962 struct inode *inode = file_inode(iocb->ki_filp); 4963 const loff_t orig_pos = iocb->ki_pos; 4964 const size_t orig_count = iov_iter_count(from); 4965 loff_t target_size; 4966 bool dio; 4967 bool may_need_sync = true; 4968 int preallocated; 4969 const loff_t pos = iocb->ki_pos; 4970 const ssize_t count = iov_iter_count(from); 4971 ssize_t ret; 4972 4973 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4974 ret = -EIO; 4975 goto out; 4976 } 4977 4978 if (!f2fs_is_compress_backend_ready(inode)) { 4979 ret = -EOPNOTSUPP; 4980 goto out; 4981 } 4982 4983 if (iocb->ki_flags & IOCB_NOWAIT) { 4984 if (!inode_trylock(inode)) { 4985 ret = -EAGAIN; 4986 goto out; 4987 } 4988 } else { 4989 inode_lock(inode); 4990 } 4991 4992 if (f2fs_is_pinned_file(inode) && 4993 !f2fs_overwrite_io(inode, pos, count)) { 4994 ret = -EIO; 4995 goto out_unlock; 4996 } 4997 4998 ret = f2fs_write_checks(iocb, from); 4999 if (ret <= 0) 5000 goto out_unlock; 5001 5002 /* Determine whether we will do a direct write or a buffered write. */ 5003 dio = f2fs_should_use_dio(inode, iocb, from); 5004 5005 /* dio is not compatible w/ atomic write */ 5006 if (dio && f2fs_is_atomic_file(inode)) { 5007 ret = -EOPNOTSUPP; 5008 goto out_unlock; 5009 } 5010 5011 /* Possibly preallocate the blocks for the write. */ 5012 target_size = iocb->ki_pos + iov_iter_count(from); 5013 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 5014 if (preallocated < 0) { 5015 ret = preallocated; 5016 } else { 5017 if (trace_f2fs_datawrite_start_enabled()) 5018 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 5019 orig_count, WRITE); 5020 5021 /* Do the actual write. */ 5022 ret = dio ? 5023 f2fs_dio_write_iter(iocb, from, &may_need_sync) : 5024 f2fs_buffered_write_iter(iocb, from); 5025 5026 if (trace_f2fs_datawrite_end_enabled()) 5027 trace_f2fs_datawrite_end(inode, orig_pos, ret); 5028 } 5029 5030 /* Don't leave any preallocated blocks around past i_size. */ 5031 if (preallocated && i_size_read(inode) < target_size) { 5032 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 5033 filemap_invalidate_lock(inode->i_mapping); 5034 if (!f2fs_truncate(inode)) 5035 file_dont_truncate(inode); 5036 filemap_invalidate_unlock(inode->i_mapping); 5037 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 5038 } else { 5039 file_dont_truncate(inode); 5040 } 5041 5042 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 5043 out_unlock: 5044 inode_unlock(inode); 5045 out: 5046 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 5047 5048 if (ret > 0 && may_need_sync) 5049 ret = generic_write_sync(iocb, ret); 5050 5051 /* If buffered IO was forced, flush and drop the data from 5052 * the page cache to preserve O_DIRECT semantics 5053 */ 5054 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT)) 5055 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping, 5056 orig_pos, 5057 orig_pos + ret - 1); 5058 5059 return ret; 5060 } 5061 5062 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 5063 int advice) 5064 { 5065 struct address_space *mapping; 5066 struct backing_dev_info *bdi; 5067 struct inode *inode = file_inode(filp); 5068 int err; 5069 5070 if (advice == POSIX_FADV_SEQUENTIAL) { 5071 if (S_ISFIFO(inode->i_mode)) 5072 return -ESPIPE; 5073 5074 mapping = filp->f_mapping; 5075 if (!mapping || len < 0) 5076 return -EINVAL; 5077 5078 bdi = inode_to_bdi(mapping->host); 5079 filp->f_ra.ra_pages = bdi->ra_pages * 5080 F2FS_I_SB(inode)->seq_file_ra_mul; 5081 spin_lock(&filp->f_lock); 5082 filp->f_mode &= ~FMODE_RANDOM; 5083 spin_unlock(&filp->f_lock); 5084 return 0; 5085 } else if (advice == POSIX_FADV_WILLNEED && offset == 0) { 5086 /* Load extent cache at the first readahead. */ 5087 f2fs_precache_extents(inode); 5088 } 5089 5090 err = generic_fadvise(filp, offset, len, advice); 5091 if (!err && advice == POSIX_FADV_DONTNEED && 5092 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 5093 f2fs_compressed_file(inode)) 5094 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 5095 5096 return err; 5097 } 5098 5099 #ifdef CONFIG_COMPAT 5100 struct compat_f2fs_gc_range { 5101 u32 sync; 5102 compat_u64 start; 5103 compat_u64 len; 5104 }; 5105 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 5106 struct compat_f2fs_gc_range) 5107 5108 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 5109 { 5110 struct compat_f2fs_gc_range __user *urange; 5111 struct f2fs_gc_range range; 5112 int err; 5113 5114 urange = compat_ptr(arg); 5115 err = get_user(range.sync, &urange->sync); 5116 err |= get_user(range.start, &urange->start); 5117 err |= get_user(range.len, &urange->len); 5118 if (err) 5119 return -EFAULT; 5120 5121 return __f2fs_ioc_gc_range(file, &range); 5122 } 5123 5124 struct compat_f2fs_move_range { 5125 u32 dst_fd; 5126 compat_u64 pos_in; 5127 compat_u64 pos_out; 5128 compat_u64 len; 5129 }; 5130 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 5131 struct compat_f2fs_move_range) 5132 5133 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 5134 { 5135 struct compat_f2fs_move_range __user *urange; 5136 struct f2fs_move_range range; 5137 int err; 5138 5139 urange = compat_ptr(arg); 5140 err = get_user(range.dst_fd, &urange->dst_fd); 5141 err |= get_user(range.pos_in, &urange->pos_in); 5142 err |= get_user(range.pos_out, &urange->pos_out); 5143 err |= get_user(range.len, &urange->len); 5144 if (err) 5145 return -EFAULT; 5146 5147 return __f2fs_ioc_move_range(file, &range); 5148 } 5149 5150 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5151 { 5152 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 5153 return -EIO; 5154 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 5155 return -ENOSPC; 5156 5157 switch (cmd) { 5158 case FS_IOC32_GETVERSION: 5159 cmd = FS_IOC_GETVERSION; 5160 break; 5161 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 5162 return f2fs_compat_ioc_gc_range(file, arg); 5163 case F2FS_IOC32_MOVE_RANGE: 5164 return f2fs_compat_ioc_move_range(file, arg); 5165 case F2FS_IOC_START_ATOMIC_WRITE: 5166 case F2FS_IOC_START_ATOMIC_REPLACE: 5167 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 5168 case F2FS_IOC_START_VOLATILE_WRITE: 5169 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 5170 case F2FS_IOC_ABORT_ATOMIC_WRITE: 5171 case F2FS_IOC_SHUTDOWN: 5172 case FITRIM: 5173 case FS_IOC_SET_ENCRYPTION_POLICY: 5174 case FS_IOC_GET_ENCRYPTION_PWSALT: 5175 case FS_IOC_GET_ENCRYPTION_POLICY: 5176 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 5177 case FS_IOC_ADD_ENCRYPTION_KEY: 5178 case FS_IOC_REMOVE_ENCRYPTION_KEY: 5179 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 5180 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 5181 case FS_IOC_GET_ENCRYPTION_NONCE: 5182 case F2FS_IOC_GARBAGE_COLLECT: 5183 case F2FS_IOC_WRITE_CHECKPOINT: 5184 case F2FS_IOC_DEFRAGMENT: 5185 case F2FS_IOC_FLUSH_DEVICE: 5186 case F2FS_IOC_GET_FEATURES: 5187 case F2FS_IOC_GET_PIN_FILE: 5188 case F2FS_IOC_SET_PIN_FILE: 5189 case F2FS_IOC_PRECACHE_EXTENTS: 5190 case F2FS_IOC_RESIZE_FS: 5191 case FS_IOC_ENABLE_VERITY: 5192 case FS_IOC_MEASURE_VERITY: 5193 case FS_IOC_READ_VERITY_METADATA: 5194 case FS_IOC_GETFSLABEL: 5195 case FS_IOC_SETFSLABEL: 5196 case F2FS_IOC_GET_COMPRESS_BLOCKS: 5197 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 5198 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 5199 case F2FS_IOC_SEC_TRIM_FILE: 5200 case F2FS_IOC_GET_COMPRESS_OPTION: 5201 case F2FS_IOC_SET_COMPRESS_OPTION: 5202 case F2FS_IOC_DECOMPRESS_FILE: 5203 case F2FS_IOC_COMPRESS_FILE: 5204 break; 5205 default: 5206 return -ENOIOCTLCMD; 5207 } 5208 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5209 } 5210 #endif 5211 5212 const struct file_operations f2fs_file_operations = { 5213 .llseek = f2fs_llseek, 5214 .read_iter = f2fs_file_read_iter, 5215 .write_iter = f2fs_file_write_iter, 5216 .iopoll = iocb_bio_iopoll, 5217 .open = f2fs_file_open, 5218 .release = f2fs_release_file, 5219 .mmap = f2fs_file_mmap, 5220 .flush = f2fs_file_flush, 5221 .fsync = f2fs_sync_file, 5222 .fallocate = f2fs_fallocate, 5223 .unlocked_ioctl = f2fs_ioctl, 5224 #ifdef CONFIG_COMPAT 5225 .compat_ioctl = f2fs_compat_ioctl, 5226 #endif 5227 .splice_read = f2fs_file_splice_read, 5228 .splice_write = iter_file_splice_write, 5229 .fadvise = f2fs_file_fadvise, 5230 .fop_flags = FOP_BUFFER_RASYNC, 5231 }; 5232