1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 #include <linux/fadvise.h> 27 #include <linux/iomap.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "acl.h" 34 #include "gc.h" 35 #include "iostat.h" 36 #include <trace/events/f2fs.h> 37 #include <uapi/linux/f2fs.h> 38 39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 40 { 41 struct inode *inode = file_inode(vmf->vma->vm_file); 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (!ret) 46 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO, 47 F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(IS_IMMUTABLE(inode))) 64 return VM_FAULT_SIGBUS; 65 66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 67 return VM_FAULT_SIGBUS; 68 69 if (unlikely(f2fs_cp_error(sbi))) { 70 err = -EIO; 71 goto err; 72 } 73 74 if (!f2fs_is_checkpoint_ready(sbi)) { 75 err = -ENOSPC; 76 goto err; 77 } 78 79 err = f2fs_convert_inline_inode(inode); 80 if (err) 81 goto err; 82 83 #ifdef CONFIG_F2FS_FS_COMPRESSION 84 if (f2fs_compressed_file(inode)) { 85 int ret = f2fs_is_compressed_cluster(inode, page->index); 86 87 if (ret < 0) { 88 err = ret; 89 goto err; 90 } else if (ret) { 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 filemap_invalidate_lock_shared(inode->i_mapping); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 117 set_new_dnode(&dn, inode, NULL, NULL, 0); 118 err = f2fs_get_block(&dn, page->index); 119 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 120 } 121 122 #ifdef CONFIG_F2FS_FS_COMPRESSION 123 if (!need_alloc) { 124 set_new_dnode(&dn, inode, NULL, NULL, 0); 125 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 126 f2fs_put_dnode(&dn); 127 } 128 #endif 129 if (err) { 130 unlock_page(page); 131 goto out_sem; 132 } 133 134 f2fs_wait_on_page_writeback(page, DATA, false, true); 135 136 /* wait for GCed page writeback via META_MAPPING */ 137 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 138 139 /* 140 * check to see if the page is mapped already (no holes) 141 */ 142 if (PageMappedToDisk(page)) 143 goto out_sem; 144 145 /* page is wholly or partially inside EOF */ 146 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 147 i_size_read(inode)) { 148 loff_t offset; 149 150 offset = i_size_read(inode) & ~PAGE_MASK; 151 zero_user_segment(page, offset, PAGE_SIZE); 152 } 153 set_page_dirty(page); 154 if (!PageUptodate(page)) 155 SetPageUptodate(page); 156 157 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 158 f2fs_update_time(sbi, REQ_TIME); 159 160 trace_f2fs_vm_page_mkwrite(page, DATA); 161 out_sem: 162 filemap_invalidate_unlock_shared(inode->i_mapping); 163 164 sb_end_pagefault(inode->i_sb); 165 err: 166 return block_page_mkwrite_return(err); 167 } 168 169 static const struct vm_operations_struct f2fs_file_vm_ops = { 170 .fault = f2fs_filemap_fault, 171 .map_pages = filemap_map_pages, 172 .page_mkwrite = f2fs_vm_page_mkwrite, 173 }; 174 175 static int get_parent_ino(struct inode *inode, nid_t *pino) 176 { 177 struct dentry *dentry; 178 179 /* 180 * Make sure to get the non-deleted alias. The alias associated with 181 * the open file descriptor being fsync()'ed may be deleted already. 182 */ 183 dentry = d_find_alias(inode); 184 if (!dentry) 185 return 0; 186 187 *pino = parent_ino(dentry); 188 dput(dentry); 189 return 1; 190 } 191 192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 193 { 194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 195 enum cp_reason_type cp_reason = CP_NO_NEEDED; 196 197 if (!S_ISREG(inode->i_mode)) 198 cp_reason = CP_NON_REGULAR; 199 else if (f2fs_compressed_file(inode)) 200 cp_reason = CP_COMPRESSED; 201 else if (inode->i_nlink != 1) 202 cp_reason = CP_HARDLINK; 203 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 204 cp_reason = CP_SB_NEED_CP; 205 else if (file_wrong_pino(inode)) 206 cp_reason = CP_WRONG_PINO; 207 else if (!f2fs_space_for_roll_forward(sbi)) 208 cp_reason = CP_NO_SPC_ROLL; 209 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 210 cp_reason = CP_NODE_NEED_CP; 211 else if (test_opt(sbi, FASTBOOT)) 212 cp_reason = CP_FASTBOOT_MODE; 213 else if (F2FS_OPTION(sbi).active_logs == 2) 214 cp_reason = CP_SPEC_LOG_NUM; 215 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 216 f2fs_need_dentry_mark(sbi, inode->i_ino) && 217 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 218 TRANS_DIR_INO)) 219 cp_reason = CP_RECOVER_DIR; 220 221 return cp_reason; 222 } 223 224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 225 { 226 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 227 bool ret = false; 228 /* But we need to avoid that there are some inode updates */ 229 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 230 ret = true; 231 f2fs_put_page(i, 0); 232 return ret; 233 } 234 235 static void try_to_fix_pino(struct inode *inode) 236 { 237 struct f2fs_inode_info *fi = F2FS_I(inode); 238 nid_t pino; 239 240 f2fs_down_write(&fi->i_sem); 241 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 242 get_parent_ino(inode, &pino)) { 243 f2fs_i_pino_write(inode, pino); 244 file_got_pino(inode); 245 } 246 f2fs_up_write(&fi->i_sem); 247 } 248 249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 250 int datasync, bool atomic) 251 { 252 struct inode *inode = file->f_mapping->host; 253 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 254 nid_t ino = inode->i_ino; 255 int ret = 0; 256 enum cp_reason_type cp_reason = 0; 257 struct writeback_control wbc = { 258 .sync_mode = WB_SYNC_ALL, 259 .nr_to_write = LONG_MAX, 260 .for_reclaim = 0, 261 }; 262 unsigned int seq_id = 0; 263 264 if (unlikely(f2fs_readonly(inode->i_sb))) 265 return 0; 266 267 trace_f2fs_sync_file_enter(inode); 268 269 if (S_ISDIR(inode->i_mode)) 270 goto go_write; 271 272 /* if fdatasync is triggered, let's do in-place-update */ 273 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 274 set_inode_flag(inode, FI_NEED_IPU); 275 ret = file_write_and_wait_range(file, start, end); 276 clear_inode_flag(inode, FI_NEED_IPU); 277 278 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 279 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 280 return ret; 281 } 282 283 /* if the inode is dirty, let's recover all the time */ 284 if (!f2fs_skip_inode_update(inode, datasync)) { 285 f2fs_write_inode(inode, NULL); 286 goto go_write; 287 } 288 289 /* 290 * if there is no written data, don't waste time to write recovery info. 291 */ 292 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 293 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 294 295 /* it may call write_inode just prior to fsync */ 296 if (need_inode_page_update(sbi, ino)) 297 goto go_write; 298 299 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 300 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 301 goto flush_out; 302 goto out; 303 } else { 304 /* 305 * for OPU case, during fsync(), node can be persisted before 306 * data when lower device doesn't support write barrier, result 307 * in data corruption after SPO. 308 * So for strict fsync mode, force to use atomic write sematics 309 * to keep write order in between data/node and last node to 310 * avoid potential data corruption. 311 */ 312 if (F2FS_OPTION(sbi).fsync_mode == 313 FSYNC_MODE_STRICT && !atomic) 314 atomic = true; 315 } 316 go_write: 317 /* 318 * Both of fdatasync() and fsync() are able to be recovered from 319 * sudden-power-off. 320 */ 321 f2fs_down_read(&F2FS_I(inode)->i_sem); 322 cp_reason = need_do_checkpoint(inode); 323 f2fs_up_read(&F2FS_I(inode)->i_sem); 324 325 if (cp_reason) { 326 /* all the dirty node pages should be flushed for POR */ 327 ret = f2fs_sync_fs(inode->i_sb, 1); 328 329 /* 330 * We've secured consistency through sync_fs. Following pino 331 * will be used only for fsynced inodes after checkpoint. 332 */ 333 try_to_fix_pino(inode); 334 clear_inode_flag(inode, FI_APPEND_WRITE); 335 clear_inode_flag(inode, FI_UPDATE_WRITE); 336 goto out; 337 } 338 sync_nodes: 339 atomic_inc(&sbi->wb_sync_req[NODE]); 340 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 341 atomic_dec(&sbi->wb_sync_req[NODE]); 342 if (ret) 343 goto out; 344 345 /* if cp_error was enabled, we should avoid infinite loop */ 346 if (unlikely(f2fs_cp_error(sbi))) { 347 ret = -EIO; 348 goto out; 349 } 350 351 if (f2fs_need_inode_block_update(sbi, ino)) { 352 f2fs_mark_inode_dirty_sync(inode, true); 353 f2fs_write_inode(inode, NULL); 354 goto sync_nodes; 355 } 356 357 /* 358 * If it's atomic_write, it's just fine to keep write ordering. So 359 * here we don't need to wait for node write completion, since we use 360 * node chain which serializes node blocks. If one of node writes are 361 * reordered, we can see simply broken chain, resulting in stopping 362 * roll-forward recovery. It means we'll recover all or none node blocks 363 * given fsync mark. 364 */ 365 if (!atomic) { 366 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 367 if (ret) 368 goto out; 369 } 370 371 /* once recovery info is written, don't need to tack this */ 372 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 373 clear_inode_flag(inode, FI_APPEND_WRITE); 374 flush_out: 375 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) || 376 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi))) 377 ret = f2fs_issue_flush(sbi, inode->i_ino); 378 if (!ret) { 379 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 380 clear_inode_flag(inode, FI_UPDATE_WRITE); 381 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 382 } 383 f2fs_update_time(sbi, REQ_TIME); 384 out: 385 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 386 return ret; 387 } 388 389 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 390 { 391 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 392 return -EIO; 393 return f2fs_do_sync_file(file, start, end, datasync, false); 394 } 395 396 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 397 pgoff_t index, int whence) 398 { 399 switch (whence) { 400 case SEEK_DATA: 401 if (__is_valid_data_blkaddr(blkaddr)) 402 return true; 403 if (blkaddr == NEW_ADDR && 404 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 405 return true; 406 break; 407 case SEEK_HOLE: 408 if (blkaddr == NULL_ADDR) 409 return true; 410 break; 411 } 412 return false; 413 } 414 415 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 416 { 417 struct inode *inode = file->f_mapping->host; 418 loff_t maxbytes = inode->i_sb->s_maxbytes; 419 struct dnode_of_data dn; 420 pgoff_t pgofs, end_offset; 421 loff_t data_ofs = offset; 422 loff_t isize; 423 int err = 0; 424 425 inode_lock(inode); 426 427 isize = i_size_read(inode); 428 if (offset >= isize) 429 goto fail; 430 431 /* handle inline data case */ 432 if (f2fs_has_inline_data(inode)) { 433 if (whence == SEEK_HOLE) { 434 data_ofs = isize; 435 goto found; 436 } else if (whence == SEEK_DATA) { 437 data_ofs = offset; 438 goto found; 439 } 440 } 441 442 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 443 444 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 445 set_new_dnode(&dn, inode, NULL, NULL, 0); 446 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 447 if (err && err != -ENOENT) { 448 goto fail; 449 } else if (err == -ENOENT) { 450 /* direct node does not exists */ 451 if (whence == SEEK_DATA) { 452 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 453 continue; 454 } else { 455 goto found; 456 } 457 } 458 459 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 460 461 /* find data/hole in dnode block */ 462 for (; dn.ofs_in_node < end_offset; 463 dn.ofs_in_node++, pgofs++, 464 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 465 block_t blkaddr; 466 467 blkaddr = f2fs_data_blkaddr(&dn); 468 469 if (__is_valid_data_blkaddr(blkaddr) && 470 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 471 blkaddr, DATA_GENERIC_ENHANCE)) { 472 f2fs_put_dnode(&dn); 473 goto fail; 474 } 475 476 if (__found_offset(file->f_mapping, blkaddr, 477 pgofs, whence)) { 478 f2fs_put_dnode(&dn); 479 goto found; 480 } 481 } 482 f2fs_put_dnode(&dn); 483 } 484 485 if (whence == SEEK_DATA) 486 goto fail; 487 found: 488 if (whence == SEEK_HOLE && data_ofs > isize) 489 data_ofs = isize; 490 inode_unlock(inode); 491 return vfs_setpos(file, data_ofs, maxbytes); 492 fail: 493 inode_unlock(inode); 494 return -ENXIO; 495 } 496 497 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 498 { 499 struct inode *inode = file->f_mapping->host; 500 loff_t maxbytes = inode->i_sb->s_maxbytes; 501 502 if (f2fs_compressed_file(inode)) 503 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 504 505 switch (whence) { 506 case SEEK_SET: 507 case SEEK_CUR: 508 case SEEK_END: 509 return generic_file_llseek_size(file, offset, whence, 510 maxbytes, i_size_read(inode)); 511 case SEEK_DATA: 512 case SEEK_HOLE: 513 if (offset < 0) 514 return -ENXIO; 515 return f2fs_seek_block(file, offset, whence); 516 } 517 518 return -EINVAL; 519 } 520 521 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 522 { 523 struct inode *inode = file_inode(file); 524 525 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 526 return -EIO; 527 528 if (!f2fs_is_compress_backend_ready(inode)) 529 return -EOPNOTSUPP; 530 531 file_accessed(file); 532 vma->vm_ops = &f2fs_file_vm_ops; 533 set_inode_flag(inode, FI_MMAP_FILE); 534 return 0; 535 } 536 537 static int f2fs_file_open(struct inode *inode, struct file *filp) 538 { 539 int err = fscrypt_file_open(inode, filp); 540 541 if (err) 542 return err; 543 544 if (!f2fs_is_compress_backend_ready(inode)) 545 return -EOPNOTSUPP; 546 547 err = fsverity_file_open(inode, filp); 548 if (err) 549 return err; 550 551 filp->f_mode |= FMODE_NOWAIT; 552 553 return dquot_file_open(inode, filp); 554 } 555 556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 557 { 558 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 559 struct f2fs_node *raw_node; 560 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 561 __le32 *addr; 562 int base = 0; 563 bool compressed_cluster = false; 564 int cluster_index = 0, valid_blocks = 0; 565 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 566 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 567 568 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 569 base = get_extra_isize(dn->inode); 570 571 raw_node = F2FS_NODE(dn->node_page); 572 addr = blkaddr_in_node(raw_node) + base + ofs; 573 574 /* Assumption: truncateion starts with cluster */ 575 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 576 block_t blkaddr = le32_to_cpu(*addr); 577 578 if (f2fs_compressed_file(dn->inode) && 579 !(cluster_index & (cluster_size - 1))) { 580 if (compressed_cluster) 581 f2fs_i_compr_blocks_update(dn->inode, 582 valid_blocks, false); 583 compressed_cluster = (blkaddr == COMPRESS_ADDR); 584 valid_blocks = 0; 585 } 586 587 if (blkaddr == NULL_ADDR) 588 continue; 589 590 dn->data_blkaddr = NULL_ADDR; 591 f2fs_set_data_blkaddr(dn); 592 593 if (__is_valid_data_blkaddr(blkaddr)) { 594 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 595 DATA_GENERIC_ENHANCE)) 596 continue; 597 if (compressed_cluster) 598 valid_blocks++; 599 } 600 601 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 602 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 603 604 f2fs_invalidate_blocks(sbi, blkaddr); 605 606 if (!released || blkaddr != COMPRESS_ADDR) 607 nr_free++; 608 } 609 610 if (compressed_cluster) 611 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 612 613 if (nr_free) { 614 pgoff_t fofs; 615 /* 616 * once we invalidate valid blkaddr in range [ofs, ofs + count], 617 * we will invalidate all blkaddr in the whole range. 618 */ 619 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 620 dn->inode) + ofs; 621 f2fs_update_extent_cache_range(dn, fofs, 0, len); 622 dec_valid_block_count(sbi, dn->inode, nr_free); 623 } 624 dn->ofs_in_node = ofs; 625 626 f2fs_update_time(sbi, REQ_TIME); 627 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 628 dn->ofs_in_node, nr_free); 629 } 630 631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 632 { 633 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 634 } 635 636 static int truncate_partial_data_page(struct inode *inode, u64 from, 637 bool cache_only) 638 { 639 loff_t offset = from & (PAGE_SIZE - 1); 640 pgoff_t index = from >> PAGE_SHIFT; 641 struct address_space *mapping = inode->i_mapping; 642 struct page *page; 643 644 if (!offset && !cache_only) 645 return 0; 646 647 if (cache_only) { 648 page = find_lock_page(mapping, index); 649 if (page && PageUptodate(page)) 650 goto truncate_out; 651 f2fs_put_page(page, 1); 652 return 0; 653 } 654 655 page = f2fs_get_lock_data_page(inode, index, true); 656 if (IS_ERR(page)) 657 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 658 truncate_out: 659 f2fs_wait_on_page_writeback(page, DATA, true, true); 660 zero_user(page, offset, PAGE_SIZE - offset); 661 662 /* An encrypted inode should have a key and truncate the last page. */ 663 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 664 if (!cache_only) 665 set_page_dirty(page); 666 f2fs_put_page(page, 1); 667 return 0; 668 } 669 670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 671 { 672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 673 struct dnode_of_data dn; 674 pgoff_t free_from; 675 int count = 0, err = 0; 676 struct page *ipage; 677 bool truncate_page = false; 678 679 trace_f2fs_truncate_blocks_enter(inode, from); 680 681 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 682 683 if (free_from >= max_file_blocks(inode)) 684 goto free_partial; 685 686 if (lock) 687 f2fs_lock_op(sbi); 688 689 ipage = f2fs_get_node_page(sbi, inode->i_ino); 690 if (IS_ERR(ipage)) { 691 err = PTR_ERR(ipage); 692 goto out; 693 } 694 695 if (f2fs_has_inline_data(inode)) { 696 f2fs_truncate_inline_inode(inode, ipage, from); 697 f2fs_put_page(ipage, 1); 698 truncate_page = true; 699 goto out; 700 } 701 702 set_new_dnode(&dn, inode, ipage, NULL, 0); 703 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 704 if (err) { 705 if (err == -ENOENT) 706 goto free_next; 707 goto out; 708 } 709 710 count = ADDRS_PER_PAGE(dn.node_page, inode); 711 712 count -= dn.ofs_in_node; 713 f2fs_bug_on(sbi, count < 0); 714 715 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 716 f2fs_truncate_data_blocks_range(&dn, count); 717 free_from += count; 718 } 719 720 f2fs_put_dnode(&dn); 721 free_next: 722 err = f2fs_truncate_inode_blocks(inode, free_from); 723 out: 724 if (lock) 725 f2fs_unlock_op(sbi); 726 free_partial: 727 /* lastly zero out the first data page */ 728 if (!err) 729 err = truncate_partial_data_page(inode, from, truncate_page); 730 731 trace_f2fs_truncate_blocks_exit(inode, err); 732 return err; 733 } 734 735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 736 { 737 u64 free_from = from; 738 int err; 739 740 #ifdef CONFIG_F2FS_FS_COMPRESSION 741 /* 742 * for compressed file, only support cluster size 743 * aligned truncation. 744 */ 745 if (f2fs_compressed_file(inode)) 746 free_from = round_up(from, 747 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 748 #endif 749 750 err = f2fs_do_truncate_blocks(inode, free_from, lock); 751 if (err) 752 return err; 753 754 #ifdef CONFIG_F2FS_FS_COMPRESSION 755 /* 756 * For compressed file, after release compress blocks, don't allow write 757 * direct, but we should allow write direct after truncate to zero. 758 */ 759 if (f2fs_compressed_file(inode) && !free_from 760 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 761 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 762 763 if (from != free_from) { 764 err = f2fs_truncate_partial_cluster(inode, from, lock); 765 if (err) 766 return err; 767 } 768 #endif 769 770 return 0; 771 } 772 773 int f2fs_truncate(struct inode *inode) 774 { 775 int err; 776 777 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 778 return -EIO; 779 780 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 781 S_ISLNK(inode->i_mode))) 782 return 0; 783 784 trace_f2fs_truncate(inode); 785 786 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 787 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 788 return -EIO; 789 } 790 791 err = f2fs_dquot_initialize(inode); 792 if (err) 793 return err; 794 795 /* we should check inline_data size */ 796 if (!f2fs_may_inline_data(inode)) { 797 err = f2fs_convert_inline_inode(inode); 798 if (err) 799 return err; 800 } 801 802 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 803 if (err) 804 return err; 805 806 inode->i_mtime = inode->i_ctime = current_time(inode); 807 f2fs_mark_inode_dirty_sync(inode, false); 808 return 0; 809 } 810 811 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 812 struct kstat *stat, u32 request_mask, unsigned int query_flags) 813 { 814 struct inode *inode = d_inode(path->dentry); 815 struct f2fs_inode_info *fi = F2FS_I(inode); 816 struct f2fs_inode *ri = NULL; 817 unsigned int flags; 818 819 if (f2fs_has_extra_attr(inode) && 820 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 821 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 822 stat->result_mask |= STATX_BTIME; 823 stat->btime.tv_sec = fi->i_crtime.tv_sec; 824 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 825 } 826 827 flags = fi->i_flags; 828 if (flags & F2FS_COMPR_FL) 829 stat->attributes |= STATX_ATTR_COMPRESSED; 830 if (flags & F2FS_APPEND_FL) 831 stat->attributes |= STATX_ATTR_APPEND; 832 if (IS_ENCRYPTED(inode)) 833 stat->attributes |= STATX_ATTR_ENCRYPTED; 834 if (flags & F2FS_IMMUTABLE_FL) 835 stat->attributes |= STATX_ATTR_IMMUTABLE; 836 if (flags & F2FS_NODUMP_FL) 837 stat->attributes |= STATX_ATTR_NODUMP; 838 if (IS_VERITY(inode)) 839 stat->attributes |= STATX_ATTR_VERITY; 840 841 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 842 STATX_ATTR_APPEND | 843 STATX_ATTR_ENCRYPTED | 844 STATX_ATTR_IMMUTABLE | 845 STATX_ATTR_NODUMP | 846 STATX_ATTR_VERITY); 847 848 generic_fillattr(mnt_userns, inode, stat); 849 850 /* we need to show initial sectors used for inline_data/dentries */ 851 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 852 f2fs_has_inline_dentry(inode)) 853 stat->blocks += (stat->size + 511) >> 9; 854 855 return 0; 856 } 857 858 #ifdef CONFIG_F2FS_FS_POSIX_ACL 859 static void __setattr_copy(struct user_namespace *mnt_userns, 860 struct inode *inode, const struct iattr *attr) 861 { 862 unsigned int ia_valid = attr->ia_valid; 863 864 i_uid_update(mnt_userns, attr, inode); 865 i_gid_update(mnt_userns, attr, inode); 866 if (ia_valid & ATTR_ATIME) 867 inode->i_atime = attr->ia_atime; 868 if (ia_valid & ATTR_MTIME) 869 inode->i_mtime = attr->ia_mtime; 870 if (ia_valid & ATTR_CTIME) 871 inode->i_ctime = attr->ia_ctime; 872 if (ia_valid & ATTR_MODE) { 873 umode_t mode = attr->ia_mode; 874 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 875 876 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID)) 877 mode &= ~S_ISGID; 878 set_acl_inode(inode, mode); 879 } 880 } 881 #else 882 #define __setattr_copy setattr_copy 883 #endif 884 885 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 886 struct iattr *attr) 887 { 888 struct inode *inode = d_inode(dentry); 889 int err; 890 891 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 892 return -EIO; 893 894 if (unlikely(IS_IMMUTABLE(inode))) 895 return -EPERM; 896 897 if (unlikely(IS_APPEND(inode) && 898 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 899 ATTR_GID | ATTR_TIMES_SET)))) 900 return -EPERM; 901 902 if ((attr->ia_valid & ATTR_SIZE) && 903 !f2fs_is_compress_backend_ready(inode)) 904 return -EOPNOTSUPP; 905 906 err = setattr_prepare(mnt_userns, dentry, attr); 907 if (err) 908 return err; 909 910 err = fscrypt_prepare_setattr(dentry, attr); 911 if (err) 912 return err; 913 914 err = fsverity_prepare_setattr(dentry, attr); 915 if (err) 916 return err; 917 918 if (is_quota_modification(mnt_userns, inode, attr)) { 919 err = f2fs_dquot_initialize(inode); 920 if (err) 921 return err; 922 } 923 if (i_uid_needs_update(mnt_userns, attr, inode) || 924 i_gid_needs_update(mnt_userns, attr, inode)) { 925 f2fs_lock_op(F2FS_I_SB(inode)); 926 err = dquot_transfer(mnt_userns, inode, attr); 927 if (err) { 928 set_sbi_flag(F2FS_I_SB(inode), 929 SBI_QUOTA_NEED_REPAIR); 930 f2fs_unlock_op(F2FS_I_SB(inode)); 931 return err; 932 } 933 /* 934 * update uid/gid under lock_op(), so that dquot and inode can 935 * be updated atomically. 936 */ 937 i_uid_update(mnt_userns, attr, inode); 938 i_gid_update(mnt_userns, attr, inode); 939 f2fs_mark_inode_dirty_sync(inode, true); 940 f2fs_unlock_op(F2FS_I_SB(inode)); 941 } 942 943 if (attr->ia_valid & ATTR_SIZE) { 944 loff_t old_size = i_size_read(inode); 945 946 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 947 /* 948 * should convert inline inode before i_size_write to 949 * keep smaller than inline_data size with inline flag. 950 */ 951 err = f2fs_convert_inline_inode(inode); 952 if (err) 953 return err; 954 } 955 956 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 957 filemap_invalidate_lock(inode->i_mapping); 958 959 truncate_setsize(inode, attr->ia_size); 960 961 if (attr->ia_size <= old_size) 962 err = f2fs_truncate(inode); 963 /* 964 * do not trim all blocks after i_size if target size is 965 * larger than i_size. 966 */ 967 filemap_invalidate_unlock(inode->i_mapping); 968 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 969 if (err) 970 return err; 971 972 spin_lock(&F2FS_I(inode)->i_size_lock); 973 inode->i_mtime = inode->i_ctime = current_time(inode); 974 F2FS_I(inode)->last_disk_size = i_size_read(inode); 975 spin_unlock(&F2FS_I(inode)->i_size_lock); 976 } 977 978 __setattr_copy(mnt_userns, inode, attr); 979 980 if (attr->ia_valid & ATTR_MODE) { 981 err = posix_acl_chmod(mnt_userns, inode, f2fs_get_inode_mode(inode)); 982 983 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 984 if (!err) 985 inode->i_mode = F2FS_I(inode)->i_acl_mode; 986 clear_inode_flag(inode, FI_ACL_MODE); 987 } 988 } 989 990 /* file size may changed here */ 991 f2fs_mark_inode_dirty_sync(inode, true); 992 993 /* inode change will produce dirty node pages flushed by checkpoint */ 994 f2fs_balance_fs(F2FS_I_SB(inode), true); 995 996 return err; 997 } 998 999 const struct inode_operations f2fs_file_inode_operations = { 1000 .getattr = f2fs_getattr, 1001 .setattr = f2fs_setattr, 1002 .get_acl = f2fs_get_acl, 1003 .set_acl = f2fs_set_acl, 1004 .listxattr = f2fs_listxattr, 1005 .fiemap = f2fs_fiemap, 1006 .fileattr_get = f2fs_fileattr_get, 1007 .fileattr_set = f2fs_fileattr_set, 1008 }; 1009 1010 static int fill_zero(struct inode *inode, pgoff_t index, 1011 loff_t start, loff_t len) 1012 { 1013 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1014 struct page *page; 1015 1016 if (!len) 1017 return 0; 1018 1019 f2fs_balance_fs(sbi, true); 1020 1021 f2fs_lock_op(sbi); 1022 page = f2fs_get_new_data_page(inode, NULL, index, false); 1023 f2fs_unlock_op(sbi); 1024 1025 if (IS_ERR(page)) 1026 return PTR_ERR(page); 1027 1028 f2fs_wait_on_page_writeback(page, DATA, true, true); 1029 zero_user(page, start, len); 1030 set_page_dirty(page); 1031 f2fs_put_page(page, 1); 1032 return 0; 1033 } 1034 1035 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1036 { 1037 int err; 1038 1039 while (pg_start < pg_end) { 1040 struct dnode_of_data dn; 1041 pgoff_t end_offset, count; 1042 1043 set_new_dnode(&dn, inode, NULL, NULL, 0); 1044 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1045 if (err) { 1046 if (err == -ENOENT) { 1047 pg_start = f2fs_get_next_page_offset(&dn, 1048 pg_start); 1049 continue; 1050 } 1051 return err; 1052 } 1053 1054 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1055 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1056 1057 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1058 1059 f2fs_truncate_data_blocks_range(&dn, count); 1060 f2fs_put_dnode(&dn); 1061 1062 pg_start += count; 1063 } 1064 return 0; 1065 } 1066 1067 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1068 { 1069 pgoff_t pg_start, pg_end; 1070 loff_t off_start, off_end; 1071 int ret; 1072 1073 ret = f2fs_convert_inline_inode(inode); 1074 if (ret) 1075 return ret; 1076 1077 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1078 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1079 1080 off_start = offset & (PAGE_SIZE - 1); 1081 off_end = (offset + len) & (PAGE_SIZE - 1); 1082 1083 if (pg_start == pg_end) { 1084 ret = fill_zero(inode, pg_start, off_start, 1085 off_end - off_start); 1086 if (ret) 1087 return ret; 1088 } else { 1089 if (off_start) { 1090 ret = fill_zero(inode, pg_start++, off_start, 1091 PAGE_SIZE - off_start); 1092 if (ret) 1093 return ret; 1094 } 1095 if (off_end) { 1096 ret = fill_zero(inode, pg_end, 0, off_end); 1097 if (ret) 1098 return ret; 1099 } 1100 1101 if (pg_start < pg_end) { 1102 loff_t blk_start, blk_end; 1103 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1104 1105 f2fs_balance_fs(sbi, true); 1106 1107 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1108 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1109 1110 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1111 filemap_invalidate_lock(inode->i_mapping); 1112 1113 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1114 1115 f2fs_lock_op(sbi); 1116 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1117 f2fs_unlock_op(sbi); 1118 1119 filemap_invalidate_unlock(inode->i_mapping); 1120 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1121 } 1122 } 1123 1124 return ret; 1125 } 1126 1127 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1128 int *do_replace, pgoff_t off, pgoff_t len) 1129 { 1130 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1131 struct dnode_of_data dn; 1132 int ret, done, i; 1133 1134 next_dnode: 1135 set_new_dnode(&dn, inode, NULL, NULL, 0); 1136 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1137 if (ret && ret != -ENOENT) { 1138 return ret; 1139 } else if (ret == -ENOENT) { 1140 if (dn.max_level == 0) 1141 return -ENOENT; 1142 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1143 dn.ofs_in_node, len); 1144 blkaddr += done; 1145 do_replace += done; 1146 goto next; 1147 } 1148 1149 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1150 dn.ofs_in_node, len); 1151 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1152 *blkaddr = f2fs_data_blkaddr(&dn); 1153 1154 if (__is_valid_data_blkaddr(*blkaddr) && 1155 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1156 DATA_GENERIC_ENHANCE)) { 1157 f2fs_put_dnode(&dn); 1158 return -EFSCORRUPTED; 1159 } 1160 1161 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1162 1163 if (f2fs_lfs_mode(sbi)) { 1164 f2fs_put_dnode(&dn); 1165 return -EOPNOTSUPP; 1166 } 1167 1168 /* do not invalidate this block address */ 1169 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1170 *do_replace = 1; 1171 } 1172 } 1173 f2fs_put_dnode(&dn); 1174 next: 1175 len -= done; 1176 off += done; 1177 if (len) 1178 goto next_dnode; 1179 return 0; 1180 } 1181 1182 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1183 int *do_replace, pgoff_t off, int len) 1184 { 1185 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1186 struct dnode_of_data dn; 1187 int ret, i; 1188 1189 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1190 if (*do_replace == 0) 1191 continue; 1192 1193 set_new_dnode(&dn, inode, NULL, NULL, 0); 1194 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1195 if (ret) { 1196 dec_valid_block_count(sbi, inode, 1); 1197 f2fs_invalidate_blocks(sbi, *blkaddr); 1198 } else { 1199 f2fs_update_data_blkaddr(&dn, *blkaddr); 1200 } 1201 f2fs_put_dnode(&dn); 1202 } 1203 return 0; 1204 } 1205 1206 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1207 block_t *blkaddr, int *do_replace, 1208 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1209 { 1210 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1211 pgoff_t i = 0; 1212 int ret; 1213 1214 while (i < len) { 1215 if (blkaddr[i] == NULL_ADDR && !full) { 1216 i++; 1217 continue; 1218 } 1219 1220 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1221 struct dnode_of_data dn; 1222 struct node_info ni; 1223 size_t new_size; 1224 pgoff_t ilen; 1225 1226 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1227 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1228 if (ret) 1229 return ret; 1230 1231 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1232 if (ret) { 1233 f2fs_put_dnode(&dn); 1234 return ret; 1235 } 1236 1237 ilen = min((pgoff_t) 1238 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1239 dn.ofs_in_node, len - i); 1240 do { 1241 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1242 f2fs_truncate_data_blocks_range(&dn, 1); 1243 1244 if (do_replace[i]) { 1245 f2fs_i_blocks_write(src_inode, 1246 1, false, false); 1247 f2fs_i_blocks_write(dst_inode, 1248 1, true, false); 1249 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1250 blkaddr[i], ni.version, true, false); 1251 1252 do_replace[i] = 0; 1253 } 1254 dn.ofs_in_node++; 1255 i++; 1256 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1257 if (dst_inode->i_size < new_size) 1258 f2fs_i_size_write(dst_inode, new_size); 1259 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1260 1261 f2fs_put_dnode(&dn); 1262 } else { 1263 struct page *psrc, *pdst; 1264 1265 psrc = f2fs_get_lock_data_page(src_inode, 1266 src + i, true); 1267 if (IS_ERR(psrc)) 1268 return PTR_ERR(psrc); 1269 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1270 true); 1271 if (IS_ERR(pdst)) { 1272 f2fs_put_page(psrc, 1); 1273 return PTR_ERR(pdst); 1274 } 1275 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); 1276 set_page_dirty(pdst); 1277 f2fs_put_page(pdst, 1); 1278 f2fs_put_page(psrc, 1); 1279 1280 ret = f2fs_truncate_hole(src_inode, 1281 src + i, src + i + 1); 1282 if (ret) 1283 return ret; 1284 i++; 1285 } 1286 } 1287 return 0; 1288 } 1289 1290 static int __exchange_data_block(struct inode *src_inode, 1291 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1292 pgoff_t len, bool full) 1293 { 1294 block_t *src_blkaddr; 1295 int *do_replace; 1296 pgoff_t olen; 1297 int ret; 1298 1299 while (len) { 1300 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1301 1302 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1303 array_size(olen, sizeof(block_t)), 1304 GFP_NOFS); 1305 if (!src_blkaddr) 1306 return -ENOMEM; 1307 1308 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1309 array_size(olen, sizeof(int)), 1310 GFP_NOFS); 1311 if (!do_replace) { 1312 kvfree(src_blkaddr); 1313 return -ENOMEM; 1314 } 1315 1316 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1317 do_replace, src, olen); 1318 if (ret) 1319 goto roll_back; 1320 1321 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1322 do_replace, src, dst, olen, full); 1323 if (ret) 1324 goto roll_back; 1325 1326 src += olen; 1327 dst += olen; 1328 len -= olen; 1329 1330 kvfree(src_blkaddr); 1331 kvfree(do_replace); 1332 } 1333 return 0; 1334 1335 roll_back: 1336 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1337 kvfree(src_blkaddr); 1338 kvfree(do_replace); 1339 return ret; 1340 } 1341 1342 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1343 { 1344 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1345 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1346 pgoff_t start = offset >> PAGE_SHIFT; 1347 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1348 int ret; 1349 1350 f2fs_balance_fs(sbi, true); 1351 1352 /* avoid gc operation during block exchange */ 1353 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1354 filemap_invalidate_lock(inode->i_mapping); 1355 1356 f2fs_lock_op(sbi); 1357 f2fs_drop_extent_tree(inode); 1358 truncate_pagecache(inode, offset); 1359 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1360 f2fs_unlock_op(sbi); 1361 1362 filemap_invalidate_unlock(inode->i_mapping); 1363 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1364 return ret; 1365 } 1366 1367 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1368 { 1369 loff_t new_size; 1370 int ret; 1371 1372 if (offset + len >= i_size_read(inode)) 1373 return -EINVAL; 1374 1375 /* collapse range should be aligned to block size of f2fs. */ 1376 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1377 return -EINVAL; 1378 1379 ret = f2fs_convert_inline_inode(inode); 1380 if (ret) 1381 return ret; 1382 1383 /* write out all dirty pages from offset */ 1384 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1385 if (ret) 1386 return ret; 1387 1388 ret = f2fs_do_collapse(inode, offset, len); 1389 if (ret) 1390 return ret; 1391 1392 /* write out all moved pages, if possible */ 1393 filemap_invalidate_lock(inode->i_mapping); 1394 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1395 truncate_pagecache(inode, offset); 1396 1397 new_size = i_size_read(inode) - len; 1398 ret = f2fs_truncate_blocks(inode, new_size, true); 1399 filemap_invalidate_unlock(inode->i_mapping); 1400 if (!ret) 1401 f2fs_i_size_write(inode, new_size); 1402 return ret; 1403 } 1404 1405 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1406 pgoff_t end) 1407 { 1408 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1409 pgoff_t index = start; 1410 unsigned int ofs_in_node = dn->ofs_in_node; 1411 blkcnt_t count = 0; 1412 int ret; 1413 1414 for (; index < end; index++, dn->ofs_in_node++) { 1415 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1416 count++; 1417 } 1418 1419 dn->ofs_in_node = ofs_in_node; 1420 ret = f2fs_reserve_new_blocks(dn, count); 1421 if (ret) 1422 return ret; 1423 1424 dn->ofs_in_node = ofs_in_node; 1425 for (index = start; index < end; index++, dn->ofs_in_node++) { 1426 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1427 /* 1428 * f2fs_reserve_new_blocks will not guarantee entire block 1429 * allocation. 1430 */ 1431 if (dn->data_blkaddr == NULL_ADDR) { 1432 ret = -ENOSPC; 1433 break; 1434 } 1435 1436 if (dn->data_blkaddr == NEW_ADDR) 1437 continue; 1438 1439 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1440 DATA_GENERIC_ENHANCE)) { 1441 ret = -EFSCORRUPTED; 1442 break; 1443 } 1444 1445 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1446 dn->data_blkaddr = NEW_ADDR; 1447 f2fs_set_data_blkaddr(dn); 1448 } 1449 1450 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1451 1452 return ret; 1453 } 1454 1455 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1456 int mode) 1457 { 1458 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1459 struct address_space *mapping = inode->i_mapping; 1460 pgoff_t index, pg_start, pg_end; 1461 loff_t new_size = i_size_read(inode); 1462 loff_t off_start, off_end; 1463 int ret = 0; 1464 1465 ret = inode_newsize_ok(inode, (len + offset)); 1466 if (ret) 1467 return ret; 1468 1469 ret = f2fs_convert_inline_inode(inode); 1470 if (ret) 1471 return ret; 1472 1473 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1474 if (ret) 1475 return ret; 1476 1477 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1478 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1479 1480 off_start = offset & (PAGE_SIZE - 1); 1481 off_end = (offset + len) & (PAGE_SIZE - 1); 1482 1483 if (pg_start == pg_end) { 1484 ret = fill_zero(inode, pg_start, off_start, 1485 off_end - off_start); 1486 if (ret) 1487 return ret; 1488 1489 new_size = max_t(loff_t, new_size, offset + len); 1490 } else { 1491 if (off_start) { 1492 ret = fill_zero(inode, pg_start++, off_start, 1493 PAGE_SIZE - off_start); 1494 if (ret) 1495 return ret; 1496 1497 new_size = max_t(loff_t, new_size, 1498 (loff_t)pg_start << PAGE_SHIFT); 1499 } 1500 1501 for (index = pg_start; index < pg_end;) { 1502 struct dnode_of_data dn; 1503 unsigned int end_offset; 1504 pgoff_t end; 1505 1506 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1507 filemap_invalidate_lock(mapping); 1508 1509 truncate_pagecache_range(inode, 1510 (loff_t)index << PAGE_SHIFT, 1511 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1512 1513 f2fs_lock_op(sbi); 1514 1515 set_new_dnode(&dn, inode, NULL, NULL, 0); 1516 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1517 if (ret) { 1518 f2fs_unlock_op(sbi); 1519 filemap_invalidate_unlock(mapping); 1520 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1521 goto out; 1522 } 1523 1524 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1525 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1526 1527 ret = f2fs_do_zero_range(&dn, index, end); 1528 f2fs_put_dnode(&dn); 1529 1530 f2fs_unlock_op(sbi); 1531 filemap_invalidate_unlock(mapping); 1532 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1533 1534 f2fs_balance_fs(sbi, dn.node_changed); 1535 1536 if (ret) 1537 goto out; 1538 1539 index = end; 1540 new_size = max_t(loff_t, new_size, 1541 (loff_t)index << PAGE_SHIFT); 1542 } 1543 1544 if (off_end) { 1545 ret = fill_zero(inode, pg_end, 0, off_end); 1546 if (ret) 1547 goto out; 1548 1549 new_size = max_t(loff_t, new_size, offset + len); 1550 } 1551 } 1552 1553 out: 1554 if (new_size > i_size_read(inode)) { 1555 if (mode & FALLOC_FL_KEEP_SIZE) 1556 file_set_keep_isize(inode); 1557 else 1558 f2fs_i_size_write(inode, new_size); 1559 } 1560 return ret; 1561 } 1562 1563 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1564 { 1565 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1566 struct address_space *mapping = inode->i_mapping; 1567 pgoff_t nr, pg_start, pg_end, delta, idx; 1568 loff_t new_size; 1569 int ret = 0; 1570 1571 new_size = i_size_read(inode) + len; 1572 ret = inode_newsize_ok(inode, new_size); 1573 if (ret) 1574 return ret; 1575 1576 if (offset >= i_size_read(inode)) 1577 return -EINVAL; 1578 1579 /* insert range should be aligned to block size of f2fs. */ 1580 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1581 return -EINVAL; 1582 1583 ret = f2fs_convert_inline_inode(inode); 1584 if (ret) 1585 return ret; 1586 1587 f2fs_balance_fs(sbi, true); 1588 1589 filemap_invalidate_lock(mapping); 1590 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1591 filemap_invalidate_unlock(mapping); 1592 if (ret) 1593 return ret; 1594 1595 /* write out all dirty pages from offset */ 1596 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1597 if (ret) 1598 return ret; 1599 1600 pg_start = offset >> PAGE_SHIFT; 1601 pg_end = (offset + len) >> PAGE_SHIFT; 1602 delta = pg_end - pg_start; 1603 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1604 1605 /* avoid gc operation during block exchange */ 1606 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1607 filemap_invalidate_lock(mapping); 1608 truncate_pagecache(inode, offset); 1609 1610 while (!ret && idx > pg_start) { 1611 nr = idx - pg_start; 1612 if (nr > delta) 1613 nr = delta; 1614 idx -= nr; 1615 1616 f2fs_lock_op(sbi); 1617 f2fs_drop_extent_tree(inode); 1618 1619 ret = __exchange_data_block(inode, inode, idx, 1620 idx + delta, nr, false); 1621 f2fs_unlock_op(sbi); 1622 } 1623 filemap_invalidate_unlock(mapping); 1624 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1625 1626 /* write out all moved pages, if possible */ 1627 filemap_invalidate_lock(mapping); 1628 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1629 truncate_pagecache(inode, offset); 1630 filemap_invalidate_unlock(mapping); 1631 1632 if (!ret) 1633 f2fs_i_size_write(inode, new_size); 1634 return ret; 1635 } 1636 1637 static int expand_inode_data(struct inode *inode, loff_t offset, 1638 loff_t len, int mode) 1639 { 1640 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1641 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1642 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1643 .m_may_create = true }; 1644 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1645 .init_gc_type = FG_GC, 1646 .should_migrate_blocks = false, 1647 .err_gc_skipped = true, 1648 .nr_free_secs = 0 }; 1649 pgoff_t pg_start, pg_end; 1650 loff_t new_size = i_size_read(inode); 1651 loff_t off_end; 1652 block_t expanded = 0; 1653 int err; 1654 1655 err = inode_newsize_ok(inode, (len + offset)); 1656 if (err) 1657 return err; 1658 1659 err = f2fs_convert_inline_inode(inode); 1660 if (err) 1661 return err; 1662 1663 f2fs_balance_fs(sbi, true); 1664 1665 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1666 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1667 off_end = (offset + len) & (PAGE_SIZE - 1); 1668 1669 map.m_lblk = pg_start; 1670 map.m_len = pg_end - pg_start; 1671 if (off_end) 1672 map.m_len++; 1673 1674 if (!map.m_len) 1675 return 0; 1676 1677 if (f2fs_is_pinned_file(inode)) { 1678 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1679 block_t sec_len = roundup(map.m_len, sec_blks); 1680 1681 map.m_len = sec_blks; 1682 next_alloc: 1683 if (has_not_enough_free_secs(sbi, 0, 1684 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1685 f2fs_down_write(&sbi->gc_lock); 1686 err = f2fs_gc(sbi, &gc_control); 1687 if (err && err != -ENODATA) 1688 goto out_err; 1689 } 1690 1691 f2fs_down_write(&sbi->pin_sem); 1692 1693 f2fs_lock_op(sbi); 1694 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 1695 f2fs_unlock_op(sbi); 1696 1697 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1698 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1699 file_dont_truncate(inode); 1700 1701 f2fs_up_write(&sbi->pin_sem); 1702 1703 expanded += map.m_len; 1704 sec_len -= map.m_len; 1705 map.m_lblk += map.m_len; 1706 if (!err && sec_len) 1707 goto next_alloc; 1708 1709 map.m_len = expanded; 1710 } else { 1711 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1712 expanded = map.m_len; 1713 } 1714 out_err: 1715 if (err) { 1716 pgoff_t last_off; 1717 1718 if (!expanded) 1719 return err; 1720 1721 last_off = pg_start + expanded - 1; 1722 1723 /* update new size to the failed position */ 1724 new_size = (last_off == pg_end) ? offset + len : 1725 (loff_t)(last_off + 1) << PAGE_SHIFT; 1726 } else { 1727 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1728 } 1729 1730 if (new_size > i_size_read(inode)) { 1731 if (mode & FALLOC_FL_KEEP_SIZE) 1732 file_set_keep_isize(inode); 1733 else 1734 f2fs_i_size_write(inode, new_size); 1735 } 1736 1737 return err; 1738 } 1739 1740 static long f2fs_fallocate(struct file *file, int mode, 1741 loff_t offset, loff_t len) 1742 { 1743 struct inode *inode = file_inode(file); 1744 long ret = 0; 1745 1746 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1747 return -EIO; 1748 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1749 return -ENOSPC; 1750 if (!f2fs_is_compress_backend_ready(inode)) 1751 return -EOPNOTSUPP; 1752 1753 /* f2fs only support ->fallocate for regular file */ 1754 if (!S_ISREG(inode->i_mode)) 1755 return -EINVAL; 1756 1757 if (IS_ENCRYPTED(inode) && 1758 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1759 return -EOPNOTSUPP; 1760 1761 /* 1762 * Pinned file should not support partial trucation since the block 1763 * can be used by applications. 1764 */ 1765 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1766 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1767 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1768 return -EOPNOTSUPP; 1769 1770 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1771 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1772 FALLOC_FL_INSERT_RANGE)) 1773 return -EOPNOTSUPP; 1774 1775 inode_lock(inode); 1776 1777 ret = file_modified(file); 1778 if (ret) 1779 goto out; 1780 1781 if (mode & FALLOC_FL_PUNCH_HOLE) { 1782 if (offset >= inode->i_size) 1783 goto out; 1784 1785 ret = punch_hole(inode, offset, len); 1786 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1787 ret = f2fs_collapse_range(inode, offset, len); 1788 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1789 ret = f2fs_zero_range(inode, offset, len, mode); 1790 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1791 ret = f2fs_insert_range(inode, offset, len); 1792 } else { 1793 ret = expand_inode_data(inode, offset, len, mode); 1794 } 1795 1796 if (!ret) { 1797 inode->i_mtime = inode->i_ctime = current_time(inode); 1798 f2fs_mark_inode_dirty_sync(inode, false); 1799 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1800 } 1801 1802 out: 1803 inode_unlock(inode); 1804 1805 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1806 return ret; 1807 } 1808 1809 static int f2fs_release_file(struct inode *inode, struct file *filp) 1810 { 1811 /* 1812 * f2fs_relase_file is called at every close calls. So we should 1813 * not drop any inmemory pages by close called by other process. 1814 */ 1815 if (!(filp->f_mode & FMODE_WRITE) || 1816 atomic_read(&inode->i_writecount) != 1) 1817 return 0; 1818 1819 f2fs_abort_atomic_write(inode, true); 1820 return 0; 1821 } 1822 1823 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1824 { 1825 struct inode *inode = file_inode(file); 1826 1827 /* 1828 * If the process doing a transaction is crashed, we should do 1829 * roll-back. Otherwise, other reader/write can see corrupted database 1830 * until all the writers close its file. Since this should be done 1831 * before dropping file lock, it needs to do in ->flush. 1832 */ 1833 if (F2FS_I(inode)->atomic_write_task == current) 1834 f2fs_abort_atomic_write(inode, true); 1835 return 0; 1836 } 1837 1838 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1839 { 1840 struct f2fs_inode_info *fi = F2FS_I(inode); 1841 u32 masked_flags = fi->i_flags & mask; 1842 1843 /* mask can be shrunk by flags_valid selector */ 1844 iflags &= mask; 1845 1846 /* Is it quota file? Do not allow user to mess with it */ 1847 if (IS_NOQUOTA(inode)) 1848 return -EPERM; 1849 1850 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1851 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1852 return -EOPNOTSUPP; 1853 if (!f2fs_empty_dir(inode)) 1854 return -ENOTEMPTY; 1855 } 1856 1857 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1858 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1859 return -EOPNOTSUPP; 1860 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1861 return -EINVAL; 1862 } 1863 1864 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1865 if (masked_flags & F2FS_COMPR_FL) { 1866 if (!f2fs_disable_compressed_file(inode)) 1867 return -EINVAL; 1868 } else { 1869 if (!f2fs_may_compress(inode)) 1870 return -EINVAL; 1871 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 1872 return -EINVAL; 1873 if (set_compress_context(inode)) 1874 return -EOPNOTSUPP; 1875 } 1876 } 1877 1878 fi->i_flags = iflags | (fi->i_flags & ~mask); 1879 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1880 (fi->i_flags & F2FS_NOCOMP_FL)); 1881 1882 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1883 set_inode_flag(inode, FI_PROJ_INHERIT); 1884 else 1885 clear_inode_flag(inode, FI_PROJ_INHERIT); 1886 1887 inode->i_ctime = current_time(inode); 1888 f2fs_set_inode_flags(inode); 1889 f2fs_mark_inode_dirty_sync(inode, true); 1890 return 0; 1891 } 1892 1893 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 1894 1895 /* 1896 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1897 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1898 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1899 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1900 * 1901 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 1902 * FS_IOC_FSSETXATTR is done by the VFS. 1903 */ 1904 1905 static const struct { 1906 u32 iflag; 1907 u32 fsflag; 1908 } f2fs_fsflags_map[] = { 1909 { F2FS_COMPR_FL, FS_COMPR_FL }, 1910 { F2FS_SYNC_FL, FS_SYNC_FL }, 1911 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1912 { F2FS_APPEND_FL, FS_APPEND_FL }, 1913 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1914 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1915 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1916 { F2FS_INDEX_FL, FS_INDEX_FL }, 1917 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1918 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1919 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1920 }; 1921 1922 #define F2FS_GETTABLE_FS_FL ( \ 1923 FS_COMPR_FL | \ 1924 FS_SYNC_FL | \ 1925 FS_IMMUTABLE_FL | \ 1926 FS_APPEND_FL | \ 1927 FS_NODUMP_FL | \ 1928 FS_NOATIME_FL | \ 1929 FS_NOCOMP_FL | \ 1930 FS_INDEX_FL | \ 1931 FS_DIRSYNC_FL | \ 1932 FS_PROJINHERIT_FL | \ 1933 FS_ENCRYPT_FL | \ 1934 FS_INLINE_DATA_FL | \ 1935 FS_NOCOW_FL | \ 1936 FS_VERITY_FL | \ 1937 FS_CASEFOLD_FL) 1938 1939 #define F2FS_SETTABLE_FS_FL ( \ 1940 FS_COMPR_FL | \ 1941 FS_SYNC_FL | \ 1942 FS_IMMUTABLE_FL | \ 1943 FS_APPEND_FL | \ 1944 FS_NODUMP_FL | \ 1945 FS_NOATIME_FL | \ 1946 FS_NOCOMP_FL | \ 1947 FS_DIRSYNC_FL | \ 1948 FS_PROJINHERIT_FL | \ 1949 FS_CASEFOLD_FL) 1950 1951 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1952 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1953 { 1954 u32 fsflags = 0; 1955 int i; 1956 1957 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1958 if (iflags & f2fs_fsflags_map[i].iflag) 1959 fsflags |= f2fs_fsflags_map[i].fsflag; 1960 1961 return fsflags; 1962 } 1963 1964 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1965 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1966 { 1967 u32 iflags = 0; 1968 int i; 1969 1970 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1971 if (fsflags & f2fs_fsflags_map[i].fsflag) 1972 iflags |= f2fs_fsflags_map[i].iflag; 1973 1974 return iflags; 1975 } 1976 1977 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1978 { 1979 struct inode *inode = file_inode(filp); 1980 1981 return put_user(inode->i_generation, (int __user *)arg); 1982 } 1983 1984 static int f2fs_ioc_start_atomic_write(struct file *filp) 1985 { 1986 struct inode *inode = file_inode(filp); 1987 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 1988 struct f2fs_inode_info *fi = F2FS_I(inode); 1989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1990 struct inode *pinode; 1991 int ret; 1992 1993 if (!inode_owner_or_capable(mnt_userns, inode)) 1994 return -EACCES; 1995 1996 if (!S_ISREG(inode->i_mode)) 1997 return -EINVAL; 1998 1999 if (filp->f_flags & O_DIRECT) 2000 return -EINVAL; 2001 2002 ret = mnt_want_write_file(filp); 2003 if (ret) 2004 return ret; 2005 2006 inode_lock(inode); 2007 2008 if (!f2fs_disable_compressed_file(inode)) { 2009 ret = -EINVAL; 2010 goto out; 2011 } 2012 2013 if (f2fs_is_atomic_file(inode)) 2014 goto out; 2015 2016 ret = f2fs_convert_inline_inode(inode); 2017 if (ret) 2018 goto out; 2019 2020 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2021 2022 /* 2023 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2024 * f2fs_is_atomic_file. 2025 */ 2026 if (get_dirty_pages(inode)) 2027 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2028 inode->i_ino, get_dirty_pages(inode)); 2029 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2030 if (ret) { 2031 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2032 goto out; 2033 } 2034 2035 /* Create a COW inode for atomic write */ 2036 pinode = f2fs_iget(inode->i_sb, fi->i_pino); 2037 if (IS_ERR(pinode)) { 2038 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2039 ret = PTR_ERR(pinode); 2040 goto out; 2041 } 2042 2043 ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode); 2044 iput(pinode); 2045 if (ret) { 2046 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2047 goto out; 2048 } 2049 f2fs_i_size_write(fi->cow_inode, i_size_read(inode)); 2050 2051 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 2052 sbi->atomic_files++; 2053 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 2054 2055 set_inode_flag(inode, FI_ATOMIC_FILE); 2056 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2057 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2058 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2059 2060 f2fs_update_time(sbi, REQ_TIME); 2061 fi->atomic_write_task = current; 2062 stat_update_max_atomic_write(inode); 2063 fi->atomic_write_cnt = 0; 2064 out: 2065 inode_unlock(inode); 2066 mnt_drop_write_file(filp); 2067 return ret; 2068 } 2069 2070 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2071 { 2072 struct inode *inode = file_inode(filp); 2073 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2074 int ret; 2075 2076 if (!inode_owner_or_capable(mnt_userns, inode)) 2077 return -EACCES; 2078 2079 ret = mnt_want_write_file(filp); 2080 if (ret) 2081 return ret; 2082 2083 f2fs_balance_fs(F2FS_I_SB(inode), true); 2084 2085 inode_lock(inode); 2086 2087 if (f2fs_is_atomic_file(inode)) { 2088 ret = f2fs_commit_atomic_write(inode); 2089 if (ret) 2090 goto unlock_out; 2091 2092 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2093 if (!ret) 2094 f2fs_abort_atomic_write(inode, false); 2095 } else { 2096 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2097 } 2098 unlock_out: 2099 inode_unlock(inode); 2100 mnt_drop_write_file(filp); 2101 return ret; 2102 } 2103 2104 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2105 { 2106 struct inode *inode = file_inode(filp); 2107 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2108 int ret; 2109 2110 if (!inode_owner_or_capable(mnt_userns, inode)) 2111 return -EACCES; 2112 2113 ret = mnt_want_write_file(filp); 2114 if (ret) 2115 return ret; 2116 2117 inode_lock(inode); 2118 2119 f2fs_abort_atomic_write(inode, true); 2120 2121 inode_unlock(inode); 2122 2123 mnt_drop_write_file(filp); 2124 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2125 return ret; 2126 } 2127 2128 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2129 { 2130 struct inode *inode = file_inode(filp); 2131 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2132 struct super_block *sb = sbi->sb; 2133 __u32 in; 2134 int ret = 0; 2135 2136 if (!capable(CAP_SYS_ADMIN)) 2137 return -EPERM; 2138 2139 if (get_user(in, (__u32 __user *)arg)) 2140 return -EFAULT; 2141 2142 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2143 ret = mnt_want_write_file(filp); 2144 if (ret) { 2145 if (ret == -EROFS) { 2146 ret = 0; 2147 f2fs_stop_checkpoint(sbi, false); 2148 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2149 trace_f2fs_shutdown(sbi, in, ret); 2150 } 2151 return ret; 2152 } 2153 } 2154 2155 switch (in) { 2156 case F2FS_GOING_DOWN_FULLSYNC: 2157 ret = freeze_bdev(sb->s_bdev); 2158 if (ret) 2159 goto out; 2160 f2fs_stop_checkpoint(sbi, false); 2161 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2162 thaw_bdev(sb->s_bdev); 2163 break; 2164 case F2FS_GOING_DOWN_METASYNC: 2165 /* do checkpoint only */ 2166 ret = f2fs_sync_fs(sb, 1); 2167 if (ret) 2168 goto out; 2169 f2fs_stop_checkpoint(sbi, false); 2170 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2171 break; 2172 case F2FS_GOING_DOWN_NOSYNC: 2173 f2fs_stop_checkpoint(sbi, false); 2174 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2175 break; 2176 case F2FS_GOING_DOWN_METAFLUSH: 2177 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2178 f2fs_stop_checkpoint(sbi, false); 2179 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2180 break; 2181 case F2FS_GOING_DOWN_NEED_FSCK: 2182 set_sbi_flag(sbi, SBI_NEED_FSCK); 2183 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2184 set_sbi_flag(sbi, SBI_IS_DIRTY); 2185 /* do checkpoint only */ 2186 ret = f2fs_sync_fs(sb, 1); 2187 goto out; 2188 default: 2189 ret = -EINVAL; 2190 goto out; 2191 } 2192 2193 f2fs_stop_gc_thread(sbi); 2194 f2fs_stop_discard_thread(sbi); 2195 2196 f2fs_drop_discard_cmd(sbi); 2197 clear_opt(sbi, DISCARD); 2198 2199 f2fs_update_time(sbi, REQ_TIME); 2200 out: 2201 if (in != F2FS_GOING_DOWN_FULLSYNC) 2202 mnt_drop_write_file(filp); 2203 2204 trace_f2fs_shutdown(sbi, in, ret); 2205 2206 return ret; 2207 } 2208 2209 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2210 { 2211 struct inode *inode = file_inode(filp); 2212 struct super_block *sb = inode->i_sb; 2213 struct fstrim_range range; 2214 int ret; 2215 2216 if (!capable(CAP_SYS_ADMIN)) 2217 return -EPERM; 2218 2219 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2220 return -EOPNOTSUPP; 2221 2222 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2223 sizeof(range))) 2224 return -EFAULT; 2225 2226 ret = mnt_want_write_file(filp); 2227 if (ret) 2228 return ret; 2229 2230 range.minlen = max((unsigned int)range.minlen, 2231 bdev_discard_granularity(sb->s_bdev)); 2232 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2233 mnt_drop_write_file(filp); 2234 if (ret < 0) 2235 return ret; 2236 2237 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2238 sizeof(range))) 2239 return -EFAULT; 2240 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2241 return 0; 2242 } 2243 2244 static bool uuid_is_nonzero(__u8 u[16]) 2245 { 2246 int i; 2247 2248 for (i = 0; i < 16; i++) 2249 if (u[i]) 2250 return true; 2251 return false; 2252 } 2253 2254 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2255 { 2256 struct inode *inode = file_inode(filp); 2257 2258 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2259 return -EOPNOTSUPP; 2260 2261 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2262 2263 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2264 } 2265 2266 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2267 { 2268 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2269 return -EOPNOTSUPP; 2270 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2271 } 2272 2273 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2274 { 2275 struct inode *inode = file_inode(filp); 2276 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2277 int err; 2278 2279 if (!f2fs_sb_has_encrypt(sbi)) 2280 return -EOPNOTSUPP; 2281 2282 err = mnt_want_write_file(filp); 2283 if (err) 2284 return err; 2285 2286 f2fs_down_write(&sbi->sb_lock); 2287 2288 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2289 goto got_it; 2290 2291 /* update superblock with uuid */ 2292 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2293 2294 err = f2fs_commit_super(sbi, false); 2295 if (err) { 2296 /* undo new data */ 2297 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2298 goto out_err; 2299 } 2300 got_it: 2301 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2302 16)) 2303 err = -EFAULT; 2304 out_err: 2305 f2fs_up_write(&sbi->sb_lock); 2306 mnt_drop_write_file(filp); 2307 return err; 2308 } 2309 2310 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2311 unsigned long arg) 2312 { 2313 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2314 return -EOPNOTSUPP; 2315 2316 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2317 } 2318 2319 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2320 { 2321 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2322 return -EOPNOTSUPP; 2323 2324 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2325 } 2326 2327 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2328 { 2329 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2330 return -EOPNOTSUPP; 2331 2332 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2333 } 2334 2335 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2336 unsigned long arg) 2337 { 2338 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2339 return -EOPNOTSUPP; 2340 2341 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2342 } 2343 2344 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2345 unsigned long arg) 2346 { 2347 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2348 return -EOPNOTSUPP; 2349 2350 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2351 } 2352 2353 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2354 { 2355 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2356 return -EOPNOTSUPP; 2357 2358 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2359 } 2360 2361 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2362 { 2363 struct inode *inode = file_inode(filp); 2364 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2365 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2366 .no_bg_gc = false, 2367 .should_migrate_blocks = false, 2368 .nr_free_secs = 0 }; 2369 __u32 sync; 2370 int ret; 2371 2372 if (!capable(CAP_SYS_ADMIN)) 2373 return -EPERM; 2374 2375 if (get_user(sync, (__u32 __user *)arg)) 2376 return -EFAULT; 2377 2378 if (f2fs_readonly(sbi->sb)) 2379 return -EROFS; 2380 2381 ret = mnt_want_write_file(filp); 2382 if (ret) 2383 return ret; 2384 2385 if (!sync) { 2386 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2387 ret = -EBUSY; 2388 goto out; 2389 } 2390 } else { 2391 f2fs_down_write(&sbi->gc_lock); 2392 } 2393 2394 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2395 gc_control.err_gc_skipped = sync; 2396 ret = f2fs_gc(sbi, &gc_control); 2397 out: 2398 mnt_drop_write_file(filp); 2399 return ret; 2400 } 2401 2402 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2403 { 2404 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2405 struct f2fs_gc_control gc_control = { 2406 .init_gc_type = range->sync ? FG_GC : BG_GC, 2407 .no_bg_gc = false, 2408 .should_migrate_blocks = false, 2409 .err_gc_skipped = range->sync, 2410 .nr_free_secs = 0 }; 2411 u64 end; 2412 int ret; 2413 2414 if (!capable(CAP_SYS_ADMIN)) 2415 return -EPERM; 2416 if (f2fs_readonly(sbi->sb)) 2417 return -EROFS; 2418 2419 end = range->start + range->len; 2420 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2421 end >= MAX_BLKADDR(sbi)) 2422 return -EINVAL; 2423 2424 ret = mnt_want_write_file(filp); 2425 if (ret) 2426 return ret; 2427 2428 do_more: 2429 if (!range->sync) { 2430 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2431 ret = -EBUSY; 2432 goto out; 2433 } 2434 } else { 2435 f2fs_down_write(&sbi->gc_lock); 2436 } 2437 2438 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2439 ret = f2fs_gc(sbi, &gc_control); 2440 if (ret) { 2441 if (ret == -EBUSY) 2442 ret = -EAGAIN; 2443 goto out; 2444 } 2445 range->start += CAP_BLKS_PER_SEC(sbi); 2446 if (range->start <= end) 2447 goto do_more; 2448 out: 2449 mnt_drop_write_file(filp); 2450 return ret; 2451 } 2452 2453 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2454 { 2455 struct f2fs_gc_range range; 2456 2457 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2458 sizeof(range))) 2459 return -EFAULT; 2460 return __f2fs_ioc_gc_range(filp, &range); 2461 } 2462 2463 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2464 { 2465 struct inode *inode = file_inode(filp); 2466 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2467 int ret; 2468 2469 if (!capable(CAP_SYS_ADMIN)) 2470 return -EPERM; 2471 2472 if (f2fs_readonly(sbi->sb)) 2473 return -EROFS; 2474 2475 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2476 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2477 return -EINVAL; 2478 } 2479 2480 ret = mnt_want_write_file(filp); 2481 if (ret) 2482 return ret; 2483 2484 ret = f2fs_sync_fs(sbi->sb, 1); 2485 2486 mnt_drop_write_file(filp); 2487 return ret; 2488 } 2489 2490 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2491 struct file *filp, 2492 struct f2fs_defragment *range) 2493 { 2494 struct inode *inode = file_inode(filp); 2495 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2496 .m_seg_type = NO_CHECK_TYPE, 2497 .m_may_create = false }; 2498 struct extent_info ei = {0, 0, 0}; 2499 pgoff_t pg_start, pg_end, next_pgofs; 2500 unsigned int blk_per_seg = sbi->blocks_per_seg; 2501 unsigned int total = 0, sec_num; 2502 block_t blk_end = 0; 2503 bool fragmented = false; 2504 int err; 2505 2506 pg_start = range->start >> PAGE_SHIFT; 2507 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2508 2509 f2fs_balance_fs(sbi, true); 2510 2511 inode_lock(inode); 2512 2513 /* if in-place-update policy is enabled, don't waste time here */ 2514 set_inode_flag(inode, FI_OPU_WRITE); 2515 if (f2fs_should_update_inplace(inode, NULL)) { 2516 err = -EINVAL; 2517 goto out; 2518 } 2519 2520 /* writeback all dirty pages in the range */ 2521 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2522 range->start + range->len - 1); 2523 if (err) 2524 goto out; 2525 2526 /* 2527 * lookup mapping info in extent cache, skip defragmenting if physical 2528 * block addresses are continuous. 2529 */ 2530 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2531 if (ei.fofs + ei.len >= pg_end) 2532 goto out; 2533 } 2534 2535 map.m_lblk = pg_start; 2536 map.m_next_pgofs = &next_pgofs; 2537 2538 /* 2539 * lookup mapping info in dnode page cache, skip defragmenting if all 2540 * physical block addresses are continuous even if there are hole(s) 2541 * in logical blocks. 2542 */ 2543 while (map.m_lblk < pg_end) { 2544 map.m_len = pg_end - map.m_lblk; 2545 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2546 if (err) 2547 goto out; 2548 2549 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2550 map.m_lblk = next_pgofs; 2551 continue; 2552 } 2553 2554 if (blk_end && blk_end != map.m_pblk) 2555 fragmented = true; 2556 2557 /* record total count of block that we're going to move */ 2558 total += map.m_len; 2559 2560 blk_end = map.m_pblk + map.m_len; 2561 2562 map.m_lblk += map.m_len; 2563 } 2564 2565 if (!fragmented) { 2566 total = 0; 2567 goto out; 2568 } 2569 2570 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2571 2572 /* 2573 * make sure there are enough free section for LFS allocation, this can 2574 * avoid defragment running in SSR mode when free section are allocated 2575 * intensively 2576 */ 2577 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2578 err = -EAGAIN; 2579 goto out; 2580 } 2581 2582 map.m_lblk = pg_start; 2583 map.m_len = pg_end - pg_start; 2584 total = 0; 2585 2586 while (map.m_lblk < pg_end) { 2587 pgoff_t idx; 2588 int cnt = 0; 2589 2590 do_map: 2591 map.m_len = pg_end - map.m_lblk; 2592 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2593 if (err) 2594 goto clear_out; 2595 2596 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2597 map.m_lblk = next_pgofs; 2598 goto check; 2599 } 2600 2601 set_inode_flag(inode, FI_SKIP_WRITES); 2602 2603 idx = map.m_lblk; 2604 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2605 struct page *page; 2606 2607 page = f2fs_get_lock_data_page(inode, idx, true); 2608 if (IS_ERR(page)) { 2609 err = PTR_ERR(page); 2610 goto clear_out; 2611 } 2612 2613 set_page_dirty(page); 2614 set_page_private_gcing(page); 2615 f2fs_put_page(page, 1); 2616 2617 idx++; 2618 cnt++; 2619 total++; 2620 } 2621 2622 map.m_lblk = idx; 2623 check: 2624 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2625 goto do_map; 2626 2627 clear_inode_flag(inode, FI_SKIP_WRITES); 2628 2629 err = filemap_fdatawrite(inode->i_mapping); 2630 if (err) 2631 goto out; 2632 } 2633 clear_out: 2634 clear_inode_flag(inode, FI_SKIP_WRITES); 2635 out: 2636 clear_inode_flag(inode, FI_OPU_WRITE); 2637 inode_unlock(inode); 2638 if (!err) 2639 range->len = (u64)total << PAGE_SHIFT; 2640 return err; 2641 } 2642 2643 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2644 { 2645 struct inode *inode = file_inode(filp); 2646 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2647 struct f2fs_defragment range; 2648 int err; 2649 2650 if (!capable(CAP_SYS_ADMIN)) 2651 return -EPERM; 2652 2653 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2654 return -EINVAL; 2655 2656 if (f2fs_readonly(sbi->sb)) 2657 return -EROFS; 2658 2659 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2660 sizeof(range))) 2661 return -EFAULT; 2662 2663 /* verify alignment of offset & size */ 2664 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2665 return -EINVAL; 2666 2667 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2668 max_file_blocks(inode))) 2669 return -EINVAL; 2670 2671 err = mnt_want_write_file(filp); 2672 if (err) 2673 return err; 2674 2675 err = f2fs_defragment_range(sbi, filp, &range); 2676 mnt_drop_write_file(filp); 2677 2678 f2fs_update_time(sbi, REQ_TIME); 2679 if (err < 0) 2680 return err; 2681 2682 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2683 sizeof(range))) 2684 return -EFAULT; 2685 2686 return 0; 2687 } 2688 2689 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2690 struct file *file_out, loff_t pos_out, size_t len) 2691 { 2692 struct inode *src = file_inode(file_in); 2693 struct inode *dst = file_inode(file_out); 2694 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2695 size_t olen = len, dst_max_i_size = 0; 2696 size_t dst_osize; 2697 int ret; 2698 2699 if (file_in->f_path.mnt != file_out->f_path.mnt || 2700 src->i_sb != dst->i_sb) 2701 return -EXDEV; 2702 2703 if (unlikely(f2fs_readonly(src->i_sb))) 2704 return -EROFS; 2705 2706 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2707 return -EINVAL; 2708 2709 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2710 return -EOPNOTSUPP; 2711 2712 if (pos_out < 0 || pos_in < 0) 2713 return -EINVAL; 2714 2715 if (src == dst) { 2716 if (pos_in == pos_out) 2717 return 0; 2718 if (pos_out > pos_in && pos_out < pos_in + len) 2719 return -EINVAL; 2720 } 2721 2722 inode_lock(src); 2723 if (src != dst) { 2724 ret = -EBUSY; 2725 if (!inode_trylock(dst)) 2726 goto out; 2727 } 2728 2729 ret = -EINVAL; 2730 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2731 goto out_unlock; 2732 if (len == 0) 2733 olen = len = src->i_size - pos_in; 2734 if (pos_in + len == src->i_size) 2735 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2736 if (len == 0) { 2737 ret = 0; 2738 goto out_unlock; 2739 } 2740 2741 dst_osize = dst->i_size; 2742 if (pos_out + olen > dst->i_size) 2743 dst_max_i_size = pos_out + olen; 2744 2745 /* verify the end result is block aligned */ 2746 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2747 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2748 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2749 goto out_unlock; 2750 2751 ret = f2fs_convert_inline_inode(src); 2752 if (ret) 2753 goto out_unlock; 2754 2755 ret = f2fs_convert_inline_inode(dst); 2756 if (ret) 2757 goto out_unlock; 2758 2759 /* write out all dirty pages from offset */ 2760 ret = filemap_write_and_wait_range(src->i_mapping, 2761 pos_in, pos_in + len); 2762 if (ret) 2763 goto out_unlock; 2764 2765 ret = filemap_write_and_wait_range(dst->i_mapping, 2766 pos_out, pos_out + len); 2767 if (ret) 2768 goto out_unlock; 2769 2770 f2fs_balance_fs(sbi, true); 2771 2772 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2773 if (src != dst) { 2774 ret = -EBUSY; 2775 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2776 goto out_src; 2777 } 2778 2779 f2fs_lock_op(sbi); 2780 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2781 pos_out >> F2FS_BLKSIZE_BITS, 2782 len >> F2FS_BLKSIZE_BITS, false); 2783 2784 if (!ret) { 2785 if (dst_max_i_size) 2786 f2fs_i_size_write(dst, dst_max_i_size); 2787 else if (dst_osize != dst->i_size) 2788 f2fs_i_size_write(dst, dst_osize); 2789 } 2790 f2fs_unlock_op(sbi); 2791 2792 if (src != dst) 2793 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2794 out_src: 2795 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2796 out_unlock: 2797 if (src != dst) 2798 inode_unlock(dst); 2799 out: 2800 inode_unlock(src); 2801 return ret; 2802 } 2803 2804 static int __f2fs_ioc_move_range(struct file *filp, 2805 struct f2fs_move_range *range) 2806 { 2807 struct fd dst; 2808 int err; 2809 2810 if (!(filp->f_mode & FMODE_READ) || 2811 !(filp->f_mode & FMODE_WRITE)) 2812 return -EBADF; 2813 2814 dst = fdget(range->dst_fd); 2815 if (!dst.file) 2816 return -EBADF; 2817 2818 if (!(dst.file->f_mode & FMODE_WRITE)) { 2819 err = -EBADF; 2820 goto err_out; 2821 } 2822 2823 err = mnt_want_write_file(filp); 2824 if (err) 2825 goto err_out; 2826 2827 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2828 range->pos_out, range->len); 2829 2830 mnt_drop_write_file(filp); 2831 err_out: 2832 fdput(dst); 2833 return err; 2834 } 2835 2836 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2837 { 2838 struct f2fs_move_range range; 2839 2840 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2841 sizeof(range))) 2842 return -EFAULT; 2843 return __f2fs_ioc_move_range(filp, &range); 2844 } 2845 2846 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2847 { 2848 struct inode *inode = file_inode(filp); 2849 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2850 struct sit_info *sm = SIT_I(sbi); 2851 unsigned int start_segno = 0, end_segno = 0; 2852 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2853 struct f2fs_flush_device range; 2854 struct f2fs_gc_control gc_control = { 2855 .init_gc_type = FG_GC, 2856 .should_migrate_blocks = true, 2857 .err_gc_skipped = true, 2858 .nr_free_secs = 0 }; 2859 int ret; 2860 2861 if (!capable(CAP_SYS_ADMIN)) 2862 return -EPERM; 2863 2864 if (f2fs_readonly(sbi->sb)) 2865 return -EROFS; 2866 2867 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2868 return -EINVAL; 2869 2870 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2871 sizeof(range))) 2872 return -EFAULT; 2873 2874 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2875 __is_large_section(sbi)) { 2876 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2877 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2878 return -EINVAL; 2879 } 2880 2881 ret = mnt_want_write_file(filp); 2882 if (ret) 2883 return ret; 2884 2885 if (range.dev_num != 0) 2886 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2887 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2888 2889 start_segno = sm->last_victim[FLUSH_DEVICE]; 2890 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2891 start_segno = dev_start_segno; 2892 end_segno = min(start_segno + range.segments, dev_end_segno); 2893 2894 while (start_segno < end_segno) { 2895 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2896 ret = -EBUSY; 2897 goto out; 2898 } 2899 sm->last_victim[GC_CB] = end_segno + 1; 2900 sm->last_victim[GC_GREEDY] = end_segno + 1; 2901 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2902 2903 gc_control.victim_segno = start_segno; 2904 ret = f2fs_gc(sbi, &gc_control); 2905 if (ret == -EAGAIN) 2906 ret = 0; 2907 else if (ret < 0) 2908 break; 2909 start_segno++; 2910 } 2911 out: 2912 mnt_drop_write_file(filp); 2913 return ret; 2914 } 2915 2916 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2917 { 2918 struct inode *inode = file_inode(filp); 2919 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2920 2921 /* Must validate to set it with SQLite behavior in Android. */ 2922 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2923 2924 return put_user(sb_feature, (u32 __user *)arg); 2925 } 2926 2927 #ifdef CONFIG_QUOTA 2928 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2929 { 2930 struct dquot *transfer_to[MAXQUOTAS] = {}; 2931 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2932 struct super_block *sb = sbi->sb; 2933 int err = 0; 2934 2935 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2936 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2937 err = __dquot_transfer(inode, transfer_to); 2938 if (err) 2939 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2940 dqput(transfer_to[PRJQUOTA]); 2941 } 2942 return err; 2943 } 2944 2945 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 2946 { 2947 struct f2fs_inode_info *fi = F2FS_I(inode); 2948 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2949 struct f2fs_inode *ri = NULL; 2950 kprojid_t kprojid; 2951 int err; 2952 2953 if (!f2fs_sb_has_project_quota(sbi)) { 2954 if (projid != F2FS_DEF_PROJID) 2955 return -EOPNOTSUPP; 2956 else 2957 return 0; 2958 } 2959 2960 if (!f2fs_has_extra_attr(inode)) 2961 return -EOPNOTSUPP; 2962 2963 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 2964 2965 if (projid_eq(kprojid, fi->i_projid)) 2966 return 0; 2967 2968 err = -EPERM; 2969 /* Is it quota file? Do not allow user to mess with it */ 2970 if (IS_NOQUOTA(inode)) 2971 return err; 2972 2973 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 2974 return -EOVERFLOW; 2975 2976 err = f2fs_dquot_initialize(inode); 2977 if (err) 2978 return err; 2979 2980 f2fs_lock_op(sbi); 2981 err = f2fs_transfer_project_quota(inode, kprojid); 2982 if (err) 2983 goto out_unlock; 2984 2985 fi->i_projid = kprojid; 2986 inode->i_ctime = current_time(inode); 2987 f2fs_mark_inode_dirty_sync(inode, true); 2988 out_unlock: 2989 f2fs_unlock_op(sbi); 2990 return err; 2991 } 2992 #else 2993 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2994 { 2995 return 0; 2996 } 2997 2998 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 2999 { 3000 if (projid != F2FS_DEF_PROJID) 3001 return -EOPNOTSUPP; 3002 return 0; 3003 } 3004 #endif 3005 3006 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3007 { 3008 struct inode *inode = d_inode(dentry); 3009 struct f2fs_inode_info *fi = F2FS_I(inode); 3010 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3011 3012 if (IS_ENCRYPTED(inode)) 3013 fsflags |= FS_ENCRYPT_FL; 3014 if (IS_VERITY(inode)) 3015 fsflags |= FS_VERITY_FL; 3016 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3017 fsflags |= FS_INLINE_DATA_FL; 3018 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3019 fsflags |= FS_NOCOW_FL; 3020 3021 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3022 3023 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3024 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3025 3026 return 0; 3027 } 3028 3029 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3030 struct dentry *dentry, struct fileattr *fa) 3031 { 3032 struct inode *inode = d_inode(dentry); 3033 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3034 u32 iflags; 3035 int err; 3036 3037 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3038 return -EIO; 3039 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3040 return -ENOSPC; 3041 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3042 return -EOPNOTSUPP; 3043 fsflags &= F2FS_SETTABLE_FS_FL; 3044 if (!fa->flags_valid) 3045 mask &= FS_COMMON_FL; 3046 3047 iflags = f2fs_fsflags_to_iflags(fsflags); 3048 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3049 return -EOPNOTSUPP; 3050 3051 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3052 if (!err) 3053 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3054 3055 return err; 3056 } 3057 3058 int f2fs_pin_file_control(struct inode *inode, bool inc) 3059 { 3060 struct f2fs_inode_info *fi = F2FS_I(inode); 3061 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3062 3063 /* Use i_gc_failures for normal file as a risk signal. */ 3064 if (inc) 3065 f2fs_i_gc_failures_write(inode, 3066 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3067 3068 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3069 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3070 __func__, inode->i_ino, 3071 fi->i_gc_failures[GC_FAILURE_PIN]); 3072 clear_inode_flag(inode, FI_PIN_FILE); 3073 return -EAGAIN; 3074 } 3075 return 0; 3076 } 3077 3078 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3079 { 3080 struct inode *inode = file_inode(filp); 3081 __u32 pin; 3082 int ret = 0; 3083 3084 if (get_user(pin, (__u32 __user *)arg)) 3085 return -EFAULT; 3086 3087 if (!S_ISREG(inode->i_mode)) 3088 return -EINVAL; 3089 3090 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3091 return -EROFS; 3092 3093 ret = mnt_want_write_file(filp); 3094 if (ret) 3095 return ret; 3096 3097 inode_lock(inode); 3098 3099 if (!pin) { 3100 clear_inode_flag(inode, FI_PIN_FILE); 3101 f2fs_i_gc_failures_write(inode, 0); 3102 goto done; 3103 } 3104 3105 if (f2fs_should_update_outplace(inode, NULL)) { 3106 ret = -EINVAL; 3107 goto out; 3108 } 3109 3110 if (f2fs_pin_file_control(inode, false)) { 3111 ret = -EAGAIN; 3112 goto out; 3113 } 3114 3115 ret = f2fs_convert_inline_inode(inode); 3116 if (ret) 3117 goto out; 3118 3119 if (!f2fs_disable_compressed_file(inode)) { 3120 ret = -EOPNOTSUPP; 3121 goto out; 3122 } 3123 3124 set_inode_flag(inode, FI_PIN_FILE); 3125 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3126 done: 3127 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3128 out: 3129 inode_unlock(inode); 3130 mnt_drop_write_file(filp); 3131 return ret; 3132 } 3133 3134 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3135 { 3136 struct inode *inode = file_inode(filp); 3137 __u32 pin = 0; 3138 3139 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3140 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3141 return put_user(pin, (u32 __user *)arg); 3142 } 3143 3144 int f2fs_precache_extents(struct inode *inode) 3145 { 3146 struct f2fs_inode_info *fi = F2FS_I(inode); 3147 struct f2fs_map_blocks map; 3148 pgoff_t m_next_extent; 3149 loff_t end; 3150 int err; 3151 3152 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3153 return -EOPNOTSUPP; 3154 3155 map.m_lblk = 0; 3156 map.m_next_pgofs = NULL; 3157 map.m_next_extent = &m_next_extent; 3158 map.m_seg_type = NO_CHECK_TYPE; 3159 map.m_may_create = false; 3160 end = max_file_blocks(inode); 3161 3162 while (map.m_lblk < end) { 3163 map.m_len = end - map.m_lblk; 3164 3165 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3166 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3167 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3168 if (err) 3169 return err; 3170 3171 map.m_lblk = m_next_extent; 3172 } 3173 3174 return 0; 3175 } 3176 3177 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3178 { 3179 return f2fs_precache_extents(file_inode(filp)); 3180 } 3181 3182 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3183 { 3184 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3185 __u64 block_count; 3186 3187 if (!capable(CAP_SYS_ADMIN)) 3188 return -EPERM; 3189 3190 if (f2fs_readonly(sbi->sb)) 3191 return -EROFS; 3192 3193 if (copy_from_user(&block_count, (void __user *)arg, 3194 sizeof(block_count))) 3195 return -EFAULT; 3196 3197 return f2fs_resize_fs(sbi, block_count); 3198 } 3199 3200 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3201 { 3202 struct inode *inode = file_inode(filp); 3203 3204 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3205 3206 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3207 f2fs_warn(F2FS_I_SB(inode), 3208 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3209 inode->i_ino); 3210 return -EOPNOTSUPP; 3211 } 3212 3213 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3214 } 3215 3216 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3217 { 3218 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3219 return -EOPNOTSUPP; 3220 3221 return fsverity_ioctl_measure(filp, (void __user *)arg); 3222 } 3223 3224 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3225 { 3226 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3227 return -EOPNOTSUPP; 3228 3229 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3230 } 3231 3232 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3233 { 3234 struct inode *inode = file_inode(filp); 3235 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3236 char *vbuf; 3237 int count; 3238 int err = 0; 3239 3240 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3241 if (!vbuf) 3242 return -ENOMEM; 3243 3244 f2fs_down_read(&sbi->sb_lock); 3245 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3246 ARRAY_SIZE(sbi->raw_super->volume_name), 3247 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3248 f2fs_up_read(&sbi->sb_lock); 3249 3250 if (copy_to_user((char __user *)arg, vbuf, 3251 min(FSLABEL_MAX, count))) 3252 err = -EFAULT; 3253 3254 kfree(vbuf); 3255 return err; 3256 } 3257 3258 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3259 { 3260 struct inode *inode = file_inode(filp); 3261 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3262 char *vbuf; 3263 int err = 0; 3264 3265 if (!capable(CAP_SYS_ADMIN)) 3266 return -EPERM; 3267 3268 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3269 if (IS_ERR(vbuf)) 3270 return PTR_ERR(vbuf); 3271 3272 err = mnt_want_write_file(filp); 3273 if (err) 3274 goto out; 3275 3276 f2fs_down_write(&sbi->sb_lock); 3277 3278 memset(sbi->raw_super->volume_name, 0, 3279 sizeof(sbi->raw_super->volume_name)); 3280 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3281 sbi->raw_super->volume_name, 3282 ARRAY_SIZE(sbi->raw_super->volume_name)); 3283 3284 err = f2fs_commit_super(sbi, false); 3285 3286 f2fs_up_write(&sbi->sb_lock); 3287 3288 mnt_drop_write_file(filp); 3289 out: 3290 kfree(vbuf); 3291 return err; 3292 } 3293 3294 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3295 { 3296 struct inode *inode = file_inode(filp); 3297 __u64 blocks; 3298 3299 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3300 return -EOPNOTSUPP; 3301 3302 if (!f2fs_compressed_file(inode)) 3303 return -EINVAL; 3304 3305 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3306 return put_user(blocks, (u64 __user *)arg); 3307 } 3308 3309 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3310 { 3311 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3312 unsigned int released_blocks = 0; 3313 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3314 block_t blkaddr; 3315 int i; 3316 3317 for (i = 0; i < count; i++) { 3318 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3319 dn->ofs_in_node + i); 3320 3321 if (!__is_valid_data_blkaddr(blkaddr)) 3322 continue; 3323 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3324 DATA_GENERIC_ENHANCE))) 3325 return -EFSCORRUPTED; 3326 } 3327 3328 while (count) { 3329 int compr_blocks = 0; 3330 3331 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3332 blkaddr = f2fs_data_blkaddr(dn); 3333 3334 if (i == 0) { 3335 if (blkaddr == COMPRESS_ADDR) 3336 continue; 3337 dn->ofs_in_node += cluster_size; 3338 goto next; 3339 } 3340 3341 if (__is_valid_data_blkaddr(blkaddr)) 3342 compr_blocks++; 3343 3344 if (blkaddr != NEW_ADDR) 3345 continue; 3346 3347 dn->data_blkaddr = NULL_ADDR; 3348 f2fs_set_data_blkaddr(dn); 3349 } 3350 3351 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3352 dec_valid_block_count(sbi, dn->inode, 3353 cluster_size - compr_blocks); 3354 3355 released_blocks += cluster_size - compr_blocks; 3356 next: 3357 count -= cluster_size; 3358 } 3359 3360 return released_blocks; 3361 } 3362 3363 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3364 { 3365 struct inode *inode = file_inode(filp); 3366 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3367 pgoff_t page_idx = 0, last_idx; 3368 unsigned int released_blocks = 0; 3369 int ret; 3370 int writecount; 3371 3372 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3373 return -EOPNOTSUPP; 3374 3375 if (!f2fs_compressed_file(inode)) 3376 return -EINVAL; 3377 3378 if (f2fs_readonly(sbi->sb)) 3379 return -EROFS; 3380 3381 ret = mnt_want_write_file(filp); 3382 if (ret) 3383 return ret; 3384 3385 f2fs_balance_fs(F2FS_I_SB(inode), true); 3386 3387 inode_lock(inode); 3388 3389 writecount = atomic_read(&inode->i_writecount); 3390 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3391 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3392 ret = -EBUSY; 3393 goto out; 3394 } 3395 3396 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3397 ret = -EINVAL; 3398 goto out; 3399 } 3400 3401 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3402 if (ret) 3403 goto out; 3404 3405 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3406 inode->i_ctime = current_time(inode); 3407 f2fs_mark_inode_dirty_sync(inode, true); 3408 3409 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3410 goto out; 3411 3412 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3413 filemap_invalidate_lock(inode->i_mapping); 3414 3415 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3416 3417 while (page_idx < last_idx) { 3418 struct dnode_of_data dn; 3419 pgoff_t end_offset, count; 3420 3421 set_new_dnode(&dn, inode, NULL, NULL, 0); 3422 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3423 if (ret) { 3424 if (ret == -ENOENT) { 3425 page_idx = f2fs_get_next_page_offset(&dn, 3426 page_idx); 3427 ret = 0; 3428 continue; 3429 } 3430 break; 3431 } 3432 3433 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3434 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3435 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3436 3437 ret = release_compress_blocks(&dn, count); 3438 3439 f2fs_put_dnode(&dn); 3440 3441 if (ret < 0) 3442 break; 3443 3444 page_idx += count; 3445 released_blocks += ret; 3446 } 3447 3448 filemap_invalidate_unlock(inode->i_mapping); 3449 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3450 out: 3451 inode_unlock(inode); 3452 3453 mnt_drop_write_file(filp); 3454 3455 if (ret >= 0) { 3456 ret = put_user(released_blocks, (u64 __user *)arg); 3457 } else if (released_blocks && 3458 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3459 set_sbi_flag(sbi, SBI_NEED_FSCK); 3460 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3461 "iblocks=%llu, released=%u, compr_blocks=%u, " 3462 "run fsck to fix.", 3463 __func__, inode->i_ino, inode->i_blocks, 3464 released_blocks, 3465 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3466 } 3467 3468 return ret; 3469 } 3470 3471 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3472 { 3473 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3474 unsigned int reserved_blocks = 0; 3475 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3476 block_t blkaddr; 3477 int i; 3478 3479 for (i = 0; i < count; i++) { 3480 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3481 dn->ofs_in_node + i); 3482 3483 if (!__is_valid_data_blkaddr(blkaddr)) 3484 continue; 3485 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3486 DATA_GENERIC_ENHANCE))) 3487 return -EFSCORRUPTED; 3488 } 3489 3490 while (count) { 3491 int compr_blocks = 0; 3492 blkcnt_t reserved; 3493 int ret; 3494 3495 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3496 blkaddr = f2fs_data_blkaddr(dn); 3497 3498 if (i == 0) { 3499 if (blkaddr == COMPRESS_ADDR) 3500 continue; 3501 dn->ofs_in_node += cluster_size; 3502 goto next; 3503 } 3504 3505 if (__is_valid_data_blkaddr(blkaddr)) { 3506 compr_blocks++; 3507 continue; 3508 } 3509 3510 dn->data_blkaddr = NEW_ADDR; 3511 f2fs_set_data_blkaddr(dn); 3512 } 3513 3514 reserved = cluster_size - compr_blocks; 3515 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3516 if (ret) 3517 return ret; 3518 3519 if (reserved != cluster_size - compr_blocks) 3520 return -ENOSPC; 3521 3522 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3523 3524 reserved_blocks += reserved; 3525 next: 3526 count -= cluster_size; 3527 } 3528 3529 return reserved_blocks; 3530 } 3531 3532 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3533 { 3534 struct inode *inode = file_inode(filp); 3535 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3536 pgoff_t page_idx = 0, last_idx; 3537 unsigned int reserved_blocks = 0; 3538 int ret; 3539 3540 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3541 return -EOPNOTSUPP; 3542 3543 if (!f2fs_compressed_file(inode)) 3544 return -EINVAL; 3545 3546 if (f2fs_readonly(sbi->sb)) 3547 return -EROFS; 3548 3549 ret = mnt_want_write_file(filp); 3550 if (ret) 3551 return ret; 3552 3553 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3554 goto out; 3555 3556 f2fs_balance_fs(F2FS_I_SB(inode), true); 3557 3558 inode_lock(inode); 3559 3560 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3561 ret = -EINVAL; 3562 goto unlock_inode; 3563 } 3564 3565 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3566 filemap_invalidate_lock(inode->i_mapping); 3567 3568 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3569 3570 while (page_idx < last_idx) { 3571 struct dnode_of_data dn; 3572 pgoff_t end_offset, count; 3573 3574 set_new_dnode(&dn, inode, NULL, NULL, 0); 3575 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3576 if (ret) { 3577 if (ret == -ENOENT) { 3578 page_idx = f2fs_get_next_page_offset(&dn, 3579 page_idx); 3580 ret = 0; 3581 continue; 3582 } 3583 break; 3584 } 3585 3586 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3587 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3588 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3589 3590 ret = reserve_compress_blocks(&dn, count); 3591 3592 f2fs_put_dnode(&dn); 3593 3594 if (ret < 0) 3595 break; 3596 3597 page_idx += count; 3598 reserved_blocks += ret; 3599 } 3600 3601 filemap_invalidate_unlock(inode->i_mapping); 3602 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3603 3604 if (ret >= 0) { 3605 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3606 inode->i_ctime = current_time(inode); 3607 f2fs_mark_inode_dirty_sync(inode, true); 3608 } 3609 unlock_inode: 3610 inode_unlock(inode); 3611 out: 3612 mnt_drop_write_file(filp); 3613 3614 if (ret >= 0) { 3615 ret = put_user(reserved_blocks, (u64 __user *)arg); 3616 } else if (reserved_blocks && 3617 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3618 set_sbi_flag(sbi, SBI_NEED_FSCK); 3619 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3620 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3621 "run fsck to fix.", 3622 __func__, inode->i_ino, inode->i_blocks, 3623 reserved_blocks, 3624 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3625 } 3626 3627 return ret; 3628 } 3629 3630 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3631 pgoff_t off, block_t block, block_t len, u32 flags) 3632 { 3633 sector_t sector = SECTOR_FROM_BLOCK(block); 3634 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3635 int ret = 0; 3636 3637 if (flags & F2FS_TRIM_FILE_DISCARD) { 3638 if (bdev_max_secure_erase_sectors(bdev)) 3639 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3640 GFP_NOFS); 3641 else 3642 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3643 GFP_NOFS); 3644 } 3645 3646 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3647 if (IS_ENCRYPTED(inode)) 3648 ret = fscrypt_zeroout_range(inode, off, block, len); 3649 else 3650 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3651 GFP_NOFS, 0); 3652 } 3653 3654 return ret; 3655 } 3656 3657 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3658 { 3659 struct inode *inode = file_inode(filp); 3660 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3661 struct address_space *mapping = inode->i_mapping; 3662 struct block_device *prev_bdev = NULL; 3663 struct f2fs_sectrim_range range; 3664 pgoff_t index, pg_end, prev_index = 0; 3665 block_t prev_block = 0, len = 0; 3666 loff_t end_addr; 3667 bool to_end = false; 3668 int ret = 0; 3669 3670 if (!(filp->f_mode & FMODE_WRITE)) 3671 return -EBADF; 3672 3673 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3674 sizeof(range))) 3675 return -EFAULT; 3676 3677 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3678 !S_ISREG(inode->i_mode)) 3679 return -EINVAL; 3680 3681 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3682 !f2fs_hw_support_discard(sbi)) || 3683 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3684 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3685 return -EOPNOTSUPP; 3686 3687 file_start_write(filp); 3688 inode_lock(inode); 3689 3690 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3691 range.start >= inode->i_size) { 3692 ret = -EINVAL; 3693 goto err; 3694 } 3695 3696 if (range.len == 0) 3697 goto err; 3698 3699 if (inode->i_size - range.start > range.len) { 3700 end_addr = range.start + range.len; 3701 } else { 3702 end_addr = range.len == (u64)-1 ? 3703 sbi->sb->s_maxbytes : inode->i_size; 3704 to_end = true; 3705 } 3706 3707 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3708 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3709 ret = -EINVAL; 3710 goto err; 3711 } 3712 3713 index = F2FS_BYTES_TO_BLK(range.start); 3714 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3715 3716 ret = f2fs_convert_inline_inode(inode); 3717 if (ret) 3718 goto err; 3719 3720 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3721 filemap_invalidate_lock(mapping); 3722 3723 ret = filemap_write_and_wait_range(mapping, range.start, 3724 to_end ? LLONG_MAX : end_addr - 1); 3725 if (ret) 3726 goto out; 3727 3728 truncate_inode_pages_range(mapping, range.start, 3729 to_end ? -1 : end_addr - 1); 3730 3731 while (index < pg_end) { 3732 struct dnode_of_data dn; 3733 pgoff_t end_offset, count; 3734 int i; 3735 3736 set_new_dnode(&dn, inode, NULL, NULL, 0); 3737 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3738 if (ret) { 3739 if (ret == -ENOENT) { 3740 index = f2fs_get_next_page_offset(&dn, index); 3741 continue; 3742 } 3743 goto out; 3744 } 3745 3746 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3747 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3748 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3749 struct block_device *cur_bdev; 3750 block_t blkaddr = f2fs_data_blkaddr(&dn); 3751 3752 if (!__is_valid_data_blkaddr(blkaddr)) 3753 continue; 3754 3755 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3756 DATA_GENERIC_ENHANCE)) { 3757 ret = -EFSCORRUPTED; 3758 f2fs_put_dnode(&dn); 3759 goto out; 3760 } 3761 3762 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3763 if (f2fs_is_multi_device(sbi)) { 3764 int di = f2fs_target_device_index(sbi, blkaddr); 3765 3766 blkaddr -= FDEV(di).start_blk; 3767 } 3768 3769 if (len) { 3770 if (prev_bdev == cur_bdev && 3771 index == prev_index + len && 3772 blkaddr == prev_block + len) { 3773 len++; 3774 } else { 3775 ret = f2fs_secure_erase(prev_bdev, 3776 inode, prev_index, prev_block, 3777 len, range.flags); 3778 if (ret) { 3779 f2fs_put_dnode(&dn); 3780 goto out; 3781 } 3782 3783 len = 0; 3784 } 3785 } 3786 3787 if (!len) { 3788 prev_bdev = cur_bdev; 3789 prev_index = index; 3790 prev_block = blkaddr; 3791 len = 1; 3792 } 3793 } 3794 3795 f2fs_put_dnode(&dn); 3796 3797 if (fatal_signal_pending(current)) { 3798 ret = -EINTR; 3799 goto out; 3800 } 3801 cond_resched(); 3802 } 3803 3804 if (len) 3805 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3806 prev_block, len, range.flags); 3807 out: 3808 filemap_invalidate_unlock(mapping); 3809 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3810 err: 3811 inode_unlock(inode); 3812 file_end_write(filp); 3813 3814 return ret; 3815 } 3816 3817 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3818 { 3819 struct inode *inode = file_inode(filp); 3820 struct f2fs_comp_option option; 3821 3822 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3823 return -EOPNOTSUPP; 3824 3825 inode_lock_shared(inode); 3826 3827 if (!f2fs_compressed_file(inode)) { 3828 inode_unlock_shared(inode); 3829 return -ENODATA; 3830 } 3831 3832 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3833 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3834 3835 inode_unlock_shared(inode); 3836 3837 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3838 sizeof(option))) 3839 return -EFAULT; 3840 3841 return 0; 3842 } 3843 3844 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 3845 { 3846 struct inode *inode = file_inode(filp); 3847 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3848 struct f2fs_comp_option option; 3849 int ret = 0; 3850 3851 if (!f2fs_sb_has_compression(sbi)) 3852 return -EOPNOTSUPP; 3853 3854 if (!(filp->f_mode & FMODE_WRITE)) 3855 return -EBADF; 3856 3857 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 3858 sizeof(option))) 3859 return -EFAULT; 3860 3861 if (!f2fs_compressed_file(inode) || 3862 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 3863 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 3864 option.algorithm >= COMPRESS_MAX) 3865 return -EINVAL; 3866 3867 file_start_write(filp); 3868 inode_lock(inode); 3869 3870 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 3871 ret = -EBUSY; 3872 goto out; 3873 } 3874 3875 if (inode->i_size != 0) { 3876 ret = -EFBIG; 3877 goto out; 3878 } 3879 3880 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 3881 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 3882 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size; 3883 f2fs_mark_inode_dirty_sync(inode, true); 3884 3885 if (!f2fs_is_compress_backend_ready(inode)) 3886 f2fs_warn(sbi, "compression algorithm is successfully set, " 3887 "but current kernel doesn't support this algorithm."); 3888 out: 3889 inode_unlock(inode); 3890 file_end_write(filp); 3891 3892 return ret; 3893 } 3894 3895 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 3896 { 3897 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 3898 struct address_space *mapping = inode->i_mapping; 3899 struct page *page; 3900 pgoff_t redirty_idx = page_idx; 3901 int i, page_len = 0, ret = 0; 3902 3903 page_cache_ra_unbounded(&ractl, len, 0); 3904 3905 for (i = 0; i < len; i++, page_idx++) { 3906 page = read_cache_page(mapping, page_idx, NULL, NULL); 3907 if (IS_ERR(page)) { 3908 ret = PTR_ERR(page); 3909 break; 3910 } 3911 page_len++; 3912 } 3913 3914 for (i = 0; i < page_len; i++, redirty_idx++) { 3915 page = find_lock_page(mapping, redirty_idx); 3916 3917 /* It will never fail, when page has pinned above */ 3918 f2fs_bug_on(F2FS_I_SB(inode), !page); 3919 3920 set_page_dirty(page); 3921 f2fs_put_page(page, 1); 3922 f2fs_put_page(page, 0); 3923 } 3924 3925 return ret; 3926 } 3927 3928 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg) 3929 { 3930 struct inode *inode = file_inode(filp); 3931 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3932 struct f2fs_inode_info *fi = F2FS_I(inode); 3933 pgoff_t page_idx = 0, last_idx; 3934 unsigned int blk_per_seg = sbi->blocks_per_seg; 3935 int cluster_size = fi->i_cluster_size; 3936 int count, ret; 3937 3938 if (!f2fs_sb_has_compression(sbi) || 3939 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 3940 return -EOPNOTSUPP; 3941 3942 if (!(filp->f_mode & FMODE_WRITE)) 3943 return -EBADF; 3944 3945 if (!f2fs_compressed_file(inode)) 3946 return -EINVAL; 3947 3948 f2fs_balance_fs(F2FS_I_SB(inode), true); 3949 3950 file_start_write(filp); 3951 inode_lock(inode); 3952 3953 if (!f2fs_is_compress_backend_ready(inode)) { 3954 ret = -EOPNOTSUPP; 3955 goto out; 3956 } 3957 3958 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3959 ret = -EINVAL; 3960 goto out; 3961 } 3962 3963 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3964 if (ret) 3965 goto out; 3966 3967 if (!atomic_read(&fi->i_compr_blocks)) 3968 goto out; 3969 3970 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3971 3972 count = last_idx - page_idx; 3973 while (count) { 3974 int len = min(cluster_size, count); 3975 3976 ret = redirty_blocks(inode, page_idx, len); 3977 if (ret < 0) 3978 break; 3979 3980 if (get_dirty_pages(inode) >= blk_per_seg) 3981 filemap_fdatawrite(inode->i_mapping); 3982 3983 count -= len; 3984 page_idx += len; 3985 } 3986 3987 if (!ret) 3988 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 3989 LLONG_MAX); 3990 3991 if (ret) 3992 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 3993 __func__, ret); 3994 out: 3995 inode_unlock(inode); 3996 file_end_write(filp); 3997 3998 return ret; 3999 } 4000 4001 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg) 4002 { 4003 struct inode *inode = file_inode(filp); 4004 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4005 pgoff_t page_idx = 0, last_idx; 4006 unsigned int blk_per_seg = sbi->blocks_per_seg; 4007 int cluster_size = F2FS_I(inode)->i_cluster_size; 4008 int count, ret; 4009 4010 if (!f2fs_sb_has_compression(sbi) || 4011 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4012 return -EOPNOTSUPP; 4013 4014 if (!(filp->f_mode & FMODE_WRITE)) 4015 return -EBADF; 4016 4017 if (!f2fs_compressed_file(inode)) 4018 return -EINVAL; 4019 4020 f2fs_balance_fs(F2FS_I_SB(inode), true); 4021 4022 file_start_write(filp); 4023 inode_lock(inode); 4024 4025 if (!f2fs_is_compress_backend_ready(inode)) { 4026 ret = -EOPNOTSUPP; 4027 goto out; 4028 } 4029 4030 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4031 ret = -EINVAL; 4032 goto out; 4033 } 4034 4035 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4036 if (ret) 4037 goto out; 4038 4039 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4040 4041 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4042 4043 count = last_idx - page_idx; 4044 while (count) { 4045 int len = min(cluster_size, count); 4046 4047 ret = redirty_blocks(inode, page_idx, len); 4048 if (ret < 0) 4049 break; 4050 4051 if (get_dirty_pages(inode) >= blk_per_seg) 4052 filemap_fdatawrite(inode->i_mapping); 4053 4054 count -= len; 4055 page_idx += len; 4056 } 4057 4058 if (!ret) 4059 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4060 LLONG_MAX); 4061 4062 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4063 4064 if (ret) 4065 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4066 __func__, ret); 4067 out: 4068 inode_unlock(inode); 4069 file_end_write(filp); 4070 4071 return ret; 4072 } 4073 4074 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4075 { 4076 switch (cmd) { 4077 case FS_IOC_GETVERSION: 4078 return f2fs_ioc_getversion(filp, arg); 4079 case F2FS_IOC_START_ATOMIC_WRITE: 4080 return f2fs_ioc_start_atomic_write(filp); 4081 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4082 return f2fs_ioc_commit_atomic_write(filp); 4083 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4084 return f2fs_ioc_abort_atomic_write(filp); 4085 case F2FS_IOC_START_VOLATILE_WRITE: 4086 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4087 return -EOPNOTSUPP; 4088 case F2FS_IOC_SHUTDOWN: 4089 return f2fs_ioc_shutdown(filp, arg); 4090 case FITRIM: 4091 return f2fs_ioc_fitrim(filp, arg); 4092 case FS_IOC_SET_ENCRYPTION_POLICY: 4093 return f2fs_ioc_set_encryption_policy(filp, arg); 4094 case FS_IOC_GET_ENCRYPTION_POLICY: 4095 return f2fs_ioc_get_encryption_policy(filp, arg); 4096 case FS_IOC_GET_ENCRYPTION_PWSALT: 4097 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4098 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4099 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4100 case FS_IOC_ADD_ENCRYPTION_KEY: 4101 return f2fs_ioc_add_encryption_key(filp, arg); 4102 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4103 return f2fs_ioc_remove_encryption_key(filp, arg); 4104 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4105 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4106 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4107 return f2fs_ioc_get_encryption_key_status(filp, arg); 4108 case FS_IOC_GET_ENCRYPTION_NONCE: 4109 return f2fs_ioc_get_encryption_nonce(filp, arg); 4110 case F2FS_IOC_GARBAGE_COLLECT: 4111 return f2fs_ioc_gc(filp, arg); 4112 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4113 return f2fs_ioc_gc_range(filp, arg); 4114 case F2FS_IOC_WRITE_CHECKPOINT: 4115 return f2fs_ioc_write_checkpoint(filp, arg); 4116 case F2FS_IOC_DEFRAGMENT: 4117 return f2fs_ioc_defragment(filp, arg); 4118 case F2FS_IOC_MOVE_RANGE: 4119 return f2fs_ioc_move_range(filp, arg); 4120 case F2FS_IOC_FLUSH_DEVICE: 4121 return f2fs_ioc_flush_device(filp, arg); 4122 case F2FS_IOC_GET_FEATURES: 4123 return f2fs_ioc_get_features(filp, arg); 4124 case F2FS_IOC_GET_PIN_FILE: 4125 return f2fs_ioc_get_pin_file(filp, arg); 4126 case F2FS_IOC_SET_PIN_FILE: 4127 return f2fs_ioc_set_pin_file(filp, arg); 4128 case F2FS_IOC_PRECACHE_EXTENTS: 4129 return f2fs_ioc_precache_extents(filp, arg); 4130 case F2FS_IOC_RESIZE_FS: 4131 return f2fs_ioc_resize_fs(filp, arg); 4132 case FS_IOC_ENABLE_VERITY: 4133 return f2fs_ioc_enable_verity(filp, arg); 4134 case FS_IOC_MEASURE_VERITY: 4135 return f2fs_ioc_measure_verity(filp, arg); 4136 case FS_IOC_READ_VERITY_METADATA: 4137 return f2fs_ioc_read_verity_metadata(filp, arg); 4138 case FS_IOC_GETFSLABEL: 4139 return f2fs_ioc_getfslabel(filp, arg); 4140 case FS_IOC_SETFSLABEL: 4141 return f2fs_ioc_setfslabel(filp, arg); 4142 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4143 return f2fs_get_compress_blocks(filp, arg); 4144 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4145 return f2fs_release_compress_blocks(filp, arg); 4146 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4147 return f2fs_reserve_compress_blocks(filp, arg); 4148 case F2FS_IOC_SEC_TRIM_FILE: 4149 return f2fs_sec_trim_file(filp, arg); 4150 case F2FS_IOC_GET_COMPRESS_OPTION: 4151 return f2fs_ioc_get_compress_option(filp, arg); 4152 case F2FS_IOC_SET_COMPRESS_OPTION: 4153 return f2fs_ioc_set_compress_option(filp, arg); 4154 case F2FS_IOC_DECOMPRESS_FILE: 4155 return f2fs_ioc_decompress_file(filp, arg); 4156 case F2FS_IOC_COMPRESS_FILE: 4157 return f2fs_ioc_compress_file(filp, arg); 4158 default: 4159 return -ENOTTY; 4160 } 4161 } 4162 4163 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4164 { 4165 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4166 return -EIO; 4167 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4168 return -ENOSPC; 4169 4170 return __f2fs_ioctl(filp, cmd, arg); 4171 } 4172 4173 /* 4174 * Return %true if the given read or write request should use direct I/O, or 4175 * %false if it should use buffered I/O. 4176 */ 4177 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4178 struct iov_iter *iter) 4179 { 4180 unsigned int align; 4181 4182 if (!(iocb->ki_flags & IOCB_DIRECT)) 4183 return false; 4184 4185 if (f2fs_force_buffered_io(inode, iocb, iter)) 4186 return false; 4187 4188 /* 4189 * Direct I/O not aligned to the disk's logical_block_size will be 4190 * attempted, but will fail with -EINVAL. 4191 * 4192 * f2fs additionally requires that direct I/O be aligned to the 4193 * filesystem block size, which is often a stricter requirement. 4194 * However, f2fs traditionally falls back to buffered I/O on requests 4195 * that are logical_block_size-aligned but not fs-block aligned. 4196 * 4197 * The below logic implements this behavior. 4198 */ 4199 align = iocb->ki_pos | iov_iter_alignment(iter); 4200 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4201 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4202 return false; 4203 4204 return true; 4205 } 4206 4207 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4208 unsigned int flags) 4209 { 4210 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4211 4212 dec_page_count(sbi, F2FS_DIO_READ); 4213 if (error) 4214 return error; 4215 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, size); 4216 return 0; 4217 } 4218 4219 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4220 .end_io = f2fs_dio_read_end_io, 4221 }; 4222 4223 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4224 { 4225 struct file *file = iocb->ki_filp; 4226 struct inode *inode = file_inode(file); 4227 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4228 struct f2fs_inode_info *fi = F2FS_I(inode); 4229 const loff_t pos = iocb->ki_pos; 4230 const size_t count = iov_iter_count(to); 4231 struct iomap_dio *dio; 4232 ssize_t ret; 4233 4234 if (count == 0) 4235 return 0; /* skip atime update */ 4236 4237 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4238 4239 if (iocb->ki_flags & IOCB_NOWAIT) { 4240 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4241 ret = -EAGAIN; 4242 goto out; 4243 } 4244 } else { 4245 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4246 } 4247 4248 /* 4249 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4250 * the higher-level function iomap_dio_rw() in order to ensure that the 4251 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4252 */ 4253 inc_page_count(sbi, F2FS_DIO_READ); 4254 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4255 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4256 if (IS_ERR_OR_NULL(dio)) { 4257 ret = PTR_ERR_OR_ZERO(dio); 4258 if (ret != -EIOCBQUEUED) 4259 dec_page_count(sbi, F2FS_DIO_READ); 4260 } else { 4261 ret = iomap_dio_complete(dio); 4262 } 4263 4264 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4265 4266 file_accessed(file); 4267 out: 4268 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4269 return ret; 4270 } 4271 4272 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4273 { 4274 struct inode *inode = file_inode(iocb->ki_filp); 4275 const loff_t pos = iocb->ki_pos; 4276 ssize_t ret; 4277 4278 if (!f2fs_is_compress_backend_ready(inode)) 4279 return -EOPNOTSUPP; 4280 4281 if (trace_f2fs_dataread_start_enabled()) { 4282 char *p = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL); 4283 char *path; 4284 4285 if (!p) 4286 goto skip_read_trace; 4287 4288 path = dentry_path_raw(file_dentry(iocb->ki_filp), p, PATH_MAX); 4289 if (IS_ERR(path)) { 4290 kfree(p); 4291 goto skip_read_trace; 4292 } 4293 4294 trace_f2fs_dataread_start(inode, pos, iov_iter_count(to), 4295 current->pid, path, current->comm); 4296 kfree(p); 4297 } 4298 skip_read_trace: 4299 if (f2fs_should_use_dio(inode, iocb, to)) { 4300 ret = f2fs_dio_read_iter(iocb, to); 4301 } else { 4302 ret = filemap_read(iocb, to, 0); 4303 if (ret > 0) 4304 f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_READ_IO, ret); 4305 } 4306 if (trace_f2fs_dataread_end_enabled()) 4307 trace_f2fs_dataread_end(inode, pos, ret); 4308 return ret; 4309 } 4310 4311 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4312 { 4313 struct file *file = iocb->ki_filp; 4314 struct inode *inode = file_inode(file); 4315 ssize_t count; 4316 int err; 4317 4318 if (IS_IMMUTABLE(inode)) 4319 return -EPERM; 4320 4321 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4322 return -EPERM; 4323 4324 count = generic_write_checks(iocb, from); 4325 if (count <= 0) 4326 return count; 4327 4328 err = file_modified(file); 4329 if (err) 4330 return err; 4331 return count; 4332 } 4333 4334 /* 4335 * Preallocate blocks for a write request, if it is possible and helpful to do 4336 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4337 * blocks were preallocated, or a negative errno value if something went 4338 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4339 * requested blocks (not just some of them) have been allocated. 4340 */ 4341 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4342 bool dio) 4343 { 4344 struct inode *inode = file_inode(iocb->ki_filp); 4345 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4346 const loff_t pos = iocb->ki_pos; 4347 const size_t count = iov_iter_count(iter); 4348 struct f2fs_map_blocks map = {}; 4349 int flag; 4350 int ret; 4351 4352 /* If it will be an out-of-place direct write, don't bother. */ 4353 if (dio && f2fs_lfs_mode(sbi)) 4354 return 0; 4355 /* 4356 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4357 * buffered IO, if DIO meets any holes. 4358 */ 4359 if (dio && i_size_read(inode) && 4360 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4361 return 0; 4362 4363 /* No-wait I/O can't allocate blocks. */ 4364 if (iocb->ki_flags & IOCB_NOWAIT) 4365 return 0; 4366 4367 /* If it will be a short write, don't bother. */ 4368 if (fault_in_iov_iter_readable(iter, count)) 4369 return 0; 4370 4371 if (f2fs_has_inline_data(inode)) { 4372 /* If the data will fit inline, don't bother. */ 4373 if (pos + count <= MAX_INLINE_DATA(inode)) 4374 return 0; 4375 ret = f2fs_convert_inline_inode(inode); 4376 if (ret) 4377 return ret; 4378 } 4379 4380 /* Do not preallocate blocks that will be written partially in 4KB. */ 4381 map.m_lblk = F2FS_BLK_ALIGN(pos); 4382 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4383 if (map.m_len > map.m_lblk) 4384 map.m_len -= map.m_lblk; 4385 else 4386 map.m_len = 0; 4387 map.m_may_create = true; 4388 if (dio) { 4389 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4390 flag = F2FS_GET_BLOCK_PRE_DIO; 4391 } else { 4392 map.m_seg_type = NO_CHECK_TYPE; 4393 flag = F2FS_GET_BLOCK_PRE_AIO; 4394 } 4395 4396 ret = f2fs_map_blocks(inode, &map, 1, flag); 4397 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4398 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4399 return ret; 4400 if (ret == 0) 4401 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4402 return map.m_len; 4403 } 4404 4405 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4406 struct iov_iter *from) 4407 { 4408 struct file *file = iocb->ki_filp; 4409 struct inode *inode = file_inode(file); 4410 ssize_t ret; 4411 4412 if (iocb->ki_flags & IOCB_NOWAIT) 4413 return -EOPNOTSUPP; 4414 4415 current->backing_dev_info = inode_to_bdi(inode); 4416 ret = generic_perform_write(iocb, from); 4417 current->backing_dev_info = NULL; 4418 4419 if (ret > 0) { 4420 iocb->ki_pos += ret; 4421 f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_IO, ret); 4422 } 4423 return ret; 4424 } 4425 4426 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4427 unsigned int flags) 4428 { 4429 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4430 4431 dec_page_count(sbi, F2FS_DIO_WRITE); 4432 if (error) 4433 return error; 4434 f2fs_update_iostat(sbi, APP_DIRECT_IO, size); 4435 return 0; 4436 } 4437 4438 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4439 .end_io = f2fs_dio_write_end_io, 4440 }; 4441 4442 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4443 bool *may_need_sync) 4444 { 4445 struct file *file = iocb->ki_filp; 4446 struct inode *inode = file_inode(file); 4447 struct f2fs_inode_info *fi = F2FS_I(inode); 4448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4449 const bool do_opu = f2fs_lfs_mode(sbi); 4450 const loff_t pos = iocb->ki_pos; 4451 const ssize_t count = iov_iter_count(from); 4452 unsigned int dio_flags; 4453 struct iomap_dio *dio; 4454 ssize_t ret; 4455 4456 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4457 4458 if (iocb->ki_flags & IOCB_NOWAIT) { 4459 /* f2fs_convert_inline_inode() and block allocation can block */ 4460 if (f2fs_has_inline_data(inode) || 4461 !f2fs_overwrite_io(inode, pos, count)) { 4462 ret = -EAGAIN; 4463 goto out; 4464 } 4465 4466 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4467 ret = -EAGAIN; 4468 goto out; 4469 } 4470 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4471 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4472 ret = -EAGAIN; 4473 goto out; 4474 } 4475 } else { 4476 ret = f2fs_convert_inline_inode(inode); 4477 if (ret) 4478 goto out; 4479 4480 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4481 if (do_opu) 4482 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4483 } 4484 4485 /* 4486 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4487 * the higher-level function iomap_dio_rw() in order to ensure that the 4488 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4489 */ 4490 inc_page_count(sbi, F2FS_DIO_WRITE); 4491 dio_flags = 0; 4492 if (pos + count > inode->i_size) 4493 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4494 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4495 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4496 if (IS_ERR_OR_NULL(dio)) { 4497 ret = PTR_ERR_OR_ZERO(dio); 4498 if (ret == -ENOTBLK) 4499 ret = 0; 4500 if (ret != -EIOCBQUEUED) 4501 dec_page_count(sbi, F2FS_DIO_WRITE); 4502 } else { 4503 ret = iomap_dio_complete(dio); 4504 } 4505 4506 if (do_opu) 4507 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4508 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4509 4510 if (ret < 0) 4511 goto out; 4512 if (pos + ret > inode->i_size) 4513 f2fs_i_size_write(inode, pos + ret); 4514 if (!do_opu) 4515 set_inode_flag(inode, FI_UPDATE_WRITE); 4516 4517 if (iov_iter_count(from)) { 4518 ssize_t ret2; 4519 loff_t bufio_start_pos = iocb->ki_pos; 4520 4521 /* 4522 * The direct write was partial, so we need to fall back to a 4523 * buffered write for the remainder. 4524 */ 4525 4526 ret2 = f2fs_buffered_write_iter(iocb, from); 4527 if (iov_iter_count(from)) 4528 f2fs_write_failed(inode, iocb->ki_pos); 4529 if (ret2 < 0) 4530 goto out; 4531 4532 /* 4533 * Ensure that the pagecache pages are written to disk and 4534 * invalidated to preserve the expected O_DIRECT semantics. 4535 */ 4536 if (ret2 > 0) { 4537 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4538 4539 ret += ret2; 4540 4541 ret2 = filemap_write_and_wait_range(file->f_mapping, 4542 bufio_start_pos, 4543 bufio_end_pos); 4544 if (ret2 < 0) 4545 goto out; 4546 invalidate_mapping_pages(file->f_mapping, 4547 bufio_start_pos >> PAGE_SHIFT, 4548 bufio_end_pos >> PAGE_SHIFT); 4549 } 4550 } else { 4551 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4552 *may_need_sync = false; 4553 } 4554 out: 4555 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4556 return ret; 4557 } 4558 4559 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4560 { 4561 struct inode *inode = file_inode(iocb->ki_filp); 4562 const loff_t orig_pos = iocb->ki_pos; 4563 const size_t orig_count = iov_iter_count(from); 4564 loff_t target_size; 4565 bool dio; 4566 bool may_need_sync = true; 4567 int preallocated; 4568 ssize_t ret; 4569 4570 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4571 ret = -EIO; 4572 goto out; 4573 } 4574 4575 if (!f2fs_is_compress_backend_ready(inode)) { 4576 ret = -EOPNOTSUPP; 4577 goto out; 4578 } 4579 4580 if (iocb->ki_flags & IOCB_NOWAIT) { 4581 if (!inode_trylock(inode)) { 4582 ret = -EAGAIN; 4583 goto out; 4584 } 4585 } else { 4586 inode_lock(inode); 4587 } 4588 4589 ret = f2fs_write_checks(iocb, from); 4590 if (ret <= 0) 4591 goto out_unlock; 4592 4593 /* Determine whether we will do a direct write or a buffered write. */ 4594 dio = f2fs_should_use_dio(inode, iocb, from); 4595 4596 /* Possibly preallocate the blocks for the write. */ 4597 target_size = iocb->ki_pos + iov_iter_count(from); 4598 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 4599 if (preallocated < 0) { 4600 ret = preallocated; 4601 } else { 4602 if (trace_f2fs_datawrite_start_enabled()) { 4603 char *p = f2fs_kmalloc(F2FS_I_SB(inode), 4604 PATH_MAX, GFP_KERNEL); 4605 char *path; 4606 4607 if (!p) 4608 goto skip_write_trace; 4609 path = dentry_path_raw(file_dentry(iocb->ki_filp), 4610 p, PATH_MAX); 4611 if (IS_ERR(path)) { 4612 kfree(p); 4613 goto skip_write_trace; 4614 } 4615 trace_f2fs_datawrite_start(inode, orig_pos, orig_count, 4616 current->pid, path, current->comm); 4617 kfree(p); 4618 } 4619 skip_write_trace: 4620 /* Do the actual write. */ 4621 ret = dio ? 4622 f2fs_dio_write_iter(iocb, from, &may_need_sync): 4623 f2fs_buffered_write_iter(iocb, from); 4624 4625 if (trace_f2fs_datawrite_end_enabled()) 4626 trace_f2fs_datawrite_end(inode, orig_pos, ret); 4627 } 4628 4629 /* Don't leave any preallocated blocks around past i_size. */ 4630 if (preallocated && i_size_read(inode) < target_size) { 4631 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4632 filemap_invalidate_lock(inode->i_mapping); 4633 if (!f2fs_truncate(inode)) 4634 file_dont_truncate(inode); 4635 filemap_invalidate_unlock(inode->i_mapping); 4636 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4637 } else { 4638 file_dont_truncate(inode); 4639 } 4640 4641 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 4642 out_unlock: 4643 inode_unlock(inode); 4644 out: 4645 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 4646 if (ret > 0 && may_need_sync) 4647 ret = generic_write_sync(iocb, ret); 4648 return ret; 4649 } 4650 4651 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 4652 int advice) 4653 { 4654 struct address_space *mapping; 4655 struct backing_dev_info *bdi; 4656 struct inode *inode = file_inode(filp); 4657 int err; 4658 4659 if (advice == POSIX_FADV_SEQUENTIAL) { 4660 if (S_ISFIFO(inode->i_mode)) 4661 return -ESPIPE; 4662 4663 mapping = filp->f_mapping; 4664 if (!mapping || len < 0) 4665 return -EINVAL; 4666 4667 bdi = inode_to_bdi(mapping->host); 4668 filp->f_ra.ra_pages = bdi->ra_pages * 4669 F2FS_I_SB(inode)->seq_file_ra_mul; 4670 spin_lock(&filp->f_lock); 4671 filp->f_mode &= ~FMODE_RANDOM; 4672 spin_unlock(&filp->f_lock); 4673 return 0; 4674 } 4675 4676 err = generic_fadvise(filp, offset, len, advice); 4677 if (!err && advice == POSIX_FADV_DONTNEED && 4678 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 4679 f2fs_compressed_file(inode)) 4680 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 4681 4682 return err; 4683 } 4684 4685 #ifdef CONFIG_COMPAT 4686 struct compat_f2fs_gc_range { 4687 u32 sync; 4688 compat_u64 start; 4689 compat_u64 len; 4690 }; 4691 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4692 struct compat_f2fs_gc_range) 4693 4694 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4695 { 4696 struct compat_f2fs_gc_range __user *urange; 4697 struct f2fs_gc_range range; 4698 int err; 4699 4700 urange = compat_ptr(arg); 4701 err = get_user(range.sync, &urange->sync); 4702 err |= get_user(range.start, &urange->start); 4703 err |= get_user(range.len, &urange->len); 4704 if (err) 4705 return -EFAULT; 4706 4707 return __f2fs_ioc_gc_range(file, &range); 4708 } 4709 4710 struct compat_f2fs_move_range { 4711 u32 dst_fd; 4712 compat_u64 pos_in; 4713 compat_u64 pos_out; 4714 compat_u64 len; 4715 }; 4716 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4717 struct compat_f2fs_move_range) 4718 4719 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4720 { 4721 struct compat_f2fs_move_range __user *urange; 4722 struct f2fs_move_range range; 4723 int err; 4724 4725 urange = compat_ptr(arg); 4726 err = get_user(range.dst_fd, &urange->dst_fd); 4727 err |= get_user(range.pos_in, &urange->pos_in); 4728 err |= get_user(range.pos_out, &urange->pos_out); 4729 err |= get_user(range.len, &urange->len); 4730 if (err) 4731 return -EFAULT; 4732 4733 return __f2fs_ioc_move_range(file, &range); 4734 } 4735 4736 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4737 { 4738 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4739 return -EIO; 4740 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4741 return -ENOSPC; 4742 4743 switch (cmd) { 4744 case FS_IOC32_GETVERSION: 4745 cmd = FS_IOC_GETVERSION; 4746 break; 4747 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4748 return f2fs_compat_ioc_gc_range(file, arg); 4749 case F2FS_IOC32_MOVE_RANGE: 4750 return f2fs_compat_ioc_move_range(file, arg); 4751 case F2FS_IOC_START_ATOMIC_WRITE: 4752 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4753 case F2FS_IOC_START_VOLATILE_WRITE: 4754 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4755 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4756 case F2FS_IOC_SHUTDOWN: 4757 case FITRIM: 4758 case FS_IOC_SET_ENCRYPTION_POLICY: 4759 case FS_IOC_GET_ENCRYPTION_PWSALT: 4760 case FS_IOC_GET_ENCRYPTION_POLICY: 4761 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4762 case FS_IOC_ADD_ENCRYPTION_KEY: 4763 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4764 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4765 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4766 case FS_IOC_GET_ENCRYPTION_NONCE: 4767 case F2FS_IOC_GARBAGE_COLLECT: 4768 case F2FS_IOC_WRITE_CHECKPOINT: 4769 case F2FS_IOC_DEFRAGMENT: 4770 case F2FS_IOC_FLUSH_DEVICE: 4771 case F2FS_IOC_GET_FEATURES: 4772 case F2FS_IOC_GET_PIN_FILE: 4773 case F2FS_IOC_SET_PIN_FILE: 4774 case F2FS_IOC_PRECACHE_EXTENTS: 4775 case F2FS_IOC_RESIZE_FS: 4776 case FS_IOC_ENABLE_VERITY: 4777 case FS_IOC_MEASURE_VERITY: 4778 case FS_IOC_READ_VERITY_METADATA: 4779 case FS_IOC_GETFSLABEL: 4780 case FS_IOC_SETFSLABEL: 4781 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4782 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4783 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4784 case F2FS_IOC_SEC_TRIM_FILE: 4785 case F2FS_IOC_GET_COMPRESS_OPTION: 4786 case F2FS_IOC_SET_COMPRESS_OPTION: 4787 case F2FS_IOC_DECOMPRESS_FILE: 4788 case F2FS_IOC_COMPRESS_FILE: 4789 break; 4790 default: 4791 return -ENOIOCTLCMD; 4792 } 4793 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4794 } 4795 #endif 4796 4797 const struct file_operations f2fs_file_operations = { 4798 .llseek = f2fs_llseek, 4799 .read_iter = f2fs_file_read_iter, 4800 .write_iter = f2fs_file_write_iter, 4801 .open = f2fs_file_open, 4802 .release = f2fs_release_file, 4803 .mmap = f2fs_file_mmap, 4804 .flush = f2fs_file_flush, 4805 .fsync = f2fs_sync_file, 4806 .fallocate = f2fs_fallocate, 4807 .unlocked_ioctl = f2fs_ioctl, 4808 #ifdef CONFIG_COMPAT 4809 .compat_ioctl = f2fs_compat_ioctl, 4810 #endif 4811 .splice_read = generic_file_splice_read, 4812 .splice_write = iter_file_splice_write, 4813 .fadvise = f2fs_file_fadvise, 4814 }; 4815