xref: /linux/fs/f2fs/file.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (ret & VM_FAULT_LOCKED)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, vmf->vma->vm_flags, ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct page *page = vmf->page;
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = true;
61 	int err = 0;
62 	vm_fault_t ret;
63 
64 	if (unlikely(IS_IMMUTABLE(inode)))
65 		return VM_FAULT_SIGBUS;
66 
67 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
68 		err = -EIO;
69 		goto out;
70 	}
71 
72 	if (unlikely(f2fs_cp_error(sbi))) {
73 		err = -EIO;
74 		goto out;
75 	}
76 
77 	if (!f2fs_is_checkpoint_ready(sbi)) {
78 		err = -ENOSPC;
79 		goto out;
80 	}
81 
82 	err = f2fs_convert_inline_inode(inode);
83 	if (err)
84 		goto out;
85 
86 #ifdef CONFIG_F2FS_FS_COMPRESSION
87 	if (f2fs_compressed_file(inode)) {
88 		int ret = f2fs_is_compressed_cluster(inode, page->index);
89 
90 		if (ret < 0) {
91 			err = ret;
92 			goto out;
93 		} else if (ret) {
94 			need_alloc = false;
95 		}
96 	}
97 #endif
98 	/* should do out of any locked page */
99 	if (need_alloc)
100 		f2fs_balance_fs(sbi, true);
101 
102 	sb_start_pagefault(inode->i_sb);
103 
104 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
105 
106 	file_update_time(vmf->vma->vm_file);
107 	filemap_invalidate_lock_shared(inode->i_mapping);
108 	lock_page(page);
109 	if (unlikely(page->mapping != inode->i_mapping ||
110 			page_offset(page) > i_size_read(inode) ||
111 			!PageUptodate(page))) {
112 		unlock_page(page);
113 		err = -EFAULT;
114 		goto out_sem;
115 	}
116 
117 	if (need_alloc) {
118 		/* block allocation */
119 		set_new_dnode(&dn, inode, NULL, NULL, 0);
120 		err = f2fs_get_block_locked(&dn, page->index);
121 	}
122 
123 #ifdef CONFIG_F2FS_FS_COMPRESSION
124 	if (!need_alloc) {
125 		set_new_dnode(&dn, inode, NULL, NULL, 0);
126 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
127 		f2fs_put_dnode(&dn);
128 	}
129 #endif
130 	if (err) {
131 		unlock_page(page);
132 		goto out_sem;
133 	}
134 
135 	f2fs_wait_on_page_writeback(page, DATA, false, true);
136 
137 	/* wait for GCed page writeback via META_MAPPING */
138 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
139 
140 	/*
141 	 * check to see if the page is mapped already (no holes)
142 	 */
143 	if (PageMappedToDisk(page))
144 		goto out_sem;
145 
146 	/* page is wholly or partially inside EOF */
147 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
148 						i_size_read(inode)) {
149 		loff_t offset;
150 
151 		offset = i_size_read(inode) & ~PAGE_MASK;
152 		zero_user_segment(page, offset, PAGE_SIZE);
153 	}
154 	set_page_dirty(page);
155 
156 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
157 	f2fs_update_time(sbi, REQ_TIME);
158 
159 out_sem:
160 	filemap_invalidate_unlock_shared(inode->i_mapping);
161 
162 	sb_end_pagefault(inode->i_sb);
163 out:
164 	ret = vmf_fs_error(err);
165 
166 	trace_f2fs_vm_page_mkwrite(inode, page->index, vmf->vma->vm_flags, ret);
167 	return ret;
168 }
169 
170 static const struct vm_operations_struct f2fs_file_vm_ops = {
171 	.fault		= f2fs_filemap_fault,
172 	.map_pages	= filemap_map_pages,
173 	.page_mkwrite	= f2fs_vm_page_mkwrite,
174 };
175 
176 static int get_parent_ino(struct inode *inode, nid_t *pino)
177 {
178 	struct dentry *dentry;
179 
180 	/*
181 	 * Make sure to get the non-deleted alias.  The alias associated with
182 	 * the open file descriptor being fsync()'ed may be deleted already.
183 	 */
184 	dentry = d_find_alias(inode);
185 	if (!dentry)
186 		return 0;
187 
188 	*pino = parent_ino(dentry);
189 	dput(dentry);
190 	return 1;
191 }
192 
193 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
194 {
195 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
196 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
197 
198 	if (!S_ISREG(inode->i_mode))
199 		cp_reason = CP_NON_REGULAR;
200 	else if (f2fs_compressed_file(inode))
201 		cp_reason = CP_COMPRESSED;
202 	else if (inode->i_nlink != 1)
203 		cp_reason = CP_HARDLINK;
204 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
205 		cp_reason = CP_SB_NEED_CP;
206 	else if (file_wrong_pino(inode))
207 		cp_reason = CP_WRONG_PINO;
208 	else if (!f2fs_space_for_roll_forward(sbi))
209 		cp_reason = CP_NO_SPC_ROLL;
210 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
211 		cp_reason = CP_NODE_NEED_CP;
212 	else if (test_opt(sbi, FASTBOOT))
213 		cp_reason = CP_FASTBOOT_MODE;
214 	else if (F2FS_OPTION(sbi).active_logs == 2)
215 		cp_reason = CP_SPEC_LOG_NUM;
216 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
217 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
218 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
219 							TRANS_DIR_INO))
220 		cp_reason = CP_RECOVER_DIR;
221 
222 	return cp_reason;
223 }
224 
225 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
226 {
227 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
228 	bool ret = false;
229 	/* But we need to avoid that there are some inode updates */
230 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
231 		ret = true;
232 	f2fs_put_page(i, 0);
233 	return ret;
234 }
235 
236 static void try_to_fix_pino(struct inode *inode)
237 {
238 	struct f2fs_inode_info *fi = F2FS_I(inode);
239 	nid_t pino;
240 
241 	f2fs_down_write(&fi->i_sem);
242 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
243 			get_parent_ino(inode, &pino)) {
244 		f2fs_i_pino_write(inode, pino);
245 		file_got_pino(inode);
246 	}
247 	f2fs_up_write(&fi->i_sem);
248 }
249 
250 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
251 						int datasync, bool atomic)
252 {
253 	struct inode *inode = file->f_mapping->host;
254 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255 	nid_t ino = inode->i_ino;
256 	int ret = 0;
257 	enum cp_reason_type cp_reason = 0;
258 	struct writeback_control wbc = {
259 		.sync_mode = WB_SYNC_ALL,
260 		.nr_to_write = LONG_MAX,
261 		.for_reclaim = 0,
262 	};
263 	unsigned int seq_id = 0;
264 
265 	if (unlikely(f2fs_readonly(inode->i_sb)))
266 		return 0;
267 
268 	trace_f2fs_sync_file_enter(inode);
269 
270 	if (S_ISDIR(inode->i_mode))
271 		goto go_write;
272 
273 	/* if fdatasync is triggered, let's do in-place-update */
274 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
275 		set_inode_flag(inode, FI_NEED_IPU);
276 	ret = file_write_and_wait_range(file, start, end);
277 	clear_inode_flag(inode, FI_NEED_IPU);
278 
279 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
280 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
281 		return ret;
282 	}
283 
284 	/* if the inode is dirty, let's recover all the time */
285 	if (!f2fs_skip_inode_update(inode, datasync)) {
286 		f2fs_write_inode(inode, NULL);
287 		goto go_write;
288 	}
289 
290 	/*
291 	 * if there is no written data, don't waste time to write recovery info.
292 	 */
293 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
294 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
295 
296 		/* it may call write_inode just prior to fsync */
297 		if (need_inode_page_update(sbi, ino))
298 			goto go_write;
299 
300 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
301 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
302 			goto flush_out;
303 		goto out;
304 	} else {
305 		/*
306 		 * for OPU case, during fsync(), node can be persisted before
307 		 * data when lower device doesn't support write barrier, result
308 		 * in data corruption after SPO.
309 		 * So for strict fsync mode, force to use atomic write semantics
310 		 * to keep write order in between data/node and last node to
311 		 * avoid potential data corruption.
312 		 */
313 		if (F2FS_OPTION(sbi).fsync_mode ==
314 				FSYNC_MODE_STRICT && !atomic)
315 			atomic = true;
316 	}
317 go_write:
318 	/*
319 	 * Both of fdatasync() and fsync() are able to be recovered from
320 	 * sudden-power-off.
321 	 */
322 	f2fs_down_read(&F2FS_I(inode)->i_sem);
323 	cp_reason = need_do_checkpoint(inode);
324 	f2fs_up_read(&F2FS_I(inode)->i_sem);
325 
326 	if (cp_reason) {
327 		/* all the dirty node pages should be flushed for POR */
328 		ret = f2fs_sync_fs(inode->i_sb, 1);
329 
330 		/*
331 		 * We've secured consistency through sync_fs. Following pino
332 		 * will be used only for fsynced inodes after checkpoint.
333 		 */
334 		try_to_fix_pino(inode);
335 		clear_inode_flag(inode, FI_APPEND_WRITE);
336 		clear_inode_flag(inode, FI_UPDATE_WRITE);
337 		goto out;
338 	}
339 sync_nodes:
340 	atomic_inc(&sbi->wb_sync_req[NODE]);
341 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
342 	atomic_dec(&sbi->wb_sync_req[NODE]);
343 	if (ret)
344 		goto out;
345 
346 	/* if cp_error was enabled, we should avoid infinite loop */
347 	if (unlikely(f2fs_cp_error(sbi))) {
348 		ret = -EIO;
349 		goto out;
350 	}
351 
352 	if (f2fs_need_inode_block_update(sbi, ino)) {
353 		f2fs_mark_inode_dirty_sync(inode, true);
354 		f2fs_write_inode(inode, NULL);
355 		goto sync_nodes;
356 	}
357 
358 	/*
359 	 * If it's atomic_write, it's just fine to keep write ordering. So
360 	 * here we don't need to wait for node write completion, since we use
361 	 * node chain which serializes node blocks. If one of node writes are
362 	 * reordered, we can see simply broken chain, resulting in stopping
363 	 * roll-forward recovery. It means we'll recover all or none node blocks
364 	 * given fsync mark.
365 	 */
366 	if (!atomic) {
367 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
368 		if (ret)
369 			goto out;
370 	}
371 
372 	/* once recovery info is written, don't need to tack this */
373 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
374 	clear_inode_flag(inode, FI_APPEND_WRITE);
375 flush_out:
376 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
377 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
378 		ret = f2fs_issue_flush(sbi, inode->i_ino);
379 	if (!ret) {
380 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
381 		clear_inode_flag(inode, FI_UPDATE_WRITE);
382 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
383 	}
384 	f2fs_update_time(sbi, REQ_TIME);
385 out:
386 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
387 	return ret;
388 }
389 
390 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
391 {
392 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
393 		return -EIO;
394 	return f2fs_do_sync_file(file, start, end, datasync, false);
395 }
396 
397 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
398 				pgoff_t index, int whence)
399 {
400 	switch (whence) {
401 	case SEEK_DATA:
402 		if (__is_valid_data_blkaddr(blkaddr))
403 			return true;
404 		if (blkaddr == NEW_ADDR &&
405 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
406 			return true;
407 		break;
408 	case SEEK_HOLE:
409 		if (blkaddr == NULL_ADDR)
410 			return true;
411 		break;
412 	}
413 	return false;
414 }
415 
416 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
417 {
418 	struct inode *inode = file->f_mapping->host;
419 	loff_t maxbytes = inode->i_sb->s_maxbytes;
420 	struct dnode_of_data dn;
421 	pgoff_t pgofs, end_offset;
422 	loff_t data_ofs = offset;
423 	loff_t isize;
424 	int err = 0;
425 
426 	inode_lock_shared(inode);
427 
428 	isize = i_size_read(inode);
429 	if (offset >= isize)
430 		goto fail;
431 
432 	/* handle inline data case */
433 	if (f2fs_has_inline_data(inode)) {
434 		if (whence == SEEK_HOLE) {
435 			data_ofs = isize;
436 			goto found;
437 		} else if (whence == SEEK_DATA) {
438 			data_ofs = offset;
439 			goto found;
440 		}
441 	}
442 
443 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
444 
445 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
446 		set_new_dnode(&dn, inode, NULL, NULL, 0);
447 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
448 		if (err && err != -ENOENT) {
449 			goto fail;
450 		} else if (err == -ENOENT) {
451 			/* direct node does not exists */
452 			if (whence == SEEK_DATA) {
453 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
454 				continue;
455 			} else {
456 				goto found;
457 			}
458 		}
459 
460 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
461 
462 		/* find data/hole in dnode block */
463 		for (; dn.ofs_in_node < end_offset;
464 				dn.ofs_in_node++, pgofs++,
465 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
466 			block_t blkaddr;
467 
468 			blkaddr = f2fs_data_blkaddr(&dn);
469 
470 			if (__is_valid_data_blkaddr(blkaddr) &&
471 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
472 					blkaddr, DATA_GENERIC_ENHANCE)) {
473 				f2fs_put_dnode(&dn);
474 				goto fail;
475 			}
476 
477 			if (__found_offset(file->f_mapping, blkaddr,
478 							pgofs, whence)) {
479 				f2fs_put_dnode(&dn);
480 				goto found;
481 			}
482 		}
483 		f2fs_put_dnode(&dn);
484 	}
485 
486 	if (whence == SEEK_DATA)
487 		goto fail;
488 found:
489 	if (whence == SEEK_HOLE && data_ofs > isize)
490 		data_ofs = isize;
491 	inode_unlock_shared(inode);
492 	return vfs_setpos(file, data_ofs, maxbytes);
493 fail:
494 	inode_unlock_shared(inode);
495 	return -ENXIO;
496 }
497 
498 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
499 {
500 	struct inode *inode = file->f_mapping->host;
501 	loff_t maxbytes = inode->i_sb->s_maxbytes;
502 
503 	if (f2fs_compressed_file(inode))
504 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
505 
506 	switch (whence) {
507 	case SEEK_SET:
508 	case SEEK_CUR:
509 	case SEEK_END:
510 		return generic_file_llseek_size(file, offset, whence,
511 						maxbytes, i_size_read(inode));
512 	case SEEK_DATA:
513 	case SEEK_HOLE:
514 		if (offset < 0)
515 			return -ENXIO;
516 		return f2fs_seek_block(file, offset, whence);
517 	}
518 
519 	return -EINVAL;
520 }
521 
522 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
523 {
524 	struct inode *inode = file_inode(file);
525 
526 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
527 		return -EIO;
528 
529 	if (!f2fs_is_compress_backend_ready(inode))
530 		return -EOPNOTSUPP;
531 
532 	file_accessed(file);
533 	vma->vm_ops = &f2fs_file_vm_ops;
534 
535 	f2fs_down_read(&F2FS_I(inode)->i_sem);
536 	set_inode_flag(inode, FI_MMAP_FILE);
537 	f2fs_up_read(&F2FS_I(inode)->i_sem);
538 
539 	return 0;
540 }
541 
542 static int f2fs_file_open(struct inode *inode, struct file *filp)
543 {
544 	int err = fscrypt_file_open(inode, filp);
545 
546 	if (err)
547 		return err;
548 
549 	if (!f2fs_is_compress_backend_ready(inode))
550 		return -EOPNOTSUPP;
551 
552 	err = fsverity_file_open(inode, filp);
553 	if (err)
554 		return err;
555 
556 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
557 	filp->f_mode |= FMODE_CAN_ODIRECT;
558 
559 	return dquot_file_open(inode, filp);
560 }
561 
562 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
563 {
564 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
565 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
566 	__le32 *addr;
567 	bool compressed_cluster = false;
568 	int cluster_index = 0, valid_blocks = 0;
569 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
570 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
571 
572 	addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
573 
574 	/* Assumption: truncation starts with cluster */
575 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
576 		block_t blkaddr = le32_to_cpu(*addr);
577 
578 		if (f2fs_compressed_file(dn->inode) &&
579 					!(cluster_index & (cluster_size - 1))) {
580 			if (compressed_cluster)
581 				f2fs_i_compr_blocks_update(dn->inode,
582 							valid_blocks, false);
583 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
584 			valid_blocks = 0;
585 		}
586 
587 		if (blkaddr == NULL_ADDR)
588 			continue;
589 
590 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
591 
592 		if (__is_valid_data_blkaddr(blkaddr)) {
593 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
594 					DATA_GENERIC_ENHANCE))
595 				continue;
596 			if (compressed_cluster)
597 				valid_blocks++;
598 		}
599 
600 		f2fs_invalidate_blocks(sbi, blkaddr);
601 
602 		if (!released || blkaddr != COMPRESS_ADDR)
603 			nr_free++;
604 	}
605 
606 	if (compressed_cluster)
607 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
608 
609 	if (nr_free) {
610 		pgoff_t fofs;
611 		/*
612 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
613 		 * we will invalidate all blkaddr in the whole range.
614 		 */
615 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
616 							dn->inode) + ofs;
617 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
618 		f2fs_update_age_extent_cache_range(dn, fofs, len);
619 		dec_valid_block_count(sbi, dn->inode, nr_free);
620 	}
621 	dn->ofs_in_node = ofs;
622 
623 	f2fs_update_time(sbi, REQ_TIME);
624 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
625 					 dn->ofs_in_node, nr_free);
626 }
627 
628 static int truncate_partial_data_page(struct inode *inode, u64 from,
629 								bool cache_only)
630 {
631 	loff_t offset = from & (PAGE_SIZE - 1);
632 	pgoff_t index = from >> PAGE_SHIFT;
633 	struct address_space *mapping = inode->i_mapping;
634 	struct page *page;
635 
636 	if (!offset && !cache_only)
637 		return 0;
638 
639 	if (cache_only) {
640 		page = find_lock_page(mapping, index);
641 		if (page && PageUptodate(page))
642 			goto truncate_out;
643 		f2fs_put_page(page, 1);
644 		return 0;
645 	}
646 
647 	page = f2fs_get_lock_data_page(inode, index, true);
648 	if (IS_ERR(page))
649 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
650 truncate_out:
651 	f2fs_wait_on_page_writeback(page, DATA, true, true);
652 	zero_user(page, offset, PAGE_SIZE - offset);
653 
654 	/* An encrypted inode should have a key and truncate the last page. */
655 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
656 	if (!cache_only)
657 		set_page_dirty(page);
658 	f2fs_put_page(page, 1);
659 	return 0;
660 }
661 
662 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
663 {
664 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
665 	struct dnode_of_data dn;
666 	pgoff_t free_from;
667 	int count = 0, err = 0;
668 	struct page *ipage;
669 	bool truncate_page = false;
670 
671 	trace_f2fs_truncate_blocks_enter(inode, from);
672 
673 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
674 
675 	if (free_from >= max_file_blocks(inode))
676 		goto free_partial;
677 
678 	if (lock)
679 		f2fs_lock_op(sbi);
680 
681 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
682 	if (IS_ERR(ipage)) {
683 		err = PTR_ERR(ipage);
684 		goto out;
685 	}
686 
687 	if (f2fs_has_inline_data(inode)) {
688 		f2fs_truncate_inline_inode(inode, ipage, from);
689 		f2fs_put_page(ipage, 1);
690 		truncate_page = true;
691 		goto out;
692 	}
693 
694 	set_new_dnode(&dn, inode, ipage, NULL, 0);
695 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
696 	if (err) {
697 		if (err == -ENOENT)
698 			goto free_next;
699 		goto out;
700 	}
701 
702 	count = ADDRS_PER_PAGE(dn.node_page, inode);
703 
704 	count -= dn.ofs_in_node;
705 	f2fs_bug_on(sbi, count < 0);
706 
707 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
708 		f2fs_truncate_data_blocks_range(&dn, count);
709 		free_from += count;
710 	}
711 
712 	f2fs_put_dnode(&dn);
713 free_next:
714 	err = f2fs_truncate_inode_blocks(inode, free_from);
715 out:
716 	if (lock)
717 		f2fs_unlock_op(sbi);
718 free_partial:
719 	/* lastly zero out the first data page */
720 	if (!err)
721 		err = truncate_partial_data_page(inode, from, truncate_page);
722 
723 	trace_f2fs_truncate_blocks_exit(inode, err);
724 	return err;
725 }
726 
727 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
728 {
729 	u64 free_from = from;
730 	int err;
731 
732 #ifdef CONFIG_F2FS_FS_COMPRESSION
733 	/*
734 	 * for compressed file, only support cluster size
735 	 * aligned truncation.
736 	 */
737 	if (f2fs_compressed_file(inode))
738 		free_from = round_up(from,
739 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
740 #endif
741 
742 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
743 	if (err)
744 		return err;
745 
746 #ifdef CONFIG_F2FS_FS_COMPRESSION
747 	/*
748 	 * For compressed file, after release compress blocks, don't allow write
749 	 * direct, but we should allow write direct after truncate to zero.
750 	 */
751 	if (f2fs_compressed_file(inode) && !free_from
752 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
753 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
754 
755 	if (from != free_from) {
756 		err = f2fs_truncate_partial_cluster(inode, from, lock);
757 		if (err)
758 			return err;
759 	}
760 #endif
761 
762 	return 0;
763 }
764 
765 int f2fs_truncate(struct inode *inode)
766 {
767 	int err;
768 
769 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
770 		return -EIO;
771 
772 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
773 				S_ISLNK(inode->i_mode)))
774 		return 0;
775 
776 	trace_f2fs_truncate(inode);
777 
778 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
779 		return -EIO;
780 
781 	err = f2fs_dquot_initialize(inode);
782 	if (err)
783 		return err;
784 
785 	/* we should check inline_data size */
786 	if (!f2fs_may_inline_data(inode)) {
787 		err = f2fs_convert_inline_inode(inode);
788 		if (err)
789 			return err;
790 	}
791 
792 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
793 	if (err)
794 		return err;
795 
796 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
797 	f2fs_mark_inode_dirty_sync(inode, false);
798 	return 0;
799 }
800 
801 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
802 {
803 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
804 
805 	if (!fscrypt_dio_supported(inode))
806 		return true;
807 	if (fsverity_active(inode))
808 		return true;
809 	if (f2fs_compressed_file(inode))
810 		return true;
811 
812 	/* disallow direct IO if any of devices has unaligned blksize */
813 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
814 		return true;
815 	/*
816 	 * for blkzoned device, fallback direct IO to buffered IO, so
817 	 * all IOs can be serialized by log-structured write.
818 	 */
819 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
820 		return true;
821 	if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
822 		return true;
823 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
824 		return true;
825 
826 	return false;
827 }
828 
829 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
830 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
831 {
832 	struct inode *inode = d_inode(path->dentry);
833 	struct f2fs_inode_info *fi = F2FS_I(inode);
834 	struct f2fs_inode *ri = NULL;
835 	unsigned int flags;
836 
837 	if (f2fs_has_extra_attr(inode) &&
838 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
839 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
840 		stat->result_mask |= STATX_BTIME;
841 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
842 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
843 	}
844 
845 	/*
846 	 * Return the DIO alignment restrictions if requested.  We only return
847 	 * this information when requested, since on encrypted files it might
848 	 * take a fair bit of work to get if the file wasn't opened recently.
849 	 *
850 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
851 	 * cannot represent that, so in that case we report no DIO support.
852 	 */
853 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
854 		unsigned int bsize = i_blocksize(inode);
855 
856 		stat->result_mask |= STATX_DIOALIGN;
857 		if (!f2fs_force_buffered_io(inode, WRITE)) {
858 			stat->dio_mem_align = bsize;
859 			stat->dio_offset_align = bsize;
860 		}
861 	}
862 
863 	flags = fi->i_flags;
864 	if (flags & F2FS_COMPR_FL)
865 		stat->attributes |= STATX_ATTR_COMPRESSED;
866 	if (flags & F2FS_APPEND_FL)
867 		stat->attributes |= STATX_ATTR_APPEND;
868 	if (IS_ENCRYPTED(inode))
869 		stat->attributes |= STATX_ATTR_ENCRYPTED;
870 	if (flags & F2FS_IMMUTABLE_FL)
871 		stat->attributes |= STATX_ATTR_IMMUTABLE;
872 	if (flags & F2FS_NODUMP_FL)
873 		stat->attributes |= STATX_ATTR_NODUMP;
874 	if (IS_VERITY(inode))
875 		stat->attributes |= STATX_ATTR_VERITY;
876 
877 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
878 				  STATX_ATTR_APPEND |
879 				  STATX_ATTR_ENCRYPTED |
880 				  STATX_ATTR_IMMUTABLE |
881 				  STATX_ATTR_NODUMP |
882 				  STATX_ATTR_VERITY);
883 
884 	generic_fillattr(idmap, request_mask, inode, stat);
885 
886 	/* we need to show initial sectors used for inline_data/dentries */
887 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
888 					f2fs_has_inline_dentry(inode))
889 		stat->blocks += (stat->size + 511) >> 9;
890 
891 	return 0;
892 }
893 
894 #ifdef CONFIG_F2FS_FS_POSIX_ACL
895 static void __setattr_copy(struct mnt_idmap *idmap,
896 			   struct inode *inode, const struct iattr *attr)
897 {
898 	unsigned int ia_valid = attr->ia_valid;
899 
900 	i_uid_update(idmap, attr, inode);
901 	i_gid_update(idmap, attr, inode);
902 	if (ia_valid & ATTR_ATIME)
903 		inode_set_atime_to_ts(inode, attr->ia_atime);
904 	if (ia_valid & ATTR_MTIME)
905 		inode_set_mtime_to_ts(inode, attr->ia_mtime);
906 	if (ia_valid & ATTR_CTIME)
907 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
908 	if (ia_valid & ATTR_MODE) {
909 		umode_t mode = attr->ia_mode;
910 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
911 
912 		if (!vfsgid_in_group_p(vfsgid) &&
913 		    !capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
914 			mode &= ~S_ISGID;
915 		set_acl_inode(inode, mode);
916 	}
917 }
918 #else
919 #define __setattr_copy setattr_copy
920 #endif
921 
922 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
923 		 struct iattr *attr)
924 {
925 	struct inode *inode = d_inode(dentry);
926 	int err;
927 
928 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
929 		return -EIO;
930 
931 	if (unlikely(IS_IMMUTABLE(inode)))
932 		return -EPERM;
933 
934 	if (unlikely(IS_APPEND(inode) &&
935 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
936 				  ATTR_GID | ATTR_TIMES_SET))))
937 		return -EPERM;
938 
939 	if ((attr->ia_valid & ATTR_SIZE) &&
940 		!f2fs_is_compress_backend_ready(inode))
941 		return -EOPNOTSUPP;
942 
943 	err = setattr_prepare(idmap, dentry, attr);
944 	if (err)
945 		return err;
946 
947 	err = fscrypt_prepare_setattr(dentry, attr);
948 	if (err)
949 		return err;
950 
951 	err = fsverity_prepare_setattr(dentry, attr);
952 	if (err)
953 		return err;
954 
955 	if (is_quota_modification(idmap, inode, attr)) {
956 		err = f2fs_dquot_initialize(inode);
957 		if (err)
958 			return err;
959 	}
960 	if (i_uid_needs_update(idmap, attr, inode) ||
961 	    i_gid_needs_update(idmap, attr, inode)) {
962 		f2fs_lock_op(F2FS_I_SB(inode));
963 		err = dquot_transfer(idmap, inode, attr);
964 		if (err) {
965 			set_sbi_flag(F2FS_I_SB(inode),
966 					SBI_QUOTA_NEED_REPAIR);
967 			f2fs_unlock_op(F2FS_I_SB(inode));
968 			return err;
969 		}
970 		/*
971 		 * update uid/gid under lock_op(), so that dquot and inode can
972 		 * be updated atomically.
973 		 */
974 		i_uid_update(idmap, attr, inode);
975 		i_gid_update(idmap, attr, inode);
976 		f2fs_mark_inode_dirty_sync(inode, true);
977 		f2fs_unlock_op(F2FS_I_SB(inode));
978 	}
979 
980 	if (attr->ia_valid & ATTR_SIZE) {
981 		loff_t old_size = i_size_read(inode);
982 
983 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
984 			/*
985 			 * should convert inline inode before i_size_write to
986 			 * keep smaller than inline_data size with inline flag.
987 			 */
988 			err = f2fs_convert_inline_inode(inode);
989 			if (err)
990 				return err;
991 		}
992 
993 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
994 		filemap_invalidate_lock(inode->i_mapping);
995 
996 		truncate_setsize(inode, attr->ia_size);
997 
998 		if (attr->ia_size <= old_size)
999 			err = f2fs_truncate(inode);
1000 		/*
1001 		 * do not trim all blocks after i_size if target size is
1002 		 * larger than i_size.
1003 		 */
1004 		filemap_invalidate_unlock(inode->i_mapping);
1005 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1006 		if (err)
1007 			return err;
1008 
1009 		spin_lock(&F2FS_I(inode)->i_size_lock);
1010 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1011 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
1012 		spin_unlock(&F2FS_I(inode)->i_size_lock);
1013 	}
1014 
1015 	__setattr_copy(idmap, inode, attr);
1016 
1017 	if (attr->ia_valid & ATTR_MODE) {
1018 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1019 
1020 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1021 			if (!err)
1022 				inode->i_mode = F2FS_I(inode)->i_acl_mode;
1023 			clear_inode_flag(inode, FI_ACL_MODE);
1024 		}
1025 	}
1026 
1027 	/* file size may changed here */
1028 	f2fs_mark_inode_dirty_sync(inode, true);
1029 
1030 	/* inode change will produce dirty node pages flushed by checkpoint */
1031 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1032 
1033 	return err;
1034 }
1035 
1036 const struct inode_operations f2fs_file_inode_operations = {
1037 	.getattr	= f2fs_getattr,
1038 	.setattr	= f2fs_setattr,
1039 	.get_inode_acl	= f2fs_get_acl,
1040 	.set_acl	= f2fs_set_acl,
1041 	.listxattr	= f2fs_listxattr,
1042 	.fiemap		= f2fs_fiemap,
1043 	.fileattr_get	= f2fs_fileattr_get,
1044 	.fileattr_set	= f2fs_fileattr_set,
1045 };
1046 
1047 static int fill_zero(struct inode *inode, pgoff_t index,
1048 					loff_t start, loff_t len)
1049 {
1050 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1051 	struct page *page;
1052 
1053 	if (!len)
1054 		return 0;
1055 
1056 	f2fs_balance_fs(sbi, true);
1057 
1058 	f2fs_lock_op(sbi);
1059 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1060 	f2fs_unlock_op(sbi);
1061 
1062 	if (IS_ERR(page))
1063 		return PTR_ERR(page);
1064 
1065 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1066 	zero_user(page, start, len);
1067 	set_page_dirty(page);
1068 	f2fs_put_page(page, 1);
1069 	return 0;
1070 }
1071 
1072 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1073 {
1074 	int err;
1075 
1076 	while (pg_start < pg_end) {
1077 		struct dnode_of_data dn;
1078 		pgoff_t end_offset, count;
1079 
1080 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1081 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1082 		if (err) {
1083 			if (err == -ENOENT) {
1084 				pg_start = f2fs_get_next_page_offset(&dn,
1085 								pg_start);
1086 				continue;
1087 			}
1088 			return err;
1089 		}
1090 
1091 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1092 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1093 
1094 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1095 
1096 		f2fs_truncate_data_blocks_range(&dn, count);
1097 		f2fs_put_dnode(&dn);
1098 
1099 		pg_start += count;
1100 	}
1101 	return 0;
1102 }
1103 
1104 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1105 {
1106 	pgoff_t pg_start, pg_end;
1107 	loff_t off_start, off_end;
1108 	int ret;
1109 
1110 	ret = f2fs_convert_inline_inode(inode);
1111 	if (ret)
1112 		return ret;
1113 
1114 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1115 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1116 
1117 	off_start = offset & (PAGE_SIZE - 1);
1118 	off_end = (offset + len) & (PAGE_SIZE - 1);
1119 
1120 	if (pg_start == pg_end) {
1121 		ret = fill_zero(inode, pg_start, off_start,
1122 						off_end - off_start);
1123 		if (ret)
1124 			return ret;
1125 	} else {
1126 		if (off_start) {
1127 			ret = fill_zero(inode, pg_start++, off_start,
1128 						PAGE_SIZE - off_start);
1129 			if (ret)
1130 				return ret;
1131 		}
1132 		if (off_end) {
1133 			ret = fill_zero(inode, pg_end, 0, off_end);
1134 			if (ret)
1135 				return ret;
1136 		}
1137 
1138 		if (pg_start < pg_end) {
1139 			loff_t blk_start, blk_end;
1140 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1141 
1142 			f2fs_balance_fs(sbi, true);
1143 
1144 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1145 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1146 
1147 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1148 			filemap_invalidate_lock(inode->i_mapping);
1149 
1150 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1151 
1152 			f2fs_lock_op(sbi);
1153 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1154 			f2fs_unlock_op(sbi);
1155 
1156 			filemap_invalidate_unlock(inode->i_mapping);
1157 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1158 		}
1159 	}
1160 
1161 	return ret;
1162 }
1163 
1164 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1165 				int *do_replace, pgoff_t off, pgoff_t len)
1166 {
1167 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1168 	struct dnode_of_data dn;
1169 	int ret, done, i;
1170 
1171 next_dnode:
1172 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1173 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1174 	if (ret && ret != -ENOENT) {
1175 		return ret;
1176 	} else if (ret == -ENOENT) {
1177 		if (dn.max_level == 0)
1178 			return -ENOENT;
1179 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1180 						dn.ofs_in_node, len);
1181 		blkaddr += done;
1182 		do_replace += done;
1183 		goto next;
1184 	}
1185 
1186 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1187 							dn.ofs_in_node, len);
1188 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1189 		*blkaddr = f2fs_data_blkaddr(&dn);
1190 
1191 		if (__is_valid_data_blkaddr(*blkaddr) &&
1192 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1193 					DATA_GENERIC_ENHANCE)) {
1194 			f2fs_put_dnode(&dn);
1195 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1196 			return -EFSCORRUPTED;
1197 		}
1198 
1199 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1200 
1201 			if (f2fs_lfs_mode(sbi)) {
1202 				f2fs_put_dnode(&dn);
1203 				return -EOPNOTSUPP;
1204 			}
1205 
1206 			/* do not invalidate this block address */
1207 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1208 			*do_replace = 1;
1209 		}
1210 	}
1211 	f2fs_put_dnode(&dn);
1212 next:
1213 	len -= done;
1214 	off += done;
1215 	if (len)
1216 		goto next_dnode;
1217 	return 0;
1218 }
1219 
1220 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1221 				int *do_replace, pgoff_t off, int len)
1222 {
1223 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1224 	struct dnode_of_data dn;
1225 	int ret, i;
1226 
1227 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1228 		if (*do_replace == 0)
1229 			continue;
1230 
1231 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1232 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1233 		if (ret) {
1234 			dec_valid_block_count(sbi, inode, 1);
1235 			f2fs_invalidate_blocks(sbi, *blkaddr);
1236 		} else {
1237 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1238 		}
1239 		f2fs_put_dnode(&dn);
1240 	}
1241 	return 0;
1242 }
1243 
1244 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1245 			block_t *blkaddr, int *do_replace,
1246 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1247 {
1248 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1249 	pgoff_t i = 0;
1250 	int ret;
1251 
1252 	while (i < len) {
1253 		if (blkaddr[i] == NULL_ADDR && !full) {
1254 			i++;
1255 			continue;
1256 		}
1257 
1258 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1259 			struct dnode_of_data dn;
1260 			struct node_info ni;
1261 			size_t new_size;
1262 			pgoff_t ilen;
1263 
1264 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1265 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1266 			if (ret)
1267 				return ret;
1268 
1269 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1270 			if (ret) {
1271 				f2fs_put_dnode(&dn);
1272 				return ret;
1273 			}
1274 
1275 			ilen = min((pgoff_t)
1276 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1277 						dn.ofs_in_node, len - i);
1278 			do {
1279 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1280 				f2fs_truncate_data_blocks_range(&dn, 1);
1281 
1282 				if (do_replace[i]) {
1283 					f2fs_i_blocks_write(src_inode,
1284 							1, false, false);
1285 					f2fs_i_blocks_write(dst_inode,
1286 							1, true, false);
1287 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1288 					blkaddr[i], ni.version, true, false);
1289 
1290 					do_replace[i] = 0;
1291 				}
1292 				dn.ofs_in_node++;
1293 				i++;
1294 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1295 				if (dst_inode->i_size < new_size)
1296 					f2fs_i_size_write(dst_inode, new_size);
1297 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1298 
1299 			f2fs_put_dnode(&dn);
1300 		} else {
1301 			struct page *psrc, *pdst;
1302 
1303 			psrc = f2fs_get_lock_data_page(src_inode,
1304 							src + i, true);
1305 			if (IS_ERR(psrc))
1306 				return PTR_ERR(psrc);
1307 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1308 								true);
1309 			if (IS_ERR(pdst)) {
1310 				f2fs_put_page(psrc, 1);
1311 				return PTR_ERR(pdst);
1312 			}
1313 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1314 			set_page_dirty(pdst);
1315 			set_page_private_gcing(pdst);
1316 			f2fs_put_page(pdst, 1);
1317 			f2fs_put_page(psrc, 1);
1318 
1319 			ret = f2fs_truncate_hole(src_inode,
1320 						src + i, src + i + 1);
1321 			if (ret)
1322 				return ret;
1323 			i++;
1324 		}
1325 	}
1326 	return 0;
1327 }
1328 
1329 static int __exchange_data_block(struct inode *src_inode,
1330 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1331 			pgoff_t len, bool full)
1332 {
1333 	block_t *src_blkaddr;
1334 	int *do_replace;
1335 	pgoff_t olen;
1336 	int ret;
1337 
1338 	while (len) {
1339 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1340 
1341 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1342 					array_size(olen, sizeof(block_t)),
1343 					GFP_NOFS);
1344 		if (!src_blkaddr)
1345 			return -ENOMEM;
1346 
1347 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1348 					array_size(olen, sizeof(int)),
1349 					GFP_NOFS);
1350 		if (!do_replace) {
1351 			kvfree(src_blkaddr);
1352 			return -ENOMEM;
1353 		}
1354 
1355 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1356 					do_replace, src, olen);
1357 		if (ret)
1358 			goto roll_back;
1359 
1360 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1361 					do_replace, src, dst, olen, full);
1362 		if (ret)
1363 			goto roll_back;
1364 
1365 		src += olen;
1366 		dst += olen;
1367 		len -= olen;
1368 
1369 		kvfree(src_blkaddr);
1370 		kvfree(do_replace);
1371 	}
1372 	return 0;
1373 
1374 roll_back:
1375 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1376 	kvfree(src_blkaddr);
1377 	kvfree(do_replace);
1378 	return ret;
1379 }
1380 
1381 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1382 {
1383 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1384 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1385 	pgoff_t start = offset >> PAGE_SHIFT;
1386 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1387 	int ret;
1388 
1389 	f2fs_balance_fs(sbi, true);
1390 
1391 	/* avoid gc operation during block exchange */
1392 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1393 	filemap_invalidate_lock(inode->i_mapping);
1394 
1395 	f2fs_lock_op(sbi);
1396 	f2fs_drop_extent_tree(inode);
1397 	truncate_pagecache(inode, offset);
1398 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1399 	f2fs_unlock_op(sbi);
1400 
1401 	filemap_invalidate_unlock(inode->i_mapping);
1402 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1403 	return ret;
1404 }
1405 
1406 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1407 {
1408 	loff_t new_size;
1409 	int ret;
1410 
1411 	if (offset + len >= i_size_read(inode))
1412 		return -EINVAL;
1413 
1414 	/* collapse range should be aligned to block size of f2fs. */
1415 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1416 		return -EINVAL;
1417 
1418 	ret = f2fs_convert_inline_inode(inode);
1419 	if (ret)
1420 		return ret;
1421 
1422 	/* write out all dirty pages from offset */
1423 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1424 	if (ret)
1425 		return ret;
1426 
1427 	ret = f2fs_do_collapse(inode, offset, len);
1428 	if (ret)
1429 		return ret;
1430 
1431 	/* write out all moved pages, if possible */
1432 	filemap_invalidate_lock(inode->i_mapping);
1433 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1434 	truncate_pagecache(inode, offset);
1435 
1436 	new_size = i_size_read(inode) - len;
1437 	ret = f2fs_truncate_blocks(inode, new_size, true);
1438 	filemap_invalidate_unlock(inode->i_mapping);
1439 	if (!ret)
1440 		f2fs_i_size_write(inode, new_size);
1441 	return ret;
1442 }
1443 
1444 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1445 								pgoff_t end)
1446 {
1447 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1448 	pgoff_t index = start;
1449 	unsigned int ofs_in_node = dn->ofs_in_node;
1450 	blkcnt_t count = 0;
1451 	int ret;
1452 
1453 	for (; index < end; index++, dn->ofs_in_node++) {
1454 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1455 			count++;
1456 	}
1457 
1458 	dn->ofs_in_node = ofs_in_node;
1459 	ret = f2fs_reserve_new_blocks(dn, count);
1460 	if (ret)
1461 		return ret;
1462 
1463 	dn->ofs_in_node = ofs_in_node;
1464 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1465 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1466 		/*
1467 		 * f2fs_reserve_new_blocks will not guarantee entire block
1468 		 * allocation.
1469 		 */
1470 		if (dn->data_blkaddr == NULL_ADDR) {
1471 			ret = -ENOSPC;
1472 			break;
1473 		}
1474 
1475 		if (dn->data_blkaddr == NEW_ADDR)
1476 			continue;
1477 
1478 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1479 					DATA_GENERIC_ENHANCE)) {
1480 			ret = -EFSCORRUPTED;
1481 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1482 			break;
1483 		}
1484 
1485 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1486 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1487 	}
1488 
1489 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1490 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1491 
1492 	return ret;
1493 }
1494 
1495 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1496 								int mode)
1497 {
1498 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1499 	struct address_space *mapping = inode->i_mapping;
1500 	pgoff_t index, pg_start, pg_end;
1501 	loff_t new_size = i_size_read(inode);
1502 	loff_t off_start, off_end;
1503 	int ret = 0;
1504 
1505 	ret = inode_newsize_ok(inode, (len + offset));
1506 	if (ret)
1507 		return ret;
1508 
1509 	ret = f2fs_convert_inline_inode(inode);
1510 	if (ret)
1511 		return ret;
1512 
1513 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1514 	if (ret)
1515 		return ret;
1516 
1517 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1518 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1519 
1520 	off_start = offset & (PAGE_SIZE - 1);
1521 	off_end = (offset + len) & (PAGE_SIZE - 1);
1522 
1523 	if (pg_start == pg_end) {
1524 		ret = fill_zero(inode, pg_start, off_start,
1525 						off_end - off_start);
1526 		if (ret)
1527 			return ret;
1528 
1529 		new_size = max_t(loff_t, new_size, offset + len);
1530 	} else {
1531 		if (off_start) {
1532 			ret = fill_zero(inode, pg_start++, off_start,
1533 						PAGE_SIZE - off_start);
1534 			if (ret)
1535 				return ret;
1536 
1537 			new_size = max_t(loff_t, new_size,
1538 					(loff_t)pg_start << PAGE_SHIFT);
1539 		}
1540 
1541 		for (index = pg_start; index < pg_end;) {
1542 			struct dnode_of_data dn;
1543 			unsigned int end_offset;
1544 			pgoff_t end;
1545 
1546 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1547 			filemap_invalidate_lock(mapping);
1548 
1549 			truncate_pagecache_range(inode,
1550 				(loff_t)index << PAGE_SHIFT,
1551 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1552 
1553 			f2fs_lock_op(sbi);
1554 
1555 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1556 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1557 			if (ret) {
1558 				f2fs_unlock_op(sbi);
1559 				filemap_invalidate_unlock(mapping);
1560 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1561 				goto out;
1562 			}
1563 
1564 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1565 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1566 
1567 			ret = f2fs_do_zero_range(&dn, index, end);
1568 			f2fs_put_dnode(&dn);
1569 
1570 			f2fs_unlock_op(sbi);
1571 			filemap_invalidate_unlock(mapping);
1572 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1573 
1574 			f2fs_balance_fs(sbi, dn.node_changed);
1575 
1576 			if (ret)
1577 				goto out;
1578 
1579 			index = end;
1580 			new_size = max_t(loff_t, new_size,
1581 					(loff_t)index << PAGE_SHIFT);
1582 		}
1583 
1584 		if (off_end) {
1585 			ret = fill_zero(inode, pg_end, 0, off_end);
1586 			if (ret)
1587 				goto out;
1588 
1589 			new_size = max_t(loff_t, new_size, offset + len);
1590 		}
1591 	}
1592 
1593 out:
1594 	if (new_size > i_size_read(inode)) {
1595 		if (mode & FALLOC_FL_KEEP_SIZE)
1596 			file_set_keep_isize(inode);
1597 		else
1598 			f2fs_i_size_write(inode, new_size);
1599 	}
1600 	return ret;
1601 }
1602 
1603 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1604 {
1605 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1606 	struct address_space *mapping = inode->i_mapping;
1607 	pgoff_t nr, pg_start, pg_end, delta, idx;
1608 	loff_t new_size;
1609 	int ret = 0;
1610 
1611 	new_size = i_size_read(inode) + len;
1612 	ret = inode_newsize_ok(inode, new_size);
1613 	if (ret)
1614 		return ret;
1615 
1616 	if (offset >= i_size_read(inode))
1617 		return -EINVAL;
1618 
1619 	/* insert range should be aligned to block size of f2fs. */
1620 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1621 		return -EINVAL;
1622 
1623 	ret = f2fs_convert_inline_inode(inode);
1624 	if (ret)
1625 		return ret;
1626 
1627 	f2fs_balance_fs(sbi, true);
1628 
1629 	filemap_invalidate_lock(mapping);
1630 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1631 	filemap_invalidate_unlock(mapping);
1632 	if (ret)
1633 		return ret;
1634 
1635 	/* write out all dirty pages from offset */
1636 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1637 	if (ret)
1638 		return ret;
1639 
1640 	pg_start = offset >> PAGE_SHIFT;
1641 	pg_end = (offset + len) >> PAGE_SHIFT;
1642 	delta = pg_end - pg_start;
1643 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1644 
1645 	/* avoid gc operation during block exchange */
1646 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1647 	filemap_invalidate_lock(mapping);
1648 	truncate_pagecache(inode, offset);
1649 
1650 	while (!ret && idx > pg_start) {
1651 		nr = idx - pg_start;
1652 		if (nr > delta)
1653 			nr = delta;
1654 		idx -= nr;
1655 
1656 		f2fs_lock_op(sbi);
1657 		f2fs_drop_extent_tree(inode);
1658 
1659 		ret = __exchange_data_block(inode, inode, idx,
1660 					idx + delta, nr, false);
1661 		f2fs_unlock_op(sbi);
1662 	}
1663 	filemap_invalidate_unlock(mapping);
1664 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1665 
1666 	/* write out all moved pages, if possible */
1667 	filemap_invalidate_lock(mapping);
1668 	filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1669 	truncate_pagecache(inode, offset);
1670 	filemap_invalidate_unlock(mapping);
1671 
1672 	if (!ret)
1673 		f2fs_i_size_write(inode, new_size);
1674 	return ret;
1675 }
1676 
1677 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1678 					loff_t len, int mode)
1679 {
1680 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1681 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1682 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1683 			.m_may_create = true };
1684 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1685 			.init_gc_type = FG_GC,
1686 			.should_migrate_blocks = false,
1687 			.err_gc_skipped = true,
1688 			.nr_free_secs = 0 };
1689 	pgoff_t pg_start, pg_end;
1690 	loff_t new_size;
1691 	loff_t off_end;
1692 	block_t expanded = 0;
1693 	int err;
1694 
1695 	err = inode_newsize_ok(inode, (len + offset));
1696 	if (err)
1697 		return err;
1698 
1699 	err = f2fs_convert_inline_inode(inode);
1700 	if (err)
1701 		return err;
1702 
1703 	f2fs_balance_fs(sbi, true);
1704 
1705 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1706 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1707 	off_end = (offset + len) & (PAGE_SIZE - 1);
1708 
1709 	map.m_lblk = pg_start;
1710 	map.m_len = pg_end - pg_start;
1711 	if (off_end)
1712 		map.m_len++;
1713 
1714 	if (!map.m_len)
1715 		return 0;
1716 
1717 	if (f2fs_is_pinned_file(inode)) {
1718 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1719 		block_t sec_len = roundup(map.m_len, sec_blks);
1720 
1721 		map.m_len = sec_blks;
1722 next_alloc:
1723 		if (has_not_enough_free_secs(sbi, 0,
1724 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1725 			f2fs_down_write(&sbi->gc_lock);
1726 			stat_inc_gc_call_count(sbi, FOREGROUND);
1727 			err = f2fs_gc(sbi, &gc_control);
1728 			if (err && err != -ENODATA)
1729 				goto out_err;
1730 		}
1731 
1732 		f2fs_down_write(&sbi->pin_sem);
1733 
1734 		f2fs_lock_op(sbi);
1735 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1736 		f2fs_unlock_op(sbi);
1737 
1738 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1739 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1740 		file_dont_truncate(inode);
1741 
1742 		f2fs_up_write(&sbi->pin_sem);
1743 
1744 		expanded += map.m_len;
1745 		sec_len -= map.m_len;
1746 		map.m_lblk += map.m_len;
1747 		if (!err && sec_len)
1748 			goto next_alloc;
1749 
1750 		map.m_len = expanded;
1751 	} else {
1752 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1753 		expanded = map.m_len;
1754 	}
1755 out_err:
1756 	if (err) {
1757 		pgoff_t last_off;
1758 
1759 		if (!expanded)
1760 			return err;
1761 
1762 		last_off = pg_start + expanded - 1;
1763 
1764 		/* update new size to the failed position */
1765 		new_size = (last_off == pg_end) ? offset + len :
1766 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1767 	} else {
1768 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1769 	}
1770 
1771 	if (new_size > i_size_read(inode)) {
1772 		if (mode & FALLOC_FL_KEEP_SIZE)
1773 			file_set_keep_isize(inode);
1774 		else
1775 			f2fs_i_size_write(inode, new_size);
1776 	}
1777 
1778 	return err;
1779 }
1780 
1781 static long f2fs_fallocate(struct file *file, int mode,
1782 				loff_t offset, loff_t len)
1783 {
1784 	struct inode *inode = file_inode(file);
1785 	long ret = 0;
1786 
1787 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1788 		return -EIO;
1789 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1790 		return -ENOSPC;
1791 	if (!f2fs_is_compress_backend_ready(inode))
1792 		return -EOPNOTSUPP;
1793 
1794 	/* f2fs only support ->fallocate for regular file */
1795 	if (!S_ISREG(inode->i_mode))
1796 		return -EINVAL;
1797 
1798 	if (IS_ENCRYPTED(inode) &&
1799 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1800 		return -EOPNOTSUPP;
1801 
1802 	/*
1803 	 * Pinned file should not support partial truncation since the block
1804 	 * can be used by applications.
1805 	 */
1806 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1807 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1808 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1809 		return -EOPNOTSUPP;
1810 
1811 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1812 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1813 			FALLOC_FL_INSERT_RANGE))
1814 		return -EOPNOTSUPP;
1815 
1816 	inode_lock(inode);
1817 
1818 	ret = file_modified(file);
1819 	if (ret)
1820 		goto out;
1821 
1822 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1823 		if (offset >= inode->i_size)
1824 			goto out;
1825 
1826 		ret = f2fs_punch_hole(inode, offset, len);
1827 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1828 		ret = f2fs_collapse_range(inode, offset, len);
1829 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1830 		ret = f2fs_zero_range(inode, offset, len, mode);
1831 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1832 		ret = f2fs_insert_range(inode, offset, len);
1833 	} else {
1834 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1835 	}
1836 
1837 	if (!ret) {
1838 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1839 		f2fs_mark_inode_dirty_sync(inode, false);
1840 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1841 	}
1842 
1843 out:
1844 	inode_unlock(inode);
1845 
1846 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1847 	return ret;
1848 }
1849 
1850 static int f2fs_release_file(struct inode *inode, struct file *filp)
1851 {
1852 	/*
1853 	 * f2fs_release_file is called at every close calls. So we should
1854 	 * not drop any inmemory pages by close called by other process.
1855 	 */
1856 	if (!(filp->f_mode & FMODE_WRITE) ||
1857 			atomic_read(&inode->i_writecount) != 1)
1858 		return 0;
1859 
1860 	inode_lock(inode);
1861 	f2fs_abort_atomic_write(inode, true);
1862 	inode_unlock(inode);
1863 
1864 	return 0;
1865 }
1866 
1867 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1868 {
1869 	struct inode *inode = file_inode(file);
1870 
1871 	/*
1872 	 * If the process doing a transaction is crashed, we should do
1873 	 * roll-back. Otherwise, other reader/write can see corrupted database
1874 	 * until all the writers close its file. Since this should be done
1875 	 * before dropping file lock, it needs to do in ->flush.
1876 	 */
1877 	if (F2FS_I(inode)->atomic_write_task == current &&
1878 				(current->flags & PF_EXITING)) {
1879 		inode_lock(inode);
1880 		f2fs_abort_atomic_write(inode, true);
1881 		inode_unlock(inode);
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1888 {
1889 	struct f2fs_inode_info *fi = F2FS_I(inode);
1890 	u32 masked_flags = fi->i_flags & mask;
1891 
1892 	/* mask can be shrunk by flags_valid selector */
1893 	iflags &= mask;
1894 
1895 	/* Is it quota file? Do not allow user to mess with it */
1896 	if (IS_NOQUOTA(inode))
1897 		return -EPERM;
1898 
1899 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1900 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1901 			return -EOPNOTSUPP;
1902 		if (!f2fs_empty_dir(inode))
1903 			return -ENOTEMPTY;
1904 	}
1905 
1906 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1907 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1908 			return -EOPNOTSUPP;
1909 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1910 			return -EINVAL;
1911 	}
1912 
1913 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1914 		if (masked_flags & F2FS_COMPR_FL) {
1915 			if (!f2fs_disable_compressed_file(inode))
1916 				return -EINVAL;
1917 		} else {
1918 			/* try to convert inline_data to support compression */
1919 			int err = f2fs_convert_inline_inode(inode);
1920 			if (err)
1921 				return err;
1922 
1923 			f2fs_down_write(&F2FS_I(inode)->i_sem);
1924 			if (!f2fs_may_compress(inode) ||
1925 					(S_ISREG(inode->i_mode) &&
1926 					F2FS_HAS_BLOCKS(inode))) {
1927 				f2fs_up_write(&F2FS_I(inode)->i_sem);
1928 				return -EINVAL;
1929 			}
1930 			err = set_compress_context(inode);
1931 			f2fs_up_write(&F2FS_I(inode)->i_sem);
1932 
1933 			if (err)
1934 				return err;
1935 		}
1936 	}
1937 
1938 	fi->i_flags = iflags | (fi->i_flags & ~mask);
1939 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1940 					(fi->i_flags & F2FS_NOCOMP_FL));
1941 
1942 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1943 		set_inode_flag(inode, FI_PROJ_INHERIT);
1944 	else
1945 		clear_inode_flag(inode, FI_PROJ_INHERIT);
1946 
1947 	inode_set_ctime_current(inode);
1948 	f2fs_set_inode_flags(inode);
1949 	f2fs_mark_inode_dirty_sync(inode, true);
1950 	return 0;
1951 }
1952 
1953 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1954 
1955 /*
1956  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1957  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1958  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1959  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1960  *
1961  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1962  * FS_IOC_FSSETXATTR is done by the VFS.
1963  */
1964 
1965 static const struct {
1966 	u32 iflag;
1967 	u32 fsflag;
1968 } f2fs_fsflags_map[] = {
1969 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
1970 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1971 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1972 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1973 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1974 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1975 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
1976 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1977 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1978 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1979 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1980 };
1981 
1982 #define F2FS_GETTABLE_FS_FL (		\
1983 		FS_COMPR_FL |		\
1984 		FS_SYNC_FL |		\
1985 		FS_IMMUTABLE_FL |	\
1986 		FS_APPEND_FL |		\
1987 		FS_NODUMP_FL |		\
1988 		FS_NOATIME_FL |		\
1989 		FS_NOCOMP_FL |		\
1990 		FS_INDEX_FL |		\
1991 		FS_DIRSYNC_FL |		\
1992 		FS_PROJINHERIT_FL |	\
1993 		FS_ENCRYPT_FL |		\
1994 		FS_INLINE_DATA_FL |	\
1995 		FS_NOCOW_FL |		\
1996 		FS_VERITY_FL |		\
1997 		FS_CASEFOLD_FL)
1998 
1999 #define F2FS_SETTABLE_FS_FL (		\
2000 		FS_COMPR_FL |		\
2001 		FS_SYNC_FL |		\
2002 		FS_IMMUTABLE_FL |	\
2003 		FS_APPEND_FL |		\
2004 		FS_NODUMP_FL |		\
2005 		FS_NOATIME_FL |		\
2006 		FS_NOCOMP_FL |		\
2007 		FS_DIRSYNC_FL |		\
2008 		FS_PROJINHERIT_FL |	\
2009 		FS_CASEFOLD_FL)
2010 
2011 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2012 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2013 {
2014 	u32 fsflags = 0;
2015 	int i;
2016 
2017 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2018 		if (iflags & f2fs_fsflags_map[i].iflag)
2019 			fsflags |= f2fs_fsflags_map[i].fsflag;
2020 
2021 	return fsflags;
2022 }
2023 
2024 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2025 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2026 {
2027 	u32 iflags = 0;
2028 	int i;
2029 
2030 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2031 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2032 			iflags |= f2fs_fsflags_map[i].iflag;
2033 
2034 	return iflags;
2035 }
2036 
2037 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2038 {
2039 	struct inode *inode = file_inode(filp);
2040 
2041 	return put_user(inode->i_generation, (int __user *)arg);
2042 }
2043 
2044 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2045 {
2046 	struct inode *inode = file_inode(filp);
2047 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2048 	struct f2fs_inode_info *fi = F2FS_I(inode);
2049 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2050 	struct inode *pinode;
2051 	loff_t isize;
2052 	int ret;
2053 
2054 	if (!inode_owner_or_capable(idmap, inode))
2055 		return -EACCES;
2056 
2057 	if (!S_ISREG(inode->i_mode))
2058 		return -EINVAL;
2059 
2060 	if (filp->f_flags & O_DIRECT)
2061 		return -EINVAL;
2062 
2063 	ret = mnt_want_write_file(filp);
2064 	if (ret)
2065 		return ret;
2066 
2067 	inode_lock(inode);
2068 
2069 	if (!f2fs_disable_compressed_file(inode)) {
2070 		ret = -EINVAL;
2071 		goto out;
2072 	}
2073 
2074 	if (f2fs_is_atomic_file(inode))
2075 		goto out;
2076 
2077 	ret = f2fs_convert_inline_inode(inode);
2078 	if (ret)
2079 		goto out;
2080 
2081 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2082 
2083 	/*
2084 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2085 	 * f2fs_is_atomic_file.
2086 	 */
2087 	if (get_dirty_pages(inode))
2088 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2089 			  inode->i_ino, get_dirty_pages(inode));
2090 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2091 	if (ret) {
2092 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2093 		goto out;
2094 	}
2095 
2096 	/* Check if the inode already has a COW inode */
2097 	if (fi->cow_inode == NULL) {
2098 		/* Create a COW inode for atomic write */
2099 		pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2100 		if (IS_ERR(pinode)) {
2101 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2102 			ret = PTR_ERR(pinode);
2103 			goto out;
2104 		}
2105 
2106 		ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2107 		iput(pinode);
2108 		if (ret) {
2109 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2110 			goto out;
2111 		}
2112 
2113 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2114 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2115 	} else {
2116 		/* Reuse the already created COW inode */
2117 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2118 		if (ret) {
2119 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2120 			goto out;
2121 		}
2122 	}
2123 
2124 	f2fs_write_inode(inode, NULL);
2125 
2126 	stat_inc_atomic_inode(inode);
2127 
2128 	set_inode_flag(inode, FI_ATOMIC_FILE);
2129 
2130 	isize = i_size_read(inode);
2131 	fi->original_i_size = isize;
2132 	if (truncate) {
2133 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2134 		truncate_inode_pages_final(inode->i_mapping);
2135 		f2fs_i_size_write(inode, 0);
2136 		isize = 0;
2137 	}
2138 	f2fs_i_size_write(fi->cow_inode, isize);
2139 
2140 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2141 
2142 	f2fs_update_time(sbi, REQ_TIME);
2143 	fi->atomic_write_task = current;
2144 	stat_update_max_atomic_write(inode);
2145 	fi->atomic_write_cnt = 0;
2146 out:
2147 	inode_unlock(inode);
2148 	mnt_drop_write_file(filp);
2149 	return ret;
2150 }
2151 
2152 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2153 {
2154 	struct inode *inode = file_inode(filp);
2155 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2156 	int ret;
2157 
2158 	if (!inode_owner_or_capable(idmap, inode))
2159 		return -EACCES;
2160 
2161 	ret = mnt_want_write_file(filp);
2162 	if (ret)
2163 		return ret;
2164 
2165 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2166 
2167 	inode_lock(inode);
2168 
2169 	if (f2fs_is_atomic_file(inode)) {
2170 		ret = f2fs_commit_atomic_write(inode);
2171 		if (!ret)
2172 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2173 
2174 		f2fs_abort_atomic_write(inode, ret);
2175 	} else {
2176 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2177 	}
2178 
2179 	inode_unlock(inode);
2180 	mnt_drop_write_file(filp);
2181 	return ret;
2182 }
2183 
2184 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2185 {
2186 	struct inode *inode = file_inode(filp);
2187 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2188 	int ret;
2189 
2190 	if (!inode_owner_or_capable(idmap, inode))
2191 		return -EACCES;
2192 
2193 	ret = mnt_want_write_file(filp);
2194 	if (ret)
2195 		return ret;
2196 
2197 	inode_lock(inode);
2198 
2199 	f2fs_abort_atomic_write(inode, true);
2200 
2201 	inode_unlock(inode);
2202 
2203 	mnt_drop_write_file(filp);
2204 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2205 	return ret;
2206 }
2207 
2208 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2209 {
2210 	struct inode *inode = file_inode(filp);
2211 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2212 	struct super_block *sb = sbi->sb;
2213 	__u32 in;
2214 	int ret = 0;
2215 
2216 	if (!capable(CAP_SYS_ADMIN))
2217 		return -EPERM;
2218 
2219 	if (get_user(in, (__u32 __user *)arg))
2220 		return -EFAULT;
2221 
2222 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2223 		ret = mnt_want_write_file(filp);
2224 		if (ret) {
2225 			if (ret == -EROFS) {
2226 				ret = 0;
2227 				f2fs_stop_checkpoint(sbi, false,
2228 						STOP_CP_REASON_SHUTDOWN);
2229 				trace_f2fs_shutdown(sbi, in, ret);
2230 			}
2231 			return ret;
2232 		}
2233 	}
2234 
2235 	switch (in) {
2236 	case F2FS_GOING_DOWN_FULLSYNC:
2237 		ret = bdev_freeze(sb->s_bdev);
2238 		if (ret)
2239 			goto out;
2240 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2241 		bdev_thaw(sb->s_bdev);
2242 		break;
2243 	case F2FS_GOING_DOWN_METASYNC:
2244 		/* do checkpoint only */
2245 		ret = f2fs_sync_fs(sb, 1);
2246 		if (ret)
2247 			goto out;
2248 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2249 		break;
2250 	case F2FS_GOING_DOWN_NOSYNC:
2251 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2252 		break;
2253 	case F2FS_GOING_DOWN_METAFLUSH:
2254 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2255 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2256 		break;
2257 	case F2FS_GOING_DOWN_NEED_FSCK:
2258 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2259 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2260 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2261 		/* do checkpoint only */
2262 		ret = f2fs_sync_fs(sb, 1);
2263 		goto out;
2264 	default:
2265 		ret = -EINVAL;
2266 		goto out;
2267 	}
2268 
2269 	f2fs_stop_gc_thread(sbi);
2270 	f2fs_stop_discard_thread(sbi);
2271 
2272 	f2fs_drop_discard_cmd(sbi);
2273 	clear_opt(sbi, DISCARD);
2274 
2275 	f2fs_update_time(sbi, REQ_TIME);
2276 out:
2277 	if (in != F2FS_GOING_DOWN_FULLSYNC)
2278 		mnt_drop_write_file(filp);
2279 
2280 	trace_f2fs_shutdown(sbi, in, ret);
2281 
2282 	return ret;
2283 }
2284 
2285 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2286 {
2287 	struct inode *inode = file_inode(filp);
2288 	struct super_block *sb = inode->i_sb;
2289 	struct fstrim_range range;
2290 	int ret;
2291 
2292 	if (!capable(CAP_SYS_ADMIN))
2293 		return -EPERM;
2294 
2295 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2296 		return -EOPNOTSUPP;
2297 
2298 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2299 				sizeof(range)))
2300 		return -EFAULT;
2301 
2302 	ret = mnt_want_write_file(filp);
2303 	if (ret)
2304 		return ret;
2305 
2306 	range.minlen = max((unsigned int)range.minlen,
2307 			   bdev_discard_granularity(sb->s_bdev));
2308 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2309 	mnt_drop_write_file(filp);
2310 	if (ret < 0)
2311 		return ret;
2312 
2313 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2314 				sizeof(range)))
2315 		return -EFAULT;
2316 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2317 	return 0;
2318 }
2319 
2320 static bool uuid_is_nonzero(__u8 u[16])
2321 {
2322 	int i;
2323 
2324 	for (i = 0; i < 16; i++)
2325 		if (u[i])
2326 			return true;
2327 	return false;
2328 }
2329 
2330 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2331 {
2332 	struct inode *inode = file_inode(filp);
2333 
2334 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2335 		return -EOPNOTSUPP;
2336 
2337 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2338 
2339 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2340 }
2341 
2342 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2343 {
2344 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2345 		return -EOPNOTSUPP;
2346 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2347 }
2348 
2349 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2350 {
2351 	struct inode *inode = file_inode(filp);
2352 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2353 	u8 encrypt_pw_salt[16];
2354 	int err;
2355 
2356 	if (!f2fs_sb_has_encrypt(sbi))
2357 		return -EOPNOTSUPP;
2358 
2359 	err = mnt_want_write_file(filp);
2360 	if (err)
2361 		return err;
2362 
2363 	f2fs_down_write(&sbi->sb_lock);
2364 
2365 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2366 		goto got_it;
2367 
2368 	/* update superblock with uuid */
2369 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2370 
2371 	err = f2fs_commit_super(sbi, false);
2372 	if (err) {
2373 		/* undo new data */
2374 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2375 		goto out_err;
2376 	}
2377 got_it:
2378 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2379 out_err:
2380 	f2fs_up_write(&sbi->sb_lock);
2381 	mnt_drop_write_file(filp);
2382 
2383 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2384 		err = -EFAULT;
2385 
2386 	return err;
2387 }
2388 
2389 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2390 					     unsigned long arg)
2391 {
2392 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2393 		return -EOPNOTSUPP;
2394 
2395 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2396 }
2397 
2398 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2399 {
2400 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2401 		return -EOPNOTSUPP;
2402 
2403 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2404 }
2405 
2406 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2407 {
2408 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2409 		return -EOPNOTSUPP;
2410 
2411 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2412 }
2413 
2414 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2415 						    unsigned long arg)
2416 {
2417 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2418 		return -EOPNOTSUPP;
2419 
2420 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2421 }
2422 
2423 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2424 					      unsigned long arg)
2425 {
2426 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2427 		return -EOPNOTSUPP;
2428 
2429 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2430 }
2431 
2432 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2433 {
2434 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2435 		return -EOPNOTSUPP;
2436 
2437 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2438 }
2439 
2440 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2441 {
2442 	struct inode *inode = file_inode(filp);
2443 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2444 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2445 			.no_bg_gc = false,
2446 			.should_migrate_blocks = false,
2447 			.nr_free_secs = 0 };
2448 	__u32 sync;
2449 	int ret;
2450 
2451 	if (!capable(CAP_SYS_ADMIN))
2452 		return -EPERM;
2453 
2454 	if (get_user(sync, (__u32 __user *)arg))
2455 		return -EFAULT;
2456 
2457 	if (f2fs_readonly(sbi->sb))
2458 		return -EROFS;
2459 
2460 	ret = mnt_want_write_file(filp);
2461 	if (ret)
2462 		return ret;
2463 
2464 	if (!sync) {
2465 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2466 			ret = -EBUSY;
2467 			goto out;
2468 		}
2469 	} else {
2470 		f2fs_down_write(&sbi->gc_lock);
2471 	}
2472 
2473 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2474 	gc_control.err_gc_skipped = sync;
2475 	stat_inc_gc_call_count(sbi, FOREGROUND);
2476 	ret = f2fs_gc(sbi, &gc_control);
2477 out:
2478 	mnt_drop_write_file(filp);
2479 	return ret;
2480 }
2481 
2482 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2483 {
2484 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2485 	struct f2fs_gc_control gc_control = {
2486 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2487 			.no_bg_gc = false,
2488 			.should_migrate_blocks = false,
2489 			.err_gc_skipped = range->sync,
2490 			.nr_free_secs = 0 };
2491 	u64 end;
2492 	int ret;
2493 
2494 	if (!capable(CAP_SYS_ADMIN))
2495 		return -EPERM;
2496 	if (f2fs_readonly(sbi->sb))
2497 		return -EROFS;
2498 
2499 	end = range->start + range->len;
2500 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2501 					end >= MAX_BLKADDR(sbi))
2502 		return -EINVAL;
2503 
2504 	ret = mnt_want_write_file(filp);
2505 	if (ret)
2506 		return ret;
2507 
2508 do_more:
2509 	if (!range->sync) {
2510 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2511 			ret = -EBUSY;
2512 			goto out;
2513 		}
2514 	} else {
2515 		f2fs_down_write(&sbi->gc_lock);
2516 	}
2517 
2518 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2519 	stat_inc_gc_call_count(sbi, FOREGROUND);
2520 	ret = f2fs_gc(sbi, &gc_control);
2521 	if (ret) {
2522 		if (ret == -EBUSY)
2523 			ret = -EAGAIN;
2524 		goto out;
2525 	}
2526 	range->start += CAP_BLKS_PER_SEC(sbi);
2527 	if (range->start <= end)
2528 		goto do_more;
2529 out:
2530 	mnt_drop_write_file(filp);
2531 	return ret;
2532 }
2533 
2534 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2535 {
2536 	struct f2fs_gc_range range;
2537 
2538 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2539 							sizeof(range)))
2540 		return -EFAULT;
2541 	return __f2fs_ioc_gc_range(filp, &range);
2542 }
2543 
2544 static int f2fs_ioc_write_checkpoint(struct file *filp)
2545 {
2546 	struct inode *inode = file_inode(filp);
2547 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2548 	int ret;
2549 
2550 	if (!capable(CAP_SYS_ADMIN))
2551 		return -EPERM;
2552 
2553 	if (f2fs_readonly(sbi->sb))
2554 		return -EROFS;
2555 
2556 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2557 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2558 		return -EINVAL;
2559 	}
2560 
2561 	ret = mnt_want_write_file(filp);
2562 	if (ret)
2563 		return ret;
2564 
2565 	ret = f2fs_sync_fs(sbi->sb, 1);
2566 
2567 	mnt_drop_write_file(filp);
2568 	return ret;
2569 }
2570 
2571 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2572 					struct file *filp,
2573 					struct f2fs_defragment *range)
2574 {
2575 	struct inode *inode = file_inode(filp);
2576 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2577 					.m_seg_type = NO_CHECK_TYPE,
2578 					.m_may_create = false };
2579 	struct extent_info ei = {};
2580 	pgoff_t pg_start, pg_end, next_pgofs;
2581 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2582 	unsigned int total = 0, sec_num;
2583 	block_t blk_end = 0;
2584 	bool fragmented = false;
2585 	int err;
2586 
2587 	pg_start = range->start >> PAGE_SHIFT;
2588 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2589 
2590 	f2fs_balance_fs(sbi, true);
2591 
2592 	inode_lock(inode);
2593 
2594 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2595 		err = -EINVAL;
2596 		goto unlock_out;
2597 	}
2598 
2599 	/* if in-place-update policy is enabled, don't waste time here */
2600 	set_inode_flag(inode, FI_OPU_WRITE);
2601 	if (f2fs_should_update_inplace(inode, NULL)) {
2602 		err = -EINVAL;
2603 		goto out;
2604 	}
2605 
2606 	/* writeback all dirty pages in the range */
2607 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2608 						range->start + range->len - 1);
2609 	if (err)
2610 		goto out;
2611 
2612 	/*
2613 	 * lookup mapping info in extent cache, skip defragmenting if physical
2614 	 * block addresses are continuous.
2615 	 */
2616 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2617 		if (ei.fofs + ei.len >= pg_end)
2618 			goto out;
2619 	}
2620 
2621 	map.m_lblk = pg_start;
2622 	map.m_next_pgofs = &next_pgofs;
2623 
2624 	/*
2625 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2626 	 * physical block addresses are continuous even if there are hole(s)
2627 	 * in logical blocks.
2628 	 */
2629 	while (map.m_lblk < pg_end) {
2630 		map.m_len = pg_end - map.m_lblk;
2631 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2632 		if (err)
2633 			goto out;
2634 
2635 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2636 			map.m_lblk = next_pgofs;
2637 			continue;
2638 		}
2639 
2640 		if (blk_end && blk_end != map.m_pblk)
2641 			fragmented = true;
2642 
2643 		/* record total count of block that we're going to move */
2644 		total += map.m_len;
2645 
2646 		blk_end = map.m_pblk + map.m_len;
2647 
2648 		map.m_lblk += map.m_len;
2649 	}
2650 
2651 	if (!fragmented) {
2652 		total = 0;
2653 		goto out;
2654 	}
2655 
2656 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2657 
2658 	/*
2659 	 * make sure there are enough free section for LFS allocation, this can
2660 	 * avoid defragment running in SSR mode when free section are allocated
2661 	 * intensively
2662 	 */
2663 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2664 		err = -EAGAIN;
2665 		goto out;
2666 	}
2667 
2668 	map.m_lblk = pg_start;
2669 	map.m_len = pg_end - pg_start;
2670 	total = 0;
2671 
2672 	while (map.m_lblk < pg_end) {
2673 		pgoff_t idx;
2674 		int cnt = 0;
2675 
2676 do_map:
2677 		map.m_len = pg_end - map.m_lblk;
2678 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2679 		if (err)
2680 			goto clear_out;
2681 
2682 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2683 			map.m_lblk = next_pgofs;
2684 			goto check;
2685 		}
2686 
2687 		set_inode_flag(inode, FI_SKIP_WRITES);
2688 
2689 		idx = map.m_lblk;
2690 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2691 			struct page *page;
2692 
2693 			page = f2fs_get_lock_data_page(inode, idx, true);
2694 			if (IS_ERR(page)) {
2695 				err = PTR_ERR(page);
2696 				goto clear_out;
2697 			}
2698 
2699 			set_page_dirty(page);
2700 			set_page_private_gcing(page);
2701 			f2fs_put_page(page, 1);
2702 
2703 			idx++;
2704 			cnt++;
2705 			total++;
2706 		}
2707 
2708 		map.m_lblk = idx;
2709 check:
2710 		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2711 			goto do_map;
2712 
2713 		clear_inode_flag(inode, FI_SKIP_WRITES);
2714 
2715 		err = filemap_fdatawrite(inode->i_mapping);
2716 		if (err)
2717 			goto out;
2718 	}
2719 clear_out:
2720 	clear_inode_flag(inode, FI_SKIP_WRITES);
2721 out:
2722 	clear_inode_flag(inode, FI_OPU_WRITE);
2723 unlock_out:
2724 	inode_unlock(inode);
2725 	if (!err)
2726 		range->len = (u64)total << PAGE_SHIFT;
2727 	return err;
2728 }
2729 
2730 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2731 {
2732 	struct inode *inode = file_inode(filp);
2733 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2734 	struct f2fs_defragment range;
2735 	int err;
2736 
2737 	if (!capable(CAP_SYS_ADMIN))
2738 		return -EPERM;
2739 
2740 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2741 		return -EINVAL;
2742 
2743 	if (f2fs_readonly(sbi->sb))
2744 		return -EROFS;
2745 
2746 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2747 							sizeof(range)))
2748 		return -EFAULT;
2749 
2750 	/* verify alignment of offset & size */
2751 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2752 		return -EINVAL;
2753 
2754 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2755 					max_file_blocks(inode)))
2756 		return -EINVAL;
2757 
2758 	err = mnt_want_write_file(filp);
2759 	if (err)
2760 		return err;
2761 
2762 	err = f2fs_defragment_range(sbi, filp, &range);
2763 	mnt_drop_write_file(filp);
2764 
2765 	f2fs_update_time(sbi, REQ_TIME);
2766 	if (err < 0)
2767 		return err;
2768 
2769 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2770 							sizeof(range)))
2771 		return -EFAULT;
2772 
2773 	return 0;
2774 }
2775 
2776 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2777 			struct file *file_out, loff_t pos_out, size_t len)
2778 {
2779 	struct inode *src = file_inode(file_in);
2780 	struct inode *dst = file_inode(file_out);
2781 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2782 	size_t olen = len, dst_max_i_size = 0;
2783 	size_t dst_osize;
2784 	int ret;
2785 
2786 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2787 				src->i_sb != dst->i_sb)
2788 		return -EXDEV;
2789 
2790 	if (unlikely(f2fs_readonly(src->i_sb)))
2791 		return -EROFS;
2792 
2793 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2794 		return -EINVAL;
2795 
2796 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2797 		return -EOPNOTSUPP;
2798 
2799 	if (pos_out < 0 || pos_in < 0)
2800 		return -EINVAL;
2801 
2802 	if (src == dst) {
2803 		if (pos_in == pos_out)
2804 			return 0;
2805 		if (pos_out > pos_in && pos_out < pos_in + len)
2806 			return -EINVAL;
2807 	}
2808 
2809 	inode_lock(src);
2810 	if (src != dst) {
2811 		ret = -EBUSY;
2812 		if (!inode_trylock(dst))
2813 			goto out;
2814 	}
2815 
2816 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst)) {
2817 		ret = -EOPNOTSUPP;
2818 		goto out_unlock;
2819 	}
2820 
2821 	ret = -EINVAL;
2822 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2823 		goto out_unlock;
2824 	if (len == 0)
2825 		olen = len = src->i_size - pos_in;
2826 	if (pos_in + len == src->i_size)
2827 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2828 	if (len == 0) {
2829 		ret = 0;
2830 		goto out_unlock;
2831 	}
2832 
2833 	dst_osize = dst->i_size;
2834 	if (pos_out + olen > dst->i_size)
2835 		dst_max_i_size = pos_out + olen;
2836 
2837 	/* verify the end result is block aligned */
2838 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2839 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2840 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2841 		goto out_unlock;
2842 
2843 	ret = f2fs_convert_inline_inode(src);
2844 	if (ret)
2845 		goto out_unlock;
2846 
2847 	ret = f2fs_convert_inline_inode(dst);
2848 	if (ret)
2849 		goto out_unlock;
2850 
2851 	/* write out all dirty pages from offset */
2852 	ret = filemap_write_and_wait_range(src->i_mapping,
2853 					pos_in, pos_in + len);
2854 	if (ret)
2855 		goto out_unlock;
2856 
2857 	ret = filemap_write_and_wait_range(dst->i_mapping,
2858 					pos_out, pos_out + len);
2859 	if (ret)
2860 		goto out_unlock;
2861 
2862 	f2fs_balance_fs(sbi, true);
2863 
2864 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2865 	if (src != dst) {
2866 		ret = -EBUSY;
2867 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2868 			goto out_src;
2869 	}
2870 
2871 	f2fs_lock_op(sbi);
2872 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2873 				pos_out >> F2FS_BLKSIZE_BITS,
2874 				len >> F2FS_BLKSIZE_BITS, false);
2875 
2876 	if (!ret) {
2877 		if (dst_max_i_size)
2878 			f2fs_i_size_write(dst, dst_max_i_size);
2879 		else if (dst_osize != dst->i_size)
2880 			f2fs_i_size_write(dst, dst_osize);
2881 	}
2882 	f2fs_unlock_op(sbi);
2883 
2884 	if (src != dst)
2885 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2886 out_src:
2887 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2888 	if (ret)
2889 		goto out_unlock;
2890 
2891 	inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
2892 	f2fs_mark_inode_dirty_sync(src, false);
2893 	if (src != dst) {
2894 		inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
2895 		f2fs_mark_inode_dirty_sync(dst, false);
2896 	}
2897 	f2fs_update_time(sbi, REQ_TIME);
2898 
2899 out_unlock:
2900 	if (src != dst)
2901 		inode_unlock(dst);
2902 out:
2903 	inode_unlock(src);
2904 	return ret;
2905 }
2906 
2907 static int __f2fs_ioc_move_range(struct file *filp,
2908 				struct f2fs_move_range *range)
2909 {
2910 	struct fd dst;
2911 	int err;
2912 
2913 	if (!(filp->f_mode & FMODE_READ) ||
2914 			!(filp->f_mode & FMODE_WRITE))
2915 		return -EBADF;
2916 
2917 	dst = fdget(range->dst_fd);
2918 	if (!dst.file)
2919 		return -EBADF;
2920 
2921 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2922 		err = -EBADF;
2923 		goto err_out;
2924 	}
2925 
2926 	err = mnt_want_write_file(filp);
2927 	if (err)
2928 		goto err_out;
2929 
2930 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2931 					range->pos_out, range->len);
2932 
2933 	mnt_drop_write_file(filp);
2934 err_out:
2935 	fdput(dst);
2936 	return err;
2937 }
2938 
2939 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2940 {
2941 	struct f2fs_move_range range;
2942 
2943 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2944 							sizeof(range)))
2945 		return -EFAULT;
2946 	return __f2fs_ioc_move_range(filp, &range);
2947 }
2948 
2949 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2950 {
2951 	struct inode *inode = file_inode(filp);
2952 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2953 	struct sit_info *sm = SIT_I(sbi);
2954 	unsigned int start_segno = 0, end_segno = 0;
2955 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2956 	struct f2fs_flush_device range;
2957 	struct f2fs_gc_control gc_control = {
2958 			.init_gc_type = FG_GC,
2959 			.should_migrate_blocks = true,
2960 			.err_gc_skipped = true,
2961 			.nr_free_secs = 0 };
2962 	int ret;
2963 
2964 	if (!capable(CAP_SYS_ADMIN))
2965 		return -EPERM;
2966 
2967 	if (f2fs_readonly(sbi->sb))
2968 		return -EROFS;
2969 
2970 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2971 		return -EINVAL;
2972 
2973 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2974 							sizeof(range)))
2975 		return -EFAULT;
2976 
2977 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2978 			__is_large_section(sbi)) {
2979 		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2980 			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2981 		return -EINVAL;
2982 	}
2983 
2984 	ret = mnt_want_write_file(filp);
2985 	if (ret)
2986 		return ret;
2987 
2988 	if (range.dev_num != 0)
2989 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2990 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2991 
2992 	start_segno = sm->last_victim[FLUSH_DEVICE];
2993 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2994 		start_segno = dev_start_segno;
2995 	end_segno = min(start_segno + range.segments, dev_end_segno);
2996 
2997 	while (start_segno < end_segno) {
2998 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2999 			ret = -EBUSY;
3000 			goto out;
3001 		}
3002 		sm->last_victim[GC_CB] = end_segno + 1;
3003 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3004 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3005 
3006 		gc_control.victim_segno = start_segno;
3007 		stat_inc_gc_call_count(sbi, FOREGROUND);
3008 		ret = f2fs_gc(sbi, &gc_control);
3009 		if (ret == -EAGAIN)
3010 			ret = 0;
3011 		else if (ret < 0)
3012 			break;
3013 		start_segno++;
3014 	}
3015 out:
3016 	mnt_drop_write_file(filp);
3017 	return ret;
3018 }
3019 
3020 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3021 {
3022 	struct inode *inode = file_inode(filp);
3023 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3024 
3025 	/* Must validate to set it with SQLite behavior in Android. */
3026 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3027 
3028 	return put_user(sb_feature, (u32 __user *)arg);
3029 }
3030 
3031 #ifdef CONFIG_QUOTA
3032 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3033 {
3034 	struct dquot *transfer_to[MAXQUOTAS] = {};
3035 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3036 	struct super_block *sb = sbi->sb;
3037 	int err;
3038 
3039 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3040 	if (IS_ERR(transfer_to[PRJQUOTA]))
3041 		return PTR_ERR(transfer_to[PRJQUOTA]);
3042 
3043 	err = __dquot_transfer(inode, transfer_to);
3044 	if (err)
3045 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3046 	dqput(transfer_to[PRJQUOTA]);
3047 	return err;
3048 }
3049 
3050 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3051 {
3052 	struct f2fs_inode_info *fi = F2FS_I(inode);
3053 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3054 	struct f2fs_inode *ri = NULL;
3055 	kprojid_t kprojid;
3056 	int err;
3057 
3058 	if (!f2fs_sb_has_project_quota(sbi)) {
3059 		if (projid != F2FS_DEF_PROJID)
3060 			return -EOPNOTSUPP;
3061 		else
3062 			return 0;
3063 	}
3064 
3065 	if (!f2fs_has_extra_attr(inode))
3066 		return -EOPNOTSUPP;
3067 
3068 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3069 
3070 	if (projid_eq(kprojid, fi->i_projid))
3071 		return 0;
3072 
3073 	err = -EPERM;
3074 	/* Is it quota file? Do not allow user to mess with it */
3075 	if (IS_NOQUOTA(inode))
3076 		return err;
3077 
3078 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3079 		return -EOVERFLOW;
3080 
3081 	err = f2fs_dquot_initialize(inode);
3082 	if (err)
3083 		return err;
3084 
3085 	f2fs_lock_op(sbi);
3086 	err = f2fs_transfer_project_quota(inode, kprojid);
3087 	if (err)
3088 		goto out_unlock;
3089 
3090 	fi->i_projid = kprojid;
3091 	inode_set_ctime_current(inode);
3092 	f2fs_mark_inode_dirty_sync(inode, true);
3093 out_unlock:
3094 	f2fs_unlock_op(sbi);
3095 	return err;
3096 }
3097 #else
3098 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3099 {
3100 	return 0;
3101 }
3102 
3103 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3104 {
3105 	if (projid != F2FS_DEF_PROJID)
3106 		return -EOPNOTSUPP;
3107 	return 0;
3108 }
3109 #endif
3110 
3111 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3112 {
3113 	struct inode *inode = d_inode(dentry);
3114 	struct f2fs_inode_info *fi = F2FS_I(inode);
3115 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3116 
3117 	if (IS_ENCRYPTED(inode))
3118 		fsflags |= FS_ENCRYPT_FL;
3119 	if (IS_VERITY(inode))
3120 		fsflags |= FS_VERITY_FL;
3121 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3122 		fsflags |= FS_INLINE_DATA_FL;
3123 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3124 		fsflags |= FS_NOCOW_FL;
3125 
3126 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3127 
3128 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3129 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3130 
3131 	return 0;
3132 }
3133 
3134 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3135 		      struct dentry *dentry, struct fileattr *fa)
3136 {
3137 	struct inode *inode = d_inode(dentry);
3138 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3139 	u32 iflags;
3140 	int err;
3141 
3142 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3143 		return -EIO;
3144 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3145 		return -ENOSPC;
3146 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3147 		return -EOPNOTSUPP;
3148 	fsflags &= F2FS_SETTABLE_FS_FL;
3149 	if (!fa->flags_valid)
3150 		mask &= FS_COMMON_FL;
3151 
3152 	iflags = f2fs_fsflags_to_iflags(fsflags);
3153 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3154 		return -EOPNOTSUPP;
3155 
3156 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3157 	if (!err)
3158 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3159 
3160 	return err;
3161 }
3162 
3163 int f2fs_pin_file_control(struct inode *inode, bool inc)
3164 {
3165 	struct f2fs_inode_info *fi = F2FS_I(inode);
3166 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3167 
3168 	/* Use i_gc_failures for normal file as a risk signal. */
3169 	if (inc)
3170 		f2fs_i_gc_failures_write(inode,
3171 				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3172 
3173 	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3174 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3175 			  __func__, inode->i_ino,
3176 			  fi->i_gc_failures[GC_FAILURE_PIN]);
3177 		clear_inode_flag(inode, FI_PIN_FILE);
3178 		return -EAGAIN;
3179 	}
3180 	return 0;
3181 }
3182 
3183 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3184 {
3185 	struct inode *inode = file_inode(filp);
3186 	__u32 pin;
3187 	int ret = 0;
3188 
3189 	if (get_user(pin, (__u32 __user *)arg))
3190 		return -EFAULT;
3191 
3192 	if (!S_ISREG(inode->i_mode))
3193 		return -EINVAL;
3194 
3195 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3196 		return -EROFS;
3197 
3198 	ret = mnt_want_write_file(filp);
3199 	if (ret)
3200 		return ret;
3201 
3202 	inode_lock(inode);
3203 
3204 	if (!pin) {
3205 		clear_inode_flag(inode, FI_PIN_FILE);
3206 		f2fs_i_gc_failures_write(inode, 0);
3207 		goto done;
3208 	}
3209 
3210 	if (f2fs_should_update_outplace(inode, NULL)) {
3211 		ret = -EINVAL;
3212 		goto out;
3213 	}
3214 
3215 	if (f2fs_pin_file_control(inode, false)) {
3216 		ret = -EAGAIN;
3217 		goto out;
3218 	}
3219 
3220 	ret = f2fs_convert_inline_inode(inode);
3221 	if (ret)
3222 		goto out;
3223 
3224 	if (!f2fs_disable_compressed_file(inode)) {
3225 		ret = -EOPNOTSUPP;
3226 		goto out;
3227 	}
3228 
3229 	set_inode_flag(inode, FI_PIN_FILE);
3230 	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3231 done:
3232 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3233 out:
3234 	inode_unlock(inode);
3235 	mnt_drop_write_file(filp);
3236 	return ret;
3237 }
3238 
3239 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3240 {
3241 	struct inode *inode = file_inode(filp);
3242 	__u32 pin = 0;
3243 
3244 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3245 		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3246 	return put_user(pin, (u32 __user *)arg);
3247 }
3248 
3249 int f2fs_precache_extents(struct inode *inode)
3250 {
3251 	struct f2fs_inode_info *fi = F2FS_I(inode);
3252 	struct f2fs_map_blocks map;
3253 	pgoff_t m_next_extent;
3254 	loff_t end;
3255 	int err;
3256 
3257 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3258 		return -EOPNOTSUPP;
3259 
3260 	map.m_lblk = 0;
3261 	map.m_pblk = 0;
3262 	map.m_next_pgofs = NULL;
3263 	map.m_next_extent = &m_next_extent;
3264 	map.m_seg_type = NO_CHECK_TYPE;
3265 	map.m_may_create = false;
3266 	end = F2FS_BLK_ALIGN(i_size_read(inode));
3267 
3268 	while (map.m_lblk < end) {
3269 		map.m_len = end - map.m_lblk;
3270 
3271 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3272 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3273 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3274 		if (err || !map.m_len)
3275 			return err;
3276 
3277 		map.m_lblk = m_next_extent;
3278 	}
3279 
3280 	return 0;
3281 }
3282 
3283 static int f2fs_ioc_precache_extents(struct file *filp)
3284 {
3285 	return f2fs_precache_extents(file_inode(filp));
3286 }
3287 
3288 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3289 {
3290 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3291 	__u64 block_count;
3292 
3293 	if (!capable(CAP_SYS_ADMIN))
3294 		return -EPERM;
3295 
3296 	if (f2fs_readonly(sbi->sb))
3297 		return -EROFS;
3298 
3299 	if (copy_from_user(&block_count, (void __user *)arg,
3300 			   sizeof(block_count)))
3301 		return -EFAULT;
3302 
3303 	return f2fs_resize_fs(filp, block_count);
3304 }
3305 
3306 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3307 {
3308 	struct inode *inode = file_inode(filp);
3309 
3310 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3311 
3312 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3313 		f2fs_warn(F2FS_I_SB(inode),
3314 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3315 			  inode->i_ino);
3316 		return -EOPNOTSUPP;
3317 	}
3318 
3319 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3320 }
3321 
3322 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3323 {
3324 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3325 		return -EOPNOTSUPP;
3326 
3327 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3328 }
3329 
3330 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3331 {
3332 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3333 		return -EOPNOTSUPP;
3334 
3335 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3336 }
3337 
3338 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3339 {
3340 	struct inode *inode = file_inode(filp);
3341 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3342 	char *vbuf;
3343 	int count;
3344 	int err = 0;
3345 
3346 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3347 	if (!vbuf)
3348 		return -ENOMEM;
3349 
3350 	f2fs_down_read(&sbi->sb_lock);
3351 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3352 			ARRAY_SIZE(sbi->raw_super->volume_name),
3353 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3354 	f2fs_up_read(&sbi->sb_lock);
3355 
3356 	if (copy_to_user((char __user *)arg, vbuf,
3357 				min(FSLABEL_MAX, count)))
3358 		err = -EFAULT;
3359 
3360 	kfree(vbuf);
3361 	return err;
3362 }
3363 
3364 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3365 {
3366 	struct inode *inode = file_inode(filp);
3367 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3368 	char *vbuf;
3369 	int err = 0;
3370 
3371 	if (!capable(CAP_SYS_ADMIN))
3372 		return -EPERM;
3373 
3374 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3375 	if (IS_ERR(vbuf))
3376 		return PTR_ERR(vbuf);
3377 
3378 	err = mnt_want_write_file(filp);
3379 	if (err)
3380 		goto out;
3381 
3382 	f2fs_down_write(&sbi->sb_lock);
3383 
3384 	memset(sbi->raw_super->volume_name, 0,
3385 			sizeof(sbi->raw_super->volume_name));
3386 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3387 			sbi->raw_super->volume_name,
3388 			ARRAY_SIZE(sbi->raw_super->volume_name));
3389 
3390 	err = f2fs_commit_super(sbi, false);
3391 
3392 	f2fs_up_write(&sbi->sb_lock);
3393 
3394 	mnt_drop_write_file(filp);
3395 out:
3396 	kfree(vbuf);
3397 	return err;
3398 }
3399 
3400 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3401 {
3402 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3403 		return -EOPNOTSUPP;
3404 
3405 	if (!f2fs_compressed_file(inode))
3406 		return -EINVAL;
3407 
3408 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3409 
3410 	return 0;
3411 }
3412 
3413 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3414 {
3415 	struct inode *inode = file_inode(filp);
3416 	__u64 blocks;
3417 	int ret;
3418 
3419 	ret = f2fs_get_compress_blocks(inode, &blocks);
3420 	if (ret < 0)
3421 		return ret;
3422 
3423 	return put_user(blocks, (u64 __user *)arg);
3424 }
3425 
3426 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3427 {
3428 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3429 	unsigned int released_blocks = 0;
3430 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3431 	block_t blkaddr;
3432 	int i;
3433 
3434 	for (i = 0; i < count; i++) {
3435 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3436 						dn->ofs_in_node + i);
3437 
3438 		if (!__is_valid_data_blkaddr(blkaddr))
3439 			continue;
3440 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3441 					DATA_GENERIC_ENHANCE))) {
3442 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3443 			return -EFSCORRUPTED;
3444 		}
3445 	}
3446 
3447 	while (count) {
3448 		int compr_blocks = 0;
3449 
3450 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3451 			blkaddr = f2fs_data_blkaddr(dn);
3452 
3453 			if (i == 0) {
3454 				if (blkaddr == COMPRESS_ADDR)
3455 					continue;
3456 				dn->ofs_in_node += cluster_size;
3457 				goto next;
3458 			}
3459 
3460 			if (__is_valid_data_blkaddr(blkaddr))
3461 				compr_blocks++;
3462 
3463 			if (blkaddr != NEW_ADDR)
3464 				continue;
3465 
3466 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3467 		}
3468 
3469 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3470 		dec_valid_block_count(sbi, dn->inode,
3471 					cluster_size - compr_blocks);
3472 
3473 		released_blocks += cluster_size - compr_blocks;
3474 next:
3475 		count -= cluster_size;
3476 	}
3477 
3478 	return released_blocks;
3479 }
3480 
3481 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3482 {
3483 	struct inode *inode = file_inode(filp);
3484 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3485 	pgoff_t page_idx = 0, last_idx;
3486 	unsigned int released_blocks = 0;
3487 	int ret;
3488 	int writecount;
3489 
3490 	if (!f2fs_sb_has_compression(sbi))
3491 		return -EOPNOTSUPP;
3492 
3493 	if (!f2fs_compressed_file(inode))
3494 		return -EINVAL;
3495 
3496 	if (f2fs_readonly(sbi->sb))
3497 		return -EROFS;
3498 
3499 	ret = mnt_want_write_file(filp);
3500 	if (ret)
3501 		return ret;
3502 
3503 	f2fs_balance_fs(sbi, true);
3504 
3505 	inode_lock(inode);
3506 
3507 	writecount = atomic_read(&inode->i_writecount);
3508 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3509 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3510 		ret = -EBUSY;
3511 		goto out;
3512 	}
3513 
3514 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3515 		ret = -EINVAL;
3516 		goto out;
3517 	}
3518 
3519 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3520 	if (ret)
3521 		goto out;
3522 
3523 	if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3524 		ret = -EPERM;
3525 		goto out;
3526 	}
3527 
3528 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3529 	inode_set_ctime_current(inode);
3530 	f2fs_mark_inode_dirty_sync(inode, true);
3531 
3532 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3533 	filemap_invalidate_lock(inode->i_mapping);
3534 
3535 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3536 
3537 	while (page_idx < last_idx) {
3538 		struct dnode_of_data dn;
3539 		pgoff_t end_offset, count;
3540 
3541 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3542 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3543 		if (ret) {
3544 			if (ret == -ENOENT) {
3545 				page_idx = f2fs_get_next_page_offset(&dn,
3546 								page_idx);
3547 				ret = 0;
3548 				continue;
3549 			}
3550 			break;
3551 		}
3552 
3553 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3554 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3555 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3556 
3557 		ret = release_compress_blocks(&dn, count);
3558 
3559 		f2fs_put_dnode(&dn);
3560 
3561 		if (ret < 0)
3562 			break;
3563 
3564 		page_idx += count;
3565 		released_blocks += ret;
3566 	}
3567 
3568 	filemap_invalidate_unlock(inode->i_mapping);
3569 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3570 out:
3571 	inode_unlock(inode);
3572 
3573 	mnt_drop_write_file(filp);
3574 
3575 	if (ret >= 0) {
3576 		ret = put_user(released_blocks, (u64 __user *)arg);
3577 	} else if (released_blocks &&
3578 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3579 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3580 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3581 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3582 			"run fsck to fix.",
3583 			__func__, inode->i_ino, inode->i_blocks,
3584 			released_blocks,
3585 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3586 	}
3587 
3588 	return ret;
3589 }
3590 
3591 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3592 {
3593 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3594 	unsigned int reserved_blocks = 0;
3595 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3596 	block_t blkaddr;
3597 	int i;
3598 
3599 	for (i = 0; i < count; i++) {
3600 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3601 						dn->ofs_in_node + i);
3602 
3603 		if (!__is_valid_data_blkaddr(blkaddr))
3604 			continue;
3605 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3606 					DATA_GENERIC_ENHANCE))) {
3607 			f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3608 			return -EFSCORRUPTED;
3609 		}
3610 	}
3611 
3612 	while (count) {
3613 		int compr_blocks = 0;
3614 		blkcnt_t reserved;
3615 		int ret;
3616 
3617 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3618 			blkaddr = f2fs_data_blkaddr(dn);
3619 
3620 			if (i == 0) {
3621 				if (blkaddr == COMPRESS_ADDR)
3622 					continue;
3623 				dn->ofs_in_node += cluster_size;
3624 				goto next;
3625 			}
3626 
3627 			if (__is_valid_data_blkaddr(blkaddr)) {
3628 				compr_blocks++;
3629 				continue;
3630 			}
3631 
3632 			f2fs_set_data_blkaddr(dn, NEW_ADDR);
3633 		}
3634 
3635 		reserved = cluster_size - compr_blocks;
3636 		ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3637 		if (ret)
3638 			return ret;
3639 
3640 		if (reserved != cluster_size - compr_blocks)
3641 			return -ENOSPC;
3642 
3643 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3644 
3645 		reserved_blocks += reserved;
3646 next:
3647 		count -= cluster_size;
3648 	}
3649 
3650 	return reserved_blocks;
3651 }
3652 
3653 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3654 {
3655 	struct inode *inode = file_inode(filp);
3656 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3657 	pgoff_t page_idx = 0, last_idx;
3658 	unsigned int reserved_blocks = 0;
3659 	int ret;
3660 
3661 	if (!f2fs_sb_has_compression(sbi))
3662 		return -EOPNOTSUPP;
3663 
3664 	if (!f2fs_compressed_file(inode))
3665 		return -EINVAL;
3666 
3667 	if (f2fs_readonly(sbi->sb))
3668 		return -EROFS;
3669 
3670 	ret = mnt_want_write_file(filp);
3671 	if (ret)
3672 		return ret;
3673 
3674 	if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3675 		goto out;
3676 
3677 	f2fs_balance_fs(sbi, true);
3678 
3679 	inode_lock(inode);
3680 
3681 	if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3682 		ret = -EINVAL;
3683 		goto unlock_inode;
3684 	}
3685 
3686 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3687 	filemap_invalidate_lock(inode->i_mapping);
3688 
3689 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3690 
3691 	while (page_idx < last_idx) {
3692 		struct dnode_of_data dn;
3693 		pgoff_t end_offset, count;
3694 
3695 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3696 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3697 		if (ret) {
3698 			if (ret == -ENOENT) {
3699 				page_idx = f2fs_get_next_page_offset(&dn,
3700 								page_idx);
3701 				ret = 0;
3702 				continue;
3703 			}
3704 			break;
3705 		}
3706 
3707 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3708 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3709 		count = round_up(count, F2FS_I(inode)->i_cluster_size);
3710 
3711 		ret = reserve_compress_blocks(&dn, count);
3712 
3713 		f2fs_put_dnode(&dn);
3714 
3715 		if (ret < 0)
3716 			break;
3717 
3718 		page_idx += count;
3719 		reserved_blocks += ret;
3720 	}
3721 
3722 	filemap_invalidate_unlock(inode->i_mapping);
3723 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3724 
3725 	if (ret >= 0) {
3726 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3727 		inode_set_ctime_current(inode);
3728 		f2fs_mark_inode_dirty_sync(inode, true);
3729 	}
3730 unlock_inode:
3731 	inode_unlock(inode);
3732 out:
3733 	mnt_drop_write_file(filp);
3734 
3735 	if (ret >= 0) {
3736 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3737 	} else if (reserved_blocks &&
3738 			atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3739 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3740 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3741 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3742 			"run fsck to fix.",
3743 			__func__, inode->i_ino, inode->i_blocks,
3744 			reserved_blocks,
3745 			atomic_read(&F2FS_I(inode)->i_compr_blocks));
3746 	}
3747 
3748 	return ret;
3749 }
3750 
3751 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3752 		pgoff_t off, block_t block, block_t len, u32 flags)
3753 {
3754 	sector_t sector = SECTOR_FROM_BLOCK(block);
3755 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3756 	int ret = 0;
3757 
3758 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3759 		if (bdev_max_secure_erase_sectors(bdev))
3760 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3761 					GFP_NOFS);
3762 		else
3763 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3764 					GFP_NOFS);
3765 	}
3766 
3767 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3768 		if (IS_ENCRYPTED(inode))
3769 			ret = fscrypt_zeroout_range(inode, off, block, len);
3770 		else
3771 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3772 					GFP_NOFS, 0);
3773 	}
3774 
3775 	return ret;
3776 }
3777 
3778 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3779 {
3780 	struct inode *inode = file_inode(filp);
3781 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3782 	struct address_space *mapping = inode->i_mapping;
3783 	struct block_device *prev_bdev = NULL;
3784 	struct f2fs_sectrim_range range;
3785 	pgoff_t index, pg_end, prev_index = 0;
3786 	block_t prev_block = 0, len = 0;
3787 	loff_t end_addr;
3788 	bool to_end = false;
3789 	int ret = 0;
3790 
3791 	if (!(filp->f_mode & FMODE_WRITE))
3792 		return -EBADF;
3793 
3794 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3795 				sizeof(range)))
3796 		return -EFAULT;
3797 
3798 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3799 			!S_ISREG(inode->i_mode))
3800 		return -EINVAL;
3801 
3802 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3803 			!f2fs_hw_support_discard(sbi)) ||
3804 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3805 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3806 		return -EOPNOTSUPP;
3807 
3808 	file_start_write(filp);
3809 	inode_lock(inode);
3810 
3811 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3812 			range.start >= inode->i_size) {
3813 		ret = -EINVAL;
3814 		goto err;
3815 	}
3816 
3817 	if (range.len == 0)
3818 		goto err;
3819 
3820 	if (inode->i_size - range.start > range.len) {
3821 		end_addr = range.start + range.len;
3822 	} else {
3823 		end_addr = range.len == (u64)-1 ?
3824 			sbi->sb->s_maxbytes : inode->i_size;
3825 		to_end = true;
3826 	}
3827 
3828 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3829 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3830 		ret = -EINVAL;
3831 		goto err;
3832 	}
3833 
3834 	index = F2FS_BYTES_TO_BLK(range.start);
3835 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3836 
3837 	ret = f2fs_convert_inline_inode(inode);
3838 	if (ret)
3839 		goto err;
3840 
3841 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3842 	filemap_invalidate_lock(mapping);
3843 
3844 	ret = filemap_write_and_wait_range(mapping, range.start,
3845 			to_end ? LLONG_MAX : end_addr - 1);
3846 	if (ret)
3847 		goto out;
3848 
3849 	truncate_inode_pages_range(mapping, range.start,
3850 			to_end ? -1 : end_addr - 1);
3851 
3852 	while (index < pg_end) {
3853 		struct dnode_of_data dn;
3854 		pgoff_t end_offset, count;
3855 		int i;
3856 
3857 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3858 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3859 		if (ret) {
3860 			if (ret == -ENOENT) {
3861 				index = f2fs_get_next_page_offset(&dn, index);
3862 				continue;
3863 			}
3864 			goto out;
3865 		}
3866 
3867 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3868 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
3869 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3870 			struct block_device *cur_bdev;
3871 			block_t blkaddr = f2fs_data_blkaddr(&dn);
3872 
3873 			if (!__is_valid_data_blkaddr(blkaddr))
3874 				continue;
3875 
3876 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3877 						DATA_GENERIC_ENHANCE)) {
3878 				ret = -EFSCORRUPTED;
3879 				f2fs_put_dnode(&dn);
3880 				f2fs_handle_error(sbi,
3881 						ERROR_INVALID_BLKADDR);
3882 				goto out;
3883 			}
3884 
3885 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3886 			if (f2fs_is_multi_device(sbi)) {
3887 				int di = f2fs_target_device_index(sbi, blkaddr);
3888 
3889 				blkaddr -= FDEV(di).start_blk;
3890 			}
3891 
3892 			if (len) {
3893 				if (prev_bdev == cur_bdev &&
3894 						index == prev_index + len &&
3895 						blkaddr == prev_block + len) {
3896 					len++;
3897 				} else {
3898 					ret = f2fs_secure_erase(prev_bdev,
3899 						inode, prev_index, prev_block,
3900 						len, range.flags);
3901 					if (ret) {
3902 						f2fs_put_dnode(&dn);
3903 						goto out;
3904 					}
3905 
3906 					len = 0;
3907 				}
3908 			}
3909 
3910 			if (!len) {
3911 				prev_bdev = cur_bdev;
3912 				prev_index = index;
3913 				prev_block = blkaddr;
3914 				len = 1;
3915 			}
3916 		}
3917 
3918 		f2fs_put_dnode(&dn);
3919 
3920 		if (fatal_signal_pending(current)) {
3921 			ret = -EINTR;
3922 			goto out;
3923 		}
3924 		cond_resched();
3925 	}
3926 
3927 	if (len)
3928 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3929 				prev_block, len, range.flags);
3930 out:
3931 	filemap_invalidate_unlock(mapping);
3932 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3933 err:
3934 	inode_unlock(inode);
3935 	file_end_write(filp);
3936 
3937 	return ret;
3938 }
3939 
3940 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3941 {
3942 	struct inode *inode = file_inode(filp);
3943 	struct f2fs_comp_option option;
3944 
3945 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3946 		return -EOPNOTSUPP;
3947 
3948 	inode_lock_shared(inode);
3949 
3950 	if (!f2fs_compressed_file(inode)) {
3951 		inode_unlock_shared(inode);
3952 		return -ENODATA;
3953 	}
3954 
3955 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3956 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3957 
3958 	inode_unlock_shared(inode);
3959 
3960 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3961 				sizeof(option)))
3962 		return -EFAULT;
3963 
3964 	return 0;
3965 }
3966 
3967 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3968 {
3969 	struct inode *inode = file_inode(filp);
3970 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3971 	struct f2fs_comp_option option;
3972 	int ret = 0;
3973 
3974 	if (!f2fs_sb_has_compression(sbi))
3975 		return -EOPNOTSUPP;
3976 
3977 	if (!(filp->f_mode & FMODE_WRITE))
3978 		return -EBADF;
3979 
3980 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3981 				sizeof(option)))
3982 		return -EFAULT;
3983 
3984 	if (!f2fs_compressed_file(inode) ||
3985 			option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3986 			option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3987 			option.algorithm >= COMPRESS_MAX)
3988 		return -EINVAL;
3989 
3990 	file_start_write(filp);
3991 	inode_lock(inode);
3992 
3993 	f2fs_down_write(&F2FS_I(inode)->i_sem);
3994 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3995 		ret = -EBUSY;
3996 		goto out;
3997 	}
3998 
3999 	if (F2FS_HAS_BLOCKS(inode)) {
4000 		ret = -EFBIG;
4001 		goto out;
4002 	}
4003 
4004 	F2FS_I(inode)->i_compress_algorithm = option.algorithm;
4005 	F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
4006 	F2FS_I(inode)->i_cluster_size = BIT(option.log_cluster_size);
4007 	/* Set default level */
4008 	if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD)
4009 		F2FS_I(inode)->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4010 	else
4011 		F2FS_I(inode)->i_compress_level = 0;
4012 	/* Adjust mount option level */
4013 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4014 	    F2FS_OPTION(sbi).compress_level)
4015 		F2FS_I(inode)->i_compress_level = F2FS_OPTION(sbi).compress_level;
4016 	f2fs_mark_inode_dirty_sync(inode, true);
4017 
4018 	if (!f2fs_is_compress_backend_ready(inode))
4019 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4020 			"but current kernel doesn't support this algorithm.");
4021 out:
4022 	f2fs_up_write(&F2FS_I(inode)->i_sem);
4023 	inode_unlock(inode);
4024 	file_end_write(filp);
4025 
4026 	return ret;
4027 }
4028 
4029 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4030 {
4031 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4032 	struct address_space *mapping = inode->i_mapping;
4033 	struct page *page;
4034 	pgoff_t redirty_idx = page_idx;
4035 	int i, page_len = 0, ret = 0;
4036 
4037 	page_cache_ra_unbounded(&ractl, len, 0);
4038 
4039 	for (i = 0; i < len; i++, page_idx++) {
4040 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4041 		if (IS_ERR(page)) {
4042 			ret = PTR_ERR(page);
4043 			break;
4044 		}
4045 		page_len++;
4046 	}
4047 
4048 	for (i = 0; i < page_len; i++, redirty_idx++) {
4049 		page = find_lock_page(mapping, redirty_idx);
4050 
4051 		/* It will never fail, when page has pinned above */
4052 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4053 
4054 		set_page_dirty(page);
4055 		set_page_private_gcing(page);
4056 		f2fs_put_page(page, 1);
4057 		f2fs_put_page(page, 0);
4058 	}
4059 
4060 	return ret;
4061 }
4062 
4063 static int f2fs_ioc_decompress_file(struct file *filp)
4064 {
4065 	struct inode *inode = file_inode(filp);
4066 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4067 	struct f2fs_inode_info *fi = F2FS_I(inode);
4068 	pgoff_t page_idx = 0, last_idx;
4069 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4070 	int cluster_size = fi->i_cluster_size;
4071 	int count, ret;
4072 
4073 	if (!f2fs_sb_has_compression(sbi) ||
4074 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4075 		return -EOPNOTSUPP;
4076 
4077 	if (!(filp->f_mode & FMODE_WRITE))
4078 		return -EBADF;
4079 
4080 	if (!f2fs_compressed_file(inode))
4081 		return -EINVAL;
4082 
4083 	f2fs_balance_fs(sbi, true);
4084 
4085 	file_start_write(filp);
4086 	inode_lock(inode);
4087 
4088 	if (!f2fs_is_compress_backend_ready(inode)) {
4089 		ret = -EOPNOTSUPP;
4090 		goto out;
4091 	}
4092 
4093 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4094 		ret = -EINVAL;
4095 		goto out;
4096 	}
4097 
4098 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4099 	if (ret)
4100 		goto out;
4101 
4102 	if (!atomic_read(&fi->i_compr_blocks))
4103 		goto out;
4104 
4105 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4106 
4107 	count = last_idx - page_idx;
4108 	while (count && count >= cluster_size) {
4109 		ret = redirty_blocks(inode, page_idx, cluster_size);
4110 		if (ret < 0)
4111 			break;
4112 
4113 		if (get_dirty_pages(inode) >= blk_per_seg) {
4114 			ret = filemap_fdatawrite(inode->i_mapping);
4115 			if (ret < 0)
4116 				break;
4117 		}
4118 
4119 		count -= cluster_size;
4120 		page_idx += cluster_size;
4121 
4122 		cond_resched();
4123 		if (fatal_signal_pending(current)) {
4124 			ret = -EINTR;
4125 			break;
4126 		}
4127 	}
4128 
4129 	if (!ret)
4130 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4131 							LLONG_MAX);
4132 
4133 	if (ret)
4134 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4135 			  __func__, ret);
4136 out:
4137 	inode_unlock(inode);
4138 	file_end_write(filp);
4139 
4140 	return ret;
4141 }
4142 
4143 static int f2fs_ioc_compress_file(struct file *filp)
4144 {
4145 	struct inode *inode = file_inode(filp);
4146 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4147 	pgoff_t page_idx = 0, last_idx;
4148 	unsigned int blk_per_seg = sbi->blocks_per_seg;
4149 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4150 	int count, ret;
4151 
4152 	if (!f2fs_sb_has_compression(sbi) ||
4153 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4154 		return -EOPNOTSUPP;
4155 
4156 	if (!(filp->f_mode & FMODE_WRITE))
4157 		return -EBADF;
4158 
4159 	if (!f2fs_compressed_file(inode))
4160 		return -EINVAL;
4161 
4162 	f2fs_balance_fs(sbi, true);
4163 
4164 	file_start_write(filp);
4165 	inode_lock(inode);
4166 
4167 	if (!f2fs_is_compress_backend_ready(inode)) {
4168 		ret = -EOPNOTSUPP;
4169 		goto out;
4170 	}
4171 
4172 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4173 		ret = -EINVAL;
4174 		goto out;
4175 	}
4176 
4177 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4178 	if (ret)
4179 		goto out;
4180 
4181 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4182 
4183 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4184 
4185 	count = last_idx - page_idx;
4186 	while (count && count >= cluster_size) {
4187 		ret = redirty_blocks(inode, page_idx, cluster_size);
4188 		if (ret < 0)
4189 			break;
4190 
4191 		if (get_dirty_pages(inode) >= blk_per_seg) {
4192 			ret = filemap_fdatawrite(inode->i_mapping);
4193 			if (ret < 0)
4194 				break;
4195 		}
4196 
4197 		count -= cluster_size;
4198 		page_idx += cluster_size;
4199 
4200 		cond_resched();
4201 		if (fatal_signal_pending(current)) {
4202 			ret = -EINTR;
4203 			break;
4204 		}
4205 	}
4206 
4207 	if (!ret)
4208 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4209 							LLONG_MAX);
4210 
4211 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4212 
4213 	if (ret)
4214 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4215 			  __func__, ret);
4216 out:
4217 	inode_unlock(inode);
4218 	file_end_write(filp);
4219 
4220 	return ret;
4221 }
4222 
4223 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4224 {
4225 	switch (cmd) {
4226 	case FS_IOC_GETVERSION:
4227 		return f2fs_ioc_getversion(filp, arg);
4228 	case F2FS_IOC_START_ATOMIC_WRITE:
4229 		return f2fs_ioc_start_atomic_write(filp, false);
4230 	case F2FS_IOC_START_ATOMIC_REPLACE:
4231 		return f2fs_ioc_start_atomic_write(filp, true);
4232 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4233 		return f2fs_ioc_commit_atomic_write(filp);
4234 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4235 		return f2fs_ioc_abort_atomic_write(filp);
4236 	case F2FS_IOC_START_VOLATILE_WRITE:
4237 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4238 		return -EOPNOTSUPP;
4239 	case F2FS_IOC_SHUTDOWN:
4240 		return f2fs_ioc_shutdown(filp, arg);
4241 	case FITRIM:
4242 		return f2fs_ioc_fitrim(filp, arg);
4243 	case FS_IOC_SET_ENCRYPTION_POLICY:
4244 		return f2fs_ioc_set_encryption_policy(filp, arg);
4245 	case FS_IOC_GET_ENCRYPTION_POLICY:
4246 		return f2fs_ioc_get_encryption_policy(filp, arg);
4247 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4248 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4249 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4250 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4251 	case FS_IOC_ADD_ENCRYPTION_KEY:
4252 		return f2fs_ioc_add_encryption_key(filp, arg);
4253 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4254 		return f2fs_ioc_remove_encryption_key(filp, arg);
4255 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4256 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4257 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4258 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4259 	case FS_IOC_GET_ENCRYPTION_NONCE:
4260 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4261 	case F2FS_IOC_GARBAGE_COLLECT:
4262 		return f2fs_ioc_gc(filp, arg);
4263 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4264 		return f2fs_ioc_gc_range(filp, arg);
4265 	case F2FS_IOC_WRITE_CHECKPOINT:
4266 		return f2fs_ioc_write_checkpoint(filp);
4267 	case F2FS_IOC_DEFRAGMENT:
4268 		return f2fs_ioc_defragment(filp, arg);
4269 	case F2FS_IOC_MOVE_RANGE:
4270 		return f2fs_ioc_move_range(filp, arg);
4271 	case F2FS_IOC_FLUSH_DEVICE:
4272 		return f2fs_ioc_flush_device(filp, arg);
4273 	case F2FS_IOC_GET_FEATURES:
4274 		return f2fs_ioc_get_features(filp, arg);
4275 	case F2FS_IOC_GET_PIN_FILE:
4276 		return f2fs_ioc_get_pin_file(filp, arg);
4277 	case F2FS_IOC_SET_PIN_FILE:
4278 		return f2fs_ioc_set_pin_file(filp, arg);
4279 	case F2FS_IOC_PRECACHE_EXTENTS:
4280 		return f2fs_ioc_precache_extents(filp);
4281 	case F2FS_IOC_RESIZE_FS:
4282 		return f2fs_ioc_resize_fs(filp, arg);
4283 	case FS_IOC_ENABLE_VERITY:
4284 		return f2fs_ioc_enable_verity(filp, arg);
4285 	case FS_IOC_MEASURE_VERITY:
4286 		return f2fs_ioc_measure_verity(filp, arg);
4287 	case FS_IOC_READ_VERITY_METADATA:
4288 		return f2fs_ioc_read_verity_metadata(filp, arg);
4289 	case FS_IOC_GETFSLABEL:
4290 		return f2fs_ioc_getfslabel(filp, arg);
4291 	case FS_IOC_SETFSLABEL:
4292 		return f2fs_ioc_setfslabel(filp, arg);
4293 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4294 		return f2fs_ioc_get_compress_blocks(filp, arg);
4295 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4296 		return f2fs_release_compress_blocks(filp, arg);
4297 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4298 		return f2fs_reserve_compress_blocks(filp, arg);
4299 	case F2FS_IOC_SEC_TRIM_FILE:
4300 		return f2fs_sec_trim_file(filp, arg);
4301 	case F2FS_IOC_GET_COMPRESS_OPTION:
4302 		return f2fs_ioc_get_compress_option(filp, arg);
4303 	case F2FS_IOC_SET_COMPRESS_OPTION:
4304 		return f2fs_ioc_set_compress_option(filp, arg);
4305 	case F2FS_IOC_DECOMPRESS_FILE:
4306 		return f2fs_ioc_decompress_file(filp);
4307 	case F2FS_IOC_COMPRESS_FILE:
4308 		return f2fs_ioc_compress_file(filp);
4309 	default:
4310 		return -ENOTTY;
4311 	}
4312 }
4313 
4314 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4315 {
4316 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4317 		return -EIO;
4318 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4319 		return -ENOSPC;
4320 
4321 	return __f2fs_ioctl(filp, cmd, arg);
4322 }
4323 
4324 /*
4325  * Return %true if the given read or write request should use direct I/O, or
4326  * %false if it should use buffered I/O.
4327  */
4328 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4329 				struct iov_iter *iter)
4330 {
4331 	unsigned int align;
4332 
4333 	if (!(iocb->ki_flags & IOCB_DIRECT))
4334 		return false;
4335 
4336 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4337 		return false;
4338 
4339 	/*
4340 	 * Direct I/O not aligned to the disk's logical_block_size will be
4341 	 * attempted, but will fail with -EINVAL.
4342 	 *
4343 	 * f2fs additionally requires that direct I/O be aligned to the
4344 	 * filesystem block size, which is often a stricter requirement.
4345 	 * However, f2fs traditionally falls back to buffered I/O on requests
4346 	 * that are logical_block_size-aligned but not fs-block aligned.
4347 	 *
4348 	 * The below logic implements this behavior.
4349 	 */
4350 	align = iocb->ki_pos | iov_iter_alignment(iter);
4351 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4352 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4353 		return false;
4354 
4355 	return true;
4356 }
4357 
4358 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4359 				unsigned int flags)
4360 {
4361 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4362 
4363 	dec_page_count(sbi, F2FS_DIO_READ);
4364 	if (error)
4365 		return error;
4366 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4367 	return 0;
4368 }
4369 
4370 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4371 	.end_io = f2fs_dio_read_end_io,
4372 };
4373 
4374 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4375 {
4376 	struct file *file = iocb->ki_filp;
4377 	struct inode *inode = file_inode(file);
4378 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4379 	struct f2fs_inode_info *fi = F2FS_I(inode);
4380 	const loff_t pos = iocb->ki_pos;
4381 	const size_t count = iov_iter_count(to);
4382 	struct iomap_dio *dio;
4383 	ssize_t ret;
4384 
4385 	if (count == 0)
4386 		return 0; /* skip atime update */
4387 
4388 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4389 
4390 	if (iocb->ki_flags & IOCB_NOWAIT) {
4391 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4392 			ret = -EAGAIN;
4393 			goto out;
4394 		}
4395 	} else {
4396 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4397 	}
4398 
4399 	/*
4400 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4401 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4402 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4403 	 */
4404 	inc_page_count(sbi, F2FS_DIO_READ);
4405 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4406 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4407 	if (IS_ERR_OR_NULL(dio)) {
4408 		ret = PTR_ERR_OR_ZERO(dio);
4409 		if (ret != -EIOCBQUEUED)
4410 			dec_page_count(sbi, F2FS_DIO_READ);
4411 	} else {
4412 		ret = iomap_dio_complete(dio);
4413 	}
4414 
4415 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4416 
4417 	file_accessed(file);
4418 out:
4419 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4420 	return ret;
4421 }
4422 
4423 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4424 				    int rw)
4425 {
4426 	struct inode *inode = file_inode(file);
4427 	char *buf, *path;
4428 
4429 	buf = f2fs_getname(F2FS_I_SB(inode));
4430 	if (!buf)
4431 		return;
4432 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4433 	if (IS_ERR(path))
4434 		goto free_buf;
4435 	if (rw == WRITE)
4436 		trace_f2fs_datawrite_start(inode, pos, count,
4437 				current->pid, path, current->comm);
4438 	else
4439 		trace_f2fs_dataread_start(inode, pos, count,
4440 				current->pid, path, current->comm);
4441 free_buf:
4442 	f2fs_putname(buf);
4443 }
4444 
4445 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4446 {
4447 	struct inode *inode = file_inode(iocb->ki_filp);
4448 	const loff_t pos = iocb->ki_pos;
4449 	ssize_t ret;
4450 
4451 	if (!f2fs_is_compress_backend_ready(inode))
4452 		return -EOPNOTSUPP;
4453 
4454 	if (trace_f2fs_dataread_start_enabled())
4455 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4456 					iov_iter_count(to), READ);
4457 
4458 	if (f2fs_should_use_dio(inode, iocb, to)) {
4459 		ret = f2fs_dio_read_iter(iocb, to);
4460 	} else {
4461 		ret = filemap_read(iocb, to, 0);
4462 		if (ret > 0)
4463 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4464 						APP_BUFFERED_READ_IO, ret);
4465 	}
4466 	if (trace_f2fs_dataread_end_enabled())
4467 		trace_f2fs_dataread_end(inode, pos, ret);
4468 	return ret;
4469 }
4470 
4471 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4472 				     struct pipe_inode_info *pipe,
4473 				     size_t len, unsigned int flags)
4474 {
4475 	struct inode *inode = file_inode(in);
4476 	const loff_t pos = *ppos;
4477 	ssize_t ret;
4478 
4479 	if (!f2fs_is_compress_backend_ready(inode))
4480 		return -EOPNOTSUPP;
4481 
4482 	if (trace_f2fs_dataread_start_enabled())
4483 		f2fs_trace_rw_file_path(in, pos, len, READ);
4484 
4485 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4486 	if (ret > 0)
4487 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4488 				   APP_BUFFERED_READ_IO, ret);
4489 
4490 	if (trace_f2fs_dataread_end_enabled())
4491 		trace_f2fs_dataread_end(inode, pos, ret);
4492 	return ret;
4493 }
4494 
4495 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4496 {
4497 	struct file *file = iocb->ki_filp;
4498 	struct inode *inode = file_inode(file);
4499 	ssize_t count;
4500 	int err;
4501 
4502 	if (IS_IMMUTABLE(inode))
4503 		return -EPERM;
4504 
4505 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4506 		return -EPERM;
4507 
4508 	count = generic_write_checks(iocb, from);
4509 	if (count <= 0)
4510 		return count;
4511 
4512 	err = file_modified(file);
4513 	if (err)
4514 		return err;
4515 	return count;
4516 }
4517 
4518 /*
4519  * Preallocate blocks for a write request, if it is possible and helpful to do
4520  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4521  * blocks were preallocated, or a negative errno value if something went
4522  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4523  * requested blocks (not just some of them) have been allocated.
4524  */
4525 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4526 				   bool dio)
4527 {
4528 	struct inode *inode = file_inode(iocb->ki_filp);
4529 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4530 	const loff_t pos = iocb->ki_pos;
4531 	const size_t count = iov_iter_count(iter);
4532 	struct f2fs_map_blocks map = {};
4533 	int flag;
4534 	int ret;
4535 
4536 	/* If it will be an out-of-place direct write, don't bother. */
4537 	if (dio && f2fs_lfs_mode(sbi))
4538 		return 0;
4539 	/*
4540 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4541 	 * buffered IO, if DIO meets any holes.
4542 	 */
4543 	if (dio && i_size_read(inode) &&
4544 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4545 		return 0;
4546 
4547 	/* No-wait I/O can't allocate blocks. */
4548 	if (iocb->ki_flags & IOCB_NOWAIT)
4549 		return 0;
4550 
4551 	/* If it will be a short write, don't bother. */
4552 	if (fault_in_iov_iter_readable(iter, count))
4553 		return 0;
4554 
4555 	if (f2fs_has_inline_data(inode)) {
4556 		/* If the data will fit inline, don't bother. */
4557 		if (pos + count <= MAX_INLINE_DATA(inode))
4558 			return 0;
4559 		ret = f2fs_convert_inline_inode(inode);
4560 		if (ret)
4561 			return ret;
4562 	}
4563 
4564 	/* Do not preallocate blocks that will be written partially in 4KB. */
4565 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4566 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4567 	if (map.m_len > map.m_lblk)
4568 		map.m_len -= map.m_lblk;
4569 	else
4570 		return 0;
4571 
4572 	map.m_may_create = true;
4573 	if (dio) {
4574 		map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4575 		flag = F2FS_GET_BLOCK_PRE_DIO;
4576 	} else {
4577 		map.m_seg_type = NO_CHECK_TYPE;
4578 		flag = F2FS_GET_BLOCK_PRE_AIO;
4579 	}
4580 
4581 	ret = f2fs_map_blocks(inode, &map, flag);
4582 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4583 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4584 		return ret;
4585 	if (ret == 0)
4586 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4587 	return map.m_len;
4588 }
4589 
4590 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4591 					struct iov_iter *from)
4592 {
4593 	struct file *file = iocb->ki_filp;
4594 	struct inode *inode = file_inode(file);
4595 	ssize_t ret;
4596 
4597 	if (iocb->ki_flags & IOCB_NOWAIT)
4598 		return -EOPNOTSUPP;
4599 
4600 	ret = generic_perform_write(iocb, from);
4601 
4602 	if (ret > 0) {
4603 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4604 						APP_BUFFERED_IO, ret);
4605 	}
4606 	return ret;
4607 }
4608 
4609 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4610 				 unsigned int flags)
4611 {
4612 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4613 
4614 	dec_page_count(sbi, F2FS_DIO_WRITE);
4615 	if (error)
4616 		return error;
4617 	f2fs_update_time(sbi, REQ_TIME);
4618 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4619 	return 0;
4620 }
4621 
4622 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4623 	.end_io = f2fs_dio_write_end_io,
4624 };
4625 
4626 static void f2fs_flush_buffered_write(struct address_space *mapping,
4627 				      loff_t start_pos, loff_t end_pos)
4628 {
4629 	int ret;
4630 
4631 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4632 	if (ret < 0)
4633 		return;
4634 	invalidate_mapping_pages(mapping,
4635 				 start_pos >> PAGE_SHIFT,
4636 				 end_pos >> PAGE_SHIFT);
4637 }
4638 
4639 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4640 				   bool *may_need_sync)
4641 {
4642 	struct file *file = iocb->ki_filp;
4643 	struct inode *inode = file_inode(file);
4644 	struct f2fs_inode_info *fi = F2FS_I(inode);
4645 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4646 	const bool do_opu = f2fs_lfs_mode(sbi);
4647 	const loff_t pos = iocb->ki_pos;
4648 	const ssize_t count = iov_iter_count(from);
4649 	unsigned int dio_flags;
4650 	struct iomap_dio *dio;
4651 	ssize_t ret;
4652 
4653 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4654 
4655 	if (iocb->ki_flags & IOCB_NOWAIT) {
4656 		/* f2fs_convert_inline_inode() and block allocation can block */
4657 		if (f2fs_has_inline_data(inode) ||
4658 		    !f2fs_overwrite_io(inode, pos, count)) {
4659 			ret = -EAGAIN;
4660 			goto out;
4661 		}
4662 
4663 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4664 			ret = -EAGAIN;
4665 			goto out;
4666 		}
4667 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4668 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4669 			ret = -EAGAIN;
4670 			goto out;
4671 		}
4672 	} else {
4673 		ret = f2fs_convert_inline_inode(inode);
4674 		if (ret)
4675 			goto out;
4676 
4677 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4678 		if (do_opu)
4679 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4680 	}
4681 
4682 	/*
4683 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4684 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4685 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4686 	 */
4687 	inc_page_count(sbi, F2FS_DIO_WRITE);
4688 	dio_flags = 0;
4689 	if (pos + count > inode->i_size)
4690 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4691 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4692 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4693 	if (IS_ERR_OR_NULL(dio)) {
4694 		ret = PTR_ERR_OR_ZERO(dio);
4695 		if (ret == -ENOTBLK)
4696 			ret = 0;
4697 		if (ret != -EIOCBQUEUED)
4698 			dec_page_count(sbi, F2FS_DIO_WRITE);
4699 	} else {
4700 		ret = iomap_dio_complete(dio);
4701 	}
4702 
4703 	if (do_opu)
4704 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4705 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4706 
4707 	if (ret < 0)
4708 		goto out;
4709 	if (pos + ret > inode->i_size)
4710 		f2fs_i_size_write(inode, pos + ret);
4711 	if (!do_opu)
4712 		set_inode_flag(inode, FI_UPDATE_WRITE);
4713 
4714 	if (iov_iter_count(from)) {
4715 		ssize_t ret2;
4716 		loff_t bufio_start_pos = iocb->ki_pos;
4717 
4718 		/*
4719 		 * The direct write was partial, so we need to fall back to a
4720 		 * buffered write for the remainder.
4721 		 */
4722 
4723 		ret2 = f2fs_buffered_write_iter(iocb, from);
4724 		if (iov_iter_count(from))
4725 			f2fs_write_failed(inode, iocb->ki_pos);
4726 		if (ret2 < 0)
4727 			goto out;
4728 
4729 		/*
4730 		 * Ensure that the pagecache pages are written to disk and
4731 		 * invalidated to preserve the expected O_DIRECT semantics.
4732 		 */
4733 		if (ret2 > 0) {
4734 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4735 
4736 			ret += ret2;
4737 
4738 			f2fs_flush_buffered_write(file->f_mapping,
4739 						  bufio_start_pos,
4740 						  bufio_end_pos);
4741 		}
4742 	} else {
4743 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4744 		*may_need_sync = false;
4745 	}
4746 out:
4747 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4748 	return ret;
4749 }
4750 
4751 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4752 {
4753 	struct inode *inode = file_inode(iocb->ki_filp);
4754 	const loff_t orig_pos = iocb->ki_pos;
4755 	const size_t orig_count = iov_iter_count(from);
4756 	loff_t target_size;
4757 	bool dio;
4758 	bool may_need_sync = true;
4759 	int preallocated;
4760 	ssize_t ret;
4761 
4762 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4763 		ret = -EIO;
4764 		goto out;
4765 	}
4766 
4767 	if (!f2fs_is_compress_backend_ready(inode)) {
4768 		ret = -EOPNOTSUPP;
4769 		goto out;
4770 	}
4771 
4772 	if (iocb->ki_flags & IOCB_NOWAIT) {
4773 		if (!inode_trylock(inode)) {
4774 			ret = -EAGAIN;
4775 			goto out;
4776 		}
4777 	} else {
4778 		inode_lock(inode);
4779 	}
4780 
4781 	ret = f2fs_write_checks(iocb, from);
4782 	if (ret <= 0)
4783 		goto out_unlock;
4784 
4785 	/* Determine whether we will do a direct write or a buffered write. */
4786 	dio = f2fs_should_use_dio(inode, iocb, from);
4787 
4788 	/* Possibly preallocate the blocks for the write. */
4789 	target_size = iocb->ki_pos + iov_iter_count(from);
4790 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4791 	if (preallocated < 0) {
4792 		ret = preallocated;
4793 	} else {
4794 		if (trace_f2fs_datawrite_start_enabled())
4795 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4796 						orig_count, WRITE);
4797 
4798 		/* Do the actual write. */
4799 		ret = dio ?
4800 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4801 			f2fs_buffered_write_iter(iocb, from);
4802 
4803 		if (trace_f2fs_datawrite_end_enabled())
4804 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4805 	}
4806 
4807 	/* Don't leave any preallocated blocks around past i_size. */
4808 	if (preallocated && i_size_read(inode) < target_size) {
4809 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4810 		filemap_invalidate_lock(inode->i_mapping);
4811 		if (!f2fs_truncate(inode))
4812 			file_dont_truncate(inode);
4813 		filemap_invalidate_unlock(inode->i_mapping);
4814 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4815 	} else {
4816 		file_dont_truncate(inode);
4817 	}
4818 
4819 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4820 out_unlock:
4821 	inode_unlock(inode);
4822 out:
4823 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4824 
4825 	if (ret > 0 && may_need_sync)
4826 		ret = generic_write_sync(iocb, ret);
4827 
4828 	/* If buffered IO was forced, flush and drop the data from
4829 	 * the page cache to preserve O_DIRECT semantics
4830 	 */
4831 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4832 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4833 					  orig_pos,
4834 					  orig_pos + ret - 1);
4835 
4836 	return ret;
4837 }
4838 
4839 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4840 		int advice)
4841 {
4842 	struct address_space *mapping;
4843 	struct backing_dev_info *bdi;
4844 	struct inode *inode = file_inode(filp);
4845 	int err;
4846 
4847 	if (advice == POSIX_FADV_SEQUENTIAL) {
4848 		if (S_ISFIFO(inode->i_mode))
4849 			return -ESPIPE;
4850 
4851 		mapping = filp->f_mapping;
4852 		if (!mapping || len < 0)
4853 			return -EINVAL;
4854 
4855 		bdi = inode_to_bdi(mapping->host);
4856 		filp->f_ra.ra_pages = bdi->ra_pages *
4857 			F2FS_I_SB(inode)->seq_file_ra_mul;
4858 		spin_lock(&filp->f_lock);
4859 		filp->f_mode &= ~FMODE_RANDOM;
4860 		spin_unlock(&filp->f_lock);
4861 		return 0;
4862 	} else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
4863 		/* Load extent cache at the first readahead. */
4864 		f2fs_precache_extents(inode);
4865 	}
4866 
4867 	err = generic_fadvise(filp, offset, len, advice);
4868 	if (!err && advice == POSIX_FADV_DONTNEED &&
4869 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4870 		f2fs_compressed_file(inode))
4871 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4872 
4873 	return err;
4874 }
4875 
4876 #ifdef CONFIG_COMPAT
4877 struct compat_f2fs_gc_range {
4878 	u32 sync;
4879 	compat_u64 start;
4880 	compat_u64 len;
4881 };
4882 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
4883 						struct compat_f2fs_gc_range)
4884 
4885 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4886 {
4887 	struct compat_f2fs_gc_range __user *urange;
4888 	struct f2fs_gc_range range;
4889 	int err;
4890 
4891 	urange = compat_ptr(arg);
4892 	err = get_user(range.sync, &urange->sync);
4893 	err |= get_user(range.start, &urange->start);
4894 	err |= get_user(range.len, &urange->len);
4895 	if (err)
4896 		return -EFAULT;
4897 
4898 	return __f2fs_ioc_gc_range(file, &range);
4899 }
4900 
4901 struct compat_f2fs_move_range {
4902 	u32 dst_fd;
4903 	compat_u64 pos_in;
4904 	compat_u64 pos_out;
4905 	compat_u64 len;
4906 };
4907 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
4908 					struct compat_f2fs_move_range)
4909 
4910 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4911 {
4912 	struct compat_f2fs_move_range __user *urange;
4913 	struct f2fs_move_range range;
4914 	int err;
4915 
4916 	urange = compat_ptr(arg);
4917 	err = get_user(range.dst_fd, &urange->dst_fd);
4918 	err |= get_user(range.pos_in, &urange->pos_in);
4919 	err |= get_user(range.pos_out, &urange->pos_out);
4920 	err |= get_user(range.len, &urange->len);
4921 	if (err)
4922 		return -EFAULT;
4923 
4924 	return __f2fs_ioc_move_range(file, &range);
4925 }
4926 
4927 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4928 {
4929 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4930 		return -EIO;
4931 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4932 		return -ENOSPC;
4933 
4934 	switch (cmd) {
4935 	case FS_IOC32_GETVERSION:
4936 		cmd = FS_IOC_GETVERSION;
4937 		break;
4938 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4939 		return f2fs_compat_ioc_gc_range(file, arg);
4940 	case F2FS_IOC32_MOVE_RANGE:
4941 		return f2fs_compat_ioc_move_range(file, arg);
4942 	case F2FS_IOC_START_ATOMIC_WRITE:
4943 	case F2FS_IOC_START_ATOMIC_REPLACE:
4944 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4945 	case F2FS_IOC_START_VOLATILE_WRITE:
4946 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4947 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4948 	case F2FS_IOC_SHUTDOWN:
4949 	case FITRIM:
4950 	case FS_IOC_SET_ENCRYPTION_POLICY:
4951 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4952 	case FS_IOC_GET_ENCRYPTION_POLICY:
4953 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4954 	case FS_IOC_ADD_ENCRYPTION_KEY:
4955 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4956 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4957 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4958 	case FS_IOC_GET_ENCRYPTION_NONCE:
4959 	case F2FS_IOC_GARBAGE_COLLECT:
4960 	case F2FS_IOC_WRITE_CHECKPOINT:
4961 	case F2FS_IOC_DEFRAGMENT:
4962 	case F2FS_IOC_FLUSH_DEVICE:
4963 	case F2FS_IOC_GET_FEATURES:
4964 	case F2FS_IOC_GET_PIN_FILE:
4965 	case F2FS_IOC_SET_PIN_FILE:
4966 	case F2FS_IOC_PRECACHE_EXTENTS:
4967 	case F2FS_IOC_RESIZE_FS:
4968 	case FS_IOC_ENABLE_VERITY:
4969 	case FS_IOC_MEASURE_VERITY:
4970 	case FS_IOC_READ_VERITY_METADATA:
4971 	case FS_IOC_GETFSLABEL:
4972 	case FS_IOC_SETFSLABEL:
4973 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4974 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4975 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4976 	case F2FS_IOC_SEC_TRIM_FILE:
4977 	case F2FS_IOC_GET_COMPRESS_OPTION:
4978 	case F2FS_IOC_SET_COMPRESS_OPTION:
4979 	case F2FS_IOC_DECOMPRESS_FILE:
4980 	case F2FS_IOC_COMPRESS_FILE:
4981 		break;
4982 	default:
4983 		return -ENOIOCTLCMD;
4984 	}
4985 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4986 }
4987 #endif
4988 
4989 const struct file_operations f2fs_file_operations = {
4990 	.llseek		= f2fs_llseek,
4991 	.read_iter	= f2fs_file_read_iter,
4992 	.write_iter	= f2fs_file_write_iter,
4993 	.iopoll		= iocb_bio_iopoll,
4994 	.open		= f2fs_file_open,
4995 	.release	= f2fs_release_file,
4996 	.mmap		= f2fs_file_mmap,
4997 	.flush		= f2fs_file_flush,
4998 	.fsync		= f2fs_sync_file,
4999 	.fallocate	= f2fs_fallocate,
5000 	.unlocked_ioctl	= f2fs_ioctl,
5001 #ifdef CONFIG_COMPAT
5002 	.compat_ioctl	= f2fs_compat_ioctl,
5003 #endif
5004 	.splice_read	= f2fs_file_splice_read,
5005 	.splice_write	= iter_file_splice_write,
5006 	.fadvise	= f2fs_file_fadvise,
5007 };
5008