xref: /linux/fs/f2fs/file.c (revision b74710eaff314d6afe4fb0bbe9bc7657bf226fd4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/falloc.h>
14 #include <linux/types.h>
15 #include <linux/compat.h>
16 #include <linux/uaccess.h>
17 #include <linux/mount.h>
18 #include <linux/pagevec.h>
19 #include <linux/uio.h>
20 #include <linux/uuid.h>
21 #include <linux/file.h>
22 #include <linux/nls.h>
23 #include <linux/sched/signal.h>
24 #include <linux/fileattr.h>
25 #include <linux/fadvise.h>
26 #include <linux/iomap.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "acl.h"
33 #include "gc.h"
34 #include "iostat.h"
35 #include <trace/events/f2fs.h>
36 #include <uapi/linux/f2fs.h>
37 
38 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
39 {
40 	struct inode *inode = file_inode(vmf->vma->vm_file);
41 	vm_flags_t flags = vmf->vma->vm_flags;
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (ret & VM_FAULT_LOCKED)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct folio *folio = page_folio(vmf->page);
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = !f2fs_is_pinned_file(inode);
61 	int err = 0;
62 	vm_fault_t ret;
63 
64 	if (unlikely(IS_IMMUTABLE(inode)))
65 		return VM_FAULT_SIGBUS;
66 
67 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
68 		err = -EIO;
69 		goto out;
70 	}
71 
72 	if (unlikely(f2fs_cp_error(sbi))) {
73 		err = -EIO;
74 		goto out;
75 	}
76 
77 	if (!f2fs_is_checkpoint_ready(sbi)) {
78 		err = -ENOSPC;
79 		goto out;
80 	}
81 
82 	err = f2fs_convert_inline_inode(inode);
83 	if (err)
84 		goto out;
85 
86 #ifdef CONFIG_F2FS_FS_COMPRESSION
87 	if (f2fs_compressed_file(inode)) {
88 		int ret = f2fs_is_compressed_cluster(inode, folio->index);
89 
90 		if (ret < 0) {
91 			err = ret;
92 			goto out;
93 		} else if (ret) {
94 			need_alloc = false;
95 		}
96 	}
97 #endif
98 	/* should do out of any locked page */
99 	if (need_alloc)
100 		f2fs_balance_fs(sbi, true);
101 
102 	sb_start_pagefault(inode->i_sb);
103 
104 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
105 
106 	file_update_time(vmf->vma->vm_file);
107 	filemap_invalidate_lock_shared(inode->i_mapping);
108 	folio_lock(folio);
109 	if (unlikely(folio->mapping != inode->i_mapping ||
110 			folio_pos(folio) > i_size_read(inode) ||
111 			!folio_test_uptodate(folio))) {
112 		folio_unlock(folio);
113 		err = -EFAULT;
114 		goto out_sem;
115 	}
116 
117 	set_new_dnode(&dn, inode, NULL, NULL, 0);
118 	if (need_alloc) {
119 		/* block allocation */
120 		err = f2fs_get_block_locked(&dn, folio->index);
121 	} else {
122 		err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
123 		f2fs_put_dnode(&dn);
124 		if (f2fs_is_pinned_file(inode) &&
125 		    !__is_valid_data_blkaddr(dn.data_blkaddr))
126 			err = -EIO;
127 	}
128 
129 	if (err) {
130 		folio_unlock(folio);
131 		goto out_sem;
132 	}
133 
134 	f2fs_folio_wait_writeback(folio, DATA, false, true);
135 
136 	/* wait for GCed page writeback via META_MAPPING */
137 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
138 
139 	/*
140 	 * check to see if the page is mapped already (no holes)
141 	 */
142 	if (folio_test_mappedtodisk(folio))
143 		goto out_sem;
144 
145 	/* page is wholly or partially inside EOF */
146 	if (((loff_t)(folio->index + 1) << PAGE_SHIFT) >
147 						i_size_read(inode)) {
148 		loff_t offset;
149 
150 		offset = i_size_read(inode) & ~PAGE_MASK;
151 		folio_zero_segment(folio, offset, folio_size(folio));
152 	}
153 	folio_mark_dirty(folio);
154 
155 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
156 	f2fs_update_time(sbi, REQ_TIME);
157 
158 out_sem:
159 	filemap_invalidate_unlock_shared(inode->i_mapping);
160 
161 	sb_end_pagefault(inode->i_sb);
162 out:
163 	ret = vmf_fs_error(err);
164 
165 	trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret);
166 	return ret;
167 }
168 
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170 	.fault		= f2fs_filemap_fault,
171 	.map_pages	= filemap_map_pages,
172 	.page_mkwrite	= f2fs_vm_page_mkwrite,
173 };
174 
175 static int get_parent_ino(struct inode *inode, nid_t *pino)
176 {
177 	struct dentry *dentry;
178 
179 	/*
180 	 * Make sure to get the non-deleted alias.  The alias associated with
181 	 * the open file descriptor being fsync()'ed may be deleted already.
182 	 */
183 	dentry = d_find_alias(inode);
184 	if (!dentry)
185 		return 0;
186 
187 	*pino = d_parent_ino(dentry);
188 	dput(dentry);
189 	return 1;
190 }
191 
192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
193 {
194 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
196 
197 	if (!S_ISREG(inode->i_mode))
198 		cp_reason = CP_NON_REGULAR;
199 	else if (f2fs_compressed_file(inode))
200 		cp_reason = CP_COMPRESSED;
201 	else if (inode->i_nlink != 1)
202 		cp_reason = CP_HARDLINK;
203 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204 		cp_reason = CP_SB_NEED_CP;
205 	else if (file_wrong_pino(inode))
206 		cp_reason = CP_WRONG_PINO;
207 	else if (!f2fs_space_for_roll_forward(sbi))
208 		cp_reason = CP_NO_SPC_ROLL;
209 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210 		cp_reason = CP_NODE_NEED_CP;
211 	else if (test_opt(sbi, FASTBOOT))
212 		cp_reason = CP_FASTBOOT_MODE;
213 	else if (F2FS_OPTION(sbi).active_logs == 2)
214 		cp_reason = CP_SPEC_LOG_NUM;
215 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
218 							TRANS_DIR_INO))
219 		cp_reason = CP_RECOVER_DIR;
220 	else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
221 							XATTR_DIR_INO))
222 		cp_reason = CP_XATTR_DIR;
223 
224 	return cp_reason;
225 }
226 
227 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
228 {
229 	struct folio *i = filemap_get_folio(NODE_MAPPING(sbi), ino);
230 	bool ret = false;
231 	/* But we need to avoid that there are some inode updates */
232 	if ((!IS_ERR(i) && folio_test_dirty(i)) ||
233 	    f2fs_need_inode_block_update(sbi, ino))
234 		ret = true;
235 	f2fs_folio_put(i, false);
236 	return ret;
237 }
238 
239 static void try_to_fix_pino(struct inode *inode)
240 {
241 	struct f2fs_inode_info *fi = F2FS_I(inode);
242 	nid_t pino;
243 
244 	f2fs_down_write(&fi->i_sem);
245 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
246 			get_parent_ino(inode, &pino)) {
247 		f2fs_i_pino_write(inode, pino);
248 		file_got_pino(inode);
249 	}
250 	f2fs_up_write(&fi->i_sem);
251 }
252 
253 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
254 						int datasync, bool atomic)
255 {
256 	struct inode *inode = file->f_mapping->host;
257 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
258 	nid_t ino = inode->i_ino;
259 	int ret = 0;
260 	enum cp_reason_type cp_reason = 0;
261 	struct writeback_control wbc = {
262 		.sync_mode = WB_SYNC_ALL,
263 		.nr_to_write = LONG_MAX,
264 	};
265 	unsigned int seq_id = 0;
266 
267 	if (unlikely(f2fs_readonly(inode->i_sb)))
268 		return 0;
269 
270 	trace_f2fs_sync_file_enter(inode);
271 
272 	if (S_ISDIR(inode->i_mode))
273 		goto go_write;
274 
275 	/* if fdatasync is triggered, let's do in-place-update */
276 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
277 		set_inode_flag(inode, FI_NEED_IPU);
278 	ret = file_write_and_wait_range(file, start, end);
279 	clear_inode_flag(inode, FI_NEED_IPU);
280 
281 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
282 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
283 		return ret;
284 	}
285 
286 	/* if the inode is dirty, let's recover all the time */
287 	if (!f2fs_skip_inode_update(inode, datasync)) {
288 		f2fs_write_inode(inode, NULL);
289 		goto go_write;
290 	}
291 
292 	/*
293 	 * if there is no written data, don't waste time to write recovery info.
294 	 */
295 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
296 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
297 
298 		/* it may call write_inode just prior to fsync */
299 		if (need_inode_page_update(sbi, ino))
300 			goto go_write;
301 
302 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
303 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
304 			goto flush_out;
305 		goto out;
306 	} else {
307 		/*
308 		 * for OPU case, during fsync(), node can be persisted before
309 		 * data when lower device doesn't support write barrier, result
310 		 * in data corruption after SPO.
311 		 * So for strict fsync mode, force to use atomic write semantics
312 		 * to keep write order in between data/node and last node to
313 		 * avoid potential data corruption.
314 		 */
315 		if (F2FS_OPTION(sbi).fsync_mode ==
316 				FSYNC_MODE_STRICT && !atomic)
317 			atomic = true;
318 	}
319 go_write:
320 	/*
321 	 * Both of fdatasync() and fsync() are able to be recovered from
322 	 * sudden-power-off.
323 	 */
324 	f2fs_down_read(&F2FS_I(inode)->i_sem);
325 	cp_reason = need_do_checkpoint(inode);
326 	f2fs_up_read(&F2FS_I(inode)->i_sem);
327 
328 	if (cp_reason) {
329 		/* all the dirty node pages should be flushed for POR */
330 		ret = f2fs_sync_fs(inode->i_sb, 1);
331 
332 		/*
333 		 * We've secured consistency through sync_fs. Following pino
334 		 * will be used only for fsynced inodes after checkpoint.
335 		 */
336 		try_to_fix_pino(inode);
337 		clear_inode_flag(inode, FI_APPEND_WRITE);
338 		clear_inode_flag(inode, FI_UPDATE_WRITE);
339 		goto out;
340 	}
341 sync_nodes:
342 	atomic_inc(&sbi->wb_sync_req[NODE]);
343 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
344 	atomic_dec(&sbi->wb_sync_req[NODE]);
345 	if (ret)
346 		goto out;
347 
348 	/* if cp_error was enabled, we should avoid infinite loop */
349 	if (unlikely(f2fs_cp_error(sbi))) {
350 		ret = -EIO;
351 		goto out;
352 	}
353 
354 	if (f2fs_need_inode_block_update(sbi, ino)) {
355 		f2fs_mark_inode_dirty_sync(inode, true);
356 		f2fs_write_inode(inode, NULL);
357 		goto sync_nodes;
358 	}
359 
360 	/*
361 	 * If it's atomic_write, it's just fine to keep write ordering. So
362 	 * here we don't need to wait for node write completion, since we use
363 	 * node chain which serializes node blocks. If one of node writes are
364 	 * reordered, we can see simply broken chain, resulting in stopping
365 	 * roll-forward recovery. It means we'll recover all or none node blocks
366 	 * given fsync mark.
367 	 */
368 	if (!atomic) {
369 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
370 		if (ret)
371 			goto out;
372 	}
373 
374 	/* once recovery info is written, don't need to tack this */
375 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
376 	clear_inode_flag(inode, FI_APPEND_WRITE);
377 flush_out:
378 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
379 		ret = f2fs_issue_flush(sbi, inode->i_ino);
380 	if (!ret) {
381 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
382 		clear_inode_flag(inode, FI_UPDATE_WRITE);
383 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
384 	}
385 	f2fs_update_time(sbi, REQ_TIME);
386 out:
387 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
388 	return ret;
389 }
390 
391 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
392 {
393 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
394 		return -EIO;
395 	return f2fs_do_sync_file(file, start, end, datasync, false);
396 }
397 
398 static bool __found_offset(struct address_space *mapping,
399 		struct dnode_of_data *dn, pgoff_t index, int whence)
400 {
401 	block_t blkaddr = f2fs_data_blkaddr(dn);
402 	struct inode *inode = mapping->host;
403 	bool compressed_cluster = false;
404 
405 	if (f2fs_compressed_file(inode)) {
406 		block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_folio,
407 		    ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
408 
409 		compressed_cluster = first_blkaddr == COMPRESS_ADDR;
410 	}
411 
412 	switch (whence) {
413 	case SEEK_DATA:
414 		if (__is_valid_data_blkaddr(blkaddr))
415 			return true;
416 		if (blkaddr == NEW_ADDR &&
417 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
418 			return true;
419 		if (compressed_cluster)
420 			return true;
421 		break;
422 	case SEEK_HOLE:
423 		if (compressed_cluster)
424 			return false;
425 		if (blkaddr == NULL_ADDR)
426 			return true;
427 		break;
428 	}
429 	return false;
430 }
431 
432 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
433 {
434 	struct inode *inode = file->f_mapping->host;
435 	loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
436 	struct dnode_of_data dn;
437 	pgoff_t pgofs, end_offset;
438 	loff_t data_ofs = offset;
439 	loff_t isize;
440 	int err = 0;
441 
442 	inode_lock_shared(inode);
443 
444 	isize = i_size_read(inode);
445 	if (offset >= isize)
446 		goto fail;
447 
448 	/* handle inline data case */
449 	if (f2fs_has_inline_data(inode)) {
450 		if (whence == SEEK_HOLE) {
451 			data_ofs = isize;
452 			goto found;
453 		} else if (whence == SEEK_DATA) {
454 			data_ofs = offset;
455 			goto found;
456 		}
457 	}
458 
459 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
460 
461 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
462 		set_new_dnode(&dn, inode, NULL, NULL, 0);
463 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
464 		if (err && err != -ENOENT) {
465 			goto fail;
466 		} else if (err == -ENOENT) {
467 			/* direct node does not exists */
468 			if (whence == SEEK_DATA) {
469 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
470 				continue;
471 			} else {
472 				goto found;
473 			}
474 		}
475 
476 		end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode);
477 
478 		/* find data/hole in dnode block */
479 		for (; dn.ofs_in_node < end_offset;
480 				dn.ofs_in_node++, pgofs++,
481 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
482 			block_t blkaddr;
483 
484 			blkaddr = f2fs_data_blkaddr(&dn);
485 
486 			if (__is_valid_data_blkaddr(blkaddr) &&
487 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
488 					blkaddr, DATA_GENERIC_ENHANCE)) {
489 				f2fs_put_dnode(&dn);
490 				goto fail;
491 			}
492 
493 			if (__found_offset(file->f_mapping, &dn,
494 							pgofs, whence)) {
495 				f2fs_put_dnode(&dn);
496 				goto found;
497 			}
498 		}
499 		f2fs_put_dnode(&dn);
500 	}
501 
502 	if (whence == SEEK_DATA)
503 		goto fail;
504 found:
505 	if (whence == SEEK_HOLE && data_ofs > isize)
506 		data_ofs = isize;
507 	inode_unlock_shared(inode);
508 	return vfs_setpos(file, data_ofs, maxbytes);
509 fail:
510 	inode_unlock_shared(inode);
511 	return -ENXIO;
512 }
513 
514 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
515 {
516 	struct inode *inode = file->f_mapping->host;
517 	loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
518 
519 	switch (whence) {
520 	case SEEK_SET:
521 	case SEEK_CUR:
522 	case SEEK_END:
523 		return generic_file_llseek_size(file, offset, whence,
524 						maxbytes, i_size_read(inode));
525 	case SEEK_DATA:
526 	case SEEK_HOLE:
527 		if (offset < 0)
528 			return -ENXIO;
529 		return f2fs_seek_block(file, offset, whence);
530 	}
531 
532 	return -EINVAL;
533 }
534 
535 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
536 {
537 	struct inode *inode = file_inode(file);
538 
539 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
540 		return -EIO;
541 
542 	if (!f2fs_is_compress_backend_ready(inode))
543 		return -EOPNOTSUPP;
544 
545 	file_accessed(file);
546 	vma->vm_ops = &f2fs_file_vm_ops;
547 
548 	f2fs_down_read(&F2FS_I(inode)->i_sem);
549 	set_inode_flag(inode, FI_MMAP_FILE);
550 	f2fs_up_read(&F2FS_I(inode)->i_sem);
551 
552 	return 0;
553 }
554 
555 static int finish_preallocate_blocks(struct inode *inode)
556 {
557 	int ret = 0;
558 	bool opened;
559 
560 	f2fs_down_read(&F2FS_I(inode)->i_sem);
561 	opened = is_inode_flag_set(inode, FI_OPENED_FILE);
562 	f2fs_up_read(&F2FS_I(inode)->i_sem);
563 	if (opened)
564 		return 0;
565 
566 	inode_lock(inode);
567 	if (is_inode_flag_set(inode, FI_OPENED_FILE))
568 		goto out_unlock;
569 
570 	if (!file_should_truncate(inode))
571 		goto out_update;
572 
573 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
574 	filemap_invalidate_lock(inode->i_mapping);
575 
576 	truncate_setsize(inode, i_size_read(inode));
577 	ret = f2fs_truncate(inode);
578 
579 	filemap_invalidate_unlock(inode->i_mapping);
580 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
581 	if (ret)
582 		goto out_unlock;
583 
584 	file_dont_truncate(inode);
585 out_update:
586 	f2fs_down_write(&F2FS_I(inode)->i_sem);
587 	set_inode_flag(inode, FI_OPENED_FILE);
588 	f2fs_up_write(&F2FS_I(inode)->i_sem);
589 out_unlock:
590 	inode_unlock(inode);
591 	return ret;
592 }
593 
594 static int f2fs_file_open(struct inode *inode, struct file *filp)
595 {
596 	int err = fscrypt_file_open(inode, filp);
597 
598 	if (err)
599 		return err;
600 
601 	if (!f2fs_is_compress_backend_ready(inode))
602 		return -EOPNOTSUPP;
603 
604 	err = fsverity_file_open(inode, filp);
605 	if (err)
606 		return err;
607 
608 	filp->f_mode |= FMODE_NOWAIT;
609 	filp->f_mode |= FMODE_CAN_ODIRECT;
610 
611 	err = dquot_file_open(inode, filp);
612 	if (err)
613 		return err;
614 
615 	return finish_preallocate_blocks(inode);
616 }
617 
618 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
619 {
620 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
621 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
622 	__le32 *addr;
623 	bool compressed_cluster = false;
624 	int cluster_index = 0, valid_blocks = 0;
625 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
626 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
627 	block_t blkstart;
628 	int blklen = 0;
629 
630 	addr = get_dnode_addr(dn->inode, dn->node_folio) + ofs;
631 	blkstart = le32_to_cpu(*addr);
632 
633 	/* Assumption: truncation starts with cluster */
634 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
635 		block_t blkaddr = le32_to_cpu(*addr);
636 
637 		if (f2fs_compressed_file(dn->inode) &&
638 					!(cluster_index & (cluster_size - 1))) {
639 			if (compressed_cluster)
640 				f2fs_i_compr_blocks_update(dn->inode,
641 							valid_blocks, false);
642 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
643 			valid_blocks = 0;
644 		}
645 
646 		if (blkaddr == NULL_ADDR)
647 			goto next;
648 
649 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
650 
651 		if (__is_valid_data_blkaddr(blkaddr)) {
652 			if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
653 				goto next;
654 			if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
655 						DATA_GENERIC_ENHANCE))
656 				goto next;
657 			if (compressed_cluster)
658 				valid_blocks++;
659 		}
660 
661 		if (blkstart + blklen == blkaddr) {
662 			blklen++;
663 		} else {
664 			f2fs_invalidate_blocks(sbi, blkstart, blklen);
665 			blkstart = blkaddr;
666 			blklen = 1;
667 		}
668 
669 		if (!released || blkaddr != COMPRESS_ADDR)
670 			nr_free++;
671 
672 		continue;
673 
674 next:
675 		if (blklen)
676 			f2fs_invalidate_blocks(sbi, blkstart, blklen);
677 
678 		blkstart = le32_to_cpu(*(addr + 1));
679 		blklen = 0;
680 	}
681 
682 	if (blklen)
683 		f2fs_invalidate_blocks(sbi, blkstart, blklen);
684 
685 	if (compressed_cluster)
686 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
687 
688 	if (nr_free) {
689 		pgoff_t fofs;
690 		/*
691 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
692 		 * we will invalidate all blkaddr in the whole range.
693 		 */
694 		fofs = f2fs_start_bidx_of_node(ofs_of_node(&dn->node_folio->page),
695 							dn->inode) + ofs;
696 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
697 		f2fs_update_age_extent_cache_range(dn, fofs, len);
698 		dec_valid_block_count(sbi, dn->inode, nr_free);
699 	}
700 	dn->ofs_in_node = ofs;
701 
702 	f2fs_update_time(sbi, REQ_TIME);
703 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
704 					 dn->ofs_in_node, nr_free);
705 }
706 
707 static int truncate_partial_data_page(struct inode *inode, u64 from,
708 								bool cache_only)
709 {
710 	loff_t offset = from & (PAGE_SIZE - 1);
711 	pgoff_t index = from >> PAGE_SHIFT;
712 	struct address_space *mapping = inode->i_mapping;
713 	struct folio *folio;
714 
715 	if (!offset && !cache_only)
716 		return 0;
717 
718 	if (cache_only) {
719 		folio = filemap_lock_folio(mapping, index);
720 		if (IS_ERR(folio))
721 		       return 0;
722 		if (folio_test_uptodate(folio))
723 			goto truncate_out;
724 		f2fs_folio_put(folio, true);
725 		return 0;
726 	}
727 
728 	folio = f2fs_get_lock_data_folio(inode, index, true);
729 	if (IS_ERR(folio))
730 		return PTR_ERR(folio) == -ENOENT ? 0 : PTR_ERR(folio);
731 truncate_out:
732 	f2fs_folio_wait_writeback(folio, DATA, true, true);
733 	folio_zero_segment(folio, offset, folio_size(folio));
734 
735 	/* An encrypted inode should have a key and truncate the last page. */
736 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
737 	if (!cache_only)
738 		folio_mark_dirty(folio);
739 	f2fs_folio_put(folio, true);
740 	return 0;
741 }
742 
743 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
744 {
745 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
746 	struct dnode_of_data dn;
747 	pgoff_t free_from;
748 	int count = 0, err = 0;
749 	struct folio *ifolio;
750 	bool truncate_page = false;
751 
752 	trace_f2fs_truncate_blocks_enter(inode, from);
753 
754 	if (IS_DEVICE_ALIASING(inode) && from) {
755 		err = -EINVAL;
756 		goto out_err;
757 	}
758 
759 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
760 
761 	if (free_from >= max_file_blocks(inode))
762 		goto free_partial;
763 
764 	if (lock)
765 		f2fs_lock_op(sbi);
766 
767 	ifolio = f2fs_get_inode_folio(sbi, inode->i_ino);
768 	if (IS_ERR(ifolio)) {
769 		err = PTR_ERR(ifolio);
770 		goto out;
771 	}
772 
773 	if (IS_DEVICE_ALIASING(inode)) {
774 		struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
775 		struct extent_info ei = et->largest;
776 
777 		f2fs_invalidate_blocks(sbi, ei.blk, ei.len);
778 
779 		dec_valid_block_count(sbi, inode, ei.len);
780 		f2fs_update_time(sbi, REQ_TIME);
781 
782 		f2fs_folio_put(ifolio, true);
783 		goto out;
784 	}
785 
786 	if (f2fs_has_inline_data(inode)) {
787 		f2fs_truncate_inline_inode(inode, ifolio, from);
788 		f2fs_folio_put(ifolio, true);
789 		truncate_page = true;
790 		goto out;
791 	}
792 
793 	set_new_dnode(&dn, inode, ifolio, NULL, 0);
794 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
795 	if (err) {
796 		if (err == -ENOENT)
797 			goto free_next;
798 		goto out;
799 	}
800 
801 	count = ADDRS_PER_PAGE(&dn.node_folio->page, inode);
802 
803 	count -= dn.ofs_in_node;
804 	f2fs_bug_on(sbi, count < 0);
805 
806 	if (dn.ofs_in_node || IS_INODE(&dn.node_folio->page)) {
807 		f2fs_truncate_data_blocks_range(&dn, count);
808 		free_from += count;
809 	}
810 
811 	f2fs_put_dnode(&dn);
812 free_next:
813 	err = f2fs_truncate_inode_blocks(inode, free_from);
814 out:
815 	if (lock)
816 		f2fs_unlock_op(sbi);
817 free_partial:
818 	/* lastly zero out the first data page */
819 	if (!err)
820 		err = truncate_partial_data_page(inode, from, truncate_page);
821 out_err:
822 	trace_f2fs_truncate_blocks_exit(inode, err);
823 	return err;
824 }
825 
826 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
827 {
828 	u64 free_from = from;
829 	int err;
830 
831 #ifdef CONFIG_F2FS_FS_COMPRESSION
832 	/*
833 	 * for compressed file, only support cluster size
834 	 * aligned truncation.
835 	 */
836 	if (f2fs_compressed_file(inode))
837 		free_from = round_up(from,
838 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
839 #endif
840 
841 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
842 	if (err)
843 		return err;
844 
845 #ifdef CONFIG_F2FS_FS_COMPRESSION
846 	/*
847 	 * For compressed file, after release compress blocks, don't allow write
848 	 * direct, but we should allow write direct after truncate to zero.
849 	 */
850 	if (f2fs_compressed_file(inode) && !free_from
851 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
852 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
853 
854 	if (from != free_from) {
855 		err = f2fs_truncate_partial_cluster(inode, from, lock);
856 		if (err)
857 			return err;
858 	}
859 #endif
860 
861 	return 0;
862 }
863 
864 int f2fs_truncate(struct inode *inode)
865 {
866 	int err;
867 
868 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
869 		return -EIO;
870 
871 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
872 				S_ISLNK(inode->i_mode)))
873 		return 0;
874 
875 	trace_f2fs_truncate(inode);
876 
877 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
878 		return -EIO;
879 
880 	err = f2fs_dquot_initialize(inode);
881 	if (err)
882 		return err;
883 
884 	/* we should check inline_data size */
885 	if (!f2fs_may_inline_data(inode)) {
886 		err = f2fs_convert_inline_inode(inode);
887 		if (err)
888 			return err;
889 	}
890 
891 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
892 	if (err)
893 		return err;
894 
895 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
896 	f2fs_mark_inode_dirty_sync(inode, false);
897 	return 0;
898 }
899 
900 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
901 {
902 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
903 
904 	if (!fscrypt_dio_supported(inode))
905 		return true;
906 	if (fsverity_active(inode))
907 		return true;
908 	if (f2fs_compressed_file(inode))
909 		return true;
910 	/*
911 	 * only force direct read to use buffered IO, for direct write,
912 	 * it expects inline data conversion before committing IO.
913 	 */
914 	if (f2fs_has_inline_data(inode) && rw == READ)
915 		return true;
916 
917 	/* disallow direct IO if any of devices has unaligned blksize */
918 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
919 		return true;
920 	/*
921 	 * for blkzoned device, fallback direct IO to buffered IO, so
922 	 * all IOs can be serialized by log-structured write.
923 	 */
924 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
925 	    !f2fs_is_pinned_file(inode))
926 		return true;
927 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
928 		return true;
929 
930 	return false;
931 }
932 
933 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
934 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
935 {
936 	struct inode *inode = d_inode(path->dentry);
937 	struct f2fs_inode_info *fi = F2FS_I(inode);
938 	struct f2fs_inode *ri = NULL;
939 	unsigned int flags;
940 
941 	if (f2fs_has_extra_attr(inode) &&
942 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
943 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
944 		stat->result_mask |= STATX_BTIME;
945 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
946 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
947 	}
948 
949 	/*
950 	 * Return the DIO alignment restrictions if requested.  We only return
951 	 * this information when requested, since on encrypted files it might
952 	 * take a fair bit of work to get if the file wasn't opened recently.
953 	 *
954 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
955 	 * cannot represent that, so in that case we report no DIO support.
956 	 */
957 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
958 		unsigned int bsize = i_blocksize(inode);
959 
960 		stat->result_mask |= STATX_DIOALIGN;
961 		if (!f2fs_force_buffered_io(inode, WRITE)) {
962 			stat->dio_mem_align = bsize;
963 			stat->dio_offset_align = bsize;
964 		}
965 	}
966 
967 	flags = fi->i_flags;
968 	if (flags & F2FS_COMPR_FL)
969 		stat->attributes |= STATX_ATTR_COMPRESSED;
970 	if (flags & F2FS_APPEND_FL)
971 		stat->attributes |= STATX_ATTR_APPEND;
972 	if (IS_ENCRYPTED(inode))
973 		stat->attributes |= STATX_ATTR_ENCRYPTED;
974 	if (flags & F2FS_IMMUTABLE_FL)
975 		stat->attributes |= STATX_ATTR_IMMUTABLE;
976 	if (flags & F2FS_NODUMP_FL)
977 		stat->attributes |= STATX_ATTR_NODUMP;
978 	if (IS_VERITY(inode))
979 		stat->attributes |= STATX_ATTR_VERITY;
980 
981 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
982 				  STATX_ATTR_APPEND |
983 				  STATX_ATTR_ENCRYPTED |
984 				  STATX_ATTR_IMMUTABLE |
985 				  STATX_ATTR_NODUMP |
986 				  STATX_ATTR_VERITY);
987 
988 	generic_fillattr(idmap, request_mask, inode, stat);
989 
990 	/* we need to show initial sectors used for inline_data/dentries */
991 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
992 					f2fs_has_inline_dentry(inode))
993 		stat->blocks += (stat->size + 511) >> 9;
994 
995 	return 0;
996 }
997 
998 #ifdef CONFIG_F2FS_FS_POSIX_ACL
999 static void __setattr_copy(struct mnt_idmap *idmap,
1000 			   struct inode *inode, const struct iattr *attr)
1001 {
1002 	unsigned int ia_valid = attr->ia_valid;
1003 
1004 	i_uid_update(idmap, attr, inode);
1005 	i_gid_update(idmap, attr, inode);
1006 	if (ia_valid & ATTR_ATIME)
1007 		inode_set_atime_to_ts(inode, attr->ia_atime);
1008 	if (ia_valid & ATTR_MTIME)
1009 		inode_set_mtime_to_ts(inode, attr->ia_mtime);
1010 	if (ia_valid & ATTR_CTIME)
1011 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
1012 	if (ia_valid & ATTR_MODE) {
1013 		umode_t mode = attr->ia_mode;
1014 
1015 		if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
1016 			mode &= ~S_ISGID;
1017 		set_acl_inode(inode, mode);
1018 	}
1019 }
1020 #else
1021 #define __setattr_copy setattr_copy
1022 #endif
1023 
1024 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1025 		 struct iattr *attr)
1026 {
1027 	struct inode *inode = d_inode(dentry);
1028 	struct f2fs_inode_info *fi = F2FS_I(inode);
1029 	int err;
1030 
1031 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1032 		return -EIO;
1033 
1034 	if (unlikely(IS_IMMUTABLE(inode)))
1035 		return -EPERM;
1036 
1037 	if (unlikely(IS_APPEND(inode) &&
1038 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
1039 				  ATTR_GID | ATTR_TIMES_SET))))
1040 		return -EPERM;
1041 
1042 	if ((attr->ia_valid & ATTR_SIZE)) {
1043 		if (!f2fs_is_compress_backend_ready(inode) ||
1044 				IS_DEVICE_ALIASING(inode))
1045 			return -EOPNOTSUPP;
1046 		if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1047 			!IS_ALIGNED(attr->ia_size,
1048 			F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1049 			return -EINVAL;
1050 	}
1051 
1052 	err = setattr_prepare(idmap, dentry, attr);
1053 	if (err)
1054 		return err;
1055 
1056 	err = fscrypt_prepare_setattr(dentry, attr);
1057 	if (err)
1058 		return err;
1059 
1060 	err = fsverity_prepare_setattr(dentry, attr);
1061 	if (err)
1062 		return err;
1063 
1064 	if (is_quota_modification(idmap, inode, attr)) {
1065 		err = f2fs_dquot_initialize(inode);
1066 		if (err)
1067 			return err;
1068 	}
1069 	if (i_uid_needs_update(idmap, attr, inode) ||
1070 	    i_gid_needs_update(idmap, attr, inode)) {
1071 		f2fs_lock_op(F2FS_I_SB(inode));
1072 		err = dquot_transfer(idmap, inode, attr);
1073 		if (err) {
1074 			set_sbi_flag(F2FS_I_SB(inode),
1075 					SBI_QUOTA_NEED_REPAIR);
1076 			f2fs_unlock_op(F2FS_I_SB(inode));
1077 			return err;
1078 		}
1079 		/*
1080 		 * update uid/gid under lock_op(), so that dquot and inode can
1081 		 * be updated atomically.
1082 		 */
1083 		i_uid_update(idmap, attr, inode);
1084 		i_gid_update(idmap, attr, inode);
1085 		f2fs_mark_inode_dirty_sync(inode, true);
1086 		f2fs_unlock_op(F2FS_I_SB(inode));
1087 	}
1088 
1089 	if (attr->ia_valid & ATTR_SIZE) {
1090 		loff_t old_size = i_size_read(inode);
1091 
1092 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1093 			/*
1094 			 * should convert inline inode before i_size_write to
1095 			 * keep smaller than inline_data size with inline flag.
1096 			 */
1097 			err = f2fs_convert_inline_inode(inode);
1098 			if (err)
1099 				return err;
1100 		}
1101 
1102 		/*
1103 		 * wait for inflight dio, blocks should be removed after
1104 		 * IO completion.
1105 		 */
1106 		if (attr->ia_size < old_size)
1107 			inode_dio_wait(inode);
1108 
1109 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1110 		filemap_invalidate_lock(inode->i_mapping);
1111 
1112 		truncate_setsize(inode, attr->ia_size);
1113 
1114 		if (attr->ia_size <= old_size)
1115 			err = f2fs_truncate(inode);
1116 		/*
1117 		 * do not trim all blocks after i_size if target size is
1118 		 * larger than i_size.
1119 		 */
1120 		filemap_invalidate_unlock(inode->i_mapping);
1121 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1122 		if (err)
1123 			return err;
1124 
1125 		spin_lock(&fi->i_size_lock);
1126 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1127 		fi->last_disk_size = i_size_read(inode);
1128 		spin_unlock(&fi->i_size_lock);
1129 	}
1130 
1131 	__setattr_copy(idmap, inode, attr);
1132 
1133 	if (attr->ia_valid & ATTR_MODE) {
1134 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1135 
1136 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1137 			if (!err)
1138 				inode->i_mode = fi->i_acl_mode;
1139 			clear_inode_flag(inode, FI_ACL_MODE);
1140 		}
1141 	}
1142 
1143 	/* file size may changed here */
1144 	f2fs_mark_inode_dirty_sync(inode, true);
1145 
1146 	/* inode change will produce dirty node pages flushed by checkpoint */
1147 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1148 
1149 	return err;
1150 }
1151 
1152 const struct inode_operations f2fs_file_inode_operations = {
1153 	.getattr	= f2fs_getattr,
1154 	.setattr	= f2fs_setattr,
1155 	.get_inode_acl	= f2fs_get_acl,
1156 	.set_acl	= f2fs_set_acl,
1157 	.listxattr	= f2fs_listxattr,
1158 	.fiemap		= f2fs_fiemap,
1159 	.fileattr_get	= f2fs_fileattr_get,
1160 	.fileattr_set	= f2fs_fileattr_set,
1161 };
1162 
1163 static int fill_zero(struct inode *inode, pgoff_t index,
1164 					loff_t start, loff_t len)
1165 {
1166 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1167 	struct folio *folio;
1168 
1169 	if (!len)
1170 		return 0;
1171 
1172 	f2fs_balance_fs(sbi, true);
1173 
1174 	f2fs_lock_op(sbi);
1175 	folio = f2fs_get_new_data_folio(inode, NULL, index, false);
1176 	f2fs_unlock_op(sbi);
1177 
1178 	if (IS_ERR(folio))
1179 		return PTR_ERR(folio);
1180 
1181 	f2fs_folio_wait_writeback(folio, DATA, true, true);
1182 	folio_zero_range(folio, start, len);
1183 	folio_mark_dirty(folio);
1184 	f2fs_folio_put(folio, true);
1185 	return 0;
1186 }
1187 
1188 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1189 {
1190 	int err;
1191 
1192 	while (pg_start < pg_end) {
1193 		struct dnode_of_data dn;
1194 		pgoff_t end_offset, count;
1195 
1196 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1197 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1198 		if (err) {
1199 			if (err == -ENOENT) {
1200 				pg_start = f2fs_get_next_page_offset(&dn,
1201 								pg_start);
1202 				continue;
1203 			}
1204 			return err;
1205 		}
1206 
1207 		end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode);
1208 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1209 
1210 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1211 
1212 		f2fs_truncate_data_blocks_range(&dn, count);
1213 		f2fs_put_dnode(&dn);
1214 
1215 		pg_start += count;
1216 	}
1217 	return 0;
1218 }
1219 
1220 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1221 {
1222 	pgoff_t pg_start, pg_end;
1223 	loff_t off_start, off_end;
1224 	int ret;
1225 
1226 	ret = f2fs_convert_inline_inode(inode);
1227 	if (ret)
1228 		return ret;
1229 
1230 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1231 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1232 
1233 	off_start = offset & (PAGE_SIZE - 1);
1234 	off_end = (offset + len) & (PAGE_SIZE - 1);
1235 
1236 	if (pg_start == pg_end) {
1237 		ret = fill_zero(inode, pg_start, off_start,
1238 						off_end - off_start);
1239 		if (ret)
1240 			return ret;
1241 	} else {
1242 		if (off_start) {
1243 			ret = fill_zero(inode, pg_start++, off_start,
1244 						PAGE_SIZE - off_start);
1245 			if (ret)
1246 				return ret;
1247 		}
1248 		if (off_end) {
1249 			ret = fill_zero(inode, pg_end, 0, off_end);
1250 			if (ret)
1251 				return ret;
1252 		}
1253 
1254 		if (pg_start < pg_end) {
1255 			loff_t blk_start, blk_end;
1256 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1257 
1258 			f2fs_balance_fs(sbi, true);
1259 
1260 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1261 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1262 
1263 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1264 			filemap_invalidate_lock(inode->i_mapping);
1265 
1266 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1267 
1268 			f2fs_lock_op(sbi);
1269 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1270 			f2fs_unlock_op(sbi);
1271 
1272 			filemap_invalidate_unlock(inode->i_mapping);
1273 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1274 		}
1275 	}
1276 
1277 	return ret;
1278 }
1279 
1280 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1281 				int *do_replace, pgoff_t off, pgoff_t len)
1282 {
1283 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1284 	struct dnode_of_data dn;
1285 	int ret, done, i;
1286 
1287 next_dnode:
1288 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1289 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1290 	if (ret && ret != -ENOENT) {
1291 		return ret;
1292 	} else if (ret == -ENOENT) {
1293 		if (dn.max_level == 0)
1294 			return -ENOENT;
1295 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1296 						dn.ofs_in_node, len);
1297 		blkaddr += done;
1298 		do_replace += done;
1299 		goto next;
1300 	}
1301 
1302 	done = min((pgoff_t)ADDRS_PER_PAGE(&dn.node_folio->page, inode) -
1303 							dn.ofs_in_node, len);
1304 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1305 		*blkaddr = f2fs_data_blkaddr(&dn);
1306 
1307 		if (__is_valid_data_blkaddr(*blkaddr) &&
1308 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1309 					DATA_GENERIC_ENHANCE)) {
1310 			f2fs_put_dnode(&dn);
1311 			return -EFSCORRUPTED;
1312 		}
1313 
1314 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1315 
1316 			if (f2fs_lfs_mode(sbi)) {
1317 				f2fs_put_dnode(&dn);
1318 				return -EOPNOTSUPP;
1319 			}
1320 
1321 			/* do not invalidate this block address */
1322 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1323 			*do_replace = 1;
1324 		}
1325 	}
1326 	f2fs_put_dnode(&dn);
1327 next:
1328 	len -= done;
1329 	off += done;
1330 	if (len)
1331 		goto next_dnode;
1332 	return 0;
1333 }
1334 
1335 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1336 				int *do_replace, pgoff_t off, int len)
1337 {
1338 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1339 	struct dnode_of_data dn;
1340 	int ret, i;
1341 
1342 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1343 		if (*do_replace == 0)
1344 			continue;
1345 
1346 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1347 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1348 		if (ret) {
1349 			dec_valid_block_count(sbi, inode, 1);
1350 			f2fs_invalidate_blocks(sbi, *blkaddr, 1);
1351 		} else {
1352 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1353 		}
1354 		f2fs_put_dnode(&dn);
1355 	}
1356 	return 0;
1357 }
1358 
1359 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1360 			block_t *blkaddr, int *do_replace,
1361 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1362 {
1363 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1364 	pgoff_t i = 0;
1365 	int ret;
1366 
1367 	while (i < len) {
1368 		if (blkaddr[i] == NULL_ADDR && !full) {
1369 			i++;
1370 			continue;
1371 		}
1372 
1373 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1374 			struct dnode_of_data dn;
1375 			struct node_info ni;
1376 			size_t new_size;
1377 			pgoff_t ilen;
1378 
1379 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1380 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1381 			if (ret)
1382 				return ret;
1383 
1384 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1385 			if (ret) {
1386 				f2fs_put_dnode(&dn);
1387 				return ret;
1388 			}
1389 
1390 			ilen = min((pgoff_t)
1391 				ADDRS_PER_PAGE(&dn.node_folio->page, dst_inode) -
1392 						dn.ofs_in_node, len - i);
1393 			do {
1394 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1395 				f2fs_truncate_data_blocks_range(&dn, 1);
1396 
1397 				if (do_replace[i]) {
1398 					f2fs_i_blocks_write(src_inode,
1399 							1, false, false);
1400 					f2fs_i_blocks_write(dst_inode,
1401 							1, true, false);
1402 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1403 					blkaddr[i], ni.version, true, false);
1404 
1405 					do_replace[i] = 0;
1406 				}
1407 				dn.ofs_in_node++;
1408 				i++;
1409 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1410 				if (dst_inode->i_size < new_size)
1411 					f2fs_i_size_write(dst_inode, new_size);
1412 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1413 
1414 			f2fs_put_dnode(&dn);
1415 		} else {
1416 			struct folio *fsrc, *fdst;
1417 
1418 			fsrc = f2fs_get_lock_data_folio(src_inode,
1419 							src + i, true);
1420 			if (IS_ERR(fsrc))
1421 				return PTR_ERR(fsrc);
1422 			fdst = f2fs_get_new_data_folio(dst_inode, NULL, dst + i,
1423 								true);
1424 			if (IS_ERR(fdst)) {
1425 				f2fs_folio_put(fsrc, true);
1426 				return PTR_ERR(fdst);
1427 			}
1428 
1429 			f2fs_folio_wait_writeback(fdst, DATA, true, true);
1430 
1431 			memcpy_folio(fdst, 0, fsrc, 0, PAGE_SIZE);
1432 			folio_mark_dirty(fdst);
1433 			set_page_private_gcing(&fdst->page);
1434 			f2fs_folio_put(fdst, true);
1435 			f2fs_folio_put(fsrc, true);
1436 
1437 			ret = f2fs_truncate_hole(src_inode,
1438 						src + i, src + i + 1);
1439 			if (ret)
1440 				return ret;
1441 			i++;
1442 		}
1443 	}
1444 	return 0;
1445 }
1446 
1447 static int __exchange_data_block(struct inode *src_inode,
1448 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1449 			pgoff_t len, bool full)
1450 {
1451 	block_t *src_blkaddr;
1452 	int *do_replace;
1453 	pgoff_t olen;
1454 	int ret;
1455 
1456 	while (len) {
1457 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1458 
1459 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1460 					array_size(olen, sizeof(block_t)),
1461 					GFP_NOFS);
1462 		if (!src_blkaddr)
1463 			return -ENOMEM;
1464 
1465 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1466 					array_size(olen, sizeof(int)),
1467 					GFP_NOFS);
1468 		if (!do_replace) {
1469 			kvfree(src_blkaddr);
1470 			return -ENOMEM;
1471 		}
1472 
1473 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1474 					do_replace, src, olen);
1475 		if (ret)
1476 			goto roll_back;
1477 
1478 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1479 					do_replace, src, dst, olen, full);
1480 		if (ret)
1481 			goto roll_back;
1482 
1483 		src += olen;
1484 		dst += olen;
1485 		len -= olen;
1486 
1487 		kvfree(src_blkaddr);
1488 		kvfree(do_replace);
1489 	}
1490 	return 0;
1491 
1492 roll_back:
1493 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1494 	kvfree(src_blkaddr);
1495 	kvfree(do_replace);
1496 	return ret;
1497 }
1498 
1499 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1500 {
1501 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1502 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1503 	pgoff_t start = offset >> PAGE_SHIFT;
1504 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1505 	int ret;
1506 
1507 	f2fs_balance_fs(sbi, true);
1508 
1509 	/* avoid gc operation during block exchange */
1510 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1511 	filemap_invalidate_lock(inode->i_mapping);
1512 
1513 	f2fs_lock_op(sbi);
1514 	f2fs_drop_extent_tree(inode);
1515 	truncate_pagecache(inode, offset);
1516 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1517 	f2fs_unlock_op(sbi);
1518 
1519 	filemap_invalidate_unlock(inode->i_mapping);
1520 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1521 	return ret;
1522 }
1523 
1524 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1525 {
1526 	loff_t new_size;
1527 	int ret;
1528 
1529 	if (offset + len >= i_size_read(inode))
1530 		return -EINVAL;
1531 
1532 	/* collapse range should be aligned to block size of f2fs. */
1533 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1534 		return -EINVAL;
1535 
1536 	ret = f2fs_convert_inline_inode(inode);
1537 	if (ret)
1538 		return ret;
1539 
1540 	/* write out all dirty pages from offset */
1541 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1542 	if (ret)
1543 		return ret;
1544 
1545 	ret = f2fs_do_collapse(inode, offset, len);
1546 	if (ret)
1547 		return ret;
1548 
1549 	/* write out all moved pages, if possible */
1550 	filemap_invalidate_lock(inode->i_mapping);
1551 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1552 	truncate_pagecache(inode, offset);
1553 
1554 	new_size = i_size_read(inode) - len;
1555 	ret = f2fs_truncate_blocks(inode, new_size, true);
1556 	filemap_invalidate_unlock(inode->i_mapping);
1557 	if (!ret)
1558 		f2fs_i_size_write(inode, new_size);
1559 	return ret;
1560 }
1561 
1562 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1563 								pgoff_t end)
1564 {
1565 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1566 	pgoff_t index = start;
1567 	unsigned int ofs_in_node = dn->ofs_in_node;
1568 	blkcnt_t count = 0;
1569 	int ret;
1570 
1571 	for (; index < end; index++, dn->ofs_in_node++) {
1572 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1573 			count++;
1574 	}
1575 
1576 	dn->ofs_in_node = ofs_in_node;
1577 	ret = f2fs_reserve_new_blocks(dn, count);
1578 	if (ret)
1579 		return ret;
1580 
1581 	dn->ofs_in_node = ofs_in_node;
1582 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1583 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1584 		/*
1585 		 * f2fs_reserve_new_blocks will not guarantee entire block
1586 		 * allocation.
1587 		 */
1588 		if (dn->data_blkaddr == NULL_ADDR) {
1589 			ret = -ENOSPC;
1590 			break;
1591 		}
1592 
1593 		if (dn->data_blkaddr == NEW_ADDR)
1594 			continue;
1595 
1596 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1597 					DATA_GENERIC_ENHANCE)) {
1598 			ret = -EFSCORRUPTED;
1599 			break;
1600 		}
1601 
1602 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr, 1);
1603 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1604 	}
1605 
1606 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1607 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1608 
1609 	return ret;
1610 }
1611 
1612 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1613 								int mode)
1614 {
1615 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1616 	struct address_space *mapping = inode->i_mapping;
1617 	pgoff_t index, pg_start, pg_end;
1618 	loff_t new_size = i_size_read(inode);
1619 	loff_t off_start, off_end;
1620 	int ret = 0;
1621 
1622 	ret = inode_newsize_ok(inode, (len + offset));
1623 	if (ret)
1624 		return ret;
1625 
1626 	ret = f2fs_convert_inline_inode(inode);
1627 	if (ret)
1628 		return ret;
1629 
1630 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1631 	if (ret)
1632 		return ret;
1633 
1634 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1635 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1636 
1637 	off_start = offset & (PAGE_SIZE - 1);
1638 	off_end = (offset + len) & (PAGE_SIZE - 1);
1639 
1640 	if (pg_start == pg_end) {
1641 		ret = fill_zero(inode, pg_start, off_start,
1642 						off_end - off_start);
1643 		if (ret)
1644 			return ret;
1645 
1646 		new_size = max_t(loff_t, new_size, offset + len);
1647 	} else {
1648 		if (off_start) {
1649 			ret = fill_zero(inode, pg_start++, off_start,
1650 						PAGE_SIZE - off_start);
1651 			if (ret)
1652 				return ret;
1653 
1654 			new_size = max_t(loff_t, new_size,
1655 					(loff_t)pg_start << PAGE_SHIFT);
1656 		}
1657 
1658 		for (index = pg_start; index < pg_end;) {
1659 			struct dnode_of_data dn;
1660 			unsigned int end_offset;
1661 			pgoff_t end;
1662 
1663 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1664 			filemap_invalidate_lock(mapping);
1665 
1666 			truncate_pagecache_range(inode,
1667 				(loff_t)index << PAGE_SHIFT,
1668 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1669 
1670 			f2fs_lock_op(sbi);
1671 
1672 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1673 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1674 			if (ret) {
1675 				f2fs_unlock_op(sbi);
1676 				filemap_invalidate_unlock(mapping);
1677 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1678 				goto out;
1679 			}
1680 
1681 			end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode);
1682 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1683 
1684 			ret = f2fs_do_zero_range(&dn, index, end);
1685 			f2fs_put_dnode(&dn);
1686 
1687 			f2fs_unlock_op(sbi);
1688 			filemap_invalidate_unlock(mapping);
1689 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1690 
1691 			f2fs_balance_fs(sbi, dn.node_changed);
1692 
1693 			if (ret)
1694 				goto out;
1695 
1696 			index = end;
1697 			new_size = max_t(loff_t, new_size,
1698 					(loff_t)index << PAGE_SHIFT);
1699 		}
1700 
1701 		if (off_end) {
1702 			ret = fill_zero(inode, pg_end, 0, off_end);
1703 			if (ret)
1704 				goto out;
1705 
1706 			new_size = max_t(loff_t, new_size, offset + len);
1707 		}
1708 	}
1709 
1710 out:
1711 	if (new_size > i_size_read(inode)) {
1712 		if (mode & FALLOC_FL_KEEP_SIZE)
1713 			file_set_keep_isize(inode);
1714 		else
1715 			f2fs_i_size_write(inode, new_size);
1716 	}
1717 	return ret;
1718 }
1719 
1720 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1721 {
1722 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1723 	struct address_space *mapping = inode->i_mapping;
1724 	pgoff_t nr, pg_start, pg_end, delta, idx;
1725 	loff_t new_size;
1726 	int ret = 0;
1727 
1728 	new_size = i_size_read(inode) + len;
1729 	ret = inode_newsize_ok(inode, new_size);
1730 	if (ret)
1731 		return ret;
1732 
1733 	if (offset >= i_size_read(inode))
1734 		return -EINVAL;
1735 
1736 	/* insert range should be aligned to block size of f2fs. */
1737 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1738 		return -EINVAL;
1739 
1740 	ret = f2fs_convert_inline_inode(inode);
1741 	if (ret)
1742 		return ret;
1743 
1744 	f2fs_balance_fs(sbi, true);
1745 
1746 	filemap_invalidate_lock(mapping);
1747 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1748 	filemap_invalidate_unlock(mapping);
1749 	if (ret)
1750 		return ret;
1751 
1752 	/* write out all dirty pages from offset */
1753 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1754 	if (ret)
1755 		return ret;
1756 
1757 	pg_start = offset >> PAGE_SHIFT;
1758 	pg_end = (offset + len) >> PAGE_SHIFT;
1759 	delta = pg_end - pg_start;
1760 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1761 
1762 	/* avoid gc operation during block exchange */
1763 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1764 	filemap_invalidate_lock(mapping);
1765 	truncate_pagecache(inode, offset);
1766 
1767 	while (!ret && idx > pg_start) {
1768 		nr = idx - pg_start;
1769 		if (nr > delta)
1770 			nr = delta;
1771 		idx -= nr;
1772 
1773 		f2fs_lock_op(sbi);
1774 		f2fs_drop_extent_tree(inode);
1775 
1776 		ret = __exchange_data_block(inode, inode, idx,
1777 					idx + delta, nr, false);
1778 		f2fs_unlock_op(sbi);
1779 	}
1780 	filemap_invalidate_unlock(mapping);
1781 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1782 	if (ret)
1783 		return ret;
1784 
1785 	/* write out all moved pages, if possible */
1786 	filemap_invalidate_lock(mapping);
1787 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1788 	truncate_pagecache(inode, offset);
1789 	filemap_invalidate_unlock(mapping);
1790 
1791 	if (!ret)
1792 		f2fs_i_size_write(inode, new_size);
1793 	return ret;
1794 }
1795 
1796 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1797 					loff_t len, int mode)
1798 {
1799 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1800 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1801 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1802 			.m_may_create = true };
1803 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1804 			.init_gc_type = FG_GC,
1805 			.should_migrate_blocks = false,
1806 			.err_gc_skipped = true,
1807 			.nr_free_secs = 0 };
1808 	pgoff_t pg_start, pg_end;
1809 	loff_t new_size;
1810 	loff_t off_end;
1811 	block_t expanded = 0;
1812 	int err;
1813 
1814 	err = inode_newsize_ok(inode, (len + offset));
1815 	if (err)
1816 		return err;
1817 
1818 	err = f2fs_convert_inline_inode(inode);
1819 	if (err)
1820 		return err;
1821 
1822 	f2fs_balance_fs(sbi, true);
1823 
1824 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1825 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1826 	off_end = (offset + len) & (PAGE_SIZE - 1);
1827 
1828 	map.m_lblk = pg_start;
1829 	map.m_len = pg_end - pg_start;
1830 	if (off_end)
1831 		map.m_len++;
1832 
1833 	if (!map.m_len)
1834 		return 0;
1835 
1836 	if (f2fs_is_pinned_file(inode)) {
1837 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1838 		block_t sec_len = roundup(map.m_len, sec_blks);
1839 
1840 		map.m_len = sec_blks;
1841 next_alloc:
1842 		f2fs_down_write(&sbi->pin_sem);
1843 
1844 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1845 			if (has_not_enough_free_secs(sbi, 0, 0)) {
1846 				f2fs_up_write(&sbi->pin_sem);
1847 				err = -ENOSPC;
1848 				f2fs_warn_ratelimited(sbi,
1849 					"ino:%lu, start:%lu, end:%lu, need to trigger GC to "
1850 					"reclaim enough free segment when checkpoint is enabled",
1851 					inode->i_ino, pg_start, pg_end);
1852 				goto out_err;
1853 			}
1854 		}
1855 
1856 		if (has_not_enough_free_secs(sbi, 0, f2fs_sb_has_blkzoned(sbi) ?
1857 			ZONED_PIN_SEC_REQUIRED_COUNT :
1858 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1859 			f2fs_down_write(&sbi->gc_lock);
1860 			stat_inc_gc_call_count(sbi, FOREGROUND);
1861 			err = f2fs_gc(sbi, &gc_control);
1862 			if (err && err != -ENODATA) {
1863 				f2fs_up_write(&sbi->pin_sem);
1864 				goto out_err;
1865 			}
1866 		}
1867 
1868 		err = f2fs_allocate_pinning_section(sbi);
1869 		if (err) {
1870 			f2fs_up_write(&sbi->pin_sem);
1871 			goto out_err;
1872 		}
1873 
1874 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1875 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1876 		file_dont_truncate(inode);
1877 
1878 		f2fs_up_write(&sbi->pin_sem);
1879 
1880 		expanded += map.m_len;
1881 		sec_len -= map.m_len;
1882 		map.m_lblk += map.m_len;
1883 		if (!err && sec_len)
1884 			goto next_alloc;
1885 
1886 		map.m_len = expanded;
1887 	} else {
1888 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1889 		expanded = map.m_len;
1890 	}
1891 out_err:
1892 	if (err) {
1893 		pgoff_t last_off;
1894 
1895 		if (!expanded)
1896 			return err;
1897 
1898 		last_off = pg_start + expanded - 1;
1899 
1900 		/* update new size to the failed position */
1901 		new_size = (last_off == pg_end) ? offset + len :
1902 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1903 	} else {
1904 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1905 	}
1906 
1907 	if (new_size > i_size_read(inode)) {
1908 		if (mode & FALLOC_FL_KEEP_SIZE)
1909 			file_set_keep_isize(inode);
1910 		else
1911 			f2fs_i_size_write(inode, new_size);
1912 	}
1913 
1914 	return err;
1915 }
1916 
1917 static long f2fs_fallocate(struct file *file, int mode,
1918 				loff_t offset, loff_t len)
1919 {
1920 	struct inode *inode = file_inode(file);
1921 	long ret = 0;
1922 
1923 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1924 		return -EIO;
1925 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1926 		return -ENOSPC;
1927 	if (!f2fs_is_compress_backend_ready(inode) || IS_DEVICE_ALIASING(inode))
1928 		return -EOPNOTSUPP;
1929 
1930 	/* f2fs only support ->fallocate for regular file */
1931 	if (!S_ISREG(inode->i_mode))
1932 		return -EINVAL;
1933 
1934 	if (IS_ENCRYPTED(inode) &&
1935 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1936 		return -EOPNOTSUPP;
1937 
1938 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1939 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1940 			FALLOC_FL_INSERT_RANGE))
1941 		return -EOPNOTSUPP;
1942 
1943 	inode_lock(inode);
1944 
1945 	/*
1946 	 * Pinned file should not support partial truncation since the block
1947 	 * can be used by applications.
1948 	 */
1949 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1950 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1951 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1952 		ret = -EOPNOTSUPP;
1953 		goto out;
1954 	}
1955 
1956 	ret = file_modified(file);
1957 	if (ret)
1958 		goto out;
1959 
1960 	/*
1961 	 * wait for inflight dio, blocks should be removed after IO
1962 	 * completion.
1963 	 */
1964 	inode_dio_wait(inode);
1965 
1966 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1967 		if (offset >= inode->i_size)
1968 			goto out;
1969 
1970 		ret = f2fs_punch_hole(inode, offset, len);
1971 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1972 		ret = f2fs_collapse_range(inode, offset, len);
1973 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1974 		ret = f2fs_zero_range(inode, offset, len, mode);
1975 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1976 		ret = f2fs_insert_range(inode, offset, len);
1977 	} else {
1978 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1979 	}
1980 
1981 	if (!ret) {
1982 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1983 		f2fs_mark_inode_dirty_sync(inode, false);
1984 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1985 	}
1986 
1987 out:
1988 	inode_unlock(inode);
1989 
1990 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1991 	return ret;
1992 }
1993 
1994 static int f2fs_release_file(struct inode *inode, struct file *filp)
1995 {
1996 	/*
1997 	 * f2fs_release_file is called at every close calls. So we should
1998 	 * not drop any inmemory pages by close called by other process.
1999 	 */
2000 	if (!(filp->f_mode & FMODE_WRITE) ||
2001 			atomic_read(&inode->i_writecount) != 1)
2002 		return 0;
2003 
2004 	inode_lock(inode);
2005 	f2fs_abort_atomic_write(inode, true);
2006 	inode_unlock(inode);
2007 
2008 	return 0;
2009 }
2010 
2011 static int f2fs_file_flush(struct file *file, fl_owner_t id)
2012 {
2013 	struct inode *inode = file_inode(file);
2014 
2015 	/*
2016 	 * If the process doing a transaction is crashed, we should do
2017 	 * roll-back. Otherwise, other reader/write can see corrupted database
2018 	 * until all the writers close its file. Since this should be done
2019 	 * before dropping file lock, it needs to do in ->flush.
2020 	 */
2021 	if (F2FS_I(inode)->atomic_write_task == current &&
2022 				(current->flags & PF_EXITING)) {
2023 		inode_lock(inode);
2024 		f2fs_abort_atomic_write(inode, true);
2025 		inode_unlock(inode);
2026 	}
2027 
2028 	return 0;
2029 }
2030 
2031 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
2032 {
2033 	struct f2fs_inode_info *fi = F2FS_I(inode);
2034 	u32 masked_flags = fi->i_flags & mask;
2035 
2036 	/* mask can be shrunk by flags_valid selector */
2037 	iflags &= mask;
2038 
2039 	/* Is it quota file? Do not allow user to mess with it */
2040 	if (IS_NOQUOTA(inode))
2041 		return -EPERM;
2042 
2043 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
2044 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
2045 			return -EOPNOTSUPP;
2046 		if (!f2fs_empty_dir(inode))
2047 			return -ENOTEMPTY;
2048 	}
2049 
2050 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
2051 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
2052 			return -EOPNOTSUPP;
2053 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
2054 			return -EINVAL;
2055 	}
2056 
2057 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
2058 		if (masked_flags & F2FS_COMPR_FL) {
2059 			if (!f2fs_disable_compressed_file(inode))
2060 				return -EINVAL;
2061 		} else {
2062 			/* try to convert inline_data to support compression */
2063 			int err = f2fs_convert_inline_inode(inode);
2064 			if (err)
2065 				return err;
2066 
2067 			f2fs_down_write(&fi->i_sem);
2068 			if (!f2fs_may_compress(inode) ||
2069 					(S_ISREG(inode->i_mode) &&
2070 					F2FS_HAS_BLOCKS(inode))) {
2071 				f2fs_up_write(&fi->i_sem);
2072 				return -EINVAL;
2073 			}
2074 			err = set_compress_context(inode);
2075 			f2fs_up_write(&fi->i_sem);
2076 
2077 			if (err)
2078 				return err;
2079 		}
2080 	}
2081 
2082 	fi->i_flags = iflags | (fi->i_flags & ~mask);
2083 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2084 					(fi->i_flags & F2FS_NOCOMP_FL));
2085 
2086 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
2087 		set_inode_flag(inode, FI_PROJ_INHERIT);
2088 	else
2089 		clear_inode_flag(inode, FI_PROJ_INHERIT);
2090 
2091 	inode_set_ctime_current(inode);
2092 	f2fs_set_inode_flags(inode);
2093 	f2fs_mark_inode_dirty_sync(inode, true);
2094 	return 0;
2095 }
2096 
2097 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2098 
2099 /*
2100  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2101  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2102  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
2103  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2104  *
2105  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2106  * FS_IOC_FSSETXATTR is done by the VFS.
2107  */
2108 
2109 static const struct {
2110 	u32 iflag;
2111 	u32 fsflag;
2112 } f2fs_fsflags_map[] = {
2113 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
2114 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
2115 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
2116 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
2117 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
2118 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
2119 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
2120 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
2121 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
2122 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
2123 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
2124 };
2125 
2126 #define F2FS_GETTABLE_FS_FL (		\
2127 		FS_COMPR_FL |		\
2128 		FS_SYNC_FL |		\
2129 		FS_IMMUTABLE_FL |	\
2130 		FS_APPEND_FL |		\
2131 		FS_NODUMP_FL |		\
2132 		FS_NOATIME_FL |		\
2133 		FS_NOCOMP_FL |		\
2134 		FS_INDEX_FL |		\
2135 		FS_DIRSYNC_FL |		\
2136 		FS_PROJINHERIT_FL |	\
2137 		FS_ENCRYPT_FL |		\
2138 		FS_INLINE_DATA_FL |	\
2139 		FS_NOCOW_FL |		\
2140 		FS_VERITY_FL |		\
2141 		FS_CASEFOLD_FL)
2142 
2143 #define F2FS_SETTABLE_FS_FL (		\
2144 		FS_COMPR_FL |		\
2145 		FS_SYNC_FL |		\
2146 		FS_IMMUTABLE_FL |	\
2147 		FS_APPEND_FL |		\
2148 		FS_NODUMP_FL |		\
2149 		FS_NOATIME_FL |		\
2150 		FS_NOCOMP_FL |		\
2151 		FS_DIRSYNC_FL |		\
2152 		FS_PROJINHERIT_FL |	\
2153 		FS_CASEFOLD_FL)
2154 
2155 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2156 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2157 {
2158 	u32 fsflags = 0;
2159 	int i;
2160 
2161 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2162 		if (iflags & f2fs_fsflags_map[i].iflag)
2163 			fsflags |= f2fs_fsflags_map[i].fsflag;
2164 
2165 	return fsflags;
2166 }
2167 
2168 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2169 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2170 {
2171 	u32 iflags = 0;
2172 	int i;
2173 
2174 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2175 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2176 			iflags |= f2fs_fsflags_map[i].iflag;
2177 
2178 	return iflags;
2179 }
2180 
2181 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2182 {
2183 	struct inode *inode = file_inode(filp);
2184 
2185 	return put_user(inode->i_generation, (int __user *)arg);
2186 }
2187 
2188 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2189 {
2190 	struct inode *inode = file_inode(filp);
2191 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2192 	struct f2fs_inode_info *fi = F2FS_I(inode);
2193 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2194 	loff_t isize;
2195 	int ret;
2196 
2197 	if (!(filp->f_mode & FMODE_WRITE))
2198 		return -EBADF;
2199 
2200 	if (!inode_owner_or_capable(idmap, inode))
2201 		return -EACCES;
2202 
2203 	if (!S_ISREG(inode->i_mode))
2204 		return -EINVAL;
2205 
2206 	if (filp->f_flags & O_DIRECT)
2207 		return -EINVAL;
2208 
2209 	ret = mnt_want_write_file(filp);
2210 	if (ret)
2211 		return ret;
2212 
2213 	inode_lock(inode);
2214 
2215 	if (!f2fs_disable_compressed_file(inode) ||
2216 			f2fs_is_pinned_file(inode)) {
2217 		ret = -EINVAL;
2218 		goto out;
2219 	}
2220 
2221 	if (f2fs_is_atomic_file(inode))
2222 		goto out;
2223 
2224 	ret = f2fs_convert_inline_inode(inode);
2225 	if (ret)
2226 		goto out;
2227 
2228 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2229 	f2fs_down_write(&fi->i_gc_rwsem[READ]);
2230 
2231 	/*
2232 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2233 	 * f2fs_is_atomic_file.
2234 	 */
2235 	if (get_dirty_pages(inode))
2236 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2237 			  inode->i_ino, get_dirty_pages(inode));
2238 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2239 	if (ret)
2240 		goto out_unlock;
2241 
2242 	/* Check if the inode already has a COW inode */
2243 	if (fi->cow_inode == NULL) {
2244 		/* Create a COW inode for atomic write */
2245 		struct dentry *dentry = file_dentry(filp);
2246 		struct inode *dir = d_inode(dentry->d_parent);
2247 
2248 		ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2249 		if (ret)
2250 			goto out_unlock;
2251 
2252 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2253 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2254 
2255 		/* Set the COW inode's atomic_inode to the atomic inode */
2256 		F2FS_I(fi->cow_inode)->atomic_inode = inode;
2257 	} else {
2258 		/* Reuse the already created COW inode */
2259 		f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2260 
2261 		invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2262 
2263 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2264 		if (ret)
2265 			goto out_unlock;
2266 	}
2267 
2268 	f2fs_write_inode(inode, NULL);
2269 
2270 	stat_inc_atomic_inode(inode);
2271 
2272 	set_inode_flag(inode, FI_ATOMIC_FILE);
2273 
2274 	isize = i_size_read(inode);
2275 	fi->original_i_size = isize;
2276 	if (truncate) {
2277 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2278 		truncate_inode_pages_final(inode->i_mapping);
2279 		f2fs_i_size_write(inode, 0);
2280 		isize = 0;
2281 	}
2282 	f2fs_i_size_write(fi->cow_inode, isize);
2283 
2284 out_unlock:
2285 	f2fs_up_write(&fi->i_gc_rwsem[READ]);
2286 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2287 	if (ret)
2288 		goto out;
2289 
2290 	f2fs_update_time(sbi, REQ_TIME);
2291 	fi->atomic_write_task = current;
2292 	stat_update_max_atomic_write(inode);
2293 	fi->atomic_write_cnt = 0;
2294 out:
2295 	inode_unlock(inode);
2296 	mnt_drop_write_file(filp);
2297 	return ret;
2298 }
2299 
2300 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2301 {
2302 	struct inode *inode = file_inode(filp);
2303 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2304 	int ret;
2305 
2306 	if (!(filp->f_mode & FMODE_WRITE))
2307 		return -EBADF;
2308 
2309 	if (!inode_owner_or_capable(idmap, inode))
2310 		return -EACCES;
2311 
2312 	ret = mnt_want_write_file(filp);
2313 	if (ret)
2314 		return ret;
2315 
2316 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2317 
2318 	inode_lock(inode);
2319 
2320 	if (f2fs_is_atomic_file(inode)) {
2321 		ret = f2fs_commit_atomic_write(inode);
2322 		if (!ret)
2323 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2324 
2325 		f2fs_abort_atomic_write(inode, ret);
2326 	} else {
2327 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2328 	}
2329 
2330 	inode_unlock(inode);
2331 	mnt_drop_write_file(filp);
2332 	return ret;
2333 }
2334 
2335 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2336 {
2337 	struct inode *inode = file_inode(filp);
2338 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2339 	int ret;
2340 
2341 	if (!(filp->f_mode & FMODE_WRITE))
2342 		return -EBADF;
2343 
2344 	if (!inode_owner_or_capable(idmap, inode))
2345 		return -EACCES;
2346 
2347 	ret = mnt_want_write_file(filp);
2348 	if (ret)
2349 		return ret;
2350 
2351 	inode_lock(inode);
2352 
2353 	f2fs_abort_atomic_write(inode, true);
2354 
2355 	inode_unlock(inode);
2356 
2357 	mnt_drop_write_file(filp);
2358 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2359 	return ret;
2360 }
2361 
2362 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2363 						bool readonly, bool need_lock)
2364 {
2365 	struct super_block *sb = sbi->sb;
2366 	int ret = 0;
2367 
2368 	switch (flag) {
2369 	case F2FS_GOING_DOWN_FULLSYNC:
2370 		ret = bdev_freeze(sb->s_bdev);
2371 		if (ret)
2372 			goto out;
2373 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2374 		bdev_thaw(sb->s_bdev);
2375 		break;
2376 	case F2FS_GOING_DOWN_METASYNC:
2377 		/* do checkpoint only */
2378 		ret = f2fs_sync_fs(sb, 1);
2379 		if (ret) {
2380 			if (ret == -EIO)
2381 				ret = 0;
2382 			goto out;
2383 		}
2384 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2385 		break;
2386 	case F2FS_GOING_DOWN_NOSYNC:
2387 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2388 		break;
2389 	case F2FS_GOING_DOWN_METAFLUSH:
2390 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2391 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2392 		break;
2393 	case F2FS_GOING_DOWN_NEED_FSCK:
2394 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2395 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2396 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2397 		/* do checkpoint only */
2398 		ret = f2fs_sync_fs(sb, 1);
2399 		if (ret == -EIO)
2400 			ret = 0;
2401 		goto out;
2402 	default:
2403 		ret = -EINVAL;
2404 		goto out;
2405 	}
2406 
2407 	if (readonly)
2408 		goto out;
2409 
2410 	/*
2411 	 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2412 	 * paths.
2413 	 */
2414 	if (need_lock)
2415 		down_write(&sbi->sb->s_umount);
2416 
2417 	f2fs_stop_gc_thread(sbi);
2418 	f2fs_stop_discard_thread(sbi);
2419 
2420 	f2fs_drop_discard_cmd(sbi);
2421 	clear_opt(sbi, DISCARD);
2422 
2423 	if (need_lock)
2424 		up_write(&sbi->sb->s_umount);
2425 
2426 	f2fs_update_time(sbi, REQ_TIME);
2427 out:
2428 
2429 	trace_f2fs_shutdown(sbi, flag, ret);
2430 
2431 	return ret;
2432 }
2433 
2434 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2435 {
2436 	struct inode *inode = file_inode(filp);
2437 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2438 	__u32 in;
2439 	int ret;
2440 	bool need_drop = false, readonly = false;
2441 
2442 	if (!capable(CAP_SYS_ADMIN))
2443 		return -EPERM;
2444 
2445 	if (get_user(in, (__u32 __user *)arg))
2446 		return -EFAULT;
2447 
2448 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2449 		ret = mnt_want_write_file(filp);
2450 		if (ret) {
2451 			if (ret != -EROFS)
2452 				return ret;
2453 
2454 			/* fallback to nosync shutdown for readonly fs */
2455 			in = F2FS_GOING_DOWN_NOSYNC;
2456 			readonly = true;
2457 		} else {
2458 			need_drop = true;
2459 		}
2460 	}
2461 
2462 	ret = f2fs_do_shutdown(sbi, in, readonly, true);
2463 
2464 	if (need_drop)
2465 		mnt_drop_write_file(filp);
2466 
2467 	return ret;
2468 }
2469 
2470 static int f2fs_keep_noreuse_range(struct inode *inode,
2471 				loff_t offset, loff_t len)
2472 {
2473 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2474 	u64 max_bytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2475 	u64 start, end;
2476 	int ret = 0;
2477 
2478 	if (!S_ISREG(inode->i_mode))
2479 		return 0;
2480 
2481 	if (offset >= max_bytes || len > max_bytes ||
2482 	    (offset + len) > max_bytes)
2483 		return 0;
2484 
2485 	start = offset >> PAGE_SHIFT;
2486 	end = DIV_ROUND_UP(offset + len, PAGE_SIZE);
2487 
2488 	inode_lock(inode);
2489 	if (f2fs_is_atomic_file(inode)) {
2490 		inode_unlock(inode);
2491 		return 0;
2492 	}
2493 
2494 	spin_lock(&sbi->inode_lock[DONATE_INODE]);
2495 	/* let's remove the range, if len = 0 */
2496 	if (!len) {
2497 		if (!list_empty(&F2FS_I(inode)->gdonate_list)) {
2498 			list_del_init(&F2FS_I(inode)->gdonate_list);
2499 			sbi->donate_files--;
2500 			if (is_inode_flag_set(inode, FI_DONATE_FINISHED))
2501 				ret = -EALREADY;
2502 			else
2503 				set_inode_flag(inode, FI_DONATE_FINISHED);
2504 		} else
2505 			ret = -ENOENT;
2506 	} else {
2507 		if (list_empty(&F2FS_I(inode)->gdonate_list)) {
2508 			list_add_tail(&F2FS_I(inode)->gdonate_list,
2509 					&sbi->inode_list[DONATE_INODE]);
2510 			sbi->donate_files++;
2511 		} else {
2512 			list_move_tail(&F2FS_I(inode)->gdonate_list,
2513 					&sbi->inode_list[DONATE_INODE]);
2514 		}
2515 		F2FS_I(inode)->donate_start = start;
2516 		F2FS_I(inode)->donate_end = end - 1;
2517 		clear_inode_flag(inode, FI_DONATE_FINISHED);
2518 	}
2519 	spin_unlock(&sbi->inode_lock[DONATE_INODE]);
2520 	inode_unlock(inode);
2521 
2522 	return ret;
2523 }
2524 
2525 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2526 {
2527 	struct inode *inode = file_inode(filp);
2528 	struct super_block *sb = inode->i_sb;
2529 	struct fstrim_range range;
2530 	int ret;
2531 
2532 	if (!capable(CAP_SYS_ADMIN))
2533 		return -EPERM;
2534 
2535 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2536 		return -EOPNOTSUPP;
2537 
2538 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2539 				sizeof(range)))
2540 		return -EFAULT;
2541 
2542 	ret = mnt_want_write_file(filp);
2543 	if (ret)
2544 		return ret;
2545 
2546 	range.minlen = max((unsigned int)range.minlen,
2547 			   bdev_discard_granularity(sb->s_bdev));
2548 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2549 	mnt_drop_write_file(filp);
2550 	if (ret < 0)
2551 		return ret;
2552 
2553 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2554 				sizeof(range)))
2555 		return -EFAULT;
2556 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2557 	return 0;
2558 }
2559 
2560 static bool uuid_is_nonzero(__u8 u[16])
2561 {
2562 	int i;
2563 
2564 	for (i = 0; i < 16; i++)
2565 		if (u[i])
2566 			return true;
2567 	return false;
2568 }
2569 
2570 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2571 {
2572 	struct inode *inode = file_inode(filp);
2573 	int ret;
2574 
2575 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2576 		return -EOPNOTSUPP;
2577 
2578 	ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2579 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2580 	return ret;
2581 }
2582 
2583 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2584 {
2585 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2586 		return -EOPNOTSUPP;
2587 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2588 }
2589 
2590 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2591 {
2592 	struct inode *inode = file_inode(filp);
2593 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2594 	u8 encrypt_pw_salt[16];
2595 	int err;
2596 
2597 	if (!f2fs_sb_has_encrypt(sbi))
2598 		return -EOPNOTSUPP;
2599 
2600 	err = mnt_want_write_file(filp);
2601 	if (err)
2602 		return err;
2603 
2604 	f2fs_down_write(&sbi->sb_lock);
2605 
2606 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2607 		goto got_it;
2608 
2609 	/* update superblock with uuid */
2610 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2611 
2612 	err = f2fs_commit_super(sbi, false);
2613 	if (err) {
2614 		/* undo new data */
2615 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2616 		goto out_err;
2617 	}
2618 got_it:
2619 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2620 out_err:
2621 	f2fs_up_write(&sbi->sb_lock);
2622 	mnt_drop_write_file(filp);
2623 
2624 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2625 		err = -EFAULT;
2626 
2627 	return err;
2628 }
2629 
2630 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2631 					     unsigned long arg)
2632 {
2633 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2634 		return -EOPNOTSUPP;
2635 
2636 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2637 }
2638 
2639 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2640 {
2641 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2642 		return -EOPNOTSUPP;
2643 
2644 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2645 }
2646 
2647 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2648 {
2649 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2650 		return -EOPNOTSUPP;
2651 
2652 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2653 }
2654 
2655 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2656 						    unsigned long arg)
2657 {
2658 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2659 		return -EOPNOTSUPP;
2660 
2661 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2662 }
2663 
2664 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2665 					      unsigned long arg)
2666 {
2667 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2668 		return -EOPNOTSUPP;
2669 
2670 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2671 }
2672 
2673 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2674 {
2675 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2676 		return -EOPNOTSUPP;
2677 
2678 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2679 }
2680 
2681 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2682 {
2683 	struct inode *inode = file_inode(filp);
2684 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2685 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2686 			.no_bg_gc = false,
2687 			.should_migrate_blocks = false,
2688 			.nr_free_secs = 0 };
2689 	__u32 sync;
2690 	int ret;
2691 
2692 	if (!capable(CAP_SYS_ADMIN))
2693 		return -EPERM;
2694 
2695 	if (get_user(sync, (__u32 __user *)arg))
2696 		return -EFAULT;
2697 
2698 	if (f2fs_readonly(sbi->sb))
2699 		return -EROFS;
2700 
2701 	ret = mnt_want_write_file(filp);
2702 	if (ret)
2703 		return ret;
2704 
2705 	if (!sync) {
2706 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2707 			ret = -EBUSY;
2708 			goto out;
2709 		}
2710 	} else {
2711 		f2fs_down_write(&sbi->gc_lock);
2712 	}
2713 
2714 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2715 	gc_control.err_gc_skipped = sync;
2716 	stat_inc_gc_call_count(sbi, FOREGROUND);
2717 	ret = f2fs_gc(sbi, &gc_control);
2718 out:
2719 	mnt_drop_write_file(filp);
2720 	return ret;
2721 }
2722 
2723 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2724 {
2725 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2726 	struct f2fs_gc_control gc_control = {
2727 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2728 			.no_bg_gc = false,
2729 			.should_migrate_blocks = false,
2730 			.err_gc_skipped = range->sync,
2731 			.nr_free_secs = 0 };
2732 	u64 end;
2733 	int ret;
2734 
2735 	if (!capable(CAP_SYS_ADMIN))
2736 		return -EPERM;
2737 	if (f2fs_readonly(sbi->sb))
2738 		return -EROFS;
2739 
2740 	end = range->start + range->len;
2741 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2742 					end >= MAX_BLKADDR(sbi))
2743 		return -EINVAL;
2744 
2745 	ret = mnt_want_write_file(filp);
2746 	if (ret)
2747 		return ret;
2748 
2749 do_more:
2750 	if (!range->sync) {
2751 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2752 			ret = -EBUSY;
2753 			goto out;
2754 		}
2755 	} else {
2756 		f2fs_down_write(&sbi->gc_lock);
2757 	}
2758 
2759 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2760 	stat_inc_gc_call_count(sbi, FOREGROUND);
2761 	ret = f2fs_gc(sbi, &gc_control);
2762 	if (ret) {
2763 		if (ret == -EBUSY)
2764 			ret = -EAGAIN;
2765 		goto out;
2766 	}
2767 	range->start += CAP_BLKS_PER_SEC(sbi);
2768 	if (range->start <= end)
2769 		goto do_more;
2770 out:
2771 	mnt_drop_write_file(filp);
2772 	return ret;
2773 }
2774 
2775 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2776 {
2777 	struct f2fs_gc_range range;
2778 
2779 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2780 							sizeof(range)))
2781 		return -EFAULT;
2782 	return __f2fs_ioc_gc_range(filp, &range);
2783 }
2784 
2785 static int f2fs_ioc_write_checkpoint(struct file *filp)
2786 {
2787 	struct inode *inode = file_inode(filp);
2788 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2789 	int ret;
2790 
2791 	if (!capable(CAP_SYS_ADMIN))
2792 		return -EPERM;
2793 
2794 	if (f2fs_readonly(sbi->sb))
2795 		return -EROFS;
2796 
2797 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2798 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2799 		return -EINVAL;
2800 	}
2801 
2802 	ret = mnt_want_write_file(filp);
2803 	if (ret)
2804 		return ret;
2805 
2806 	ret = f2fs_sync_fs(sbi->sb, 1);
2807 
2808 	mnt_drop_write_file(filp);
2809 	return ret;
2810 }
2811 
2812 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2813 					struct file *filp,
2814 					struct f2fs_defragment *range)
2815 {
2816 	struct inode *inode = file_inode(filp);
2817 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2818 					.m_seg_type = NO_CHECK_TYPE,
2819 					.m_may_create = false };
2820 	struct extent_info ei = {};
2821 	pgoff_t pg_start, pg_end, next_pgofs;
2822 	unsigned int total = 0, sec_num;
2823 	block_t blk_end = 0;
2824 	bool fragmented = false;
2825 	int err;
2826 
2827 	f2fs_balance_fs(sbi, true);
2828 
2829 	inode_lock(inode);
2830 	pg_start = range->start >> PAGE_SHIFT;
2831 	pg_end = min_t(pgoff_t,
2832 				(range->start + range->len) >> PAGE_SHIFT,
2833 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2834 
2835 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2836 		f2fs_is_atomic_file(inode)) {
2837 		err = -EINVAL;
2838 		goto unlock_out;
2839 	}
2840 
2841 	/* if in-place-update policy is enabled, don't waste time here */
2842 	set_inode_flag(inode, FI_OPU_WRITE);
2843 	if (f2fs_should_update_inplace(inode, NULL)) {
2844 		err = -EINVAL;
2845 		goto out;
2846 	}
2847 
2848 	/* writeback all dirty pages in the range */
2849 	err = filemap_write_and_wait_range(inode->i_mapping,
2850 						pg_start << PAGE_SHIFT,
2851 						(pg_end << PAGE_SHIFT) - 1);
2852 	if (err)
2853 		goto out;
2854 
2855 	/*
2856 	 * lookup mapping info in extent cache, skip defragmenting if physical
2857 	 * block addresses are continuous.
2858 	 */
2859 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2860 		if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2861 			goto out;
2862 	}
2863 
2864 	map.m_lblk = pg_start;
2865 	map.m_next_pgofs = &next_pgofs;
2866 
2867 	/*
2868 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2869 	 * physical block addresses are continuous even if there are hole(s)
2870 	 * in logical blocks.
2871 	 */
2872 	while (map.m_lblk < pg_end) {
2873 		map.m_len = pg_end - map.m_lblk;
2874 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2875 		if (err)
2876 			goto out;
2877 
2878 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2879 			map.m_lblk = next_pgofs;
2880 			continue;
2881 		}
2882 
2883 		if (blk_end && blk_end != map.m_pblk)
2884 			fragmented = true;
2885 
2886 		/* record total count of block that we're going to move */
2887 		total += map.m_len;
2888 
2889 		blk_end = map.m_pblk + map.m_len;
2890 
2891 		map.m_lblk += map.m_len;
2892 	}
2893 
2894 	if (!fragmented) {
2895 		total = 0;
2896 		goto out;
2897 	}
2898 
2899 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2900 
2901 	/*
2902 	 * make sure there are enough free section for LFS allocation, this can
2903 	 * avoid defragment running in SSR mode when free section are allocated
2904 	 * intensively
2905 	 */
2906 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2907 		err = -EAGAIN;
2908 		goto out;
2909 	}
2910 
2911 	map.m_lblk = pg_start;
2912 	map.m_len = pg_end - pg_start;
2913 	total = 0;
2914 
2915 	while (map.m_lblk < pg_end) {
2916 		pgoff_t idx;
2917 		int cnt = 0;
2918 
2919 do_map:
2920 		map.m_len = pg_end - map.m_lblk;
2921 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2922 		if (err)
2923 			goto clear_out;
2924 
2925 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2926 			map.m_lblk = next_pgofs;
2927 			goto check;
2928 		}
2929 
2930 		set_inode_flag(inode, FI_SKIP_WRITES);
2931 
2932 		idx = map.m_lblk;
2933 		while (idx < map.m_lblk + map.m_len &&
2934 						cnt < BLKS_PER_SEG(sbi)) {
2935 			struct folio *folio;
2936 
2937 			folio = f2fs_get_lock_data_folio(inode, idx, true);
2938 			if (IS_ERR(folio)) {
2939 				err = PTR_ERR(folio);
2940 				goto clear_out;
2941 			}
2942 
2943 			f2fs_folio_wait_writeback(folio, DATA, true, true);
2944 
2945 			folio_mark_dirty(folio);
2946 			set_page_private_gcing(&folio->page);
2947 			f2fs_folio_put(folio, true);
2948 
2949 			idx++;
2950 			cnt++;
2951 			total++;
2952 		}
2953 
2954 		map.m_lblk = idx;
2955 check:
2956 		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2957 			goto do_map;
2958 
2959 		clear_inode_flag(inode, FI_SKIP_WRITES);
2960 
2961 		err = filemap_fdatawrite(inode->i_mapping);
2962 		if (err)
2963 			goto out;
2964 	}
2965 clear_out:
2966 	clear_inode_flag(inode, FI_SKIP_WRITES);
2967 out:
2968 	clear_inode_flag(inode, FI_OPU_WRITE);
2969 unlock_out:
2970 	inode_unlock(inode);
2971 	if (!err)
2972 		range->len = (u64)total << PAGE_SHIFT;
2973 	return err;
2974 }
2975 
2976 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2977 {
2978 	struct inode *inode = file_inode(filp);
2979 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2980 	struct f2fs_defragment range;
2981 	int err;
2982 
2983 	if (!capable(CAP_SYS_ADMIN))
2984 		return -EPERM;
2985 
2986 	if (!S_ISREG(inode->i_mode))
2987 		return -EINVAL;
2988 
2989 	if (f2fs_readonly(sbi->sb))
2990 		return -EROFS;
2991 
2992 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2993 							sizeof(range)))
2994 		return -EFAULT;
2995 
2996 	/* verify alignment of offset & size */
2997 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2998 		return -EINVAL;
2999 
3000 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
3001 					max_file_blocks(inode)))
3002 		return -EINVAL;
3003 
3004 	err = mnt_want_write_file(filp);
3005 	if (err)
3006 		return err;
3007 
3008 	err = f2fs_defragment_range(sbi, filp, &range);
3009 	mnt_drop_write_file(filp);
3010 
3011 	if (range.len)
3012 		f2fs_update_time(sbi, REQ_TIME);
3013 	if (err < 0)
3014 		return err;
3015 
3016 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
3017 							sizeof(range)))
3018 		return -EFAULT;
3019 
3020 	return 0;
3021 }
3022 
3023 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
3024 			struct file *file_out, loff_t pos_out, size_t len)
3025 {
3026 	struct inode *src = file_inode(file_in);
3027 	struct inode *dst = file_inode(file_out);
3028 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
3029 	size_t olen = len, dst_max_i_size = 0;
3030 	size_t dst_osize;
3031 	int ret;
3032 
3033 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
3034 				src->i_sb != dst->i_sb)
3035 		return -EXDEV;
3036 
3037 	if (unlikely(f2fs_readonly(src->i_sb)))
3038 		return -EROFS;
3039 
3040 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
3041 		return -EINVAL;
3042 
3043 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
3044 		return -EOPNOTSUPP;
3045 
3046 	if (pos_out < 0 || pos_in < 0)
3047 		return -EINVAL;
3048 
3049 	if (src == dst) {
3050 		if (pos_in == pos_out)
3051 			return 0;
3052 		if (pos_out > pos_in && pos_out < pos_in + len)
3053 			return -EINVAL;
3054 	}
3055 
3056 	inode_lock(src);
3057 	if (src != dst) {
3058 		ret = -EBUSY;
3059 		if (!inode_trylock(dst))
3060 			goto out;
3061 	}
3062 
3063 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
3064 		f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
3065 		ret = -EOPNOTSUPP;
3066 		goto out_unlock;
3067 	}
3068 
3069 	if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
3070 		ret = -EINVAL;
3071 		goto out_unlock;
3072 	}
3073 
3074 	ret = -EINVAL;
3075 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
3076 		goto out_unlock;
3077 	if (len == 0)
3078 		olen = len = src->i_size - pos_in;
3079 	if (pos_in + len == src->i_size)
3080 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
3081 	if (len == 0) {
3082 		ret = 0;
3083 		goto out_unlock;
3084 	}
3085 
3086 	dst_osize = dst->i_size;
3087 	if (pos_out + olen > dst->i_size)
3088 		dst_max_i_size = pos_out + olen;
3089 
3090 	/* verify the end result is block aligned */
3091 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
3092 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
3093 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
3094 		goto out_unlock;
3095 
3096 	ret = f2fs_convert_inline_inode(src);
3097 	if (ret)
3098 		goto out_unlock;
3099 
3100 	ret = f2fs_convert_inline_inode(dst);
3101 	if (ret)
3102 		goto out_unlock;
3103 
3104 	/* write out all dirty pages from offset */
3105 	ret = filemap_write_and_wait_range(src->i_mapping,
3106 					pos_in, pos_in + len);
3107 	if (ret)
3108 		goto out_unlock;
3109 
3110 	ret = filemap_write_and_wait_range(dst->i_mapping,
3111 					pos_out, pos_out + len);
3112 	if (ret)
3113 		goto out_unlock;
3114 
3115 	f2fs_balance_fs(sbi, true);
3116 
3117 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3118 	if (src != dst) {
3119 		ret = -EBUSY;
3120 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
3121 			goto out_src;
3122 	}
3123 
3124 	f2fs_lock_op(sbi);
3125 	ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in),
3126 				F2FS_BYTES_TO_BLK(pos_out),
3127 				F2FS_BYTES_TO_BLK(len), false);
3128 
3129 	if (!ret) {
3130 		if (dst_max_i_size)
3131 			f2fs_i_size_write(dst, dst_max_i_size);
3132 		else if (dst_osize != dst->i_size)
3133 			f2fs_i_size_write(dst, dst_osize);
3134 	}
3135 	f2fs_unlock_op(sbi);
3136 
3137 	if (src != dst)
3138 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
3139 out_src:
3140 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3141 	if (ret)
3142 		goto out_unlock;
3143 
3144 	inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
3145 	f2fs_mark_inode_dirty_sync(src, false);
3146 	if (src != dst) {
3147 		inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
3148 		f2fs_mark_inode_dirty_sync(dst, false);
3149 	}
3150 	f2fs_update_time(sbi, REQ_TIME);
3151 
3152 out_unlock:
3153 	if (src != dst)
3154 		inode_unlock(dst);
3155 out:
3156 	inode_unlock(src);
3157 	return ret;
3158 }
3159 
3160 static int __f2fs_ioc_move_range(struct file *filp,
3161 				struct f2fs_move_range *range)
3162 {
3163 	int err;
3164 
3165 	if (!(filp->f_mode & FMODE_READ) ||
3166 			!(filp->f_mode & FMODE_WRITE))
3167 		return -EBADF;
3168 
3169 	CLASS(fd, dst)(range->dst_fd);
3170 	if (fd_empty(dst))
3171 		return -EBADF;
3172 
3173 	if (!(fd_file(dst)->f_mode & FMODE_WRITE))
3174 		return -EBADF;
3175 
3176 	err = mnt_want_write_file(filp);
3177 	if (err)
3178 		return err;
3179 
3180 	err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst),
3181 					range->pos_out, range->len);
3182 
3183 	mnt_drop_write_file(filp);
3184 	return err;
3185 }
3186 
3187 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3188 {
3189 	struct f2fs_move_range range;
3190 
3191 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3192 							sizeof(range)))
3193 		return -EFAULT;
3194 	return __f2fs_ioc_move_range(filp, &range);
3195 }
3196 
3197 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3198 {
3199 	struct inode *inode = file_inode(filp);
3200 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3201 	struct sit_info *sm = SIT_I(sbi);
3202 	unsigned int start_segno = 0, end_segno = 0;
3203 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
3204 	struct f2fs_flush_device range;
3205 	struct f2fs_gc_control gc_control = {
3206 			.init_gc_type = FG_GC,
3207 			.should_migrate_blocks = true,
3208 			.err_gc_skipped = true,
3209 			.nr_free_secs = 0 };
3210 	int ret;
3211 
3212 	if (!capable(CAP_SYS_ADMIN))
3213 		return -EPERM;
3214 
3215 	if (f2fs_readonly(sbi->sb))
3216 		return -EROFS;
3217 
3218 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3219 		return -EINVAL;
3220 
3221 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3222 							sizeof(range)))
3223 		return -EFAULT;
3224 
3225 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3226 			__is_large_section(sbi)) {
3227 		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3228 			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3229 		return -EINVAL;
3230 	}
3231 
3232 	ret = mnt_want_write_file(filp);
3233 	if (ret)
3234 		return ret;
3235 
3236 	if (range.dev_num != 0)
3237 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3238 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3239 
3240 	start_segno = sm->last_victim[FLUSH_DEVICE];
3241 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3242 		start_segno = dev_start_segno;
3243 	end_segno = min(start_segno + range.segments, dev_end_segno);
3244 
3245 	while (start_segno < end_segno) {
3246 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3247 			ret = -EBUSY;
3248 			goto out;
3249 		}
3250 		sm->last_victim[GC_CB] = end_segno + 1;
3251 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3252 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3253 
3254 		gc_control.victim_segno = start_segno;
3255 		stat_inc_gc_call_count(sbi, FOREGROUND);
3256 		ret = f2fs_gc(sbi, &gc_control);
3257 		if (ret == -EAGAIN)
3258 			ret = 0;
3259 		else if (ret < 0)
3260 			break;
3261 		start_segno++;
3262 	}
3263 out:
3264 	mnt_drop_write_file(filp);
3265 	return ret;
3266 }
3267 
3268 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3269 {
3270 	struct inode *inode = file_inode(filp);
3271 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3272 
3273 	/* Must validate to set it with SQLite behavior in Android. */
3274 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3275 
3276 	return put_user(sb_feature, (u32 __user *)arg);
3277 }
3278 
3279 #ifdef CONFIG_QUOTA
3280 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3281 {
3282 	struct dquot *transfer_to[MAXQUOTAS] = {};
3283 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3284 	struct super_block *sb = sbi->sb;
3285 	int err;
3286 
3287 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3288 	if (IS_ERR(transfer_to[PRJQUOTA]))
3289 		return PTR_ERR(transfer_to[PRJQUOTA]);
3290 
3291 	err = __dquot_transfer(inode, transfer_to);
3292 	if (err)
3293 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3294 	dqput(transfer_to[PRJQUOTA]);
3295 	return err;
3296 }
3297 
3298 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3299 {
3300 	struct f2fs_inode_info *fi = F2FS_I(inode);
3301 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3302 	struct f2fs_inode *ri = NULL;
3303 	kprojid_t kprojid;
3304 	int err;
3305 
3306 	if (!f2fs_sb_has_project_quota(sbi)) {
3307 		if (projid != F2FS_DEF_PROJID)
3308 			return -EOPNOTSUPP;
3309 		else
3310 			return 0;
3311 	}
3312 
3313 	if (!f2fs_has_extra_attr(inode))
3314 		return -EOPNOTSUPP;
3315 
3316 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3317 
3318 	if (projid_eq(kprojid, fi->i_projid))
3319 		return 0;
3320 
3321 	err = -EPERM;
3322 	/* Is it quota file? Do not allow user to mess with it */
3323 	if (IS_NOQUOTA(inode))
3324 		return err;
3325 
3326 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3327 		return -EOVERFLOW;
3328 
3329 	err = f2fs_dquot_initialize(inode);
3330 	if (err)
3331 		return err;
3332 
3333 	f2fs_lock_op(sbi);
3334 	err = f2fs_transfer_project_quota(inode, kprojid);
3335 	if (err)
3336 		goto out_unlock;
3337 
3338 	fi->i_projid = kprojid;
3339 	inode_set_ctime_current(inode);
3340 	f2fs_mark_inode_dirty_sync(inode, true);
3341 out_unlock:
3342 	f2fs_unlock_op(sbi);
3343 	return err;
3344 }
3345 #else
3346 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3347 {
3348 	return 0;
3349 }
3350 
3351 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3352 {
3353 	if (projid != F2FS_DEF_PROJID)
3354 		return -EOPNOTSUPP;
3355 	return 0;
3356 }
3357 #endif
3358 
3359 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3360 {
3361 	struct inode *inode = d_inode(dentry);
3362 	struct f2fs_inode_info *fi = F2FS_I(inode);
3363 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3364 
3365 	if (IS_ENCRYPTED(inode))
3366 		fsflags |= FS_ENCRYPT_FL;
3367 	if (IS_VERITY(inode))
3368 		fsflags |= FS_VERITY_FL;
3369 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3370 		fsflags |= FS_INLINE_DATA_FL;
3371 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3372 		fsflags |= FS_NOCOW_FL;
3373 
3374 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3375 
3376 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3377 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3378 
3379 	return 0;
3380 }
3381 
3382 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3383 		      struct dentry *dentry, struct fileattr *fa)
3384 {
3385 	struct inode *inode = d_inode(dentry);
3386 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3387 	u32 iflags;
3388 	int err;
3389 
3390 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3391 		return -EIO;
3392 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3393 		return -ENOSPC;
3394 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3395 		return -EOPNOTSUPP;
3396 	fsflags &= F2FS_SETTABLE_FS_FL;
3397 	if (!fa->flags_valid)
3398 		mask &= FS_COMMON_FL;
3399 
3400 	iflags = f2fs_fsflags_to_iflags(fsflags);
3401 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3402 		return -EOPNOTSUPP;
3403 
3404 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3405 	if (!err)
3406 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3407 
3408 	return err;
3409 }
3410 
3411 int f2fs_pin_file_control(struct inode *inode, bool inc)
3412 {
3413 	struct f2fs_inode_info *fi = F2FS_I(inode);
3414 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3415 
3416 	if (IS_DEVICE_ALIASING(inode))
3417 		return -EINVAL;
3418 
3419 	if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3420 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3421 			  __func__, inode->i_ino, fi->i_gc_failures);
3422 		clear_inode_flag(inode, FI_PIN_FILE);
3423 		return -EAGAIN;
3424 	}
3425 
3426 	/* Use i_gc_failures for normal file as a risk signal. */
3427 	if (inc)
3428 		f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3429 
3430 	return 0;
3431 }
3432 
3433 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3434 {
3435 	struct inode *inode = file_inode(filp);
3436 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3437 	__u32 pin;
3438 	int ret = 0;
3439 
3440 	if (get_user(pin, (__u32 __user *)arg))
3441 		return -EFAULT;
3442 
3443 	if (!S_ISREG(inode->i_mode))
3444 		return -EINVAL;
3445 
3446 	if (f2fs_readonly(sbi->sb))
3447 		return -EROFS;
3448 
3449 	if (!pin && IS_DEVICE_ALIASING(inode))
3450 		return -EOPNOTSUPP;
3451 
3452 	ret = mnt_want_write_file(filp);
3453 	if (ret)
3454 		return ret;
3455 
3456 	inode_lock(inode);
3457 
3458 	if (f2fs_is_atomic_file(inode)) {
3459 		ret = -EINVAL;
3460 		goto out;
3461 	}
3462 
3463 	if (!pin) {
3464 		clear_inode_flag(inode, FI_PIN_FILE);
3465 		f2fs_i_gc_failures_write(inode, 0);
3466 		goto done;
3467 	} else if (f2fs_is_pinned_file(inode)) {
3468 		goto done;
3469 	}
3470 
3471 	if (F2FS_HAS_BLOCKS(inode)) {
3472 		ret = -EFBIG;
3473 		goto out;
3474 	}
3475 
3476 	/* Let's allow file pinning on zoned device. */
3477 	if (!f2fs_sb_has_blkzoned(sbi) &&
3478 	    f2fs_should_update_outplace(inode, NULL)) {
3479 		ret = -EINVAL;
3480 		goto out;
3481 	}
3482 
3483 	if (f2fs_pin_file_control(inode, false)) {
3484 		ret = -EAGAIN;
3485 		goto out;
3486 	}
3487 
3488 	ret = f2fs_convert_inline_inode(inode);
3489 	if (ret)
3490 		goto out;
3491 
3492 	if (!f2fs_disable_compressed_file(inode)) {
3493 		ret = -EOPNOTSUPP;
3494 		goto out;
3495 	}
3496 
3497 	set_inode_flag(inode, FI_PIN_FILE);
3498 	ret = F2FS_I(inode)->i_gc_failures;
3499 done:
3500 	f2fs_update_time(sbi, REQ_TIME);
3501 out:
3502 	inode_unlock(inode);
3503 	mnt_drop_write_file(filp);
3504 	return ret;
3505 }
3506 
3507 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3508 {
3509 	struct inode *inode = file_inode(filp);
3510 	__u32 pin = 0;
3511 
3512 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3513 		pin = F2FS_I(inode)->i_gc_failures;
3514 	return put_user(pin, (u32 __user *)arg);
3515 }
3516 
3517 static int f2fs_ioc_get_dev_alias_file(struct file *filp, unsigned long arg)
3518 {
3519 	return put_user(IS_DEVICE_ALIASING(file_inode(filp)) ? 1 : 0,
3520 			(u32 __user *)arg);
3521 }
3522 
3523 static int f2fs_ioc_io_prio(struct file *filp, unsigned long arg)
3524 {
3525 	struct inode *inode = file_inode(filp);
3526 	__u32 level;
3527 
3528 	if (get_user(level, (__u32 __user *)arg))
3529 		return -EFAULT;
3530 
3531 	if (!S_ISREG(inode->i_mode) || level >= F2FS_IOPRIO_MAX)
3532 		return -EINVAL;
3533 
3534 	inode_lock(inode);
3535 	F2FS_I(inode)->ioprio_hint = level;
3536 	inode_unlock(inode);
3537 	return 0;
3538 }
3539 
3540 int f2fs_precache_extents(struct inode *inode)
3541 {
3542 	struct f2fs_inode_info *fi = F2FS_I(inode);
3543 	struct f2fs_map_blocks map;
3544 	pgoff_t m_next_extent;
3545 	loff_t end;
3546 	int err;
3547 
3548 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3549 		return -EOPNOTSUPP;
3550 
3551 	map.m_lblk = 0;
3552 	map.m_pblk = 0;
3553 	map.m_next_pgofs = NULL;
3554 	map.m_next_extent = &m_next_extent;
3555 	map.m_seg_type = NO_CHECK_TYPE;
3556 	map.m_may_create = false;
3557 	end = F2FS_BLK_ALIGN(i_size_read(inode));
3558 
3559 	while (map.m_lblk < end) {
3560 		map.m_len = end - map.m_lblk;
3561 
3562 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3563 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3564 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3565 		if (err || !map.m_len)
3566 			return err;
3567 
3568 		map.m_lblk = m_next_extent;
3569 	}
3570 
3571 	return 0;
3572 }
3573 
3574 static int f2fs_ioc_precache_extents(struct file *filp)
3575 {
3576 	return f2fs_precache_extents(file_inode(filp));
3577 }
3578 
3579 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3580 {
3581 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3582 	__u64 block_count;
3583 
3584 	if (!capable(CAP_SYS_ADMIN))
3585 		return -EPERM;
3586 
3587 	if (f2fs_readonly(sbi->sb))
3588 		return -EROFS;
3589 
3590 	if (copy_from_user(&block_count, (void __user *)arg,
3591 			   sizeof(block_count)))
3592 		return -EFAULT;
3593 
3594 	return f2fs_resize_fs(filp, block_count);
3595 }
3596 
3597 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3598 {
3599 	struct inode *inode = file_inode(filp);
3600 
3601 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3602 
3603 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3604 		f2fs_warn(F2FS_I_SB(inode),
3605 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3606 			  inode->i_ino);
3607 		return -EOPNOTSUPP;
3608 	}
3609 
3610 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3611 }
3612 
3613 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3614 {
3615 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3616 		return -EOPNOTSUPP;
3617 
3618 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3619 }
3620 
3621 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3622 {
3623 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3624 		return -EOPNOTSUPP;
3625 
3626 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3627 }
3628 
3629 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3630 {
3631 	struct inode *inode = file_inode(filp);
3632 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3633 	char *vbuf;
3634 	int count;
3635 	int err = 0;
3636 
3637 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3638 	if (!vbuf)
3639 		return -ENOMEM;
3640 
3641 	f2fs_down_read(&sbi->sb_lock);
3642 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3643 			ARRAY_SIZE(sbi->raw_super->volume_name),
3644 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3645 	f2fs_up_read(&sbi->sb_lock);
3646 
3647 	if (copy_to_user((char __user *)arg, vbuf,
3648 				min(FSLABEL_MAX, count)))
3649 		err = -EFAULT;
3650 
3651 	kfree(vbuf);
3652 	return err;
3653 }
3654 
3655 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3656 {
3657 	struct inode *inode = file_inode(filp);
3658 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3659 	char *vbuf;
3660 	int err = 0;
3661 
3662 	if (!capable(CAP_SYS_ADMIN))
3663 		return -EPERM;
3664 
3665 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3666 	if (IS_ERR(vbuf))
3667 		return PTR_ERR(vbuf);
3668 
3669 	err = mnt_want_write_file(filp);
3670 	if (err)
3671 		goto out;
3672 
3673 	f2fs_down_write(&sbi->sb_lock);
3674 
3675 	memset(sbi->raw_super->volume_name, 0,
3676 			sizeof(sbi->raw_super->volume_name));
3677 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3678 			sbi->raw_super->volume_name,
3679 			ARRAY_SIZE(sbi->raw_super->volume_name));
3680 
3681 	err = f2fs_commit_super(sbi, false);
3682 
3683 	f2fs_up_write(&sbi->sb_lock);
3684 
3685 	mnt_drop_write_file(filp);
3686 out:
3687 	kfree(vbuf);
3688 	return err;
3689 }
3690 
3691 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3692 {
3693 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3694 		return -EOPNOTSUPP;
3695 
3696 	if (!f2fs_compressed_file(inode))
3697 		return -EINVAL;
3698 
3699 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3700 
3701 	return 0;
3702 }
3703 
3704 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3705 {
3706 	struct inode *inode = file_inode(filp);
3707 	__u64 blocks;
3708 	int ret;
3709 
3710 	ret = f2fs_get_compress_blocks(inode, &blocks);
3711 	if (ret < 0)
3712 		return ret;
3713 
3714 	return put_user(blocks, (u64 __user *)arg);
3715 }
3716 
3717 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3718 {
3719 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3720 	unsigned int released_blocks = 0;
3721 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3722 	block_t blkaddr;
3723 	int i;
3724 
3725 	for (i = 0; i < count; i++) {
3726 		blkaddr = data_blkaddr(dn->inode, dn->node_folio,
3727 						dn->ofs_in_node + i);
3728 
3729 		if (!__is_valid_data_blkaddr(blkaddr))
3730 			continue;
3731 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3732 					DATA_GENERIC_ENHANCE)))
3733 			return -EFSCORRUPTED;
3734 	}
3735 
3736 	while (count) {
3737 		int compr_blocks = 0;
3738 
3739 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3740 			blkaddr = f2fs_data_blkaddr(dn);
3741 
3742 			if (i == 0) {
3743 				if (blkaddr == COMPRESS_ADDR)
3744 					continue;
3745 				dn->ofs_in_node += cluster_size;
3746 				goto next;
3747 			}
3748 
3749 			if (__is_valid_data_blkaddr(blkaddr))
3750 				compr_blocks++;
3751 
3752 			if (blkaddr != NEW_ADDR)
3753 				continue;
3754 
3755 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3756 		}
3757 
3758 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3759 		dec_valid_block_count(sbi, dn->inode,
3760 					cluster_size - compr_blocks);
3761 
3762 		released_blocks += cluster_size - compr_blocks;
3763 next:
3764 		count -= cluster_size;
3765 	}
3766 
3767 	return released_blocks;
3768 }
3769 
3770 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3771 {
3772 	struct inode *inode = file_inode(filp);
3773 	struct f2fs_inode_info *fi = F2FS_I(inode);
3774 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3775 	pgoff_t page_idx = 0, last_idx;
3776 	unsigned int released_blocks = 0;
3777 	int ret;
3778 	int writecount;
3779 
3780 	if (!f2fs_sb_has_compression(sbi))
3781 		return -EOPNOTSUPP;
3782 
3783 	if (f2fs_readonly(sbi->sb))
3784 		return -EROFS;
3785 
3786 	ret = mnt_want_write_file(filp);
3787 	if (ret)
3788 		return ret;
3789 
3790 	f2fs_balance_fs(sbi, true);
3791 
3792 	inode_lock(inode);
3793 
3794 	writecount = atomic_read(&inode->i_writecount);
3795 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3796 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3797 		ret = -EBUSY;
3798 		goto out;
3799 	}
3800 
3801 	if (!f2fs_compressed_file(inode) ||
3802 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3803 		ret = -EINVAL;
3804 		goto out;
3805 	}
3806 
3807 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3808 	if (ret)
3809 		goto out;
3810 
3811 	if (!atomic_read(&fi->i_compr_blocks)) {
3812 		ret = -EPERM;
3813 		goto out;
3814 	}
3815 
3816 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3817 	inode_set_ctime_current(inode);
3818 	f2fs_mark_inode_dirty_sync(inode, true);
3819 
3820 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3821 	filemap_invalidate_lock(inode->i_mapping);
3822 
3823 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3824 
3825 	while (page_idx < last_idx) {
3826 		struct dnode_of_data dn;
3827 		pgoff_t end_offset, count;
3828 
3829 		f2fs_lock_op(sbi);
3830 
3831 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3832 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3833 		if (ret) {
3834 			f2fs_unlock_op(sbi);
3835 			if (ret == -ENOENT) {
3836 				page_idx = f2fs_get_next_page_offset(&dn,
3837 								page_idx);
3838 				ret = 0;
3839 				continue;
3840 			}
3841 			break;
3842 		}
3843 
3844 		end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode);
3845 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3846 		count = round_up(count, fi->i_cluster_size);
3847 
3848 		ret = release_compress_blocks(&dn, count);
3849 
3850 		f2fs_put_dnode(&dn);
3851 
3852 		f2fs_unlock_op(sbi);
3853 
3854 		if (ret < 0)
3855 			break;
3856 
3857 		page_idx += count;
3858 		released_blocks += ret;
3859 	}
3860 
3861 	filemap_invalidate_unlock(inode->i_mapping);
3862 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3863 out:
3864 	if (released_blocks)
3865 		f2fs_update_time(sbi, REQ_TIME);
3866 	inode_unlock(inode);
3867 
3868 	mnt_drop_write_file(filp);
3869 
3870 	if (ret >= 0) {
3871 		ret = put_user(released_blocks, (u64 __user *)arg);
3872 	} else if (released_blocks &&
3873 			atomic_read(&fi->i_compr_blocks)) {
3874 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3875 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3876 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3877 			"run fsck to fix.",
3878 			__func__, inode->i_ino, inode->i_blocks,
3879 			released_blocks,
3880 			atomic_read(&fi->i_compr_blocks));
3881 	}
3882 
3883 	return ret;
3884 }
3885 
3886 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3887 		unsigned int *reserved_blocks)
3888 {
3889 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3890 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3891 	block_t blkaddr;
3892 	int i;
3893 
3894 	for (i = 0; i < count; i++) {
3895 		blkaddr = data_blkaddr(dn->inode, dn->node_folio,
3896 						dn->ofs_in_node + i);
3897 
3898 		if (!__is_valid_data_blkaddr(blkaddr))
3899 			continue;
3900 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3901 					DATA_GENERIC_ENHANCE)))
3902 			return -EFSCORRUPTED;
3903 	}
3904 
3905 	while (count) {
3906 		int compr_blocks = 0;
3907 		blkcnt_t reserved = 0;
3908 		blkcnt_t to_reserved;
3909 		int ret;
3910 
3911 		for (i = 0; i < cluster_size; i++) {
3912 			blkaddr = data_blkaddr(dn->inode, dn->node_folio,
3913 						dn->ofs_in_node + i);
3914 
3915 			if (i == 0) {
3916 				if (blkaddr != COMPRESS_ADDR) {
3917 					dn->ofs_in_node += cluster_size;
3918 					goto next;
3919 				}
3920 				continue;
3921 			}
3922 
3923 			/*
3924 			 * compressed cluster was not released due to it
3925 			 * fails in release_compress_blocks(), so NEW_ADDR
3926 			 * is a possible case.
3927 			 */
3928 			if (blkaddr == NEW_ADDR) {
3929 				reserved++;
3930 				continue;
3931 			}
3932 			if (__is_valid_data_blkaddr(blkaddr)) {
3933 				compr_blocks++;
3934 				continue;
3935 			}
3936 		}
3937 
3938 		to_reserved = cluster_size - compr_blocks - reserved;
3939 
3940 		/* for the case all blocks in cluster were reserved */
3941 		if (reserved && to_reserved == 1) {
3942 			dn->ofs_in_node += cluster_size;
3943 			goto next;
3944 		}
3945 
3946 		ret = inc_valid_block_count(sbi, dn->inode,
3947 						&to_reserved, false);
3948 		if (unlikely(ret))
3949 			return ret;
3950 
3951 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3952 			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3953 				f2fs_set_data_blkaddr(dn, NEW_ADDR);
3954 		}
3955 
3956 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3957 
3958 		*reserved_blocks += to_reserved;
3959 next:
3960 		count -= cluster_size;
3961 	}
3962 
3963 	return 0;
3964 }
3965 
3966 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3967 {
3968 	struct inode *inode = file_inode(filp);
3969 	struct f2fs_inode_info *fi = F2FS_I(inode);
3970 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3971 	pgoff_t page_idx = 0, last_idx;
3972 	unsigned int reserved_blocks = 0;
3973 	int ret;
3974 
3975 	if (!f2fs_sb_has_compression(sbi))
3976 		return -EOPNOTSUPP;
3977 
3978 	if (f2fs_readonly(sbi->sb))
3979 		return -EROFS;
3980 
3981 	ret = mnt_want_write_file(filp);
3982 	if (ret)
3983 		return ret;
3984 
3985 	f2fs_balance_fs(sbi, true);
3986 
3987 	inode_lock(inode);
3988 
3989 	if (!f2fs_compressed_file(inode) ||
3990 		!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3991 		ret = -EINVAL;
3992 		goto unlock_inode;
3993 	}
3994 
3995 	if (atomic_read(&fi->i_compr_blocks))
3996 		goto unlock_inode;
3997 
3998 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3999 	filemap_invalidate_lock(inode->i_mapping);
4000 
4001 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4002 
4003 	while (page_idx < last_idx) {
4004 		struct dnode_of_data dn;
4005 		pgoff_t end_offset, count;
4006 
4007 		f2fs_lock_op(sbi);
4008 
4009 		set_new_dnode(&dn, inode, NULL, NULL, 0);
4010 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
4011 		if (ret) {
4012 			f2fs_unlock_op(sbi);
4013 			if (ret == -ENOENT) {
4014 				page_idx = f2fs_get_next_page_offset(&dn,
4015 								page_idx);
4016 				ret = 0;
4017 				continue;
4018 			}
4019 			break;
4020 		}
4021 
4022 		end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode);
4023 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
4024 		count = round_up(count, fi->i_cluster_size);
4025 
4026 		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
4027 
4028 		f2fs_put_dnode(&dn);
4029 
4030 		f2fs_unlock_op(sbi);
4031 
4032 		if (ret < 0)
4033 			break;
4034 
4035 		page_idx += count;
4036 	}
4037 
4038 	filemap_invalidate_unlock(inode->i_mapping);
4039 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
4040 
4041 	if (!ret) {
4042 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
4043 		inode_set_ctime_current(inode);
4044 		f2fs_mark_inode_dirty_sync(inode, true);
4045 	}
4046 unlock_inode:
4047 	if (reserved_blocks)
4048 		f2fs_update_time(sbi, REQ_TIME);
4049 	inode_unlock(inode);
4050 	mnt_drop_write_file(filp);
4051 
4052 	if (!ret) {
4053 		ret = put_user(reserved_blocks, (u64 __user *)arg);
4054 	} else if (reserved_blocks &&
4055 			atomic_read(&fi->i_compr_blocks)) {
4056 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4057 		f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
4058 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
4059 			"run fsck to fix.",
4060 			__func__, inode->i_ino, inode->i_blocks,
4061 			reserved_blocks,
4062 			atomic_read(&fi->i_compr_blocks));
4063 	}
4064 
4065 	return ret;
4066 }
4067 
4068 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
4069 		pgoff_t off, block_t block, block_t len, u32 flags)
4070 {
4071 	sector_t sector = SECTOR_FROM_BLOCK(block);
4072 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
4073 	int ret = 0;
4074 
4075 	if (flags & F2FS_TRIM_FILE_DISCARD) {
4076 		if (bdev_max_secure_erase_sectors(bdev))
4077 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
4078 					GFP_NOFS);
4079 		else
4080 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
4081 					GFP_NOFS);
4082 	}
4083 
4084 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
4085 		if (IS_ENCRYPTED(inode))
4086 			ret = fscrypt_zeroout_range(inode, off, block, len);
4087 		else
4088 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
4089 					GFP_NOFS, 0);
4090 	}
4091 
4092 	return ret;
4093 }
4094 
4095 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
4096 {
4097 	struct inode *inode = file_inode(filp);
4098 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4099 	struct address_space *mapping = inode->i_mapping;
4100 	struct block_device *prev_bdev = NULL;
4101 	struct f2fs_sectrim_range range;
4102 	pgoff_t index, pg_end, prev_index = 0;
4103 	block_t prev_block = 0, len = 0;
4104 	loff_t end_addr;
4105 	bool to_end = false;
4106 	int ret = 0;
4107 
4108 	if (!(filp->f_mode & FMODE_WRITE))
4109 		return -EBADF;
4110 
4111 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
4112 				sizeof(range)))
4113 		return -EFAULT;
4114 
4115 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
4116 			!S_ISREG(inode->i_mode))
4117 		return -EINVAL;
4118 
4119 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
4120 			!f2fs_hw_support_discard(sbi)) ||
4121 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
4122 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
4123 		return -EOPNOTSUPP;
4124 
4125 	ret = mnt_want_write_file(filp);
4126 	if (ret)
4127 		return ret;
4128 	inode_lock(inode);
4129 
4130 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
4131 			range.start >= inode->i_size) {
4132 		ret = -EINVAL;
4133 		goto err;
4134 	}
4135 
4136 	if (range.len == 0)
4137 		goto err;
4138 
4139 	if (inode->i_size - range.start > range.len) {
4140 		end_addr = range.start + range.len;
4141 	} else {
4142 		end_addr = range.len == (u64)-1 ?
4143 			sbi->sb->s_maxbytes : inode->i_size;
4144 		to_end = true;
4145 	}
4146 
4147 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
4148 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
4149 		ret = -EINVAL;
4150 		goto err;
4151 	}
4152 
4153 	index = F2FS_BYTES_TO_BLK(range.start);
4154 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
4155 
4156 	ret = f2fs_convert_inline_inode(inode);
4157 	if (ret)
4158 		goto err;
4159 
4160 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4161 	filemap_invalidate_lock(mapping);
4162 
4163 	ret = filemap_write_and_wait_range(mapping, range.start,
4164 			to_end ? LLONG_MAX : end_addr - 1);
4165 	if (ret)
4166 		goto out;
4167 
4168 	truncate_inode_pages_range(mapping, range.start,
4169 			to_end ? -1 : end_addr - 1);
4170 
4171 	while (index < pg_end) {
4172 		struct dnode_of_data dn;
4173 		pgoff_t end_offset, count;
4174 		int i;
4175 
4176 		set_new_dnode(&dn, inode, NULL, NULL, 0);
4177 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
4178 		if (ret) {
4179 			if (ret == -ENOENT) {
4180 				index = f2fs_get_next_page_offset(&dn, index);
4181 				continue;
4182 			}
4183 			goto out;
4184 		}
4185 
4186 		end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode);
4187 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
4188 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4189 			struct block_device *cur_bdev;
4190 			block_t blkaddr = f2fs_data_blkaddr(&dn);
4191 
4192 			if (!__is_valid_data_blkaddr(blkaddr))
4193 				continue;
4194 
4195 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4196 						DATA_GENERIC_ENHANCE)) {
4197 				ret = -EFSCORRUPTED;
4198 				f2fs_put_dnode(&dn);
4199 				goto out;
4200 			}
4201 
4202 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4203 			if (f2fs_is_multi_device(sbi)) {
4204 				int di = f2fs_target_device_index(sbi, blkaddr);
4205 
4206 				blkaddr -= FDEV(di).start_blk;
4207 			}
4208 
4209 			if (len) {
4210 				if (prev_bdev == cur_bdev &&
4211 						index == prev_index + len &&
4212 						blkaddr == prev_block + len) {
4213 					len++;
4214 				} else {
4215 					ret = f2fs_secure_erase(prev_bdev,
4216 						inode, prev_index, prev_block,
4217 						len, range.flags);
4218 					if (ret) {
4219 						f2fs_put_dnode(&dn);
4220 						goto out;
4221 					}
4222 
4223 					len = 0;
4224 				}
4225 			}
4226 
4227 			if (!len) {
4228 				prev_bdev = cur_bdev;
4229 				prev_index = index;
4230 				prev_block = blkaddr;
4231 				len = 1;
4232 			}
4233 		}
4234 
4235 		f2fs_put_dnode(&dn);
4236 
4237 		if (fatal_signal_pending(current)) {
4238 			ret = -EINTR;
4239 			goto out;
4240 		}
4241 		cond_resched();
4242 	}
4243 
4244 	if (len)
4245 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4246 				prev_block, len, range.flags);
4247 	f2fs_update_time(sbi, REQ_TIME);
4248 out:
4249 	filemap_invalidate_unlock(mapping);
4250 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4251 err:
4252 	inode_unlock(inode);
4253 	mnt_drop_write_file(filp);
4254 
4255 	return ret;
4256 }
4257 
4258 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4259 {
4260 	struct inode *inode = file_inode(filp);
4261 	struct f2fs_comp_option option;
4262 
4263 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4264 		return -EOPNOTSUPP;
4265 
4266 	inode_lock_shared(inode);
4267 
4268 	if (!f2fs_compressed_file(inode)) {
4269 		inode_unlock_shared(inode);
4270 		return -ENODATA;
4271 	}
4272 
4273 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4274 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4275 
4276 	inode_unlock_shared(inode);
4277 
4278 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4279 				sizeof(option)))
4280 		return -EFAULT;
4281 
4282 	return 0;
4283 }
4284 
4285 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4286 {
4287 	struct inode *inode = file_inode(filp);
4288 	struct f2fs_inode_info *fi = F2FS_I(inode);
4289 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4290 	struct f2fs_comp_option option;
4291 	int ret = 0;
4292 
4293 	if (!f2fs_sb_has_compression(sbi))
4294 		return -EOPNOTSUPP;
4295 
4296 	if (!(filp->f_mode & FMODE_WRITE))
4297 		return -EBADF;
4298 
4299 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4300 				sizeof(option)))
4301 		return -EFAULT;
4302 
4303 	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4304 		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4305 		option.algorithm >= COMPRESS_MAX)
4306 		return -EINVAL;
4307 
4308 	ret = mnt_want_write_file(filp);
4309 	if (ret)
4310 		return ret;
4311 	inode_lock(inode);
4312 
4313 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4314 	if (!f2fs_compressed_file(inode)) {
4315 		ret = -EINVAL;
4316 		goto out;
4317 	}
4318 
4319 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4320 		ret = -EBUSY;
4321 		goto out;
4322 	}
4323 
4324 	if (F2FS_HAS_BLOCKS(inode)) {
4325 		ret = -EFBIG;
4326 		goto out;
4327 	}
4328 
4329 	fi->i_compress_algorithm = option.algorithm;
4330 	fi->i_log_cluster_size = option.log_cluster_size;
4331 	fi->i_cluster_size = BIT(option.log_cluster_size);
4332 	/* Set default level */
4333 	if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4334 		fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4335 	else
4336 		fi->i_compress_level = 0;
4337 	/* Adjust mount option level */
4338 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4339 	    F2FS_OPTION(sbi).compress_level)
4340 		fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4341 	f2fs_mark_inode_dirty_sync(inode, true);
4342 
4343 	if (!f2fs_is_compress_backend_ready(inode))
4344 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4345 			"but current kernel doesn't support this algorithm.");
4346 out:
4347 	f2fs_up_write(&fi->i_sem);
4348 	inode_unlock(inode);
4349 	mnt_drop_write_file(filp);
4350 
4351 	return ret;
4352 }
4353 
4354 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4355 {
4356 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4357 	struct address_space *mapping = inode->i_mapping;
4358 	struct folio *folio;
4359 	pgoff_t redirty_idx = page_idx;
4360 	int page_len = 0, ret = 0;
4361 
4362 	page_cache_ra_unbounded(&ractl, len, 0);
4363 
4364 	do {
4365 		folio = read_cache_folio(mapping, page_idx, NULL, NULL);
4366 		if (IS_ERR(folio)) {
4367 			ret = PTR_ERR(folio);
4368 			break;
4369 		}
4370 		page_len += folio_nr_pages(folio) - (page_idx - folio->index);
4371 		page_idx = folio_next_index(folio);
4372 	} while (page_len < len);
4373 
4374 	do {
4375 		folio = filemap_lock_folio(mapping, redirty_idx);
4376 
4377 		/* It will never fail, when folio has pinned above */
4378 		f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(folio));
4379 
4380 		f2fs_folio_wait_writeback(folio, DATA, true, true);
4381 
4382 		folio_mark_dirty(folio);
4383 		set_page_private_gcing(&folio->page);
4384 		redirty_idx = folio_next_index(folio);
4385 		folio_unlock(folio);
4386 		folio_put_refs(folio, 2);
4387 	} while (redirty_idx < page_idx);
4388 
4389 	return ret;
4390 }
4391 
4392 static int f2fs_ioc_decompress_file(struct file *filp)
4393 {
4394 	struct inode *inode = file_inode(filp);
4395 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4396 	struct f2fs_inode_info *fi = F2FS_I(inode);
4397 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4398 	int ret;
4399 
4400 	if (!f2fs_sb_has_compression(sbi) ||
4401 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4402 		return -EOPNOTSUPP;
4403 
4404 	if (!(filp->f_mode & FMODE_WRITE))
4405 		return -EBADF;
4406 
4407 	f2fs_balance_fs(sbi, true);
4408 
4409 	ret = mnt_want_write_file(filp);
4410 	if (ret)
4411 		return ret;
4412 	inode_lock(inode);
4413 
4414 	if (!f2fs_is_compress_backend_ready(inode)) {
4415 		ret = -EOPNOTSUPP;
4416 		goto out;
4417 	}
4418 
4419 	if (!f2fs_compressed_file(inode) ||
4420 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4421 		ret = -EINVAL;
4422 		goto out;
4423 	}
4424 
4425 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4426 	if (ret)
4427 		goto out;
4428 
4429 	if (!atomic_read(&fi->i_compr_blocks))
4430 		goto out;
4431 
4432 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4433 	last_idx >>= fi->i_log_cluster_size;
4434 
4435 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4436 		page_idx = cluster_idx << fi->i_log_cluster_size;
4437 
4438 		if (!f2fs_is_compressed_cluster(inode, page_idx))
4439 			continue;
4440 
4441 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4442 		if (ret < 0)
4443 			break;
4444 
4445 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4446 			ret = filemap_fdatawrite(inode->i_mapping);
4447 			if (ret < 0)
4448 				break;
4449 		}
4450 
4451 		cond_resched();
4452 		if (fatal_signal_pending(current)) {
4453 			ret = -EINTR;
4454 			break;
4455 		}
4456 	}
4457 
4458 	if (!ret)
4459 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4460 							LLONG_MAX);
4461 
4462 	if (ret)
4463 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4464 			  __func__, ret);
4465 	f2fs_update_time(sbi, REQ_TIME);
4466 out:
4467 	inode_unlock(inode);
4468 	mnt_drop_write_file(filp);
4469 
4470 	return ret;
4471 }
4472 
4473 static int f2fs_ioc_compress_file(struct file *filp)
4474 {
4475 	struct inode *inode = file_inode(filp);
4476 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4477 	struct f2fs_inode_info *fi = F2FS_I(inode);
4478 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4479 	int ret;
4480 
4481 	if (!f2fs_sb_has_compression(sbi) ||
4482 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4483 		return -EOPNOTSUPP;
4484 
4485 	if (!(filp->f_mode & FMODE_WRITE))
4486 		return -EBADF;
4487 
4488 	f2fs_balance_fs(sbi, true);
4489 
4490 	ret = mnt_want_write_file(filp);
4491 	if (ret)
4492 		return ret;
4493 	inode_lock(inode);
4494 
4495 	if (!f2fs_is_compress_backend_ready(inode)) {
4496 		ret = -EOPNOTSUPP;
4497 		goto out;
4498 	}
4499 
4500 	if (!f2fs_compressed_file(inode) ||
4501 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4502 		ret = -EINVAL;
4503 		goto out;
4504 	}
4505 
4506 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4507 	if (ret)
4508 		goto out;
4509 
4510 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4511 
4512 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4513 	last_idx >>= fi->i_log_cluster_size;
4514 
4515 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4516 		page_idx = cluster_idx << fi->i_log_cluster_size;
4517 
4518 		if (f2fs_is_sparse_cluster(inode, page_idx))
4519 			continue;
4520 
4521 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4522 		if (ret < 0)
4523 			break;
4524 
4525 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4526 			ret = filemap_fdatawrite(inode->i_mapping);
4527 			if (ret < 0)
4528 				break;
4529 		}
4530 
4531 		cond_resched();
4532 		if (fatal_signal_pending(current)) {
4533 			ret = -EINTR;
4534 			break;
4535 		}
4536 	}
4537 
4538 	if (!ret)
4539 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4540 							LLONG_MAX);
4541 
4542 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4543 
4544 	if (ret)
4545 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4546 			  __func__, ret);
4547 	f2fs_update_time(sbi, REQ_TIME);
4548 out:
4549 	inode_unlock(inode);
4550 	mnt_drop_write_file(filp);
4551 
4552 	return ret;
4553 }
4554 
4555 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4556 {
4557 	switch (cmd) {
4558 	case FS_IOC_GETVERSION:
4559 		return f2fs_ioc_getversion(filp, arg);
4560 	case F2FS_IOC_START_ATOMIC_WRITE:
4561 		return f2fs_ioc_start_atomic_write(filp, false);
4562 	case F2FS_IOC_START_ATOMIC_REPLACE:
4563 		return f2fs_ioc_start_atomic_write(filp, true);
4564 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4565 		return f2fs_ioc_commit_atomic_write(filp);
4566 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4567 		return f2fs_ioc_abort_atomic_write(filp);
4568 	case F2FS_IOC_START_VOLATILE_WRITE:
4569 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4570 		return -EOPNOTSUPP;
4571 	case F2FS_IOC_SHUTDOWN:
4572 		return f2fs_ioc_shutdown(filp, arg);
4573 	case FITRIM:
4574 		return f2fs_ioc_fitrim(filp, arg);
4575 	case FS_IOC_SET_ENCRYPTION_POLICY:
4576 		return f2fs_ioc_set_encryption_policy(filp, arg);
4577 	case FS_IOC_GET_ENCRYPTION_POLICY:
4578 		return f2fs_ioc_get_encryption_policy(filp, arg);
4579 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4580 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4581 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4582 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4583 	case FS_IOC_ADD_ENCRYPTION_KEY:
4584 		return f2fs_ioc_add_encryption_key(filp, arg);
4585 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4586 		return f2fs_ioc_remove_encryption_key(filp, arg);
4587 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4588 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4589 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4590 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4591 	case FS_IOC_GET_ENCRYPTION_NONCE:
4592 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4593 	case F2FS_IOC_GARBAGE_COLLECT:
4594 		return f2fs_ioc_gc(filp, arg);
4595 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4596 		return f2fs_ioc_gc_range(filp, arg);
4597 	case F2FS_IOC_WRITE_CHECKPOINT:
4598 		return f2fs_ioc_write_checkpoint(filp);
4599 	case F2FS_IOC_DEFRAGMENT:
4600 		return f2fs_ioc_defragment(filp, arg);
4601 	case F2FS_IOC_MOVE_RANGE:
4602 		return f2fs_ioc_move_range(filp, arg);
4603 	case F2FS_IOC_FLUSH_DEVICE:
4604 		return f2fs_ioc_flush_device(filp, arg);
4605 	case F2FS_IOC_GET_FEATURES:
4606 		return f2fs_ioc_get_features(filp, arg);
4607 	case F2FS_IOC_GET_PIN_FILE:
4608 		return f2fs_ioc_get_pin_file(filp, arg);
4609 	case F2FS_IOC_SET_PIN_FILE:
4610 		return f2fs_ioc_set_pin_file(filp, arg);
4611 	case F2FS_IOC_PRECACHE_EXTENTS:
4612 		return f2fs_ioc_precache_extents(filp);
4613 	case F2FS_IOC_RESIZE_FS:
4614 		return f2fs_ioc_resize_fs(filp, arg);
4615 	case FS_IOC_ENABLE_VERITY:
4616 		return f2fs_ioc_enable_verity(filp, arg);
4617 	case FS_IOC_MEASURE_VERITY:
4618 		return f2fs_ioc_measure_verity(filp, arg);
4619 	case FS_IOC_READ_VERITY_METADATA:
4620 		return f2fs_ioc_read_verity_metadata(filp, arg);
4621 	case FS_IOC_GETFSLABEL:
4622 		return f2fs_ioc_getfslabel(filp, arg);
4623 	case FS_IOC_SETFSLABEL:
4624 		return f2fs_ioc_setfslabel(filp, arg);
4625 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4626 		return f2fs_ioc_get_compress_blocks(filp, arg);
4627 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4628 		return f2fs_release_compress_blocks(filp, arg);
4629 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4630 		return f2fs_reserve_compress_blocks(filp, arg);
4631 	case F2FS_IOC_SEC_TRIM_FILE:
4632 		return f2fs_sec_trim_file(filp, arg);
4633 	case F2FS_IOC_GET_COMPRESS_OPTION:
4634 		return f2fs_ioc_get_compress_option(filp, arg);
4635 	case F2FS_IOC_SET_COMPRESS_OPTION:
4636 		return f2fs_ioc_set_compress_option(filp, arg);
4637 	case F2FS_IOC_DECOMPRESS_FILE:
4638 		return f2fs_ioc_decompress_file(filp);
4639 	case F2FS_IOC_COMPRESS_FILE:
4640 		return f2fs_ioc_compress_file(filp);
4641 	case F2FS_IOC_GET_DEV_ALIAS_FILE:
4642 		return f2fs_ioc_get_dev_alias_file(filp, arg);
4643 	case F2FS_IOC_IO_PRIO:
4644 		return f2fs_ioc_io_prio(filp, arg);
4645 	default:
4646 		return -ENOTTY;
4647 	}
4648 }
4649 
4650 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4651 {
4652 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4653 		return -EIO;
4654 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4655 		return -ENOSPC;
4656 
4657 	return __f2fs_ioctl(filp, cmd, arg);
4658 }
4659 
4660 /*
4661  * Return %true if the given read or write request should use direct I/O, or
4662  * %false if it should use buffered I/O.
4663  */
4664 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4665 				struct iov_iter *iter)
4666 {
4667 	unsigned int align;
4668 
4669 	if (!(iocb->ki_flags & IOCB_DIRECT))
4670 		return false;
4671 
4672 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4673 		return false;
4674 
4675 	/*
4676 	 * Direct I/O not aligned to the disk's logical_block_size will be
4677 	 * attempted, but will fail with -EINVAL.
4678 	 *
4679 	 * f2fs additionally requires that direct I/O be aligned to the
4680 	 * filesystem block size, which is often a stricter requirement.
4681 	 * However, f2fs traditionally falls back to buffered I/O on requests
4682 	 * that are logical_block_size-aligned but not fs-block aligned.
4683 	 *
4684 	 * The below logic implements this behavior.
4685 	 */
4686 	align = iocb->ki_pos | iov_iter_alignment(iter);
4687 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4688 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4689 		return false;
4690 
4691 	return true;
4692 }
4693 
4694 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4695 				unsigned int flags)
4696 {
4697 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4698 
4699 	dec_page_count(sbi, F2FS_DIO_READ);
4700 	if (error)
4701 		return error;
4702 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4703 	return 0;
4704 }
4705 
4706 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4707 	.end_io = f2fs_dio_read_end_io,
4708 };
4709 
4710 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4711 {
4712 	struct file *file = iocb->ki_filp;
4713 	struct inode *inode = file_inode(file);
4714 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4715 	struct f2fs_inode_info *fi = F2FS_I(inode);
4716 	const loff_t pos = iocb->ki_pos;
4717 	const size_t count = iov_iter_count(to);
4718 	struct iomap_dio *dio;
4719 	ssize_t ret;
4720 
4721 	if (count == 0)
4722 		return 0; /* skip atime update */
4723 
4724 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4725 
4726 	if (iocb->ki_flags & IOCB_NOWAIT) {
4727 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4728 			ret = -EAGAIN;
4729 			goto out;
4730 		}
4731 	} else {
4732 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4733 	}
4734 
4735 	/* dio is not compatible w/ atomic file */
4736 	if (f2fs_is_atomic_file(inode)) {
4737 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4738 		ret = -EOPNOTSUPP;
4739 		goto out;
4740 	}
4741 
4742 	/*
4743 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4744 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4745 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4746 	 */
4747 	inc_page_count(sbi, F2FS_DIO_READ);
4748 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4749 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4750 	if (IS_ERR_OR_NULL(dio)) {
4751 		ret = PTR_ERR_OR_ZERO(dio);
4752 		if (ret != -EIOCBQUEUED)
4753 			dec_page_count(sbi, F2FS_DIO_READ);
4754 	} else {
4755 		ret = iomap_dio_complete(dio);
4756 	}
4757 
4758 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4759 
4760 	file_accessed(file);
4761 out:
4762 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4763 	return ret;
4764 }
4765 
4766 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4767 				    int rw)
4768 {
4769 	struct inode *inode = file_inode(file);
4770 	char *buf, *path;
4771 
4772 	buf = f2fs_getname(F2FS_I_SB(inode));
4773 	if (!buf)
4774 		return;
4775 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4776 	if (IS_ERR(path))
4777 		goto free_buf;
4778 	if (rw == WRITE)
4779 		trace_f2fs_datawrite_start(inode, pos, count,
4780 				current->pid, path, current->comm);
4781 	else
4782 		trace_f2fs_dataread_start(inode, pos, count,
4783 				current->pid, path, current->comm);
4784 free_buf:
4785 	f2fs_putname(buf);
4786 }
4787 
4788 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4789 {
4790 	struct inode *inode = file_inode(iocb->ki_filp);
4791 	const loff_t pos = iocb->ki_pos;
4792 	ssize_t ret;
4793 
4794 	if (!f2fs_is_compress_backend_ready(inode))
4795 		return -EOPNOTSUPP;
4796 
4797 	if (trace_f2fs_dataread_start_enabled())
4798 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4799 					iov_iter_count(to), READ);
4800 
4801 	/* In LFS mode, if there is inflight dio, wait for its completion */
4802 	if (f2fs_lfs_mode(F2FS_I_SB(inode)) &&
4803 	    get_pages(F2FS_I_SB(inode), F2FS_DIO_WRITE))
4804 		inode_dio_wait(inode);
4805 
4806 	if (f2fs_should_use_dio(inode, iocb, to)) {
4807 		ret = f2fs_dio_read_iter(iocb, to);
4808 	} else {
4809 		ret = filemap_read(iocb, to, 0);
4810 		if (ret > 0)
4811 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4812 						APP_BUFFERED_READ_IO, ret);
4813 	}
4814 	if (trace_f2fs_dataread_end_enabled())
4815 		trace_f2fs_dataread_end(inode, pos, ret);
4816 	return ret;
4817 }
4818 
4819 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4820 				     struct pipe_inode_info *pipe,
4821 				     size_t len, unsigned int flags)
4822 {
4823 	struct inode *inode = file_inode(in);
4824 	const loff_t pos = *ppos;
4825 	ssize_t ret;
4826 
4827 	if (!f2fs_is_compress_backend_ready(inode))
4828 		return -EOPNOTSUPP;
4829 
4830 	if (trace_f2fs_dataread_start_enabled())
4831 		f2fs_trace_rw_file_path(in, pos, len, READ);
4832 
4833 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4834 	if (ret > 0)
4835 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4836 				   APP_BUFFERED_READ_IO, ret);
4837 
4838 	if (trace_f2fs_dataread_end_enabled())
4839 		trace_f2fs_dataread_end(inode, pos, ret);
4840 	return ret;
4841 }
4842 
4843 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4844 {
4845 	struct file *file = iocb->ki_filp;
4846 	struct inode *inode = file_inode(file);
4847 	ssize_t count;
4848 	int err;
4849 
4850 	if (IS_IMMUTABLE(inode))
4851 		return -EPERM;
4852 
4853 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4854 		return -EPERM;
4855 
4856 	count = generic_write_checks(iocb, from);
4857 	if (count <= 0)
4858 		return count;
4859 
4860 	err = file_modified(file);
4861 	if (err)
4862 		return err;
4863 	return count;
4864 }
4865 
4866 /*
4867  * Preallocate blocks for a write request, if it is possible and helpful to do
4868  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4869  * blocks were preallocated, or a negative errno value if something went
4870  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4871  * requested blocks (not just some of them) have been allocated.
4872  */
4873 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4874 				   bool dio)
4875 {
4876 	struct inode *inode = file_inode(iocb->ki_filp);
4877 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4878 	const loff_t pos = iocb->ki_pos;
4879 	const size_t count = iov_iter_count(iter);
4880 	struct f2fs_map_blocks map = {};
4881 	int flag;
4882 	int ret;
4883 
4884 	/* If it will be an out-of-place direct write, don't bother. */
4885 	if (dio && f2fs_lfs_mode(sbi))
4886 		return 0;
4887 	/*
4888 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4889 	 * buffered IO, if DIO meets any holes.
4890 	 */
4891 	if (dio && i_size_read(inode) &&
4892 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4893 		return 0;
4894 
4895 	/* No-wait I/O can't allocate blocks. */
4896 	if (iocb->ki_flags & IOCB_NOWAIT)
4897 		return 0;
4898 
4899 	/* If it will be a short write, don't bother. */
4900 	if (fault_in_iov_iter_readable(iter, count))
4901 		return 0;
4902 
4903 	if (f2fs_has_inline_data(inode)) {
4904 		/* If the data will fit inline, don't bother. */
4905 		if (pos + count <= MAX_INLINE_DATA(inode))
4906 			return 0;
4907 		ret = f2fs_convert_inline_inode(inode);
4908 		if (ret)
4909 			return ret;
4910 	}
4911 
4912 	/* Do not preallocate blocks that will be written partially in 4KB. */
4913 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4914 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4915 	if (map.m_len > map.m_lblk)
4916 		map.m_len -= map.m_lblk;
4917 	else
4918 		return 0;
4919 
4920 	if (!IS_DEVICE_ALIASING(inode))
4921 		map.m_may_create = true;
4922 	if (dio) {
4923 		map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4924 						inode->i_write_hint);
4925 		flag = F2FS_GET_BLOCK_PRE_DIO;
4926 	} else {
4927 		map.m_seg_type = NO_CHECK_TYPE;
4928 		flag = F2FS_GET_BLOCK_PRE_AIO;
4929 	}
4930 
4931 	ret = f2fs_map_blocks(inode, &map, flag);
4932 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4933 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4934 		return ret;
4935 	if (ret == 0)
4936 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4937 	return map.m_len;
4938 }
4939 
4940 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4941 					struct iov_iter *from)
4942 {
4943 	struct file *file = iocb->ki_filp;
4944 	struct inode *inode = file_inode(file);
4945 	ssize_t ret;
4946 
4947 	if (iocb->ki_flags & IOCB_NOWAIT)
4948 		return -EOPNOTSUPP;
4949 
4950 	ret = generic_perform_write(iocb, from);
4951 
4952 	if (ret > 0) {
4953 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4954 						APP_BUFFERED_IO, ret);
4955 	}
4956 	return ret;
4957 }
4958 
4959 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4960 				 unsigned int flags)
4961 {
4962 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4963 
4964 	dec_page_count(sbi, F2FS_DIO_WRITE);
4965 	if (error)
4966 		return error;
4967 	f2fs_update_time(sbi, REQ_TIME);
4968 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4969 	return 0;
4970 }
4971 
4972 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
4973 					struct bio *bio, loff_t file_offset)
4974 {
4975 	struct inode *inode = iter->inode;
4976 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4977 	enum log_type type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
4978 	enum temp_type temp = f2fs_get_segment_temp(sbi, type);
4979 
4980 	bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
4981 	submit_bio(bio);
4982 }
4983 
4984 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4985 	.end_io		= f2fs_dio_write_end_io,
4986 	.submit_io	= f2fs_dio_write_submit_io,
4987 };
4988 
4989 static void f2fs_flush_buffered_write(struct address_space *mapping,
4990 				      loff_t start_pos, loff_t end_pos)
4991 {
4992 	int ret;
4993 
4994 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4995 	if (ret < 0)
4996 		return;
4997 	invalidate_mapping_pages(mapping,
4998 				 start_pos >> PAGE_SHIFT,
4999 				 end_pos >> PAGE_SHIFT);
5000 }
5001 
5002 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
5003 				   bool *may_need_sync)
5004 {
5005 	struct file *file = iocb->ki_filp;
5006 	struct inode *inode = file_inode(file);
5007 	struct f2fs_inode_info *fi = F2FS_I(inode);
5008 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5009 	const bool do_opu = f2fs_lfs_mode(sbi);
5010 	const loff_t pos = iocb->ki_pos;
5011 	const ssize_t count = iov_iter_count(from);
5012 	unsigned int dio_flags;
5013 	struct iomap_dio *dio;
5014 	ssize_t ret;
5015 
5016 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
5017 
5018 	if (iocb->ki_flags & IOCB_NOWAIT) {
5019 		/* f2fs_convert_inline_inode() and block allocation can block */
5020 		if (f2fs_has_inline_data(inode) ||
5021 		    !f2fs_overwrite_io(inode, pos, count)) {
5022 			ret = -EAGAIN;
5023 			goto out;
5024 		}
5025 
5026 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
5027 			ret = -EAGAIN;
5028 			goto out;
5029 		}
5030 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
5031 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
5032 			ret = -EAGAIN;
5033 			goto out;
5034 		}
5035 	} else {
5036 		ret = f2fs_convert_inline_inode(inode);
5037 		if (ret)
5038 			goto out;
5039 
5040 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
5041 		if (do_opu)
5042 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
5043 	}
5044 
5045 	/*
5046 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
5047 	 * the higher-level function iomap_dio_rw() in order to ensure that the
5048 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
5049 	 */
5050 	inc_page_count(sbi, F2FS_DIO_WRITE);
5051 	dio_flags = 0;
5052 	if (pos + count > inode->i_size)
5053 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
5054 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
5055 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
5056 	if (IS_ERR_OR_NULL(dio)) {
5057 		ret = PTR_ERR_OR_ZERO(dio);
5058 		if (ret == -ENOTBLK)
5059 			ret = 0;
5060 		if (ret != -EIOCBQUEUED)
5061 			dec_page_count(sbi, F2FS_DIO_WRITE);
5062 	} else {
5063 		ret = iomap_dio_complete(dio);
5064 	}
5065 
5066 	if (do_opu)
5067 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
5068 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
5069 
5070 	if (ret < 0)
5071 		goto out;
5072 	if (pos + ret > inode->i_size)
5073 		f2fs_i_size_write(inode, pos + ret);
5074 	if (!do_opu)
5075 		set_inode_flag(inode, FI_UPDATE_WRITE);
5076 
5077 	if (iov_iter_count(from)) {
5078 		ssize_t ret2;
5079 		loff_t bufio_start_pos = iocb->ki_pos;
5080 
5081 		/*
5082 		 * The direct write was partial, so we need to fall back to a
5083 		 * buffered write for the remainder.
5084 		 */
5085 
5086 		ret2 = f2fs_buffered_write_iter(iocb, from);
5087 		if (iov_iter_count(from))
5088 			f2fs_write_failed(inode, iocb->ki_pos);
5089 		if (ret2 < 0)
5090 			goto out;
5091 
5092 		/*
5093 		 * Ensure that the pagecache pages are written to disk and
5094 		 * invalidated to preserve the expected O_DIRECT semantics.
5095 		 */
5096 		if (ret2 > 0) {
5097 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
5098 
5099 			ret += ret2;
5100 
5101 			f2fs_flush_buffered_write(file->f_mapping,
5102 						  bufio_start_pos,
5103 						  bufio_end_pos);
5104 		}
5105 	} else {
5106 		/* iomap_dio_rw() already handled the generic_write_sync(). */
5107 		*may_need_sync = false;
5108 	}
5109 out:
5110 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
5111 	return ret;
5112 }
5113 
5114 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
5115 {
5116 	struct inode *inode = file_inode(iocb->ki_filp);
5117 	const loff_t orig_pos = iocb->ki_pos;
5118 	const size_t orig_count = iov_iter_count(from);
5119 	loff_t target_size;
5120 	bool dio;
5121 	bool may_need_sync = true;
5122 	int preallocated;
5123 	const loff_t pos = iocb->ki_pos;
5124 	const ssize_t count = iov_iter_count(from);
5125 	ssize_t ret;
5126 
5127 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
5128 		ret = -EIO;
5129 		goto out;
5130 	}
5131 
5132 	if (!f2fs_is_compress_backend_ready(inode)) {
5133 		ret = -EOPNOTSUPP;
5134 		goto out;
5135 	}
5136 
5137 	if (iocb->ki_flags & IOCB_NOWAIT) {
5138 		if (!inode_trylock(inode)) {
5139 			ret = -EAGAIN;
5140 			goto out;
5141 		}
5142 	} else {
5143 		inode_lock(inode);
5144 	}
5145 
5146 	if (f2fs_is_pinned_file(inode) &&
5147 	    !f2fs_overwrite_io(inode, pos, count)) {
5148 		ret = -EIO;
5149 		goto out_unlock;
5150 	}
5151 
5152 	ret = f2fs_write_checks(iocb, from);
5153 	if (ret <= 0)
5154 		goto out_unlock;
5155 
5156 	/* Determine whether we will do a direct write or a buffered write. */
5157 	dio = f2fs_should_use_dio(inode, iocb, from);
5158 
5159 	/* dio is not compatible w/ atomic write */
5160 	if (dio && f2fs_is_atomic_file(inode)) {
5161 		ret = -EOPNOTSUPP;
5162 		goto out_unlock;
5163 	}
5164 
5165 	/* Possibly preallocate the blocks for the write. */
5166 	target_size = iocb->ki_pos + iov_iter_count(from);
5167 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
5168 	if (preallocated < 0) {
5169 		ret = preallocated;
5170 	} else {
5171 		if (trace_f2fs_datawrite_start_enabled())
5172 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
5173 						orig_count, WRITE);
5174 
5175 		/* Do the actual write. */
5176 		ret = dio ?
5177 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
5178 			f2fs_buffered_write_iter(iocb, from);
5179 
5180 		if (trace_f2fs_datawrite_end_enabled())
5181 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
5182 	}
5183 
5184 	/* Don't leave any preallocated blocks around past i_size. */
5185 	if (preallocated && i_size_read(inode) < target_size) {
5186 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5187 		filemap_invalidate_lock(inode->i_mapping);
5188 		if (!f2fs_truncate(inode))
5189 			file_dont_truncate(inode);
5190 		filemap_invalidate_unlock(inode->i_mapping);
5191 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5192 	} else {
5193 		file_dont_truncate(inode);
5194 	}
5195 
5196 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
5197 out_unlock:
5198 	inode_unlock(inode);
5199 out:
5200 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
5201 
5202 	if (ret > 0 && may_need_sync)
5203 		ret = generic_write_sync(iocb, ret);
5204 
5205 	/* If buffered IO was forced, flush and drop the data from
5206 	 * the page cache to preserve O_DIRECT semantics
5207 	 */
5208 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
5209 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
5210 					  orig_pos,
5211 					  orig_pos + ret - 1);
5212 
5213 	return ret;
5214 }
5215 
5216 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5217 		int advice)
5218 {
5219 	struct address_space *mapping;
5220 	struct backing_dev_info *bdi;
5221 	struct inode *inode = file_inode(filp);
5222 	int err;
5223 
5224 	if (advice == POSIX_FADV_SEQUENTIAL) {
5225 		if (S_ISFIFO(inode->i_mode))
5226 			return -ESPIPE;
5227 
5228 		mapping = filp->f_mapping;
5229 		if (!mapping || len < 0)
5230 			return -EINVAL;
5231 
5232 		bdi = inode_to_bdi(mapping->host);
5233 		filp->f_ra.ra_pages = bdi->ra_pages *
5234 			F2FS_I_SB(inode)->seq_file_ra_mul;
5235 		spin_lock(&filp->f_lock);
5236 		filp->f_mode &= ~FMODE_RANDOM;
5237 		spin_unlock(&filp->f_lock);
5238 		return 0;
5239 	} else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5240 		/* Load extent cache at the first readahead. */
5241 		f2fs_precache_extents(inode);
5242 	}
5243 
5244 	err = generic_fadvise(filp, offset, len, advice);
5245 	if (err)
5246 		return err;
5247 
5248 	if (advice == POSIX_FADV_DONTNEED &&
5249 	    (test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5250 	     f2fs_compressed_file(inode)))
5251 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5252 	else if (advice == POSIX_FADV_NOREUSE)
5253 		err = f2fs_keep_noreuse_range(inode, offset, len);
5254 	return err;
5255 }
5256 
5257 #ifdef CONFIG_COMPAT
5258 struct compat_f2fs_gc_range {
5259 	u32 sync;
5260 	compat_u64 start;
5261 	compat_u64 len;
5262 };
5263 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
5264 						struct compat_f2fs_gc_range)
5265 
5266 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5267 {
5268 	struct compat_f2fs_gc_range __user *urange;
5269 	struct f2fs_gc_range range;
5270 	int err;
5271 
5272 	urange = compat_ptr(arg);
5273 	err = get_user(range.sync, &urange->sync);
5274 	err |= get_user(range.start, &urange->start);
5275 	err |= get_user(range.len, &urange->len);
5276 	if (err)
5277 		return -EFAULT;
5278 
5279 	return __f2fs_ioc_gc_range(file, &range);
5280 }
5281 
5282 struct compat_f2fs_move_range {
5283 	u32 dst_fd;
5284 	compat_u64 pos_in;
5285 	compat_u64 pos_out;
5286 	compat_u64 len;
5287 };
5288 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
5289 					struct compat_f2fs_move_range)
5290 
5291 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5292 {
5293 	struct compat_f2fs_move_range __user *urange;
5294 	struct f2fs_move_range range;
5295 	int err;
5296 
5297 	urange = compat_ptr(arg);
5298 	err = get_user(range.dst_fd, &urange->dst_fd);
5299 	err |= get_user(range.pos_in, &urange->pos_in);
5300 	err |= get_user(range.pos_out, &urange->pos_out);
5301 	err |= get_user(range.len, &urange->len);
5302 	if (err)
5303 		return -EFAULT;
5304 
5305 	return __f2fs_ioc_move_range(file, &range);
5306 }
5307 
5308 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5309 {
5310 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5311 		return -EIO;
5312 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5313 		return -ENOSPC;
5314 
5315 	switch (cmd) {
5316 	case FS_IOC32_GETVERSION:
5317 		cmd = FS_IOC_GETVERSION;
5318 		break;
5319 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5320 		return f2fs_compat_ioc_gc_range(file, arg);
5321 	case F2FS_IOC32_MOVE_RANGE:
5322 		return f2fs_compat_ioc_move_range(file, arg);
5323 	case F2FS_IOC_START_ATOMIC_WRITE:
5324 	case F2FS_IOC_START_ATOMIC_REPLACE:
5325 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5326 	case F2FS_IOC_START_VOLATILE_WRITE:
5327 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5328 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
5329 	case F2FS_IOC_SHUTDOWN:
5330 	case FITRIM:
5331 	case FS_IOC_SET_ENCRYPTION_POLICY:
5332 	case FS_IOC_GET_ENCRYPTION_PWSALT:
5333 	case FS_IOC_GET_ENCRYPTION_POLICY:
5334 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5335 	case FS_IOC_ADD_ENCRYPTION_KEY:
5336 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
5337 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5338 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5339 	case FS_IOC_GET_ENCRYPTION_NONCE:
5340 	case F2FS_IOC_GARBAGE_COLLECT:
5341 	case F2FS_IOC_WRITE_CHECKPOINT:
5342 	case F2FS_IOC_DEFRAGMENT:
5343 	case F2FS_IOC_FLUSH_DEVICE:
5344 	case F2FS_IOC_GET_FEATURES:
5345 	case F2FS_IOC_GET_PIN_FILE:
5346 	case F2FS_IOC_SET_PIN_FILE:
5347 	case F2FS_IOC_PRECACHE_EXTENTS:
5348 	case F2FS_IOC_RESIZE_FS:
5349 	case FS_IOC_ENABLE_VERITY:
5350 	case FS_IOC_MEASURE_VERITY:
5351 	case FS_IOC_READ_VERITY_METADATA:
5352 	case FS_IOC_GETFSLABEL:
5353 	case FS_IOC_SETFSLABEL:
5354 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5355 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5356 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5357 	case F2FS_IOC_SEC_TRIM_FILE:
5358 	case F2FS_IOC_GET_COMPRESS_OPTION:
5359 	case F2FS_IOC_SET_COMPRESS_OPTION:
5360 	case F2FS_IOC_DECOMPRESS_FILE:
5361 	case F2FS_IOC_COMPRESS_FILE:
5362 	case F2FS_IOC_GET_DEV_ALIAS_FILE:
5363 	case F2FS_IOC_IO_PRIO:
5364 		break;
5365 	default:
5366 		return -ENOIOCTLCMD;
5367 	}
5368 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5369 }
5370 #endif
5371 
5372 const struct file_operations f2fs_file_operations = {
5373 	.llseek		= f2fs_llseek,
5374 	.read_iter	= f2fs_file_read_iter,
5375 	.write_iter	= f2fs_file_write_iter,
5376 	.iopoll		= iocb_bio_iopoll,
5377 	.open		= f2fs_file_open,
5378 	.release	= f2fs_release_file,
5379 	.mmap		= f2fs_file_mmap,
5380 	.flush		= f2fs_file_flush,
5381 	.fsync		= f2fs_sync_file,
5382 	.fallocate	= f2fs_fallocate,
5383 	.unlocked_ioctl	= f2fs_ioctl,
5384 #ifdef CONFIG_COMPAT
5385 	.compat_ioctl	= f2fs_compat_ioctl,
5386 #endif
5387 	.splice_read	= f2fs_file_splice_read,
5388 	.splice_write	= iter_file_splice_write,
5389 	.fadvise	= f2fs_file_fadvise,
5390 	.fop_flags	= FOP_BUFFER_RASYNC,
5391 };
5392