1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/writeback.h> 12 #include <linux/blkdev.h> 13 #include <linux/falloc.h> 14 #include <linux/types.h> 15 #include <linux/compat.h> 16 #include <linux/uaccess.h> 17 #include <linux/mount.h> 18 #include <linux/pagevec.h> 19 #include <linux/uio.h> 20 #include <linux/uuid.h> 21 #include <linux/file.h> 22 #include <linux/nls.h> 23 #include <linux/sched/signal.h> 24 #include <linux/fileattr.h> 25 #include <linux/fadvise.h> 26 #include <linux/iomap.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "acl.h" 33 #include "gc.h" 34 #include "iostat.h" 35 #include <trace/events/f2fs.h> 36 #include <uapi/linux/f2fs.h> 37 38 static void f2fs_zero_post_eof_page(struct inode *inode, loff_t new_size) 39 { 40 loff_t old_size = i_size_read(inode); 41 42 if (old_size >= new_size) 43 return; 44 45 /* zero or drop pages only in range of [old_size, new_size] */ 46 truncate_pagecache(inode, old_size); 47 } 48 49 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 50 { 51 struct inode *inode = file_inode(vmf->vma->vm_file); 52 vm_flags_t flags = vmf->vma->vm_flags; 53 vm_fault_t ret; 54 55 ret = filemap_fault(vmf); 56 if (ret & VM_FAULT_LOCKED) 57 f2fs_update_iostat(F2FS_I_SB(inode), inode, 58 APP_MAPPED_READ_IO, F2FS_BLKSIZE); 59 60 trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret); 61 62 return ret; 63 } 64 65 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 66 { 67 struct folio *folio = page_folio(vmf->page); 68 struct inode *inode = file_inode(vmf->vma->vm_file); 69 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 70 struct dnode_of_data dn; 71 bool need_alloc = !f2fs_is_pinned_file(inode); 72 int err = 0; 73 vm_fault_t ret; 74 75 if (unlikely(IS_IMMUTABLE(inode))) 76 return VM_FAULT_SIGBUS; 77 78 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 79 err = -EIO; 80 goto out; 81 } 82 83 if (unlikely(f2fs_cp_error(sbi))) { 84 err = -EIO; 85 goto out; 86 } 87 88 if (!f2fs_is_checkpoint_ready(sbi)) { 89 err = -ENOSPC; 90 goto out; 91 } 92 93 err = f2fs_convert_inline_inode(inode); 94 if (err) 95 goto out; 96 97 #ifdef CONFIG_F2FS_FS_COMPRESSION 98 if (f2fs_compressed_file(inode)) { 99 int ret = f2fs_is_compressed_cluster(inode, folio->index); 100 101 if (ret < 0) { 102 err = ret; 103 goto out; 104 } else if (ret) { 105 need_alloc = false; 106 } 107 } 108 #endif 109 /* should do out of any locked page */ 110 if (need_alloc) 111 f2fs_balance_fs(sbi, true); 112 113 sb_start_pagefault(inode->i_sb); 114 115 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 116 117 filemap_invalidate_lock(inode->i_mapping); 118 f2fs_zero_post_eof_page(inode, (folio->index + 1) << PAGE_SHIFT); 119 filemap_invalidate_unlock(inode->i_mapping); 120 121 file_update_time(vmf->vma->vm_file); 122 filemap_invalidate_lock_shared(inode->i_mapping); 123 124 folio_lock(folio); 125 if (unlikely(folio->mapping != inode->i_mapping || 126 folio_pos(folio) > i_size_read(inode) || 127 !folio_test_uptodate(folio))) { 128 folio_unlock(folio); 129 err = -EFAULT; 130 goto out_sem; 131 } 132 133 set_new_dnode(&dn, inode, NULL, NULL, 0); 134 if (need_alloc) { 135 /* block allocation */ 136 err = f2fs_get_block_locked(&dn, folio->index); 137 } else { 138 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE); 139 f2fs_put_dnode(&dn); 140 if (f2fs_is_pinned_file(inode) && 141 !__is_valid_data_blkaddr(dn.data_blkaddr)) 142 err = -EIO; 143 } 144 145 if (err) { 146 folio_unlock(folio); 147 goto out_sem; 148 } 149 150 f2fs_folio_wait_writeback(folio, DATA, false, true); 151 152 /* wait for GCed page writeback via META_MAPPING */ 153 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 154 155 /* 156 * check to see if the page is mapped already (no holes) 157 */ 158 if (folio_test_mappedtodisk(folio)) 159 goto out_sem; 160 161 /* page is wholly or partially inside EOF */ 162 if (((loff_t)(folio->index + 1) << PAGE_SHIFT) > 163 i_size_read(inode)) { 164 loff_t offset; 165 166 offset = i_size_read(inode) & ~PAGE_MASK; 167 folio_zero_segment(folio, offset, folio_size(folio)); 168 } 169 folio_mark_dirty(folio); 170 171 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE); 172 f2fs_update_time(sbi, REQ_TIME); 173 174 out_sem: 175 filemap_invalidate_unlock_shared(inode->i_mapping); 176 177 sb_end_pagefault(inode->i_sb); 178 out: 179 ret = vmf_fs_error(err); 180 181 trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret); 182 return ret; 183 } 184 185 static const struct vm_operations_struct f2fs_file_vm_ops = { 186 .fault = f2fs_filemap_fault, 187 .map_pages = filemap_map_pages, 188 .page_mkwrite = f2fs_vm_page_mkwrite, 189 }; 190 191 static int get_parent_ino(struct inode *inode, nid_t *pino) 192 { 193 struct dentry *dentry; 194 195 /* 196 * Make sure to get the non-deleted alias. The alias associated with 197 * the open file descriptor being fsync()'ed may be deleted already. 198 */ 199 dentry = d_find_alias(inode); 200 if (!dentry) 201 return 0; 202 203 *pino = d_parent_ino(dentry); 204 dput(dentry); 205 return 1; 206 } 207 208 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 209 { 210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 211 enum cp_reason_type cp_reason = CP_NO_NEEDED; 212 213 if (!S_ISREG(inode->i_mode)) 214 cp_reason = CP_NON_REGULAR; 215 else if (f2fs_compressed_file(inode)) 216 cp_reason = CP_COMPRESSED; 217 else if (inode->i_nlink != 1) 218 cp_reason = CP_HARDLINK; 219 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 220 cp_reason = CP_SB_NEED_CP; 221 else if (file_wrong_pino(inode)) 222 cp_reason = CP_WRONG_PINO; 223 else if (!f2fs_space_for_roll_forward(sbi)) 224 cp_reason = CP_NO_SPC_ROLL; 225 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 226 cp_reason = CP_NODE_NEED_CP; 227 else if (test_opt(sbi, FASTBOOT)) 228 cp_reason = CP_FASTBOOT_MODE; 229 else if (F2FS_OPTION(sbi).active_logs == 2) 230 cp_reason = CP_SPEC_LOG_NUM; 231 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 232 f2fs_need_dentry_mark(sbi, inode->i_ino) && 233 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 234 TRANS_DIR_INO)) 235 cp_reason = CP_RECOVER_DIR; 236 else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 237 XATTR_DIR_INO)) 238 cp_reason = CP_XATTR_DIR; 239 240 return cp_reason; 241 } 242 243 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 244 { 245 struct folio *i = filemap_get_folio(NODE_MAPPING(sbi), ino); 246 bool ret = false; 247 /* But we need to avoid that there are some inode updates */ 248 if ((!IS_ERR(i) && folio_test_dirty(i)) || 249 f2fs_need_inode_block_update(sbi, ino)) 250 ret = true; 251 f2fs_folio_put(i, false); 252 return ret; 253 } 254 255 static void try_to_fix_pino(struct inode *inode) 256 { 257 struct f2fs_inode_info *fi = F2FS_I(inode); 258 nid_t pino; 259 260 f2fs_down_write(&fi->i_sem); 261 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 262 get_parent_ino(inode, &pino)) { 263 f2fs_i_pino_write(inode, pino); 264 file_got_pino(inode); 265 } 266 f2fs_up_write(&fi->i_sem); 267 } 268 269 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 270 int datasync, bool atomic) 271 { 272 struct inode *inode = file->f_mapping->host; 273 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 274 nid_t ino = inode->i_ino; 275 int ret = 0; 276 enum cp_reason_type cp_reason = 0; 277 struct writeback_control wbc = { 278 .sync_mode = WB_SYNC_ALL, 279 .nr_to_write = LONG_MAX, 280 }; 281 unsigned int seq_id = 0; 282 283 if (unlikely(f2fs_readonly(inode->i_sb))) 284 return 0; 285 286 trace_f2fs_sync_file_enter(inode); 287 288 if (S_ISDIR(inode->i_mode)) 289 goto go_write; 290 291 /* if fdatasync is triggered, let's do in-place-update */ 292 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 293 set_inode_flag(inode, FI_NEED_IPU); 294 ret = file_write_and_wait_range(file, start, end); 295 clear_inode_flag(inode, FI_NEED_IPU); 296 297 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 298 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 299 return ret; 300 } 301 302 /* if the inode is dirty, let's recover all the time */ 303 if (!f2fs_skip_inode_update(inode, datasync)) { 304 f2fs_write_inode(inode, NULL); 305 goto go_write; 306 } 307 308 /* 309 * if there is no written data, don't waste time to write recovery info. 310 */ 311 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 312 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 313 314 /* it may call write_inode just prior to fsync */ 315 if (need_inode_page_update(sbi, ino)) 316 goto go_write; 317 318 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 319 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 320 goto flush_out; 321 goto out; 322 } else { 323 /* 324 * for OPU case, during fsync(), node can be persisted before 325 * data when lower device doesn't support write barrier, result 326 * in data corruption after SPO. 327 * So for strict fsync mode, force to use atomic write semantics 328 * to keep write order in between data/node and last node to 329 * avoid potential data corruption. 330 */ 331 if (F2FS_OPTION(sbi).fsync_mode == 332 FSYNC_MODE_STRICT && !atomic) 333 atomic = true; 334 } 335 go_write: 336 /* 337 * Both of fdatasync() and fsync() are able to be recovered from 338 * sudden-power-off. 339 */ 340 f2fs_down_read(&F2FS_I(inode)->i_sem); 341 cp_reason = need_do_checkpoint(inode); 342 f2fs_up_read(&F2FS_I(inode)->i_sem); 343 344 if (cp_reason) { 345 /* all the dirty node pages should be flushed for POR */ 346 ret = f2fs_sync_fs(inode->i_sb, 1); 347 348 /* 349 * We've secured consistency through sync_fs. Following pino 350 * will be used only for fsynced inodes after checkpoint. 351 */ 352 try_to_fix_pino(inode); 353 clear_inode_flag(inode, FI_APPEND_WRITE); 354 clear_inode_flag(inode, FI_UPDATE_WRITE); 355 goto out; 356 } 357 sync_nodes: 358 atomic_inc(&sbi->wb_sync_req[NODE]); 359 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 360 atomic_dec(&sbi->wb_sync_req[NODE]); 361 if (ret) 362 goto out; 363 364 /* if cp_error was enabled, we should avoid infinite loop */ 365 if (unlikely(f2fs_cp_error(sbi))) { 366 ret = -EIO; 367 goto out; 368 } 369 370 if (f2fs_need_inode_block_update(sbi, ino)) { 371 f2fs_mark_inode_dirty_sync(inode, true); 372 f2fs_write_inode(inode, NULL); 373 goto sync_nodes; 374 } 375 376 /* 377 * If it's atomic_write, it's just fine to keep write ordering. So 378 * here we don't need to wait for node write completion, since we use 379 * node chain which serializes node blocks. If one of node writes are 380 * reordered, we can see simply broken chain, resulting in stopping 381 * roll-forward recovery. It means we'll recover all or none node blocks 382 * given fsync mark. 383 */ 384 if (!atomic) { 385 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 386 if (ret) 387 goto out; 388 } 389 390 /* once recovery info is written, don't need to tack this */ 391 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 392 clear_inode_flag(inode, FI_APPEND_WRITE); 393 flush_out: 394 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 395 ret = f2fs_issue_flush(sbi, inode->i_ino); 396 if (!ret) { 397 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 398 clear_inode_flag(inode, FI_UPDATE_WRITE); 399 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 400 } 401 f2fs_update_time(sbi, REQ_TIME); 402 out: 403 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 404 return ret; 405 } 406 407 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 408 { 409 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 410 return -EIO; 411 return f2fs_do_sync_file(file, start, end, datasync, false); 412 } 413 414 static bool __found_offset(struct address_space *mapping, 415 struct dnode_of_data *dn, pgoff_t index, int whence) 416 { 417 block_t blkaddr = f2fs_data_blkaddr(dn); 418 struct inode *inode = mapping->host; 419 bool compressed_cluster = false; 420 421 if (f2fs_compressed_file(inode)) { 422 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_folio, 423 ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size)); 424 425 compressed_cluster = first_blkaddr == COMPRESS_ADDR; 426 } 427 428 switch (whence) { 429 case SEEK_DATA: 430 if (__is_valid_data_blkaddr(blkaddr)) 431 return true; 432 if (blkaddr == NEW_ADDR && 433 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 434 return true; 435 if (compressed_cluster) 436 return true; 437 break; 438 case SEEK_HOLE: 439 if (compressed_cluster) 440 return false; 441 if (blkaddr == NULL_ADDR) 442 return true; 443 break; 444 } 445 return false; 446 } 447 448 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 449 { 450 struct inode *inode = file->f_mapping->host; 451 loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 452 struct dnode_of_data dn; 453 pgoff_t pgofs, end_offset; 454 loff_t data_ofs = offset; 455 loff_t isize; 456 int err = 0; 457 458 inode_lock_shared(inode); 459 460 isize = i_size_read(inode); 461 if (offset >= isize) 462 goto fail; 463 464 /* handle inline data case */ 465 if (f2fs_has_inline_data(inode)) { 466 if (whence == SEEK_HOLE) { 467 data_ofs = isize; 468 goto found; 469 } else if (whence == SEEK_DATA) { 470 data_ofs = offset; 471 goto found; 472 } 473 } 474 475 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 476 477 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 478 set_new_dnode(&dn, inode, NULL, NULL, 0); 479 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 480 if (err && err != -ENOENT) { 481 goto fail; 482 } else if (err == -ENOENT) { 483 /* direct node does not exists */ 484 if (whence == SEEK_DATA) { 485 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 486 continue; 487 } else { 488 goto found; 489 } 490 } 491 492 end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode); 493 494 /* find data/hole in dnode block */ 495 for (; dn.ofs_in_node < end_offset; 496 dn.ofs_in_node++, pgofs++, 497 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 498 block_t blkaddr; 499 500 blkaddr = f2fs_data_blkaddr(&dn); 501 502 if (__is_valid_data_blkaddr(blkaddr) && 503 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 504 blkaddr, DATA_GENERIC_ENHANCE)) { 505 f2fs_put_dnode(&dn); 506 goto fail; 507 } 508 509 if (__found_offset(file->f_mapping, &dn, 510 pgofs, whence)) { 511 f2fs_put_dnode(&dn); 512 goto found; 513 } 514 } 515 f2fs_put_dnode(&dn); 516 } 517 518 if (whence == SEEK_DATA) 519 goto fail; 520 found: 521 if (whence == SEEK_HOLE && data_ofs > isize) 522 data_ofs = isize; 523 inode_unlock_shared(inode); 524 return vfs_setpos(file, data_ofs, maxbytes); 525 fail: 526 inode_unlock_shared(inode); 527 return -ENXIO; 528 } 529 530 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 531 { 532 struct inode *inode = file->f_mapping->host; 533 loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 534 535 switch (whence) { 536 case SEEK_SET: 537 case SEEK_CUR: 538 case SEEK_END: 539 return generic_file_llseek_size(file, offset, whence, 540 maxbytes, i_size_read(inode)); 541 case SEEK_DATA: 542 case SEEK_HOLE: 543 if (offset < 0) 544 return -ENXIO; 545 return f2fs_seek_block(file, offset, whence); 546 } 547 548 return -EINVAL; 549 } 550 551 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 552 { 553 struct inode *inode = file_inode(file); 554 555 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 556 return -EIO; 557 558 if (!f2fs_is_compress_backend_ready(inode)) 559 return -EOPNOTSUPP; 560 561 file_accessed(file); 562 vma->vm_ops = &f2fs_file_vm_ops; 563 564 f2fs_down_read(&F2FS_I(inode)->i_sem); 565 set_inode_flag(inode, FI_MMAP_FILE); 566 f2fs_up_read(&F2FS_I(inode)->i_sem); 567 568 return 0; 569 } 570 571 static int finish_preallocate_blocks(struct inode *inode) 572 { 573 int ret = 0; 574 bool opened; 575 576 f2fs_down_read(&F2FS_I(inode)->i_sem); 577 opened = is_inode_flag_set(inode, FI_OPENED_FILE); 578 f2fs_up_read(&F2FS_I(inode)->i_sem); 579 if (opened) 580 return 0; 581 582 inode_lock(inode); 583 if (is_inode_flag_set(inode, FI_OPENED_FILE)) 584 goto out_unlock; 585 586 if (!file_should_truncate(inode)) 587 goto out_update; 588 589 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 590 filemap_invalidate_lock(inode->i_mapping); 591 592 truncate_setsize(inode, i_size_read(inode)); 593 ret = f2fs_truncate(inode); 594 595 filemap_invalidate_unlock(inode->i_mapping); 596 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 597 if (ret) 598 goto out_unlock; 599 600 file_dont_truncate(inode); 601 out_update: 602 f2fs_down_write(&F2FS_I(inode)->i_sem); 603 set_inode_flag(inode, FI_OPENED_FILE); 604 f2fs_up_write(&F2FS_I(inode)->i_sem); 605 out_unlock: 606 inode_unlock(inode); 607 return ret; 608 } 609 610 static int f2fs_file_open(struct inode *inode, struct file *filp) 611 { 612 int err = fscrypt_file_open(inode, filp); 613 614 if (err) 615 return err; 616 617 if (!f2fs_is_compress_backend_ready(inode)) 618 return -EOPNOTSUPP; 619 620 err = fsverity_file_open(inode, filp); 621 if (err) 622 return err; 623 624 filp->f_mode |= FMODE_NOWAIT; 625 filp->f_mode |= FMODE_CAN_ODIRECT; 626 627 err = dquot_file_open(inode, filp); 628 if (err) 629 return err; 630 631 return finish_preallocate_blocks(inode); 632 } 633 634 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 635 { 636 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 637 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 638 __le32 *addr; 639 bool compressed_cluster = false; 640 int cluster_index = 0, valid_blocks = 0; 641 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 642 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 643 block_t blkstart; 644 int blklen = 0; 645 646 addr = get_dnode_addr(dn->inode, dn->node_folio) + ofs; 647 blkstart = le32_to_cpu(*addr); 648 649 /* Assumption: truncation starts with cluster */ 650 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 651 block_t blkaddr = le32_to_cpu(*addr); 652 653 if (f2fs_compressed_file(dn->inode) && 654 !(cluster_index & (cluster_size - 1))) { 655 if (compressed_cluster) 656 f2fs_i_compr_blocks_update(dn->inode, 657 valid_blocks, false); 658 compressed_cluster = (blkaddr == COMPRESS_ADDR); 659 valid_blocks = 0; 660 } 661 662 if (blkaddr == NULL_ADDR) 663 goto next; 664 665 f2fs_set_data_blkaddr(dn, NULL_ADDR); 666 667 if (__is_valid_data_blkaddr(blkaddr)) { 668 if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE)) 669 goto next; 670 if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr, 671 DATA_GENERIC_ENHANCE)) 672 goto next; 673 if (compressed_cluster) 674 valid_blocks++; 675 } 676 677 if (blkstart + blklen == blkaddr) { 678 blklen++; 679 } else { 680 f2fs_invalidate_blocks(sbi, blkstart, blklen); 681 blkstart = blkaddr; 682 blklen = 1; 683 } 684 685 if (!released || blkaddr != COMPRESS_ADDR) 686 nr_free++; 687 688 continue; 689 690 next: 691 if (blklen) 692 f2fs_invalidate_blocks(sbi, blkstart, blklen); 693 694 blkstart = le32_to_cpu(*(addr + 1)); 695 blklen = 0; 696 } 697 698 if (blklen) 699 f2fs_invalidate_blocks(sbi, blkstart, blklen); 700 701 if (compressed_cluster) 702 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 703 704 if (nr_free) { 705 pgoff_t fofs; 706 /* 707 * once we invalidate valid blkaddr in range [ofs, ofs + count], 708 * we will invalidate all blkaddr in the whole range. 709 */ 710 fofs = f2fs_start_bidx_of_node(ofs_of_node(&dn->node_folio->page), 711 dn->inode) + ofs; 712 f2fs_update_read_extent_cache_range(dn, fofs, 0, len); 713 f2fs_update_age_extent_cache_range(dn, fofs, len); 714 dec_valid_block_count(sbi, dn->inode, nr_free); 715 } 716 dn->ofs_in_node = ofs; 717 718 f2fs_update_time(sbi, REQ_TIME); 719 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 720 dn->ofs_in_node, nr_free); 721 } 722 723 static int truncate_partial_data_page(struct inode *inode, u64 from, 724 bool cache_only) 725 { 726 loff_t offset = from & (PAGE_SIZE - 1); 727 pgoff_t index = from >> PAGE_SHIFT; 728 struct address_space *mapping = inode->i_mapping; 729 struct folio *folio; 730 731 if (!offset && !cache_only) 732 return 0; 733 734 if (cache_only) { 735 folio = filemap_lock_folio(mapping, index); 736 if (IS_ERR(folio)) 737 return 0; 738 if (folio_test_uptodate(folio)) 739 goto truncate_out; 740 f2fs_folio_put(folio, true); 741 return 0; 742 } 743 744 folio = f2fs_get_lock_data_folio(inode, index, true); 745 if (IS_ERR(folio)) 746 return PTR_ERR(folio) == -ENOENT ? 0 : PTR_ERR(folio); 747 truncate_out: 748 f2fs_folio_wait_writeback(folio, DATA, true, true); 749 folio_zero_segment(folio, offset, folio_size(folio)); 750 751 /* An encrypted inode should have a key and truncate the last page. */ 752 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 753 if (!cache_only) 754 folio_mark_dirty(folio); 755 f2fs_folio_put(folio, true); 756 return 0; 757 } 758 759 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 760 { 761 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 762 struct dnode_of_data dn; 763 pgoff_t free_from; 764 int count = 0, err = 0; 765 struct folio *ifolio; 766 bool truncate_page = false; 767 768 trace_f2fs_truncate_blocks_enter(inode, from); 769 770 if (IS_DEVICE_ALIASING(inode) && from) { 771 err = -EINVAL; 772 goto out_err; 773 } 774 775 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 776 777 if (free_from >= max_file_blocks(inode)) 778 goto free_partial; 779 780 if (lock) 781 f2fs_lock_op(sbi); 782 783 ifolio = f2fs_get_inode_folio(sbi, inode->i_ino); 784 if (IS_ERR(ifolio)) { 785 err = PTR_ERR(ifolio); 786 goto out; 787 } 788 789 if (IS_DEVICE_ALIASING(inode)) { 790 struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ]; 791 struct extent_info ei = et->largest; 792 793 f2fs_invalidate_blocks(sbi, ei.blk, ei.len); 794 795 dec_valid_block_count(sbi, inode, ei.len); 796 f2fs_update_time(sbi, REQ_TIME); 797 798 f2fs_folio_put(ifolio, true); 799 goto out; 800 } 801 802 if (f2fs_has_inline_data(inode)) { 803 f2fs_truncate_inline_inode(inode, ifolio, from); 804 f2fs_folio_put(ifolio, true); 805 truncate_page = true; 806 goto out; 807 } 808 809 set_new_dnode(&dn, inode, ifolio, NULL, 0); 810 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 811 if (err) { 812 if (err == -ENOENT) 813 goto free_next; 814 goto out; 815 } 816 817 count = ADDRS_PER_PAGE(&dn.node_folio->page, inode); 818 819 count -= dn.ofs_in_node; 820 f2fs_bug_on(sbi, count < 0); 821 822 if (dn.ofs_in_node || IS_INODE(&dn.node_folio->page)) { 823 f2fs_truncate_data_blocks_range(&dn, count); 824 free_from += count; 825 } 826 827 f2fs_put_dnode(&dn); 828 free_next: 829 err = f2fs_truncate_inode_blocks(inode, free_from); 830 out: 831 if (lock) 832 f2fs_unlock_op(sbi); 833 free_partial: 834 /* lastly zero out the first data page */ 835 if (!err) 836 err = truncate_partial_data_page(inode, from, truncate_page); 837 out_err: 838 trace_f2fs_truncate_blocks_exit(inode, err); 839 return err; 840 } 841 842 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 843 { 844 u64 free_from = from; 845 int err; 846 847 #ifdef CONFIG_F2FS_FS_COMPRESSION 848 /* 849 * for compressed file, only support cluster size 850 * aligned truncation. 851 */ 852 if (f2fs_compressed_file(inode)) 853 free_from = round_up(from, 854 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 855 #endif 856 857 err = f2fs_do_truncate_blocks(inode, free_from, lock); 858 if (err) 859 return err; 860 861 #ifdef CONFIG_F2FS_FS_COMPRESSION 862 /* 863 * For compressed file, after release compress blocks, don't allow write 864 * direct, but we should allow write direct after truncate to zero. 865 */ 866 if (f2fs_compressed_file(inode) && !free_from 867 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 868 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 869 870 if (from != free_from) { 871 err = f2fs_truncate_partial_cluster(inode, from, lock); 872 if (err) 873 return err; 874 } 875 #endif 876 877 return 0; 878 } 879 880 int f2fs_truncate(struct inode *inode) 881 { 882 int err; 883 884 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 885 return -EIO; 886 887 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 888 S_ISLNK(inode->i_mode))) 889 return 0; 890 891 trace_f2fs_truncate(inode); 892 893 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) 894 return -EIO; 895 896 err = f2fs_dquot_initialize(inode); 897 if (err) 898 return err; 899 900 /* we should check inline_data size */ 901 if (!f2fs_may_inline_data(inode)) { 902 err = f2fs_convert_inline_inode(inode); 903 if (err) 904 return err; 905 } 906 907 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 908 if (err) 909 return err; 910 911 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 912 f2fs_mark_inode_dirty_sync(inode, false); 913 return 0; 914 } 915 916 static bool f2fs_force_buffered_io(struct inode *inode, int rw) 917 { 918 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 919 920 if (!fscrypt_dio_supported(inode)) 921 return true; 922 if (fsverity_active(inode)) 923 return true; 924 if (f2fs_compressed_file(inode)) 925 return true; 926 /* 927 * only force direct read to use buffered IO, for direct write, 928 * it expects inline data conversion before committing IO. 929 */ 930 if (f2fs_has_inline_data(inode) && rw == READ) 931 return true; 932 933 /* disallow direct IO if any of devices has unaligned blksize */ 934 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 935 return true; 936 /* 937 * for blkzoned device, fallback direct IO to buffered IO, so 938 * all IOs can be serialized by log-structured write. 939 */ 940 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) && 941 !f2fs_is_pinned_file(inode)) 942 return true; 943 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 944 return true; 945 946 return false; 947 } 948 949 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 950 struct kstat *stat, u32 request_mask, unsigned int query_flags) 951 { 952 struct inode *inode = d_inode(path->dentry); 953 struct f2fs_inode_info *fi = F2FS_I(inode); 954 struct f2fs_inode *ri = NULL; 955 unsigned int flags; 956 957 if (f2fs_has_extra_attr(inode) && 958 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 959 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 960 stat->result_mask |= STATX_BTIME; 961 stat->btime.tv_sec = fi->i_crtime.tv_sec; 962 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 963 } 964 965 /* 966 * Return the DIO alignment restrictions if requested. We only return 967 * this information when requested, since on encrypted files it might 968 * take a fair bit of work to get if the file wasn't opened recently. 969 * 970 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN 971 * cannot represent that, so in that case we report no DIO support. 972 */ 973 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 974 unsigned int bsize = i_blocksize(inode); 975 976 stat->result_mask |= STATX_DIOALIGN; 977 if (!f2fs_force_buffered_io(inode, WRITE)) { 978 stat->dio_mem_align = bsize; 979 stat->dio_offset_align = bsize; 980 } 981 } 982 983 flags = fi->i_flags; 984 if (flags & F2FS_COMPR_FL) 985 stat->attributes |= STATX_ATTR_COMPRESSED; 986 if (flags & F2FS_APPEND_FL) 987 stat->attributes |= STATX_ATTR_APPEND; 988 if (IS_ENCRYPTED(inode)) 989 stat->attributes |= STATX_ATTR_ENCRYPTED; 990 if (flags & F2FS_IMMUTABLE_FL) 991 stat->attributes |= STATX_ATTR_IMMUTABLE; 992 if (flags & F2FS_NODUMP_FL) 993 stat->attributes |= STATX_ATTR_NODUMP; 994 if (IS_VERITY(inode)) 995 stat->attributes |= STATX_ATTR_VERITY; 996 997 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 998 STATX_ATTR_APPEND | 999 STATX_ATTR_ENCRYPTED | 1000 STATX_ATTR_IMMUTABLE | 1001 STATX_ATTR_NODUMP | 1002 STATX_ATTR_VERITY); 1003 1004 generic_fillattr(idmap, request_mask, inode, stat); 1005 1006 /* we need to show initial sectors used for inline_data/dentries */ 1007 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 1008 f2fs_has_inline_dentry(inode)) 1009 stat->blocks += (stat->size + 511) >> 9; 1010 1011 return 0; 1012 } 1013 1014 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1015 static void __setattr_copy(struct mnt_idmap *idmap, 1016 struct inode *inode, const struct iattr *attr) 1017 { 1018 unsigned int ia_valid = attr->ia_valid; 1019 1020 i_uid_update(idmap, attr, inode); 1021 i_gid_update(idmap, attr, inode); 1022 if (ia_valid & ATTR_ATIME) 1023 inode_set_atime_to_ts(inode, attr->ia_atime); 1024 if (ia_valid & ATTR_MTIME) 1025 inode_set_mtime_to_ts(inode, attr->ia_mtime); 1026 if (ia_valid & ATTR_CTIME) 1027 inode_set_ctime_to_ts(inode, attr->ia_ctime); 1028 if (ia_valid & ATTR_MODE) { 1029 umode_t mode = attr->ia_mode; 1030 1031 if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode))) 1032 mode &= ~S_ISGID; 1033 set_acl_inode(inode, mode); 1034 } 1035 } 1036 #else 1037 #define __setattr_copy setattr_copy 1038 #endif 1039 1040 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1041 struct iattr *attr) 1042 { 1043 struct inode *inode = d_inode(dentry); 1044 struct f2fs_inode_info *fi = F2FS_I(inode); 1045 int err; 1046 1047 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1048 return -EIO; 1049 1050 if (unlikely(IS_IMMUTABLE(inode))) 1051 return -EPERM; 1052 1053 if (unlikely(IS_APPEND(inode) && 1054 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 1055 ATTR_GID | ATTR_TIMES_SET)))) 1056 return -EPERM; 1057 1058 if ((attr->ia_valid & ATTR_SIZE)) { 1059 if (!f2fs_is_compress_backend_ready(inode) || 1060 IS_DEVICE_ALIASING(inode)) 1061 return -EOPNOTSUPP; 1062 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) && 1063 !IS_ALIGNED(attr->ia_size, 1064 F2FS_BLK_TO_BYTES(fi->i_cluster_size))) 1065 return -EINVAL; 1066 } 1067 1068 err = setattr_prepare(idmap, dentry, attr); 1069 if (err) 1070 return err; 1071 1072 err = fscrypt_prepare_setattr(dentry, attr); 1073 if (err) 1074 return err; 1075 1076 err = fsverity_prepare_setattr(dentry, attr); 1077 if (err) 1078 return err; 1079 1080 if (is_quota_modification(idmap, inode, attr)) { 1081 err = f2fs_dquot_initialize(inode); 1082 if (err) 1083 return err; 1084 } 1085 if (i_uid_needs_update(idmap, attr, inode) || 1086 i_gid_needs_update(idmap, attr, inode)) { 1087 f2fs_lock_op(F2FS_I_SB(inode)); 1088 err = dquot_transfer(idmap, inode, attr); 1089 if (err) { 1090 set_sbi_flag(F2FS_I_SB(inode), 1091 SBI_QUOTA_NEED_REPAIR); 1092 f2fs_unlock_op(F2FS_I_SB(inode)); 1093 return err; 1094 } 1095 /* 1096 * update uid/gid under lock_op(), so that dquot and inode can 1097 * be updated atomically. 1098 */ 1099 i_uid_update(idmap, attr, inode); 1100 i_gid_update(idmap, attr, inode); 1101 f2fs_mark_inode_dirty_sync(inode, true); 1102 f2fs_unlock_op(F2FS_I_SB(inode)); 1103 } 1104 1105 if (attr->ia_valid & ATTR_SIZE) { 1106 loff_t old_size = i_size_read(inode); 1107 1108 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 1109 /* 1110 * should convert inline inode before i_size_write to 1111 * keep smaller than inline_data size with inline flag. 1112 */ 1113 err = f2fs_convert_inline_inode(inode); 1114 if (err) 1115 return err; 1116 } 1117 1118 /* 1119 * wait for inflight dio, blocks should be removed after 1120 * IO completion. 1121 */ 1122 if (attr->ia_size < old_size) 1123 inode_dio_wait(inode); 1124 1125 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 1126 filemap_invalidate_lock(inode->i_mapping); 1127 1128 if (attr->ia_size > old_size) 1129 f2fs_zero_post_eof_page(inode, attr->ia_size); 1130 truncate_setsize(inode, attr->ia_size); 1131 1132 if (attr->ia_size <= old_size) 1133 err = f2fs_truncate(inode); 1134 /* 1135 * do not trim all blocks after i_size if target size is 1136 * larger than i_size. 1137 */ 1138 filemap_invalidate_unlock(inode->i_mapping); 1139 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 1140 if (err) 1141 return err; 1142 1143 spin_lock(&fi->i_size_lock); 1144 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1145 fi->last_disk_size = i_size_read(inode); 1146 spin_unlock(&fi->i_size_lock); 1147 } 1148 1149 __setattr_copy(idmap, inode, attr); 1150 1151 if (attr->ia_valid & ATTR_MODE) { 1152 err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode)); 1153 1154 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 1155 if (!err) 1156 inode->i_mode = fi->i_acl_mode; 1157 clear_inode_flag(inode, FI_ACL_MODE); 1158 } 1159 } 1160 1161 /* file size may changed here */ 1162 f2fs_mark_inode_dirty_sync(inode, true); 1163 1164 /* inode change will produce dirty node pages flushed by checkpoint */ 1165 f2fs_balance_fs(F2FS_I_SB(inode), true); 1166 1167 return err; 1168 } 1169 1170 const struct inode_operations f2fs_file_inode_operations = { 1171 .getattr = f2fs_getattr, 1172 .setattr = f2fs_setattr, 1173 .get_inode_acl = f2fs_get_acl, 1174 .set_acl = f2fs_set_acl, 1175 .listxattr = f2fs_listxattr, 1176 .fiemap = f2fs_fiemap, 1177 .fileattr_get = f2fs_fileattr_get, 1178 .fileattr_set = f2fs_fileattr_set, 1179 }; 1180 1181 static int fill_zero(struct inode *inode, pgoff_t index, 1182 loff_t start, loff_t len) 1183 { 1184 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1185 struct folio *folio; 1186 1187 if (!len) 1188 return 0; 1189 1190 f2fs_balance_fs(sbi, true); 1191 1192 f2fs_lock_op(sbi); 1193 folio = f2fs_get_new_data_folio(inode, NULL, index, false); 1194 f2fs_unlock_op(sbi); 1195 1196 if (IS_ERR(folio)) 1197 return PTR_ERR(folio); 1198 1199 f2fs_folio_wait_writeback(folio, DATA, true, true); 1200 folio_zero_range(folio, start, len); 1201 folio_mark_dirty(folio); 1202 f2fs_folio_put(folio, true); 1203 return 0; 1204 } 1205 1206 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1207 { 1208 int err; 1209 1210 while (pg_start < pg_end) { 1211 struct dnode_of_data dn; 1212 pgoff_t end_offset, count; 1213 1214 set_new_dnode(&dn, inode, NULL, NULL, 0); 1215 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1216 if (err) { 1217 if (err == -ENOENT) { 1218 pg_start = f2fs_get_next_page_offset(&dn, 1219 pg_start); 1220 continue; 1221 } 1222 return err; 1223 } 1224 1225 end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode); 1226 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1227 1228 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1229 1230 f2fs_truncate_data_blocks_range(&dn, count); 1231 f2fs_put_dnode(&dn); 1232 1233 pg_start += count; 1234 } 1235 return 0; 1236 } 1237 1238 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 1239 { 1240 pgoff_t pg_start, pg_end; 1241 loff_t off_start, off_end; 1242 int ret; 1243 1244 ret = f2fs_convert_inline_inode(inode); 1245 if (ret) 1246 return ret; 1247 1248 filemap_invalidate_lock(inode->i_mapping); 1249 f2fs_zero_post_eof_page(inode, offset + len); 1250 filemap_invalidate_unlock(inode->i_mapping); 1251 1252 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1253 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1254 1255 off_start = offset & (PAGE_SIZE - 1); 1256 off_end = (offset + len) & (PAGE_SIZE - 1); 1257 1258 if (pg_start == pg_end) { 1259 ret = fill_zero(inode, pg_start, off_start, 1260 off_end - off_start); 1261 if (ret) 1262 return ret; 1263 } else { 1264 if (off_start) { 1265 ret = fill_zero(inode, pg_start++, off_start, 1266 PAGE_SIZE - off_start); 1267 if (ret) 1268 return ret; 1269 } 1270 if (off_end) { 1271 ret = fill_zero(inode, pg_end, 0, off_end); 1272 if (ret) 1273 return ret; 1274 } 1275 1276 if (pg_start < pg_end) { 1277 loff_t blk_start, blk_end; 1278 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1279 1280 f2fs_balance_fs(sbi, true); 1281 1282 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1283 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1284 1285 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1286 filemap_invalidate_lock(inode->i_mapping); 1287 1288 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1289 1290 f2fs_lock_op(sbi); 1291 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1292 f2fs_unlock_op(sbi); 1293 1294 filemap_invalidate_unlock(inode->i_mapping); 1295 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1296 } 1297 } 1298 1299 return ret; 1300 } 1301 1302 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1303 int *do_replace, pgoff_t off, pgoff_t len) 1304 { 1305 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1306 struct dnode_of_data dn; 1307 int ret, done, i; 1308 1309 next_dnode: 1310 set_new_dnode(&dn, inode, NULL, NULL, 0); 1311 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1312 if (ret && ret != -ENOENT) { 1313 return ret; 1314 } else if (ret == -ENOENT) { 1315 if (dn.max_level == 0) 1316 return -ENOENT; 1317 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1318 dn.ofs_in_node, len); 1319 blkaddr += done; 1320 do_replace += done; 1321 goto next; 1322 } 1323 1324 done = min((pgoff_t)ADDRS_PER_PAGE(&dn.node_folio->page, inode) - 1325 dn.ofs_in_node, len); 1326 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1327 *blkaddr = f2fs_data_blkaddr(&dn); 1328 1329 if (__is_valid_data_blkaddr(*blkaddr) && 1330 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1331 DATA_GENERIC_ENHANCE)) { 1332 f2fs_put_dnode(&dn); 1333 return -EFSCORRUPTED; 1334 } 1335 1336 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1337 1338 if (f2fs_lfs_mode(sbi)) { 1339 f2fs_put_dnode(&dn); 1340 return -EOPNOTSUPP; 1341 } 1342 1343 /* do not invalidate this block address */ 1344 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1345 *do_replace = 1; 1346 } 1347 } 1348 f2fs_put_dnode(&dn); 1349 next: 1350 len -= done; 1351 off += done; 1352 if (len) 1353 goto next_dnode; 1354 return 0; 1355 } 1356 1357 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1358 int *do_replace, pgoff_t off, int len) 1359 { 1360 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1361 struct dnode_of_data dn; 1362 int ret, i; 1363 1364 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1365 if (*do_replace == 0) 1366 continue; 1367 1368 set_new_dnode(&dn, inode, NULL, NULL, 0); 1369 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1370 if (ret) { 1371 dec_valid_block_count(sbi, inode, 1); 1372 f2fs_invalidate_blocks(sbi, *blkaddr, 1); 1373 } else { 1374 f2fs_update_data_blkaddr(&dn, *blkaddr); 1375 } 1376 f2fs_put_dnode(&dn); 1377 } 1378 return 0; 1379 } 1380 1381 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1382 block_t *blkaddr, int *do_replace, 1383 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1384 { 1385 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1386 pgoff_t i = 0; 1387 int ret; 1388 1389 while (i < len) { 1390 if (blkaddr[i] == NULL_ADDR && !full) { 1391 i++; 1392 continue; 1393 } 1394 1395 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1396 struct dnode_of_data dn; 1397 struct node_info ni; 1398 size_t new_size; 1399 pgoff_t ilen; 1400 1401 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1402 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1403 if (ret) 1404 return ret; 1405 1406 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1407 if (ret) { 1408 f2fs_put_dnode(&dn); 1409 return ret; 1410 } 1411 1412 ilen = min((pgoff_t) 1413 ADDRS_PER_PAGE(&dn.node_folio->page, dst_inode) - 1414 dn.ofs_in_node, len - i); 1415 do { 1416 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1417 f2fs_truncate_data_blocks_range(&dn, 1); 1418 1419 if (do_replace[i]) { 1420 f2fs_i_blocks_write(src_inode, 1421 1, false, false); 1422 f2fs_i_blocks_write(dst_inode, 1423 1, true, false); 1424 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1425 blkaddr[i], ni.version, true, false); 1426 1427 do_replace[i] = 0; 1428 } 1429 dn.ofs_in_node++; 1430 i++; 1431 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1432 if (dst_inode->i_size < new_size) 1433 f2fs_i_size_write(dst_inode, new_size); 1434 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1435 1436 f2fs_put_dnode(&dn); 1437 } else { 1438 struct folio *fsrc, *fdst; 1439 1440 fsrc = f2fs_get_lock_data_folio(src_inode, 1441 src + i, true); 1442 if (IS_ERR(fsrc)) 1443 return PTR_ERR(fsrc); 1444 fdst = f2fs_get_new_data_folio(dst_inode, NULL, dst + i, 1445 true); 1446 if (IS_ERR(fdst)) { 1447 f2fs_folio_put(fsrc, true); 1448 return PTR_ERR(fdst); 1449 } 1450 1451 f2fs_folio_wait_writeback(fdst, DATA, true, true); 1452 1453 memcpy_folio(fdst, 0, fsrc, 0, PAGE_SIZE); 1454 folio_mark_dirty(fdst); 1455 set_page_private_gcing(&fdst->page); 1456 f2fs_folio_put(fdst, true); 1457 f2fs_folio_put(fsrc, true); 1458 1459 ret = f2fs_truncate_hole(src_inode, 1460 src + i, src + i + 1); 1461 if (ret) 1462 return ret; 1463 i++; 1464 } 1465 } 1466 return 0; 1467 } 1468 1469 static int __exchange_data_block(struct inode *src_inode, 1470 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1471 pgoff_t len, bool full) 1472 { 1473 block_t *src_blkaddr; 1474 int *do_replace; 1475 pgoff_t olen; 1476 int ret; 1477 1478 while (len) { 1479 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1480 1481 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1482 array_size(olen, sizeof(block_t)), 1483 GFP_NOFS); 1484 if (!src_blkaddr) 1485 return -ENOMEM; 1486 1487 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1488 array_size(olen, sizeof(int)), 1489 GFP_NOFS); 1490 if (!do_replace) { 1491 kvfree(src_blkaddr); 1492 return -ENOMEM; 1493 } 1494 1495 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1496 do_replace, src, olen); 1497 if (ret) 1498 goto roll_back; 1499 1500 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1501 do_replace, src, dst, olen, full); 1502 if (ret) 1503 goto roll_back; 1504 1505 src += olen; 1506 dst += olen; 1507 len -= olen; 1508 1509 kvfree(src_blkaddr); 1510 kvfree(do_replace); 1511 } 1512 return 0; 1513 1514 roll_back: 1515 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1516 kvfree(src_blkaddr); 1517 kvfree(do_replace); 1518 return ret; 1519 } 1520 1521 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1522 { 1523 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1524 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1525 pgoff_t start = offset >> PAGE_SHIFT; 1526 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1527 int ret; 1528 1529 f2fs_balance_fs(sbi, true); 1530 1531 /* avoid gc operation during block exchange */ 1532 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1533 filemap_invalidate_lock(inode->i_mapping); 1534 1535 f2fs_zero_post_eof_page(inode, offset + len); 1536 1537 f2fs_lock_op(sbi); 1538 f2fs_drop_extent_tree(inode); 1539 truncate_pagecache(inode, offset); 1540 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1541 f2fs_unlock_op(sbi); 1542 1543 filemap_invalidate_unlock(inode->i_mapping); 1544 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1545 return ret; 1546 } 1547 1548 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1549 { 1550 loff_t new_size; 1551 int ret; 1552 1553 if (offset + len >= i_size_read(inode)) 1554 return -EINVAL; 1555 1556 /* collapse range should be aligned to block size of f2fs. */ 1557 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1558 return -EINVAL; 1559 1560 ret = f2fs_convert_inline_inode(inode); 1561 if (ret) 1562 return ret; 1563 1564 /* write out all dirty pages from offset */ 1565 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1566 if (ret) 1567 return ret; 1568 1569 ret = f2fs_do_collapse(inode, offset, len); 1570 if (ret) 1571 return ret; 1572 1573 /* write out all moved pages, if possible */ 1574 filemap_invalidate_lock(inode->i_mapping); 1575 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1576 truncate_pagecache(inode, offset); 1577 1578 new_size = i_size_read(inode) - len; 1579 ret = f2fs_truncate_blocks(inode, new_size, true); 1580 filemap_invalidate_unlock(inode->i_mapping); 1581 if (!ret) 1582 f2fs_i_size_write(inode, new_size); 1583 return ret; 1584 } 1585 1586 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1587 pgoff_t end) 1588 { 1589 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1590 pgoff_t index = start; 1591 unsigned int ofs_in_node = dn->ofs_in_node; 1592 blkcnt_t count = 0; 1593 int ret; 1594 1595 for (; index < end; index++, dn->ofs_in_node++) { 1596 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1597 count++; 1598 } 1599 1600 dn->ofs_in_node = ofs_in_node; 1601 ret = f2fs_reserve_new_blocks(dn, count); 1602 if (ret) 1603 return ret; 1604 1605 dn->ofs_in_node = ofs_in_node; 1606 for (index = start; index < end; index++, dn->ofs_in_node++) { 1607 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1608 /* 1609 * f2fs_reserve_new_blocks will not guarantee entire block 1610 * allocation. 1611 */ 1612 if (dn->data_blkaddr == NULL_ADDR) { 1613 ret = -ENOSPC; 1614 break; 1615 } 1616 1617 if (dn->data_blkaddr == NEW_ADDR) 1618 continue; 1619 1620 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1621 DATA_GENERIC_ENHANCE)) { 1622 ret = -EFSCORRUPTED; 1623 break; 1624 } 1625 1626 f2fs_invalidate_blocks(sbi, dn->data_blkaddr, 1); 1627 f2fs_set_data_blkaddr(dn, NEW_ADDR); 1628 } 1629 1630 f2fs_update_read_extent_cache_range(dn, start, 0, index - start); 1631 f2fs_update_age_extent_cache_range(dn, start, index - start); 1632 1633 return ret; 1634 } 1635 1636 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1637 int mode) 1638 { 1639 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1640 struct address_space *mapping = inode->i_mapping; 1641 pgoff_t index, pg_start, pg_end; 1642 loff_t new_size = i_size_read(inode); 1643 loff_t off_start, off_end; 1644 int ret = 0; 1645 1646 ret = inode_newsize_ok(inode, (len + offset)); 1647 if (ret) 1648 return ret; 1649 1650 ret = f2fs_convert_inline_inode(inode); 1651 if (ret) 1652 return ret; 1653 1654 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1655 if (ret) 1656 return ret; 1657 1658 filemap_invalidate_lock(mapping); 1659 f2fs_zero_post_eof_page(inode, offset + len); 1660 filemap_invalidate_unlock(mapping); 1661 1662 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1663 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1664 1665 off_start = offset & (PAGE_SIZE - 1); 1666 off_end = (offset + len) & (PAGE_SIZE - 1); 1667 1668 if (pg_start == pg_end) { 1669 ret = fill_zero(inode, pg_start, off_start, 1670 off_end - off_start); 1671 if (ret) 1672 return ret; 1673 1674 new_size = max_t(loff_t, new_size, offset + len); 1675 } else { 1676 if (off_start) { 1677 ret = fill_zero(inode, pg_start++, off_start, 1678 PAGE_SIZE - off_start); 1679 if (ret) 1680 return ret; 1681 1682 new_size = max_t(loff_t, new_size, 1683 (loff_t)pg_start << PAGE_SHIFT); 1684 } 1685 1686 for (index = pg_start; index < pg_end;) { 1687 struct dnode_of_data dn; 1688 unsigned int end_offset; 1689 pgoff_t end; 1690 1691 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1692 filemap_invalidate_lock(mapping); 1693 1694 truncate_pagecache_range(inode, 1695 (loff_t)index << PAGE_SHIFT, 1696 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1697 1698 f2fs_lock_op(sbi); 1699 1700 set_new_dnode(&dn, inode, NULL, NULL, 0); 1701 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1702 if (ret) { 1703 f2fs_unlock_op(sbi); 1704 filemap_invalidate_unlock(mapping); 1705 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1706 goto out; 1707 } 1708 1709 end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode); 1710 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1711 1712 ret = f2fs_do_zero_range(&dn, index, end); 1713 f2fs_put_dnode(&dn); 1714 1715 f2fs_unlock_op(sbi); 1716 filemap_invalidate_unlock(mapping); 1717 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1718 1719 f2fs_balance_fs(sbi, dn.node_changed); 1720 1721 if (ret) 1722 goto out; 1723 1724 index = end; 1725 new_size = max_t(loff_t, new_size, 1726 (loff_t)index << PAGE_SHIFT); 1727 } 1728 1729 if (off_end) { 1730 ret = fill_zero(inode, pg_end, 0, off_end); 1731 if (ret) 1732 goto out; 1733 1734 new_size = max_t(loff_t, new_size, offset + len); 1735 } 1736 } 1737 1738 out: 1739 if (new_size > i_size_read(inode)) { 1740 if (mode & FALLOC_FL_KEEP_SIZE) 1741 file_set_keep_isize(inode); 1742 else 1743 f2fs_i_size_write(inode, new_size); 1744 } 1745 return ret; 1746 } 1747 1748 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1749 { 1750 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1751 struct address_space *mapping = inode->i_mapping; 1752 pgoff_t nr, pg_start, pg_end, delta, idx; 1753 loff_t new_size; 1754 int ret = 0; 1755 1756 new_size = i_size_read(inode) + len; 1757 ret = inode_newsize_ok(inode, new_size); 1758 if (ret) 1759 return ret; 1760 1761 if (offset >= i_size_read(inode)) 1762 return -EINVAL; 1763 1764 /* insert range should be aligned to block size of f2fs. */ 1765 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1766 return -EINVAL; 1767 1768 ret = f2fs_convert_inline_inode(inode); 1769 if (ret) 1770 return ret; 1771 1772 f2fs_balance_fs(sbi, true); 1773 1774 filemap_invalidate_lock(mapping); 1775 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1776 filemap_invalidate_unlock(mapping); 1777 if (ret) 1778 return ret; 1779 1780 /* write out all dirty pages from offset */ 1781 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1782 if (ret) 1783 return ret; 1784 1785 pg_start = offset >> PAGE_SHIFT; 1786 pg_end = (offset + len) >> PAGE_SHIFT; 1787 delta = pg_end - pg_start; 1788 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1789 1790 /* avoid gc operation during block exchange */ 1791 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1792 filemap_invalidate_lock(mapping); 1793 1794 f2fs_zero_post_eof_page(inode, offset + len); 1795 truncate_pagecache(inode, offset); 1796 1797 while (!ret && idx > pg_start) { 1798 nr = idx - pg_start; 1799 if (nr > delta) 1800 nr = delta; 1801 idx -= nr; 1802 1803 f2fs_lock_op(sbi); 1804 f2fs_drop_extent_tree(inode); 1805 1806 ret = __exchange_data_block(inode, inode, idx, 1807 idx + delta, nr, false); 1808 f2fs_unlock_op(sbi); 1809 } 1810 filemap_invalidate_unlock(mapping); 1811 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1812 if (ret) 1813 return ret; 1814 1815 /* write out all moved pages, if possible */ 1816 filemap_invalidate_lock(mapping); 1817 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1818 truncate_pagecache(inode, offset); 1819 filemap_invalidate_unlock(mapping); 1820 1821 if (!ret) 1822 f2fs_i_size_write(inode, new_size); 1823 return ret; 1824 } 1825 1826 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset, 1827 loff_t len, int mode) 1828 { 1829 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1830 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1831 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1832 .m_may_create = true }; 1833 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1834 .init_gc_type = FG_GC, 1835 .should_migrate_blocks = false, 1836 .err_gc_skipped = true, 1837 .nr_free_secs = 0 }; 1838 pgoff_t pg_start, pg_end; 1839 loff_t new_size; 1840 loff_t off_end; 1841 block_t expanded = 0; 1842 int err; 1843 1844 err = inode_newsize_ok(inode, (len + offset)); 1845 if (err) 1846 return err; 1847 1848 err = f2fs_convert_inline_inode(inode); 1849 if (err) 1850 return err; 1851 1852 filemap_invalidate_lock(inode->i_mapping); 1853 f2fs_zero_post_eof_page(inode, offset + len); 1854 filemap_invalidate_unlock(inode->i_mapping); 1855 1856 f2fs_balance_fs(sbi, true); 1857 1858 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1859 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1860 off_end = (offset + len) & (PAGE_SIZE - 1); 1861 1862 map.m_lblk = pg_start; 1863 map.m_len = pg_end - pg_start; 1864 if (off_end) 1865 map.m_len++; 1866 1867 if (!map.m_len) 1868 return 0; 1869 1870 if (f2fs_is_pinned_file(inode)) { 1871 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1872 block_t sec_len = roundup(map.m_len, sec_blks); 1873 1874 map.m_len = sec_blks; 1875 next_alloc: 1876 f2fs_down_write(&sbi->pin_sem); 1877 1878 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1879 if (has_not_enough_free_secs(sbi, 0, 0)) { 1880 f2fs_up_write(&sbi->pin_sem); 1881 err = -ENOSPC; 1882 f2fs_warn_ratelimited(sbi, 1883 "ino:%lu, start:%lu, end:%lu, need to trigger GC to " 1884 "reclaim enough free segment when checkpoint is enabled", 1885 inode->i_ino, pg_start, pg_end); 1886 goto out_err; 1887 } 1888 } 1889 1890 if (has_not_enough_free_secs(sbi, 0, f2fs_sb_has_blkzoned(sbi) ? 1891 ZONED_PIN_SEC_REQUIRED_COUNT : 1892 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1893 f2fs_down_write(&sbi->gc_lock); 1894 stat_inc_gc_call_count(sbi, FOREGROUND); 1895 err = f2fs_gc(sbi, &gc_control); 1896 if (err && err != -ENODATA) { 1897 f2fs_up_write(&sbi->pin_sem); 1898 goto out_err; 1899 } 1900 } 1901 1902 err = f2fs_allocate_pinning_section(sbi); 1903 if (err) { 1904 f2fs_up_write(&sbi->pin_sem); 1905 goto out_err; 1906 } 1907 1908 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1909 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO); 1910 file_dont_truncate(inode); 1911 1912 f2fs_up_write(&sbi->pin_sem); 1913 1914 expanded += map.m_len; 1915 sec_len -= map.m_len; 1916 map.m_lblk += map.m_len; 1917 if (!err && sec_len) 1918 goto next_alloc; 1919 1920 map.m_len = expanded; 1921 } else { 1922 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO); 1923 expanded = map.m_len; 1924 } 1925 out_err: 1926 if (err) { 1927 pgoff_t last_off; 1928 1929 if (!expanded) 1930 return err; 1931 1932 last_off = pg_start + expanded - 1; 1933 1934 /* update new size to the failed position */ 1935 new_size = (last_off == pg_end) ? offset + len : 1936 (loff_t)(last_off + 1) << PAGE_SHIFT; 1937 } else { 1938 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1939 } 1940 1941 if (new_size > i_size_read(inode)) { 1942 if (mode & FALLOC_FL_KEEP_SIZE) 1943 file_set_keep_isize(inode); 1944 else 1945 f2fs_i_size_write(inode, new_size); 1946 } 1947 1948 return err; 1949 } 1950 1951 static long f2fs_fallocate(struct file *file, int mode, 1952 loff_t offset, loff_t len) 1953 { 1954 struct inode *inode = file_inode(file); 1955 long ret = 0; 1956 1957 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1958 return -EIO; 1959 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1960 return -ENOSPC; 1961 if (!f2fs_is_compress_backend_ready(inode) || IS_DEVICE_ALIASING(inode)) 1962 return -EOPNOTSUPP; 1963 1964 /* f2fs only support ->fallocate for regular file */ 1965 if (!S_ISREG(inode->i_mode)) 1966 return -EINVAL; 1967 1968 if (IS_ENCRYPTED(inode) && 1969 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1970 return -EOPNOTSUPP; 1971 1972 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1973 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1974 FALLOC_FL_INSERT_RANGE)) 1975 return -EOPNOTSUPP; 1976 1977 inode_lock(inode); 1978 1979 /* 1980 * Pinned file should not support partial truncation since the block 1981 * can be used by applications. 1982 */ 1983 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1984 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1985 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) { 1986 ret = -EOPNOTSUPP; 1987 goto out; 1988 } 1989 1990 ret = file_modified(file); 1991 if (ret) 1992 goto out; 1993 1994 /* 1995 * wait for inflight dio, blocks should be removed after IO 1996 * completion. 1997 */ 1998 inode_dio_wait(inode); 1999 2000 if (mode & FALLOC_FL_PUNCH_HOLE) { 2001 if (offset >= inode->i_size) 2002 goto out; 2003 2004 ret = f2fs_punch_hole(inode, offset, len); 2005 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 2006 ret = f2fs_collapse_range(inode, offset, len); 2007 } else if (mode & FALLOC_FL_ZERO_RANGE) { 2008 ret = f2fs_zero_range(inode, offset, len, mode); 2009 } else if (mode & FALLOC_FL_INSERT_RANGE) { 2010 ret = f2fs_insert_range(inode, offset, len); 2011 } else { 2012 ret = f2fs_expand_inode_data(inode, offset, len, mode); 2013 } 2014 2015 if (!ret) { 2016 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2017 f2fs_mark_inode_dirty_sync(inode, false); 2018 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2019 } 2020 2021 out: 2022 inode_unlock(inode); 2023 2024 trace_f2fs_fallocate(inode, mode, offset, len, ret); 2025 return ret; 2026 } 2027 2028 static int f2fs_release_file(struct inode *inode, struct file *filp) 2029 { 2030 /* 2031 * f2fs_release_file is called at every close calls. So we should 2032 * not drop any inmemory pages by close called by other process. 2033 */ 2034 if (!(filp->f_mode & FMODE_WRITE) || 2035 atomic_read(&inode->i_writecount) != 1) 2036 return 0; 2037 2038 inode_lock(inode); 2039 f2fs_abort_atomic_write(inode, true); 2040 inode_unlock(inode); 2041 2042 return 0; 2043 } 2044 2045 static int f2fs_file_flush(struct file *file, fl_owner_t id) 2046 { 2047 struct inode *inode = file_inode(file); 2048 2049 /* 2050 * If the process doing a transaction is crashed, we should do 2051 * roll-back. Otherwise, other reader/write can see corrupted database 2052 * until all the writers close its file. Since this should be done 2053 * before dropping file lock, it needs to do in ->flush. 2054 */ 2055 if (F2FS_I(inode)->atomic_write_task == current && 2056 (current->flags & PF_EXITING)) { 2057 inode_lock(inode); 2058 f2fs_abort_atomic_write(inode, true); 2059 inode_unlock(inode); 2060 } 2061 2062 return 0; 2063 } 2064 2065 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 2066 { 2067 struct f2fs_inode_info *fi = F2FS_I(inode); 2068 u32 masked_flags = fi->i_flags & mask; 2069 2070 /* mask can be shrunk by flags_valid selector */ 2071 iflags &= mask; 2072 2073 /* Is it quota file? Do not allow user to mess with it */ 2074 if (IS_NOQUOTA(inode)) 2075 return -EPERM; 2076 2077 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 2078 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 2079 return -EOPNOTSUPP; 2080 if (!f2fs_empty_dir(inode)) 2081 return -ENOTEMPTY; 2082 } 2083 2084 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 2085 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 2086 return -EOPNOTSUPP; 2087 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 2088 return -EINVAL; 2089 } 2090 2091 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 2092 if (masked_flags & F2FS_COMPR_FL) { 2093 if (!f2fs_disable_compressed_file(inode)) 2094 return -EINVAL; 2095 } else { 2096 /* try to convert inline_data to support compression */ 2097 int err = f2fs_convert_inline_inode(inode); 2098 if (err) 2099 return err; 2100 2101 f2fs_down_write(&fi->i_sem); 2102 if (!f2fs_may_compress(inode) || 2103 (S_ISREG(inode->i_mode) && 2104 F2FS_HAS_BLOCKS(inode))) { 2105 f2fs_up_write(&fi->i_sem); 2106 return -EINVAL; 2107 } 2108 err = set_compress_context(inode); 2109 f2fs_up_write(&fi->i_sem); 2110 2111 if (err) 2112 return err; 2113 } 2114 } 2115 2116 fi->i_flags = iflags | (fi->i_flags & ~mask); 2117 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 2118 (fi->i_flags & F2FS_NOCOMP_FL)); 2119 2120 if (fi->i_flags & F2FS_PROJINHERIT_FL) 2121 set_inode_flag(inode, FI_PROJ_INHERIT); 2122 else 2123 clear_inode_flag(inode, FI_PROJ_INHERIT); 2124 2125 inode_set_ctime_current(inode); 2126 f2fs_set_inode_flags(inode); 2127 f2fs_mark_inode_dirty_sync(inode, true); 2128 return 0; 2129 } 2130 2131 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 2132 2133 /* 2134 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 2135 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 2136 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 2137 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 2138 * 2139 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 2140 * FS_IOC_FSSETXATTR is done by the VFS. 2141 */ 2142 2143 static const struct { 2144 u32 iflag; 2145 u32 fsflag; 2146 } f2fs_fsflags_map[] = { 2147 { F2FS_COMPR_FL, FS_COMPR_FL }, 2148 { F2FS_SYNC_FL, FS_SYNC_FL }, 2149 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 2150 { F2FS_APPEND_FL, FS_APPEND_FL }, 2151 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 2152 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 2153 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 2154 { F2FS_INDEX_FL, FS_INDEX_FL }, 2155 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 2156 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 2157 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 2158 }; 2159 2160 #define F2FS_GETTABLE_FS_FL ( \ 2161 FS_COMPR_FL | \ 2162 FS_SYNC_FL | \ 2163 FS_IMMUTABLE_FL | \ 2164 FS_APPEND_FL | \ 2165 FS_NODUMP_FL | \ 2166 FS_NOATIME_FL | \ 2167 FS_NOCOMP_FL | \ 2168 FS_INDEX_FL | \ 2169 FS_DIRSYNC_FL | \ 2170 FS_PROJINHERIT_FL | \ 2171 FS_ENCRYPT_FL | \ 2172 FS_INLINE_DATA_FL | \ 2173 FS_NOCOW_FL | \ 2174 FS_VERITY_FL | \ 2175 FS_CASEFOLD_FL) 2176 2177 #define F2FS_SETTABLE_FS_FL ( \ 2178 FS_COMPR_FL | \ 2179 FS_SYNC_FL | \ 2180 FS_IMMUTABLE_FL | \ 2181 FS_APPEND_FL | \ 2182 FS_NODUMP_FL | \ 2183 FS_NOATIME_FL | \ 2184 FS_NOCOMP_FL | \ 2185 FS_DIRSYNC_FL | \ 2186 FS_PROJINHERIT_FL | \ 2187 FS_CASEFOLD_FL) 2188 2189 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 2190 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 2191 { 2192 u32 fsflags = 0; 2193 int i; 2194 2195 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2196 if (iflags & f2fs_fsflags_map[i].iflag) 2197 fsflags |= f2fs_fsflags_map[i].fsflag; 2198 2199 return fsflags; 2200 } 2201 2202 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 2203 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 2204 { 2205 u32 iflags = 0; 2206 int i; 2207 2208 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2209 if (fsflags & f2fs_fsflags_map[i].fsflag) 2210 iflags |= f2fs_fsflags_map[i].iflag; 2211 2212 return iflags; 2213 } 2214 2215 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2216 { 2217 struct inode *inode = file_inode(filp); 2218 2219 return put_user(inode->i_generation, (int __user *)arg); 2220 } 2221 2222 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate) 2223 { 2224 struct inode *inode = file_inode(filp); 2225 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2226 struct f2fs_inode_info *fi = F2FS_I(inode); 2227 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2228 loff_t isize; 2229 int ret; 2230 2231 if (!(filp->f_mode & FMODE_WRITE)) 2232 return -EBADF; 2233 2234 if (!inode_owner_or_capable(idmap, inode)) 2235 return -EACCES; 2236 2237 if (!S_ISREG(inode->i_mode)) 2238 return -EINVAL; 2239 2240 if (filp->f_flags & O_DIRECT) 2241 return -EINVAL; 2242 2243 ret = mnt_want_write_file(filp); 2244 if (ret) 2245 return ret; 2246 2247 inode_lock(inode); 2248 2249 if (!f2fs_disable_compressed_file(inode) || 2250 f2fs_is_pinned_file(inode)) { 2251 ret = -EINVAL; 2252 goto out; 2253 } 2254 2255 if (f2fs_is_atomic_file(inode)) 2256 goto out; 2257 2258 ret = f2fs_convert_inline_inode(inode); 2259 if (ret) 2260 goto out; 2261 2262 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2263 f2fs_down_write(&fi->i_gc_rwsem[READ]); 2264 2265 /* 2266 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2267 * f2fs_is_atomic_file. 2268 */ 2269 if (get_dirty_pages(inode)) 2270 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2271 inode->i_ino, get_dirty_pages(inode)); 2272 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2273 if (ret) 2274 goto out_unlock; 2275 2276 /* Check if the inode already has a COW inode */ 2277 if (fi->cow_inode == NULL) { 2278 /* Create a COW inode for atomic write */ 2279 struct dentry *dentry = file_dentry(filp); 2280 struct inode *dir = d_inode(dentry->d_parent); 2281 2282 ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode); 2283 if (ret) 2284 goto out_unlock; 2285 2286 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2287 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2288 2289 /* Set the COW inode's atomic_inode to the atomic inode */ 2290 F2FS_I(fi->cow_inode)->atomic_inode = inode; 2291 } else { 2292 /* Reuse the already created COW inode */ 2293 f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode)); 2294 2295 invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1); 2296 2297 ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true); 2298 if (ret) 2299 goto out_unlock; 2300 } 2301 2302 f2fs_write_inode(inode, NULL); 2303 2304 stat_inc_atomic_inode(inode); 2305 2306 set_inode_flag(inode, FI_ATOMIC_FILE); 2307 2308 isize = i_size_read(inode); 2309 fi->original_i_size = isize; 2310 if (truncate) { 2311 set_inode_flag(inode, FI_ATOMIC_REPLACE); 2312 truncate_inode_pages_final(inode->i_mapping); 2313 f2fs_i_size_write(inode, 0); 2314 isize = 0; 2315 } 2316 f2fs_i_size_write(fi->cow_inode, isize); 2317 2318 out_unlock: 2319 f2fs_up_write(&fi->i_gc_rwsem[READ]); 2320 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2321 if (ret) 2322 goto out; 2323 2324 f2fs_update_time(sbi, REQ_TIME); 2325 fi->atomic_write_task = current; 2326 stat_update_max_atomic_write(inode); 2327 fi->atomic_write_cnt = 0; 2328 out: 2329 inode_unlock(inode); 2330 mnt_drop_write_file(filp); 2331 return ret; 2332 } 2333 2334 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2335 { 2336 struct inode *inode = file_inode(filp); 2337 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2338 int ret; 2339 2340 if (!(filp->f_mode & FMODE_WRITE)) 2341 return -EBADF; 2342 2343 if (!inode_owner_or_capable(idmap, inode)) 2344 return -EACCES; 2345 2346 ret = mnt_want_write_file(filp); 2347 if (ret) 2348 return ret; 2349 2350 f2fs_balance_fs(F2FS_I_SB(inode), true); 2351 2352 inode_lock(inode); 2353 2354 if (f2fs_is_atomic_file(inode)) { 2355 ret = f2fs_commit_atomic_write(inode); 2356 if (!ret) 2357 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2358 2359 f2fs_abort_atomic_write(inode, ret); 2360 } else { 2361 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2362 } 2363 2364 inode_unlock(inode); 2365 mnt_drop_write_file(filp); 2366 return ret; 2367 } 2368 2369 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2370 { 2371 struct inode *inode = file_inode(filp); 2372 struct mnt_idmap *idmap = file_mnt_idmap(filp); 2373 int ret; 2374 2375 if (!(filp->f_mode & FMODE_WRITE)) 2376 return -EBADF; 2377 2378 if (!inode_owner_or_capable(idmap, inode)) 2379 return -EACCES; 2380 2381 ret = mnt_want_write_file(filp); 2382 if (ret) 2383 return ret; 2384 2385 inode_lock(inode); 2386 2387 f2fs_abort_atomic_write(inode, true); 2388 2389 inode_unlock(inode); 2390 2391 mnt_drop_write_file(filp); 2392 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2393 return ret; 2394 } 2395 2396 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag, 2397 bool readonly, bool need_lock) 2398 { 2399 struct super_block *sb = sbi->sb; 2400 int ret = 0; 2401 2402 switch (flag) { 2403 case F2FS_GOING_DOWN_FULLSYNC: 2404 ret = bdev_freeze(sb->s_bdev); 2405 if (ret) 2406 goto out; 2407 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2408 bdev_thaw(sb->s_bdev); 2409 break; 2410 case F2FS_GOING_DOWN_METASYNC: 2411 /* do checkpoint only */ 2412 ret = f2fs_sync_fs(sb, 1); 2413 if (ret) { 2414 if (ret == -EIO) 2415 ret = 0; 2416 goto out; 2417 } 2418 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2419 break; 2420 case F2FS_GOING_DOWN_NOSYNC: 2421 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2422 break; 2423 case F2FS_GOING_DOWN_METAFLUSH: 2424 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2425 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2426 break; 2427 case F2FS_GOING_DOWN_NEED_FSCK: 2428 set_sbi_flag(sbi, SBI_NEED_FSCK); 2429 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2430 set_sbi_flag(sbi, SBI_IS_DIRTY); 2431 /* do checkpoint only */ 2432 ret = f2fs_sync_fs(sb, 1); 2433 if (ret == -EIO) 2434 ret = 0; 2435 goto out; 2436 default: 2437 ret = -EINVAL; 2438 goto out; 2439 } 2440 2441 if (readonly) 2442 goto out; 2443 2444 /* 2445 * grab sb->s_umount to avoid racing w/ remount() and other shutdown 2446 * paths. 2447 */ 2448 if (need_lock) 2449 down_write(&sbi->sb->s_umount); 2450 2451 f2fs_stop_gc_thread(sbi); 2452 f2fs_stop_discard_thread(sbi); 2453 2454 f2fs_drop_discard_cmd(sbi); 2455 clear_opt(sbi, DISCARD); 2456 2457 if (need_lock) 2458 up_write(&sbi->sb->s_umount); 2459 2460 f2fs_update_time(sbi, REQ_TIME); 2461 out: 2462 2463 trace_f2fs_shutdown(sbi, flag, ret); 2464 2465 return ret; 2466 } 2467 2468 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2469 { 2470 struct inode *inode = file_inode(filp); 2471 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2472 __u32 in; 2473 int ret; 2474 bool need_drop = false, readonly = false; 2475 2476 if (!capable(CAP_SYS_ADMIN)) 2477 return -EPERM; 2478 2479 if (get_user(in, (__u32 __user *)arg)) 2480 return -EFAULT; 2481 2482 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2483 ret = mnt_want_write_file(filp); 2484 if (ret) { 2485 if (ret != -EROFS) 2486 return ret; 2487 2488 /* fallback to nosync shutdown for readonly fs */ 2489 in = F2FS_GOING_DOWN_NOSYNC; 2490 readonly = true; 2491 } else { 2492 need_drop = true; 2493 } 2494 } 2495 2496 ret = f2fs_do_shutdown(sbi, in, readonly, true); 2497 2498 if (need_drop) 2499 mnt_drop_write_file(filp); 2500 2501 return ret; 2502 } 2503 2504 static int f2fs_keep_noreuse_range(struct inode *inode, 2505 loff_t offset, loff_t len) 2506 { 2507 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2508 u64 max_bytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 2509 u64 start, end; 2510 int ret = 0; 2511 2512 if (!S_ISREG(inode->i_mode)) 2513 return 0; 2514 2515 if (offset >= max_bytes || len > max_bytes || 2516 (offset + len) > max_bytes) 2517 return 0; 2518 2519 start = offset >> PAGE_SHIFT; 2520 end = DIV_ROUND_UP(offset + len, PAGE_SIZE); 2521 2522 inode_lock(inode); 2523 if (f2fs_is_atomic_file(inode)) { 2524 inode_unlock(inode); 2525 return 0; 2526 } 2527 2528 spin_lock(&sbi->inode_lock[DONATE_INODE]); 2529 /* let's remove the range, if len = 0 */ 2530 if (!len) { 2531 if (!list_empty(&F2FS_I(inode)->gdonate_list)) { 2532 list_del_init(&F2FS_I(inode)->gdonate_list); 2533 sbi->donate_files--; 2534 if (is_inode_flag_set(inode, FI_DONATE_FINISHED)) 2535 ret = -EALREADY; 2536 else 2537 set_inode_flag(inode, FI_DONATE_FINISHED); 2538 } else 2539 ret = -ENOENT; 2540 } else { 2541 if (list_empty(&F2FS_I(inode)->gdonate_list)) { 2542 list_add_tail(&F2FS_I(inode)->gdonate_list, 2543 &sbi->inode_list[DONATE_INODE]); 2544 sbi->donate_files++; 2545 } else { 2546 list_move_tail(&F2FS_I(inode)->gdonate_list, 2547 &sbi->inode_list[DONATE_INODE]); 2548 } 2549 F2FS_I(inode)->donate_start = start; 2550 F2FS_I(inode)->donate_end = end - 1; 2551 clear_inode_flag(inode, FI_DONATE_FINISHED); 2552 } 2553 spin_unlock(&sbi->inode_lock[DONATE_INODE]); 2554 inode_unlock(inode); 2555 2556 return ret; 2557 } 2558 2559 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2560 { 2561 struct inode *inode = file_inode(filp); 2562 struct super_block *sb = inode->i_sb; 2563 struct fstrim_range range; 2564 int ret; 2565 2566 if (!capable(CAP_SYS_ADMIN)) 2567 return -EPERM; 2568 2569 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2570 return -EOPNOTSUPP; 2571 2572 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2573 sizeof(range))) 2574 return -EFAULT; 2575 2576 ret = mnt_want_write_file(filp); 2577 if (ret) 2578 return ret; 2579 2580 range.minlen = max((unsigned int)range.minlen, 2581 bdev_discard_granularity(sb->s_bdev)); 2582 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2583 mnt_drop_write_file(filp); 2584 if (ret < 0) 2585 return ret; 2586 2587 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2588 sizeof(range))) 2589 return -EFAULT; 2590 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2591 return 0; 2592 } 2593 2594 static bool uuid_is_nonzero(__u8 u[16]) 2595 { 2596 int i; 2597 2598 for (i = 0; i < 16; i++) 2599 if (u[i]) 2600 return true; 2601 return false; 2602 } 2603 2604 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2605 { 2606 struct inode *inode = file_inode(filp); 2607 int ret; 2608 2609 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2610 return -EOPNOTSUPP; 2611 2612 ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2613 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2614 return ret; 2615 } 2616 2617 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2618 { 2619 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2620 return -EOPNOTSUPP; 2621 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2622 } 2623 2624 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2625 { 2626 struct inode *inode = file_inode(filp); 2627 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2628 u8 encrypt_pw_salt[16]; 2629 int err; 2630 2631 if (!f2fs_sb_has_encrypt(sbi)) 2632 return -EOPNOTSUPP; 2633 2634 err = mnt_want_write_file(filp); 2635 if (err) 2636 return err; 2637 2638 f2fs_down_write(&sbi->sb_lock); 2639 2640 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2641 goto got_it; 2642 2643 /* update superblock with uuid */ 2644 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2645 2646 err = f2fs_commit_super(sbi, false); 2647 if (err) { 2648 /* undo new data */ 2649 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2650 goto out_err; 2651 } 2652 got_it: 2653 memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16); 2654 out_err: 2655 f2fs_up_write(&sbi->sb_lock); 2656 mnt_drop_write_file(filp); 2657 2658 if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16)) 2659 err = -EFAULT; 2660 2661 return err; 2662 } 2663 2664 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2665 unsigned long arg) 2666 { 2667 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2668 return -EOPNOTSUPP; 2669 2670 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2671 } 2672 2673 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2674 { 2675 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2676 return -EOPNOTSUPP; 2677 2678 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2679 } 2680 2681 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2682 { 2683 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2684 return -EOPNOTSUPP; 2685 2686 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2687 } 2688 2689 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2690 unsigned long arg) 2691 { 2692 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2693 return -EOPNOTSUPP; 2694 2695 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2696 } 2697 2698 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2699 unsigned long arg) 2700 { 2701 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2702 return -EOPNOTSUPP; 2703 2704 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2705 } 2706 2707 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2708 { 2709 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2710 return -EOPNOTSUPP; 2711 2712 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2713 } 2714 2715 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2716 { 2717 struct inode *inode = file_inode(filp); 2718 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2719 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2720 .no_bg_gc = false, 2721 .should_migrate_blocks = false, 2722 .nr_free_secs = 0 }; 2723 __u32 sync; 2724 int ret; 2725 2726 if (!capable(CAP_SYS_ADMIN)) 2727 return -EPERM; 2728 2729 if (get_user(sync, (__u32 __user *)arg)) 2730 return -EFAULT; 2731 2732 if (f2fs_readonly(sbi->sb)) 2733 return -EROFS; 2734 2735 ret = mnt_want_write_file(filp); 2736 if (ret) 2737 return ret; 2738 2739 if (!sync) { 2740 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2741 ret = -EBUSY; 2742 goto out; 2743 } 2744 } else { 2745 f2fs_down_write(&sbi->gc_lock); 2746 } 2747 2748 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2749 gc_control.err_gc_skipped = sync; 2750 stat_inc_gc_call_count(sbi, FOREGROUND); 2751 ret = f2fs_gc(sbi, &gc_control); 2752 out: 2753 mnt_drop_write_file(filp); 2754 return ret; 2755 } 2756 2757 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2758 { 2759 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2760 struct f2fs_gc_control gc_control = { 2761 .init_gc_type = range->sync ? FG_GC : BG_GC, 2762 .no_bg_gc = false, 2763 .should_migrate_blocks = false, 2764 .err_gc_skipped = range->sync, 2765 .nr_free_secs = 0 }; 2766 u64 end; 2767 int ret; 2768 2769 if (!capable(CAP_SYS_ADMIN)) 2770 return -EPERM; 2771 if (f2fs_readonly(sbi->sb)) 2772 return -EROFS; 2773 2774 end = range->start + range->len; 2775 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2776 end >= MAX_BLKADDR(sbi)) 2777 return -EINVAL; 2778 2779 ret = mnt_want_write_file(filp); 2780 if (ret) 2781 return ret; 2782 2783 do_more: 2784 if (!range->sync) { 2785 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2786 ret = -EBUSY; 2787 goto out; 2788 } 2789 } else { 2790 f2fs_down_write(&sbi->gc_lock); 2791 } 2792 2793 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2794 stat_inc_gc_call_count(sbi, FOREGROUND); 2795 ret = f2fs_gc(sbi, &gc_control); 2796 if (ret) { 2797 if (ret == -EBUSY) 2798 ret = -EAGAIN; 2799 goto out; 2800 } 2801 range->start += CAP_BLKS_PER_SEC(sbi); 2802 if (range->start <= end) 2803 goto do_more; 2804 out: 2805 mnt_drop_write_file(filp); 2806 return ret; 2807 } 2808 2809 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2810 { 2811 struct f2fs_gc_range range; 2812 2813 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2814 sizeof(range))) 2815 return -EFAULT; 2816 return __f2fs_ioc_gc_range(filp, &range); 2817 } 2818 2819 static int f2fs_ioc_write_checkpoint(struct file *filp) 2820 { 2821 struct inode *inode = file_inode(filp); 2822 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2823 int ret; 2824 2825 if (!capable(CAP_SYS_ADMIN)) 2826 return -EPERM; 2827 2828 if (f2fs_readonly(sbi->sb)) 2829 return -EROFS; 2830 2831 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2832 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2833 return -EINVAL; 2834 } 2835 2836 ret = mnt_want_write_file(filp); 2837 if (ret) 2838 return ret; 2839 2840 ret = f2fs_sync_fs(sbi->sb, 1); 2841 2842 mnt_drop_write_file(filp); 2843 return ret; 2844 } 2845 2846 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2847 struct file *filp, 2848 struct f2fs_defragment *range) 2849 { 2850 struct inode *inode = file_inode(filp); 2851 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2852 .m_seg_type = NO_CHECK_TYPE, 2853 .m_may_create = false }; 2854 struct extent_info ei = {}; 2855 pgoff_t pg_start, pg_end, next_pgofs; 2856 unsigned int total = 0, sec_num; 2857 block_t blk_end = 0; 2858 bool fragmented = false; 2859 int err; 2860 2861 f2fs_balance_fs(sbi, true); 2862 2863 inode_lock(inode); 2864 pg_start = range->start >> PAGE_SHIFT; 2865 pg_end = min_t(pgoff_t, 2866 (range->start + range->len) >> PAGE_SHIFT, 2867 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE)); 2868 2869 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) || 2870 f2fs_is_atomic_file(inode)) { 2871 err = -EINVAL; 2872 goto unlock_out; 2873 } 2874 2875 /* if in-place-update policy is enabled, don't waste time here */ 2876 set_inode_flag(inode, FI_OPU_WRITE); 2877 if (f2fs_should_update_inplace(inode, NULL)) { 2878 err = -EINVAL; 2879 goto out; 2880 } 2881 2882 /* writeback all dirty pages in the range */ 2883 err = filemap_write_and_wait_range(inode->i_mapping, 2884 pg_start << PAGE_SHIFT, 2885 (pg_end << PAGE_SHIFT) - 1); 2886 if (err) 2887 goto out; 2888 2889 /* 2890 * lookup mapping info in extent cache, skip defragmenting if physical 2891 * block addresses are continuous. 2892 */ 2893 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) { 2894 if ((pgoff_t)ei.fofs + ei.len >= pg_end) 2895 goto out; 2896 } 2897 2898 map.m_lblk = pg_start; 2899 map.m_next_pgofs = &next_pgofs; 2900 2901 /* 2902 * lookup mapping info in dnode page cache, skip defragmenting if all 2903 * physical block addresses are continuous even if there are hole(s) 2904 * in logical blocks. 2905 */ 2906 while (map.m_lblk < pg_end) { 2907 map.m_len = pg_end - map.m_lblk; 2908 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2909 if (err) 2910 goto out; 2911 2912 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2913 map.m_lblk = next_pgofs; 2914 continue; 2915 } 2916 2917 if (blk_end && blk_end != map.m_pblk) 2918 fragmented = true; 2919 2920 /* record total count of block that we're going to move */ 2921 total += map.m_len; 2922 2923 blk_end = map.m_pblk + map.m_len; 2924 2925 map.m_lblk += map.m_len; 2926 } 2927 2928 if (!fragmented) { 2929 total = 0; 2930 goto out; 2931 } 2932 2933 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2934 2935 /* 2936 * make sure there are enough free section for LFS allocation, this can 2937 * avoid defragment running in SSR mode when free section are allocated 2938 * intensively 2939 */ 2940 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2941 err = -EAGAIN; 2942 goto out; 2943 } 2944 2945 map.m_lblk = pg_start; 2946 map.m_len = pg_end - pg_start; 2947 total = 0; 2948 2949 while (map.m_lblk < pg_end) { 2950 pgoff_t idx; 2951 int cnt = 0; 2952 2953 do_map: 2954 map.m_len = pg_end - map.m_lblk; 2955 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 2956 if (err) 2957 goto clear_out; 2958 2959 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2960 map.m_lblk = next_pgofs; 2961 goto check; 2962 } 2963 2964 set_inode_flag(inode, FI_SKIP_WRITES); 2965 2966 idx = map.m_lblk; 2967 while (idx < map.m_lblk + map.m_len && 2968 cnt < BLKS_PER_SEG(sbi)) { 2969 struct folio *folio; 2970 2971 folio = f2fs_get_lock_data_folio(inode, idx, true); 2972 if (IS_ERR(folio)) { 2973 err = PTR_ERR(folio); 2974 goto clear_out; 2975 } 2976 2977 f2fs_folio_wait_writeback(folio, DATA, true, true); 2978 2979 folio_mark_dirty(folio); 2980 set_page_private_gcing(&folio->page); 2981 f2fs_folio_put(folio, true); 2982 2983 idx++; 2984 cnt++; 2985 total++; 2986 } 2987 2988 map.m_lblk = idx; 2989 check: 2990 if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi)) 2991 goto do_map; 2992 2993 clear_inode_flag(inode, FI_SKIP_WRITES); 2994 2995 err = filemap_fdatawrite(inode->i_mapping); 2996 if (err) 2997 goto out; 2998 } 2999 clear_out: 3000 clear_inode_flag(inode, FI_SKIP_WRITES); 3001 out: 3002 clear_inode_flag(inode, FI_OPU_WRITE); 3003 unlock_out: 3004 inode_unlock(inode); 3005 if (!err) 3006 range->len = (u64)total << PAGE_SHIFT; 3007 return err; 3008 } 3009 3010 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 3011 { 3012 struct inode *inode = file_inode(filp); 3013 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3014 struct f2fs_defragment range; 3015 int err; 3016 3017 if (!capable(CAP_SYS_ADMIN)) 3018 return -EPERM; 3019 3020 if (!S_ISREG(inode->i_mode)) 3021 return -EINVAL; 3022 3023 if (f2fs_readonly(sbi->sb)) 3024 return -EROFS; 3025 3026 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 3027 sizeof(range))) 3028 return -EFAULT; 3029 3030 /* verify alignment of offset & size */ 3031 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 3032 return -EINVAL; 3033 3034 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 3035 max_file_blocks(inode))) 3036 return -EINVAL; 3037 3038 err = mnt_want_write_file(filp); 3039 if (err) 3040 return err; 3041 3042 err = f2fs_defragment_range(sbi, filp, &range); 3043 mnt_drop_write_file(filp); 3044 3045 if (range.len) 3046 f2fs_update_time(sbi, REQ_TIME); 3047 if (err < 0) 3048 return err; 3049 3050 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 3051 sizeof(range))) 3052 return -EFAULT; 3053 3054 return 0; 3055 } 3056 3057 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 3058 struct file *file_out, loff_t pos_out, size_t len) 3059 { 3060 struct inode *src = file_inode(file_in); 3061 struct inode *dst = file_inode(file_out); 3062 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 3063 size_t olen = len, dst_max_i_size = 0; 3064 size_t dst_osize; 3065 int ret; 3066 3067 if (file_in->f_path.mnt != file_out->f_path.mnt || 3068 src->i_sb != dst->i_sb) 3069 return -EXDEV; 3070 3071 if (unlikely(f2fs_readonly(src->i_sb))) 3072 return -EROFS; 3073 3074 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 3075 return -EINVAL; 3076 3077 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 3078 return -EOPNOTSUPP; 3079 3080 if (pos_out < 0 || pos_in < 0) 3081 return -EINVAL; 3082 3083 if (src == dst) { 3084 if (pos_in == pos_out) 3085 return 0; 3086 if (pos_out > pos_in && pos_out < pos_in + len) 3087 return -EINVAL; 3088 } 3089 3090 inode_lock(src); 3091 if (src != dst) { 3092 ret = -EBUSY; 3093 if (!inode_trylock(dst)) 3094 goto out; 3095 } 3096 3097 if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) || 3098 f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) { 3099 ret = -EOPNOTSUPP; 3100 goto out_unlock; 3101 } 3102 3103 if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) { 3104 ret = -EINVAL; 3105 goto out_unlock; 3106 } 3107 3108 ret = -EINVAL; 3109 if (pos_in + len > src->i_size || pos_in + len < pos_in) 3110 goto out_unlock; 3111 if (len == 0) 3112 olen = len = src->i_size - pos_in; 3113 if (pos_in + len == src->i_size) 3114 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 3115 if (len == 0) { 3116 ret = 0; 3117 goto out_unlock; 3118 } 3119 3120 dst_osize = dst->i_size; 3121 if (pos_out + olen > dst->i_size) 3122 dst_max_i_size = pos_out + olen; 3123 3124 /* verify the end result is block aligned */ 3125 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 3126 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 3127 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 3128 goto out_unlock; 3129 3130 ret = f2fs_convert_inline_inode(src); 3131 if (ret) 3132 goto out_unlock; 3133 3134 ret = f2fs_convert_inline_inode(dst); 3135 if (ret) 3136 goto out_unlock; 3137 3138 /* write out all dirty pages from offset */ 3139 ret = filemap_write_and_wait_range(src->i_mapping, 3140 pos_in, pos_in + len); 3141 if (ret) 3142 goto out_unlock; 3143 3144 ret = filemap_write_and_wait_range(dst->i_mapping, 3145 pos_out, pos_out + len); 3146 if (ret) 3147 goto out_unlock; 3148 3149 f2fs_balance_fs(sbi, true); 3150 3151 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 3152 if (src != dst) { 3153 ret = -EBUSY; 3154 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 3155 goto out_src; 3156 } 3157 3158 f2fs_lock_op(sbi); 3159 ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in), 3160 F2FS_BYTES_TO_BLK(pos_out), 3161 F2FS_BYTES_TO_BLK(len), false); 3162 3163 if (!ret) { 3164 if (dst_max_i_size) 3165 f2fs_i_size_write(dst, dst_max_i_size); 3166 else if (dst_osize != dst->i_size) 3167 f2fs_i_size_write(dst, dst_osize); 3168 } 3169 f2fs_unlock_op(sbi); 3170 3171 if (src != dst) 3172 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 3173 out_src: 3174 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 3175 if (ret) 3176 goto out_unlock; 3177 3178 inode_set_mtime_to_ts(src, inode_set_ctime_current(src)); 3179 f2fs_mark_inode_dirty_sync(src, false); 3180 if (src != dst) { 3181 inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst)); 3182 f2fs_mark_inode_dirty_sync(dst, false); 3183 } 3184 f2fs_update_time(sbi, REQ_TIME); 3185 3186 out_unlock: 3187 if (src != dst) 3188 inode_unlock(dst); 3189 out: 3190 inode_unlock(src); 3191 return ret; 3192 } 3193 3194 static int __f2fs_ioc_move_range(struct file *filp, 3195 struct f2fs_move_range *range) 3196 { 3197 int err; 3198 3199 if (!(filp->f_mode & FMODE_READ) || 3200 !(filp->f_mode & FMODE_WRITE)) 3201 return -EBADF; 3202 3203 CLASS(fd, dst)(range->dst_fd); 3204 if (fd_empty(dst)) 3205 return -EBADF; 3206 3207 if (!(fd_file(dst)->f_mode & FMODE_WRITE)) 3208 return -EBADF; 3209 3210 err = mnt_want_write_file(filp); 3211 if (err) 3212 return err; 3213 3214 err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst), 3215 range->pos_out, range->len); 3216 3217 mnt_drop_write_file(filp); 3218 return err; 3219 } 3220 3221 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 3222 { 3223 struct f2fs_move_range range; 3224 3225 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 3226 sizeof(range))) 3227 return -EFAULT; 3228 return __f2fs_ioc_move_range(filp, &range); 3229 } 3230 3231 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 3232 { 3233 struct inode *inode = file_inode(filp); 3234 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3235 struct sit_info *sm = SIT_I(sbi); 3236 unsigned int start_segno = 0, end_segno = 0; 3237 unsigned int dev_start_segno = 0, dev_end_segno = 0; 3238 struct f2fs_flush_device range; 3239 struct f2fs_gc_control gc_control = { 3240 .init_gc_type = FG_GC, 3241 .should_migrate_blocks = true, 3242 .err_gc_skipped = true, 3243 .nr_free_secs = 0 }; 3244 int ret; 3245 3246 if (!capable(CAP_SYS_ADMIN)) 3247 return -EPERM; 3248 3249 if (f2fs_readonly(sbi->sb)) 3250 return -EROFS; 3251 3252 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3253 return -EINVAL; 3254 3255 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 3256 sizeof(range))) 3257 return -EFAULT; 3258 3259 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 3260 __is_large_section(sbi)) { 3261 f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1", 3262 range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi)); 3263 return -EINVAL; 3264 } 3265 3266 ret = mnt_want_write_file(filp); 3267 if (ret) 3268 return ret; 3269 3270 if (range.dev_num != 0) 3271 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 3272 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 3273 3274 start_segno = sm->last_victim[FLUSH_DEVICE]; 3275 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 3276 start_segno = dev_start_segno; 3277 end_segno = min(start_segno + range.segments, dev_end_segno); 3278 3279 while (start_segno < end_segno) { 3280 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 3281 ret = -EBUSY; 3282 goto out; 3283 } 3284 sm->last_victim[GC_CB] = end_segno + 1; 3285 sm->last_victim[GC_GREEDY] = end_segno + 1; 3286 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 3287 3288 gc_control.victim_segno = start_segno; 3289 stat_inc_gc_call_count(sbi, FOREGROUND); 3290 ret = f2fs_gc(sbi, &gc_control); 3291 if (ret == -EAGAIN) 3292 ret = 0; 3293 else if (ret < 0) 3294 break; 3295 start_segno++; 3296 } 3297 out: 3298 mnt_drop_write_file(filp); 3299 return ret; 3300 } 3301 3302 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 3303 { 3304 struct inode *inode = file_inode(filp); 3305 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 3306 3307 /* Must validate to set it with SQLite behavior in Android. */ 3308 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 3309 3310 return put_user(sb_feature, (u32 __user *)arg); 3311 } 3312 3313 #ifdef CONFIG_QUOTA 3314 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3315 { 3316 struct dquot *transfer_to[MAXQUOTAS] = {}; 3317 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3318 struct super_block *sb = sbi->sb; 3319 int err; 3320 3321 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 3322 if (IS_ERR(transfer_to[PRJQUOTA])) 3323 return PTR_ERR(transfer_to[PRJQUOTA]); 3324 3325 err = __dquot_transfer(inode, transfer_to); 3326 if (err) 3327 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3328 dqput(transfer_to[PRJQUOTA]); 3329 return err; 3330 } 3331 3332 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3333 { 3334 struct f2fs_inode_info *fi = F2FS_I(inode); 3335 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3336 struct f2fs_inode *ri = NULL; 3337 kprojid_t kprojid; 3338 int err; 3339 3340 if (!f2fs_sb_has_project_quota(sbi)) { 3341 if (projid != F2FS_DEF_PROJID) 3342 return -EOPNOTSUPP; 3343 else 3344 return 0; 3345 } 3346 3347 if (!f2fs_has_extra_attr(inode)) 3348 return -EOPNOTSUPP; 3349 3350 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3351 3352 if (projid_eq(kprojid, fi->i_projid)) 3353 return 0; 3354 3355 err = -EPERM; 3356 /* Is it quota file? Do not allow user to mess with it */ 3357 if (IS_NOQUOTA(inode)) 3358 return err; 3359 3360 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 3361 return -EOVERFLOW; 3362 3363 err = f2fs_dquot_initialize(inode); 3364 if (err) 3365 return err; 3366 3367 f2fs_lock_op(sbi); 3368 err = f2fs_transfer_project_quota(inode, kprojid); 3369 if (err) 3370 goto out_unlock; 3371 3372 fi->i_projid = kprojid; 3373 inode_set_ctime_current(inode); 3374 f2fs_mark_inode_dirty_sync(inode, true); 3375 out_unlock: 3376 f2fs_unlock_op(sbi); 3377 return err; 3378 } 3379 #else 3380 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3381 { 3382 return 0; 3383 } 3384 3385 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3386 { 3387 if (projid != F2FS_DEF_PROJID) 3388 return -EOPNOTSUPP; 3389 return 0; 3390 } 3391 #endif 3392 3393 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3394 { 3395 struct inode *inode = d_inode(dentry); 3396 struct f2fs_inode_info *fi = F2FS_I(inode); 3397 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3398 3399 if (IS_ENCRYPTED(inode)) 3400 fsflags |= FS_ENCRYPT_FL; 3401 if (IS_VERITY(inode)) 3402 fsflags |= FS_VERITY_FL; 3403 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3404 fsflags |= FS_INLINE_DATA_FL; 3405 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3406 fsflags |= FS_NOCOW_FL; 3407 3408 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3409 3410 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3411 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3412 3413 return 0; 3414 } 3415 3416 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3417 struct dentry *dentry, struct fileattr *fa) 3418 { 3419 struct inode *inode = d_inode(dentry); 3420 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3421 u32 iflags; 3422 int err; 3423 3424 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3425 return -EIO; 3426 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3427 return -ENOSPC; 3428 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3429 return -EOPNOTSUPP; 3430 fsflags &= F2FS_SETTABLE_FS_FL; 3431 if (!fa->flags_valid) 3432 mask &= FS_COMMON_FL; 3433 3434 iflags = f2fs_fsflags_to_iflags(fsflags); 3435 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3436 return -EOPNOTSUPP; 3437 3438 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3439 if (!err) 3440 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3441 3442 return err; 3443 } 3444 3445 int f2fs_pin_file_control(struct inode *inode, bool inc) 3446 { 3447 struct f2fs_inode_info *fi = F2FS_I(inode); 3448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3449 3450 if (IS_DEVICE_ALIASING(inode)) 3451 return -EINVAL; 3452 3453 if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) { 3454 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3455 __func__, inode->i_ino, fi->i_gc_failures); 3456 clear_inode_flag(inode, FI_PIN_FILE); 3457 return -EAGAIN; 3458 } 3459 3460 /* Use i_gc_failures for normal file as a risk signal. */ 3461 if (inc) 3462 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1); 3463 3464 return 0; 3465 } 3466 3467 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3468 { 3469 struct inode *inode = file_inode(filp); 3470 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3471 __u32 pin; 3472 int ret = 0; 3473 3474 if (get_user(pin, (__u32 __user *)arg)) 3475 return -EFAULT; 3476 3477 if (!S_ISREG(inode->i_mode)) 3478 return -EINVAL; 3479 3480 if (f2fs_readonly(sbi->sb)) 3481 return -EROFS; 3482 3483 if (!pin && IS_DEVICE_ALIASING(inode)) 3484 return -EOPNOTSUPP; 3485 3486 ret = mnt_want_write_file(filp); 3487 if (ret) 3488 return ret; 3489 3490 inode_lock(inode); 3491 3492 if (f2fs_is_atomic_file(inode)) { 3493 ret = -EINVAL; 3494 goto out; 3495 } 3496 3497 if (!pin) { 3498 clear_inode_flag(inode, FI_PIN_FILE); 3499 f2fs_i_gc_failures_write(inode, 0); 3500 goto done; 3501 } else if (f2fs_is_pinned_file(inode)) { 3502 goto done; 3503 } 3504 3505 if (F2FS_HAS_BLOCKS(inode)) { 3506 ret = -EFBIG; 3507 goto out; 3508 } 3509 3510 /* Let's allow file pinning on zoned device. */ 3511 if (!f2fs_sb_has_blkzoned(sbi) && 3512 f2fs_should_update_outplace(inode, NULL)) { 3513 ret = -EINVAL; 3514 goto out; 3515 } 3516 3517 if (f2fs_pin_file_control(inode, false)) { 3518 ret = -EAGAIN; 3519 goto out; 3520 } 3521 3522 ret = f2fs_convert_inline_inode(inode); 3523 if (ret) 3524 goto out; 3525 3526 if (!f2fs_disable_compressed_file(inode)) { 3527 ret = -EOPNOTSUPP; 3528 goto out; 3529 } 3530 3531 set_inode_flag(inode, FI_PIN_FILE); 3532 ret = F2FS_I(inode)->i_gc_failures; 3533 done: 3534 f2fs_update_time(sbi, REQ_TIME); 3535 out: 3536 inode_unlock(inode); 3537 mnt_drop_write_file(filp); 3538 return ret; 3539 } 3540 3541 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3542 { 3543 struct inode *inode = file_inode(filp); 3544 __u32 pin = 0; 3545 3546 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3547 pin = F2FS_I(inode)->i_gc_failures; 3548 return put_user(pin, (u32 __user *)arg); 3549 } 3550 3551 static int f2fs_ioc_get_dev_alias_file(struct file *filp, unsigned long arg) 3552 { 3553 return put_user(IS_DEVICE_ALIASING(file_inode(filp)) ? 1 : 0, 3554 (u32 __user *)arg); 3555 } 3556 3557 static int f2fs_ioc_io_prio(struct file *filp, unsigned long arg) 3558 { 3559 struct inode *inode = file_inode(filp); 3560 __u32 level; 3561 3562 if (get_user(level, (__u32 __user *)arg)) 3563 return -EFAULT; 3564 3565 if (!S_ISREG(inode->i_mode) || level >= F2FS_IOPRIO_MAX) 3566 return -EINVAL; 3567 3568 inode_lock(inode); 3569 F2FS_I(inode)->ioprio_hint = level; 3570 inode_unlock(inode); 3571 return 0; 3572 } 3573 3574 int f2fs_precache_extents(struct inode *inode) 3575 { 3576 struct f2fs_inode_info *fi = F2FS_I(inode); 3577 struct f2fs_map_blocks map; 3578 pgoff_t m_next_extent; 3579 loff_t end; 3580 int err; 3581 3582 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3583 return -EOPNOTSUPP; 3584 3585 map.m_lblk = 0; 3586 map.m_pblk = 0; 3587 map.m_next_pgofs = NULL; 3588 map.m_next_extent = &m_next_extent; 3589 map.m_seg_type = NO_CHECK_TYPE; 3590 map.m_may_create = false; 3591 end = F2FS_BLK_ALIGN(i_size_read(inode)); 3592 3593 while (map.m_lblk < end) { 3594 map.m_len = end - map.m_lblk; 3595 3596 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3597 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE); 3598 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3599 if (err || !map.m_len) 3600 return err; 3601 3602 map.m_lblk = m_next_extent; 3603 } 3604 3605 return 0; 3606 } 3607 3608 static int f2fs_ioc_precache_extents(struct file *filp) 3609 { 3610 return f2fs_precache_extents(file_inode(filp)); 3611 } 3612 3613 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3614 { 3615 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3616 __u64 block_count; 3617 3618 if (!capable(CAP_SYS_ADMIN)) 3619 return -EPERM; 3620 3621 if (f2fs_readonly(sbi->sb)) 3622 return -EROFS; 3623 3624 if (copy_from_user(&block_count, (void __user *)arg, 3625 sizeof(block_count))) 3626 return -EFAULT; 3627 3628 return f2fs_resize_fs(filp, block_count); 3629 } 3630 3631 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3632 { 3633 struct inode *inode = file_inode(filp); 3634 3635 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3636 3637 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3638 f2fs_warn(F2FS_I_SB(inode), 3639 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3640 inode->i_ino); 3641 return -EOPNOTSUPP; 3642 } 3643 3644 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3645 } 3646 3647 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3648 { 3649 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3650 return -EOPNOTSUPP; 3651 3652 return fsverity_ioctl_measure(filp, (void __user *)arg); 3653 } 3654 3655 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3656 { 3657 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3658 return -EOPNOTSUPP; 3659 3660 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3661 } 3662 3663 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3664 { 3665 struct inode *inode = file_inode(filp); 3666 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3667 char *vbuf; 3668 int count; 3669 int err = 0; 3670 3671 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3672 if (!vbuf) 3673 return -ENOMEM; 3674 3675 f2fs_down_read(&sbi->sb_lock); 3676 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3677 ARRAY_SIZE(sbi->raw_super->volume_name), 3678 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3679 f2fs_up_read(&sbi->sb_lock); 3680 3681 if (copy_to_user((char __user *)arg, vbuf, 3682 min(FSLABEL_MAX, count))) 3683 err = -EFAULT; 3684 3685 kfree(vbuf); 3686 return err; 3687 } 3688 3689 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3690 { 3691 struct inode *inode = file_inode(filp); 3692 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3693 char *vbuf; 3694 int err = 0; 3695 3696 if (!capable(CAP_SYS_ADMIN)) 3697 return -EPERM; 3698 3699 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3700 if (IS_ERR(vbuf)) 3701 return PTR_ERR(vbuf); 3702 3703 err = mnt_want_write_file(filp); 3704 if (err) 3705 goto out; 3706 3707 f2fs_down_write(&sbi->sb_lock); 3708 3709 memset(sbi->raw_super->volume_name, 0, 3710 sizeof(sbi->raw_super->volume_name)); 3711 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3712 sbi->raw_super->volume_name, 3713 ARRAY_SIZE(sbi->raw_super->volume_name)); 3714 3715 err = f2fs_commit_super(sbi, false); 3716 3717 f2fs_up_write(&sbi->sb_lock); 3718 3719 mnt_drop_write_file(filp); 3720 out: 3721 kfree(vbuf); 3722 return err; 3723 } 3724 3725 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks) 3726 { 3727 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3728 return -EOPNOTSUPP; 3729 3730 if (!f2fs_compressed_file(inode)) 3731 return -EINVAL; 3732 3733 *blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3734 3735 return 0; 3736 } 3737 3738 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg) 3739 { 3740 struct inode *inode = file_inode(filp); 3741 __u64 blocks; 3742 int ret; 3743 3744 ret = f2fs_get_compress_blocks(inode, &blocks); 3745 if (ret < 0) 3746 return ret; 3747 3748 return put_user(blocks, (u64 __user *)arg); 3749 } 3750 3751 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3752 { 3753 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3754 unsigned int released_blocks = 0; 3755 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3756 block_t blkaddr; 3757 int i; 3758 3759 for (i = 0; i < count; i++) { 3760 blkaddr = data_blkaddr(dn->inode, dn->node_folio, 3761 dn->ofs_in_node + i); 3762 3763 if (!__is_valid_data_blkaddr(blkaddr)) 3764 continue; 3765 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3766 DATA_GENERIC_ENHANCE))) 3767 return -EFSCORRUPTED; 3768 } 3769 3770 while (count) { 3771 int compr_blocks = 0; 3772 3773 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3774 blkaddr = f2fs_data_blkaddr(dn); 3775 3776 if (i == 0) { 3777 if (blkaddr == COMPRESS_ADDR) 3778 continue; 3779 dn->ofs_in_node += cluster_size; 3780 goto next; 3781 } 3782 3783 if (__is_valid_data_blkaddr(blkaddr)) 3784 compr_blocks++; 3785 3786 if (blkaddr != NEW_ADDR) 3787 continue; 3788 3789 f2fs_set_data_blkaddr(dn, NULL_ADDR); 3790 } 3791 3792 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3793 dec_valid_block_count(sbi, dn->inode, 3794 cluster_size - compr_blocks); 3795 3796 released_blocks += cluster_size - compr_blocks; 3797 next: 3798 count -= cluster_size; 3799 } 3800 3801 return released_blocks; 3802 } 3803 3804 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3805 { 3806 struct inode *inode = file_inode(filp); 3807 struct f2fs_inode_info *fi = F2FS_I(inode); 3808 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3809 pgoff_t page_idx = 0, last_idx; 3810 unsigned int released_blocks = 0; 3811 int ret; 3812 int writecount; 3813 3814 if (!f2fs_sb_has_compression(sbi)) 3815 return -EOPNOTSUPP; 3816 3817 if (f2fs_readonly(sbi->sb)) 3818 return -EROFS; 3819 3820 ret = mnt_want_write_file(filp); 3821 if (ret) 3822 return ret; 3823 3824 f2fs_balance_fs(sbi, true); 3825 3826 inode_lock(inode); 3827 3828 writecount = atomic_read(&inode->i_writecount); 3829 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3830 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3831 ret = -EBUSY; 3832 goto out; 3833 } 3834 3835 if (!f2fs_compressed_file(inode) || 3836 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3837 ret = -EINVAL; 3838 goto out; 3839 } 3840 3841 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3842 if (ret) 3843 goto out; 3844 3845 if (!atomic_read(&fi->i_compr_blocks)) { 3846 ret = -EPERM; 3847 goto out; 3848 } 3849 3850 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3851 inode_set_ctime_current(inode); 3852 f2fs_mark_inode_dirty_sync(inode, true); 3853 3854 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3855 filemap_invalidate_lock(inode->i_mapping); 3856 3857 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3858 3859 while (page_idx < last_idx) { 3860 struct dnode_of_data dn; 3861 pgoff_t end_offset, count; 3862 3863 f2fs_lock_op(sbi); 3864 3865 set_new_dnode(&dn, inode, NULL, NULL, 0); 3866 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3867 if (ret) { 3868 f2fs_unlock_op(sbi); 3869 if (ret == -ENOENT) { 3870 page_idx = f2fs_get_next_page_offset(&dn, 3871 page_idx); 3872 ret = 0; 3873 continue; 3874 } 3875 break; 3876 } 3877 3878 end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode); 3879 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3880 count = round_up(count, fi->i_cluster_size); 3881 3882 ret = release_compress_blocks(&dn, count); 3883 3884 f2fs_put_dnode(&dn); 3885 3886 f2fs_unlock_op(sbi); 3887 3888 if (ret < 0) 3889 break; 3890 3891 page_idx += count; 3892 released_blocks += ret; 3893 } 3894 3895 filemap_invalidate_unlock(inode->i_mapping); 3896 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3897 out: 3898 if (released_blocks) 3899 f2fs_update_time(sbi, REQ_TIME); 3900 inode_unlock(inode); 3901 3902 mnt_drop_write_file(filp); 3903 3904 if (ret >= 0) { 3905 ret = put_user(released_blocks, (u64 __user *)arg); 3906 } else if (released_blocks && 3907 atomic_read(&fi->i_compr_blocks)) { 3908 set_sbi_flag(sbi, SBI_NEED_FSCK); 3909 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3910 "iblocks=%llu, released=%u, compr_blocks=%u, " 3911 "run fsck to fix.", 3912 __func__, inode->i_ino, inode->i_blocks, 3913 released_blocks, 3914 atomic_read(&fi->i_compr_blocks)); 3915 } 3916 3917 return ret; 3918 } 3919 3920 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count, 3921 unsigned int *reserved_blocks) 3922 { 3923 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3924 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3925 block_t blkaddr; 3926 int i; 3927 3928 for (i = 0; i < count; i++) { 3929 blkaddr = data_blkaddr(dn->inode, dn->node_folio, 3930 dn->ofs_in_node + i); 3931 3932 if (!__is_valid_data_blkaddr(blkaddr)) 3933 continue; 3934 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3935 DATA_GENERIC_ENHANCE))) 3936 return -EFSCORRUPTED; 3937 } 3938 3939 while (count) { 3940 int compr_blocks = 0; 3941 blkcnt_t reserved = 0; 3942 blkcnt_t to_reserved; 3943 int ret; 3944 3945 for (i = 0; i < cluster_size; i++) { 3946 blkaddr = data_blkaddr(dn->inode, dn->node_folio, 3947 dn->ofs_in_node + i); 3948 3949 if (i == 0) { 3950 if (blkaddr != COMPRESS_ADDR) { 3951 dn->ofs_in_node += cluster_size; 3952 goto next; 3953 } 3954 continue; 3955 } 3956 3957 /* 3958 * compressed cluster was not released due to it 3959 * fails in release_compress_blocks(), so NEW_ADDR 3960 * is a possible case. 3961 */ 3962 if (blkaddr == NEW_ADDR) { 3963 reserved++; 3964 continue; 3965 } 3966 if (__is_valid_data_blkaddr(blkaddr)) { 3967 compr_blocks++; 3968 continue; 3969 } 3970 } 3971 3972 to_reserved = cluster_size - compr_blocks - reserved; 3973 3974 /* for the case all blocks in cluster were reserved */ 3975 if (reserved && to_reserved == 1) { 3976 dn->ofs_in_node += cluster_size; 3977 goto next; 3978 } 3979 3980 ret = inc_valid_block_count(sbi, dn->inode, 3981 &to_reserved, false); 3982 if (unlikely(ret)) 3983 return ret; 3984 3985 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3986 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 3987 f2fs_set_data_blkaddr(dn, NEW_ADDR); 3988 } 3989 3990 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3991 3992 *reserved_blocks += to_reserved; 3993 next: 3994 count -= cluster_size; 3995 } 3996 3997 return 0; 3998 } 3999 4000 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 4001 { 4002 struct inode *inode = file_inode(filp); 4003 struct f2fs_inode_info *fi = F2FS_I(inode); 4004 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4005 pgoff_t page_idx = 0, last_idx; 4006 unsigned int reserved_blocks = 0; 4007 int ret; 4008 4009 if (!f2fs_sb_has_compression(sbi)) 4010 return -EOPNOTSUPP; 4011 4012 if (f2fs_readonly(sbi->sb)) 4013 return -EROFS; 4014 4015 ret = mnt_want_write_file(filp); 4016 if (ret) 4017 return ret; 4018 4019 f2fs_balance_fs(sbi, true); 4020 4021 inode_lock(inode); 4022 4023 if (!f2fs_compressed_file(inode) || 4024 !is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4025 ret = -EINVAL; 4026 goto unlock_inode; 4027 } 4028 4029 if (atomic_read(&fi->i_compr_blocks)) 4030 goto unlock_inode; 4031 4032 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 4033 filemap_invalidate_lock(inode->i_mapping); 4034 4035 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4036 4037 while (page_idx < last_idx) { 4038 struct dnode_of_data dn; 4039 pgoff_t end_offset, count; 4040 4041 f2fs_lock_op(sbi); 4042 4043 set_new_dnode(&dn, inode, NULL, NULL, 0); 4044 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 4045 if (ret) { 4046 f2fs_unlock_op(sbi); 4047 if (ret == -ENOENT) { 4048 page_idx = f2fs_get_next_page_offset(&dn, 4049 page_idx); 4050 ret = 0; 4051 continue; 4052 } 4053 break; 4054 } 4055 4056 end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode); 4057 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 4058 count = round_up(count, fi->i_cluster_size); 4059 4060 ret = reserve_compress_blocks(&dn, count, &reserved_blocks); 4061 4062 f2fs_put_dnode(&dn); 4063 4064 f2fs_unlock_op(sbi); 4065 4066 if (ret < 0) 4067 break; 4068 4069 page_idx += count; 4070 } 4071 4072 filemap_invalidate_unlock(inode->i_mapping); 4073 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 4074 4075 if (!ret) { 4076 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 4077 inode_set_ctime_current(inode); 4078 f2fs_mark_inode_dirty_sync(inode, true); 4079 } 4080 unlock_inode: 4081 if (reserved_blocks) 4082 f2fs_update_time(sbi, REQ_TIME); 4083 inode_unlock(inode); 4084 mnt_drop_write_file(filp); 4085 4086 if (!ret) { 4087 ret = put_user(reserved_blocks, (u64 __user *)arg); 4088 } else if (reserved_blocks && 4089 atomic_read(&fi->i_compr_blocks)) { 4090 set_sbi_flag(sbi, SBI_NEED_FSCK); 4091 f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx " 4092 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 4093 "run fsck to fix.", 4094 __func__, inode->i_ino, inode->i_blocks, 4095 reserved_blocks, 4096 atomic_read(&fi->i_compr_blocks)); 4097 } 4098 4099 return ret; 4100 } 4101 4102 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 4103 pgoff_t off, block_t block, block_t len, u32 flags) 4104 { 4105 sector_t sector = SECTOR_FROM_BLOCK(block); 4106 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 4107 int ret = 0; 4108 4109 if (flags & F2FS_TRIM_FILE_DISCARD) { 4110 if (bdev_max_secure_erase_sectors(bdev)) 4111 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 4112 GFP_NOFS); 4113 else 4114 ret = blkdev_issue_discard(bdev, sector, nr_sects, 4115 GFP_NOFS); 4116 } 4117 4118 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 4119 if (IS_ENCRYPTED(inode)) 4120 ret = fscrypt_zeroout_range(inode, off, block, len); 4121 else 4122 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 4123 GFP_NOFS, 0); 4124 } 4125 4126 return ret; 4127 } 4128 4129 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 4130 { 4131 struct inode *inode = file_inode(filp); 4132 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4133 struct address_space *mapping = inode->i_mapping; 4134 struct block_device *prev_bdev = NULL; 4135 struct f2fs_sectrim_range range; 4136 pgoff_t index, pg_end, prev_index = 0; 4137 block_t prev_block = 0, len = 0; 4138 loff_t end_addr; 4139 bool to_end = false; 4140 int ret = 0; 4141 4142 if (!(filp->f_mode & FMODE_WRITE)) 4143 return -EBADF; 4144 4145 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 4146 sizeof(range))) 4147 return -EFAULT; 4148 4149 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 4150 !S_ISREG(inode->i_mode)) 4151 return -EINVAL; 4152 4153 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 4154 !f2fs_hw_support_discard(sbi)) || 4155 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 4156 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 4157 return -EOPNOTSUPP; 4158 4159 ret = mnt_want_write_file(filp); 4160 if (ret) 4161 return ret; 4162 inode_lock(inode); 4163 4164 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 4165 range.start >= inode->i_size) { 4166 ret = -EINVAL; 4167 goto err; 4168 } 4169 4170 if (range.len == 0) 4171 goto err; 4172 4173 if (inode->i_size - range.start > range.len) { 4174 end_addr = range.start + range.len; 4175 } else { 4176 end_addr = range.len == (u64)-1 ? 4177 sbi->sb->s_maxbytes : inode->i_size; 4178 to_end = true; 4179 } 4180 4181 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 4182 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 4183 ret = -EINVAL; 4184 goto err; 4185 } 4186 4187 index = F2FS_BYTES_TO_BLK(range.start); 4188 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 4189 4190 ret = f2fs_convert_inline_inode(inode); 4191 if (ret) 4192 goto err; 4193 4194 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4195 filemap_invalidate_lock(mapping); 4196 4197 ret = filemap_write_and_wait_range(mapping, range.start, 4198 to_end ? LLONG_MAX : end_addr - 1); 4199 if (ret) 4200 goto out; 4201 4202 truncate_inode_pages_range(mapping, range.start, 4203 to_end ? -1 : end_addr - 1); 4204 4205 while (index < pg_end) { 4206 struct dnode_of_data dn; 4207 pgoff_t end_offset, count; 4208 int i; 4209 4210 set_new_dnode(&dn, inode, NULL, NULL, 0); 4211 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 4212 if (ret) { 4213 if (ret == -ENOENT) { 4214 index = f2fs_get_next_page_offset(&dn, index); 4215 continue; 4216 } 4217 goto out; 4218 } 4219 4220 end_offset = ADDRS_PER_PAGE(&dn.node_folio->page, inode); 4221 count = min(end_offset - dn.ofs_in_node, pg_end - index); 4222 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 4223 struct block_device *cur_bdev; 4224 block_t blkaddr = f2fs_data_blkaddr(&dn); 4225 4226 if (!__is_valid_data_blkaddr(blkaddr)) 4227 continue; 4228 4229 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 4230 DATA_GENERIC_ENHANCE)) { 4231 ret = -EFSCORRUPTED; 4232 f2fs_put_dnode(&dn); 4233 goto out; 4234 } 4235 4236 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 4237 if (f2fs_is_multi_device(sbi)) { 4238 int di = f2fs_target_device_index(sbi, blkaddr); 4239 4240 blkaddr -= FDEV(di).start_blk; 4241 } 4242 4243 if (len) { 4244 if (prev_bdev == cur_bdev && 4245 index == prev_index + len && 4246 blkaddr == prev_block + len) { 4247 len++; 4248 } else { 4249 ret = f2fs_secure_erase(prev_bdev, 4250 inode, prev_index, prev_block, 4251 len, range.flags); 4252 if (ret) { 4253 f2fs_put_dnode(&dn); 4254 goto out; 4255 } 4256 4257 len = 0; 4258 } 4259 } 4260 4261 if (!len) { 4262 prev_bdev = cur_bdev; 4263 prev_index = index; 4264 prev_block = blkaddr; 4265 len = 1; 4266 } 4267 } 4268 4269 f2fs_put_dnode(&dn); 4270 4271 if (fatal_signal_pending(current)) { 4272 ret = -EINTR; 4273 goto out; 4274 } 4275 cond_resched(); 4276 } 4277 4278 if (len) 4279 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 4280 prev_block, len, range.flags); 4281 f2fs_update_time(sbi, REQ_TIME); 4282 out: 4283 filemap_invalidate_unlock(mapping); 4284 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4285 err: 4286 inode_unlock(inode); 4287 mnt_drop_write_file(filp); 4288 4289 return ret; 4290 } 4291 4292 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 4293 { 4294 struct inode *inode = file_inode(filp); 4295 struct f2fs_comp_option option; 4296 4297 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 4298 return -EOPNOTSUPP; 4299 4300 inode_lock_shared(inode); 4301 4302 if (!f2fs_compressed_file(inode)) { 4303 inode_unlock_shared(inode); 4304 return -ENODATA; 4305 } 4306 4307 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 4308 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 4309 4310 inode_unlock_shared(inode); 4311 4312 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 4313 sizeof(option))) 4314 return -EFAULT; 4315 4316 return 0; 4317 } 4318 4319 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 4320 { 4321 struct inode *inode = file_inode(filp); 4322 struct f2fs_inode_info *fi = F2FS_I(inode); 4323 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4324 struct f2fs_comp_option option; 4325 int ret = 0; 4326 4327 if (!f2fs_sb_has_compression(sbi)) 4328 return -EOPNOTSUPP; 4329 4330 if (!(filp->f_mode & FMODE_WRITE)) 4331 return -EBADF; 4332 4333 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 4334 sizeof(option))) 4335 return -EFAULT; 4336 4337 if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 4338 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 4339 option.algorithm >= COMPRESS_MAX) 4340 return -EINVAL; 4341 4342 ret = mnt_want_write_file(filp); 4343 if (ret) 4344 return ret; 4345 inode_lock(inode); 4346 4347 f2fs_down_write(&F2FS_I(inode)->i_sem); 4348 if (!f2fs_compressed_file(inode)) { 4349 ret = -EINVAL; 4350 goto out; 4351 } 4352 4353 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 4354 ret = -EBUSY; 4355 goto out; 4356 } 4357 4358 if (F2FS_HAS_BLOCKS(inode)) { 4359 ret = -EFBIG; 4360 goto out; 4361 } 4362 4363 fi->i_compress_algorithm = option.algorithm; 4364 fi->i_log_cluster_size = option.log_cluster_size; 4365 fi->i_cluster_size = BIT(option.log_cluster_size); 4366 /* Set default level */ 4367 if (fi->i_compress_algorithm == COMPRESS_ZSTD) 4368 fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 4369 else 4370 fi->i_compress_level = 0; 4371 /* Adjust mount option level */ 4372 if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm && 4373 F2FS_OPTION(sbi).compress_level) 4374 fi->i_compress_level = F2FS_OPTION(sbi).compress_level; 4375 f2fs_mark_inode_dirty_sync(inode, true); 4376 4377 if (!f2fs_is_compress_backend_ready(inode)) 4378 f2fs_warn(sbi, "compression algorithm is successfully set, " 4379 "but current kernel doesn't support this algorithm."); 4380 out: 4381 f2fs_up_write(&fi->i_sem); 4382 inode_unlock(inode); 4383 mnt_drop_write_file(filp); 4384 4385 return ret; 4386 } 4387 4388 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 4389 { 4390 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 4391 struct address_space *mapping = inode->i_mapping; 4392 struct folio *folio; 4393 pgoff_t redirty_idx = page_idx; 4394 int page_len = 0, ret = 0; 4395 4396 page_cache_ra_unbounded(&ractl, len, 0); 4397 4398 do { 4399 folio = read_cache_folio(mapping, page_idx, NULL, NULL); 4400 if (IS_ERR(folio)) { 4401 ret = PTR_ERR(folio); 4402 break; 4403 } 4404 page_len += folio_nr_pages(folio) - (page_idx - folio->index); 4405 page_idx = folio_next_index(folio); 4406 } while (page_len < len); 4407 4408 do { 4409 folio = filemap_lock_folio(mapping, redirty_idx); 4410 4411 /* It will never fail, when folio has pinned above */ 4412 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(folio)); 4413 4414 f2fs_folio_wait_writeback(folio, DATA, true, true); 4415 4416 folio_mark_dirty(folio); 4417 set_page_private_gcing(&folio->page); 4418 redirty_idx = folio_next_index(folio); 4419 folio_unlock(folio); 4420 folio_put_refs(folio, 2); 4421 } while (redirty_idx < page_idx); 4422 4423 return ret; 4424 } 4425 4426 static int f2fs_ioc_decompress_file(struct file *filp) 4427 { 4428 struct inode *inode = file_inode(filp); 4429 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4430 struct f2fs_inode_info *fi = F2FS_I(inode); 4431 pgoff_t page_idx = 0, last_idx, cluster_idx; 4432 int ret; 4433 4434 if (!f2fs_sb_has_compression(sbi) || 4435 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4436 return -EOPNOTSUPP; 4437 4438 if (!(filp->f_mode & FMODE_WRITE)) 4439 return -EBADF; 4440 4441 f2fs_balance_fs(sbi, true); 4442 4443 ret = mnt_want_write_file(filp); 4444 if (ret) 4445 return ret; 4446 inode_lock(inode); 4447 4448 if (!f2fs_is_compress_backend_ready(inode)) { 4449 ret = -EOPNOTSUPP; 4450 goto out; 4451 } 4452 4453 if (!f2fs_compressed_file(inode) || 4454 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4455 ret = -EINVAL; 4456 goto out; 4457 } 4458 4459 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4460 if (ret) 4461 goto out; 4462 4463 if (!atomic_read(&fi->i_compr_blocks)) 4464 goto out; 4465 4466 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4467 last_idx >>= fi->i_log_cluster_size; 4468 4469 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) { 4470 page_idx = cluster_idx << fi->i_log_cluster_size; 4471 4472 if (!f2fs_is_compressed_cluster(inode, page_idx)) 4473 continue; 4474 4475 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size); 4476 if (ret < 0) 4477 break; 4478 4479 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) { 4480 ret = filemap_fdatawrite(inode->i_mapping); 4481 if (ret < 0) 4482 break; 4483 } 4484 4485 cond_resched(); 4486 if (fatal_signal_pending(current)) { 4487 ret = -EINTR; 4488 break; 4489 } 4490 } 4491 4492 if (!ret) 4493 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4494 LLONG_MAX); 4495 4496 if (ret) 4497 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4498 __func__, ret); 4499 f2fs_update_time(sbi, REQ_TIME); 4500 out: 4501 inode_unlock(inode); 4502 mnt_drop_write_file(filp); 4503 4504 return ret; 4505 } 4506 4507 static int f2fs_ioc_compress_file(struct file *filp) 4508 { 4509 struct inode *inode = file_inode(filp); 4510 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4511 struct f2fs_inode_info *fi = F2FS_I(inode); 4512 pgoff_t page_idx = 0, last_idx, cluster_idx; 4513 int ret; 4514 4515 if (!f2fs_sb_has_compression(sbi) || 4516 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4517 return -EOPNOTSUPP; 4518 4519 if (!(filp->f_mode & FMODE_WRITE)) 4520 return -EBADF; 4521 4522 f2fs_balance_fs(sbi, true); 4523 4524 ret = mnt_want_write_file(filp); 4525 if (ret) 4526 return ret; 4527 inode_lock(inode); 4528 4529 if (!f2fs_is_compress_backend_ready(inode)) { 4530 ret = -EOPNOTSUPP; 4531 goto out; 4532 } 4533 4534 if (!f2fs_compressed_file(inode) || 4535 is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4536 ret = -EINVAL; 4537 goto out; 4538 } 4539 4540 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4541 if (ret) 4542 goto out; 4543 4544 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4545 4546 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4547 last_idx >>= fi->i_log_cluster_size; 4548 4549 for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) { 4550 page_idx = cluster_idx << fi->i_log_cluster_size; 4551 4552 if (f2fs_is_sparse_cluster(inode, page_idx)) 4553 continue; 4554 4555 ret = redirty_blocks(inode, page_idx, fi->i_cluster_size); 4556 if (ret < 0) 4557 break; 4558 4559 if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) { 4560 ret = filemap_fdatawrite(inode->i_mapping); 4561 if (ret < 0) 4562 break; 4563 } 4564 4565 cond_resched(); 4566 if (fatal_signal_pending(current)) { 4567 ret = -EINTR; 4568 break; 4569 } 4570 } 4571 4572 if (!ret) 4573 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4574 LLONG_MAX); 4575 4576 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4577 4578 if (ret) 4579 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4580 __func__, ret); 4581 f2fs_update_time(sbi, REQ_TIME); 4582 out: 4583 inode_unlock(inode); 4584 mnt_drop_write_file(filp); 4585 4586 return ret; 4587 } 4588 4589 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4590 { 4591 switch (cmd) { 4592 case FS_IOC_GETVERSION: 4593 return f2fs_ioc_getversion(filp, arg); 4594 case F2FS_IOC_START_ATOMIC_WRITE: 4595 return f2fs_ioc_start_atomic_write(filp, false); 4596 case F2FS_IOC_START_ATOMIC_REPLACE: 4597 return f2fs_ioc_start_atomic_write(filp, true); 4598 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4599 return f2fs_ioc_commit_atomic_write(filp); 4600 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4601 return f2fs_ioc_abort_atomic_write(filp); 4602 case F2FS_IOC_START_VOLATILE_WRITE: 4603 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4604 return -EOPNOTSUPP; 4605 case F2FS_IOC_SHUTDOWN: 4606 return f2fs_ioc_shutdown(filp, arg); 4607 case FITRIM: 4608 return f2fs_ioc_fitrim(filp, arg); 4609 case FS_IOC_SET_ENCRYPTION_POLICY: 4610 return f2fs_ioc_set_encryption_policy(filp, arg); 4611 case FS_IOC_GET_ENCRYPTION_POLICY: 4612 return f2fs_ioc_get_encryption_policy(filp, arg); 4613 case FS_IOC_GET_ENCRYPTION_PWSALT: 4614 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4615 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4616 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4617 case FS_IOC_ADD_ENCRYPTION_KEY: 4618 return f2fs_ioc_add_encryption_key(filp, arg); 4619 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4620 return f2fs_ioc_remove_encryption_key(filp, arg); 4621 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4622 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4623 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4624 return f2fs_ioc_get_encryption_key_status(filp, arg); 4625 case FS_IOC_GET_ENCRYPTION_NONCE: 4626 return f2fs_ioc_get_encryption_nonce(filp, arg); 4627 case F2FS_IOC_GARBAGE_COLLECT: 4628 return f2fs_ioc_gc(filp, arg); 4629 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4630 return f2fs_ioc_gc_range(filp, arg); 4631 case F2FS_IOC_WRITE_CHECKPOINT: 4632 return f2fs_ioc_write_checkpoint(filp); 4633 case F2FS_IOC_DEFRAGMENT: 4634 return f2fs_ioc_defragment(filp, arg); 4635 case F2FS_IOC_MOVE_RANGE: 4636 return f2fs_ioc_move_range(filp, arg); 4637 case F2FS_IOC_FLUSH_DEVICE: 4638 return f2fs_ioc_flush_device(filp, arg); 4639 case F2FS_IOC_GET_FEATURES: 4640 return f2fs_ioc_get_features(filp, arg); 4641 case F2FS_IOC_GET_PIN_FILE: 4642 return f2fs_ioc_get_pin_file(filp, arg); 4643 case F2FS_IOC_SET_PIN_FILE: 4644 return f2fs_ioc_set_pin_file(filp, arg); 4645 case F2FS_IOC_PRECACHE_EXTENTS: 4646 return f2fs_ioc_precache_extents(filp); 4647 case F2FS_IOC_RESIZE_FS: 4648 return f2fs_ioc_resize_fs(filp, arg); 4649 case FS_IOC_ENABLE_VERITY: 4650 return f2fs_ioc_enable_verity(filp, arg); 4651 case FS_IOC_MEASURE_VERITY: 4652 return f2fs_ioc_measure_verity(filp, arg); 4653 case FS_IOC_READ_VERITY_METADATA: 4654 return f2fs_ioc_read_verity_metadata(filp, arg); 4655 case FS_IOC_GETFSLABEL: 4656 return f2fs_ioc_getfslabel(filp, arg); 4657 case FS_IOC_SETFSLABEL: 4658 return f2fs_ioc_setfslabel(filp, arg); 4659 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4660 return f2fs_ioc_get_compress_blocks(filp, arg); 4661 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4662 return f2fs_release_compress_blocks(filp, arg); 4663 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4664 return f2fs_reserve_compress_blocks(filp, arg); 4665 case F2FS_IOC_SEC_TRIM_FILE: 4666 return f2fs_sec_trim_file(filp, arg); 4667 case F2FS_IOC_GET_COMPRESS_OPTION: 4668 return f2fs_ioc_get_compress_option(filp, arg); 4669 case F2FS_IOC_SET_COMPRESS_OPTION: 4670 return f2fs_ioc_set_compress_option(filp, arg); 4671 case F2FS_IOC_DECOMPRESS_FILE: 4672 return f2fs_ioc_decompress_file(filp); 4673 case F2FS_IOC_COMPRESS_FILE: 4674 return f2fs_ioc_compress_file(filp); 4675 case F2FS_IOC_GET_DEV_ALIAS_FILE: 4676 return f2fs_ioc_get_dev_alias_file(filp, arg); 4677 case F2FS_IOC_IO_PRIO: 4678 return f2fs_ioc_io_prio(filp, arg); 4679 default: 4680 return -ENOTTY; 4681 } 4682 } 4683 4684 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4685 { 4686 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4687 return -EIO; 4688 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4689 return -ENOSPC; 4690 4691 return __f2fs_ioctl(filp, cmd, arg); 4692 } 4693 4694 /* 4695 * Return %true if the given read or write request should use direct I/O, or 4696 * %false if it should use buffered I/O. 4697 */ 4698 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4699 struct iov_iter *iter) 4700 { 4701 unsigned int align; 4702 4703 if (!(iocb->ki_flags & IOCB_DIRECT)) 4704 return false; 4705 4706 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) 4707 return false; 4708 4709 /* 4710 * Direct I/O not aligned to the disk's logical_block_size will be 4711 * attempted, but will fail with -EINVAL. 4712 * 4713 * f2fs additionally requires that direct I/O be aligned to the 4714 * filesystem block size, which is often a stricter requirement. 4715 * However, f2fs traditionally falls back to buffered I/O on requests 4716 * that are logical_block_size-aligned but not fs-block aligned. 4717 * 4718 * The below logic implements this behavior. 4719 */ 4720 align = iocb->ki_pos | iov_iter_alignment(iter); 4721 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4722 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4723 return false; 4724 4725 return true; 4726 } 4727 4728 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4729 unsigned int flags) 4730 { 4731 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4732 4733 dec_page_count(sbi, F2FS_DIO_READ); 4734 if (error) 4735 return error; 4736 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size); 4737 return 0; 4738 } 4739 4740 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4741 .end_io = f2fs_dio_read_end_io, 4742 }; 4743 4744 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4745 { 4746 struct file *file = iocb->ki_filp; 4747 struct inode *inode = file_inode(file); 4748 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4749 struct f2fs_inode_info *fi = F2FS_I(inode); 4750 const loff_t pos = iocb->ki_pos; 4751 const size_t count = iov_iter_count(to); 4752 struct iomap_dio *dio; 4753 ssize_t ret; 4754 4755 if (count == 0) 4756 return 0; /* skip atime update */ 4757 4758 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4759 4760 if (iocb->ki_flags & IOCB_NOWAIT) { 4761 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4762 ret = -EAGAIN; 4763 goto out; 4764 } 4765 } else { 4766 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4767 } 4768 4769 /* dio is not compatible w/ atomic file */ 4770 if (f2fs_is_atomic_file(inode)) { 4771 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4772 ret = -EOPNOTSUPP; 4773 goto out; 4774 } 4775 4776 /* 4777 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4778 * the higher-level function iomap_dio_rw() in order to ensure that the 4779 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4780 */ 4781 inc_page_count(sbi, F2FS_DIO_READ); 4782 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4783 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4784 if (IS_ERR_OR_NULL(dio)) { 4785 ret = PTR_ERR_OR_ZERO(dio); 4786 if (ret != -EIOCBQUEUED) 4787 dec_page_count(sbi, F2FS_DIO_READ); 4788 } else { 4789 ret = iomap_dio_complete(dio); 4790 } 4791 4792 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4793 4794 file_accessed(file); 4795 out: 4796 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4797 return ret; 4798 } 4799 4800 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count, 4801 int rw) 4802 { 4803 struct inode *inode = file_inode(file); 4804 char *buf, *path; 4805 4806 buf = f2fs_getname(F2FS_I_SB(inode)); 4807 if (!buf) 4808 return; 4809 path = dentry_path_raw(file_dentry(file), buf, PATH_MAX); 4810 if (IS_ERR(path)) 4811 goto free_buf; 4812 if (rw == WRITE) 4813 trace_f2fs_datawrite_start(inode, pos, count, 4814 current->pid, path, current->comm); 4815 else 4816 trace_f2fs_dataread_start(inode, pos, count, 4817 current->pid, path, current->comm); 4818 free_buf: 4819 f2fs_putname(buf); 4820 } 4821 4822 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4823 { 4824 struct inode *inode = file_inode(iocb->ki_filp); 4825 const loff_t pos = iocb->ki_pos; 4826 ssize_t ret; 4827 4828 if (!f2fs_is_compress_backend_ready(inode)) 4829 return -EOPNOTSUPP; 4830 4831 if (trace_f2fs_dataread_start_enabled()) 4832 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 4833 iov_iter_count(to), READ); 4834 4835 /* In LFS mode, if there is inflight dio, wait for its completion */ 4836 if (f2fs_lfs_mode(F2FS_I_SB(inode)) && 4837 get_pages(F2FS_I_SB(inode), F2FS_DIO_WRITE)) 4838 inode_dio_wait(inode); 4839 4840 if (f2fs_should_use_dio(inode, iocb, to)) { 4841 ret = f2fs_dio_read_iter(iocb, to); 4842 } else { 4843 ret = filemap_read(iocb, to, 0); 4844 if (ret > 0) 4845 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4846 APP_BUFFERED_READ_IO, ret); 4847 } 4848 if (trace_f2fs_dataread_end_enabled()) 4849 trace_f2fs_dataread_end(inode, pos, ret); 4850 return ret; 4851 } 4852 4853 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos, 4854 struct pipe_inode_info *pipe, 4855 size_t len, unsigned int flags) 4856 { 4857 struct inode *inode = file_inode(in); 4858 const loff_t pos = *ppos; 4859 ssize_t ret; 4860 4861 if (!f2fs_is_compress_backend_ready(inode)) 4862 return -EOPNOTSUPP; 4863 4864 if (trace_f2fs_dataread_start_enabled()) 4865 f2fs_trace_rw_file_path(in, pos, len, READ); 4866 4867 ret = filemap_splice_read(in, ppos, pipe, len, flags); 4868 if (ret > 0) 4869 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4870 APP_BUFFERED_READ_IO, ret); 4871 4872 if (trace_f2fs_dataread_end_enabled()) 4873 trace_f2fs_dataread_end(inode, pos, ret); 4874 return ret; 4875 } 4876 4877 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4878 { 4879 struct file *file = iocb->ki_filp; 4880 struct inode *inode = file_inode(file); 4881 ssize_t count; 4882 int err; 4883 4884 if (IS_IMMUTABLE(inode)) 4885 return -EPERM; 4886 4887 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4888 return -EPERM; 4889 4890 count = generic_write_checks(iocb, from); 4891 if (count <= 0) 4892 return count; 4893 4894 err = file_modified(file); 4895 if (err) 4896 return err; 4897 4898 filemap_invalidate_lock(inode->i_mapping); 4899 f2fs_zero_post_eof_page(inode, iocb->ki_pos + iov_iter_count(from)); 4900 filemap_invalidate_unlock(inode->i_mapping); 4901 return count; 4902 } 4903 4904 /* 4905 * Preallocate blocks for a write request, if it is possible and helpful to do 4906 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4907 * blocks were preallocated, or a negative errno value if something went 4908 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4909 * requested blocks (not just some of them) have been allocated. 4910 */ 4911 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4912 bool dio) 4913 { 4914 struct inode *inode = file_inode(iocb->ki_filp); 4915 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4916 const loff_t pos = iocb->ki_pos; 4917 const size_t count = iov_iter_count(iter); 4918 struct f2fs_map_blocks map = {}; 4919 int flag; 4920 int ret; 4921 4922 /* If it will be an out-of-place direct write, don't bother. */ 4923 if (dio && f2fs_lfs_mode(sbi)) 4924 return 0; 4925 /* 4926 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4927 * buffered IO, if DIO meets any holes. 4928 */ 4929 if (dio && i_size_read(inode) && 4930 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4931 return 0; 4932 4933 /* No-wait I/O can't allocate blocks. */ 4934 if (iocb->ki_flags & IOCB_NOWAIT) 4935 return 0; 4936 4937 /* If it will be a short write, don't bother. */ 4938 if (fault_in_iov_iter_readable(iter, count)) 4939 return 0; 4940 4941 if (f2fs_has_inline_data(inode)) { 4942 /* If the data will fit inline, don't bother. */ 4943 if (pos + count <= MAX_INLINE_DATA(inode)) 4944 return 0; 4945 ret = f2fs_convert_inline_inode(inode); 4946 if (ret) 4947 return ret; 4948 } 4949 4950 /* Do not preallocate blocks that will be written partially in 4KB. */ 4951 map.m_lblk = F2FS_BLK_ALIGN(pos); 4952 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4953 if (map.m_len > map.m_lblk) 4954 map.m_len -= map.m_lblk; 4955 else 4956 return 0; 4957 4958 if (!IS_DEVICE_ALIASING(inode)) 4959 map.m_may_create = true; 4960 if (dio) { 4961 map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi, 4962 inode->i_write_hint); 4963 flag = F2FS_GET_BLOCK_PRE_DIO; 4964 } else { 4965 map.m_seg_type = NO_CHECK_TYPE; 4966 flag = F2FS_GET_BLOCK_PRE_AIO; 4967 } 4968 4969 ret = f2fs_map_blocks(inode, &map, flag); 4970 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4971 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4972 return ret; 4973 if (ret == 0) 4974 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4975 return map.m_len; 4976 } 4977 4978 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4979 struct iov_iter *from) 4980 { 4981 struct file *file = iocb->ki_filp; 4982 struct inode *inode = file_inode(file); 4983 ssize_t ret; 4984 4985 if (iocb->ki_flags & IOCB_NOWAIT) 4986 return -EOPNOTSUPP; 4987 4988 ret = generic_perform_write(iocb, from); 4989 4990 if (ret > 0) { 4991 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4992 APP_BUFFERED_IO, ret); 4993 } 4994 return ret; 4995 } 4996 4997 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4998 unsigned int flags) 4999 { 5000 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 5001 5002 dec_page_count(sbi, F2FS_DIO_WRITE); 5003 if (error) 5004 return error; 5005 f2fs_update_time(sbi, REQ_TIME); 5006 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size); 5007 return 0; 5008 } 5009 5010 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter, 5011 struct bio *bio, loff_t file_offset) 5012 { 5013 struct inode *inode = iter->inode; 5014 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 5015 enum log_type type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint); 5016 enum temp_type temp = f2fs_get_segment_temp(sbi, type); 5017 5018 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp); 5019 submit_bio(bio); 5020 } 5021 5022 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 5023 .end_io = f2fs_dio_write_end_io, 5024 .submit_io = f2fs_dio_write_submit_io, 5025 }; 5026 5027 static void f2fs_flush_buffered_write(struct address_space *mapping, 5028 loff_t start_pos, loff_t end_pos) 5029 { 5030 int ret; 5031 5032 ret = filemap_write_and_wait_range(mapping, start_pos, end_pos); 5033 if (ret < 0) 5034 return; 5035 invalidate_mapping_pages(mapping, 5036 start_pos >> PAGE_SHIFT, 5037 end_pos >> PAGE_SHIFT); 5038 } 5039 5040 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 5041 bool *may_need_sync) 5042 { 5043 struct file *file = iocb->ki_filp; 5044 struct inode *inode = file_inode(file); 5045 struct f2fs_inode_info *fi = F2FS_I(inode); 5046 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 5047 const bool do_opu = f2fs_lfs_mode(sbi); 5048 const loff_t pos = iocb->ki_pos; 5049 const ssize_t count = iov_iter_count(from); 5050 unsigned int dio_flags; 5051 struct iomap_dio *dio; 5052 ssize_t ret; 5053 5054 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 5055 5056 if (iocb->ki_flags & IOCB_NOWAIT) { 5057 /* f2fs_convert_inline_inode() and block allocation can block */ 5058 if (f2fs_has_inline_data(inode) || 5059 !f2fs_overwrite_io(inode, pos, count)) { 5060 ret = -EAGAIN; 5061 goto out; 5062 } 5063 5064 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 5065 ret = -EAGAIN; 5066 goto out; 5067 } 5068 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 5069 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 5070 ret = -EAGAIN; 5071 goto out; 5072 } 5073 } else { 5074 ret = f2fs_convert_inline_inode(inode); 5075 if (ret) 5076 goto out; 5077 5078 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 5079 if (do_opu) 5080 f2fs_down_read(&fi->i_gc_rwsem[READ]); 5081 } 5082 5083 /* 5084 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 5085 * the higher-level function iomap_dio_rw() in order to ensure that the 5086 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 5087 */ 5088 inc_page_count(sbi, F2FS_DIO_WRITE); 5089 dio_flags = 0; 5090 if (pos + count > inode->i_size) 5091 dio_flags |= IOMAP_DIO_FORCE_WAIT; 5092 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 5093 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 5094 if (IS_ERR_OR_NULL(dio)) { 5095 ret = PTR_ERR_OR_ZERO(dio); 5096 if (ret == -ENOTBLK) 5097 ret = 0; 5098 if (ret != -EIOCBQUEUED) 5099 dec_page_count(sbi, F2FS_DIO_WRITE); 5100 } else { 5101 ret = iomap_dio_complete(dio); 5102 } 5103 5104 if (do_opu) 5105 f2fs_up_read(&fi->i_gc_rwsem[READ]); 5106 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 5107 5108 if (ret < 0) 5109 goto out; 5110 if (pos + ret > inode->i_size) 5111 f2fs_i_size_write(inode, pos + ret); 5112 if (!do_opu) 5113 set_inode_flag(inode, FI_UPDATE_WRITE); 5114 5115 if (iov_iter_count(from)) { 5116 ssize_t ret2; 5117 loff_t bufio_start_pos = iocb->ki_pos; 5118 5119 /* 5120 * The direct write was partial, so we need to fall back to a 5121 * buffered write for the remainder. 5122 */ 5123 5124 ret2 = f2fs_buffered_write_iter(iocb, from); 5125 if (iov_iter_count(from)) 5126 f2fs_write_failed(inode, iocb->ki_pos); 5127 if (ret2 < 0) 5128 goto out; 5129 5130 /* 5131 * Ensure that the pagecache pages are written to disk and 5132 * invalidated to preserve the expected O_DIRECT semantics. 5133 */ 5134 if (ret2 > 0) { 5135 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 5136 5137 ret += ret2; 5138 5139 f2fs_flush_buffered_write(file->f_mapping, 5140 bufio_start_pos, 5141 bufio_end_pos); 5142 } 5143 } else { 5144 /* iomap_dio_rw() already handled the generic_write_sync(). */ 5145 *may_need_sync = false; 5146 } 5147 out: 5148 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 5149 return ret; 5150 } 5151 5152 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 5153 { 5154 struct inode *inode = file_inode(iocb->ki_filp); 5155 const loff_t orig_pos = iocb->ki_pos; 5156 const size_t orig_count = iov_iter_count(from); 5157 loff_t target_size; 5158 bool dio; 5159 bool may_need_sync = true; 5160 int preallocated; 5161 const loff_t pos = iocb->ki_pos; 5162 const ssize_t count = iov_iter_count(from); 5163 ssize_t ret; 5164 5165 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 5166 ret = -EIO; 5167 goto out; 5168 } 5169 5170 if (!f2fs_is_compress_backend_ready(inode)) { 5171 ret = -EOPNOTSUPP; 5172 goto out; 5173 } 5174 5175 if (iocb->ki_flags & IOCB_NOWAIT) { 5176 if (!inode_trylock(inode)) { 5177 ret = -EAGAIN; 5178 goto out; 5179 } 5180 } else { 5181 inode_lock(inode); 5182 } 5183 5184 if (f2fs_is_pinned_file(inode) && 5185 !f2fs_overwrite_io(inode, pos, count)) { 5186 ret = -EIO; 5187 goto out_unlock; 5188 } 5189 5190 ret = f2fs_write_checks(iocb, from); 5191 if (ret <= 0) 5192 goto out_unlock; 5193 5194 /* Determine whether we will do a direct write or a buffered write. */ 5195 dio = f2fs_should_use_dio(inode, iocb, from); 5196 5197 /* dio is not compatible w/ atomic write */ 5198 if (dio && f2fs_is_atomic_file(inode)) { 5199 ret = -EOPNOTSUPP; 5200 goto out_unlock; 5201 } 5202 5203 /* Possibly preallocate the blocks for the write. */ 5204 target_size = iocb->ki_pos + iov_iter_count(from); 5205 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 5206 if (preallocated < 0) { 5207 ret = preallocated; 5208 } else { 5209 if (trace_f2fs_datawrite_start_enabled()) 5210 f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos, 5211 orig_count, WRITE); 5212 5213 /* Do the actual write. */ 5214 ret = dio ? 5215 f2fs_dio_write_iter(iocb, from, &may_need_sync) : 5216 f2fs_buffered_write_iter(iocb, from); 5217 5218 if (trace_f2fs_datawrite_end_enabled()) 5219 trace_f2fs_datawrite_end(inode, orig_pos, ret); 5220 } 5221 5222 /* Don't leave any preallocated blocks around past i_size. */ 5223 if (preallocated && i_size_read(inode) < target_size) { 5224 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 5225 filemap_invalidate_lock(inode->i_mapping); 5226 if (!f2fs_truncate(inode)) 5227 file_dont_truncate(inode); 5228 filemap_invalidate_unlock(inode->i_mapping); 5229 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 5230 } else { 5231 file_dont_truncate(inode); 5232 } 5233 5234 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 5235 out_unlock: 5236 inode_unlock(inode); 5237 out: 5238 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 5239 5240 if (ret > 0 && may_need_sync) 5241 ret = generic_write_sync(iocb, ret); 5242 5243 /* If buffered IO was forced, flush and drop the data from 5244 * the page cache to preserve O_DIRECT semantics 5245 */ 5246 if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT)) 5247 f2fs_flush_buffered_write(iocb->ki_filp->f_mapping, 5248 orig_pos, 5249 orig_pos + ret - 1); 5250 5251 return ret; 5252 } 5253 5254 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 5255 int advice) 5256 { 5257 struct address_space *mapping; 5258 struct backing_dev_info *bdi; 5259 struct inode *inode = file_inode(filp); 5260 int err; 5261 5262 if (advice == POSIX_FADV_SEQUENTIAL) { 5263 if (S_ISFIFO(inode->i_mode)) 5264 return -ESPIPE; 5265 5266 mapping = filp->f_mapping; 5267 if (!mapping || len < 0) 5268 return -EINVAL; 5269 5270 bdi = inode_to_bdi(mapping->host); 5271 filp->f_ra.ra_pages = bdi->ra_pages * 5272 F2FS_I_SB(inode)->seq_file_ra_mul; 5273 spin_lock(&filp->f_lock); 5274 filp->f_mode &= ~FMODE_RANDOM; 5275 spin_unlock(&filp->f_lock); 5276 return 0; 5277 } else if (advice == POSIX_FADV_WILLNEED && offset == 0) { 5278 /* Load extent cache at the first readahead. */ 5279 f2fs_precache_extents(inode); 5280 } 5281 5282 err = generic_fadvise(filp, offset, len, advice); 5283 if (err) 5284 return err; 5285 5286 if (advice == POSIX_FADV_DONTNEED && 5287 (test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 5288 f2fs_compressed_file(inode))) 5289 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 5290 else if (advice == POSIX_FADV_NOREUSE) 5291 err = f2fs_keep_noreuse_range(inode, offset, len); 5292 return err; 5293 } 5294 5295 #ifdef CONFIG_COMPAT 5296 struct compat_f2fs_gc_range { 5297 u32 sync; 5298 compat_u64 start; 5299 compat_u64 len; 5300 }; 5301 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 5302 struct compat_f2fs_gc_range) 5303 5304 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 5305 { 5306 struct compat_f2fs_gc_range __user *urange; 5307 struct f2fs_gc_range range; 5308 int err; 5309 5310 urange = compat_ptr(arg); 5311 err = get_user(range.sync, &urange->sync); 5312 err |= get_user(range.start, &urange->start); 5313 err |= get_user(range.len, &urange->len); 5314 if (err) 5315 return -EFAULT; 5316 5317 return __f2fs_ioc_gc_range(file, &range); 5318 } 5319 5320 struct compat_f2fs_move_range { 5321 u32 dst_fd; 5322 compat_u64 pos_in; 5323 compat_u64 pos_out; 5324 compat_u64 len; 5325 }; 5326 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 5327 struct compat_f2fs_move_range) 5328 5329 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 5330 { 5331 struct compat_f2fs_move_range __user *urange; 5332 struct f2fs_move_range range; 5333 int err; 5334 5335 urange = compat_ptr(arg); 5336 err = get_user(range.dst_fd, &urange->dst_fd); 5337 err |= get_user(range.pos_in, &urange->pos_in); 5338 err |= get_user(range.pos_out, &urange->pos_out); 5339 err |= get_user(range.len, &urange->len); 5340 if (err) 5341 return -EFAULT; 5342 5343 return __f2fs_ioc_move_range(file, &range); 5344 } 5345 5346 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5347 { 5348 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 5349 return -EIO; 5350 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 5351 return -ENOSPC; 5352 5353 switch (cmd) { 5354 case FS_IOC32_GETVERSION: 5355 cmd = FS_IOC_GETVERSION; 5356 break; 5357 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 5358 return f2fs_compat_ioc_gc_range(file, arg); 5359 case F2FS_IOC32_MOVE_RANGE: 5360 return f2fs_compat_ioc_move_range(file, arg); 5361 case F2FS_IOC_START_ATOMIC_WRITE: 5362 case F2FS_IOC_START_ATOMIC_REPLACE: 5363 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 5364 case F2FS_IOC_START_VOLATILE_WRITE: 5365 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 5366 case F2FS_IOC_ABORT_ATOMIC_WRITE: 5367 case F2FS_IOC_SHUTDOWN: 5368 case FITRIM: 5369 case FS_IOC_SET_ENCRYPTION_POLICY: 5370 case FS_IOC_GET_ENCRYPTION_PWSALT: 5371 case FS_IOC_GET_ENCRYPTION_POLICY: 5372 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 5373 case FS_IOC_ADD_ENCRYPTION_KEY: 5374 case FS_IOC_REMOVE_ENCRYPTION_KEY: 5375 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 5376 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 5377 case FS_IOC_GET_ENCRYPTION_NONCE: 5378 case F2FS_IOC_GARBAGE_COLLECT: 5379 case F2FS_IOC_WRITE_CHECKPOINT: 5380 case F2FS_IOC_DEFRAGMENT: 5381 case F2FS_IOC_FLUSH_DEVICE: 5382 case F2FS_IOC_GET_FEATURES: 5383 case F2FS_IOC_GET_PIN_FILE: 5384 case F2FS_IOC_SET_PIN_FILE: 5385 case F2FS_IOC_PRECACHE_EXTENTS: 5386 case F2FS_IOC_RESIZE_FS: 5387 case FS_IOC_ENABLE_VERITY: 5388 case FS_IOC_MEASURE_VERITY: 5389 case FS_IOC_READ_VERITY_METADATA: 5390 case FS_IOC_GETFSLABEL: 5391 case FS_IOC_SETFSLABEL: 5392 case F2FS_IOC_GET_COMPRESS_BLOCKS: 5393 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 5394 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 5395 case F2FS_IOC_SEC_TRIM_FILE: 5396 case F2FS_IOC_GET_COMPRESS_OPTION: 5397 case F2FS_IOC_SET_COMPRESS_OPTION: 5398 case F2FS_IOC_DECOMPRESS_FILE: 5399 case F2FS_IOC_COMPRESS_FILE: 5400 case F2FS_IOC_GET_DEV_ALIAS_FILE: 5401 case F2FS_IOC_IO_PRIO: 5402 break; 5403 default: 5404 return -ENOIOCTLCMD; 5405 } 5406 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5407 } 5408 #endif 5409 5410 const struct file_operations f2fs_file_operations = { 5411 .llseek = f2fs_llseek, 5412 .read_iter = f2fs_file_read_iter, 5413 .write_iter = f2fs_file_write_iter, 5414 .iopoll = iocb_bio_iopoll, 5415 .open = f2fs_file_open, 5416 .release = f2fs_release_file, 5417 .mmap = f2fs_file_mmap, 5418 .flush = f2fs_file_flush, 5419 .fsync = f2fs_sync_file, 5420 .fallocate = f2fs_fallocate, 5421 .unlocked_ioctl = f2fs_ioctl, 5422 #ifdef CONFIG_COMPAT 5423 .compat_ioctl = f2fs_compat_ioctl, 5424 #endif 5425 .splice_read = f2fs_file_splice_read, 5426 .splice_write = iter_file_splice_write, 5427 .fadvise = f2fs_file_fadvise, 5428 .fop_flags = FOP_BUFFER_RASYNC, 5429 }; 5430