1 /* 2 * fs/f2fs/file.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/stat.h> 14 #include <linux/buffer_head.h> 15 #include <linux/writeback.h> 16 #include <linux/blkdev.h> 17 #include <linux/falloc.h> 18 #include <linux/types.h> 19 #include <linux/compat.h> 20 #include <linux/uaccess.h> 21 #include <linux/mount.h> 22 #include <linux/pagevec.h> 23 24 #include "f2fs.h" 25 #include "node.h" 26 #include "segment.h" 27 #include "xattr.h" 28 #include "acl.h" 29 #include <trace/events/f2fs.h> 30 31 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma, 32 struct vm_fault *vmf) 33 { 34 struct page *page = vmf->page; 35 struct inode *inode = file_inode(vma->vm_file); 36 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 37 struct dnode_of_data dn; 38 int err; 39 40 f2fs_balance_fs(sbi); 41 42 sb_start_pagefault(inode->i_sb); 43 44 /* force to convert with normal data indices */ 45 err = f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1, page); 46 if (err) 47 goto out; 48 49 /* block allocation */ 50 f2fs_lock_op(sbi); 51 set_new_dnode(&dn, inode, NULL, NULL, 0); 52 err = f2fs_reserve_block(&dn, page->index); 53 f2fs_unlock_op(sbi); 54 if (err) 55 goto out; 56 57 file_update_time(vma->vm_file); 58 lock_page(page); 59 if (unlikely(page->mapping != inode->i_mapping || 60 page_offset(page) > i_size_read(inode) || 61 !PageUptodate(page))) { 62 unlock_page(page); 63 err = -EFAULT; 64 goto out; 65 } 66 67 /* 68 * check to see if the page is mapped already (no holes) 69 */ 70 if (PageMappedToDisk(page)) 71 goto mapped; 72 73 /* page is wholly or partially inside EOF */ 74 if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) { 75 unsigned offset; 76 offset = i_size_read(inode) & ~PAGE_CACHE_MASK; 77 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 78 } 79 set_page_dirty(page); 80 SetPageUptodate(page); 81 82 trace_f2fs_vm_page_mkwrite(page, DATA); 83 mapped: 84 /* fill the page */ 85 f2fs_wait_on_page_writeback(page, DATA); 86 out: 87 sb_end_pagefault(inode->i_sb); 88 return block_page_mkwrite_return(err); 89 } 90 91 static const struct vm_operations_struct f2fs_file_vm_ops = { 92 .fault = filemap_fault, 93 .map_pages = filemap_map_pages, 94 .page_mkwrite = f2fs_vm_page_mkwrite, 95 .remap_pages = generic_file_remap_pages, 96 }; 97 98 static int get_parent_ino(struct inode *inode, nid_t *pino) 99 { 100 struct dentry *dentry; 101 102 inode = igrab(inode); 103 dentry = d_find_any_alias(inode); 104 iput(inode); 105 if (!dentry) 106 return 0; 107 108 if (update_dent_inode(inode, &dentry->d_name)) { 109 dput(dentry); 110 return 0; 111 } 112 113 *pino = parent_ino(dentry); 114 dput(dentry); 115 return 1; 116 } 117 118 static inline bool need_do_checkpoint(struct inode *inode) 119 { 120 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 121 bool need_cp = false; 122 123 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1) 124 need_cp = true; 125 else if (file_wrong_pino(inode)) 126 need_cp = true; 127 else if (!space_for_roll_forward(sbi)) 128 need_cp = true; 129 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 130 need_cp = true; 131 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi))) 132 need_cp = true; 133 134 return need_cp; 135 } 136 137 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 138 { 139 struct inode *inode = file->f_mapping->host; 140 struct f2fs_inode_info *fi = F2FS_I(inode); 141 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 142 nid_t ino = inode->i_ino; 143 int ret = 0; 144 bool need_cp = false; 145 struct writeback_control wbc = { 146 .sync_mode = WB_SYNC_ALL, 147 .nr_to_write = LONG_MAX, 148 .for_reclaim = 0, 149 }; 150 151 if (unlikely(f2fs_readonly(inode->i_sb))) 152 return 0; 153 154 trace_f2fs_sync_file_enter(inode); 155 156 /* if fdatasync is triggered, let's do in-place-update */ 157 if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 158 set_inode_flag(fi, FI_NEED_IPU); 159 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 160 clear_inode_flag(fi, FI_NEED_IPU); 161 162 if (ret) { 163 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); 164 return ret; 165 } 166 167 /* 168 * if there is no written data, don't waste time to write recovery info. 169 */ 170 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) && 171 !exist_written_data(sbi, ino, APPEND_INO)) { 172 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 173 174 /* But we need to avoid that there are some inode updates */ 175 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino)) { 176 f2fs_put_page(i, 0); 177 goto go_write; 178 } 179 f2fs_put_page(i, 0); 180 181 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) || 182 exist_written_data(sbi, ino, UPDATE_INO)) 183 goto flush_out; 184 goto out; 185 } 186 go_write: 187 /* guarantee free sections for fsync */ 188 f2fs_balance_fs(sbi); 189 190 /* 191 * Both of fdatasync() and fsync() are able to be recovered from 192 * sudden-power-off. 193 */ 194 down_read(&fi->i_sem); 195 need_cp = need_do_checkpoint(inode); 196 up_read(&fi->i_sem); 197 198 if (need_cp) { 199 nid_t pino; 200 201 /* all the dirty node pages should be flushed for POR */ 202 ret = f2fs_sync_fs(inode->i_sb, 1); 203 204 down_write(&fi->i_sem); 205 F2FS_I(inode)->xattr_ver = 0; 206 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 207 get_parent_ino(inode, &pino)) { 208 F2FS_I(inode)->i_pino = pino; 209 file_got_pino(inode); 210 up_write(&fi->i_sem); 211 mark_inode_dirty_sync(inode); 212 ret = f2fs_write_inode(inode, NULL); 213 if (ret) 214 goto out; 215 } else { 216 up_write(&fi->i_sem); 217 } 218 } else { 219 sync_nodes: 220 sync_node_pages(sbi, ino, &wbc); 221 222 if (need_inode_block_update(sbi, ino)) { 223 mark_inode_dirty_sync(inode); 224 ret = f2fs_write_inode(inode, NULL); 225 if (ret) 226 goto out; 227 goto sync_nodes; 228 } 229 230 ret = wait_on_node_pages_writeback(sbi, ino); 231 if (ret) 232 goto out; 233 234 /* once recovery info is written, don't need to tack this */ 235 remove_dirty_inode(sbi, ino, APPEND_INO); 236 clear_inode_flag(fi, FI_APPEND_WRITE); 237 flush_out: 238 remove_dirty_inode(sbi, ino, UPDATE_INO); 239 clear_inode_flag(fi, FI_UPDATE_WRITE); 240 ret = f2fs_issue_flush(F2FS_I_SB(inode)); 241 } 242 out: 243 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); 244 return ret; 245 } 246 247 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 248 pgoff_t pgofs, int whence) 249 { 250 struct pagevec pvec; 251 int nr_pages; 252 253 if (whence != SEEK_DATA) 254 return 0; 255 256 /* find first dirty page index */ 257 pagevec_init(&pvec, 0); 258 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs, 259 PAGECACHE_TAG_DIRTY, 1); 260 pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX; 261 pagevec_release(&pvec); 262 return pgofs; 263 } 264 265 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs, 266 int whence) 267 { 268 switch (whence) { 269 case SEEK_DATA: 270 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 271 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR)) 272 return true; 273 break; 274 case SEEK_HOLE: 275 if (blkaddr == NULL_ADDR) 276 return true; 277 break; 278 } 279 return false; 280 } 281 282 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 283 { 284 struct inode *inode = file->f_mapping->host; 285 loff_t maxbytes = inode->i_sb->s_maxbytes; 286 struct dnode_of_data dn; 287 pgoff_t pgofs, end_offset, dirty; 288 loff_t data_ofs = offset; 289 loff_t isize; 290 int err = 0; 291 292 mutex_lock(&inode->i_mutex); 293 294 isize = i_size_read(inode); 295 if (offset >= isize) 296 goto fail; 297 298 /* handle inline data case */ 299 if (f2fs_has_inline_data(inode)) { 300 if (whence == SEEK_HOLE) 301 data_ofs = isize; 302 goto found; 303 } 304 305 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT); 306 307 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 308 309 for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) { 310 set_new_dnode(&dn, inode, NULL, NULL, 0); 311 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA); 312 if (err && err != -ENOENT) { 313 goto fail; 314 } else if (err == -ENOENT) { 315 /* direct node does not exists */ 316 if (whence == SEEK_DATA) { 317 pgofs = PGOFS_OF_NEXT_DNODE(pgofs, 318 F2FS_I(inode)); 319 continue; 320 } else { 321 goto found; 322 } 323 } 324 325 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); 326 327 /* find data/hole in dnode block */ 328 for (; dn.ofs_in_node < end_offset; 329 dn.ofs_in_node++, pgofs++, 330 data_ofs = pgofs << PAGE_CACHE_SHIFT) { 331 block_t blkaddr; 332 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 333 334 if (__found_offset(blkaddr, dirty, pgofs, whence)) { 335 f2fs_put_dnode(&dn); 336 goto found; 337 } 338 } 339 f2fs_put_dnode(&dn); 340 } 341 342 if (whence == SEEK_DATA) 343 goto fail; 344 found: 345 if (whence == SEEK_HOLE && data_ofs > isize) 346 data_ofs = isize; 347 mutex_unlock(&inode->i_mutex); 348 return vfs_setpos(file, data_ofs, maxbytes); 349 fail: 350 mutex_unlock(&inode->i_mutex); 351 return -ENXIO; 352 } 353 354 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 355 { 356 struct inode *inode = file->f_mapping->host; 357 loff_t maxbytes = inode->i_sb->s_maxbytes; 358 359 switch (whence) { 360 case SEEK_SET: 361 case SEEK_CUR: 362 case SEEK_END: 363 return generic_file_llseek_size(file, offset, whence, 364 maxbytes, i_size_read(inode)); 365 case SEEK_DATA: 366 case SEEK_HOLE: 367 if (offset < 0) 368 return -ENXIO; 369 return f2fs_seek_block(file, offset, whence); 370 } 371 372 return -EINVAL; 373 } 374 375 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 376 { 377 file_accessed(file); 378 vma->vm_ops = &f2fs_file_vm_ops; 379 return 0; 380 } 381 382 int truncate_data_blocks_range(struct dnode_of_data *dn, int count) 383 { 384 int nr_free = 0, ofs = dn->ofs_in_node; 385 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 386 struct f2fs_node *raw_node; 387 __le32 *addr; 388 389 raw_node = F2FS_NODE(dn->node_page); 390 addr = blkaddr_in_node(raw_node) + ofs; 391 392 for (; count > 0; count--, addr++, dn->ofs_in_node++) { 393 block_t blkaddr = le32_to_cpu(*addr); 394 if (blkaddr == NULL_ADDR) 395 continue; 396 397 update_extent_cache(NULL_ADDR, dn); 398 invalidate_blocks(sbi, blkaddr); 399 nr_free++; 400 } 401 if (nr_free) { 402 dec_valid_block_count(sbi, dn->inode, nr_free); 403 set_page_dirty(dn->node_page); 404 sync_inode_page(dn); 405 } 406 dn->ofs_in_node = ofs; 407 408 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 409 dn->ofs_in_node, nr_free); 410 return nr_free; 411 } 412 413 void truncate_data_blocks(struct dnode_of_data *dn) 414 { 415 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK); 416 } 417 418 static void truncate_partial_data_page(struct inode *inode, u64 from) 419 { 420 unsigned offset = from & (PAGE_CACHE_SIZE - 1); 421 struct page *page; 422 423 if (f2fs_has_inline_data(inode)) 424 return truncate_inline_data(inode, from); 425 426 if (!offset) 427 return; 428 429 page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false); 430 if (IS_ERR(page)) 431 return; 432 433 lock_page(page); 434 if (unlikely(!PageUptodate(page) || 435 page->mapping != inode->i_mapping)) 436 goto out; 437 438 f2fs_wait_on_page_writeback(page, DATA); 439 zero_user(page, offset, PAGE_CACHE_SIZE - offset); 440 set_page_dirty(page); 441 442 out: 443 f2fs_put_page(page, 1); 444 } 445 446 int truncate_blocks(struct inode *inode, u64 from, bool lock) 447 { 448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 449 unsigned int blocksize = inode->i_sb->s_blocksize; 450 struct dnode_of_data dn; 451 pgoff_t free_from; 452 int count = 0, err = 0; 453 454 trace_f2fs_truncate_blocks_enter(inode, from); 455 456 if (f2fs_has_inline_data(inode)) 457 goto done; 458 459 free_from = (pgoff_t) 460 ((from + blocksize - 1) >> (sbi->log_blocksize)); 461 462 if (lock) 463 f2fs_lock_op(sbi); 464 465 set_new_dnode(&dn, inode, NULL, NULL, 0); 466 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE); 467 if (err) { 468 if (err == -ENOENT) 469 goto free_next; 470 if (lock) 471 f2fs_unlock_op(sbi); 472 trace_f2fs_truncate_blocks_exit(inode, err); 473 return err; 474 } 475 476 count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); 477 478 count -= dn.ofs_in_node; 479 f2fs_bug_on(sbi, count < 0); 480 481 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 482 truncate_data_blocks_range(&dn, count); 483 free_from += count; 484 } 485 486 f2fs_put_dnode(&dn); 487 free_next: 488 err = truncate_inode_blocks(inode, free_from); 489 if (lock) 490 f2fs_unlock_op(sbi); 491 done: 492 /* lastly zero out the first data page */ 493 truncate_partial_data_page(inode, from); 494 495 trace_f2fs_truncate_blocks_exit(inode, err); 496 return err; 497 } 498 499 void f2fs_truncate(struct inode *inode) 500 { 501 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 502 S_ISLNK(inode->i_mode))) 503 return; 504 505 trace_f2fs_truncate(inode); 506 507 if (!truncate_blocks(inode, i_size_read(inode), true)) { 508 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 509 mark_inode_dirty(inode); 510 } 511 } 512 513 int f2fs_getattr(struct vfsmount *mnt, 514 struct dentry *dentry, struct kstat *stat) 515 { 516 struct inode *inode = dentry->d_inode; 517 generic_fillattr(inode, stat); 518 stat->blocks <<= 3; 519 return 0; 520 } 521 522 #ifdef CONFIG_F2FS_FS_POSIX_ACL 523 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 524 { 525 struct f2fs_inode_info *fi = F2FS_I(inode); 526 unsigned int ia_valid = attr->ia_valid; 527 528 if (ia_valid & ATTR_UID) 529 inode->i_uid = attr->ia_uid; 530 if (ia_valid & ATTR_GID) 531 inode->i_gid = attr->ia_gid; 532 if (ia_valid & ATTR_ATIME) 533 inode->i_atime = timespec_trunc(attr->ia_atime, 534 inode->i_sb->s_time_gran); 535 if (ia_valid & ATTR_MTIME) 536 inode->i_mtime = timespec_trunc(attr->ia_mtime, 537 inode->i_sb->s_time_gran); 538 if (ia_valid & ATTR_CTIME) 539 inode->i_ctime = timespec_trunc(attr->ia_ctime, 540 inode->i_sb->s_time_gran); 541 if (ia_valid & ATTR_MODE) { 542 umode_t mode = attr->ia_mode; 543 544 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 545 mode &= ~S_ISGID; 546 set_acl_inode(fi, mode); 547 } 548 } 549 #else 550 #define __setattr_copy setattr_copy 551 #endif 552 553 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 554 { 555 struct inode *inode = dentry->d_inode; 556 struct f2fs_inode_info *fi = F2FS_I(inode); 557 int err; 558 559 err = inode_change_ok(inode, attr); 560 if (err) 561 return err; 562 563 if (attr->ia_valid & ATTR_SIZE) { 564 err = f2fs_convert_inline_data(inode, attr->ia_size, NULL); 565 if (err) 566 return err; 567 568 if (attr->ia_size != i_size_read(inode)) { 569 truncate_setsize(inode, attr->ia_size); 570 f2fs_truncate(inode); 571 f2fs_balance_fs(F2FS_I_SB(inode)); 572 } else { 573 /* 574 * giving a chance to truncate blocks past EOF which 575 * are fallocated with FALLOC_FL_KEEP_SIZE. 576 */ 577 f2fs_truncate(inode); 578 } 579 } 580 581 __setattr_copy(inode, attr); 582 583 if (attr->ia_valid & ATTR_MODE) { 584 err = posix_acl_chmod(inode, get_inode_mode(inode)); 585 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) { 586 inode->i_mode = fi->i_acl_mode; 587 clear_inode_flag(fi, FI_ACL_MODE); 588 } 589 } 590 591 mark_inode_dirty(inode); 592 return err; 593 } 594 595 const struct inode_operations f2fs_file_inode_operations = { 596 .getattr = f2fs_getattr, 597 .setattr = f2fs_setattr, 598 .get_acl = f2fs_get_acl, 599 .set_acl = f2fs_set_acl, 600 #ifdef CONFIG_F2FS_FS_XATTR 601 .setxattr = generic_setxattr, 602 .getxattr = generic_getxattr, 603 .listxattr = f2fs_listxattr, 604 .removexattr = generic_removexattr, 605 #endif 606 .fiemap = f2fs_fiemap, 607 }; 608 609 static void fill_zero(struct inode *inode, pgoff_t index, 610 loff_t start, loff_t len) 611 { 612 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 613 struct page *page; 614 615 if (!len) 616 return; 617 618 f2fs_balance_fs(sbi); 619 620 f2fs_lock_op(sbi); 621 page = get_new_data_page(inode, NULL, index, false); 622 f2fs_unlock_op(sbi); 623 624 if (!IS_ERR(page)) { 625 f2fs_wait_on_page_writeback(page, DATA); 626 zero_user(page, start, len); 627 set_page_dirty(page); 628 f2fs_put_page(page, 1); 629 } 630 } 631 632 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 633 { 634 pgoff_t index; 635 int err; 636 637 for (index = pg_start; index < pg_end; index++) { 638 struct dnode_of_data dn; 639 640 set_new_dnode(&dn, inode, NULL, NULL, 0); 641 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 642 if (err) { 643 if (err == -ENOENT) 644 continue; 645 return err; 646 } 647 648 if (dn.data_blkaddr != NULL_ADDR) 649 truncate_data_blocks_range(&dn, 1); 650 f2fs_put_dnode(&dn); 651 } 652 return 0; 653 } 654 655 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 656 { 657 pgoff_t pg_start, pg_end; 658 loff_t off_start, off_end; 659 int ret = 0; 660 661 if (!S_ISREG(inode->i_mode)) 662 return -EOPNOTSUPP; 663 664 /* skip punching hole beyond i_size */ 665 if (offset >= inode->i_size) 666 return ret; 667 668 ret = f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1, NULL); 669 if (ret) 670 return ret; 671 672 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; 673 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; 674 675 off_start = offset & (PAGE_CACHE_SIZE - 1); 676 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); 677 678 if (pg_start == pg_end) { 679 fill_zero(inode, pg_start, off_start, 680 off_end - off_start); 681 } else { 682 if (off_start) 683 fill_zero(inode, pg_start++, off_start, 684 PAGE_CACHE_SIZE - off_start); 685 if (off_end) 686 fill_zero(inode, pg_end, 0, off_end); 687 688 if (pg_start < pg_end) { 689 struct address_space *mapping = inode->i_mapping; 690 loff_t blk_start, blk_end; 691 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 692 693 f2fs_balance_fs(sbi); 694 695 blk_start = pg_start << PAGE_CACHE_SHIFT; 696 blk_end = pg_end << PAGE_CACHE_SHIFT; 697 truncate_inode_pages_range(mapping, blk_start, 698 blk_end - 1); 699 700 f2fs_lock_op(sbi); 701 ret = truncate_hole(inode, pg_start, pg_end); 702 f2fs_unlock_op(sbi); 703 } 704 } 705 706 return ret; 707 } 708 709 static int expand_inode_data(struct inode *inode, loff_t offset, 710 loff_t len, int mode) 711 { 712 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 713 pgoff_t index, pg_start, pg_end; 714 loff_t new_size = i_size_read(inode); 715 loff_t off_start, off_end; 716 int ret = 0; 717 718 f2fs_balance_fs(sbi); 719 720 ret = inode_newsize_ok(inode, (len + offset)); 721 if (ret) 722 return ret; 723 724 ret = f2fs_convert_inline_data(inode, offset + len, NULL); 725 if (ret) 726 return ret; 727 728 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; 729 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; 730 731 off_start = offset & (PAGE_CACHE_SIZE - 1); 732 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); 733 734 f2fs_lock_op(sbi); 735 736 for (index = pg_start; index <= pg_end; index++) { 737 struct dnode_of_data dn; 738 739 if (index == pg_end && !off_end) 740 goto noalloc; 741 742 set_new_dnode(&dn, inode, NULL, NULL, 0); 743 ret = f2fs_reserve_block(&dn, index); 744 if (ret) 745 break; 746 noalloc: 747 if (pg_start == pg_end) 748 new_size = offset + len; 749 else if (index == pg_start && off_start) 750 new_size = (index + 1) << PAGE_CACHE_SHIFT; 751 else if (index == pg_end) 752 new_size = (index << PAGE_CACHE_SHIFT) + off_end; 753 else 754 new_size += PAGE_CACHE_SIZE; 755 } 756 757 if (!(mode & FALLOC_FL_KEEP_SIZE) && 758 i_size_read(inode) < new_size) { 759 i_size_write(inode, new_size); 760 mark_inode_dirty(inode); 761 update_inode_page(inode); 762 } 763 f2fs_unlock_op(sbi); 764 765 return ret; 766 } 767 768 static long f2fs_fallocate(struct file *file, int mode, 769 loff_t offset, loff_t len) 770 { 771 struct inode *inode = file_inode(file); 772 long ret; 773 774 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 775 return -EOPNOTSUPP; 776 777 mutex_lock(&inode->i_mutex); 778 779 if (mode & FALLOC_FL_PUNCH_HOLE) 780 ret = punch_hole(inode, offset, len); 781 else 782 ret = expand_inode_data(inode, offset, len, mode); 783 784 if (!ret) { 785 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 786 mark_inode_dirty(inode); 787 } 788 789 mutex_unlock(&inode->i_mutex); 790 791 trace_f2fs_fallocate(inode, mode, offset, len, ret); 792 return ret; 793 } 794 795 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 796 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 797 798 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 799 { 800 if (S_ISDIR(mode)) 801 return flags; 802 else if (S_ISREG(mode)) 803 return flags & F2FS_REG_FLMASK; 804 else 805 return flags & F2FS_OTHER_FLMASK; 806 } 807 808 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 809 { 810 struct inode *inode = file_inode(filp); 811 struct f2fs_inode_info *fi = F2FS_I(inode); 812 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE; 813 return put_user(flags, (int __user *)arg); 814 } 815 816 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 817 { 818 struct inode *inode = file_inode(filp); 819 struct f2fs_inode_info *fi = F2FS_I(inode); 820 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE; 821 unsigned int oldflags; 822 int ret; 823 824 ret = mnt_want_write_file(filp); 825 if (ret) 826 return ret; 827 828 if (!inode_owner_or_capable(inode)) { 829 ret = -EACCES; 830 goto out; 831 } 832 833 if (get_user(flags, (int __user *)arg)) { 834 ret = -EFAULT; 835 goto out; 836 } 837 838 flags = f2fs_mask_flags(inode->i_mode, flags); 839 840 mutex_lock(&inode->i_mutex); 841 842 oldflags = fi->i_flags; 843 844 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 845 if (!capable(CAP_LINUX_IMMUTABLE)) { 846 mutex_unlock(&inode->i_mutex); 847 ret = -EPERM; 848 goto out; 849 } 850 } 851 852 flags = flags & FS_FL_USER_MODIFIABLE; 853 flags |= oldflags & ~FS_FL_USER_MODIFIABLE; 854 fi->i_flags = flags; 855 mutex_unlock(&inode->i_mutex); 856 857 f2fs_set_inode_flags(inode); 858 inode->i_ctime = CURRENT_TIME; 859 mark_inode_dirty(inode); 860 out: 861 mnt_drop_write_file(filp); 862 return ret; 863 } 864 865 static int f2fs_ioc_start_atomic_write(struct file *filp) 866 { 867 struct inode *inode = file_inode(filp); 868 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 869 870 if (!inode_owner_or_capable(inode)) 871 return -EACCES; 872 873 f2fs_balance_fs(sbi); 874 875 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE); 876 877 return f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1, NULL); 878 } 879 880 static int f2fs_ioc_commit_atomic_write(struct file *filp) 881 { 882 struct inode *inode = file_inode(filp); 883 int ret; 884 885 if (!inode_owner_or_capable(inode)) 886 return -EACCES; 887 888 if (f2fs_is_volatile_file(inode)) 889 return 0; 890 891 ret = mnt_want_write_file(filp); 892 if (ret) 893 return ret; 894 895 if (f2fs_is_atomic_file(inode)) 896 commit_inmem_pages(inode, false); 897 898 ret = f2fs_sync_file(filp, 0, LONG_MAX, 0); 899 mnt_drop_write_file(filp); 900 return ret; 901 } 902 903 static int f2fs_ioc_start_volatile_write(struct file *filp) 904 { 905 struct inode *inode = file_inode(filp); 906 907 if (!inode_owner_or_capable(inode)) 908 return -EACCES; 909 910 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE); 911 return 0; 912 } 913 914 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 915 { 916 struct inode *inode = file_inode(filp); 917 struct super_block *sb = inode->i_sb; 918 struct request_queue *q = bdev_get_queue(sb->s_bdev); 919 struct fstrim_range range; 920 int ret; 921 922 if (!capable(CAP_SYS_ADMIN)) 923 return -EPERM; 924 925 if (!blk_queue_discard(q)) 926 return -EOPNOTSUPP; 927 928 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 929 sizeof(range))) 930 return -EFAULT; 931 932 range.minlen = max((unsigned int)range.minlen, 933 q->limits.discard_granularity); 934 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 935 if (ret < 0) 936 return ret; 937 938 if (copy_to_user((struct fstrim_range __user *)arg, &range, 939 sizeof(range))) 940 return -EFAULT; 941 return 0; 942 } 943 944 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 945 { 946 switch (cmd) { 947 case F2FS_IOC_GETFLAGS: 948 return f2fs_ioc_getflags(filp, arg); 949 case F2FS_IOC_SETFLAGS: 950 return f2fs_ioc_setflags(filp, arg); 951 case F2FS_IOC_START_ATOMIC_WRITE: 952 return f2fs_ioc_start_atomic_write(filp); 953 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 954 return f2fs_ioc_commit_atomic_write(filp); 955 case F2FS_IOC_START_VOLATILE_WRITE: 956 return f2fs_ioc_start_volatile_write(filp); 957 case FITRIM: 958 return f2fs_ioc_fitrim(filp, arg); 959 default: 960 return -ENOTTY; 961 } 962 } 963 964 #ifdef CONFIG_COMPAT 965 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 966 { 967 switch (cmd) { 968 case F2FS_IOC32_GETFLAGS: 969 cmd = F2FS_IOC_GETFLAGS; 970 break; 971 case F2FS_IOC32_SETFLAGS: 972 cmd = F2FS_IOC_SETFLAGS; 973 break; 974 default: 975 return -ENOIOCTLCMD; 976 } 977 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 978 } 979 #endif 980 981 const struct file_operations f2fs_file_operations = { 982 .llseek = f2fs_llseek, 983 .read = new_sync_read, 984 .write = new_sync_write, 985 .read_iter = generic_file_read_iter, 986 .write_iter = generic_file_write_iter, 987 .open = generic_file_open, 988 .mmap = f2fs_file_mmap, 989 .fsync = f2fs_sync_file, 990 .fallocate = f2fs_fallocate, 991 .unlocked_ioctl = f2fs_ioctl, 992 #ifdef CONFIG_COMPAT 993 .compat_ioctl = f2fs_compat_ioctl, 994 #endif 995 .splice_read = generic_file_splice_read, 996 .splice_write = iter_file_splice_write, 997 }; 998