1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 #include <linux/fadvise.h> 27 #include <linux/iomap.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "acl.h" 34 #include "gc.h" 35 #include "iostat.h" 36 #include <trace/events/f2fs.h> 37 #include <uapi/linux/f2fs.h> 38 39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 40 { 41 struct inode *inode = file_inode(vmf->vma->vm_file); 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (!ret) 46 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO, 47 F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(IS_IMMUTABLE(inode))) 64 return VM_FAULT_SIGBUS; 65 66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 67 return VM_FAULT_SIGBUS; 68 69 if (unlikely(f2fs_cp_error(sbi))) { 70 err = -EIO; 71 goto err; 72 } 73 74 if (!f2fs_is_checkpoint_ready(sbi)) { 75 err = -ENOSPC; 76 goto err; 77 } 78 79 err = f2fs_convert_inline_inode(inode); 80 if (err) 81 goto err; 82 83 #ifdef CONFIG_F2FS_FS_COMPRESSION 84 if (f2fs_compressed_file(inode)) { 85 int ret = f2fs_is_compressed_cluster(inode, page->index); 86 87 if (ret < 0) { 88 err = ret; 89 goto err; 90 } else if (ret) { 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 filemap_invalidate_lock_shared(inode->i_mapping); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 117 set_new_dnode(&dn, inode, NULL, NULL, 0); 118 err = f2fs_get_block(&dn, page->index); 119 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 120 } 121 122 #ifdef CONFIG_F2FS_FS_COMPRESSION 123 if (!need_alloc) { 124 set_new_dnode(&dn, inode, NULL, NULL, 0); 125 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 126 f2fs_put_dnode(&dn); 127 } 128 #endif 129 if (err) { 130 unlock_page(page); 131 goto out_sem; 132 } 133 134 f2fs_wait_on_page_writeback(page, DATA, false, true); 135 136 /* wait for GCed page writeback via META_MAPPING */ 137 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 138 139 /* 140 * check to see if the page is mapped already (no holes) 141 */ 142 if (PageMappedToDisk(page)) 143 goto out_sem; 144 145 /* page is wholly or partially inside EOF */ 146 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 147 i_size_read(inode)) { 148 loff_t offset; 149 150 offset = i_size_read(inode) & ~PAGE_MASK; 151 zero_user_segment(page, offset, PAGE_SIZE); 152 } 153 set_page_dirty(page); 154 if (!PageUptodate(page)) 155 SetPageUptodate(page); 156 157 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 158 f2fs_update_time(sbi, REQ_TIME); 159 160 trace_f2fs_vm_page_mkwrite(page, DATA); 161 out_sem: 162 filemap_invalidate_unlock_shared(inode->i_mapping); 163 164 sb_end_pagefault(inode->i_sb); 165 err: 166 return block_page_mkwrite_return(err); 167 } 168 169 static const struct vm_operations_struct f2fs_file_vm_ops = { 170 .fault = f2fs_filemap_fault, 171 .map_pages = filemap_map_pages, 172 .page_mkwrite = f2fs_vm_page_mkwrite, 173 }; 174 175 static int get_parent_ino(struct inode *inode, nid_t *pino) 176 { 177 struct dentry *dentry; 178 179 /* 180 * Make sure to get the non-deleted alias. The alias associated with 181 * the open file descriptor being fsync()'ed may be deleted already. 182 */ 183 dentry = d_find_alias(inode); 184 if (!dentry) 185 return 0; 186 187 *pino = parent_ino(dentry); 188 dput(dentry); 189 return 1; 190 } 191 192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 193 { 194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 195 enum cp_reason_type cp_reason = CP_NO_NEEDED; 196 197 if (!S_ISREG(inode->i_mode)) 198 cp_reason = CP_NON_REGULAR; 199 else if (f2fs_compressed_file(inode)) 200 cp_reason = CP_COMPRESSED; 201 else if (inode->i_nlink != 1) 202 cp_reason = CP_HARDLINK; 203 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 204 cp_reason = CP_SB_NEED_CP; 205 else if (file_wrong_pino(inode)) 206 cp_reason = CP_WRONG_PINO; 207 else if (!f2fs_space_for_roll_forward(sbi)) 208 cp_reason = CP_NO_SPC_ROLL; 209 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 210 cp_reason = CP_NODE_NEED_CP; 211 else if (test_opt(sbi, FASTBOOT)) 212 cp_reason = CP_FASTBOOT_MODE; 213 else if (F2FS_OPTION(sbi).active_logs == 2) 214 cp_reason = CP_SPEC_LOG_NUM; 215 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 216 f2fs_need_dentry_mark(sbi, inode->i_ino) && 217 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 218 TRANS_DIR_INO)) 219 cp_reason = CP_RECOVER_DIR; 220 221 return cp_reason; 222 } 223 224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 225 { 226 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 227 bool ret = false; 228 /* But we need to avoid that there are some inode updates */ 229 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 230 ret = true; 231 f2fs_put_page(i, 0); 232 return ret; 233 } 234 235 static void try_to_fix_pino(struct inode *inode) 236 { 237 struct f2fs_inode_info *fi = F2FS_I(inode); 238 nid_t pino; 239 240 f2fs_down_write(&fi->i_sem); 241 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 242 get_parent_ino(inode, &pino)) { 243 f2fs_i_pino_write(inode, pino); 244 file_got_pino(inode); 245 } 246 f2fs_up_write(&fi->i_sem); 247 } 248 249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 250 int datasync, bool atomic) 251 { 252 struct inode *inode = file->f_mapping->host; 253 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 254 nid_t ino = inode->i_ino; 255 int ret = 0; 256 enum cp_reason_type cp_reason = 0; 257 struct writeback_control wbc = { 258 .sync_mode = WB_SYNC_ALL, 259 .nr_to_write = LONG_MAX, 260 .for_reclaim = 0, 261 }; 262 unsigned int seq_id = 0; 263 264 if (unlikely(f2fs_readonly(inode->i_sb))) 265 return 0; 266 267 trace_f2fs_sync_file_enter(inode); 268 269 if (S_ISDIR(inode->i_mode)) 270 goto go_write; 271 272 /* if fdatasync is triggered, let's do in-place-update */ 273 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 274 set_inode_flag(inode, FI_NEED_IPU); 275 ret = file_write_and_wait_range(file, start, end); 276 clear_inode_flag(inode, FI_NEED_IPU); 277 278 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 279 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 280 return ret; 281 } 282 283 /* if the inode is dirty, let's recover all the time */ 284 if (!f2fs_skip_inode_update(inode, datasync)) { 285 f2fs_write_inode(inode, NULL); 286 goto go_write; 287 } 288 289 /* 290 * if there is no written data, don't waste time to write recovery info. 291 */ 292 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 293 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 294 295 /* it may call write_inode just prior to fsync */ 296 if (need_inode_page_update(sbi, ino)) 297 goto go_write; 298 299 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 300 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 301 goto flush_out; 302 goto out; 303 } else { 304 /* 305 * for OPU case, during fsync(), node can be persisted before 306 * data when lower device doesn't support write barrier, result 307 * in data corruption after SPO. 308 * So for strict fsync mode, force to use atomic write sematics 309 * to keep write order in between data/node and last node to 310 * avoid potential data corruption. 311 */ 312 if (F2FS_OPTION(sbi).fsync_mode == 313 FSYNC_MODE_STRICT && !atomic) 314 atomic = true; 315 } 316 go_write: 317 /* 318 * Both of fdatasync() and fsync() are able to be recovered from 319 * sudden-power-off. 320 */ 321 f2fs_down_read(&F2FS_I(inode)->i_sem); 322 cp_reason = need_do_checkpoint(inode); 323 f2fs_up_read(&F2FS_I(inode)->i_sem); 324 325 if (cp_reason) { 326 /* all the dirty node pages should be flushed for POR */ 327 ret = f2fs_sync_fs(inode->i_sb, 1); 328 329 /* 330 * We've secured consistency through sync_fs. Following pino 331 * will be used only for fsynced inodes after checkpoint. 332 */ 333 try_to_fix_pino(inode); 334 clear_inode_flag(inode, FI_APPEND_WRITE); 335 clear_inode_flag(inode, FI_UPDATE_WRITE); 336 goto out; 337 } 338 sync_nodes: 339 atomic_inc(&sbi->wb_sync_req[NODE]); 340 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 341 atomic_dec(&sbi->wb_sync_req[NODE]); 342 if (ret) 343 goto out; 344 345 /* if cp_error was enabled, we should avoid infinite loop */ 346 if (unlikely(f2fs_cp_error(sbi))) { 347 ret = -EIO; 348 goto out; 349 } 350 351 if (f2fs_need_inode_block_update(sbi, ino)) { 352 f2fs_mark_inode_dirty_sync(inode, true); 353 f2fs_write_inode(inode, NULL); 354 goto sync_nodes; 355 } 356 357 /* 358 * If it's atomic_write, it's just fine to keep write ordering. So 359 * here we don't need to wait for node write completion, since we use 360 * node chain which serializes node blocks. If one of node writes are 361 * reordered, we can see simply broken chain, resulting in stopping 362 * roll-forward recovery. It means we'll recover all or none node blocks 363 * given fsync mark. 364 */ 365 if (!atomic) { 366 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 367 if (ret) 368 goto out; 369 } 370 371 /* once recovery info is written, don't need to tack this */ 372 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 373 clear_inode_flag(inode, FI_APPEND_WRITE); 374 flush_out: 375 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) || 376 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi))) 377 ret = f2fs_issue_flush(sbi, inode->i_ino); 378 if (!ret) { 379 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 380 clear_inode_flag(inode, FI_UPDATE_WRITE); 381 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 382 } 383 f2fs_update_time(sbi, REQ_TIME); 384 out: 385 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 386 return ret; 387 } 388 389 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 390 { 391 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 392 return -EIO; 393 return f2fs_do_sync_file(file, start, end, datasync, false); 394 } 395 396 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 397 pgoff_t index, int whence) 398 { 399 switch (whence) { 400 case SEEK_DATA: 401 if (__is_valid_data_blkaddr(blkaddr)) 402 return true; 403 if (blkaddr == NEW_ADDR && 404 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 405 return true; 406 break; 407 case SEEK_HOLE: 408 if (blkaddr == NULL_ADDR) 409 return true; 410 break; 411 } 412 return false; 413 } 414 415 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 416 { 417 struct inode *inode = file->f_mapping->host; 418 loff_t maxbytes = inode->i_sb->s_maxbytes; 419 struct dnode_of_data dn; 420 pgoff_t pgofs, end_offset; 421 loff_t data_ofs = offset; 422 loff_t isize; 423 int err = 0; 424 425 inode_lock(inode); 426 427 isize = i_size_read(inode); 428 if (offset >= isize) 429 goto fail; 430 431 /* handle inline data case */ 432 if (f2fs_has_inline_data(inode)) { 433 if (whence == SEEK_HOLE) { 434 data_ofs = isize; 435 goto found; 436 } else if (whence == SEEK_DATA) { 437 data_ofs = offset; 438 goto found; 439 } 440 } 441 442 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 443 444 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 445 set_new_dnode(&dn, inode, NULL, NULL, 0); 446 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 447 if (err && err != -ENOENT) { 448 goto fail; 449 } else if (err == -ENOENT) { 450 /* direct node does not exists */ 451 if (whence == SEEK_DATA) { 452 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 453 continue; 454 } else { 455 goto found; 456 } 457 } 458 459 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 460 461 /* find data/hole in dnode block */ 462 for (; dn.ofs_in_node < end_offset; 463 dn.ofs_in_node++, pgofs++, 464 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 465 block_t blkaddr; 466 467 blkaddr = f2fs_data_blkaddr(&dn); 468 469 if (__is_valid_data_blkaddr(blkaddr) && 470 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 471 blkaddr, DATA_GENERIC_ENHANCE)) { 472 f2fs_put_dnode(&dn); 473 goto fail; 474 } 475 476 if (__found_offset(file->f_mapping, blkaddr, 477 pgofs, whence)) { 478 f2fs_put_dnode(&dn); 479 goto found; 480 } 481 } 482 f2fs_put_dnode(&dn); 483 } 484 485 if (whence == SEEK_DATA) 486 goto fail; 487 found: 488 if (whence == SEEK_HOLE && data_ofs > isize) 489 data_ofs = isize; 490 inode_unlock(inode); 491 return vfs_setpos(file, data_ofs, maxbytes); 492 fail: 493 inode_unlock(inode); 494 return -ENXIO; 495 } 496 497 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 498 { 499 struct inode *inode = file->f_mapping->host; 500 loff_t maxbytes = inode->i_sb->s_maxbytes; 501 502 if (f2fs_compressed_file(inode)) 503 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 504 505 switch (whence) { 506 case SEEK_SET: 507 case SEEK_CUR: 508 case SEEK_END: 509 return generic_file_llseek_size(file, offset, whence, 510 maxbytes, i_size_read(inode)); 511 case SEEK_DATA: 512 case SEEK_HOLE: 513 if (offset < 0) 514 return -ENXIO; 515 return f2fs_seek_block(file, offset, whence); 516 } 517 518 return -EINVAL; 519 } 520 521 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 522 { 523 struct inode *inode = file_inode(file); 524 525 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 526 return -EIO; 527 528 if (!f2fs_is_compress_backend_ready(inode)) 529 return -EOPNOTSUPP; 530 531 file_accessed(file); 532 vma->vm_ops = &f2fs_file_vm_ops; 533 set_inode_flag(inode, FI_MMAP_FILE); 534 return 0; 535 } 536 537 static int f2fs_file_open(struct inode *inode, struct file *filp) 538 { 539 int err = fscrypt_file_open(inode, filp); 540 541 if (err) 542 return err; 543 544 if (!f2fs_is_compress_backend_ready(inode)) 545 return -EOPNOTSUPP; 546 547 err = fsverity_file_open(inode, filp); 548 if (err) 549 return err; 550 551 filp->f_mode |= FMODE_NOWAIT; 552 553 return dquot_file_open(inode, filp); 554 } 555 556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 557 { 558 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 559 struct f2fs_node *raw_node; 560 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 561 __le32 *addr; 562 int base = 0; 563 bool compressed_cluster = false; 564 int cluster_index = 0, valid_blocks = 0; 565 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 566 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 567 568 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 569 base = get_extra_isize(dn->inode); 570 571 raw_node = F2FS_NODE(dn->node_page); 572 addr = blkaddr_in_node(raw_node) + base + ofs; 573 574 /* Assumption: truncateion starts with cluster */ 575 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 576 block_t blkaddr = le32_to_cpu(*addr); 577 578 if (f2fs_compressed_file(dn->inode) && 579 !(cluster_index & (cluster_size - 1))) { 580 if (compressed_cluster) 581 f2fs_i_compr_blocks_update(dn->inode, 582 valid_blocks, false); 583 compressed_cluster = (blkaddr == COMPRESS_ADDR); 584 valid_blocks = 0; 585 } 586 587 if (blkaddr == NULL_ADDR) 588 continue; 589 590 dn->data_blkaddr = NULL_ADDR; 591 f2fs_set_data_blkaddr(dn); 592 593 if (__is_valid_data_blkaddr(blkaddr)) { 594 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 595 DATA_GENERIC_ENHANCE)) 596 continue; 597 if (compressed_cluster) 598 valid_blocks++; 599 } 600 601 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 602 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 603 604 f2fs_invalidate_blocks(sbi, blkaddr); 605 606 if (!released || blkaddr != COMPRESS_ADDR) 607 nr_free++; 608 } 609 610 if (compressed_cluster) 611 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 612 613 if (nr_free) { 614 pgoff_t fofs; 615 /* 616 * once we invalidate valid blkaddr in range [ofs, ofs + count], 617 * we will invalidate all blkaddr in the whole range. 618 */ 619 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 620 dn->inode) + ofs; 621 f2fs_update_extent_cache_range(dn, fofs, 0, len); 622 dec_valid_block_count(sbi, dn->inode, nr_free); 623 } 624 dn->ofs_in_node = ofs; 625 626 f2fs_update_time(sbi, REQ_TIME); 627 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 628 dn->ofs_in_node, nr_free); 629 } 630 631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 632 { 633 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 634 } 635 636 static int truncate_partial_data_page(struct inode *inode, u64 from, 637 bool cache_only) 638 { 639 loff_t offset = from & (PAGE_SIZE - 1); 640 pgoff_t index = from >> PAGE_SHIFT; 641 struct address_space *mapping = inode->i_mapping; 642 struct page *page; 643 644 if (!offset && !cache_only) 645 return 0; 646 647 if (cache_only) { 648 page = find_lock_page(mapping, index); 649 if (page && PageUptodate(page)) 650 goto truncate_out; 651 f2fs_put_page(page, 1); 652 return 0; 653 } 654 655 page = f2fs_get_lock_data_page(inode, index, true); 656 if (IS_ERR(page)) 657 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 658 truncate_out: 659 f2fs_wait_on_page_writeback(page, DATA, true, true); 660 zero_user(page, offset, PAGE_SIZE - offset); 661 662 /* An encrypted inode should have a key and truncate the last page. */ 663 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 664 if (!cache_only) 665 set_page_dirty(page); 666 f2fs_put_page(page, 1); 667 return 0; 668 } 669 670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 671 { 672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 673 struct dnode_of_data dn; 674 pgoff_t free_from; 675 int count = 0, err = 0; 676 struct page *ipage; 677 bool truncate_page = false; 678 679 trace_f2fs_truncate_blocks_enter(inode, from); 680 681 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 682 683 if (free_from >= max_file_blocks(inode)) 684 goto free_partial; 685 686 if (lock) 687 f2fs_lock_op(sbi); 688 689 ipage = f2fs_get_node_page(sbi, inode->i_ino); 690 if (IS_ERR(ipage)) { 691 err = PTR_ERR(ipage); 692 goto out; 693 } 694 695 if (f2fs_has_inline_data(inode)) { 696 f2fs_truncate_inline_inode(inode, ipage, from); 697 f2fs_put_page(ipage, 1); 698 truncate_page = true; 699 goto out; 700 } 701 702 set_new_dnode(&dn, inode, ipage, NULL, 0); 703 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 704 if (err) { 705 if (err == -ENOENT) 706 goto free_next; 707 goto out; 708 } 709 710 count = ADDRS_PER_PAGE(dn.node_page, inode); 711 712 count -= dn.ofs_in_node; 713 f2fs_bug_on(sbi, count < 0); 714 715 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 716 f2fs_truncate_data_blocks_range(&dn, count); 717 free_from += count; 718 } 719 720 f2fs_put_dnode(&dn); 721 free_next: 722 err = f2fs_truncate_inode_blocks(inode, free_from); 723 out: 724 if (lock) 725 f2fs_unlock_op(sbi); 726 free_partial: 727 /* lastly zero out the first data page */ 728 if (!err) 729 err = truncate_partial_data_page(inode, from, truncate_page); 730 731 trace_f2fs_truncate_blocks_exit(inode, err); 732 return err; 733 } 734 735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 736 { 737 u64 free_from = from; 738 int err; 739 740 #ifdef CONFIG_F2FS_FS_COMPRESSION 741 /* 742 * for compressed file, only support cluster size 743 * aligned truncation. 744 */ 745 if (f2fs_compressed_file(inode)) 746 free_from = round_up(from, 747 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 748 #endif 749 750 err = f2fs_do_truncate_blocks(inode, free_from, lock); 751 if (err) 752 return err; 753 754 #ifdef CONFIG_F2FS_FS_COMPRESSION 755 /* 756 * For compressed file, after release compress blocks, don't allow write 757 * direct, but we should allow write direct after truncate to zero. 758 */ 759 if (f2fs_compressed_file(inode) && !free_from 760 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 761 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 762 763 if (from != free_from) { 764 err = f2fs_truncate_partial_cluster(inode, from, lock); 765 if (err) 766 return err; 767 } 768 #endif 769 770 return 0; 771 } 772 773 int f2fs_truncate(struct inode *inode) 774 { 775 int err; 776 777 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 778 return -EIO; 779 780 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 781 S_ISLNK(inode->i_mode))) 782 return 0; 783 784 trace_f2fs_truncate(inode); 785 786 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 787 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 788 return -EIO; 789 } 790 791 err = f2fs_dquot_initialize(inode); 792 if (err) 793 return err; 794 795 /* we should check inline_data size */ 796 if (!f2fs_may_inline_data(inode)) { 797 err = f2fs_convert_inline_inode(inode); 798 if (err) 799 return err; 800 } 801 802 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 803 if (err) 804 return err; 805 806 inode->i_mtime = inode->i_ctime = current_time(inode); 807 f2fs_mark_inode_dirty_sync(inode, false); 808 return 0; 809 } 810 811 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 812 struct kstat *stat, u32 request_mask, unsigned int query_flags) 813 { 814 struct inode *inode = d_inode(path->dentry); 815 struct f2fs_inode_info *fi = F2FS_I(inode); 816 struct f2fs_inode *ri = NULL; 817 unsigned int flags; 818 819 if (f2fs_has_extra_attr(inode) && 820 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 821 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 822 stat->result_mask |= STATX_BTIME; 823 stat->btime.tv_sec = fi->i_crtime.tv_sec; 824 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 825 } 826 827 flags = fi->i_flags; 828 if (flags & F2FS_COMPR_FL) 829 stat->attributes |= STATX_ATTR_COMPRESSED; 830 if (flags & F2FS_APPEND_FL) 831 stat->attributes |= STATX_ATTR_APPEND; 832 if (IS_ENCRYPTED(inode)) 833 stat->attributes |= STATX_ATTR_ENCRYPTED; 834 if (flags & F2FS_IMMUTABLE_FL) 835 stat->attributes |= STATX_ATTR_IMMUTABLE; 836 if (flags & F2FS_NODUMP_FL) 837 stat->attributes |= STATX_ATTR_NODUMP; 838 if (IS_VERITY(inode)) 839 stat->attributes |= STATX_ATTR_VERITY; 840 841 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 842 STATX_ATTR_APPEND | 843 STATX_ATTR_ENCRYPTED | 844 STATX_ATTR_IMMUTABLE | 845 STATX_ATTR_NODUMP | 846 STATX_ATTR_VERITY); 847 848 generic_fillattr(mnt_userns, inode, stat); 849 850 /* we need to show initial sectors used for inline_data/dentries */ 851 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 852 f2fs_has_inline_dentry(inode)) 853 stat->blocks += (stat->size + 511) >> 9; 854 855 return 0; 856 } 857 858 #ifdef CONFIG_F2FS_FS_POSIX_ACL 859 static void __setattr_copy(struct user_namespace *mnt_userns, 860 struct inode *inode, const struct iattr *attr) 861 { 862 unsigned int ia_valid = attr->ia_valid; 863 864 if (ia_valid & ATTR_UID) 865 inode->i_uid = attr->ia_uid; 866 if (ia_valid & ATTR_GID) 867 inode->i_gid = attr->ia_gid; 868 if (ia_valid & ATTR_ATIME) 869 inode->i_atime = attr->ia_atime; 870 if (ia_valid & ATTR_MTIME) 871 inode->i_mtime = attr->ia_mtime; 872 if (ia_valid & ATTR_CTIME) 873 inode->i_ctime = attr->ia_ctime; 874 if (ia_valid & ATTR_MODE) { 875 umode_t mode = attr->ia_mode; 876 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 877 878 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID)) 879 mode &= ~S_ISGID; 880 set_acl_inode(inode, mode); 881 } 882 } 883 #else 884 #define __setattr_copy setattr_copy 885 #endif 886 887 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 888 struct iattr *attr) 889 { 890 struct inode *inode = d_inode(dentry); 891 int err; 892 893 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 894 return -EIO; 895 896 if (unlikely(IS_IMMUTABLE(inode))) 897 return -EPERM; 898 899 if (unlikely(IS_APPEND(inode) && 900 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 901 ATTR_GID | ATTR_TIMES_SET)))) 902 return -EPERM; 903 904 if ((attr->ia_valid & ATTR_SIZE) && 905 !f2fs_is_compress_backend_ready(inode)) 906 return -EOPNOTSUPP; 907 908 err = setattr_prepare(mnt_userns, dentry, attr); 909 if (err) 910 return err; 911 912 err = fscrypt_prepare_setattr(dentry, attr); 913 if (err) 914 return err; 915 916 err = fsverity_prepare_setattr(dentry, attr); 917 if (err) 918 return err; 919 920 if (is_quota_modification(inode, attr)) { 921 err = f2fs_dquot_initialize(inode); 922 if (err) 923 return err; 924 } 925 if ((attr->ia_valid & ATTR_UID && 926 !uid_eq(attr->ia_uid, inode->i_uid)) || 927 (attr->ia_valid & ATTR_GID && 928 !gid_eq(attr->ia_gid, inode->i_gid))) { 929 f2fs_lock_op(F2FS_I_SB(inode)); 930 err = dquot_transfer(inode, attr); 931 if (err) { 932 set_sbi_flag(F2FS_I_SB(inode), 933 SBI_QUOTA_NEED_REPAIR); 934 f2fs_unlock_op(F2FS_I_SB(inode)); 935 return err; 936 } 937 /* 938 * update uid/gid under lock_op(), so that dquot and inode can 939 * be updated atomically. 940 */ 941 if (attr->ia_valid & ATTR_UID) 942 inode->i_uid = attr->ia_uid; 943 if (attr->ia_valid & ATTR_GID) 944 inode->i_gid = attr->ia_gid; 945 f2fs_mark_inode_dirty_sync(inode, true); 946 f2fs_unlock_op(F2FS_I_SB(inode)); 947 } 948 949 if (attr->ia_valid & ATTR_SIZE) { 950 loff_t old_size = i_size_read(inode); 951 952 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 953 /* 954 * should convert inline inode before i_size_write to 955 * keep smaller than inline_data size with inline flag. 956 */ 957 err = f2fs_convert_inline_inode(inode); 958 if (err) 959 return err; 960 } 961 962 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 963 filemap_invalidate_lock(inode->i_mapping); 964 965 truncate_setsize(inode, attr->ia_size); 966 967 if (attr->ia_size <= old_size) 968 err = f2fs_truncate(inode); 969 /* 970 * do not trim all blocks after i_size if target size is 971 * larger than i_size. 972 */ 973 filemap_invalidate_unlock(inode->i_mapping); 974 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 975 if (err) 976 return err; 977 978 spin_lock(&F2FS_I(inode)->i_size_lock); 979 inode->i_mtime = inode->i_ctime = current_time(inode); 980 F2FS_I(inode)->last_disk_size = i_size_read(inode); 981 spin_unlock(&F2FS_I(inode)->i_size_lock); 982 } 983 984 __setattr_copy(mnt_userns, inode, attr); 985 986 if (attr->ia_valid & ATTR_MODE) { 987 err = posix_acl_chmod(mnt_userns, inode, f2fs_get_inode_mode(inode)); 988 989 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 990 if (!err) 991 inode->i_mode = F2FS_I(inode)->i_acl_mode; 992 clear_inode_flag(inode, FI_ACL_MODE); 993 } 994 } 995 996 /* file size may changed here */ 997 f2fs_mark_inode_dirty_sync(inode, true); 998 999 /* inode change will produce dirty node pages flushed by checkpoint */ 1000 f2fs_balance_fs(F2FS_I_SB(inode), true); 1001 1002 return err; 1003 } 1004 1005 const struct inode_operations f2fs_file_inode_operations = { 1006 .getattr = f2fs_getattr, 1007 .setattr = f2fs_setattr, 1008 .get_acl = f2fs_get_acl, 1009 .set_acl = f2fs_set_acl, 1010 .listxattr = f2fs_listxattr, 1011 .fiemap = f2fs_fiemap, 1012 .fileattr_get = f2fs_fileattr_get, 1013 .fileattr_set = f2fs_fileattr_set, 1014 }; 1015 1016 static int fill_zero(struct inode *inode, pgoff_t index, 1017 loff_t start, loff_t len) 1018 { 1019 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1020 struct page *page; 1021 1022 if (!len) 1023 return 0; 1024 1025 f2fs_balance_fs(sbi, true); 1026 1027 f2fs_lock_op(sbi); 1028 page = f2fs_get_new_data_page(inode, NULL, index, false); 1029 f2fs_unlock_op(sbi); 1030 1031 if (IS_ERR(page)) 1032 return PTR_ERR(page); 1033 1034 f2fs_wait_on_page_writeback(page, DATA, true, true); 1035 zero_user(page, start, len); 1036 set_page_dirty(page); 1037 f2fs_put_page(page, 1); 1038 return 0; 1039 } 1040 1041 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1042 { 1043 int err; 1044 1045 while (pg_start < pg_end) { 1046 struct dnode_of_data dn; 1047 pgoff_t end_offset, count; 1048 1049 set_new_dnode(&dn, inode, NULL, NULL, 0); 1050 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1051 if (err) { 1052 if (err == -ENOENT) { 1053 pg_start = f2fs_get_next_page_offset(&dn, 1054 pg_start); 1055 continue; 1056 } 1057 return err; 1058 } 1059 1060 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1061 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1062 1063 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1064 1065 f2fs_truncate_data_blocks_range(&dn, count); 1066 f2fs_put_dnode(&dn); 1067 1068 pg_start += count; 1069 } 1070 return 0; 1071 } 1072 1073 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1074 { 1075 pgoff_t pg_start, pg_end; 1076 loff_t off_start, off_end; 1077 int ret; 1078 1079 ret = f2fs_convert_inline_inode(inode); 1080 if (ret) 1081 return ret; 1082 1083 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1084 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1085 1086 off_start = offset & (PAGE_SIZE - 1); 1087 off_end = (offset + len) & (PAGE_SIZE - 1); 1088 1089 if (pg_start == pg_end) { 1090 ret = fill_zero(inode, pg_start, off_start, 1091 off_end - off_start); 1092 if (ret) 1093 return ret; 1094 } else { 1095 if (off_start) { 1096 ret = fill_zero(inode, pg_start++, off_start, 1097 PAGE_SIZE - off_start); 1098 if (ret) 1099 return ret; 1100 } 1101 if (off_end) { 1102 ret = fill_zero(inode, pg_end, 0, off_end); 1103 if (ret) 1104 return ret; 1105 } 1106 1107 if (pg_start < pg_end) { 1108 loff_t blk_start, blk_end; 1109 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1110 1111 f2fs_balance_fs(sbi, true); 1112 1113 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1114 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1115 1116 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1117 filemap_invalidate_lock(inode->i_mapping); 1118 1119 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1120 1121 f2fs_lock_op(sbi); 1122 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1123 f2fs_unlock_op(sbi); 1124 1125 filemap_invalidate_unlock(inode->i_mapping); 1126 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1127 } 1128 } 1129 1130 return ret; 1131 } 1132 1133 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1134 int *do_replace, pgoff_t off, pgoff_t len) 1135 { 1136 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1137 struct dnode_of_data dn; 1138 int ret, done, i; 1139 1140 next_dnode: 1141 set_new_dnode(&dn, inode, NULL, NULL, 0); 1142 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1143 if (ret && ret != -ENOENT) { 1144 return ret; 1145 } else if (ret == -ENOENT) { 1146 if (dn.max_level == 0) 1147 return -ENOENT; 1148 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1149 dn.ofs_in_node, len); 1150 blkaddr += done; 1151 do_replace += done; 1152 goto next; 1153 } 1154 1155 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1156 dn.ofs_in_node, len); 1157 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1158 *blkaddr = f2fs_data_blkaddr(&dn); 1159 1160 if (__is_valid_data_blkaddr(*blkaddr) && 1161 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1162 DATA_GENERIC_ENHANCE)) { 1163 f2fs_put_dnode(&dn); 1164 return -EFSCORRUPTED; 1165 } 1166 1167 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1168 1169 if (f2fs_lfs_mode(sbi)) { 1170 f2fs_put_dnode(&dn); 1171 return -EOPNOTSUPP; 1172 } 1173 1174 /* do not invalidate this block address */ 1175 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1176 *do_replace = 1; 1177 } 1178 } 1179 f2fs_put_dnode(&dn); 1180 next: 1181 len -= done; 1182 off += done; 1183 if (len) 1184 goto next_dnode; 1185 return 0; 1186 } 1187 1188 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1189 int *do_replace, pgoff_t off, int len) 1190 { 1191 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1192 struct dnode_of_data dn; 1193 int ret, i; 1194 1195 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1196 if (*do_replace == 0) 1197 continue; 1198 1199 set_new_dnode(&dn, inode, NULL, NULL, 0); 1200 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1201 if (ret) { 1202 dec_valid_block_count(sbi, inode, 1); 1203 f2fs_invalidate_blocks(sbi, *blkaddr); 1204 } else { 1205 f2fs_update_data_blkaddr(&dn, *blkaddr); 1206 } 1207 f2fs_put_dnode(&dn); 1208 } 1209 return 0; 1210 } 1211 1212 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1213 block_t *blkaddr, int *do_replace, 1214 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1215 { 1216 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1217 pgoff_t i = 0; 1218 int ret; 1219 1220 while (i < len) { 1221 if (blkaddr[i] == NULL_ADDR && !full) { 1222 i++; 1223 continue; 1224 } 1225 1226 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1227 struct dnode_of_data dn; 1228 struct node_info ni; 1229 size_t new_size; 1230 pgoff_t ilen; 1231 1232 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1233 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1234 if (ret) 1235 return ret; 1236 1237 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1238 if (ret) { 1239 f2fs_put_dnode(&dn); 1240 return ret; 1241 } 1242 1243 ilen = min((pgoff_t) 1244 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1245 dn.ofs_in_node, len - i); 1246 do { 1247 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1248 f2fs_truncate_data_blocks_range(&dn, 1); 1249 1250 if (do_replace[i]) { 1251 f2fs_i_blocks_write(src_inode, 1252 1, false, false); 1253 f2fs_i_blocks_write(dst_inode, 1254 1, true, false); 1255 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1256 blkaddr[i], ni.version, true, false); 1257 1258 do_replace[i] = 0; 1259 } 1260 dn.ofs_in_node++; 1261 i++; 1262 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1263 if (dst_inode->i_size < new_size) 1264 f2fs_i_size_write(dst_inode, new_size); 1265 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1266 1267 f2fs_put_dnode(&dn); 1268 } else { 1269 struct page *psrc, *pdst; 1270 1271 psrc = f2fs_get_lock_data_page(src_inode, 1272 src + i, true); 1273 if (IS_ERR(psrc)) 1274 return PTR_ERR(psrc); 1275 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1276 true); 1277 if (IS_ERR(pdst)) { 1278 f2fs_put_page(psrc, 1); 1279 return PTR_ERR(pdst); 1280 } 1281 f2fs_copy_page(psrc, pdst); 1282 set_page_dirty(pdst); 1283 f2fs_put_page(pdst, 1); 1284 f2fs_put_page(psrc, 1); 1285 1286 ret = f2fs_truncate_hole(src_inode, 1287 src + i, src + i + 1); 1288 if (ret) 1289 return ret; 1290 i++; 1291 } 1292 } 1293 return 0; 1294 } 1295 1296 static int __exchange_data_block(struct inode *src_inode, 1297 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1298 pgoff_t len, bool full) 1299 { 1300 block_t *src_blkaddr; 1301 int *do_replace; 1302 pgoff_t olen; 1303 int ret; 1304 1305 while (len) { 1306 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1307 1308 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1309 array_size(olen, sizeof(block_t)), 1310 GFP_NOFS); 1311 if (!src_blkaddr) 1312 return -ENOMEM; 1313 1314 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1315 array_size(olen, sizeof(int)), 1316 GFP_NOFS); 1317 if (!do_replace) { 1318 kvfree(src_blkaddr); 1319 return -ENOMEM; 1320 } 1321 1322 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1323 do_replace, src, olen); 1324 if (ret) 1325 goto roll_back; 1326 1327 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1328 do_replace, src, dst, olen, full); 1329 if (ret) 1330 goto roll_back; 1331 1332 src += olen; 1333 dst += olen; 1334 len -= olen; 1335 1336 kvfree(src_blkaddr); 1337 kvfree(do_replace); 1338 } 1339 return 0; 1340 1341 roll_back: 1342 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1343 kvfree(src_blkaddr); 1344 kvfree(do_replace); 1345 return ret; 1346 } 1347 1348 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1349 { 1350 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1351 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1352 pgoff_t start = offset >> PAGE_SHIFT; 1353 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1354 int ret; 1355 1356 f2fs_balance_fs(sbi, true); 1357 1358 /* avoid gc operation during block exchange */ 1359 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1360 filemap_invalidate_lock(inode->i_mapping); 1361 1362 f2fs_lock_op(sbi); 1363 f2fs_drop_extent_tree(inode); 1364 truncate_pagecache(inode, offset); 1365 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1366 f2fs_unlock_op(sbi); 1367 1368 filemap_invalidate_unlock(inode->i_mapping); 1369 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1370 return ret; 1371 } 1372 1373 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1374 { 1375 loff_t new_size; 1376 int ret; 1377 1378 if (offset + len >= i_size_read(inode)) 1379 return -EINVAL; 1380 1381 /* collapse range should be aligned to block size of f2fs. */ 1382 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1383 return -EINVAL; 1384 1385 ret = f2fs_convert_inline_inode(inode); 1386 if (ret) 1387 return ret; 1388 1389 /* write out all dirty pages from offset */ 1390 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1391 if (ret) 1392 return ret; 1393 1394 ret = f2fs_do_collapse(inode, offset, len); 1395 if (ret) 1396 return ret; 1397 1398 /* write out all moved pages, if possible */ 1399 filemap_invalidate_lock(inode->i_mapping); 1400 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1401 truncate_pagecache(inode, offset); 1402 1403 new_size = i_size_read(inode) - len; 1404 ret = f2fs_truncate_blocks(inode, new_size, true); 1405 filemap_invalidate_unlock(inode->i_mapping); 1406 if (!ret) 1407 f2fs_i_size_write(inode, new_size); 1408 return ret; 1409 } 1410 1411 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1412 pgoff_t end) 1413 { 1414 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1415 pgoff_t index = start; 1416 unsigned int ofs_in_node = dn->ofs_in_node; 1417 blkcnt_t count = 0; 1418 int ret; 1419 1420 for (; index < end; index++, dn->ofs_in_node++) { 1421 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1422 count++; 1423 } 1424 1425 dn->ofs_in_node = ofs_in_node; 1426 ret = f2fs_reserve_new_blocks(dn, count); 1427 if (ret) 1428 return ret; 1429 1430 dn->ofs_in_node = ofs_in_node; 1431 for (index = start; index < end; index++, dn->ofs_in_node++) { 1432 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1433 /* 1434 * f2fs_reserve_new_blocks will not guarantee entire block 1435 * allocation. 1436 */ 1437 if (dn->data_blkaddr == NULL_ADDR) { 1438 ret = -ENOSPC; 1439 break; 1440 } 1441 1442 if (dn->data_blkaddr == NEW_ADDR) 1443 continue; 1444 1445 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1446 DATA_GENERIC_ENHANCE)) { 1447 ret = -EFSCORRUPTED; 1448 break; 1449 } 1450 1451 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1452 dn->data_blkaddr = NEW_ADDR; 1453 f2fs_set_data_blkaddr(dn); 1454 } 1455 1456 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1457 1458 return ret; 1459 } 1460 1461 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1462 int mode) 1463 { 1464 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1465 struct address_space *mapping = inode->i_mapping; 1466 pgoff_t index, pg_start, pg_end; 1467 loff_t new_size = i_size_read(inode); 1468 loff_t off_start, off_end; 1469 int ret = 0; 1470 1471 ret = inode_newsize_ok(inode, (len + offset)); 1472 if (ret) 1473 return ret; 1474 1475 ret = f2fs_convert_inline_inode(inode); 1476 if (ret) 1477 return ret; 1478 1479 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1480 if (ret) 1481 return ret; 1482 1483 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1484 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1485 1486 off_start = offset & (PAGE_SIZE - 1); 1487 off_end = (offset + len) & (PAGE_SIZE - 1); 1488 1489 if (pg_start == pg_end) { 1490 ret = fill_zero(inode, pg_start, off_start, 1491 off_end - off_start); 1492 if (ret) 1493 return ret; 1494 1495 new_size = max_t(loff_t, new_size, offset + len); 1496 } else { 1497 if (off_start) { 1498 ret = fill_zero(inode, pg_start++, off_start, 1499 PAGE_SIZE - off_start); 1500 if (ret) 1501 return ret; 1502 1503 new_size = max_t(loff_t, new_size, 1504 (loff_t)pg_start << PAGE_SHIFT); 1505 } 1506 1507 for (index = pg_start; index < pg_end;) { 1508 struct dnode_of_data dn; 1509 unsigned int end_offset; 1510 pgoff_t end; 1511 1512 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1513 filemap_invalidate_lock(mapping); 1514 1515 truncate_pagecache_range(inode, 1516 (loff_t)index << PAGE_SHIFT, 1517 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1518 1519 f2fs_lock_op(sbi); 1520 1521 set_new_dnode(&dn, inode, NULL, NULL, 0); 1522 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1523 if (ret) { 1524 f2fs_unlock_op(sbi); 1525 filemap_invalidate_unlock(mapping); 1526 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1527 goto out; 1528 } 1529 1530 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1531 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1532 1533 ret = f2fs_do_zero_range(&dn, index, end); 1534 f2fs_put_dnode(&dn); 1535 1536 f2fs_unlock_op(sbi); 1537 filemap_invalidate_unlock(mapping); 1538 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1539 1540 f2fs_balance_fs(sbi, dn.node_changed); 1541 1542 if (ret) 1543 goto out; 1544 1545 index = end; 1546 new_size = max_t(loff_t, new_size, 1547 (loff_t)index << PAGE_SHIFT); 1548 } 1549 1550 if (off_end) { 1551 ret = fill_zero(inode, pg_end, 0, off_end); 1552 if (ret) 1553 goto out; 1554 1555 new_size = max_t(loff_t, new_size, offset + len); 1556 } 1557 } 1558 1559 out: 1560 if (new_size > i_size_read(inode)) { 1561 if (mode & FALLOC_FL_KEEP_SIZE) 1562 file_set_keep_isize(inode); 1563 else 1564 f2fs_i_size_write(inode, new_size); 1565 } 1566 return ret; 1567 } 1568 1569 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1570 { 1571 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1572 struct address_space *mapping = inode->i_mapping; 1573 pgoff_t nr, pg_start, pg_end, delta, idx; 1574 loff_t new_size; 1575 int ret = 0; 1576 1577 new_size = i_size_read(inode) + len; 1578 ret = inode_newsize_ok(inode, new_size); 1579 if (ret) 1580 return ret; 1581 1582 if (offset >= i_size_read(inode)) 1583 return -EINVAL; 1584 1585 /* insert range should be aligned to block size of f2fs. */ 1586 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1587 return -EINVAL; 1588 1589 ret = f2fs_convert_inline_inode(inode); 1590 if (ret) 1591 return ret; 1592 1593 f2fs_balance_fs(sbi, true); 1594 1595 filemap_invalidate_lock(mapping); 1596 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1597 filemap_invalidate_unlock(mapping); 1598 if (ret) 1599 return ret; 1600 1601 /* write out all dirty pages from offset */ 1602 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1603 if (ret) 1604 return ret; 1605 1606 pg_start = offset >> PAGE_SHIFT; 1607 pg_end = (offset + len) >> PAGE_SHIFT; 1608 delta = pg_end - pg_start; 1609 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1610 1611 /* avoid gc operation during block exchange */ 1612 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1613 filemap_invalidate_lock(mapping); 1614 truncate_pagecache(inode, offset); 1615 1616 while (!ret && idx > pg_start) { 1617 nr = idx - pg_start; 1618 if (nr > delta) 1619 nr = delta; 1620 idx -= nr; 1621 1622 f2fs_lock_op(sbi); 1623 f2fs_drop_extent_tree(inode); 1624 1625 ret = __exchange_data_block(inode, inode, idx, 1626 idx + delta, nr, false); 1627 f2fs_unlock_op(sbi); 1628 } 1629 filemap_invalidate_unlock(mapping); 1630 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1631 1632 /* write out all moved pages, if possible */ 1633 filemap_invalidate_lock(mapping); 1634 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1635 truncate_pagecache(inode, offset); 1636 filemap_invalidate_unlock(mapping); 1637 1638 if (!ret) 1639 f2fs_i_size_write(inode, new_size); 1640 return ret; 1641 } 1642 1643 static int expand_inode_data(struct inode *inode, loff_t offset, 1644 loff_t len, int mode) 1645 { 1646 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1647 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1648 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1649 .m_may_create = true }; 1650 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1651 .init_gc_type = FG_GC, 1652 .should_migrate_blocks = false, 1653 .err_gc_skipped = true, 1654 .nr_free_secs = 0 }; 1655 pgoff_t pg_start, pg_end; 1656 loff_t new_size = i_size_read(inode); 1657 loff_t off_end; 1658 block_t expanded = 0; 1659 int err; 1660 1661 err = inode_newsize_ok(inode, (len + offset)); 1662 if (err) 1663 return err; 1664 1665 err = f2fs_convert_inline_inode(inode); 1666 if (err) 1667 return err; 1668 1669 f2fs_balance_fs(sbi, true); 1670 1671 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1672 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1673 off_end = (offset + len) & (PAGE_SIZE - 1); 1674 1675 map.m_lblk = pg_start; 1676 map.m_len = pg_end - pg_start; 1677 if (off_end) 1678 map.m_len++; 1679 1680 if (!map.m_len) 1681 return 0; 1682 1683 if (f2fs_is_pinned_file(inode)) { 1684 block_t sec_blks = BLKS_PER_SEC(sbi); 1685 block_t sec_len = roundup(map.m_len, sec_blks); 1686 1687 map.m_len = sec_blks; 1688 next_alloc: 1689 if (has_not_enough_free_secs(sbi, 0, 1690 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1691 f2fs_down_write(&sbi->gc_lock); 1692 err = f2fs_gc(sbi, &gc_control); 1693 if (err && err != -ENODATA) 1694 goto out_err; 1695 } 1696 1697 f2fs_down_write(&sbi->pin_sem); 1698 1699 f2fs_lock_op(sbi); 1700 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 1701 f2fs_unlock_op(sbi); 1702 1703 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1704 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1705 file_dont_truncate(inode); 1706 1707 f2fs_up_write(&sbi->pin_sem); 1708 1709 expanded += map.m_len; 1710 sec_len -= map.m_len; 1711 map.m_lblk += map.m_len; 1712 if (!err && sec_len) 1713 goto next_alloc; 1714 1715 map.m_len = expanded; 1716 } else { 1717 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1718 expanded = map.m_len; 1719 } 1720 out_err: 1721 if (err) { 1722 pgoff_t last_off; 1723 1724 if (!expanded) 1725 return err; 1726 1727 last_off = pg_start + expanded - 1; 1728 1729 /* update new size to the failed position */ 1730 new_size = (last_off == pg_end) ? offset + len : 1731 (loff_t)(last_off + 1) << PAGE_SHIFT; 1732 } else { 1733 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1734 } 1735 1736 if (new_size > i_size_read(inode)) { 1737 if (mode & FALLOC_FL_KEEP_SIZE) 1738 file_set_keep_isize(inode); 1739 else 1740 f2fs_i_size_write(inode, new_size); 1741 } 1742 1743 return err; 1744 } 1745 1746 static long f2fs_fallocate(struct file *file, int mode, 1747 loff_t offset, loff_t len) 1748 { 1749 struct inode *inode = file_inode(file); 1750 long ret = 0; 1751 1752 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1753 return -EIO; 1754 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1755 return -ENOSPC; 1756 if (!f2fs_is_compress_backend_ready(inode)) 1757 return -EOPNOTSUPP; 1758 1759 /* f2fs only support ->fallocate for regular file */ 1760 if (!S_ISREG(inode->i_mode)) 1761 return -EINVAL; 1762 1763 if (IS_ENCRYPTED(inode) && 1764 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1765 return -EOPNOTSUPP; 1766 1767 /* 1768 * Pinned file should not support partial trucation since the block 1769 * can be used by applications. 1770 */ 1771 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1772 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1773 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1774 return -EOPNOTSUPP; 1775 1776 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1777 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1778 FALLOC_FL_INSERT_RANGE)) 1779 return -EOPNOTSUPP; 1780 1781 inode_lock(inode); 1782 1783 ret = file_modified(file); 1784 if (ret) 1785 goto out; 1786 1787 if (mode & FALLOC_FL_PUNCH_HOLE) { 1788 if (offset >= inode->i_size) 1789 goto out; 1790 1791 ret = punch_hole(inode, offset, len); 1792 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1793 ret = f2fs_collapse_range(inode, offset, len); 1794 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1795 ret = f2fs_zero_range(inode, offset, len, mode); 1796 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1797 ret = f2fs_insert_range(inode, offset, len); 1798 } else { 1799 ret = expand_inode_data(inode, offset, len, mode); 1800 } 1801 1802 if (!ret) { 1803 inode->i_mtime = inode->i_ctime = current_time(inode); 1804 f2fs_mark_inode_dirty_sync(inode, false); 1805 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1806 } 1807 1808 out: 1809 inode_unlock(inode); 1810 1811 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1812 return ret; 1813 } 1814 1815 static int f2fs_release_file(struct inode *inode, struct file *filp) 1816 { 1817 /* 1818 * f2fs_relase_file is called at every close calls. So we should 1819 * not drop any inmemory pages by close called by other process. 1820 */ 1821 if (!(filp->f_mode & FMODE_WRITE) || 1822 atomic_read(&inode->i_writecount) != 1) 1823 return 0; 1824 1825 if (f2fs_is_atomic_file(inode)) 1826 f2fs_abort_atomic_write(inode, true); 1827 return 0; 1828 } 1829 1830 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1831 { 1832 struct inode *inode = file_inode(file); 1833 1834 /* 1835 * If the process doing a transaction is crashed, we should do 1836 * roll-back. Otherwise, other reader/write can see corrupted database 1837 * until all the writers close its file. Since this should be done 1838 * before dropping file lock, it needs to do in ->flush. 1839 */ 1840 if (f2fs_is_atomic_file(inode) && 1841 F2FS_I(inode)->atomic_write_task == current) 1842 f2fs_abort_atomic_write(inode, true); 1843 return 0; 1844 } 1845 1846 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1847 { 1848 struct f2fs_inode_info *fi = F2FS_I(inode); 1849 u32 masked_flags = fi->i_flags & mask; 1850 1851 /* mask can be shrunk by flags_valid selector */ 1852 iflags &= mask; 1853 1854 /* Is it quota file? Do not allow user to mess with it */ 1855 if (IS_NOQUOTA(inode)) 1856 return -EPERM; 1857 1858 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1859 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1860 return -EOPNOTSUPP; 1861 if (!f2fs_empty_dir(inode)) 1862 return -ENOTEMPTY; 1863 } 1864 1865 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1866 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1867 return -EOPNOTSUPP; 1868 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1869 return -EINVAL; 1870 } 1871 1872 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1873 if (masked_flags & F2FS_COMPR_FL) { 1874 if (!f2fs_disable_compressed_file(inode)) 1875 return -EINVAL; 1876 } 1877 if (iflags & F2FS_NOCOMP_FL) 1878 return -EINVAL; 1879 if (iflags & F2FS_COMPR_FL) { 1880 if (!f2fs_may_compress(inode)) 1881 return -EINVAL; 1882 if (S_ISREG(inode->i_mode) && inode->i_size) 1883 return -EINVAL; 1884 1885 set_compress_context(inode); 1886 } 1887 } 1888 if ((iflags ^ masked_flags) & F2FS_NOCOMP_FL) { 1889 if (masked_flags & F2FS_COMPR_FL) 1890 return -EINVAL; 1891 } 1892 1893 fi->i_flags = iflags | (fi->i_flags & ~mask); 1894 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1895 (fi->i_flags & F2FS_NOCOMP_FL)); 1896 1897 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1898 set_inode_flag(inode, FI_PROJ_INHERIT); 1899 else 1900 clear_inode_flag(inode, FI_PROJ_INHERIT); 1901 1902 inode->i_ctime = current_time(inode); 1903 f2fs_set_inode_flags(inode); 1904 f2fs_mark_inode_dirty_sync(inode, true); 1905 return 0; 1906 } 1907 1908 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 1909 1910 /* 1911 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1912 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1913 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1914 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1915 * 1916 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 1917 * FS_IOC_FSSETXATTR is done by the VFS. 1918 */ 1919 1920 static const struct { 1921 u32 iflag; 1922 u32 fsflag; 1923 } f2fs_fsflags_map[] = { 1924 { F2FS_COMPR_FL, FS_COMPR_FL }, 1925 { F2FS_SYNC_FL, FS_SYNC_FL }, 1926 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1927 { F2FS_APPEND_FL, FS_APPEND_FL }, 1928 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1929 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1930 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1931 { F2FS_INDEX_FL, FS_INDEX_FL }, 1932 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1933 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1934 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1935 }; 1936 1937 #define F2FS_GETTABLE_FS_FL ( \ 1938 FS_COMPR_FL | \ 1939 FS_SYNC_FL | \ 1940 FS_IMMUTABLE_FL | \ 1941 FS_APPEND_FL | \ 1942 FS_NODUMP_FL | \ 1943 FS_NOATIME_FL | \ 1944 FS_NOCOMP_FL | \ 1945 FS_INDEX_FL | \ 1946 FS_DIRSYNC_FL | \ 1947 FS_PROJINHERIT_FL | \ 1948 FS_ENCRYPT_FL | \ 1949 FS_INLINE_DATA_FL | \ 1950 FS_NOCOW_FL | \ 1951 FS_VERITY_FL | \ 1952 FS_CASEFOLD_FL) 1953 1954 #define F2FS_SETTABLE_FS_FL ( \ 1955 FS_COMPR_FL | \ 1956 FS_SYNC_FL | \ 1957 FS_IMMUTABLE_FL | \ 1958 FS_APPEND_FL | \ 1959 FS_NODUMP_FL | \ 1960 FS_NOATIME_FL | \ 1961 FS_NOCOMP_FL | \ 1962 FS_DIRSYNC_FL | \ 1963 FS_PROJINHERIT_FL | \ 1964 FS_CASEFOLD_FL) 1965 1966 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1967 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1968 { 1969 u32 fsflags = 0; 1970 int i; 1971 1972 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1973 if (iflags & f2fs_fsflags_map[i].iflag) 1974 fsflags |= f2fs_fsflags_map[i].fsflag; 1975 1976 return fsflags; 1977 } 1978 1979 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1980 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1981 { 1982 u32 iflags = 0; 1983 int i; 1984 1985 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1986 if (fsflags & f2fs_fsflags_map[i].fsflag) 1987 iflags |= f2fs_fsflags_map[i].iflag; 1988 1989 return iflags; 1990 } 1991 1992 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1993 { 1994 struct inode *inode = file_inode(filp); 1995 1996 return put_user(inode->i_generation, (int __user *)arg); 1997 } 1998 1999 static int f2fs_ioc_start_atomic_write(struct file *filp) 2000 { 2001 struct inode *inode = file_inode(filp); 2002 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2003 struct f2fs_inode_info *fi = F2FS_I(inode); 2004 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2005 struct inode *pinode; 2006 int ret; 2007 2008 if (!inode_owner_or_capable(mnt_userns, inode)) 2009 return -EACCES; 2010 2011 if (!S_ISREG(inode->i_mode)) 2012 return -EINVAL; 2013 2014 if (filp->f_flags & O_DIRECT) 2015 return -EINVAL; 2016 2017 ret = mnt_want_write_file(filp); 2018 if (ret) 2019 return ret; 2020 2021 inode_lock(inode); 2022 2023 if (!f2fs_disable_compressed_file(inode)) { 2024 ret = -EINVAL; 2025 goto out; 2026 } 2027 2028 if (f2fs_is_atomic_file(inode)) 2029 goto out; 2030 2031 ret = f2fs_convert_inline_inode(inode); 2032 if (ret) 2033 goto out; 2034 2035 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2036 2037 /* 2038 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2039 * f2fs_is_atomic_file. 2040 */ 2041 if (get_dirty_pages(inode)) 2042 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2043 inode->i_ino, get_dirty_pages(inode)); 2044 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2045 if (ret) { 2046 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2047 goto out; 2048 } 2049 2050 /* Create a COW inode for atomic write */ 2051 pinode = f2fs_iget(inode->i_sb, fi->i_pino); 2052 if (IS_ERR(pinode)) { 2053 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2054 ret = PTR_ERR(pinode); 2055 goto out; 2056 } 2057 2058 ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode); 2059 iput(pinode); 2060 if (ret) { 2061 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2062 goto out; 2063 } 2064 f2fs_i_size_write(fi->cow_inode, i_size_read(inode)); 2065 2066 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 2067 sbi->atomic_files++; 2068 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 2069 2070 set_inode_flag(inode, FI_ATOMIC_FILE); 2071 set_inode_flag(fi->cow_inode, FI_ATOMIC_FILE); 2072 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2073 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2074 2075 f2fs_update_time(sbi, REQ_TIME); 2076 fi->atomic_write_task = current; 2077 stat_update_max_atomic_write(inode); 2078 out: 2079 inode_unlock(inode); 2080 mnt_drop_write_file(filp); 2081 return ret; 2082 } 2083 2084 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2085 { 2086 struct inode *inode = file_inode(filp); 2087 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2088 int ret; 2089 2090 if (!inode_owner_or_capable(mnt_userns, inode)) 2091 return -EACCES; 2092 2093 ret = mnt_want_write_file(filp); 2094 if (ret) 2095 return ret; 2096 2097 f2fs_balance_fs(F2FS_I_SB(inode), true); 2098 2099 inode_lock(inode); 2100 2101 if (f2fs_is_atomic_file(inode)) { 2102 ret = f2fs_commit_atomic_write(inode); 2103 if (ret) 2104 goto unlock_out; 2105 2106 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2107 if (!ret) 2108 f2fs_abort_atomic_write(inode, false); 2109 } else { 2110 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2111 } 2112 unlock_out: 2113 inode_unlock(inode); 2114 mnt_drop_write_file(filp); 2115 return ret; 2116 } 2117 2118 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2119 { 2120 struct inode *inode = file_inode(filp); 2121 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2122 struct super_block *sb = sbi->sb; 2123 __u32 in; 2124 int ret = 0; 2125 2126 if (!capable(CAP_SYS_ADMIN)) 2127 return -EPERM; 2128 2129 if (get_user(in, (__u32 __user *)arg)) 2130 return -EFAULT; 2131 2132 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2133 ret = mnt_want_write_file(filp); 2134 if (ret) { 2135 if (ret == -EROFS) { 2136 ret = 0; 2137 f2fs_stop_checkpoint(sbi, false); 2138 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2139 trace_f2fs_shutdown(sbi, in, ret); 2140 } 2141 return ret; 2142 } 2143 } 2144 2145 switch (in) { 2146 case F2FS_GOING_DOWN_FULLSYNC: 2147 ret = freeze_bdev(sb->s_bdev); 2148 if (ret) 2149 goto out; 2150 f2fs_stop_checkpoint(sbi, false); 2151 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2152 thaw_bdev(sb->s_bdev); 2153 break; 2154 case F2FS_GOING_DOWN_METASYNC: 2155 /* do checkpoint only */ 2156 ret = f2fs_sync_fs(sb, 1); 2157 if (ret) 2158 goto out; 2159 f2fs_stop_checkpoint(sbi, false); 2160 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2161 break; 2162 case F2FS_GOING_DOWN_NOSYNC: 2163 f2fs_stop_checkpoint(sbi, false); 2164 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2165 break; 2166 case F2FS_GOING_DOWN_METAFLUSH: 2167 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2168 f2fs_stop_checkpoint(sbi, false); 2169 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2170 break; 2171 case F2FS_GOING_DOWN_NEED_FSCK: 2172 set_sbi_flag(sbi, SBI_NEED_FSCK); 2173 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2174 set_sbi_flag(sbi, SBI_IS_DIRTY); 2175 /* do checkpoint only */ 2176 ret = f2fs_sync_fs(sb, 1); 2177 goto out; 2178 default: 2179 ret = -EINVAL; 2180 goto out; 2181 } 2182 2183 f2fs_stop_gc_thread(sbi); 2184 f2fs_stop_discard_thread(sbi); 2185 2186 f2fs_drop_discard_cmd(sbi); 2187 clear_opt(sbi, DISCARD); 2188 2189 f2fs_update_time(sbi, REQ_TIME); 2190 out: 2191 if (in != F2FS_GOING_DOWN_FULLSYNC) 2192 mnt_drop_write_file(filp); 2193 2194 trace_f2fs_shutdown(sbi, in, ret); 2195 2196 return ret; 2197 } 2198 2199 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2200 { 2201 struct inode *inode = file_inode(filp); 2202 struct super_block *sb = inode->i_sb; 2203 struct fstrim_range range; 2204 int ret; 2205 2206 if (!capable(CAP_SYS_ADMIN)) 2207 return -EPERM; 2208 2209 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2210 return -EOPNOTSUPP; 2211 2212 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2213 sizeof(range))) 2214 return -EFAULT; 2215 2216 ret = mnt_want_write_file(filp); 2217 if (ret) 2218 return ret; 2219 2220 range.minlen = max((unsigned int)range.minlen, 2221 bdev_discard_granularity(sb->s_bdev)); 2222 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2223 mnt_drop_write_file(filp); 2224 if (ret < 0) 2225 return ret; 2226 2227 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2228 sizeof(range))) 2229 return -EFAULT; 2230 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2231 return 0; 2232 } 2233 2234 static bool uuid_is_nonzero(__u8 u[16]) 2235 { 2236 int i; 2237 2238 for (i = 0; i < 16; i++) 2239 if (u[i]) 2240 return true; 2241 return false; 2242 } 2243 2244 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2245 { 2246 struct inode *inode = file_inode(filp); 2247 2248 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2249 return -EOPNOTSUPP; 2250 2251 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2252 2253 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2254 } 2255 2256 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2257 { 2258 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2259 return -EOPNOTSUPP; 2260 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2261 } 2262 2263 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2264 { 2265 struct inode *inode = file_inode(filp); 2266 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2267 int err; 2268 2269 if (!f2fs_sb_has_encrypt(sbi)) 2270 return -EOPNOTSUPP; 2271 2272 err = mnt_want_write_file(filp); 2273 if (err) 2274 return err; 2275 2276 f2fs_down_write(&sbi->sb_lock); 2277 2278 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2279 goto got_it; 2280 2281 /* update superblock with uuid */ 2282 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2283 2284 err = f2fs_commit_super(sbi, false); 2285 if (err) { 2286 /* undo new data */ 2287 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2288 goto out_err; 2289 } 2290 got_it: 2291 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2292 16)) 2293 err = -EFAULT; 2294 out_err: 2295 f2fs_up_write(&sbi->sb_lock); 2296 mnt_drop_write_file(filp); 2297 return err; 2298 } 2299 2300 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2301 unsigned long arg) 2302 { 2303 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2304 return -EOPNOTSUPP; 2305 2306 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2307 } 2308 2309 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2310 { 2311 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2312 return -EOPNOTSUPP; 2313 2314 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2315 } 2316 2317 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2318 { 2319 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2320 return -EOPNOTSUPP; 2321 2322 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2323 } 2324 2325 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2326 unsigned long arg) 2327 { 2328 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2329 return -EOPNOTSUPP; 2330 2331 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2332 } 2333 2334 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2335 unsigned long arg) 2336 { 2337 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2338 return -EOPNOTSUPP; 2339 2340 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2341 } 2342 2343 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2344 { 2345 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2346 return -EOPNOTSUPP; 2347 2348 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2349 } 2350 2351 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2352 { 2353 struct inode *inode = file_inode(filp); 2354 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2355 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2356 .no_bg_gc = false, 2357 .should_migrate_blocks = false, 2358 .nr_free_secs = 0 }; 2359 __u32 sync; 2360 int ret; 2361 2362 if (!capable(CAP_SYS_ADMIN)) 2363 return -EPERM; 2364 2365 if (get_user(sync, (__u32 __user *)arg)) 2366 return -EFAULT; 2367 2368 if (f2fs_readonly(sbi->sb)) 2369 return -EROFS; 2370 2371 ret = mnt_want_write_file(filp); 2372 if (ret) 2373 return ret; 2374 2375 if (!sync) { 2376 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2377 ret = -EBUSY; 2378 goto out; 2379 } 2380 } else { 2381 f2fs_down_write(&sbi->gc_lock); 2382 } 2383 2384 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2385 gc_control.err_gc_skipped = sync; 2386 ret = f2fs_gc(sbi, &gc_control); 2387 out: 2388 mnt_drop_write_file(filp); 2389 return ret; 2390 } 2391 2392 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2393 { 2394 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2395 struct f2fs_gc_control gc_control = { 2396 .init_gc_type = range->sync ? FG_GC : BG_GC, 2397 .no_bg_gc = false, 2398 .should_migrate_blocks = false, 2399 .err_gc_skipped = range->sync, 2400 .nr_free_secs = 0 }; 2401 u64 end; 2402 int ret; 2403 2404 if (!capable(CAP_SYS_ADMIN)) 2405 return -EPERM; 2406 if (f2fs_readonly(sbi->sb)) 2407 return -EROFS; 2408 2409 end = range->start + range->len; 2410 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2411 end >= MAX_BLKADDR(sbi)) 2412 return -EINVAL; 2413 2414 ret = mnt_want_write_file(filp); 2415 if (ret) 2416 return ret; 2417 2418 do_more: 2419 if (!range->sync) { 2420 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2421 ret = -EBUSY; 2422 goto out; 2423 } 2424 } else { 2425 f2fs_down_write(&sbi->gc_lock); 2426 } 2427 2428 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2429 ret = f2fs_gc(sbi, &gc_control); 2430 if (ret) { 2431 if (ret == -EBUSY) 2432 ret = -EAGAIN; 2433 goto out; 2434 } 2435 range->start += BLKS_PER_SEC(sbi); 2436 if (range->start <= end) 2437 goto do_more; 2438 out: 2439 mnt_drop_write_file(filp); 2440 return ret; 2441 } 2442 2443 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2444 { 2445 struct f2fs_gc_range range; 2446 2447 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2448 sizeof(range))) 2449 return -EFAULT; 2450 return __f2fs_ioc_gc_range(filp, &range); 2451 } 2452 2453 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2454 { 2455 struct inode *inode = file_inode(filp); 2456 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2457 int ret; 2458 2459 if (!capable(CAP_SYS_ADMIN)) 2460 return -EPERM; 2461 2462 if (f2fs_readonly(sbi->sb)) 2463 return -EROFS; 2464 2465 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2466 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2467 return -EINVAL; 2468 } 2469 2470 ret = mnt_want_write_file(filp); 2471 if (ret) 2472 return ret; 2473 2474 ret = f2fs_sync_fs(sbi->sb, 1); 2475 2476 mnt_drop_write_file(filp); 2477 return ret; 2478 } 2479 2480 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2481 struct file *filp, 2482 struct f2fs_defragment *range) 2483 { 2484 struct inode *inode = file_inode(filp); 2485 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2486 .m_seg_type = NO_CHECK_TYPE, 2487 .m_may_create = false }; 2488 struct extent_info ei = {0, 0, 0}; 2489 pgoff_t pg_start, pg_end, next_pgofs; 2490 unsigned int blk_per_seg = sbi->blocks_per_seg; 2491 unsigned int total = 0, sec_num; 2492 block_t blk_end = 0; 2493 bool fragmented = false; 2494 int err; 2495 2496 pg_start = range->start >> PAGE_SHIFT; 2497 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2498 2499 f2fs_balance_fs(sbi, true); 2500 2501 inode_lock(inode); 2502 2503 /* if in-place-update policy is enabled, don't waste time here */ 2504 set_inode_flag(inode, FI_OPU_WRITE); 2505 if (f2fs_should_update_inplace(inode, NULL)) { 2506 err = -EINVAL; 2507 goto out; 2508 } 2509 2510 /* writeback all dirty pages in the range */ 2511 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2512 range->start + range->len - 1); 2513 if (err) 2514 goto out; 2515 2516 /* 2517 * lookup mapping info in extent cache, skip defragmenting if physical 2518 * block addresses are continuous. 2519 */ 2520 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2521 if (ei.fofs + ei.len >= pg_end) 2522 goto out; 2523 } 2524 2525 map.m_lblk = pg_start; 2526 map.m_next_pgofs = &next_pgofs; 2527 2528 /* 2529 * lookup mapping info in dnode page cache, skip defragmenting if all 2530 * physical block addresses are continuous even if there are hole(s) 2531 * in logical blocks. 2532 */ 2533 while (map.m_lblk < pg_end) { 2534 map.m_len = pg_end - map.m_lblk; 2535 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2536 if (err) 2537 goto out; 2538 2539 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2540 map.m_lblk = next_pgofs; 2541 continue; 2542 } 2543 2544 if (blk_end && blk_end != map.m_pblk) 2545 fragmented = true; 2546 2547 /* record total count of block that we're going to move */ 2548 total += map.m_len; 2549 2550 blk_end = map.m_pblk + map.m_len; 2551 2552 map.m_lblk += map.m_len; 2553 } 2554 2555 if (!fragmented) { 2556 total = 0; 2557 goto out; 2558 } 2559 2560 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi)); 2561 2562 /* 2563 * make sure there are enough free section for LFS allocation, this can 2564 * avoid defragment running in SSR mode when free section are allocated 2565 * intensively 2566 */ 2567 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2568 err = -EAGAIN; 2569 goto out; 2570 } 2571 2572 map.m_lblk = pg_start; 2573 map.m_len = pg_end - pg_start; 2574 total = 0; 2575 2576 while (map.m_lblk < pg_end) { 2577 pgoff_t idx; 2578 int cnt = 0; 2579 2580 do_map: 2581 map.m_len = pg_end - map.m_lblk; 2582 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2583 if (err) 2584 goto clear_out; 2585 2586 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2587 map.m_lblk = next_pgofs; 2588 goto check; 2589 } 2590 2591 set_inode_flag(inode, FI_SKIP_WRITES); 2592 2593 idx = map.m_lblk; 2594 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2595 struct page *page; 2596 2597 page = f2fs_get_lock_data_page(inode, idx, true); 2598 if (IS_ERR(page)) { 2599 err = PTR_ERR(page); 2600 goto clear_out; 2601 } 2602 2603 set_page_dirty(page); 2604 set_page_private_gcing(page); 2605 f2fs_put_page(page, 1); 2606 2607 idx++; 2608 cnt++; 2609 total++; 2610 } 2611 2612 map.m_lblk = idx; 2613 check: 2614 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2615 goto do_map; 2616 2617 clear_inode_flag(inode, FI_SKIP_WRITES); 2618 2619 err = filemap_fdatawrite(inode->i_mapping); 2620 if (err) 2621 goto out; 2622 } 2623 clear_out: 2624 clear_inode_flag(inode, FI_SKIP_WRITES); 2625 out: 2626 clear_inode_flag(inode, FI_OPU_WRITE); 2627 inode_unlock(inode); 2628 if (!err) 2629 range->len = (u64)total << PAGE_SHIFT; 2630 return err; 2631 } 2632 2633 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2634 { 2635 struct inode *inode = file_inode(filp); 2636 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2637 struct f2fs_defragment range; 2638 int err; 2639 2640 if (!capable(CAP_SYS_ADMIN)) 2641 return -EPERM; 2642 2643 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2644 return -EINVAL; 2645 2646 if (f2fs_readonly(sbi->sb)) 2647 return -EROFS; 2648 2649 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2650 sizeof(range))) 2651 return -EFAULT; 2652 2653 /* verify alignment of offset & size */ 2654 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2655 return -EINVAL; 2656 2657 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2658 max_file_blocks(inode))) 2659 return -EINVAL; 2660 2661 err = mnt_want_write_file(filp); 2662 if (err) 2663 return err; 2664 2665 err = f2fs_defragment_range(sbi, filp, &range); 2666 mnt_drop_write_file(filp); 2667 2668 f2fs_update_time(sbi, REQ_TIME); 2669 if (err < 0) 2670 return err; 2671 2672 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2673 sizeof(range))) 2674 return -EFAULT; 2675 2676 return 0; 2677 } 2678 2679 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2680 struct file *file_out, loff_t pos_out, size_t len) 2681 { 2682 struct inode *src = file_inode(file_in); 2683 struct inode *dst = file_inode(file_out); 2684 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2685 size_t olen = len, dst_max_i_size = 0; 2686 size_t dst_osize; 2687 int ret; 2688 2689 if (file_in->f_path.mnt != file_out->f_path.mnt || 2690 src->i_sb != dst->i_sb) 2691 return -EXDEV; 2692 2693 if (unlikely(f2fs_readonly(src->i_sb))) 2694 return -EROFS; 2695 2696 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2697 return -EINVAL; 2698 2699 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2700 return -EOPNOTSUPP; 2701 2702 if (pos_out < 0 || pos_in < 0) 2703 return -EINVAL; 2704 2705 if (src == dst) { 2706 if (pos_in == pos_out) 2707 return 0; 2708 if (pos_out > pos_in && pos_out < pos_in + len) 2709 return -EINVAL; 2710 } 2711 2712 inode_lock(src); 2713 if (src != dst) { 2714 ret = -EBUSY; 2715 if (!inode_trylock(dst)) 2716 goto out; 2717 } 2718 2719 ret = -EINVAL; 2720 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2721 goto out_unlock; 2722 if (len == 0) 2723 olen = len = src->i_size - pos_in; 2724 if (pos_in + len == src->i_size) 2725 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2726 if (len == 0) { 2727 ret = 0; 2728 goto out_unlock; 2729 } 2730 2731 dst_osize = dst->i_size; 2732 if (pos_out + olen > dst->i_size) 2733 dst_max_i_size = pos_out + olen; 2734 2735 /* verify the end result is block aligned */ 2736 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2737 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2738 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2739 goto out_unlock; 2740 2741 ret = f2fs_convert_inline_inode(src); 2742 if (ret) 2743 goto out_unlock; 2744 2745 ret = f2fs_convert_inline_inode(dst); 2746 if (ret) 2747 goto out_unlock; 2748 2749 /* write out all dirty pages from offset */ 2750 ret = filemap_write_and_wait_range(src->i_mapping, 2751 pos_in, pos_in + len); 2752 if (ret) 2753 goto out_unlock; 2754 2755 ret = filemap_write_and_wait_range(dst->i_mapping, 2756 pos_out, pos_out + len); 2757 if (ret) 2758 goto out_unlock; 2759 2760 f2fs_balance_fs(sbi, true); 2761 2762 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2763 if (src != dst) { 2764 ret = -EBUSY; 2765 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2766 goto out_src; 2767 } 2768 2769 f2fs_lock_op(sbi); 2770 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2771 pos_out >> F2FS_BLKSIZE_BITS, 2772 len >> F2FS_BLKSIZE_BITS, false); 2773 2774 if (!ret) { 2775 if (dst_max_i_size) 2776 f2fs_i_size_write(dst, dst_max_i_size); 2777 else if (dst_osize != dst->i_size) 2778 f2fs_i_size_write(dst, dst_osize); 2779 } 2780 f2fs_unlock_op(sbi); 2781 2782 if (src != dst) 2783 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2784 out_src: 2785 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2786 out_unlock: 2787 if (src != dst) 2788 inode_unlock(dst); 2789 out: 2790 inode_unlock(src); 2791 return ret; 2792 } 2793 2794 static int __f2fs_ioc_move_range(struct file *filp, 2795 struct f2fs_move_range *range) 2796 { 2797 struct fd dst; 2798 int err; 2799 2800 if (!(filp->f_mode & FMODE_READ) || 2801 !(filp->f_mode & FMODE_WRITE)) 2802 return -EBADF; 2803 2804 dst = fdget(range->dst_fd); 2805 if (!dst.file) 2806 return -EBADF; 2807 2808 if (!(dst.file->f_mode & FMODE_WRITE)) { 2809 err = -EBADF; 2810 goto err_out; 2811 } 2812 2813 err = mnt_want_write_file(filp); 2814 if (err) 2815 goto err_out; 2816 2817 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2818 range->pos_out, range->len); 2819 2820 mnt_drop_write_file(filp); 2821 err_out: 2822 fdput(dst); 2823 return err; 2824 } 2825 2826 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2827 { 2828 struct f2fs_move_range range; 2829 2830 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2831 sizeof(range))) 2832 return -EFAULT; 2833 return __f2fs_ioc_move_range(filp, &range); 2834 } 2835 2836 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2837 { 2838 struct inode *inode = file_inode(filp); 2839 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2840 struct sit_info *sm = SIT_I(sbi); 2841 unsigned int start_segno = 0, end_segno = 0; 2842 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2843 struct f2fs_flush_device range; 2844 struct f2fs_gc_control gc_control = { 2845 .init_gc_type = FG_GC, 2846 .should_migrate_blocks = true, 2847 .err_gc_skipped = true, 2848 .nr_free_secs = 0 }; 2849 int ret; 2850 2851 if (!capable(CAP_SYS_ADMIN)) 2852 return -EPERM; 2853 2854 if (f2fs_readonly(sbi->sb)) 2855 return -EROFS; 2856 2857 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2858 return -EINVAL; 2859 2860 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2861 sizeof(range))) 2862 return -EFAULT; 2863 2864 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2865 __is_large_section(sbi)) { 2866 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2867 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2868 return -EINVAL; 2869 } 2870 2871 ret = mnt_want_write_file(filp); 2872 if (ret) 2873 return ret; 2874 2875 if (range.dev_num != 0) 2876 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2877 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2878 2879 start_segno = sm->last_victim[FLUSH_DEVICE]; 2880 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2881 start_segno = dev_start_segno; 2882 end_segno = min(start_segno + range.segments, dev_end_segno); 2883 2884 while (start_segno < end_segno) { 2885 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2886 ret = -EBUSY; 2887 goto out; 2888 } 2889 sm->last_victim[GC_CB] = end_segno + 1; 2890 sm->last_victim[GC_GREEDY] = end_segno + 1; 2891 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2892 2893 gc_control.victim_segno = start_segno; 2894 ret = f2fs_gc(sbi, &gc_control); 2895 if (ret == -EAGAIN) 2896 ret = 0; 2897 else if (ret < 0) 2898 break; 2899 start_segno++; 2900 } 2901 out: 2902 mnt_drop_write_file(filp); 2903 return ret; 2904 } 2905 2906 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2907 { 2908 struct inode *inode = file_inode(filp); 2909 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2910 2911 /* Must validate to set it with SQLite behavior in Android. */ 2912 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2913 2914 return put_user(sb_feature, (u32 __user *)arg); 2915 } 2916 2917 #ifdef CONFIG_QUOTA 2918 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2919 { 2920 struct dquot *transfer_to[MAXQUOTAS] = {}; 2921 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2922 struct super_block *sb = sbi->sb; 2923 int err = 0; 2924 2925 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2926 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2927 err = __dquot_transfer(inode, transfer_to); 2928 if (err) 2929 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2930 dqput(transfer_to[PRJQUOTA]); 2931 } 2932 return err; 2933 } 2934 2935 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 2936 { 2937 struct f2fs_inode_info *fi = F2FS_I(inode); 2938 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2939 struct f2fs_inode *ri = NULL; 2940 kprojid_t kprojid; 2941 int err; 2942 2943 if (!f2fs_sb_has_project_quota(sbi)) { 2944 if (projid != F2FS_DEF_PROJID) 2945 return -EOPNOTSUPP; 2946 else 2947 return 0; 2948 } 2949 2950 if (!f2fs_has_extra_attr(inode)) 2951 return -EOPNOTSUPP; 2952 2953 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 2954 2955 if (projid_eq(kprojid, fi->i_projid)) 2956 return 0; 2957 2958 err = -EPERM; 2959 /* Is it quota file? Do not allow user to mess with it */ 2960 if (IS_NOQUOTA(inode)) 2961 return err; 2962 2963 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 2964 return -EOVERFLOW; 2965 2966 err = f2fs_dquot_initialize(inode); 2967 if (err) 2968 return err; 2969 2970 f2fs_lock_op(sbi); 2971 err = f2fs_transfer_project_quota(inode, kprojid); 2972 if (err) 2973 goto out_unlock; 2974 2975 fi->i_projid = kprojid; 2976 inode->i_ctime = current_time(inode); 2977 f2fs_mark_inode_dirty_sync(inode, true); 2978 out_unlock: 2979 f2fs_unlock_op(sbi); 2980 return err; 2981 } 2982 #else 2983 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2984 { 2985 return 0; 2986 } 2987 2988 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 2989 { 2990 if (projid != F2FS_DEF_PROJID) 2991 return -EOPNOTSUPP; 2992 return 0; 2993 } 2994 #endif 2995 2996 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 2997 { 2998 struct inode *inode = d_inode(dentry); 2999 struct f2fs_inode_info *fi = F2FS_I(inode); 3000 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3001 3002 if (IS_ENCRYPTED(inode)) 3003 fsflags |= FS_ENCRYPT_FL; 3004 if (IS_VERITY(inode)) 3005 fsflags |= FS_VERITY_FL; 3006 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3007 fsflags |= FS_INLINE_DATA_FL; 3008 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3009 fsflags |= FS_NOCOW_FL; 3010 3011 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3012 3013 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3014 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3015 3016 return 0; 3017 } 3018 3019 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3020 struct dentry *dentry, struct fileattr *fa) 3021 { 3022 struct inode *inode = d_inode(dentry); 3023 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3024 u32 iflags; 3025 int err; 3026 3027 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3028 return -EIO; 3029 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3030 return -ENOSPC; 3031 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3032 return -EOPNOTSUPP; 3033 fsflags &= F2FS_SETTABLE_FS_FL; 3034 if (!fa->flags_valid) 3035 mask &= FS_COMMON_FL; 3036 3037 iflags = f2fs_fsflags_to_iflags(fsflags); 3038 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3039 return -EOPNOTSUPP; 3040 3041 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3042 if (!err) 3043 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3044 3045 return err; 3046 } 3047 3048 int f2fs_pin_file_control(struct inode *inode, bool inc) 3049 { 3050 struct f2fs_inode_info *fi = F2FS_I(inode); 3051 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3052 3053 /* Use i_gc_failures for normal file as a risk signal. */ 3054 if (inc) 3055 f2fs_i_gc_failures_write(inode, 3056 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3057 3058 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3059 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3060 __func__, inode->i_ino, 3061 fi->i_gc_failures[GC_FAILURE_PIN]); 3062 clear_inode_flag(inode, FI_PIN_FILE); 3063 return -EAGAIN; 3064 } 3065 return 0; 3066 } 3067 3068 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3069 { 3070 struct inode *inode = file_inode(filp); 3071 __u32 pin; 3072 int ret = 0; 3073 3074 if (get_user(pin, (__u32 __user *)arg)) 3075 return -EFAULT; 3076 3077 if (!S_ISREG(inode->i_mode)) 3078 return -EINVAL; 3079 3080 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3081 return -EROFS; 3082 3083 ret = mnt_want_write_file(filp); 3084 if (ret) 3085 return ret; 3086 3087 inode_lock(inode); 3088 3089 if (!pin) { 3090 clear_inode_flag(inode, FI_PIN_FILE); 3091 f2fs_i_gc_failures_write(inode, 0); 3092 goto done; 3093 } 3094 3095 if (f2fs_should_update_outplace(inode, NULL)) { 3096 ret = -EINVAL; 3097 goto out; 3098 } 3099 3100 if (f2fs_pin_file_control(inode, false)) { 3101 ret = -EAGAIN; 3102 goto out; 3103 } 3104 3105 ret = f2fs_convert_inline_inode(inode); 3106 if (ret) 3107 goto out; 3108 3109 if (!f2fs_disable_compressed_file(inode)) { 3110 ret = -EOPNOTSUPP; 3111 goto out; 3112 } 3113 3114 set_inode_flag(inode, FI_PIN_FILE); 3115 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3116 done: 3117 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3118 out: 3119 inode_unlock(inode); 3120 mnt_drop_write_file(filp); 3121 return ret; 3122 } 3123 3124 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3125 { 3126 struct inode *inode = file_inode(filp); 3127 __u32 pin = 0; 3128 3129 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3130 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3131 return put_user(pin, (u32 __user *)arg); 3132 } 3133 3134 int f2fs_precache_extents(struct inode *inode) 3135 { 3136 struct f2fs_inode_info *fi = F2FS_I(inode); 3137 struct f2fs_map_blocks map; 3138 pgoff_t m_next_extent; 3139 loff_t end; 3140 int err; 3141 3142 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3143 return -EOPNOTSUPP; 3144 3145 map.m_lblk = 0; 3146 map.m_next_pgofs = NULL; 3147 map.m_next_extent = &m_next_extent; 3148 map.m_seg_type = NO_CHECK_TYPE; 3149 map.m_may_create = false; 3150 end = max_file_blocks(inode); 3151 3152 while (map.m_lblk < end) { 3153 map.m_len = end - map.m_lblk; 3154 3155 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3156 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3157 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3158 if (err) 3159 return err; 3160 3161 map.m_lblk = m_next_extent; 3162 } 3163 3164 return 0; 3165 } 3166 3167 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3168 { 3169 return f2fs_precache_extents(file_inode(filp)); 3170 } 3171 3172 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3173 { 3174 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3175 __u64 block_count; 3176 3177 if (!capable(CAP_SYS_ADMIN)) 3178 return -EPERM; 3179 3180 if (f2fs_readonly(sbi->sb)) 3181 return -EROFS; 3182 3183 if (copy_from_user(&block_count, (void __user *)arg, 3184 sizeof(block_count))) 3185 return -EFAULT; 3186 3187 return f2fs_resize_fs(sbi, block_count); 3188 } 3189 3190 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3191 { 3192 struct inode *inode = file_inode(filp); 3193 3194 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3195 3196 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3197 f2fs_warn(F2FS_I_SB(inode), 3198 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3199 inode->i_ino); 3200 return -EOPNOTSUPP; 3201 } 3202 3203 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3204 } 3205 3206 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3207 { 3208 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3209 return -EOPNOTSUPP; 3210 3211 return fsverity_ioctl_measure(filp, (void __user *)arg); 3212 } 3213 3214 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3215 { 3216 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3217 return -EOPNOTSUPP; 3218 3219 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3220 } 3221 3222 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3223 { 3224 struct inode *inode = file_inode(filp); 3225 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3226 char *vbuf; 3227 int count; 3228 int err = 0; 3229 3230 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3231 if (!vbuf) 3232 return -ENOMEM; 3233 3234 f2fs_down_read(&sbi->sb_lock); 3235 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3236 ARRAY_SIZE(sbi->raw_super->volume_name), 3237 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3238 f2fs_up_read(&sbi->sb_lock); 3239 3240 if (copy_to_user((char __user *)arg, vbuf, 3241 min(FSLABEL_MAX, count))) 3242 err = -EFAULT; 3243 3244 kfree(vbuf); 3245 return err; 3246 } 3247 3248 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3249 { 3250 struct inode *inode = file_inode(filp); 3251 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3252 char *vbuf; 3253 int err = 0; 3254 3255 if (!capable(CAP_SYS_ADMIN)) 3256 return -EPERM; 3257 3258 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3259 if (IS_ERR(vbuf)) 3260 return PTR_ERR(vbuf); 3261 3262 err = mnt_want_write_file(filp); 3263 if (err) 3264 goto out; 3265 3266 f2fs_down_write(&sbi->sb_lock); 3267 3268 memset(sbi->raw_super->volume_name, 0, 3269 sizeof(sbi->raw_super->volume_name)); 3270 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3271 sbi->raw_super->volume_name, 3272 ARRAY_SIZE(sbi->raw_super->volume_name)); 3273 3274 err = f2fs_commit_super(sbi, false); 3275 3276 f2fs_up_write(&sbi->sb_lock); 3277 3278 mnt_drop_write_file(filp); 3279 out: 3280 kfree(vbuf); 3281 return err; 3282 } 3283 3284 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3285 { 3286 struct inode *inode = file_inode(filp); 3287 __u64 blocks; 3288 3289 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3290 return -EOPNOTSUPP; 3291 3292 if (!f2fs_compressed_file(inode)) 3293 return -EINVAL; 3294 3295 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3296 return put_user(blocks, (u64 __user *)arg); 3297 } 3298 3299 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3300 { 3301 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3302 unsigned int released_blocks = 0; 3303 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3304 block_t blkaddr; 3305 int i; 3306 3307 for (i = 0; i < count; i++) { 3308 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3309 dn->ofs_in_node + i); 3310 3311 if (!__is_valid_data_blkaddr(blkaddr)) 3312 continue; 3313 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3314 DATA_GENERIC_ENHANCE))) 3315 return -EFSCORRUPTED; 3316 } 3317 3318 while (count) { 3319 int compr_blocks = 0; 3320 3321 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3322 blkaddr = f2fs_data_blkaddr(dn); 3323 3324 if (i == 0) { 3325 if (blkaddr == COMPRESS_ADDR) 3326 continue; 3327 dn->ofs_in_node += cluster_size; 3328 goto next; 3329 } 3330 3331 if (__is_valid_data_blkaddr(blkaddr)) 3332 compr_blocks++; 3333 3334 if (blkaddr != NEW_ADDR) 3335 continue; 3336 3337 dn->data_blkaddr = NULL_ADDR; 3338 f2fs_set_data_blkaddr(dn); 3339 } 3340 3341 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3342 dec_valid_block_count(sbi, dn->inode, 3343 cluster_size - compr_blocks); 3344 3345 released_blocks += cluster_size - compr_blocks; 3346 next: 3347 count -= cluster_size; 3348 } 3349 3350 return released_blocks; 3351 } 3352 3353 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3354 { 3355 struct inode *inode = file_inode(filp); 3356 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3357 pgoff_t page_idx = 0, last_idx; 3358 unsigned int released_blocks = 0; 3359 int ret; 3360 int writecount; 3361 3362 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3363 return -EOPNOTSUPP; 3364 3365 if (!f2fs_compressed_file(inode)) 3366 return -EINVAL; 3367 3368 if (f2fs_readonly(sbi->sb)) 3369 return -EROFS; 3370 3371 ret = mnt_want_write_file(filp); 3372 if (ret) 3373 return ret; 3374 3375 f2fs_balance_fs(F2FS_I_SB(inode), true); 3376 3377 inode_lock(inode); 3378 3379 writecount = atomic_read(&inode->i_writecount); 3380 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3381 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3382 ret = -EBUSY; 3383 goto out; 3384 } 3385 3386 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3387 ret = -EINVAL; 3388 goto out; 3389 } 3390 3391 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3392 if (ret) 3393 goto out; 3394 3395 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3396 inode->i_ctime = current_time(inode); 3397 f2fs_mark_inode_dirty_sync(inode, true); 3398 3399 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3400 goto out; 3401 3402 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3403 filemap_invalidate_lock(inode->i_mapping); 3404 3405 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3406 3407 while (page_idx < last_idx) { 3408 struct dnode_of_data dn; 3409 pgoff_t end_offset, count; 3410 3411 set_new_dnode(&dn, inode, NULL, NULL, 0); 3412 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3413 if (ret) { 3414 if (ret == -ENOENT) { 3415 page_idx = f2fs_get_next_page_offset(&dn, 3416 page_idx); 3417 ret = 0; 3418 continue; 3419 } 3420 break; 3421 } 3422 3423 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3424 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3425 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3426 3427 ret = release_compress_blocks(&dn, count); 3428 3429 f2fs_put_dnode(&dn); 3430 3431 if (ret < 0) 3432 break; 3433 3434 page_idx += count; 3435 released_blocks += ret; 3436 } 3437 3438 filemap_invalidate_unlock(inode->i_mapping); 3439 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3440 out: 3441 inode_unlock(inode); 3442 3443 mnt_drop_write_file(filp); 3444 3445 if (ret >= 0) { 3446 ret = put_user(released_blocks, (u64 __user *)arg); 3447 } else if (released_blocks && 3448 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3449 set_sbi_flag(sbi, SBI_NEED_FSCK); 3450 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3451 "iblocks=%llu, released=%u, compr_blocks=%u, " 3452 "run fsck to fix.", 3453 __func__, inode->i_ino, inode->i_blocks, 3454 released_blocks, 3455 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3456 } 3457 3458 return ret; 3459 } 3460 3461 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3462 { 3463 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3464 unsigned int reserved_blocks = 0; 3465 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3466 block_t blkaddr; 3467 int i; 3468 3469 for (i = 0; i < count; i++) { 3470 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3471 dn->ofs_in_node + i); 3472 3473 if (!__is_valid_data_blkaddr(blkaddr)) 3474 continue; 3475 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3476 DATA_GENERIC_ENHANCE))) 3477 return -EFSCORRUPTED; 3478 } 3479 3480 while (count) { 3481 int compr_blocks = 0; 3482 blkcnt_t reserved; 3483 int ret; 3484 3485 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3486 blkaddr = f2fs_data_blkaddr(dn); 3487 3488 if (i == 0) { 3489 if (blkaddr == COMPRESS_ADDR) 3490 continue; 3491 dn->ofs_in_node += cluster_size; 3492 goto next; 3493 } 3494 3495 if (__is_valid_data_blkaddr(blkaddr)) { 3496 compr_blocks++; 3497 continue; 3498 } 3499 3500 dn->data_blkaddr = NEW_ADDR; 3501 f2fs_set_data_blkaddr(dn); 3502 } 3503 3504 reserved = cluster_size - compr_blocks; 3505 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3506 if (ret) 3507 return ret; 3508 3509 if (reserved != cluster_size - compr_blocks) 3510 return -ENOSPC; 3511 3512 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3513 3514 reserved_blocks += reserved; 3515 next: 3516 count -= cluster_size; 3517 } 3518 3519 return reserved_blocks; 3520 } 3521 3522 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3523 { 3524 struct inode *inode = file_inode(filp); 3525 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3526 pgoff_t page_idx = 0, last_idx; 3527 unsigned int reserved_blocks = 0; 3528 int ret; 3529 3530 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3531 return -EOPNOTSUPP; 3532 3533 if (!f2fs_compressed_file(inode)) 3534 return -EINVAL; 3535 3536 if (f2fs_readonly(sbi->sb)) 3537 return -EROFS; 3538 3539 ret = mnt_want_write_file(filp); 3540 if (ret) 3541 return ret; 3542 3543 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3544 goto out; 3545 3546 f2fs_balance_fs(F2FS_I_SB(inode), true); 3547 3548 inode_lock(inode); 3549 3550 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3551 ret = -EINVAL; 3552 goto unlock_inode; 3553 } 3554 3555 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3556 filemap_invalidate_lock(inode->i_mapping); 3557 3558 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3559 3560 while (page_idx < last_idx) { 3561 struct dnode_of_data dn; 3562 pgoff_t end_offset, count; 3563 3564 set_new_dnode(&dn, inode, NULL, NULL, 0); 3565 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3566 if (ret) { 3567 if (ret == -ENOENT) { 3568 page_idx = f2fs_get_next_page_offset(&dn, 3569 page_idx); 3570 ret = 0; 3571 continue; 3572 } 3573 break; 3574 } 3575 3576 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3577 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3578 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3579 3580 ret = reserve_compress_blocks(&dn, count); 3581 3582 f2fs_put_dnode(&dn); 3583 3584 if (ret < 0) 3585 break; 3586 3587 page_idx += count; 3588 reserved_blocks += ret; 3589 } 3590 3591 filemap_invalidate_unlock(inode->i_mapping); 3592 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3593 3594 if (ret >= 0) { 3595 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3596 inode->i_ctime = current_time(inode); 3597 f2fs_mark_inode_dirty_sync(inode, true); 3598 } 3599 unlock_inode: 3600 inode_unlock(inode); 3601 out: 3602 mnt_drop_write_file(filp); 3603 3604 if (ret >= 0) { 3605 ret = put_user(reserved_blocks, (u64 __user *)arg); 3606 } else if (reserved_blocks && 3607 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3608 set_sbi_flag(sbi, SBI_NEED_FSCK); 3609 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3610 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3611 "run fsck to fix.", 3612 __func__, inode->i_ino, inode->i_blocks, 3613 reserved_blocks, 3614 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3615 } 3616 3617 return ret; 3618 } 3619 3620 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3621 pgoff_t off, block_t block, block_t len, u32 flags) 3622 { 3623 sector_t sector = SECTOR_FROM_BLOCK(block); 3624 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3625 int ret = 0; 3626 3627 if (flags & F2FS_TRIM_FILE_DISCARD) { 3628 if (bdev_max_secure_erase_sectors(bdev)) 3629 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3630 GFP_NOFS); 3631 else 3632 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3633 GFP_NOFS); 3634 } 3635 3636 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3637 if (IS_ENCRYPTED(inode)) 3638 ret = fscrypt_zeroout_range(inode, off, block, len); 3639 else 3640 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3641 GFP_NOFS, 0); 3642 } 3643 3644 return ret; 3645 } 3646 3647 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3648 { 3649 struct inode *inode = file_inode(filp); 3650 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3651 struct address_space *mapping = inode->i_mapping; 3652 struct block_device *prev_bdev = NULL; 3653 struct f2fs_sectrim_range range; 3654 pgoff_t index, pg_end, prev_index = 0; 3655 block_t prev_block = 0, len = 0; 3656 loff_t end_addr; 3657 bool to_end = false; 3658 int ret = 0; 3659 3660 if (!(filp->f_mode & FMODE_WRITE)) 3661 return -EBADF; 3662 3663 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3664 sizeof(range))) 3665 return -EFAULT; 3666 3667 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3668 !S_ISREG(inode->i_mode)) 3669 return -EINVAL; 3670 3671 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3672 !f2fs_hw_support_discard(sbi)) || 3673 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3674 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3675 return -EOPNOTSUPP; 3676 3677 file_start_write(filp); 3678 inode_lock(inode); 3679 3680 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3681 range.start >= inode->i_size) { 3682 ret = -EINVAL; 3683 goto err; 3684 } 3685 3686 if (range.len == 0) 3687 goto err; 3688 3689 if (inode->i_size - range.start > range.len) { 3690 end_addr = range.start + range.len; 3691 } else { 3692 end_addr = range.len == (u64)-1 ? 3693 sbi->sb->s_maxbytes : inode->i_size; 3694 to_end = true; 3695 } 3696 3697 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3698 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3699 ret = -EINVAL; 3700 goto err; 3701 } 3702 3703 index = F2FS_BYTES_TO_BLK(range.start); 3704 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3705 3706 ret = f2fs_convert_inline_inode(inode); 3707 if (ret) 3708 goto err; 3709 3710 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3711 filemap_invalidate_lock(mapping); 3712 3713 ret = filemap_write_and_wait_range(mapping, range.start, 3714 to_end ? LLONG_MAX : end_addr - 1); 3715 if (ret) 3716 goto out; 3717 3718 truncate_inode_pages_range(mapping, range.start, 3719 to_end ? -1 : end_addr - 1); 3720 3721 while (index < pg_end) { 3722 struct dnode_of_data dn; 3723 pgoff_t end_offset, count; 3724 int i; 3725 3726 set_new_dnode(&dn, inode, NULL, NULL, 0); 3727 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3728 if (ret) { 3729 if (ret == -ENOENT) { 3730 index = f2fs_get_next_page_offset(&dn, index); 3731 continue; 3732 } 3733 goto out; 3734 } 3735 3736 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3737 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3738 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3739 struct block_device *cur_bdev; 3740 block_t blkaddr = f2fs_data_blkaddr(&dn); 3741 3742 if (!__is_valid_data_blkaddr(blkaddr)) 3743 continue; 3744 3745 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3746 DATA_GENERIC_ENHANCE)) { 3747 ret = -EFSCORRUPTED; 3748 f2fs_put_dnode(&dn); 3749 goto out; 3750 } 3751 3752 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3753 if (f2fs_is_multi_device(sbi)) { 3754 int di = f2fs_target_device_index(sbi, blkaddr); 3755 3756 blkaddr -= FDEV(di).start_blk; 3757 } 3758 3759 if (len) { 3760 if (prev_bdev == cur_bdev && 3761 index == prev_index + len && 3762 blkaddr == prev_block + len) { 3763 len++; 3764 } else { 3765 ret = f2fs_secure_erase(prev_bdev, 3766 inode, prev_index, prev_block, 3767 len, range.flags); 3768 if (ret) { 3769 f2fs_put_dnode(&dn); 3770 goto out; 3771 } 3772 3773 len = 0; 3774 } 3775 } 3776 3777 if (!len) { 3778 prev_bdev = cur_bdev; 3779 prev_index = index; 3780 prev_block = blkaddr; 3781 len = 1; 3782 } 3783 } 3784 3785 f2fs_put_dnode(&dn); 3786 3787 if (fatal_signal_pending(current)) { 3788 ret = -EINTR; 3789 goto out; 3790 } 3791 cond_resched(); 3792 } 3793 3794 if (len) 3795 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3796 prev_block, len, range.flags); 3797 out: 3798 filemap_invalidate_unlock(mapping); 3799 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3800 err: 3801 inode_unlock(inode); 3802 file_end_write(filp); 3803 3804 return ret; 3805 } 3806 3807 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3808 { 3809 struct inode *inode = file_inode(filp); 3810 struct f2fs_comp_option option; 3811 3812 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3813 return -EOPNOTSUPP; 3814 3815 inode_lock_shared(inode); 3816 3817 if (!f2fs_compressed_file(inode)) { 3818 inode_unlock_shared(inode); 3819 return -ENODATA; 3820 } 3821 3822 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3823 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3824 3825 inode_unlock_shared(inode); 3826 3827 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3828 sizeof(option))) 3829 return -EFAULT; 3830 3831 return 0; 3832 } 3833 3834 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 3835 { 3836 struct inode *inode = file_inode(filp); 3837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3838 struct f2fs_comp_option option; 3839 int ret = 0; 3840 3841 if (!f2fs_sb_has_compression(sbi)) 3842 return -EOPNOTSUPP; 3843 3844 if (!(filp->f_mode & FMODE_WRITE)) 3845 return -EBADF; 3846 3847 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 3848 sizeof(option))) 3849 return -EFAULT; 3850 3851 if (!f2fs_compressed_file(inode) || 3852 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 3853 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 3854 option.algorithm >= COMPRESS_MAX) 3855 return -EINVAL; 3856 3857 file_start_write(filp); 3858 inode_lock(inode); 3859 3860 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 3861 ret = -EBUSY; 3862 goto out; 3863 } 3864 3865 if (inode->i_size != 0) { 3866 ret = -EFBIG; 3867 goto out; 3868 } 3869 3870 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 3871 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 3872 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size; 3873 f2fs_mark_inode_dirty_sync(inode, true); 3874 3875 if (!f2fs_is_compress_backend_ready(inode)) 3876 f2fs_warn(sbi, "compression algorithm is successfully set, " 3877 "but current kernel doesn't support this algorithm."); 3878 out: 3879 inode_unlock(inode); 3880 file_end_write(filp); 3881 3882 return ret; 3883 } 3884 3885 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 3886 { 3887 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 3888 struct address_space *mapping = inode->i_mapping; 3889 struct page *page; 3890 pgoff_t redirty_idx = page_idx; 3891 int i, page_len = 0, ret = 0; 3892 3893 page_cache_ra_unbounded(&ractl, len, 0); 3894 3895 for (i = 0; i < len; i++, page_idx++) { 3896 page = read_cache_page(mapping, page_idx, NULL, NULL); 3897 if (IS_ERR(page)) { 3898 ret = PTR_ERR(page); 3899 break; 3900 } 3901 page_len++; 3902 } 3903 3904 for (i = 0; i < page_len; i++, redirty_idx++) { 3905 page = find_lock_page(mapping, redirty_idx); 3906 if (!page) { 3907 ret = -ENOMEM; 3908 break; 3909 } 3910 set_page_dirty(page); 3911 f2fs_put_page(page, 1); 3912 f2fs_put_page(page, 0); 3913 } 3914 3915 return ret; 3916 } 3917 3918 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg) 3919 { 3920 struct inode *inode = file_inode(filp); 3921 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3922 struct f2fs_inode_info *fi = F2FS_I(inode); 3923 pgoff_t page_idx = 0, last_idx; 3924 unsigned int blk_per_seg = sbi->blocks_per_seg; 3925 int cluster_size = fi->i_cluster_size; 3926 int count, ret; 3927 3928 if (!f2fs_sb_has_compression(sbi) || 3929 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 3930 return -EOPNOTSUPP; 3931 3932 if (!(filp->f_mode & FMODE_WRITE)) 3933 return -EBADF; 3934 3935 if (!f2fs_compressed_file(inode)) 3936 return -EINVAL; 3937 3938 f2fs_balance_fs(F2FS_I_SB(inode), true); 3939 3940 file_start_write(filp); 3941 inode_lock(inode); 3942 3943 if (!f2fs_is_compress_backend_ready(inode)) { 3944 ret = -EOPNOTSUPP; 3945 goto out; 3946 } 3947 3948 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3949 if (ret) 3950 goto out; 3951 3952 if (!atomic_read(&fi->i_compr_blocks)) 3953 goto out; 3954 3955 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3956 3957 count = last_idx - page_idx; 3958 while (count) { 3959 int len = min(cluster_size, count); 3960 3961 ret = redirty_blocks(inode, page_idx, len); 3962 if (ret < 0) 3963 break; 3964 3965 if (get_dirty_pages(inode) >= blk_per_seg) 3966 filemap_fdatawrite(inode->i_mapping); 3967 3968 count -= len; 3969 page_idx += len; 3970 } 3971 3972 if (!ret) 3973 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 3974 LLONG_MAX); 3975 3976 if (ret) 3977 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 3978 __func__, ret); 3979 out: 3980 inode_unlock(inode); 3981 file_end_write(filp); 3982 3983 return ret; 3984 } 3985 3986 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg) 3987 { 3988 struct inode *inode = file_inode(filp); 3989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3990 pgoff_t page_idx = 0, last_idx; 3991 unsigned int blk_per_seg = sbi->blocks_per_seg; 3992 int cluster_size = F2FS_I(inode)->i_cluster_size; 3993 int count, ret; 3994 3995 if (!f2fs_sb_has_compression(sbi) || 3996 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 3997 return -EOPNOTSUPP; 3998 3999 if (!(filp->f_mode & FMODE_WRITE)) 4000 return -EBADF; 4001 4002 if (!f2fs_compressed_file(inode)) 4003 return -EINVAL; 4004 4005 f2fs_balance_fs(F2FS_I_SB(inode), true); 4006 4007 file_start_write(filp); 4008 inode_lock(inode); 4009 4010 if (!f2fs_is_compress_backend_ready(inode)) { 4011 ret = -EOPNOTSUPP; 4012 goto out; 4013 } 4014 4015 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4016 if (ret) 4017 goto out; 4018 4019 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4020 4021 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4022 4023 count = last_idx - page_idx; 4024 while (count) { 4025 int len = min(cluster_size, count); 4026 4027 ret = redirty_blocks(inode, page_idx, len); 4028 if (ret < 0) 4029 break; 4030 4031 if (get_dirty_pages(inode) >= blk_per_seg) 4032 filemap_fdatawrite(inode->i_mapping); 4033 4034 count -= len; 4035 page_idx += len; 4036 } 4037 4038 if (!ret) 4039 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4040 LLONG_MAX); 4041 4042 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4043 4044 if (ret) 4045 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4046 __func__, ret); 4047 out: 4048 inode_unlock(inode); 4049 file_end_write(filp); 4050 4051 return ret; 4052 } 4053 4054 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4055 { 4056 switch (cmd) { 4057 case FS_IOC_GETVERSION: 4058 return f2fs_ioc_getversion(filp, arg); 4059 case F2FS_IOC_START_ATOMIC_WRITE: 4060 return f2fs_ioc_start_atomic_write(filp); 4061 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4062 return f2fs_ioc_commit_atomic_write(filp); 4063 case F2FS_IOC_START_VOLATILE_WRITE: 4064 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4065 case F2FS_IOC_ABORT_VOLATILE_WRITE: 4066 return -EOPNOTSUPP; 4067 case F2FS_IOC_SHUTDOWN: 4068 return f2fs_ioc_shutdown(filp, arg); 4069 case FITRIM: 4070 return f2fs_ioc_fitrim(filp, arg); 4071 case FS_IOC_SET_ENCRYPTION_POLICY: 4072 return f2fs_ioc_set_encryption_policy(filp, arg); 4073 case FS_IOC_GET_ENCRYPTION_POLICY: 4074 return f2fs_ioc_get_encryption_policy(filp, arg); 4075 case FS_IOC_GET_ENCRYPTION_PWSALT: 4076 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4077 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4078 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4079 case FS_IOC_ADD_ENCRYPTION_KEY: 4080 return f2fs_ioc_add_encryption_key(filp, arg); 4081 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4082 return f2fs_ioc_remove_encryption_key(filp, arg); 4083 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4084 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4085 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4086 return f2fs_ioc_get_encryption_key_status(filp, arg); 4087 case FS_IOC_GET_ENCRYPTION_NONCE: 4088 return f2fs_ioc_get_encryption_nonce(filp, arg); 4089 case F2FS_IOC_GARBAGE_COLLECT: 4090 return f2fs_ioc_gc(filp, arg); 4091 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4092 return f2fs_ioc_gc_range(filp, arg); 4093 case F2FS_IOC_WRITE_CHECKPOINT: 4094 return f2fs_ioc_write_checkpoint(filp, arg); 4095 case F2FS_IOC_DEFRAGMENT: 4096 return f2fs_ioc_defragment(filp, arg); 4097 case F2FS_IOC_MOVE_RANGE: 4098 return f2fs_ioc_move_range(filp, arg); 4099 case F2FS_IOC_FLUSH_DEVICE: 4100 return f2fs_ioc_flush_device(filp, arg); 4101 case F2FS_IOC_GET_FEATURES: 4102 return f2fs_ioc_get_features(filp, arg); 4103 case F2FS_IOC_GET_PIN_FILE: 4104 return f2fs_ioc_get_pin_file(filp, arg); 4105 case F2FS_IOC_SET_PIN_FILE: 4106 return f2fs_ioc_set_pin_file(filp, arg); 4107 case F2FS_IOC_PRECACHE_EXTENTS: 4108 return f2fs_ioc_precache_extents(filp, arg); 4109 case F2FS_IOC_RESIZE_FS: 4110 return f2fs_ioc_resize_fs(filp, arg); 4111 case FS_IOC_ENABLE_VERITY: 4112 return f2fs_ioc_enable_verity(filp, arg); 4113 case FS_IOC_MEASURE_VERITY: 4114 return f2fs_ioc_measure_verity(filp, arg); 4115 case FS_IOC_READ_VERITY_METADATA: 4116 return f2fs_ioc_read_verity_metadata(filp, arg); 4117 case FS_IOC_GETFSLABEL: 4118 return f2fs_ioc_getfslabel(filp, arg); 4119 case FS_IOC_SETFSLABEL: 4120 return f2fs_ioc_setfslabel(filp, arg); 4121 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4122 return f2fs_get_compress_blocks(filp, arg); 4123 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4124 return f2fs_release_compress_blocks(filp, arg); 4125 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4126 return f2fs_reserve_compress_blocks(filp, arg); 4127 case F2FS_IOC_SEC_TRIM_FILE: 4128 return f2fs_sec_trim_file(filp, arg); 4129 case F2FS_IOC_GET_COMPRESS_OPTION: 4130 return f2fs_ioc_get_compress_option(filp, arg); 4131 case F2FS_IOC_SET_COMPRESS_OPTION: 4132 return f2fs_ioc_set_compress_option(filp, arg); 4133 case F2FS_IOC_DECOMPRESS_FILE: 4134 return f2fs_ioc_decompress_file(filp, arg); 4135 case F2FS_IOC_COMPRESS_FILE: 4136 return f2fs_ioc_compress_file(filp, arg); 4137 default: 4138 return -ENOTTY; 4139 } 4140 } 4141 4142 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4143 { 4144 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4145 return -EIO; 4146 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4147 return -ENOSPC; 4148 4149 return __f2fs_ioctl(filp, cmd, arg); 4150 } 4151 4152 /* 4153 * Return %true if the given read or write request should use direct I/O, or 4154 * %false if it should use buffered I/O. 4155 */ 4156 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4157 struct iov_iter *iter) 4158 { 4159 unsigned int align; 4160 4161 if (!(iocb->ki_flags & IOCB_DIRECT)) 4162 return false; 4163 4164 if (f2fs_force_buffered_io(inode, iocb, iter)) 4165 return false; 4166 4167 /* 4168 * Direct I/O not aligned to the disk's logical_block_size will be 4169 * attempted, but will fail with -EINVAL. 4170 * 4171 * f2fs additionally requires that direct I/O be aligned to the 4172 * filesystem block size, which is often a stricter requirement. 4173 * However, f2fs traditionally falls back to buffered I/O on requests 4174 * that are logical_block_size-aligned but not fs-block aligned. 4175 * 4176 * The below logic implements this behavior. 4177 */ 4178 align = iocb->ki_pos | iov_iter_alignment(iter); 4179 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4180 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4181 return false; 4182 4183 return true; 4184 } 4185 4186 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4187 unsigned int flags) 4188 { 4189 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4190 4191 dec_page_count(sbi, F2FS_DIO_READ); 4192 if (error) 4193 return error; 4194 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, size); 4195 return 0; 4196 } 4197 4198 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4199 .end_io = f2fs_dio_read_end_io, 4200 }; 4201 4202 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4203 { 4204 struct file *file = iocb->ki_filp; 4205 struct inode *inode = file_inode(file); 4206 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4207 struct f2fs_inode_info *fi = F2FS_I(inode); 4208 const loff_t pos = iocb->ki_pos; 4209 const size_t count = iov_iter_count(to); 4210 struct iomap_dio *dio; 4211 ssize_t ret; 4212 4213 if (count == 0) 4214 return 0; /* skip atime update */ 4215 4216 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4217 4218 if (iocb->ki_flags & IOCB_NOWAIT) { 4219 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4220 ret = -EAGAIN; 4221 goto out; 4222 } 4223 } else { 4224 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4225 } 4226 4227 /* 4228 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4229 * the higher-level function iomap_dio_rw() in order to ensure that the 4230 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4231 */ 4232 inc_page_count(sbi, F2FS_DIO_READ); 4233 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4234 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4235 if (IS_ERR_OR_NULL(dio)) { 4236 ret = PTR_ERR_OR_ZERO(dio); 4237 if (ret != -EIOCBQUEUED) 4238 dec_page_count(sbi, F2FS_DIO_READ); 4239 } else { 4240 ret = iomap_dio_complete(dio); 4241 } 4242 4243 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4244 4245 file_accessed(file); 4246 out: 4247 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4248 return ret; 4249 } 4250 4251 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4252 { 4253 struct inode *inode = file_inode(iocb->ki_filp); 4254 const loff_t pos = iocb->ki_pos; 4255 ssize_t ret; 4256 4257 if (!f2fs_is_compress_backend_ready(inode)) 4258 return -EOPNOTSUPP; 4259 4260 if (trace_f2fs_dataread_start_enabled()) { 4261 char *p = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL); 4262 char *path; 4263 4264 if (!p) 4265 goto skip_read_trace; 4266 4267 path = dentry_path_raw(file_dentry(iocb->ki_filp), p, PATH_MAX); 4268 if (IS_ERR(path)) { 4269 kfree(p); 4270 goto skip_read_trace; 4271 } 4272 4273 trace_f2fs_dataread_start(inode, pos, iov_iter_count(to), 4274 current->pid, path, current->comm); 4275 kfree(p); 4276 } 4277 skip_read_trace: 4278 if (f2fs_should_use_dio(inode, iocb, to)) { 4279 ret = f2fs_dio_read_iter(iocb, to); 4280 } else { 4281 ret = filemap_read(iocb, to, 0); 4282 if (ret > 0) 4283 f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_READ_IO, ret); 4284 } 4285 if (trace_f2fs_dataread_end_enabled()) 4286 trace_f2fs_dataread_end(inode, pos, ret); 4287 return ret; 4288 } 4289 4290 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4291 { 4292 struct file *file = iocb->ki_filp; 4293 struct inode *inode = file_inode(file); 4294 ssize_t count; 4295 int err; 4296 4297 if (IS_IMMUTABLE(inode)) 4298 return -EPERM; 4299 4300 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4301 return -EPERM; 4302 4303 count = generic_write_checks(iocb, from); 4304 if (count <= 0) 4305 return count; 4306 4307 err = file_modified(file); 4308 if (err) 4309 return err; 4310 return count; 4311 } 4312 4313 /* 4314 * Preallocate blocks for a write request, if it is possible and helpful to do 4315 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4316 * blocks were preallocated, or a negative errno value if something went 4317 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4318 * requested blocks (not just some of them) have been allocated. 4319 */ 4320 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4321 bool dio) 4322 { 4323 struct inode *inode = file_inode(iocb->ki_filp); 4324 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4325 const loff_t pos = iocb->ki_pos; 4326 const size_t count = iov_iter_count(iter); 4327 struct f2fs_map_blocks map = {}; 4328 int flag; 4329 int ret; 4330 4331 /* If it will be an out-of-place direct write, don't bother. */ 4332 if (dio && f2fs_lfs_mode(sbi)) 4333 return 0; 4334 /* 4335 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4336 * buffered IO, if DIO meets any holes. 4337 */ 4338 if (dio && i_size_read(inode) && 4339 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4340 return 0; 4341 4342 /* No-wait I/O can't allocate blocks. */ 4343 if (iocb->ki_flags & IOCB_NOWAIT) 4344 return 0; 4345 4346 /* If it will be a short write, don't bother. */ 4347 if (fault_in_iov_iter_readable(iter, count)) 4348 return 0; 4349 4350 if (f2fs_has_inline_data(inode)) { 4351 /* If the data will fit inline, don't bother. */ 4352 if (pos + count <= MAX_INLINE_DATA(inode)) 4353 return 0; 4354 ret = f2fs_convert_inline_inode(inode); 4355 if (ret) 4356 return ret; 4357 } 4358 4359 /* Do not preallocate blocks that will be written partially in 4KB. */ 4360 map.m_lblk = F2FS_BLK_ALIGN(pos); 4361 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4362 if (map.m_len > map.m_lblk) 4363 map.m_len -= map.m_lblk; 4364 else 4365 map.m_len = 0; 4366 map.m_may_create = true; 4367 if (dio) { 4368 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4369 flag = F2FS_GET_BLOCK_PRE_DIO; 4370 } else { 4371 map.m_seg_type = NO_CHECK_TYPE; 4372 flag = F2FS_GET_BLOCK_PRE_AIO; 4373 } 4374 4375 ret = f2fs_map_blocks(inode, &map, 1, flag); 4376 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4377 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4378 return ret; 4379 if (ret == 0) 4380 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4381 return map.m_len; 4382 } 4383 4384 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4385 struct iov_iter *from) 4386 { 4387 struct file *file = iocb->ki_filp; 4388 struct inode *inode = file_inode(file); 4389 ssize_t ret; 4390 4391 if (iocb->ki_flags & IOCB_NOWAIT) 4392 return -EOPNOTSUPP; 4393 4394 current->backing_dev_info = inode_to_bdi(inode); 4395 ret = generic_perform_write(iocb, from); 4396 current->backing_dev_info = NULL; 4397 4398 if (ret > 0) { 4399 iocb->ki_pos += ret; 4400 f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_IO, ret); 4401 } 4402 return ret; 4403 } 4404 4405 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4406 unsigned int flags) 4407 { 4408 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4409 4410 dec_page_count(sbi, F2FS_DIO_WRITE); 4411 if (error) 4412 return error; 4413 f2fs_update_iostat(sbi, APP_DIRECT_IO, size); 4414 return 0; 4415 } 4416 4417 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4418 .end_io = f2fs_dio_write_end_io, 4419 }; 4420 4421 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4422 bool *may_need_sync) 4423 { 4424 struct file *file = iocb->ki_filp; 4425 struct inode *inode = file_inode(file); 4426 struct f2fs_inode_info *fi = F2FS_I(inode); 4427 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4428 const bool do_opu = f2fs_lfs_mode(sbi); 4429 const loff_t pos = iocb->ki_pos; 4430 const ssize_t count = iov_iter_count(from); 4431 unsigned int dio_flags; 4432 struct iomap_dio *dio; 4433 ssize_t ret; 4434 4435 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4436 4437 if (iocb->ki_flags & IOCB_NOWAIT) { 4438 /* f2fs_convert_inline_inode() and block allocation can block */ 4439 if (f2fs_has_inline_data(inode) || 4440 !f2fs_overwrite_io(inode, pos, count)) { 4441 ret = -EAGAIN; 4442 goto out; 4443 } 4444 4445 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4446 ret = -EAGAIN; 4447 goto out; 4448 } 4449 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4450 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4451 ret = -EAGAIN; 4452 goto out; 4453 } 4454 } else { 4455 ret = f2fs_convert_inline_inode(inode); 4456 if (ret) 4457 goto out; 4458 4459 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4460 if (do_opu) 4461 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4462 } 4463 4464 /* 4465 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4466 * the higher-level function iomap_dio_rw() in order to ensure that the 4467 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4468 */ 4469 inc_page_count(sbi, F2FS_DIO_WRITE); 4470 dio_flags = 0; 4471 if (pos + count > inode->i_size) 4472 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4473 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4474 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4475 if (IS_ERR_OR_NULL(dio)) { 4476 ret = PTR_ERR_OR_ZERO(dio); 4477 if (ret == -ENOTBLK) 4478 ret = 0; 4479 if (ret != -EIOCBQUEUED) 4480 dec_page_count(sbi, F2FS_DIO_WRITE); 4481 } else { 4482 ret = iomap_dio_complete(dio); 4483 } 4484 4485 if (do_opu) 4486 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4487 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4488 4489 if (ret < 0) 4490 goto out; 4491 if (pos + ret > inode->i_size) 4492 f2fs_i_size_write(inode, pos + ret); 4493 if (!do_opu) 4494 set_inode_flag(inode, FI_UPDATE_WRITE); 4495 4496 if (iov_iter_count(from)) { 4497 ssize_t ret2; 4498 loff_t bufio_start_pos = iocb->ki_pos; 4499 4500 /* 4501 * The direct write was partial, so we need to fall back to a 4502 * buffered write for the remainder. 4503 */ 4504 4505 ret2 = f2fs_buffered_write_iter(iocb, from); 4506 if (iov_iter_count(from)) 4507 f2fs_write_failed(inode, iocb->ki_pos); 4508 if (ret2 < 0) 4509 goto out; 4510 4511 /* 4512 * Ensure that the pagecache pages are written to disk and 4513 * invalidated to preserve the expected O_DIRECT semantics. 4514 */ 4515 if (ret2 > 0) { 4516 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4517 4518 ret += ret2; 4519 4520 ret2 = filemap_write_and_wait_range(file->f_mapping, 4521 bufio_start_pos, 4522 bufio_end_pos); 4523 if (ret2 < 0) 4524 goto out; 4525 invalidate_mapping_pages(file->f_mapping, 4526 bufio_start_pos >> PAGE_SHIFT, 4527 bufio_end_pos >> PAGE_SHIFT); 4528 } 4529 } else { 4530 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4531 *may_need_sync = false; 4532 } 4533 out: 4534 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4535 return ret; 4536 } 4537 4538 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4539 { 4540 struct inode *inode = file_inode(iocb->ki_filp); 4541 const loff_t orig_pos = iocb->ki_pos; 4542 const size_t orig_count = iov_iter_count(from); 4543 loff_t target_size; 4544 bool dio; 4545 bool may_need_sync = true; 4546 int preallocated; 4547 ssize_t ret; 4548 4549 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4550 ret = -EIO; 4551 goto out; 4552 } 4553 4554 if (!f2fs_is_compress_backend_ready(inode)) { 4555 ret = -EOPNOTSUPP; 4556 goto out; 4557 } 4558 4559 if (iocb->ki_flags & IOCB_NOWAIT) { 4560 if (!inode_trylock(inode)) { 4561 ret = -EAGAIN; 4562 goto out; 4563 } 4564 } else { 4565 inode_lock(inode); 4566 } 4567 4568 ret = f2fs_write_checks(iocb, from); 4569 if (ret <= 0) 4570 goto out_unlock; 4571 4572 /* Determine whether we will do a direct write or a buffered write. */ 4573 dio = f2fs_should_use_dio(inode, iocb, from); 4574 4575 /* Possibly preallocate the blocks for the write. */ 4576 target_size = iocb->ki_pos + iov_iter_count(from); 4577 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 4578 if (preallocated < 0) { 4579 ret = preallocated; 4580 } else { 4581 if (trace_f2fs_datawrite_start_enabled()) { 4582 char *p = f2fs_kmalloc(F2FS_I_SB(inode), 4583 PATH_MAX, GFP_KERNEL); 4584 char *path; 4585 4586 if (!p) 4587 goto skip_write_trace; 4588 path = dentry_path_raw(file_dentry(iocb->ki_filp), 4589 p, PATH_MAX); 4590 if (IS_ERR(path)) { 4591 kfree(p); 4592 goto skip_write_trace; 4593 } 4594 trace_f2fs_datawrite_start(inode, orig_pos, orig_count, 4595 current->pid, path, current->comm); 4596 kfree(p); 4597 } 4598 skip_write_trace: 4599 /* Do the actual write. */ 4600 ret = dio ? 4601 f2fs_dio_write_iter(iocb, from, &may_need_sync): 4602 f2fs_buffered_write_iter(iocb, from); 4603 4604 if (trace_f2fs_datawrite_end_enabled()) 4605 trace_f2fs_datawrite_end(inode, orig_pos, ret); 4606 } 4607 4608 /* Don't leave any preallocated blocks around past i_size. */ 4609 if (preallocated && i_size_read(inode) < target_size) { 4610 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4611 filemap_invalidate_lock(inode->i_mapping); 4612 if (!f2fs_truncate(inode)) 4613 file_dont_truncate(inode); 4614 filemap_invalidate_unlock(inode->i_mapping); 4615 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4616 } else { 4617 file_dont_truncate(inode); 4618 } 4619 4620 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 4621 out_unlock: 4622 inode_unlock(inode); 4623 out: 4624 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 4625 if (ret > 0 && may_need_sync) 4626 ret = generic_write_sync(iocb, ret); 4627 return ret; 4628 } 4629 4630 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 4631 int advice) 4632 { 4633 struct address_space *mapping; 4634 struct backing_dev_info *bdi; 4635 struct inode *inode = file_inode(filp); 4636 int err; 4637 4638 if (advice == POSIX_FADV_SEQUENTIAL) { 4639 if (S_ISFIFO(inode->i_mode)) 4640 return -ESPIPE; 4641 4642 mapping = filp->f_mapping; 4643 if (!mapping || len < 0) 4644 return -EINVAL; 4645 4646 bdi = inode_to_bdi(mapping->host); 4647 filp->f_ra.ra_pages = bdi->ra_pages * 4648 F2FS_I_SB(inode)->seq_file_ra_mul; 4649 spin_lock(&filp->f_lock); 4650 filp->f_mode &= ~FMODE_RANDOM; 4651 spin_unlock(&filp->f_lock); 4652 return 0; 4653 } 4654 4655 err = generic_fadvise(filp, offset, len, advice); 4656 if (!err && advice == POSIX_FADV_DONTNEED && 4657 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 4658 f2fs_compressed_file(inode)) 4659 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 4660 4661 return err; 4662 } 4663 4664 #ifdef CONFIG_COMPAT 4665 struct compat_f2fs_gc_range { 4666 u32 sync; 4667 compat_u64 start; 4668 compat_u64 len; 4669 }; 4670 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4671 struct compat_f2fs_gc_range) 4672 4673 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4674 { 4675 struct compat_f2fs_gc_range __user *urange; 4676 struct f2fs_gc_range range; 4677 int err; 4678 4679 urange = compat_ptr(arg); 4680 err = get_user(range.sync, &urange->sync); 4681 err |= get_user(range.start, &urange->start); 4682 err |= get_user(range.len, &urange->len); 4683 if (err) 4684 return -EFAULT; 4685 4686 return __f2fs_ioc_gc_range(file, &range); 4687 } 4688 4689 struct compat_f2fs_move_range { 4690 u32 dst_fd; 4691 compat_u64 pos_in; 4692 compat_u64 pos_out; 4693 compat_u64 len; 4694 }; 4695 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4696 struct compat_f2fs_move_range) 4697 4698 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4699 { 4700 struct compat_f2fs_move_range __user *urange; 4701 struct f2fs_move_range range; 4702 int err; 4703 4704 urange = compat_ptr(arg); 4705 err = get_user(range.dst_fd, &urange->dst_fd); 4706 err |= get_user(range.pos_in, &urange->pos_in); 4707 err |= get_user(range.pos_out, &urange->pos_out); 4708 err |= get_user(range.len, &urange->len); 4709 if (err) 4710 return -EFAULT; 4711 4712 return __f2fs_ioc_move_range(file, &range); 4713 } 4714 4715 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4716 { 4717 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4718 return -EIO; 4719 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4720 return -ENOSPC; 4721 4722 switch (cmd) { 4723 case FS_IOC32_GETVERSION: 4724 cmd = FS_IOC_GETVERSION; 4725 break; 4726 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4727 return f2fs_compat_ioc_gc_range(file, arg); 4728 case F2FS_IOC32_MOVE_RANGE: 4729 return f2fs_compat_ioc_move_range(file, arg); 4730 case F2FS_IOC_START_ATOMIC_WRITE: 4731 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4732 case F2FS_IOC_START_VOLATILE_WRITE: 4733 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4734 case F2FS_IOC_ABORT_VOLATILE_WRITE: 4735 case F2FS_IOC_SHUTDOWN: 4736 case FITRIM: 4737 case FS_IOC_SET_ENCRYPTION_POLICY: 4738 case FS_IOC_GET_ENCRYPTION_PWSALT: 4739 case FS_IOC_GET_ENCRYPTION_POLICY: 4740 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4741 case FS_IOC_ADD_ENCRYPTION_KEY: 4742 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4743 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4744 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4745 case FS_IOC_GET_ENCRYPTION_NONCE: 4746 case F2FS_IOC_GARBAGE_COLLECT: 4747 case F2FS_IOC_WRITE_CHECKPOINT: 4748 case F2FS_IOC_DEFRAGMENT: 4749 case F2FS_IOC_FLUSH_DEVICE: 4750 case F2FS_IOC_GET_FEATURES: 4751 case F2FS_IOC_GET_PIN_FILE: 4752 case F2FS_IOC_SET_PIN_FILE: 4753 case F2FS_IOC_PRECACHE_EXTENTS: 4754 case F2FS_IOC_RESIZE_FS: 4755 case FS_IOC_ENABLE_VERITY: 4756 case FS_IOC_MEASURE_VERITY: 4757 case FS_IOC_READ_VERITY_METADATA: 4758 case FS_IOC_GETFSLABEL: 4759 case FS_IOC_SETFSLABEL: 4760 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4761 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4762 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4763 case F2FS_IOC_SEC_TRIM_FILE: 4764 case F2FS_IOC_GET_COMPRESS_OPTION: 4765 case F2FS_IOC_SET_COMPRESS_OPTION: 4766 case F2FS_IOC_DECOMPRESS_FILE: 4767 case F2FS_IOC_COMPRESS_FILE: 4768 break; 4769 default: 4770 return -ENOIOCTLCMD; 4771 } 4772 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4773 } 4774 #endif 4775 4776 const struct file_operations f2fs_file_operations = { 4777 .llseek = f2fs_llseek, 4778 .read_iter = f2fs_file_read_iter, 4779 .write_iter = f2fs_file_write_iter, 4780 .open = f2fs_file_open, 4781 .release = f2fs_release_file, 4782 .mmap = f2fs_file_mmap, 4783 .flush = f2fs_file_flush, 4784 .fsync = f2fs_sync_file, 4785 .fallocate = f2fs_fallocate, 4786 .unlocked_ioctl = f2fs_ioctl, 4787 #ifdef CONFIG_COMPAT 4788 .compat_ioctl = f2fs_compat_ioctl, 4789 #endif 4790 .splice_read = generic_file_splice_read, 4791 .splice_write = iter_file_splice_write, 4792 .fadvise = f2fs_file_fadvise, 4793 }; 4794