xref: /linux/fs/f2fs/file.c (revision 96f30c8f0aa9923aa39b30bcaefeacf88b490231)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38 
39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 	struct inode *inode = file_inode(vmf->vma->vm_file);
42 	vm_flags_t flags = vmf->vma->vm_flags;
43 	vm_fault_t ret;
44 
45 	ret = filemap_fault(vmf);
46 	if (ret & VM_FAULT_LOCKED)
47 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
48 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
49 
50 	trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
51 
52 	return ret;
53 }
54 
55 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
56 {
57 	struct page *page = vmf->page;
58 	struct inode *inode = file_inode(vmf->vma->vm_file);
59 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
60 	struct dnode_of_data dn;
61 	bool need_alloc = !f2fs_is_pinned_file(inode);
62 	int err = 0;
63 	vm_fault_t ret;
64 
65 	if (unlikely(IS_IMMUTABLE(inode)))
66 		return VM_FAULT_SIGBUS;
67 
68 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
69 		err = -EIO;
70 		goto out;
71 	}
72 
73 	if (unlikely(f2fs_cp_error(sbi))) {
74 		err = -EIO;
75 		goto out;
76 	}
77 
78 	if (!f2fs_is_checkpoint_ready(sbi)) {
79 		err = -ENOSPC;
80 		goto out;
81 	}
82 
83 	err = f2fs_convert_inline_inode(inode);
84 	if (err)
85 		goto out;
86 
87 #ifdef CONFIG_F2FS_FS_COMPRESSION
88 	if (f2fs_compressed_file(inode)) {
89 		int ret = f2fs_is_compressed_cluster(inode, page->index);
90 
91 		if (ret < 0) {
92 			err = ret;
93 			goto out;
94 		} else if (ret) {
95 			need_alloc = false;
96 		}
97 	}
98 #endif
99 	/* should do out of any locked page */
100 	if (need_alloc)
101 		f2fs_balance_fs(sbi, true);
102 
103 	sb_start_pagefault(inode->i_sb);
104 
105 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
106 
107 	file_update_time(vmf->vma->vm_file);
108 	filemap_invalidate_lock_shared(inode->i_mapping);
109 	lock_page(page);
110 	if (unlikely(page->mapping != inode->i_mapping ||
111 			page_offset(page) > i_size_read(inode) ||
112 			!PageUptodate(page))) {
113 		unlock_page(page);
114 		err = -EFAULT;
115 		goto out_sem;
116 	}
117 
118 	set_new_dnode(&dn, inode, NULL, NULL, 0);
119 	if (need_alloc) {
120 		/* block allocation */
121 		err = f2fs_get_block_locked(&dn, page->index);
122 	} else {
123 		err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
124 		f2fs_put_dnode(&dn);
125 		if (f2fs_is_pinned_file(inode) &&
126 		    !__is_valid_data_blkaddr(dn.data_blkaddr))
127 			err = -EIO;
128 	}
129 
130 	if (err) {
131 		unlock_page(page);
132 		goto out_sem;
133 	}
134 
135 	f2fs_wait_on_page_writeback(page, DATA, false, true);
136 
137 	/* wait for GCed page writeback via META_MAPPING */
138 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
139 
140 	/*
141 	 * check to see if the page is mapped already (no holes)
142 	 */
143 	if (PageMappedToDisk(page))
144 		goto out_sem;
145 
146 	/* page is wholly or partially inside EOF */
147 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
148 						i_size_read(inode)) {
149 		loff_t offset;
150 
151 		offset = i_size_read(inode) & ~PAGE_MASK;
152 		zero_user_segment(page, offset, PAGE_SIZE);
153 	}
154 	set_page_dirty(page);
155 
156 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
157 	f2fs_update_time(sbi, REQ_TIME);
158 
159 out_sem:
160 	filemap_invalidate_unlock_shared(inode->i_mapping);
161 
162 	sb_end_pagefault(inode->i_sb);
163 out:
164 	ret = vmf_fs_error(err);
165 
166 	trace_f2fs_vm_page_mkwrite(inode, page->index, vmf->vma->vm_flags, ret);
167 	return ret;
168 }
169 
170 static const struct vm_operations_struct f2fs_file_vm_ops = {
171 	.fault		= f2fs_filemap_fault,
172 	.map_pages	= filemap_map_pages,
173 	.page_mkwrite	= f2fs_vm_page_mkwrite,
174 };
175 
176 static int get_parent_ino(struct inode *inode, nid_t *pino)
177 {
178 	struct dentry *dentry;
179 
180 	/*
181 	 * Make sure to get the non-deleted alias.  The alias associated with
182 	 * the open file descriptor being fsync()'ed may be deleted already.
183 	 */
184 	dentry = d_find_alias(inode);
185 	if (!dentry)
186 		return 0;
187 
188 	*pino = d_parent_ino(dentry);
189 	dput(dentry);
190 	return 1;
191 }
192 
193 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
194 {
195 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
196 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
197 
198 	if (!S_ISREG(inode->i_mode))
199 		cp_reason = CP_NON_REGULAR;
200 	else if (f2fs_compressed_file(inode))
201 		cp_reason = CP_COMPRESSED;
202 	else if (inode->i_nlink != 1)
203 		cp_reason = CP_HARDLINK;
204 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
205 		cp_reason = CP_SB_NEED_CP;
206 	else if (file_wrong_pino(inode))
207 		cp_reason = CP_WRONG_PINO;
208 	else if (!f2fs_space_for_roll_forward(sbi))
209 		cp_reason = CP_NO_SPC_ROLL;
210 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
211 		cp_reason = CP_NODE_NEED_CP;
212 	else if (test_opt(sbi, FASTBOOT))
213 		cp_reason = CP_FASTBOOT_MODE;
214 	else if (F2FS_OPTION(sbi).active_logs == 2)
215 		cp_reason = CP_SPEC_LOG_NUM;
216 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
217 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
218 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
219 							TRANS_DIR_INO))
220 		cp_reason = CP_RECOVER_DIR;
221 
222 	return cp_reason;
223 }
224 
225 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
226 {
227 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
228 	bool ret = false;
229 	/* But we need to avoid that there are some inode updates */
230 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
231 		ret = true;
232 	f2fs_put_page(i, 0);
233 	return ret;
234 }
235 
236 static void try_to_fix_pino(struct inode *inode)
237 {
238 	struct f2fs_inode_info *fi = F2FS_I(inode);
239 	nid_t pino;
240 
241 	f2fs_down_write(&fi->i_sem);
242 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
243 			get_parent_ino(inode, &pino)) {
244 		f2fs_i_pino_write(inode, pino);
245 		file_got_pino(inode);
246 	}
247 	f2fs_up_write(&fi->i_sem);
248 }
249 
250 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
251 						int datasync, bool atomic)
252 {
253 	struct inode *inode = file->f_mapping->host;
254 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255 	nid_t ino = inode->i_ino;
256 	int ret = 0;
257 	enum cp_reason_type cp_reason = 0;
258 	struct writeback_control wbc = {
259 		.sync_mode = WB_SYNC_ALL,
260 		.nr_to_write = LONG_MAX,
261 		.for_reclaim = 0,
262 	};
263 	unsigned int seq_id = 0;
264 
265 	if (unlikely(f2fs_readonly(inode->i_sb)))
266 		return 0;
267 
268 	trace_f2fs_sync_file_enter(inode);
269 
270 	if (S_ISDIR(inode->i_mode))
271 		goto go_write;
272 
273 	/* if fdatasync is triggered, let's do in-place-update */
274 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
275 		set_inode_flag(inode, FI_NEED_IPU);
276 	ret = file_write_and_wait_range(file, start, end);
277 	clear_inode_flag(inode, FI_NEED_IPU);
278 
279 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
280 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
281 		return ret;
282 	}
283 
284 	/* if the inode is dirty, let's recover all the time */
285 	if (!f2fs_skip_inode_update(inode, datasync)) {
286 		f2fs_write_inode(inode, NULL);
287 		goto go_write;
288 	}
289 
290 	/*
291 	 * if there is no written data, don't waste time to write recovery info.
292 	 */
293 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
294 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
295 
296 		/* it may call write_inode just prior to fsync */
297 		if (need_inode_page_update(sbi, ino))
298 			goto go_write;
299 
300 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
301 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
302 			goto flush_out;
303 		goto out;
304 	} else {
305 		/*
306 		 * for OPU case, during fsync(), node can be persisted before
307 		 * data when lower device doesn't support write barrier, result
308 		 * in data corruption after SPO.
309 		 * So for strict fsync mode, force to use atomic write semantics
310 		 * to keep write order in between data/node and last node to
311 		 * avoid potential data corruption.
312 		 */
313 		if (F2FS_OPTION(sbi).fsync_mode ==
314 				FSYNC_MODE_STRICT && !atomic)
315 			atomic = true;
316 	}
317 go_write:
318 	/*
319 	 * Both of fdatasync() and fsync() are able to be recovered from
320 	 * sudden-power-off.
321 	 */
322 	f2fs_down_read(&F2FS_I(inode)->i_sem);
323 	cp_reason = need_do_checkpoint(inode);
324 	f2fs_up_read(&F2FS_I(inode)->i_sem);
325 
326 	if (cp_reason) {
327 		/* all the dirty node pages should be flushed for POR */
328 		ret = f2fs_sync_fs(inode->i_sb, 1);
329 
330 		/*
331 		 * We've secured consistency through sync_fs. Following pino
332 		 * will be used only for fsynced inodes after checkpoint.
333 		 */
334 		try_to_fix_pino(inode);
335 		clear_inode_flag(inode, FI_APPEND_WRITE);
336 		clear_inode_flag(inode, FI_UPDATE_WRITE);
337 		goto out;
338 	}
339 sync_nodes:
340 	atomic_inc(&sbi->wb_sync_req[NODE]);
341 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
342 	atomic_dec(&sbi->wb_sync_req[NODE]);
343 	if (ret)
344 		goto out;
345 
346 	/* if cp_error was enabled, we should avoid infinite loop */
347 	if (unlikely(f2fs_cp_error(sbi))) {
348 		ret = -EIO;
349 		goto out;
350 	}
351 
352 	if (f2fs_need_inode_block_update(sbi, ino)) {
353 		f2fs_mark_inode_dirty_sync(inode, true);
354 		f2fs_write_inode(inode, NULL);
355 		goto sync_nodes;
356 	}
357 
358 	/*
359 	 * If it's atomic_write, it's just fine to keep write ordering. So
360 	 * here we don't need to wait for node write completion, since we use
361 	 * node chain which serializes node blocks. If one of node writes are
362 	 * reordered, we can see simply broken chain, resulting in stopping
363 	 * roll-forward recovery. It means we'll recover all or none node blocks
364 	 * given fsync mark.
365 	 */
366 	if (!atomic) {
367 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
368 		if (ret)
369 			goto out;
370 	}
371 
372 	/* once recovery info is written, don't need to tack this */
373 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
374 	clear_inode_flag(inode, FI_APPEND_WRITE);
375 flush_out:
376 	if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
377 	    (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
378 		ret = f2fs_issue_flush(sbi, inode->i_ino);
379 	if (!ret) {
380 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
381 		clear_inode_flag(inode, FI_UPDATE_WRITE);
382 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
383 	}
384 	f2fs_update_time(sbi, REQ_TIME);
385 out:
386 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
387 	return ret;
388 }
389 
390 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
391 {
392 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
393 		return -EIO;
394 	return f2fs_do_sync_file(file, start, end, datasync, false);
395 }
396 
397 static bool __found_offset(struct address_space *mapping,
398 		struct dnode_of_data *dn, pgoff_t index, int whence)
399 {
400 	block_t blkaddr = f2fs_data_blkaddr(dn);
401 	struct inode *inode = mapping->host;
402 	bool compressed_cluster = false;
403 
404 	if (f2fs_compressed_file(inode)) {
405 		block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
406 		    ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
407 
408 		compressed_cluster = first_blkaddr == COMPRESS_ADDR;
409 	}
410 
411 	switch (whence) {
412 	case SEEK_DATA:
413 		if (__is_valid_data_blkaddr(blkaddr))
414 			return true;
415 		if (blkaddr == NEW_ADDR &&
416 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
417 			return true;
418 		if (compressed_cluster)
419 			return true;
420 		break;
421 	case SEEK_HOLE:
422 		if (compressed_cluster)
423 			return false;
424 		if (blkaddr == NULL_ADDR)
425 			return true;
426 		break;
427 	}
428 	return false;
429 }
430 
431 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
432 {
433 	struct inode *inode = file->f_mapping->host;
434 	loff_t maxbytes = inode->i_sb->s_maxbytes;
435 	struct dnode_of_data dn;
436 	pgoff_t pgofs, end_offset;
437 	loff_t data_ofs = offset;
438 	loff_t isize;
439 	int err = 0;
440 
441 	inode_lock_shared(inode);
442 
443 	isize = i_size_read(inode);
444 	if (offset >= isize)
445 		goto fail;
446 
447 	/* handle inline data case */
448 	if (f2fs_has_inline_data(inode)) {
449 		if (whence == SEEK_HOLE) {
450 			data_ofs = isize;
451 			goto found;
452 		} else if (whence == SEEK_DATA) {
453 			data_ofs = offset;
454 			goto found;
455 		}
456 	}
457 
458 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
459 
460 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
461 		set_new_dnode(&dn, inode, NULL, NULL, 0);
462 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
463 		if (err && err != -ENOENT) {
464 			goto fail;
465 		} else if (err == -ENOENT) {
466 			/* direct node does not exists */
467 			if (whence == SEEK_DATA) {
468 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
469 				continue;
470 			} else {
471 				goto found;
472 			}
473 		}
474 
475 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
476 
477 		/* find data/hole in dnode block */
478 		for (; dn.ofs_in_node < end_offset;
479 				dn.ofs_in_node++, pgofs++,
480 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
481 			block_t blkaddr;
482 
483 			blkaddr = f2fs_data_blkaddr(&dn);
484 
485 			if (__is_valid_data_blkaddr(blkaddr) &&
486 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
487 					blkaddr, DATA_GENERIC_ENHANCE)) {
488 				f2fs_put_dnode(&dn);
489 				goto fail;
490 			}
491 
492 			if (__found_offset(file->f_mapping, &dn,
493 							pgofs, whence)) {
494 				f2fs_put_dnode(&dn);
495 				goto found;
496 			}
497 		}
498 		f2fs_put_dnode(&dn);
499 	}
500 
501 	if (whence == SEEK_DATA)
502 		goto fail;
503 found:
504 	if (whence == SEEK_HOLE && data_ofs > isize)
505 		data_ofs = isize;
506 	inode_unlock_shared(inode);
507 	return vfs_setpos(file, data_ofs, maxbytes);
508 fail:
509 	inode_unlock_shared(inode);
510 	return -ENXIO;
511 }
512 
513 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
514 {
515 	struct inode *inode = file->f_mapping->host;
516 	loff_t maxbytes = inode->i_sb->s_maxbytes;
517 
518 	if (f2fs_compressed_file(inode))
519 		maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
520 
521 	switch (whence) {
522 	case SEEK_SET:
523 	case SEEK_CUR:
524 	case SEEK_END:
525 		return generic_file_llseek_size(file, offset, whence,
526 						maxbytes, i_size_read(inode));
527 	case SEEK_DATA:
528 	case SEEK_HOLE:
529 		if (offset < 0)
530 			return -ENXIO;
531 		return f2fs_seek_block(file, offset, whence);
532 	}
533 
534 	return -EINVAL;
535 }
536 
537 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
538 {
539 	struct inode *inode = file_inode(file);
540 
541 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
542 		return -EIO;
543 
544 	if (!f2fs_is_compress_backend_ready(inode))
545 		return -EOPNOTSUPP;
546 
547 	file_accessed(file);
548 	vma->vm_ops = &f2fs_file_vm_ops;
549 
550 	f2fs_down_read(&F2FS_I(inode)->i_sem);
551 	set_inode_flag(inode, FI_MMAP_FILE);
552 	f2fs_up_read(&F2FS_I(inode)->i_sem);
553 
554 	return 0;
555 }
556 
557 static int finish_preallocate_blocks(struct inode *inode)
558 {
559 	int ret;
560 
561 	inode_lock(inode);
562 	if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
563 		inode_unlock(inode);
564 		return 0;
565 	}
566 
567 	if (!file_should_truncate(inode)) {
568 		set_inode_flag(inode, FI_OPENED_FILE);
569 		inode_unlock(inode);
570 		return 0;
571 	}
572 
573 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
574 	filemap_invalidate_lock(inode->i_mapping);
575 
576 	truncate_setsize(inode, i_size_read(inode));
577 	ret = f2fs_truncate(inode);
578 
579 	filemap_invalidate_unlock(inode->i_mapping);
580 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
581 
582 	if (!ret)
583 		set_inode_flag(inode, FI_OPENED_FILE);
584 
585 	inode_unlock(inode);
586 	if (ret)
587 		return ret;
588 
589 	file_dont_truncate(inode);
590 	return 0;
591 }
592 
593 static int f2fs_file_open(struct inode *inode, struct file *filp)
594 {
595 	int err = fscrypt_file_open(inode, filp);
596 
597 	if (err)
598 		return err;
599 
600 	if (!f2fs_is_compress_backend_ready(inode))
601 		return -EOPNOTSUPP;
602 
603 	err = fsverity_file_open(inode, filp);
604 	if (err)
605 		return err;
606 
607 	filp->f_mode |= FMODE_NOWAIT;
608 	filp->f_mode |= FMODE_CAN_ODIRECT;
609 
610 	err = dquot_file_open(inode, filp);
611 	if (err)
612 		return err;
613 
614 	return finish_preallocate_blocks(inode);
615 }
616 
617 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
618 {
619 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
620 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
621 	__le32 *addr;
622 	bool compressed_cluster = false;
623 	int cluster_index = 0, valid_blocks = 0;
624 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
625 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
626 
627 	addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
628 
629 	/* Assumption: truncation starts with cluster */
630 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
631 		block_t blkaddr = le32_to_cpu(*addr);
632 
633 		if (f2fs_compressed_file(dn->inode) &&
634 					!(cluster_index & (cluster_size - 1))) {
635 			if (compressed_cluster)
636 				f2fs_i_compr_blocks_update(dn->inode,
637 							valid_blocks, false);
638 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
639 			valid_blocks = 0;
640 		}
641 
642 		if (blkaddr == NULL_ADDR)
643 			continue;
644 
645 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
646 
647 		if (__is_valid_data_blkaddr(blkaddr)) {
648 			if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
649 				continue;
650 			if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
651 						DATA_GENERIC_ENHANCE))
652 				continue;
653 			if (compressed_cluster)
654 				valid_blocks++;
655 		}
656 
657 		f2fs_invalidate_blocks(sbi, blkaddr);
658 
659 		if (!released || blkaddr != COMPRESS_ADDR)
660 			nr_free++;
661 	}
662 
663 	if (compressed_cluster)
664 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
665 
666 	if (nr_free) {
667 		pgoff_t fofs;
668 		/*
669 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
670 		 * we will invalidate all blkaddr in the whole range.
671 		 */
672 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
673 							dn->inode) + ofs;
674 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
675 		f2fs_update_age_extent_cache_range(dn, fofs, len);
676 		dec_valid_block_count(sbi, dn->inode, nr_free);
677 	}
678 	dn->ofs_in_node = ofs;
679 
680 	f2fs_update_time(sbi, REQ_TIME);
681 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
682 					 dn->ofs_in_node, nr_free);
683 }
684 
685 static int truncate_partial_data_page(struct inode *inode, u64 from,
686 								bool cache_only)
687 {
688 	loff_t offset = from & (PAGE_SIZE - 1);
689 	pgoff_t index = from >> PAGE_SHIFT;
690 	struct address_space *mapping = inode->i_mapping;
691 	struct page *page;
692 
693 	if (!offset && !cache_only)
694 		return 0;
695 
696 	if (cache_only) {
697 		page = find_lock_page(mapping, index);
698 		if (page && PageUptodate(page))
699 			goto truncate_out;
700 		f2fs_put_page(page, 1);
701 		return 0;
702 	}
703 
704 	page = f2fs_get_lock_data_page(inode, index, true);
705 	if (IS_ERR(page))
706 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
707 truncate_out:
708 	f2fs_wait_on_page_writeback(page, DATA, true, true);
709 	zero_user(page, offset, PAGE_SIZE - offset);
710 
711 	/* An encrypted inode should have a key and truncate the last page. */
712 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
713 	if (!cache_only)
714 		set_page_dirty(page);
715 	f2fs_put_page(page, 1);
716 	return 0;
717 }
718 
719 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
720 {
721 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
722 	struct dnode_of_data dn;
723 	pgoff_t free_from;
724 	int count = 0, err = 0;
725 	struct page *ipage;
726 	bool truncate_page = false;
727 
728 	trace_f2fs_truncate_blocks_enter(inode, from);
729 
730 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
731 
732 	if (free_from >= max_file_blocks(inode))
733 		goto free_partial;
734 
735 	if (lock)
736 		f2fs_lock_op(sbi);
737 
738 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
739 	if (IS_ERR(ipage)) {
740 		err = PTR_ERR(ipage);
741 		goto out;
742 	}
743 
744 	if (f2fs_has_inline_data(inode)) {
745 		f2fs_truncate_inline_inode(inode, ipage, from);
746 		f2fs_put_page(ipage, 1);
747 		truncate_page = true;
748 		goto out;
749 	}
750 
751 	set_new_dnode(&dn, inode, ipage, NULL, 0);
752 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
753 	if (err) {
754 		if (err == -ENOENT)
755 			goto free_next;
756 		goto out;
757 	}
758 
759 	count = ADDRS_PER_PAGE(dn.node_page, inode);
760 
761 	count -= dn.ofs_in_node;
762 	f2fs_bug_on(sbi, count < 0);
763 
764 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
765 		f2fs_truncate_data_blocks_range(&dn, count);
766 		free_from += count;
767 	}
768 
769 	f2fs_put_dnode(&dn);
770 free_next:
771 	err = f2fs_truncate_inode_blocks(inode, free_from);
772 out:
773 	if (lock)
774 		f2fs_unlock_op(sbi);
775 free_partial:
776 	/* lastly zero out the first data page */
777 	if (!err)
778 		err = truncate_partial_data_page(inode, from, truncate_page);
779 
780 	trace_f2fs_truncate_blocks_exit(inode, err);
781 	return err;
782 }
783 
784 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
785 {
786 	u64 free_from = from;
787 	int err;
788 
789 #ifdef CONFIG_F2FS_FS_COMPRESSION
790 	/*
791 	 * for compressed file, only support cluster size
792 	 * aligned truncation.
793 	 */
794 	if (f2fs_compressed_file(inode))
795 		free_from = round_up(from,
796 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
797 #endif
798 
799 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
800 	if (err)
801 		return err;
802 
803 #ifdef CONFIG_F2FS_FS_COMPRESSION
804 	/*
805 	 * For compressed file, after release compress blocks, don't allow write
806 	 * direct, but we should allow write direct after truncate to zero.
807 	 */
808 	if (f2fs_compressed_file(inode) && !free_from
809 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
810 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
811 
812 	if (from != free_from) {
813 		err = f2fs_truncate_partial_cluster(inode, from, lock);
814 		if (err)
815 			return err;
816 	}
817 #endif
818 
819 	return 0;
820 }
821 
822 int f2fs_truncate(struct inode *inode)
823 {
824 	int err;
825 
826 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
827 		return -EIO;
828 
829 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
830 				S_ISLNK(inode->i_mode)))
831 		return 0;
832 
833 	trace_f2fs_truncate(inode);
834 
835 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
836 		return -EIO;
837 
838 	err = f2fs_dquot_initialize(inode);
839 	if (err)
840 		return err;
841 
842 	/* we should check inline_data size */
843 	if (!f2fs_may_inline_data(inode)) {
844 		err = f2fs_convert_inline_inode(inode);
845 		if (err)
846 			return err;
847 	}
848 
849 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
850 	if (err)
851 		return err;
852 
853 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
854 	f2fs_mark_inode_dirty_sync(inode, false);
855 	return 0;
856 }
857 
858 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
859 {
860 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
861 
862 	if (!fscrypt_dio_supported(inode))
863 		return true;
864 	if (fsverity_active(inode))
865 		return true;
866 	if (f2fs_compressed_file(inode))
867 		return true;
868 	if (f2fs_has_inline_data(inode))
869 		return true;
870 
871 	/* disallow direct IO if any of devices has unaligned blksize */
872 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
873 		return true;
874 	/*
875 	 * for blkzoned device, fallback direct IO to buffered IO, so
876 	 * all IOs can be serialized by log-structured write.
877 	 */
878 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
879 	    !f2fs_is_pinned_file(inode))
880 		return true;
881 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
882 		return true;
883 
884 	return false;
885 }
886 
887 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
888 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
889 {
890 	struct inode *inode = d_inode(path->dentry);
891 	struct f2fs_inode_info *fi = F2FS_I(inode);
892 	struct f2fs_inode *ri = NULL;
893 	unsigned int flags;
894 
895 	if (f2fs_has_extra_attr(inode) &&
896 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
897 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
898 		stat->result_mask |= STATX_BTIME;
899 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
900 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
901 	}
902 
903 	/*
904 	 * Return the DIO alignment restrictions if requested.  We only return
905 	 * this information when requested, since on encrypted files it might
906 	 * take a fair bit of work to get if the file wasn't opened recently.
907 	 *
908 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
909 	 * cannot represent that, so in that case we report no DIO support.
910 	 */
911 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
912 		unsigned int bsize = i_blocksize(inode);
913 
914 		stat->result_mask |= STATX_DIOALIGN;
915 		if (!f2fs_force_buffered_io(inode, WRITE)) {
916 			stat->dio_mem_align = bsize;
917 			stat->dio_offset_align = bsize;
918 		}
919 	}
920 
921 	flags = fi->i_flags;
922 	if (flags & F2FS_COMPR_FL)
923 		stat->attributes |= STATX_ATTR_COMPRESSED;
924 	if (flags & F2FS_APPEND_FL)
925 		stat->attributes |= STATX_ATTR_APPEND;
926 	if (IS_ENCRYPTED(inode))
927 		stat->attributes |= STATX_ATTR_ENCRYPTED;
928 	if (flags & F2FS_IMMUTABLE_FL)
929 		stat->attributes |= STATX_ATTR_IMMUTABLE;
930 	if (flags & F2FS_NODUMP_FL)
931 		stat->attributes |= STATX_ATTR_NODUMP;
932 	if (IS_VERITY(inode))
933 		stat->attributes |= STATX_ATTR_VERITY;
934 
935 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
936 				  STATX_ATTR_APPEND |
937 				  STATX_ATTR_ENCRYPTED |
938 				  STATX_ATTR_IMMUTABLE |
939 				  STATX_ATTR_NODUMP |
940 				  STATX_ATTR_VERITY);
941 
942 	generic_fillattr(idmap, request_mask, inode, stat);
943 
944 	/* we need to show initial sectors used for inline_data/dentries */
945 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
946 					f2fs_has_inline_dentry(inode))
947 		stat->blocks += (stat->size + 511) >> 9;
948 
949 	return 0;
950 }
951 
952 #ifdef CONFIG_F2FS_FS_POSIX_ACL
953 static void __setattr_copy(struct mnt_idmap *idmap,
954 			   struct inode *inode, const struct iattr *attr)
955 {
956 	unsigned int ia_valid = attr->ia_valid;
957 
958 	i_uid_update(idmap, attr, inode);
959 	i_gid_update(idmap, attr, inode);
960 	if (ia_valid & ATTR_ATIME)
961 		inode_set_atime_to_ts(inode, attr->ia_atime);
962 	if (ia_valid & ATTR_MTIME)
963 		inode_set_mtime_to_ts(inode, attr->ia_mtime);
964 	if (ia_valid & ATTR_CTIME)
965 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
966 	if (ia_valid & ATTR_MODE) {
967 		umode_t mode = attr->ia_mode;
968 
969 		if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
970 			mode &= ~S_ISGID;
971 		set_acl_inode(inode, mode);
972 	}
973 }
974 #else
975 #define __setattr_copy setattr_copy
976 #endif
977 
978 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
979 		 struct iattr *attr)
980 {
981 	struct inode *inode = d_inode(dentry);
982 	struct f2fs_inode_info *fi = F2FS_I(inode);
983 	int err;
984 
985 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
986 		return -EIO;
987 
988 	if (unlikely(IS_IMMUTABLE(inode)))
989 		return -EPERM;
990 
991 	if (unlikely(IS_APPEND(inode) &&
992 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
993 				  ATTR_GID | ATTR_TIMES_SET))))
994 		return -EPERM;
995 
996 	if ((attr->ia_valid & ATTR_SIZE)) {
997 		if (!f2fs_is_compress_backend_ready(inode))
998 			return -EOPNOTSUPP;
999 		if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1000 			!IS_ALIGNED(attr->ia_size,
1001 			F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1002 			return -EINVAL;
1003 	}
1004 
1005 	err = setattr_prepare(idmap, dentry, attr);
1006 	if (err)
1007 		return err;
1008 
1009 	err = fscrypt_prepare_setattr(dentry, attr);
1010 	if (err)
1011 		return err;
1012 
1013 	err = fsverity_prepare_setattr(dentry, attr);
1014 	if (err)
1015 		return err;
1016 
1017 	if (is_quota_modification(idmap, inode, attr)) {
1018 		err = f2fs_dquot_initialize(inode);
1019 		if (err)
1020 			return err;
1021 	}
1022 	if (i_uid_needs_update(idmap, attr, inode) ||
1023 	    i_gid_needs_update(idmap, attr, inode)) {
1024 		f2fs_lock_op(F2FS_I_SB(inode));
1025 		err = dquot_transfer(idmap, inode, attr);
1026 		if (err) {
1027 			set_sbi_flag(F2FS_I_SB(inode),
1028 					SBI_QUOTA_NEED_REPAIR);
1029 			f2fs_unlock_op(F2FS_I_SB(inode));
1030 			return err;
1031 		}
1032 		/*
1033 		 * update uid/gid under lock_op(), so that dquot and inode can
1034 		 * be updated atomically.
1035 		 */
1036 		i_uid_update(idmap, attr, inode);
1037 		i_gid_update(idmap, attr, inode);
1038 		f2fs_mark_inode_dirty_sync(inode, true);
1039 		f2fs_unlock_op(F2FS_I_SB(inode));
1040 	}
1041 
1042 	if (attr->ia_valid & ATTR_SIZE) {
1043 		loff_t old_size = i_size_read(inode);
1044 
1045 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1046 			/*
1047 			 * should convert inline inode before i_size_write to
1048 			 * keep smaller than inline_data size with inline flag.
1049 			 */
1050 			err = f2fs_convert_inline_inode(inode);
1051 			if (err)
1052 				return err;
1053 		}
1054 
1055 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1056 		filemap_invalidate_lock(inode->i_mapping);
1057 
1058 		truncate_setsize(inode, attr->ia_size);
1059 
1060 		if (attr->ia_size <= old_size)
1061 			err = f2fs_truncate(inode);
1062 		/*
1063 		 * do not trim all blocks after i_size if target size is
1064 		 * larger than i_size.
1065 		 */
1066 		filemap_invalidate_unlock(inode->i_mapping);
1067 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1068 		if (err)
1069 			return err;
1070 
1071 		spin_lock(&fi->i_size_lock);
1072 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1073 		fi->last_disk_size = i_size_read(inode);
1074 		spin_unlock(&fi->i_size_lock);
1075 	}
1076 
1077 	__setattr_copy(idmap, inode, attr);
1078 
1079 	if (attr->ia_valid & ATTR_MODE) {
1080 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1081 
1082 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1083 			if (!err)
1084 				inode->i_mode = fi->i_acl_mode;
1085 			clear_inode_flag(inode, FI_ACL_MODE);
1086 		}
1087 	}
1088 
1089 	/* file size may changed here */
1090 	f2fs_mark_inode_dirty_sync(inode, true);
1091 
1092 	/* inode change will produce dirty node pages flushed by checkpoint */
1093 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1094 
1095 	return err;
1096 }
1097 
1098 const struct inode_operations f2fs_file_inode_operations = {
1099 	.getattr	= f2fs_getattr,
1100 	.setattr	= f2fs_setattr,
1101 	.get_inode_acl	= f2fs_get_acl,
1102 	.set_acl	= f2fs_set_acl,
1103 	.listxattr	= f2fs_listxattr,
1104 	.fiemap		= f2fs_fiemap,
1105 	.fileattr_get	= f2fs_fileattr_get,
1106 	.fileattr_set	= f2fs_fileattr_set,
1107 };
1108 
1109 static int fill_zero(struct inode *inode, pgoff_t index,
1110 					loff_t start, loff_t len)
1111 {
1112 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1113 	struct page *page;
1114 
1115 	if (!len)
1116 		return 0;
1117 
1118 	f2fs_balance_fs(sbi, true);
1119 
1120 	f2fs_lock_op(sbi);
1121 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1122 	f2fs_unlock_op(sbi);
1123 
1124 	if (IS_ERR(page))
1125 		return PTR_ERR(page);
1126 
1127 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1128 	zero_user(page, start, len);
1129 	set_page_dirty(page);
1130 	f2fs_put_page(page, 1);
1131 	return 0;
1132 }
1133 
1134 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1135 {
1136 	int err;
1137 
1138 	while (pg_start < pg_end) {
1139 		struct dnode_of_data dn;
1140 		pgoff_t end_offset, count;
1141 
1142 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1143 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1144 		if (err) {
1145 			if (err == -ENOENT) {
1146 				pg_start = f2fs_get_next_page_offset(&dn,
1147 								pg_start);
1148 				continue;
1149 			}
1150 			return err;
1151 		}
1152 
1153 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1154 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1155 
1156 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1157 
1158 		f2fs_truncate_data_blocks_range(&dn, count);
1159 		f2fs_put_dnode(&dn);
1160 
1161 		pg_start += count;
1162 	}
1163 	return 0;
1164 }
1165 
1166 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1167 {
1168 	pgoff_t pg_start, pg_end;
1169 	loff_t off_start, off_end;
1170 	int ret;
1171 
1172 	ret = f2fs_convert_inline_inode(inode);
1173 	if (ret)
1174 		return ret;
1175 
1176 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1177 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1178 
1179 	off_start = offset & (PAGE_SIZE - 1);
1180 	off_end = (offset + len) & (PAGE_SIZE - 1);
1181 
1182 	if (pg_start == pg_end) {
1183 		ret = fill_zero(inode, pg_start, off_start,
1184 						off_end - off_start);
1185 		if (ret)
1186 			return ret;
1187 	} else {
1188 		if (off_start) {
1189 			ret = fill_zero(inode, pg_start++, off_start,
1190 						PAGE_SIZE - off_start);
1191 			if (ret)
1192 				return ret;
1193 		}
1194 		if (off_end) {
1195 			ret = fill_zero(inode, pg_end, 0, off_end);
1196 			if (ret)
1197 				return ret;
1198 		}
1199 
1200 		if (pg_start < pg_end) {
1201 			loff_t blk_start, blk_end;
1202 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1203 
1204 			f2fs_balance_fs(sbi, true);
1205 
1206 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1207 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1208 
1209 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1210 			filemap_invalidate_lock(inode->i_mapping);
1211 
1212 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1213 
1214 			f2fs_lock_op(sbi);
1215 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1216 			f2fs_unlock_op(sbi);
1217 
1218 			filemap_invalidate_unlock(inode->i_mapping);
1219 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1220 		}
1221 	}
1222 
1223 	return ret;
1224 }
1225 
1226 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1227 				int *do_replace, pgoff_t off, pgoff_t len)
1228 {
1229 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1230 	struct dnode_of_data dn;
1231 	int ret, done, i;
1232 
1233 next_dnode:
1234 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1235 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1236 	if (ret && ret != -ENOENT) {
1237 		return ret;
1238 	} else if (ret == -ENOENT) {
1239 		if (dn.max_level == 0)
1240 			return -ENOENT;
1241 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1242 						dn.ofs_in_node, len);
1243 		blkaddr += done;
1244 		do_replace += done;
1245 		goto next;
1246 	}
1247 
1248 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1249 							dn.ofs_in_node, len);
1250 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1251 		*blkaddr = f2fs_data_blkaddr(&dn);
1252 
1253 		if (__is_valid_data_blkaddr(*blkaddr) &&
1254 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1255 					DATA_GENERIC_ENHANCE)) {
1256 			f2fs_put_dnode(&dn);
1257 			return -EFSCORRUPTED;
1258 		}
1259 
1260 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1261 
1262 			if (f2fs_lfs_mode(sbi)) {
1263 				f2fs_put_dnode(&dn);
1264 				return -EOPNOTSUPP;
1265 			}
1266 
1267 			/* do not invalidate this block address */
1268 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1269 			*do_replace = 1;
1270 		}
1271 	}
1272 	f2fs_put_dnode(&dn);
1273 next:
1274 	len -= done;
1275 	off += done;
1276 	if (len)
1277 		goto next_dnode;
1278 	return 0;
1279 }
1280 
1281 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1282 				int *do_replace, pgoff_t off, int len)
1283 {
1284 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1285 	struct dnode_of_data dn;
1286 	int ret, i;
1287 
1288 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1289 		if (*do_replace == 0)
1290 			continue;
1291 
1292 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1293 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1294 		if (ret) {
1295 			dec_valid_block_count(sbi, inode, 1);
1296 			f2fs_invalidate_blocks(sbi, *blkaddr);
1297 		} else {
1298 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1299 		}
1300 		f2fs_put_dnode(&dn);
1301 	}
1302 	return 0;
1303 }
1304 
1305 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1306 			block_t *blkaddr, int *do_replace,
1307 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1308 {
1309 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1310 	pgoff_t i = 0;
1311 	int ret;
1312 
1313 	while (i < len) {
1314 		if (blkaddr[i] == NULL_ADDR && !full) {
1315 			i++;
1316 			continue;
1317 		}
1318 
1319 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1320 			struct dnode_of_data dn;
1321 			struct node_info ni;
1322 			size_t new_size;
1323 			pgoff_t ilen;
1324 
1325 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1326 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1327 			if (ret)
1328 				return ret;
1329 
1330 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1331 			if (ret) {
1332 				f2fs_put_dnode(&dn);
1333 				return ret;
1334 			}
1335 
1336 			ilen = min((pgoff_t)
1337 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1338 						dn.ofs_in_node, len - i);
1339 			do {
1340 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1341 				f2fs_truncate_data_blocks_range(&dn, 1);
1342 
1343 				if (do_replace[i]) {
1344 					f2fs_i_blocks_write(src_inode,
1345 							1, false, false);
1346 					f2fs_i_blocks_write(dst_inode,
1347 							1, true, false);
1348 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1349 					blkaddr[i], ni.version, true, false);
1350 
1351 					do_replace[i] = 0;
1352 				}
1353 				dn.ofs_in_node++;
1354 				i++;
1355 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1356 				if (dst_inode->i_size < new_size)
1357 					f2fs_i_size_write(dst_inode, new_size);
1358 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1359 
1360 			f2fs_put_dnode(&dn);
1361 		} else {
1362 			struct page *psrc, *pdst;
1363 
1364 			psrc = f2fs_get_lock_data_page(src_inode,
1365 							src + i, true);
1366 			if (IS_ERR(psrc))
1367 				return PTR_ERR(psrc);
1368 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1369 								true);
1370 			if (IS_ERR(pdst)) {
1371 				f2fs_put_page(psrc, 1);
1372 				return PTR_ERR(pdst);
1373 			}
1374 
1375 			f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1376 
1377 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1378 			set_page_dirty(pdst);
1379 			set_page_private_gcing(pdst);
1380 			f2fs_put_page(pdst, 1);
1381 			f2fs_put_page(psrc, 1);
1382 
1383 			ret = f2fs_truncate_hole(src_inode,
1384 						src + i, src + i + 1);
1385 			if (ret)
1386 				return ret;
1387 			i++;
1388 		}
1389 	}
1390 	return 0;
1391 }
1392 
1393 static int __exchange_data_block(struct inode *src_inode,
1394 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1395 			pgoff_t len, bool full)
1396 {
1397 	block_t *src_blkaddr;
1398 	int *do_replace;
1399 	pgoff_t olen;
1400 	int ret;
1401 
1402 	while (len) {
1403 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1404 
1405 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1406 					array_size(olen, sizeof(block_t)),
1407 					GFP_NOFS);
1408 		if (!src_blkaddr)
1409 			return -ENOMEM;
1410 
1411 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1412 					array_size(olen, sizeof(int)),
1413 					GFP_NOFS);
1414 		if (!do_replace) {
1415 			kvfree(src_blkaddr);
1416 			return -ENOMEM;
1417 		}
1418 
1419 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1420 					do_replace, src, olen);
1421 		if (ret)
1422 			goto roll_back;
1423 
1424 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1425 					do_replace, src, dst, olen, full);
1426 		if (ret)
1427 			goto roll_back;
1428 
1429 		src += olen;
1430 		dst += olen;
1431 		len -= olen;
1432 
1433 		kvfree(src_blkaddr);
1434 		kvfree(do_replace);
1435 	}
1436 	return 0;
1437 
1438 roll_back:
1439 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1440 	kvfree(src_blkaddr);
1441 	kvfree(do_replace);
1442 	return ret;
1443 }
1444 
1445 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1446 {
1447 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1448 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1449 	pgoff_t start = offset >> PAGE_SHIFT;
1450 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1451 	int ret;
1452 
1453 	f2fs_balance_fs(sbi, true);
1454 
1455 	/* avoid gc operation during block exchange */
1456 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1457 	filemap_invalidate_lock(inode->i_mapping);
1458 
1459 	f2fs_lock_op(sbi);
1460 	f2fs_drop_extent_tree(inode);
1461 	truncate_pagecache(inode, offset);
1462 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1463 	f2fs_unlock_op(sbi);
1464 
1465 	filemap_invalidate_unlock(inode->i_mapping);
1466 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1467 	return ret;
1468 }
1469 
1470 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1471 {
1472 	loff_t new_size;
1473 	int ret;
1474 
1475 	if (offset + len >= i_size_read(inode))
1476 		return -EINVAL;
1477 
1478 	/* collapse range should be aligned to block size of f2fs. */
1479 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1480 		return -EINVAL;
1481 
1482 	ret = f2fs_convert_inline_inode(inode);
1483 	if (ret)
1484 		return ret;
1485 
1486 	/* write out all dirty pages from offset */
1487 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1488 	if (ret)
1489 		return ret;
1490 
1491 	ret = f2fs_do_collapse(inode, offset, len);
1492 	if (ret)
1493 		return ret;
1494 
1495 	/* write out all moved pages, if possible */
1496 	filemap_invalidate_lock(inode->i_mapping);
1497 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1498 	truncate_pagecache(inode, offset);
1499 
1500 	new_size = i_size_read(inode) - len;
1501 	ret = f2fs_truncate_blocks(inode, new_size, true);
1502 	filemap_invalidate_unlock(inode->i_mapping);
1503 	if (!ret)
1504 		f2fs_i_size_write(inode, new_size);
1505 	return ret;
1506 }
1507 
1508 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1509 								pgoff_t end)
1510 {
1511 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1512 	pgoff_t index = start;
1513 	unsigned int ofs_in_node = dn->ofs_in_node;
1514 	blkcnt_t count = 0;
1515 	int ret;
1516 
1517 	for (; index < end; index++, dn->ofs_in_node++) {
1518 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1519 			count++;
1520 	}
1521 
1522 	dn->ofs_in_node = ofs_in_node;
1523 	ret = f2fs_reserve_new_blocks(dn, count);
1524 	if (ret)
1525 		return ret;
1526 
1527 	dn->ofs_in_node = ofs_in_node;
1528 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1529 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1530 		/*
1531 		 * f2fs_reserve_new_blocks will not guarantee entire block
1532 		 * allocation.
1533 		 */
1534 		if (dn->data_blkaddr == NULL_ADDR) {
1535 			ret = -ENOSPC;
1536 			break;
1537 		}
1538 
1539 		if (dn->data_blkaddr == NEW_ADDR)
1540 			continue;
1541 
1542 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1543 					DATA_GENERIC_ENHANCE)) {
1544 			ret = -EFSCORRUPTED;
1545 			break;
1546 		}
1547 
1548 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1549 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1550 	}
1551 
1552 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1553 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1554 
1555 	return ret;
1556 }
1557 
1558 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1559 								int mode)
1560 {
1561 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1562 	struct address_space *mapping = inode->i_mapping;
1563 	pgoff_t index, pg_start, pg_end;
1564 	loff_t new_size = i_size_read(inode);
1565 	loff_t off_start, off_end;
1566 	int ret = 0;
1567 
1568 	ret = inode_newsize_ok(inode, (len + offset));
1569 	if (ret)
1570 		return ret;
1571 
1572 	ret = f2fs_convert_inline_inode(inode);
1573 	if (ret)
1574 		return ret;
1575 
1576 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1577 	if (ret)
1578 		return ret;
1579 
1580 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1581 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1582 
1583 	off_start = offset & (PAGE_SIZE - 1);
1584 	off_end = (offset + len) & (PAGE_SIZE - 1);
1585 
1586 	if (pg_start == pg_end) {
1587 		ret = fill_zero(inode, pg_start, off_start,
1588 						off_end - off_start);
1589 		if (ret)
1590 			return ret;
1591 
1592 		new_size = max_t(loff_t, new_size, offset + len);
1593 	} else {
1594 		if (off_start) {
1595 			ret = fill_zero(inode, pg_start++, off_start,
1596 						PAGE_SIZE - off_start);
1597 			if (ret)
1598 				return ret;
1599 
1600 			new_size = max_t(loff_t, new_size,
1601 					(loff_t)pg_start << PAGE_SHIFT);
1602 		}
1603 
1604 		for (index = pg_start; index < pg_end;) {
1605 			struct dnode_of_data dn;
1606 			unsigned int end_offset;
1607 			pgoff_t end;
1608 
1609 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1610 			filemap_invalidate_lock(mapping);
1611 
1612 			truncate_pagecache_range(inode,
1613 				(loff_t)index << PAGE_SHIFT,
1614 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1615 
1616 			f2fs_lock_op(sbi);
1617 
1618 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1619 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1620 			if (ret) {
1621 				f2fs_unlock_op(sbi);
1622 				filemap_invalidate_unlock(mapping);
1623 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1624 				goto out;
1625 			}
1626 
1627 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1628 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1629 
1630 			ret = f2fs_do_zero_range(&dn, index, end);
1631 			f2fs_put_dnode(&dn);
1632 
1633 			f2fs_unlock_op(sbi);
1634 			filemap_invalidate_unlock(mapping);
1635 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1636 
1637 			f2fs_balance_fs(sbi, dn.node_changed);
1638 
1639 			if (ret)
1640 				goto out;
1641 
1642 			index = end;
1643 			new_size = max_t(loff_t, new_size,
1644 					(loff_t)index << PAGE_SHIFT);
1645 		}
1646 
1647 		if (off_end) {
1648 			ret = fill_zero(inode, pg_end, 0, off_end);
1649 			if (ret)
1650 				goto out;
1651 
1652 			new_size = max_t(loff_t, new_size, offset + len);
1653 		}
1654 	}
1655 
1656 out:
1657 	if (new_size > i_size_read(inode)) {
1658 		if (mode & FALLOC_FL_KEEP_SIZE)
1659 			file_set_keep_isize(inode);
1660 		else
1661 			f2fs_i_size_write(inode, new_size);
1662 	}
1663 	return ret;
1664 }
1665 
1666 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1667 {
1668 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1669 	struct address_space *mapping = inode->i_mapping;
1670 	pgoff_t nr, pg_start, pg_end, delta, idx;
1671 	loff_t new_size;
1672 	int ret = 0;
1673 
1674 	new_size = i_size_read(inode) + len;
1675 	ret = inode_newsize_ok(inode, new_size);
1676 	if (ret)
1677 		return ret;
1678 
1679 	if (offset >= i_size_read(inode))
1680 		return -EINVAL;
1681 
1682 	/* insert range should be aligned to block size of f2fs. */
1683 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1684 		return -EINVAL;
1685 
1686 	ret = f2fs_convert_inline_inode(inode);
1687 	if (ret)
1688 		return ret;
1689 
1690 	f2fs_balance_fs(sbi, true);
1691 
1692 	filemap_invalidate_lock(mapping);
1693 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1694 	filemap_invalidate_unlock(mapping);
1695 	if (ret)
1696 		return ret;
1697 
1698 	/* write out all dirty pages from offset */
1699 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1700 	if (ret)
1701 		return ret;
1702 
1703 	pg_start = offset >> PAGE_SHIFT;
1704 	pg_end = (offset + len) >> PAGE_SHIFT;
1705 	delta = pg_end - pg_start;
1706 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1707 
1708 	/* avoid gc operation during block exchange */
1709 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1710 	filemap_invalidate_lock(mapping);
1711 	truncate_pagecache(inode, offset);
1712 
1713 	while (!ret && idx > pg_start) {
1714 		nr = idx - pg_start;
1715 		if (nr > delta)
1716 			nr = delta;
1717 		idx -= nr;
1718 
1719 		f2fs_lock_op(sbi);
1720 		f2fs_drop_extent_tree(inode);
1721 
1722 		ret = __exchange_data_block(inode, inode, idx,
1723 					idx + delta, nr, false);
1724 		f2fs_unlock_op(sbi);
1725 	}
1726 	filemap_invalidate_unlock(mapping);
1727 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1728 	if (ret)
1729 		return ret;
1730 
1731 	/* write out all moved pages, if possible */
1732 	filemap_invalidate_lock(mapping);
1733 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1734 	truncate_pagecache(inode, offset);
1735 	filemap_invalidate_unlock(mapping);
1736 
1737 	if (!ret)
1738 		f2fs_i_size_write(inode, new_size);
1739 	return ret;
1740 }
1741 
1742 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1743 					loff_t len, int mode)
1744 {
1745 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1746 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1747 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1748 			.m_may_create = true };
1749 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1750 			.init_gc_type = FG_GC,
1751 			.should_migrate_blocks = false,
1752 			.err_gc_skipped = true,
1753 			.nr_free_secs = 0 };
1754 	pgoff_t pg_start, pg_end;
1755 	loff_t new_size;
1756 	loff_t off_end;
1757 	block_t expanded = 0;
1758 	int err;
1759 
1760 	err = inode_newsize_ok(inode, (len + offset));
1761 	if (err)
1762 		return err;
1763 
1764 	err = f2fs_convert_inline_inode(inode);
1765 	if (err)
1766 		return err;
1767 
1768 	f2fs_balance_fs(sbi, true);
1769 
1770 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1771 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1772 	off_end = (offset + len) & (PAGE_SIZE - 1);
1773 
1774 	map.m_lblk = pg_start;
1775 	map.m_len = pg_end - pg_start;
1776 	if (off_end)
1777 		map.m_len++;
1778 
1779 	if (!map.m_len)
1780 		return 0;
1781 
1782 	if (f2fs_is_pinned_file(inode)) {
1783 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1784 		block_t sec_len = roundup(map.m_len, sec_blks);
1785 
1786 		map.m_len = sec_blks;
1787 next_alloc:
1788 		if (has_not_enough_free_secs(sbi, 0,
1789 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1790 			f2fs_down_write(&sbi->gc_lock);
1791 			stat_inc_gc_call_count(sbi, FOREGROUND);
1792 			err = f2fs_gc(sbi, &gc_control);
1793 			if (err && err != -ENODATA)
1794 				goto out_err;
1795 		}
1796 
1797 		f2fs_down_write(&sbi->pin_sem);
1798 
1799 		err = f2fs_allocate_pinning_section(sbi);
1800 		if (err) {
1801 			f2fs_up_write(&sbi->pin_sem);
1802 			goto out_err;
1803 		}
1804 
1805 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1806 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1807 		file_dont_truncate(inode);
1808 
1809 		f2fs_up_write(&sbi->pin_sem);
1810 
1811 		expanded += map.m_len;
1812 		sec_len -= map.m_len;
1813 		map.m_lblk += map.m_len;
1814 		if (!err && sec_len)
1815 			goto next_alloc;
1816 
1817 		map.m_len = expanded;
1818 	} else {
1819 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1820 		expanded = map.m_len;
1821 	}
1822 out_err:
1823 	if (err) {
1824 		pgoff_t last_off;
1825 
1826 		if (!expanded)
1827 			return err;
1828 
1829 		last_off = pg_start + expanded - 1;
1830 
1831 		/* update new size to the failed position */
1832 		new_size = (last_off == pg_end) ? offset + len :
1833 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1834 	} else {
1835 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1836 	}
1837 
1838 	if (new_size > i_size_read(inode)) {
1839 		if (mode & FALLOC_FL_KEEP_SIZE)
1840 			file_set_keep_isize(inode);
1841 		else
1842 			f2fs_i_size_write(inode, new_size);
1843 	}
1844 
1845 	return err;
1846 }
1847 
1848 static long f2fs_fallocate(struct file *file, int mode,
1849 				loff_t offset, loff_t len)
1850 {
1851 	struct inode *inode = file_inode(file);
1852 	long ret = 0;
1853 
1854 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1855 		return -EIO;
1856 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1857 		return -ENOSPC;
1858 	if (!f2fs_is_compress_backend_ready(inode))
1859 		return -EOPNOTSUPP;
1860 
1861 	/* f2fs only support ->fallocate for regular file */
1862 	if (!S_ISREG(inode->i_mode))
1863 		return -EINVAL;
1864 
1865 	if (IS_ENCRYPTED(inode) &&
1866 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1867 		return -EOPNOTSUPP;
1868 
1869 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1870 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1871 			FALLOC_FL_INSERT_RANGE))
1872 		return -EOPNOTSUPP;
1873 
1874 	inode_lock(inode);
1875 
1876 	/*
1877 	 * Pinned file should not support partial truncation since the block
1878 	 * can be used by applications.
1879 	 */
1880 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1881 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1882 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1883 		ret = -EOPNOTSUPP;
1884 		goto out;
1885 	}
1886 
1887 	ret = file_modified(file);
1888 	if (ret)
1889 		goto out;
1890 
1891 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1892 		if (offset >= inode->i_size)
1893 			goto out;
1894 
1895 		ret = f2fs_punch_hole(inode, offset, len);
1896 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1897 		ret = f2fs_collapse_range(inode, offset, len);
1898 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1899 		ret = f2fs_zero_range(inode, offset, len, mode);
1900 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1901 		ret = f2fs_insert_range(inode, offset, len);
1902 	} else {
1903 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1904 	}
1905 
1906 	if (!ret) {
1907 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1908 		f2fs_mark_inode_dirty_sync(inode, false);
1909 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1910 	}
1911 
1912 out:
1913 	inode_unlock(inode);
1914 
1915 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1916 	return ret;
1917 }
1918 
1919 static int f2fs_release_file(struct inode *inode, struct file *filp)
1920 {
1921 	/*
1922 	 * f2fs_release_file is called at every close calls. So we should
1923 	 * not drop any inmemory pages by close called by other process.
1924 	 */
1925 	if (!(filp->f_mode & FMODE_WRITE) ||
1926 			atomic_read(&inode->i_writecount) != 1)
1927 		return 0;
1928 
1929 	inode_lock(inode);
1930 	f2fs_abort_atomic_write(inode, true);
1931 	inode_unlock(inode);
1932 
1933 	return 0;
1934 }
1935 
1936 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1937 {
1938 	struct inode *inode = file_inode(file);
1939 
1940 	/*
1941 	 * If the process doing a transaction is crashed, we should do
1942 	 * roll-back. Otherwise, other reader/write can see corrupted database
1943 	 * until all the writers close its file. Since this should be done
1944 	 * before dropping file lock, it needs to do in ->flush.
1945 	 */
1946 	if (F2FS_I(inode)->atomic_write_task == current &&
1947 				(current->flags & PF_EXITING)) {
1948 		inode_lock(inode);
1949 		f2fs_abort_atomic_write(inode, true);
1950 		inode_unlock(inode);
1951 	}
1952 
1953 	return 0;
1954 }
1955 
1956 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1957 {
1958 	struct f2fs_inode_info *fi = F2FS_I(inode);
1959 	u32 masked_flags = fi->i_flags & mask;
1960 
1961 	/* mask can be shrunk by flags_valid selector */
1962 	iflags &= mask;
1963 
1964 	/* Is it quota file? Do not allow user to mess with it */
1965 	if (IS_NOQUOTA(inode))
1966 		return -EPERM;
1967 
1968 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1969 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1970 			return -EOPNOTSUPP;
1971 		if (!f2fs_empty_dir(inode))
1972 			return -ENOTEMPTY;
1973 	}
1974 
1975 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1976 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1977 			return -EOPNOTSUPP;
1978 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1979 			return -EINVAL;
1980 	}
1981 
1982 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1983 		if (masked_flags & F2FS_COMPR_FL) {
1984 			if (!f2fs_disable_compressed_file(inode))
1985 				return -EINVAL;
1986 		} else {
1987 			/* try to convert inline_data to support compression */
1988 			int err = f2fs_convert_inline_inode(inode);
1989 			if (err)
1990 				return err;
1991 
1992 			f2fs_down_write(&fi->i_sem);
1993 			if (!f2fs_may_compress(inode) ||
1994 					(S_ISREG(inode->i_mode) &&
1995 					F2FS_HAS_BLOCKS(inode))) {
1996 				f2fs_up_write(&fi->i_sem);
1997 				return -EINVAL;
1998 			}
1999 			err = set_compress_context(inode);
2000 			f2fs_up_write(&fi->i_sem);
2001 
2002 			if (err)
2003 				return err;
2004 		}
2005 	}
2006 
2007 	fi->i_flags = iflags | (fi->i_flags & ~mask);
2008 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2009 					(fi->i_flags & F2FS_NOCOMP_FL));
2010 
2011 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
2012 		set_inode_flag(inode, FI_PROJ_INHERIT);
2013 	else
2014 		clear_inode_flag(inode, FI_PROJ_INHERIT);
2015 
2016 	inode_set_ctime_current(inode);
2017 	f2fs_set_inode_flags(inode);
2018 	f2fs_mark_inode_dirty_sync(inode, true);
2019 	return 0;
2020 }
2021 
2022 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2023 
2024 /*
2025  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2026  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2027  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
2028  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2029  *
2030  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2031  * FS_IOC_FSSETXATTR is done by the VFS.
2032  */
2033 
2034 static const struct {
2035 	u32 iflag;
2036 	u32 fsflag;
2037 } f2fs_fsflags_map[] = {
2038 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
2039 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
2040 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
2041 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
2042 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
2043 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
2044 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
2045 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
2046 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
2047 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
2048 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
2049 };
2050 
2051 #define F2FS_GETTABLE_FS_FL (		\
2052 		FS_COMPR_FL |		\
2053 		FS_SYNC_FL |		\
2054 		FS_IMMUTABLE_FL |	\
2055 		FS_APPEND_FL |		\
2056 		FS_NODUMP_FL |		\
2057 		FS_NOATIME_FL |		\
2058 		FS_NOCOMP_FL |		\
2059 		FS_INDEX_FL |		\
2060 		FS_DIRSYNC_FL |		\
2061 		FS_PROJINHERIT_FL |	\
2062 		FS_ENCRYPT_FL |		\
2063 		FS_INLINE_DATA_FL |	\
2064 		FS_NOCOW_FL |		\
2065 		FS_VERITY_FL |		\
2066 		FS_CASEFOLD_FL)
2067 
2068 #define F2FS_SETTABLE_FS_FL (		\
2069 		FS_COMPR_FL |		\
2070 		FS_SYNC_FL |		\
2071 		FS_IMMUTABLE_FL |	\
2072 		FS_APPEND_FL |		\
2073 		FS_NODUMP_FL |		\
2074 		FS_NOATIME_FL |		\
2075 		FS_NOCOMP_FL |		\
2076 		FS_DIRSYNC_FL |		\
2077 		FS_PROJINHERIT_FL |	\
2078 		FS_CASEFOLD_FL)
2079 
2080 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2081 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2082 {
2083 	u32 fsflags = 0;
2084 	int i;
2085 
2086 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2087 		if (iflags & f2fs_fsflags_map[i].iflag)
2088 			fsflags |= f2fs_fsflags_map[i].fsflag;
2089 
2090 	return fsflags;
2091 }
2092 
2093 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2094 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2095 {
2096 	u32 iflags = 0;
2097 	int i;
2098 
2099 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2100 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2101 			iflags |= f2fs_fsflags_map[i].iflag;
2102 
2103 	return iflags;
2104 }
2105 
2106 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2107 {
2108 	struct inode *inode = file_inode(filp);
2109 
2110 	return put_user(inode->i_generation, (int __user *)arg);
2111 }
2112 
2113 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2114 {
2115 	struct inode *inode = file_inode(filp);
2116 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2117 	struct f2fs_inode_info *fi = F2FS_I(inode);
2118 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2119 	struct inode *pinode;
2120 	loff_t isize;
2121 	int ret;
2122 
2123 	if (!inode_owner_or_capable(idmap, inode))
2124 		return -EACCES;
2125 
2126 	if (!S_ISREG(inode->i_mode))
2127 		return -EINVAL;
2128 
2129 	if (filp->f_flags & O_DIRECT)
2130 		return -EINVAL;
2131 
2132 	ret = mnt_want_write_file(filp);
2133 	if (ret)
2134 		return ret;
2135 
2136 	inode_lock(inode);
2137 
2138 	if (!f2fs_disable_compressed_file(inode) ||
2139 			f2fs_is_pinned_file(inode)) {
2140 		ret = -EINVAL;
2141 		goto out;
2142 	}
2143 
2144 	if (f2fs_is_atomic_file(inode))
2145 		goto out;
2146 
2147 	ret = f2fs_convert_inline_inode(inode);
2148 	if (ret)
2149 		goto out;
2150 
2151 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2152 
2153 	/*
2154 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2155 	 * f2fs_is_atomic_file.
2156 	 */
2157 	if (get_dirty_pages(inode))
2158 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2159 			  inode->i_ino, get_dirty_pages(inode));
2160 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2161 	if (ret) {
2162 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2163 		goto out;
2164 	}
2165 
2166 	/* Check if the inode already has a COW inode */
2167 	if (fi->cow_inode == NULL) {
2168 		/* Create a COW inode for atomic write */
2169 		pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2170 		if (IS_ERR(pinode)) {
2171 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2172 			ret = PTR_ERR(pinode);
2173 			goto out;
2174 		}
2175 
2176 		ret = f2fs_get_tmpfile(idmap, pinode, &fi->cow_inode);
2177 		iput(pinode);
2178 		if (ret) {
2179 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2180 			goto out;
2181 		}
2182 
2183 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2184 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2185 
2186 		/* Set the COW inode's atomic_inode to the atomic inode */
2187 		F2FS_I(fi->cow_inode)->atomic_inode = inode;
2188 	} else {
2189 		/* Reuse the already created COW inode */
2190 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2191 		if (ret) {
2192 			f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2193 			goto out;
2194 		}
2195 	}
2196 
2197 	f2fs_write_inode(inode, NULL);
2198 
2199 	stat_inc_atomic_inode(inode);
2200 
2201 	set_inode_flag(inode, FI_ATOMIC_FILE);
2202 
2203 	isize = i_size_read(inode);
2204 	fi->original_i_size = isize;
2205 	if (truncate) {
2206 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2207 		truncate_inode_pages_final(inode->i_mapping);
2208 		f2fs_i_size_write(inode, 0);
2209 		isize = 0;
2210 	}
2211 	f2fs_i_size_write(fi->cow_inode, isize);
2212 
2213 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2214 
2215 	f2fs_update_time(sbi, REQ_TIME);
2216 	fi->atomic_write_task = current;
2217 	stat_update_max_atomic_write(inode);
2218 	fi->atomic_write_cnt = 0;
2219 out:
2220 	inode_unlock(inode);
2221 	mnt_drop_write_file(filp);
2222 	return ret;
2223 }
2224 
2225 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2226 {
2227 	struct inode *inode = file_inode(filp);
2228 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2229 	int ret;
2230 
2231 	if (!inode_owner_or_capable(idmap, inode))
2232 		return -EACCES;
2233 
2234 	ret = mnt_want_write_file(filp);
2235 	if (ret)
2236 		return ret;
2237 
2238 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2239 
2240 	inode_lock(inode);
2241 
2242 	if (f2fs_is_atomic_file(inode)) {
2243 		ret = f2fs_commit_atomic_write(inode);
2244 		if (!ret)
2245 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2246 
2247 		f2fs_abort_atomic_write(inode, ret);
2248 	} else {
2249 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2250 	}
2251 
2252 	inode_unlock(inode);
2253 	mnt_drop_write_file(filp);
2254 	return ret;
2255 }
2256 
2257 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2258 {
2259 	struct inode *inode = file_inode(filp);
2260 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2261 	int ret;
2262 
2263 	if (!inode_owner_or_capable(idmap, inode))
2264 		return -EACCES;
2265 
2266 	ret = mnt_want_write_file(filp);
2267 	if (ret)
2268 		return ret;
2269 
2270 	inode_lock(inode);
2271 
2272 	f2fs_abort_atomic_write(inode, true);
2273 
2274 	inode_unlock(inode);
2275 
2276 	mnt_drop_write_file(filp);
2277 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2278 	return ret;
2279 }
2280 
2281 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2282 							bool readonly)
2283 {
2284 	struct super_block *sb = sbi->sb;
2285 	int ret = 0;
2286 
2287 	switch (flag) {
2288 	case F2FS_GOING_DOWN_FULLSYNC:
2289 		ret = bdev_freeze(sb->s_bdev);
2290 		if (ret)
2291 			goto out;
2292 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2293 		bdev_thaw(sb->s_bdev);
2294 		break;
2295 	case F2FS_GOING_DOWN_METASYNC:
2296 		/* do checkpoint only */
2297 		ret = f2fs_sync_fs(sb, 1);
2298 		if (ret) {
2299 			if (ret == -EIO)
2300 				ret = 0;
2301 			goto out;
2302 		}
2303 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2304 		break;
2305 	case F2FS_GOING_DOWN_NOSYNC:
2306 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2307 		break;
2308 	case F2FS_GOING_DOWN_METAFLUSH:
2309 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2310 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2311 		break;
2312 	case F2FS_GOING_DOWN_NEED_FSCK:
2313 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2314 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2315 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2316 		/* do checkpoint only */
2317 		ret = f2fs_sync_fs(sb, 1);
2318 		if (ret == -EIO)
2319 			ret = 0;
2320 		goto out;
2321 	default:
2322 		ret = -EINVAL;
2323 		goto out;
2324 	}
2325 
2326 	if (readonly)
2327 		goto out;
2328 
2329 	f2fs_stop_gc_thread(sbi);
2330 	f2fs_stop_discard_thread(sbi);
2331 
2332 	f2fs_drop_discard_cmd(sbi);
2333 	clear_opt(sbi, DISCARD);
2334 
2335 	f2fs_update_time(sbi, REQ_TIME);
2336 out:
2337 
2338 	trace_f2fs_shutdown(sbi, flag, ret);
2339 
2340 	return ret;
2341 }
2342 
2343 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2344 {
2345 	struct inode *inode = file_inode(filp);
2346 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2347 	__u32 in;
2348 	int ret;
2349 	bool need_drop = false, readonly = false;
2350 
2351 	if (!capable(CAP_SYS_ADMIN))
2352 		return -EPERM;
2353 
2354 	if (get_user(in, (__u32 __user *)arg))
2355 		return -EFAULT;
2356 
2357 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2358 		ret = mnt_want_write_file(filp);
2359 		if (ret) {
2360 			if (ret != -EROFS)
2361 				return ret;
2362 
2363 			/* fallback to nosync shutdown for readonly fs */
2364 			in = F2FS_GOING_DOWN_NOSYNC;
2365 			readonly = true;
2366 		} else {
2367 			need_drop = true;
2368 		}
2369 	}
2370 
2371 	ret = f2fs_do_shutdown(sbi, in, readonly);
2372 
2373 	if (need_drop)
2374 		mnt_drop_write_file(filp);
2375 
2376 	return ret;
2377 }
2378 
2379 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2380 {
2381 	struct inode *inode = file_inode(filp);
2382 	struct super_block *sb = inode->i_sb;
2383 	struct fstrim_range range;
2384 	int ret;
2385 
2386 	if (!capable(CAP_SYS_ADMIN))
2387 		return -EPERM;
2388 
2389 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2390 		return -EOPNOTSUPP;
2391 
2392 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2393 				sizeof(range)))
2394 		return -EFAULT;
2395 
2396 	ret = mnt_want_write_file(filp);
2397 	if (ret)
2398 		return ret;
2399 
2400 	range.minlen = max((unsigned int)range.minlen,
2401 			   bdev_discard_granularity(sb->s_bdev));
2402 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2403 	mnt_drop_write_file(filp);
2404 	if (ret < 0)
2405 		return ret;
2406 
2407 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2408 				sizeof(range)))
2409 		return -EFAULT;
2410 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2411 	return 0;
2412 }
2413 
2414 static bool uuid_is_nonzero(__u8 u[16])
2415 {
2416 	int i;
2417 
2418 	for (i = 0; i < 16; i++)
2419 		if (u[i])
2420 			return true;
2421 	return false;
2422 }
2423 
2424 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2425 {
2426 	struct inode *inode = file_inode(filp);
2427 	int ret;
2428 
2429 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2430 		return -EOPNOTSUPP;
2431 
2432 	ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2433 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2434 	return ret;
2435 }
2436 
2437 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2438 {
2439 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2440 		return -EOPNOTSUPP;
2441 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2442 }
2443 
2444 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2445 {
2446 	struct inode *inode = file_inode(filp);
2447 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2448 	u8 encrypt_pw_salt[16];
2449 	int err;
2450 
2451 	if (!f2fs_sb_has_encrypt(sbi))
2452 		return -EOPNOTSUPP;
2453 
2454 	err = mnt_want_write_file(filp);
2455 	if (err)
2456 		return err;
2457 
2458 	f2fs_down_write(&sbi->sb_lock);
2459 
2460 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2461 		goto got_it;
2462 
2463 	/* update superblock with uuid */
2464 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2465 
2466 	err = f2fs_commit_super(sbi, false);
2467 	if (err) {
2468 		/* undo new data */
2469 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2470 		goto out_err;
2471 	}
2472 got_it:
2473 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2474 out_err:
2475 	f2fs_up_write(&sbi->sb_lock);
2476 	mnt_drop_write_file(filp);
2477 
2478 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2479 		err = -EFAULT;
2480 
2481 	return err;
2482 }
2483 
2484 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2485 					     unsigned long arg)
2486 {
2487 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2488 		return -EOPNOTSUPP;
2489 
2490 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2491 }
2492 
2493 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2494 {
2495 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2496 		return -EOPNOTSUPP;
2497 
2498 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2499 }
2500 
2501 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2502 {
2503 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2504 		return -EOPNOTSUPP;
2505 
2506 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2507 }
2508 
2509 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2510 						    unsigned long arg)
2511 {
2512 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2513 		return -EOPNOTSUPP;
2514 
2515 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2516 }
2517 
2518 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2519 					      unsigned long arg)
2520 {
2521 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2522 		return -EOPNOTSUPP;
2523 
2524 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2525 }
2526 
2527 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2528 {
2529 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2530 		return -EOPNOTSUPP;
2531 
2532 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2533 }
2534 
2535 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2536 {
2537 	struct inode *inode = file_inode(filp);
2538 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2539 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2540 			.no_bg_gc = false,
2541 			.should_migrate_blocks = false,
2542 			.nr_free_secs = 0 };
2543 	__u32 sync;
2544 	int ret;
2545 
2546 	if (!capable(CAP_SYS_ADMIN))
2547 		return -EPERM;
2548 
2549 	if (get_user(sync, (__u32 __user *)arg))
2550 		return -EFAULT;
2551 
2552 	if (f2fs_readonly(sbi->sb))
2553 		return -EROFS;
2554 
2555 	ret = mnt_want_write_file(filp);
2556 	if (ret)
2557 		return ret;
2558 
2559 	if (!sync) {
2560 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2561 			ret = -EBUSY;
2562 			goto out;
2563 		}
2564 	} else {
2565 		f2fs_down_write(&sbi->gc_lock);
2566 	}
2567 
2568 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2569 	gc_control.err_gc_skipped = sync;
2570 	stat_inc_gc_call_count(sbi, FOREGROUND);
2571 	ret = f2fs_gc(sbi, &gc_control);
2572 out:
2573 	mnt_drop_write_file(filp);
2574 	return ret;
2575 }
2576 
2577 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2578 {
2579 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2580 	struct f2fs_gc_control gc_control = {
2581 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2582 			.no_bg_gc = false,
2583 			.should_migrate_blocks = false,
2584 			.err_gc_skipped = range->sync,
2585 			.nr_free_secs = 0 };
2586 	u64 end;
2587 	int ret;
2588 
2589 	if (!capable(CAP_SYS_ADMIN))
2590 		return -EPERM;
2591 	if (f2fs_readonly(sbi->sb))
2592 		return -EROFS;
2593 
2594 	end = range->start + range->len;
2595 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2596 					end >= MAX_BLKADDR(sbi))
2597 		return -EINVAL;
2598 
2599 	ret = mnt_want_write_file(filp);
2600 	if (ret)
2601 		return ret;
2602 
2603 do_more:
2604 	if (!range->sync) {
2605 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2606 			ret = -EBUSY;
2607 			goto out;
2608 		}
2609 	} else {
2610 		f2fs_down_write(&sbi->gc_lock);
2611 	}
2612 
2613 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2614 	stat_inc_gc_call_count(sbi, FOREGROUND);
2615 	ret = f2fs_gc(sbi, &gc_control);
2616 	if (ret) {
2617 		if (ret == -EBUSY)
2618 			ret = -EAGAIN;
2619 		goto out;
2620 	}
2621 	range->start += CAP_BLKS_PER_SEC(sbi);
2622 	if (range->start <= end)
2623 		goto do_more;
2624 out:
2625 	mnt_drop_write_file(filp);
2626 	return ret;
2627 }
2628 
2629 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2630 {
2631 	struct f2fs_gc_range range;
2632 
2633 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2634 							sizeof(range)))
2635 		return -EFAULT;
2636 	return __f2fs_ioc_gc_range(filp, &range);
2637 }
2638 
2639 static int f2fs_ioc_write_checkpoint(struct file *filp)
2640 {
2641 	struct inode *inode = file_inode(filp);
2642 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2643 	int ret;
2644 
2645 	if (!capable(CAP_SYS_ADMIN))
2646 		return -EPERM;
2647 
2648 	if (f2fs_readonly(sbi->sb))
2649 		return -EROFS;
2650 
2651 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2652 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2653 		return -EINVAL;
2654 	}
2655 
2656 	ret = mnt_want_write_file(filp);
2657 	if (ret)
2658 		return ret;
2659 
2660 	ret = f2fs_sync_fs(sbi->sb, 1);
2661 
2662 	mnt_drop_write_file(filp);
2663 	return ret;
2664 }
2665 
2666 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2667 					struct file *filp,
2668 					struct f2fs_defragment *range)
2669 {
2670 	struct inode *inode = file_inode(filp);
2671 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2672 					.m_seg_type = NO_CHECK_TYPE,
2673 					.m_may_create = false };
2674 	struct extent_info ei = {};
2675 	pgoff_t pg_start, pg_end, next_pgofs;
2676 	unsigned int total = 0, sec_num;
2677 	block_t blk_end = 0;
2678 	bool fragmented = false;
2679 	int err;
2680 
2681 	f2fs_balance_fs(sbi, true);
2682 
2683 	inode_lock(inode);
2684 	pg_start = range->start >> PAGE_SHIFT;
2685 	pg_end = min_t(pgoff_t,
2686 				(range->start + range->len) >> PAGE_SHIFT,
2687 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2688 
2689 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
2690 		err = -EINVAL;
2691 		goto unlock_out;
2692 	}
2693 
2694 	/* if in-place-update policy is enabled, don't waste time here */
2695 	set_inode_flag(inode, FI_OPU_WRITE);
2696 	if (f2fs_should_update_inplace(inode, NULL)) {
2697 		err = -EINVAL;
2698 		goto out;
2699 	}
2700 
2701 	/* writeback all dirty pages in the range */
2702 	err = filemap_write_and_wait_range(inode->i_mapping,
2703 						pg_start << PAGE_SHIFT,
2704 						(pg_end << PAGE_SHIFT) - 1);
2705 	if (err)
2706 		goto out;
2707 
2708 	/*
2709 	 * lookup mapping info in extent cache, skip defragmenting if physical
2710 	 * block addresses are continuous.
2711 	 */
2712 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2713 		if (ei.fofs + ei.len >= pg_end)
2714 			goto out;
2715 	}
2716 
2717 	map.m_lblk = pg_start;
2718 	map.m_next_pgofs = &next_pgofs;
2719 
2720 	/*
2721 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2722 	 * physical block addresses are continuous even if there are hole(s)
2723 	 * in logical blocks.
2724 	 */
2725 	while (map.m_lblk < pg_end) {
2726 		map.m_len = pg_end - map.m_lblk;
2727 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2728 		if (err)
2729 			goto out;
2730 
2731 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2732 			map.m_lblk = next_pgofs;
2733 			continue;
2734 		}
2735 
2736 		if (blk_end && blk_end != map.m_pblk)
2737 			fragmented = true;
2738 
2739 		/* record total count of block that we're going to move */
2740 		total += map.m_len;
2741 
2742 		blk_end = map.m_pblk + map.m_len;
2743 
2744 		map.m_lblk += map.m_len;
2745 	}
2746 
2747 	if (!fragmented) {
2748 		total = 0;
2749 		goto out;
2750 	}
2751 
2752 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2753 
2754 	/*
2755 	 * make sure there are enough free section for LFS allocation, this can
2756 	 * avoid defragment running in SSR mode when free section are allocated
2757 	 * intensively
2758 	 */
2759 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2760 		err = -EAGAIN;
2761 		goto out;
2762 	}
2763 
2764 	map.m_lblk = pg_start;
2765 	map.m_len = pg_end - pg_start;
2766 	total = 0;
2767 
2768 	while (map.m_lblk < pg_end) {
2769 		pgoff_t idx;
2770 		int cnt = 0;
2771 
2772 do_map:
2773 		map.m_len = pg_end - map.m_lblk;
2774 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2775 		if (err)
2776 			goto clear_out;
2777 
2778 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2779 			map.m_lblk = next_pgofs;
2780 			goto check;
2781 		}
2782 
2783 		set_inode_flag(inode, FI_SKIP_WRITES);
2784 
2785 		idx = map.m_lblk;
2786 		while (idx < map.m_lblk + map.m_len &&
2787 						cnt < BLKS_PER_SEG(sbi)) {
2788 			struct page *page;
2789 
2790 			page = f2fs_get_lock_data_page(inode, idx, true);
2791 			if (IS_ERR(page)) {
2792 				err = PTR_ERR(page);
2793 				goto clear_out;
2794 			}
2795 
2796 			set_page_dirty(page);
2797 			set_page_private_gcing(page);
2798 			f2fs_put_page(page, 1);
2799 
2800 			idx++;
2801 			cnt++;
2802 			total++;
2803 		}
2804 
2805 		map.m_lblk = idx;
2806 check:
2807 		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2808 			goto do_map;
2809 
2810 		clear_inode_flag(inode, FI_SKIP_WRITES);
2811 
2812 		err = filemap_fdatawrite(inode->i_mapping);
2813 		if (err)
2814 			goto out;
2815 	}
2816 clear_out:
2817 	clear_inode_flag(inode, FI_SKIP_WRITES);
2818 out:
2819 	clear_inode_flag(inode, FI_OPU_WRITE);
2820 unlock_out:
2821 	inode_unlock(inode);
2822 	if (!err)
2823 		range->len = (u64)total << PAGE_SHIFT;
2824 	return err;
2825 }
2826 
2827 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2828 {
2829 	struct inode *inode = file_inode(filp);
2830 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2831 	struct f2fs_defragment range;
2832 	int err;
2833 
2834 	if (!capable(CAP_SYS_ADMIN))
2835 		return -EPERM;
2836 
2837 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2838 		return -EINVAL;
2839 
2840 	if (f2fs_readonly(sbi->sb))
2841 		return -EROFS;
2842 
2843 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2844 							sizeof(range)))
2845 		return -EFAULT;
2846 
2847 	/* verify alignment of offset & size */
2848 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2849 		return -EINVAL;
2850 
2851 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2852 					max_file_blocks(inode)))
2853 		return -EINVAL;
2854 
2855 	err = mnt_want_write_file(filp);
2856 	if (err)
2857 		return err;
2858 
2859 	err = f2fs_defragment_range(sbi, filp, &range);
2860 	mnt_drop_write_file(filp);
2861 
2862 	if (range.len)
2863 		f2fs_update_time(sbi, REQ_TIME);
2864 	if (err < 0)
2865 		return err;
2866 
2867 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2868 							sizeof(range)))
2869 		return -EFAULT;
2870 
2871 	return 0;
2872 }
2873 
2874 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2875 			struct file *file_out, loff_t pos_out, size_t len)
2876 {
2877 	struct inode *src = file_inode(file_in);
2878 	struct inode *dst = file_inode(file_out);
2879 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2880 	size_t olen = len, dst_max_i_size = 0;
2881 	size_t dst_osize;
2882 	int ret;
2883 
2884 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2885 				src->i_sb != dst->i_sb)
2886 		return -EXDEV;
2887 
2888 	if (unlikely(f2fs_readonly(src->i_sb)))
2889 		return -EROFS;
2890 
2891 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2892 		return -EINVAL;
2893 
2894 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2895 		return -EOPNOTSUPP;
2896 
2897 	if (pos_out < 0 || pos_in < 0)
2898 		return -EINVAL;
2899 
2900 	if (src == dst) {
2901 		if (pos_in == pos_out)
2902 			return 0;
2903 		if (pos_out > pos_in && pos_out < pos_in + len)
2904 			return -EINVAL;
2905 	}
2906 
2907 	inode_lock(src);
2908 	if (src != dst) {
2909 		ret = -EBUSY;
2910 		if (!inode_trylock(dst))
2911 			goto out;
2912 	}
2913 
2914 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2915 		f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2916 		ret = -EOPNOTSUPP;
2917 		goto out_unlock;
2918 	}
2919 
2920 	ret = -EINVAL;
2921 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2922 		goto out_unlock;
2923 	if (len == 0)
2924 		olen = len = src->i_size - pos_in;
2925 	if (pos_in + len == src->i_size)
2926 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2927 	if (len == 0) {
2928 		ret = 0;
2929 		goto out_unlock;
2930 	}
2931 
2932 	dst_osize = dst->i_size;
2933 	if (pos_out + olen > dst->i_size)
2934 		dst_max_i_size = pos_out + olen;
2935 
2936 	/* verify the end result is block aligned */
2937 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2938 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2939 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2940 		goto out_unlock;
2941 
2942 	ret = f2fs_convert_inline_inode(src);
2943 	if (ret)
2944 		goto out_unlock;
2945 
2946 	ret = f2fs_convert_inline_inode(dst);
2947 	if (ret)
2948 		goto out_unlock;
2949 
2950 	/* write out all dirty pages from offset */
2951 	ret = filemap_write_and_wait_range(src->i_mapping,
2952 					pos_in, pos_in + len);
2953 	if (ret)
2954 		goto out_unlock;
2955 
2956 	ret = filemap_write_and_wait_range(dst->i_mapping,
2957 					pos_out, pos_out + len);
2958 	if (ret)
2959 		goto out_unlock;
2960 
2961 	f2fs_balance_fs(sbi, true);
2962 
2963 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2964 	if (src != dst) {
2965 		ret = -EBUSY;
2966 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2967 			goto out_src;
2968 	}
2969 
2970 	f2fs_lock_op(sbi);
2971 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2972 				pos_out >> F2FS_BLKSIZE_BITS,
2973 				len >> F2FS_BLKSIZE_BITS, false);
2974 
2975 	if (!ret) {
2976 		if (dst_max_i_size)
2977 			f2fs_i_size_write(dst, dst_max_i_size);
2978 		else if (dst_osize != dst->i_size)
2979 			f2fs_i_size_write(dst, dst_osize);
2980 	}
2981 	f2fs_unlock_op(sbi);
2982 
2983 	if (src != dst)
2984 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2985 out_src:
2986 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2987 	if (ret)
2988 		goto out_unlock;
2989 
2990 	inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
2991 	f2fs_mark_inode_dirty_sync(src, false);
2992 	if (src != dst) {
2993 		inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
2994 		f2fs_mark_inode_dirty_sync(dst, false);
2995 	}
2996 	f2fs_update_time(sbi, REQ_TIME);
2997 
2998 out_unlock:
2999 	if (src != dst)
3000 		inode_unlock(dst);
3001 out:
3002 	inode_unlock(src);
3003 	return ret;
3004 }
3005 
3006 static int __f2fs_ioc_move_range(struct file *filp,
3007 				struct f2fs_move_range *range)
3008 {
3009 	struct fd dst;
3010 	int err;
3011 
3012 	if (!(filp->f_mode & FMODE_READ) ||
3013 			!(filp->f_mode & FMODE_WRITE))
3014 		return -EBADF;
3015 
3016 	dst = fdget(range->dst_fd);
3017 	if (!dst.file)
3018 		return -EBADF;
3019 
3020 	if (!(dst.file->f_mode & FMODE_WRITE)) {
3021 		err = -EBADF;
3022 		goto err_out;
3023 	}
3024 
3025 	err = mnt_want_write_file(filp);
3026 	if (err)
3027 		goto err_out;
3028 
3029 	err = f2fs_move_file_range(filp, range->pos_in, dst.file,
3030 					range->pos_out, range->len);
3031 
3032 	mnt_drop_write_file(filp);
3033 err_out:
3034 	fdput(dst);
3035 	return err;
3036 }
3037 
3038 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3039 {
3040 	struct f2fs_move_range range;
3041 
3042 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3043 							sizeof(range)))
3044 		return -EFAULT;
3045 	return __f2fs_ioc_move_range(filp, &range);
3046 }
3047 
3048 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3049 {
3050 	struct inode *inode = file_inode(filp);
3051 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3052 	struct sit_info *sm = SIT_I(sbi);
3053 	unsigned int start_segno = 0, end_segno = 0;
3054 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
3055 	struct f2fs_flush_device range;
3056 	struct f2fs_gc_control gc_control = {
3057 			.init_gc_type = FG_GC,
3058 			.should_migrate_blocks = true,
3059 			.err_gc_skipped = true,
3060 			.nr_free_secs = 0 };
3061 	int ret;
3062 
3063 	if (!capable(CAP_SYS_ADMIN))
3064 		return -EPERM;
3065 
3066 	if (f2fs_readonly(sbi->sb))
3067 		return -EROFS;
3068 
3069 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3070 		return -EINVAL;
3071 
3072 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3073 							sizeof(range)))
3074 		return -EFAULT;
3075 
3076 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3077 			__is_large_section(sbi)) {
3078 		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3079 			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3080 		return -EINVAL;
3081 	}
3082 
3083 	ret = mnt_want_write_file(filp);
3084 	if (ret)
3085 		return ret;
3086 
3087 	if (range.dev_num != 0)
3088 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3089 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3090 
3091 	start_segno = sm->last_victim[FLUSH_DEVICE];
3092 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3093 		start_segno = dev_start_segno;
3094 	end_segno = min(start_segno + range.segments, dev_end_segno);
3095 
3096 	while (start_segno < end_segno) {
3097 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3098 			ret = -EBUSY;
3099 			goto out;
3100 		}
3101 		sm->last_victim[GC_CB] = end_segno + 1;
3102 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3103 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3104 
3105 		gc_control.victim_segno = start_segno;
3106 		stat_inc_gc_call_count(sbi, FOREGROUND);
3107 		ret = f2fs_gc(sbi, &gc_control);
3108 		if (ret == -EAGAIN)
3109 			ret = 0;
3110 		else if (ret < 0)
3111 			break;
3112 		start_segno++;
3113 	}
3114 out:
3115 	mnt_drop_write_file(filp);
3116 	return ret;
3117 }
3118 
3119 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3120 {
3121 	struct inode *inode = file_inode(filp);
3122 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3123 
3124 	/* Must validate to set it with SQLite behavior in Android. */
3125 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3126 
3127 	return put_user(sb_feature, (u32 __user *)arg);
3128 }
3129 
3130 #ifdef CONFIG_QUOTA
3131 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3132 {
3133 	struct dquot *transfer_to[MAXQUOTAS] = {};
3134 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3135 	struct super_block *sb = sbi->sb;
3136 	int err;
3137 
3138 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3139 	if (IS_ERR(transfer_to[PRJQUOTA]))
3140 		return PTR_ERR(transfer_to[PRJQUOTA]);
3141 
3142 	err = __dquot_transfer(inode, transfer_to);
3143 	if (err)
3144 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3145 	dqput(transfer_to[PRJQUOTA]);
3146 	return err;
3147 }
3148 
3149 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3150 {
3151 	struct f2fs_inode_info *fi = F2FS_I(inode);
3152 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3153 	struct f2fs_inode *ri = NULL;
3154 	kprojid_t kprojid;
3155 	int err;
3156 
3157 	if (!f2fs_sb_has_project_quota(sbi)) {
3158 		if (projid != F2FS_DEF_PROJID)
3159 			return -EOPNOTSUPP;
3160 		else
3161 			return 0;
3162 	}
3163 
3164 	if (!f2fs_has_extra_attr(inode))
3165 		return -EOPNOTSUPP;
3166 
3167 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3168 
3169 	if (projid_eq(kprojid, fi->i_projid))
3170 		return 0;
3171 
3172 	err = -EPERM;
3173 	/* Is it quota file? Do not allow user to mess with it */
3174 	if (IS_NOQUOTA(inode))
3175 		return err;
3176 
3177 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3178 		return -EOVERFLOW;
3179 
3180 	err = f2fs_dquot_initialize(inode);
3181 	if (err)
3182 		return err;
3183 
3184 	f2fs_lock_op(sbi);
3185 	err = f2fs_transfer_project_quota(inode, kprojid);
3186 	if (err)
3187 		goto out_unlock;
3188 
3189 	fi->i_projid = kprojid;
3190 	inode_set_ctime_current(inode);
3191 	f2fs_mark_inode_dirty_sync(inode, true);
3192 out_unlock:
3193 	f2fs_unlock_op(sbi);
3194 	return err;
3195 }
3196 #else
3197 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3198 {
3199 	return 0;
3200 }
3201 
3202 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3203 {
3204 	if (projid != F2FS_DEF_PROJID)
3205 		return -EOPNOTSUPP;
3206 	return 0;
3207 }
3208 #endif
3209 
3210 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3211 {
3212 	struct inode *inode = d_inode(dentry);
3213 	struct f2fs_inode_info *fi = F2FS_I(inode);
3214 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3215 
3216 	if (IS_ENCRYPTED(inode))
3217 		fsflags |= FS_ENCRYPT_FL;
3218 	if (IS_VERITY(inode))
3219 		fsflags |= FS_VERITY_FL;
3220 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3221 		fsflags |= FS_INLINE_DATA_FL;
3222 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3223 		fsflags |= FS_NOCOW_FL;
3224 
3225 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3226 
3227 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3228 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3229 
3230 	return 0;
3231 }
3232 
3233 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3234 		      struct dentry *dentry, struct fileattr *fa)
3235 {
3236 	struct inode *inode = d_inode(dentry);
3237 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3238 	u32 iflags;
3239 	int err;
3240 
3241 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3242 		return -EIO;
3243 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3244 		return -ENOSPC;
3245 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3246 		return -EOPNOTSUPP;
3247 	fsflags &= F2FS_SETTABLE_FS_FL;
3248 	if (!fa->flags_valid)
3249 		mask &= FS_COMMON_FL;
3250 
3251 	iflags = f2fs_fsflags_to_iflags(fsflags);
3252 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3253 		return -EOPNOTSUPP;
3254 
3255 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3256 	if (!err)
3257 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3258 
3259 	return err;
3260 }
3261 
3262 int f2fs_pin_file_control(struct inode *inode, bool inc)
3263 {
3264 	struct f2fs_inode_info *fi = F2FS_I(inode);
3265 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3266 
3267 	if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3268 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3269 			  __func__, inode->i_ino, fi->i_gc_failures);
3270 		clear_inode_flag(inode, FI_PIN_FILE);
3271 		return -EAGAIN;
3272 	}
3273 
3274 	/* Use i_gc_failures for normal file as a risk signal. */
3275 	if (inc)
3276 		f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3277 
3278 	return 0;
3279 }
3280 
3281 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3282 {
3283 	struct inode *inode = file_inode(filp);
3284 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3285 	__u32 pin;
3286 	int ret = 0;
3287 
3288 	if (get_user(pin, (__u32 __user *)arg))
3289 		return -EFAULT;
3290 
3291 	if (!S_ISREG(inode->i_mode))
3292 		return -EINVAL;
3293 
3294 	if (f2fs_readonly(sbi->sb))
3295 		return -EROFS;
3296 
3297 	ret = mnt_want_write_file(filp);
3298 	if (ret)
3299 		return ret;
3300 
3301 	inode_lock(inode);
3302 
3303 	if (!pin) {
3304 		clear_inode_flag(inode, FI_PIN_FILE);
3305 		f2fs_i_gc_failures_write(inode, 0);
3306 		goto done;
3307 	} else if (f2fs_is_pinned_file(inode)) {
3308 		goto done;
3309 	}
3310 
3311 	if (F2FS_HAS_BLOCKS(inode)) {
3312 		ret = -EFBIG;
3313 		goto out;
3314 	}
3315 
3316 	/* Let's allow file pinning on zoned device. */
3317 	if (!f2fs_sb_has_blkzoned(sbi) &&
3318 	    f2fs_should_update_outplace(inode, NULL)) {
3319 		ret = -EINVAL;
3320 		goto out;
3321 	}
3322 
3323 	if (f2fs_pin_file_control(inode, false)) {
3324 		ret = -EAGAIN;
3325 		goto out;
3326 	}
3327 
3328 	ret = f2fs_convert_inline_inode(inode);
3329 	if (ret)
3330 		goto out;
3331 
3332 	if (!f2fs_disable_compressed_file(inode)) {
3333 		ret = -EOPNOTSUPP;
3334 		goto out;
3335 	}
3336 
3337 	set_inode_flag(inode, FI_PIN_FILE);
3338 	ret = F2FS_I(inode)->i_gc_failures;
3339 done:
3340 	f2fs_update_time(sbi, REQ_TIME);
3341 out:
3342 	inode_unlock(inode);
3343 	mnt_drop_write_file(filp);
3344 	return ret;
3345 }
3346 
3347 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3348 {
3349 	struct inode *inode = file_inode(filp);
3350 	__u32 pin = 0;
3351 
3352 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3353 		pin = F2FS_I(inode)->i_gc_failures;
3354 	return put_user(pin, (u32 __user *)arg);
3355 }
3356 
3357 int f2fs_precache_extents(struct inode *inode)
3358 {
3359 	struct f2fs_inode_info *fi = F2FS_I(inode);
3360 	struct f2fs_map_blocks map;
3361 	pgoff_t m_next_extent;
3362 	loff_t end;
3363 	int err;
3364 
3365 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3366 		return -EOPNOTSUPP;
3367 
3368 	map.m_lblk = 0;
3369 	map.m_pblk = 0;
3370 	map.m_next_pgofs = NULL;
3371 	map.m_next_extent = &m_next_extent;
3372 	map.m_seg_type = NO_CHECK_TYPE;
3373 	map.m_may_create = false;
3374 	end = F2FS_BLK_ALIGN(i_size_read(inode));
3375 
3376 	while (map.m_lblk < end) {
3377 		map.m_len = end - map.m_lblk;
3378 
3379 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3380 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3381 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3382 		if (err || !map.m_len)
3383 			return err;
3384 
3385 		map.m_lblk = m_next_extent;
3386 	}
3387 
3388 	return 0;
3389 }
3390 
3391 static int f2fs_ioc_precache_extents(struct file *filp)
3392 {
3393 	return f2fs_precache_extents(file_inode(filp));
3394 }
3395 
3396 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3397 {
3398 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3399 	__u64 block_count;
3400 
3401 	if (!capable(CAP_SYS_ADMIN))
3402 		return -EPERM;
3403 
3404 	if (f2fs_readonly(sbi->sb))
3405 		return -EROFS;
3406 
3407 	if (copy_from_user(&block_count, (void __user *)arg,
3408 			   sizeof(block_count)))
3409 		return -EFAULT;
3410 
3411 	return f2fs_resize_fs(filp, block_count);
3412 }
3413 
3414 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3415 {
3416 	struct inode *inode = file_inode(filp);
3417 
3418 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3419 
3420 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3421 		f2fs_warn(F2FS_I_SB(inode),
3422 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3423 			  inode->i_ino);
3424 		return -EOPNOTSUPP;
3425 	}
3426 
3427 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3428 }
3429 
3430 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3431 {
3432 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3433 		return -EOPNOTSUPP;
3434 
3435 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3436 }
3437 
3438 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3439 {
3440 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3441 		return -EOPNOTSUPP;
3442 
3443 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3444 }
3445 
3446 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3447 {
3448 	struct inode *inode = file_inode(filp);
3449 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3450 	char *vbuf;
3451 	int count;
3452 	int err = 0;
3453 
3454 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3455 	if (!vbuf)
3456 		return -ENOMEM;
3457 
3458 	f2fs_down_read(&sbi->sb_lock);
3459 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3460 			ARRAY_SIZE(sbi->raw_super->volume_name),
3461 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3462 	f2fs_up_read(&sbi->sb_lock);
3463 
3464 	if (copy_to_user((char __user *)arg, vbuf,
3465 				min(FSLABEL_MAX, count)))
3466 		err = -EFAULT;
3467 
3468 	kfree(vbuf);
3469 	return err;
3470 }
3471 
3472 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3473 {
3474 	struct inode *inode = file_inode(filp);
3475 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3476 	char *vbuf;
3477 	int err = 0;
3478 
3479 	if (!capable(CAP_SYS_ADMIN))
3480 		return -EPERM;
3481 
3482 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3483 	if (IS_ERR(vbuf))
3484 		return PTR_ERR(vbuf);
3485 
3486 	err = mnt_want_write_file(filp);
3487 	if (err)
3488 		goto out;
3489 
3490 	f2fs_down_write(&sbi->sb_lock);
3491 
3492 	memset(sbi->raw_super->volume_name, 0,
3493 			sizeof(sbi->raw_super->volume_name));
3494 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3495 			sbi->raw_super->volume_name,
3496 			ARRAY_SIZE(sbi->raw_super->volume_name));
3497 
3498 	err = f2fs_commit_super(sbi, false);
3499 
3500 	f2fs_up_write(&sbi->sb_lock);
3501 
3502 	mnt_drop_write_file(filp);
3503 out:
3504 	kfree(vbuf);
3505 	return err;
3506 }
3507 
3508 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3509 {
3510 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3511 		return -EOPNOTSUPP;
3512 
3513 	if (!f2fs_compressed_file(inode))
3514 		return -EINVAL;
3515 
3516 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3517 
3518 	return 0;
3519 }
3520 
3521 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3522 {
3523 	struct inode *inode = file_inode(filp);
3524 	__u64 blocks;
3525 	int ret;
3526 
3527 	ret = f2fs_get_compress_blocks(inode, &blocks);
3528 	if (ret < 0)
3529 		return ret;
3530 
3531 	return put_user(blocks, (u64 __user *)arg);
3532 }
3533 
3534 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3535 {
3536 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3537 	unsigned int released_blocks = 0;
3538 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3539 	block_t blkaddr;
3540 	int i;
3541 
3542 	for (i = 0; i < count; i++) {
3543 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3544 						dn->ofs_in_node + i);
3545 
3546 		if (!__is_valid_data_blkaddr(blkaddr))
3547 			continue;
3548 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3549 					DATA_GENERIC_ENHANCE)))
3550 			return -EFSCORRUPTED;
3551 	}
3552 
3553 	while (count) {
3554 		int compr_blocks = 0;
3555 
3556 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3557 			blkaddr = f2fs_data_blkaddr(dn);
3558 
3559 			if (i == 0) {
3560 				if (blkaddr == COMPRESS_ADDR)
3561 					continue;
3562 				dn->ofs_in_node += cluster_size;
3563 				goto next;
3564 			}
3565 
3566 			if (__is_valid_data_blkaddr(blkaddr))
3567 				compr_blocks++;
3568 
3569 			if (blkaddr != NEW_ADDR)
3570 				continue;
3571 
3572 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3573 		}
3574 
3575 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3576 		dec_valid_block_count(sbi, dn->inode,
3577 					cluster_size - compr_blocks);
3578 
3579 		released_blocks += cluster_size - compr_blocks;
3580 next:
3581 		count -= cluster_size;
3582 	}
3583 
3584 	return released_blocks;
3585 }
3586 
3587 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3588 {
3589 	struct inode *inode = file_inode(filp);
3590 	struct f2fs_inode_info *fi = F2FS_I(inode);
3591 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3592 	pgoff_t page_idx = 0, last_idx;
3593 	unsigned int released_blocks = 0;
3594 	int ret;
3595 	int writecount;
3596 
3597 	if (!f2fs_sb_has_compression(sbi))
3598 		return -EOPNOTSUPP;
3599 
3600 	if (f2fs_readonly(sbi->sb))
3601 		return -EROFS;
3602 
3603 	ret = mnt_want_write_file(filp);
3604 	if (ret)
3605 		return ret;
3606 
3607 	f2fs_balance_fs(sbi, true);
3608 
3609 	inode_lock(inode);
3610 
3611 	writecount = atomic_read(&inode->i_writecount);
3612 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3613 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3614 		ret = -EBUSY;
3615 		goto out;
3616 	}
3617 
3618 	if (!f2fs_compressed_file(inode) ||
3619 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3620 		ret = -EINVAL;
3621 		goto out;
3622 	}
3623 
3624 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3625 	if (ret)
3626 		goto out;
3627 
3628 	if (!atomic_read(&fi->i_compr_blocks)) {
3629 		ret = -EPERM;
3630 		goto out;
3631 	}
3632 
3633 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3634 	inode_set_ctime_current(inode);
3635 	f2fs_mark_inode_dirty_sync(inode, true);
3636 
3637 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3638 	filemap_invalidate_lock(inode->i_mapping);
3639 
3640 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3641 
3642 	while (page_idx < last_idx) {
3643 		struct dnode_of_data dn;
3644 		pgoff_t end_offset, count;
3645 
3646 		f2fs_lock_op(sbi);
3647 
3648 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3649 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3650 		if (ret) {
3651 			f2fs_unlock_op(sbi);
3652 			if (ret == -ENOENT) {
3653 				page_idx = f2fs_get_next_page_offset(&dn,
3654 								page_idx);
3655 				ret = 0;
3656 				continue;
3657 			}
3658 			break;
3659 		}
3660 
3661 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3662 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3663 		count = round_up(count, fi->i_cluster_size);
3664 
3665 		ret = release_compress_blocks(&dn, count);
3666 
3667 		f2fs_put_dnode(&dn);
3668 
3669 		f2fs_unlock_op(sbi);
3670 
3671 		if (ret < 0)
3672 			break;
3673 
3674 		page_idx += count;
3675 		released_blocks += ret;
3676 	}
3677 
3678 	filemap_invalidate_unlock(inode->i_mapping);
3679 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3680 out:
3681 	if (released_blocks)
3682 		f2fs_update_time(sbi, REQ_TIME);
3683 	inode_unlock(inode);
3684 
3685 	mnt_drop_write_file(filp);
3686 
3687 	if (ret >= 0) {
3688 		ret = put_user(released_blocks, (u64 __user *)arg);
3689 	} else if (released_blocks &&
3690 			atomic_read(&fi->i_compr_blocks)) {
3691 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3692 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3693 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3694 			"run fsck to fix.",
3695 			__func__, inode->i_ino, inode->i_blocks,
3696 			released_blocks,
3697 			atomic_read(&fi->i_compr_blocks));
3698 	}
3699 
3700 	return ret;
3701 }
3702 
3703 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3704 		unsigned int *reserved_blocks)
3705 {
3706 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3707 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3708 	block_t blkaddr;
3709 	int i;
3710 
3711 	for (i = 0; i < count; i++) {
3712 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3713 						dn->ofs_in_node + i);
3714 
3715 		if (!__is_valid_data_blkaddr(blkaddr))
3716 			continue;
3717 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3718 					DATA_GENERIC_ENHANCE)))
3719 			return -EFSCORRUPTED;
3720 	}
3721 
3722 	while (count) {
3723 		int compr_blocks = 0;
3724 		blkcnt_t reserved = 0;
3725 		blkcnt_t to_reserved;
3726 		int ret;
3727 
3728 		for (i = 0; i < cluster_size; i++) {
3729 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
3730 						dn->ofs_in_node + i);
3731 
3732 			if (i == 0) {
3733 				if (blkaddr != COMPRESS_ADDR) {
3734 					dn->ofs_in_node += cluster_size;
3735 					goto next;
3736 				}
3737 				continue;
3738 			}
3739 
3740 			/*
3741 			 * compressed cluster was not released due to it
3742 			 * fails in release_compress_blocks(), so NEW_ADDR
3743 			 * is a possible case.
3744 			 */
3745 			if (blkaddr == NEW_ADDR) {
3746 				reserved++;
3747 				continue;
3748 			}
3749 			if (__is_valid_data_blkaddr(blkaddr)) {
3750 				compr_blocks++;
3751 				continue;
3752 			}
3753 		}
3754 
3755 		to_reserved = cluster_size - compr_blocks - reserved;
3756 
3757 		/* for the case all blocks in cluster were reserved */
3758 		if (to_reserved == 1) {
3759 			dn->ofs_in_node += cluster_size;
3760 			goto next;
3761 		}
3762 
3763 		ret = inc_valid_block_count(sbi, dn->inode,
3764 						&to_reserved, false);
3765 		if (unlikely(ret))
3766 			return ret;
3767 
3768 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3769 			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3770 				f2fs_set_data_blkaddr(dn, NEW_ADDR);
3771 		}
3772 
3773 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3774 
3775 		*reserved_blocks += to_reserved;
3776 next:
3777 		count -= cluster_size;
3778 	}
3779 
3780 	return 0;
3781 }
3782 
3783 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3784 {
3785 	struct inode *inode = file_inode(filp);
3786 	struct f2fs_inode_info *fi = F2FS_I(inode);
3787 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3788 	pgoff_t page_idx = 0, last_idx;
3789 	unsigned int reserved_blocks = 0;
3790 	int ret;
3791 
3792 	if (!f2fs_sb_has_compression(sbi))
3793 		return -EOPNOTSUPP;
3794 
3795 	if (f2fs_readonly(sbi->sb))
3796 		return -EROFS;
3797 
3798 	ret = mnt_want_write_file(filp);
3799 	if (ret)
3800 		return ret;
3801 
3802 	f2fs_balance_fs(sbi, true);
3803 
3804 	inode_lock(inode);
3805 
3806 	if (!f2fs_compressed_file(inode) ||
3807 		!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3808 		ret = -EINVAL;
3809 		goto unlock_inode;
3810 	}
3811 
3812 	if (atomic_read(&fi->i_compr_blocks))
3813 		goto unlock_inode;
3814 
3815 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3816 	filemap_invalidate_lock(inode->i_mapping);
3817 
3818 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3819 
3820 	while (page_idx < last_idx) {
3821 		struct dnode_of_data dn;
3822 		pgoff_t end_offset, count;
3823 
3824 		f2fs_lock_op(sbi);
3825 
3826 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3827 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3828 		if (ret) {
3829 			f2fs_unlock_op(sbi);
3830 			if (ret == -ENOENT) {
3831 				page_idx = f2fs_get_next_page_offset(&dn,
3832 								page_idx);
3833 				ret = 0;
3834 				continue;
3835 			}
3836 			break;
3837 		}
3838 
3839 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3840 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3841 		count = round_up(count, fi->i_cluster_size);
3842 
3843 		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3844 
3845 		f2fs_put_dnode(&dn);
3846 
3847 		f2fs_unlock_op(sbi);
3848 
3849 		if (ret < 0)
3850 			break;
3851 
3852 		page_idx += count;
3853 	}
3854 
3855 	filemap_invalidate_unlock(inode->i_mapping);
3856 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3857 
3858 	if (!ret) {
3859 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3860 		inode_set_ctime_current(inode);
3861 		f2fs_mark_inode_dirty_sync(inode, true);
3862 	}
3863 unlock_inode:
3864 	if (reserved_blocks)
3865 		f2fs_update_time(sbi, REQ_TIME);
3866 	inode_unlock(inode);
3867 	mnt_drop_write_file(filp);
3868 
3869 	if (!ret) {
3870 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3871 	} else if (reserved_blocks &&
3872 			atomic_read(&fi->i_compr_blocks)) {
3873 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3874 		f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
3875 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3876 			"run fsck to fix.",
3877 			__func__, inode->i_ino, inode->i_blocks,
3878 			reserved_blocks,
3879 			atomic_read(&fi->i_compr_blocks));
3880 	}
3881 
3882 	return ret;
3883 }
3884 
3885 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3886 		pgoff_t off, block_t block, block_t len, u32 flags)
3887 {
3888 	sector_t sector = SECTOR_FROM_BLOCK(block);
3889 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3890 	int ret = 0;
3891 
3892 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3893 		if (bdev_max_secure_erase_sectors(bdev))
3894 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3895 					GFP_NOFS);
3896 		else
3897 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3898 					GFP_NOFS);
3899 	}
3900 
3901 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3902 		if (IS_ENCRYPTED(inode))
3903 			ret = fscrypt_zeroout_range(inode, off, block, len);
3904 		else
3905 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3906 					GFP_NOFS, 0);
3907 	}
3908 
3909 	return ret;
3910 }
3911 
3912 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3913 {
3914 	struct inode *inode = file_inode(filp);
3915 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3916 	struct address_space *mapping = inode->i_mapping;
3917 	struct block_device *prev_bdev = NULL;
3918 	struct f2fs_sectrim_range range;
3919 	pgoff_t index, pg_end, prev_index = 0;
3920 	block_t prev_block = 0, len = 0;
3921 	loff_t end_addr;
3922 	bool to_end = false;
3923 	int ret = 0;
3924 
3925 	if (!(filp->f_mode & FMODE_WRITE))
3926 		return -EBADF;
3927 
3928 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3929 				sizeof(range)))
3930 		return -EFAULT;
3931 
3932 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3933 			!S_ISREG(inode->i_mode))
3934 		return -EINVAL;
3935 
3936 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3937 			!f2fs_hw_support_discard(sbi)) ||
3938 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3939 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3940 		return -EOPNOTSUPP;
3941 
3942 	ret = mnt_want_write_file(filp);
3943 	if (ret)
3944 		return ret;
3945 	inode_lock(inode);
3946 
3947 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3948 			range.start >= inode->i_size) {
3949 		ret = -EINVAL;
3950 		goto err;
3951 	}
3952 
3953 	if (range.len == 0)
3954 		goto err;
3955 
3956 	if (inode->i_size - range.start > range.len) {
3957 		end_addr = range.start + range.len;
3958 	} else {
3959 		end_addr = range.len == (u64)-1 ?
3960 			sbi->sb->s_maxbytes : inode->i_size;
3961 		to_end = true;
3962 	}
3963 
3964 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3965 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3966 		ret = -EINVAL;
3967 		goto err;
3968 	}
3969 
3970 	index = F2FS_BYTES_TO_BLK(range.start);
3971 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3972 
3973 	ret = f2fs_convert_inline_inode(inode);
3974 	if (ret)
3975 		goto err;
3976 
3977 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3978 	filemap_invalidate_lock(mapping);
3979 
3980 	ret = filemap_write_and_wait_range(mapping, range.start,
3981 			to_end ? LLONG_MAX : end_addr - 1);
3982 	if (ret)
3983 		goto out;
3984 
3985 	truncate_inode_pages_range(mapping, range.start,
3986 			to_end ? -1 : end_addr - 1);
3987 
3988 	while (index < pg_end) {
3989 		struct dnode_of_data dn;
3990 		pgoff_t end_offset, count;
3991 		int i;
3992 
3993 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3994 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3995 		if (ret) {
3996 			if (ret == -ENOENT) {
3997 				index = f2fs_get_next_page_offset(&dn, index);
3998 				continue;
3999 			}
4000 			goto out;
4001 		}
4002 
4003 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4004 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
4005 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4006 			struct block_device *cur_bdev;
4007 			block_t blkaddr = f2fs_data_blkaddr(&dn);
4008 
4009 			if (!__is_valid_data_blkaddr(blkaddr))
4010 				continue;
4011 
4012 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4013 						DATA_GENERIC_ENHANCE)) {
4014 				ret = -EFSCORRUPTED;
4015 				f2fs_put_dnode(&dn);
4016 				goto out;
4017 			}
4018 
4019 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4020 			if (f2fs_is_multi_device(sbi)) {
4021 				int di = f2fs_target_device_index(sbi, blkaddr);
4022 
4023 				blkaddr -= FDEV(di).start_blk;
4024 			}
4025 
4026 			if (len) {
4027 				if (prev_bdev == cur_bdev &&
4028 						index == prev_index + len &&
4029 						blkaddr == prev_block + len) {
4030 					len++;
4031 				} else {
4032 					ret = f2fs_secure_erase(prev_bdev,
4033 						inode, prev_index, prev_block,
4034 						len, range.flags);
4035 					if (ret) {
4036 						f2fs_put_dnode(&dn);
4037 						goto out;
4038 					}
4039 
4040 					len = 0;
4041 				}
4042 			}
4043 
4044 			if (!len) {
4045 				prev_bdev = cur_bdev;
4046 				prev_index = index;
4047 				prev_block = blkaddr;
4048 				len = 1;
4049 			}
4050 		}
4051 
4052 		f2fs_put_dnode(&dn);
4053 
4054 		if (fatal_signal_pending(current)) {
4055 			ret = -EINTR;
4056 			goto out;
4057 		}
4058 		cond_resched();
4059 	}
4060 
4061 	if (len)
4062 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4063 				prev_block, len, range.flags);
4064 	f2fs_update_time(sbi, REQ_TIME);
4065 out:
4066 	filemap_invalidate_unlock(mapping);
4067 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4068 err:
4069 	inode_unlock(inode);
4070 	mnt_drop_write_file(filp);
4071 
4072 	return ret;
4073 }
4074 
4075 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4076 {
4077 	struct inode *inode = file_inode(filp);
4078 	struct f2fs_comp_option option;
4079 
4080 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4081 		return -EOPNOTSUPP;
4082 
4083 	inode_lock_shared(inode);
4084 
4085 	if (!f2fs_compressed_file(inode)) {
4086 		inode_unlock_shared(inode);
4087 		return -ENODATA;
4088 	}
4089 
4090 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4091 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4092 
4093 	inode_unlock_shared(inode);
4094 
4095 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4096 				sizeof(option)))
4097 		return -EFAULT;
4098 
4099 	return 0;
4100 }
4101 
4102 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4103 {
4104 	struct inode *inode = file_inode(filp);
4105 	struct f2fs_inode_info *fi = F2FS_I(inode);
4106 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4107 	struct f2fs_comp_option option;
4108 	int ret = 0;
4109 
4110 	if (!f2fs_sb_has_compression(sbi))
4111 		return -EOPNOTSUPP;
4112 
4113 	if (!(filp->f_mode & FMODE_WRITE))
4114 		return -EBADF;
4115 
4116 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4117 				sizeof(option)))
4118 		return -EFAULT;
4119 
4120 	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4121 		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4122 		option.algorithm >= COMPRESS_MAX)
4123 		return -EINVAL;
4124 
4125 	ret = mnt_want_write_file(filp);
4126 	if (ret)
4127 		return ret;
4128 	inode_lock(inode);
4129 
4130 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4131 	if (!f2fs_compressed_file(inode)) {
4132 		ret = -EINVAL;
4133 		goto out;
4134 	}
4135 
4136 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4137 		ret = -EBUSY;
4138 		goto out;
4139 	}
4140 
4141 	if (F2FS_HAS_BLOCKS(inode)) {
4142 		ret = -EFBIG;
4143 		goto out;
4144 	}
4145 
4146 	fi->i_compress_algorithm = option.algorithm;
4147 	fi->i_log_cluster_size = option.log_cluster_size;
4148 	fi->i_cluster_size = BIT(option.log_cluster_size);
4149 	/* Set default level */
4150 	if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4151 		fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4152 	else
4153 		fi->i_compress_level = 0;
4154 	/* Adjust mount option level */
4155 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4156 	    F2FS_OPTION(sbi).compress_level)
4157 		fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4158 	f2fs_mark_inode_dirty_sync(inode, true);
4159 
4160 	if (!f2fs_is_compress_backend_ready(inode))
4161 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4162 			"but current kernel doesn't support this algorithm.");
4163 out:
4164 	f2fs_up_write(&fi->i_sem);
4165 	inode_unlock(inode);
4166 	mnt_drop_write_file(filp);
4167 
4168 	return ret;
4169 }
4170 
4171 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4172 {
4173 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4174 	struct address_space *mapping = inode->i_mapping;
4175 	struct page *page;
4176 	pgoff_t redirty_idx = page_idx;
4177 	int i, page_len = 0, ret = 0;
4178 
4179 	page_cache_ra_unbounded(&ractl, len, 0);
4180 
4181 	for (i = 0; i < len; i++, page_idx++) {
4182 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4183 		if (IS_ERR(page)) {
4184 			ret = PTR_ERR(page);
4185 			break;
4186 		}
4187 		page_len++;
4188 	}
4189 
4190 	for (i = 0; i < page_len; i++, redirty_idx++) {
4191 		page = find_lock_page(mapping, redirty_idx);
4192 
4193 		/* It will never fail, when page has pinned above */
4194 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4195 
4196 		set_page_dirty(page);
4197 		set_page_private_gcing(page);
4198 		f2fs_put_page(page, 1);
4199 		f2fs_put_page(page, 0);
4200 	}
4201 
4202 	return ret;
4203 }
4204 
4205 static int f2fs_ioc_decompress_file(struct file *filp)
4206 {
4207 	struct inode *inode = file_inode(filp);
4208 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4209 	struct f2fs_inode_info *fi = F2FS_I(inode);
4210 	pgoff_t page_idx = 0, last_idx;
4211 	int cluster_size = fi->i_cluster_size;
4212 	int count, ret;
4213 
4214 	if (!f2fs_sb_has_compression(sbi) ||
4215 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4216 		return -EOPNOTSUPP;
4217 
4218 	if (!(filp->f_mode & FMODE_WRITE))
4219 		return -EBADF;
4220 
4221 	f2fs_balance_fs(sbi, true);
4222 
4223 	ret = mnt_want_write_file(filp);
4224 	if (ret)
4225 		return ret;
4226 	inode_lock(inode);
4227 
4228 	if (!f2fs_is_compress_backend_ready(inode)) {
4229 		ret = -EOPNOTSUPP;
4230 		goto out;
4231 	}
4232 
4233 	if (!f2fs_compressed_file(inode) ||
4234 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4235 		ret = -EINVAL;
4236 		goto out;
4237 	}
4238 
4239 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4240 	if (ret)
4241 		goto out;
4242 
4243 	if (!atomic_read(&fi->i_compr_blocks))
4244 		goto out;
4245 
4246 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4247 
4248 	count = last_idx - page_idx;
4249 	while (count && count >= cluster_size) {
4250 		ret = redirty_blocks(inode, page_idx, cluster_size);
4251 		if (ret < 0)
4252 			break;
4253 
4254 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4255 			ret = filemap_fdatawrite(inode->i_mapping);
4256 			if (ret < 0)
4257 				break;
4258 		}
4259 
4260 		count -= cluster_size;
4261 		page_idx += cluster_size;
4262 
4263 		cond_resched();
4264 		if (fatal_signal_pending(current)) {
4265 			ret = -EINTR;
4266 			break;
4267 		}
4268 	}
4269 
4270 	if (!ret)
4271 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4272 							LLONG_MAX);
4273 
4274 	if (ret)
4275 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4276 			  __func__, ret);
4277 	f2fs_update_time(sbi, REQ_TIME);
4278 out:
4279 	inode_unlock(inode);
4280 	mnt_drop_write_file(filp);
4281 
4282 	return ret;
4283 }
4284 
4285 static int f2fs_ioc_compress_file(struct file *filp)
4286 {
4287 	struct inode *inode = file_inode(filp);
4288 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4289 	pgoff_t page_idx = 0, last_idx;
4290 	int cluster_size = F2FS_I(inode)->i_cluster_size;
4291 	int count, ret;
4292 
4293 	if (!f2fs_sb_has_compression(sbi) ||
4294 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4295 		return -EOPNOTSUPP;
4296 
4297 	if (!(filp->f_mode & FMODE_WRITE))
4298 		return -EBADF;
4299 
4300 	f2fs_balance_fs(sbi, true);
4301 
4302 	ret = mnt_want_write_file(filp);
4303 	if (ret)
4304 		return ret;
4305 	inode_lock(inode);
4306 
4307 	if (!f2fs_is_compress_backend_ready(inode)) {
4308 		ret = -EOPNOTSUPP;
4309 		goto out;
4310 	}
4311 
4312 	if (!f2fs_compressed_file(inode) ||
4313 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4314 		ret = -EINVAL;
4315 		goto out;
4316 	}
4317 
4318 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4319 	if (ret)
4320 		goto out;
4321 
4322 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4323 
4324 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4325 
4326 	count = last_idx - page_idx;
4327 	while (count && count >= cluster_size) {
4328 		ret = redirty_blocks(inode, page_idx, cluster_size);
4329 		if (ret < 0)
4330 			break;
4331 
4332 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4333 			ret = filemap_fdatawrite(inode->i_mapping);
4334 			if (ret < 0)
4335 				break;
4336 		}
4337 
4338 		count -= cluster_size;
4339 		page_idx += cluster_size;
4340 
4341 		cond_resched();
4342 		if (fatal_signal_pending(current)) {
4343 			ret = -EINTR;
4344 			break;
4345 		}
4346 	}
4347 
4348 	if (!ret)
4349 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4350 							LLONG_MAX);
4351 
4352 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4353 
4354 	if (ret)
4355 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4356 			  __func__, ret);
4357 	f2fs_update_time(sbi, REQ_TIME);
4358 out:
4359 	inode_unlock(inode);
4360 	mnt_drop_write_file(filp);
4361 
4362 	return ret;
4363 }
4364 
4365 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4366 {
4367 	switch (cmd) {
4368 	case FS_IOC_GETVERSION:
4369 		return f2fs_ioc_getversion(filp, arg);
4370 	case F2FS_IOC_START_ATOMIC_WRITE:
4371 		return f2fs_ioc_start_atomic_write(filp, false);
4372 	case F2FS_IOC_START_ATOMIC_REPLACE:
4373 		return f2fs_ioc_start_atomic_write(filp, true);
4374 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4375 		return f2fs_ioc_commit_atomic_write(filp);
4376 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4377 		return f2fs_ioc_abort_atomic_write(filp);
4378 	case F2FS_IOC_START_VOLATILE_WRITE:
4379 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4380 		return -EOPNOTSUPP;
4381 	case F2FS_IOC_SHUTDOWN:
4382 		return f2fs_ioc_shutdown(filp, arg);
4383 	case FITRIM:
4384 		return f2fs_ioc_fitrim(filp, arg);
4385 	case FS_IOC_SET_ENCRYPTION_POLICY:
4386 		return f2fs_ioc_set_encryption_policy(filp, arg);
4387 	case FS_IOC_GET_ENCRYPTION_POLICY:
4388 		return f2fs_ioc_get_encryption_policy(filp, arg);
4389 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4390 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4391 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4392 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4393 	case FS_IOC_ADD_ENCRYPTION_KEY:
4394 		return f2fs_ioc_add_encryption_key(filp, arg);
4395 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4396 		return f2fs_ioc_remove_encryption_key(filp, arg);
4397 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4398 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4399 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4400 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4401 	case FS_IOC_GET_ENCRYPTION_NONCE:
4402 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4403 	case F2FS_IOC_GARBAGE_COLLECT:
4404 		return f2fs_ioc_gc(filp, arg);
4405 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4406 		return f2fs_ioc_gc_range(filp, arg);
4407 	case F2FS_IOC_WRITE_CHECKPOINT:
4408 		return f2fs_ioc_write_checkpoint(filp);
4409 	case F2FS_IOC_DEFRAGMENT:
4410 		return f2fs_ioc_defragment(filp, arg);
4411 	case F2FS_IOC_MOVE_RANGE:
4412 		return f2fs_ioc_move_range(filp, arg);
4413 	case F2FS_IOC_FLUSH_DEVICE:
4414 		return f2fs_ioc_flush_device(filp, arg);
4415 	case F2FS_IOC_GET_FEATURES:
4416 		return f2fs_ioc_get_features(filp, arg);
4417 	case F2FS_IOC_GET_PIN_FILE:
4418 		return f2fs_ioc_get_pin_file(filp, arg);
4419 	case F2FS_IOC_SET_PIN_FILE:
4420 		return f2fs_ioc_set_pin_file(filp, arg);
4421 	case F2FS_IOC_PRECACHE_EXTENTS:
4422 		return f2fs_ioc_precache_extents(filp);
4423 	case F2FS_IOC_RESIZE_FS:
4424 		return f2fs_ioc_resize_fs(filp, arg);
4425 	case FS_IOC_ENABLE_VERITY:
4426 		return f2fs_ioc_enable_verity(filp, arg);
4427 	case FS_IOC_MEASURE_VERITY:
4428 		return f2fs_ioc_measure_verity(filp, arg);
4429 	case FS_IOC_READ_VERITY_METADATA:
4430 		return f2fs_ioc_read_verity_metadata(filp, arg);
4431 	case FS_IOC_GETFSLABEL:
4432 		return f2fs_ioc_getfslabel(filp, arg);
4433 	case FS_IOC_SETFSLABEL:
4434 		return f2fs_ioc_setfslabel(filp, arg);
4435 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4436 		return f2fs_ioc_get_compress_blocks(filp, arg);
4437 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4438 		return f2fs_release_compress_blocks(filp, arg);
4439 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4440 		return f2fs_reserve_compress_blocks(filp, arg);
4441 	case F2FS_IOC_SEC_TRIM_FILE:
4442 		return f2fs_sec_trim_file(filp, arg);
4443 	case F2FS_IOC_GET_COMPRESS_OPTION:
4444 		return f2fs_ioc_get_compress_option(filp, arg);
4445 	case F2FS_IOC_SET_COMPRESS_OPTION:
4446 		return f2fs_ioc_set_compress_option(filp, arg);
4447 	case F2FS_IOC_DECOMPRESS_FILE:
4448 		return f2fs_ioc_decompress_file(filp);
4449 	case F2FS_IOC_COMPRESS_FILE:
4450 		return f2fs_ioc_compress_file(filp);
4451 	default:
4452 		return -ENOTTY;
4453 	}
4454 }
4455 
4456 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4457 {
4458 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4459 		return -EIO;
4460 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4461 		return -ENOSPC;
4462 
4463 	return __f2fs_ioctl(filp, cmd, arg);
4464 }
4465 
4466 /*
4467  * Return %true if the given read or write request should use direct I/O, or
4468  * %false if it should use buffered I/O.
4469  */
4470 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4471 				struct iov_iter *iter)
4472 {
4473 	unsigned int align;
4474 
4475 	if (!(iocb->ki_flags & IOCB_DIRECT))
4476 		return false;
4477 
4478 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4479 		return false;
4480 
4481 	/*
4482 	 * Direct I/O not aligned to the disk's logical_block_size will be
4483 	 * attempted, but will fail with -EINVAL.
4484 	 *
4485 	 * f2fs additionally requires that direct I/O be aligned to the
4486 	 * filesystem block size, which is often a stricter requirement.
4487 	 * However, f2fs traditionally falls back to buffered I/O on requests
4488 	 * that are logical_block_size-aligned but not fs-block aligned.
4489 	 *
4490 	 * The below logic implements this behavior.
4491 	 */
4492 	align = iocb->ki_pos | iov_iter_alignment(iter);
4493 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4494 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4495 		return false;
4496 
4497 	return true;
4498 }
4499 
4500 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4501 				unsigned int flags)
4502 {
4503 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4504 
4505 	dec_page_count(sbi, F2FS_DIO_READ);
4506 	if (error)
4507 		return error;
4508 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4509 	return 0;
4510 }
4511 
4512 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4513 	.end_io = f2fs_dio_read_end_io,
4514 };
4515 
4516 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4517 {
4518 	struct file *file = iocb->ki_filp;
4519 	struct inode *inode = file_inode(file);
4520 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4521 	struct f2fs_inode_info *fi = F2FS_I(inode);
4522 	const loff_t pos = iocb->ki_pos;
4523 	const size_t count = iov_iter_count(to);
4524 	struct iomap_dio *dio;
4525 	ssize_t ret;
4526 
4527 	if (count == 0)
4528 		return 0; /* skip atime update */
4529 
4530 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4531 
4532 	if (iocb->ki_flags & IOCB_NOWAIT) {
4533 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4534 			ret = -EAGAIN;
4535 			goto out;
4536 		}
4537 	} else {
4538 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4539 	}
4540 
4541 	/*
4542 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4543 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4544 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4545 	 */
4546 	inc_page_count(sbi, F2FS_DIO_READ);
4547 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4548 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4549 	if (IS_ERR_OR_NULL(dio)) {
4550 		ret = PTR_ERR_OR_ZERO(dio);
4551 		if (ret != -EIOCBQUEUED)
4552 			dec_page_count(sbi, F2FS_DIO_READ);
4553 	} else {
4554 		ret = iomap_dio_complete(dio);
4555 	}
4556 
4557 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4558 
4559 	file_accessed(file);
4560 out:
4561 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4562 	return ret;
4563 }
4564 
4565 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4566 				    int rw)
4567 {
4568 	struct inode *inode = file_inode(file);
4569 	char *buf, *path;
4570 
4571 	buf = f2fs_getname(F2FS_I_SB(inode));
4572 	if (!buf)
4573 		return;
4574 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4575 	if (IS_ERR(path))
4576 		goto free_buf;
4577 	if (rw == WRITE)
4578 		trace_f2fs_datawrite_start(inode, pos, count,
4579 				current->pid, path, current->comm);
4580 	else
4581 		trace_f2fs_dataread_start(inode, pos, count,
4582 				current->pid, path, current->comm);
4583 free_buf:
4584 	f2fs_putname(buf);
4585 }
4586 
4587 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4588 {
4589 	struct inode *inode = file_inode(iocb->ki_filp);
4590 	const loff_t pos = iocb->ki_pos;
4591 	ssize_t ret;
4592 
4593 	if (!f2fs_is_compress_backend_ready(inode))
4594 		return -EOPNOTSUPP;
4595 
4596 	if (trace_f2fs_dataread_start_enabled())
4597 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4598 					iov_iter_count(to), READ);
4599 
4600 	if (f2fs_should_use_dio(inode, iocb, to)) {
4601 		ret = f2fs_dio_read_iter(iocb, to);
4602 	} else {
4603 		ret = filemap_read(iocb, to, 0);
4604 		if (ret > 0)
4605 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4606 						APP_BUFFERED_READ_IO, ret);
4607 	}
4608 	if (trace_f2fs_dataread_end_enabled())
4609 		trace_f2fs_dataread_end(inode, pos, ret);
4610 	return ret;
4611 }
4612 
4613 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4614 				     struct pipe_inode_info *pipe,
4615 				     size_t len, unsigned int flags)
4616 {
4617 	struct inode *inode = file_inode(in);
4618 	const loff_t pos = *ppos;
4619 	ssize_t ret;
4620 
4621 	if (!f2fs_is_compress_backend_ready(inode))
4622 		return -EOPNOTSUPP;
4623 
4624 	if (trace_f2fs_dataread_start_enabled())
4625 		f2fs_trace_rw_file_path(in, pos, len, READ);
4626 
4627 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4628 	if (ret > 0)
4629 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4630 				   APP_BUFFERED_READ_IO, ret);
4631 
4632 	if (trace_f2fs_dataread_end_enabled())
4633 		trace_f2fs_dataread_end(inode, pos, ret);
4634 	return ret;
4635 }
4636 
4637 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4638 {
4639 	struct file *file = iocb->ki_filp;
4640 	struct inode *inode = file_inode(file);
4641 	ssize_t count;
4642 	int err;
4643 
4644 	if (IS_IMMUTABLE(inode))
4645 		return -EPERM;
4646 
4647 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4648 		return -EPERM;
4649 
4650 	count = generic_write_checks(iocb, from);
4651 	if (count <= 0)
4652 		return count;
4653 
4654 	err = file_modified(file);
4655 	if (err)
4656 		return err;
4657 	return count;
4658 }
4659 
4660 /*
4661  * Preallocate blocks for a write request, if it is possible and helpful to do
4662  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4663  * blocks were preallocated, or a negative errno value if something went
4664  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4665  * requested blocks (not just some of them) have been allocated.
4666  */
4667 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4668 				   bool dio)
4669 {
4670 	struct inode *inode = file_inode(iocb->ki_filp);
4671 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4672 	const loff_t pos = iocb->ki_pos;
4673 	const size_t count = iov_iter_count(iter);
4674 	struct f2fs_map_blocks map = {};
4675 	int flag;
4676 	int ret;
4677 
4678 	/* If it will be an out-of-place direct write, don't bother. */
4679 	if (dio && f2fs_lfs_mode(sbi))
4680 		return 0;
4681 	/*
4682 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4683 	 * buffered IO, if DIO meets any holes.
4684 	 */
4685 	if (dio && i_size_read(inode) &&
4686 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4687 		return 0;
4688 
4689 	/* No-wait I/O can't allocate blocks. */
4690 	if (iocb->ki_flags & IOCB_NOWAIT)
4691 		return 0;
4692 
4693 	/* If it will be a short write, don't bother. */
4694 	if (fault_in_iov_iter_readable(iter, count))
4695 		return 0;
4696 
4697 	if (f2fs_has_inline_data(inode)) {
4698 		/* If the data will fit inline, don't bother. */
4699 		if (pos + count <= MAX_INLINE_DATA(inode))
4700 			return 0;
4701 		ret = f2fs_convert_inline_inode(inode);
4702 		if (ret)
4703 			return ret;
4704 	}
4705 
4706 	/* Do not preallocate blocks that will be written partially in 4KB. */
4707 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4708 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4709 	if (map.m_len > map.m_lblk)
4710 		map.m_len -= map.m_lblk;
4711 	else
4712 		return 0;
4713 
4714 	map.m_may_create = true;
4715 	if (dio) {
4716 		map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4717 						inode->i_write_hint);
4718 		flag = F2FS_GET_BLOCK_PRE_DIO;
4719 	} else {
4720 		map.m_seg_type = NO_CHECK_TYPE;
4721 		flag = F2FS_GET_BLOCK_PRE_AIO;
4722 	}
4723 
4724 	ret = f2fs_map_blocks(inode, &map, flag);
4725 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4726 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4727 		return ret;
4728 	if (ret == 0)
4729 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4730 	return map.m_len;
4731 }
4732 
4733 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4734 					struct iov_iter *from)
4735 {
4736 	struct file *file = iocb->ki_filp;
4737 	struct inode *inode = file_inode(file);
4738 	ssize_t ret;
4739 
4740 	if (iocb->ki_flags & IOCB_NOWAIT)
4741 		return -EOPNOTSUPP;
4742 
4743 	ret = generic_perform_write(iocb, from);
4744 
4745 	if (ret > 0) {
4746 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4747 						APP_BUFFERED_IO, ret);
4748 	}
4749 	return ret;
4750 }
4751 
4752 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4753 				 unsigned int flags)
4754 {
4755 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4756 
4757 	dec_page_count(sbi, F2FS_DIO_WRITE);
4758 	if (error)
4759 		return error;
4760 	f2fs_update_time(sbi, REQ_TIME);
4761 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4762 	return 0;
4763 }
4764 
4765 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
4766 					struct bio *bio, loff_t file_offset)
4767 {
4768 	struct inode *inode = iter->inode;
4769 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4770 	int seg_type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
4771 	enum temp_type temp = f2fs_get_segment_temp(seg_type);
4772 
4773 	bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
4774 	submit_bio(bio);
4775 }
4776 
4777 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4778 	.end_io		= f2fs_dio_write_end_io,
4779 	.submit_io	= f2fs_dio_write_submit_io,
4780 };
4781 
4782 static void f2fs_flush_buffered_write(struct address_space *mapping,
4783 				      loff_t start_pos, loff_t end_pos)
4784 {
4785 	int ret;
4786 
4787 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4788 	if (ret < 0)
4789 		return;
4790 	invalidate_mapping_pages(mapping,
4791 				 start_pos >> PAGE_SHIFT,
4792 				 end_pos >> PAGE_SHIFT);
4793 }
4794 
4795 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4796 				   bool *may_need_sync)
4797 {
4798 	struct file *file = iocb->ki_filp;
4799 	struct inode *inode = file_inode(file);
4800 	struct f2fs_inode_info *fi = F2FS_I(inode);
4801 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4802 	const bool do_opu = f2fs_lfs_mode(sbi);
4803 	const loff_t pos = iocb->ki_pos;
4804 	const ssize_t count = iov_iter_count(from);
4805 	unsigned int dio_flags;
4806 	struct iomap_dio *dio;
4807 	ssize_t ret;
4808 
4809 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4810 
4811 	if (iocb->ki_flags & IOCB_NOWAIT) {
4812 		/* f2fs_convert_inline_inode() and block allocation can block */
4813 		if (f2fs_has_inline_data(inode) ||
4814 		    !f2fs_overwrite_io(inode, pos, count)) {
4815 			ret = -EAGAIN;
4816 			goto out;
4817 		}
4818 
4819 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4820 			ret = -EAGAIN;
4821 			goto out;
4822 		}
4823 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4824 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4825 			ret = -EAGAIN;
4826 			goto out;
4827 		}
4828 	} else {
4829 		ret = f2fs_convert_inline_inode(inode);
4830 		if (ret)
4831 			goto out;
4832 
4833 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4834 		if (do_opu)
4835 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4836 	}
4837 
4838 	/*
4839 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4840 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4841 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4842 	 */
4843 	inc_page_count(sbi, F2FS_DIO_WRITE);
4844 	dio_flags = 0;
4845 	if (pos + count > inode->i_size)
4846 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4847 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4848 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4849 	if (IS_ERR_OR_NULL(dio)) {
4850 		ret = PTR_ERR_OR_ZERO(dio);
4851 		if (ret == -ENOTBLK)
4852 			ret = 0;
4853 		if (ret != -EIOCBQUEUED)
4854 			dec_page_count(sbi, F2FS_DIO_WRITE);
4855 	} else {
4856 		ret = iomap_dio_complete(dio);
4857 	}
4858 
4859 	if (do_opu)
4860 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4861 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4862 
4863 	if (ret < 0)
4864 		goto out;
4865 	if (pos + ret > inode->i_size)
4866 		f2fs_i_size_write(inode, pos + ret);
4867 	if (!do_opu)
4868 		set_inode_flag(inode, FI_UPDATE_WRITE);
4869 
4870 	if (iov_iter_count(from)) {
4871 		ssize_t ret2;
4872 		loff_t bufio_start_pos = iocb->ki_pos;
4873 
4874 		/*
4875 		 * The direct write was partial, so we need to fall back to a
4876 		 * buffered write for the remainder.
4877 		 */
4878 
4879 		ret2 = f2fs_buffered_write_iter(iocb, from);
4880 		if (iov_iter_count(from))
4881 			f2fs_write_failed(inode, iocb->ki_pos);
4882 		if (ret2 < 0)
4883 			goto out;
4884 
4885 		/*
4886 		 * Ensure that the pagecache pages are written to disk and
4887 		 * invalidated to preserve the expected O_DIRECT semantics.
4888 		 */
4889 		if (ret2 > 0) {
4890 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4891 
4892 			ret += ret2;
4893 
4894 			f2fs_flush_buffered_write(file->f_mapping,
4895 						  bufio_start_pos,
4896 						  bufio_end_pos);
4897 		}
4898 	} else {
4899 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4900 		*may_need_sync = false;
4901 	}
4902 out:
4903 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4904 	return ret;
4905 }
4906 
4907 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4908 {
4909 	struct inode *inode = file_inode(iocb->ki_filp);
4910 	const loff_t orig_pos = iocb->ki_pos;
4911 	const size_t orig_count = iov_iter_count(from);
4912 	loff_t target_size;
4913 	bool dio;
4914 	bool may_need_sync = true;
4915 	int preallocated;
4916 	const loff_t pos = iocb->ki_pos;
4917 	const ssize_t count = iov_iter_count(from);
4918 	ssize_t ret;
4919 
4920 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4921 		ret = -EIO;
4922 		goto out;
4923 	}
4924 
4925 	if (!f2fs_is_compress_backend_ready(inode)) {
4926 		ret = -EOPNOTSUPP;
4927 		goto out;
4928 	}
4929 
4930 	if (iocb->ki_flags & IOCB_NOWAIT) {
4931 		if (!inode_trylock(inode)) {
4932 			ret = -EAGAIN;
4933 			goto out;
4934 		}
4935 	} else {
4936 		inode_lock(inode);
4937 	}
4938 
4939 	if (f2fs_is_pinned_file(inode) &&
4940 	    !f2fs_overwrite_io(inode, pos, count)) {
4941 		ret = -EIO;
4942 		goto out_unlock;
4943 	}
4944 
4945 	ret = f2fs_write_checks(iocb, from);
4946 	if (ret <= 0)
4947 		goto out_unlock;
4948 
4949 	/* Determine whether we will do a direct write or a buffered write. */
4950 	dio = f2fs_should_use_dio(inode, iocb, from);
4951 
4952 	/* Possibly preallocate the blocks for the write. */
4953 	target_size = iocb->ki_pos + iov_iter_count(from);
4954 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4955 	if (preallocated < 0) {
4956 		ret = preallocated;
4957 	} else {
4958 		if (trace_f2fs_datawrite_start_enabled())
4959 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4960 						orig_count, WRITE);
4961 
4962 		/* Do the actual write. */
4963 		ret = dio ?
4964 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4965 			f2fs_buffered_write_iter(iocb, from);
4966 
4967 		if (trace_f2fs_datawrite_end_enabled())
4968 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
4969 	}
4970 
4971 	/* Don't leave any preallocated blocks around past i_size. */
4972 	if (preallocated && i_size_read(inode) < target_size) {
4973 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4974 		filemap_invalidate_lock(inode->i_mapping);
4975 		if (!f2fs_truncate(inode))
4976 			file_dont_truncate(inode);
4977 		filemap_invalidate_unlock(inode->i_mapping);
4978 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4979 	} else {
4980 		file_dont_truncate(inode);
4981 	}
4982 
4983 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4984 out_unlock:
4985 	inode_unlock(inode);
4986 out:
4987 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4988 
4989 	if (ret > 0 && may_need_sync)
4990 		ret = generic_write_sync(iocb, ret);
4991 
4992 	/* If buffered IO was forced, flush and drop the data from
4993 	 * the page cache to preserve O_DIRECT semantics
4994 	 */
4995 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
4996 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
4997 					  orig_pos,
4998 					  orig_pos + ret - 1);
4999 
5000 	return ret;
5001 }
5002 
5003 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5004 		int advice)
5005 {
5006 	struct address_space *mapping;
5007 	struct backing_dev_info *bdi;
5008 	struct inode *inode = file_inode(filp);
5009 	int err;
5010 
5011 	if (advice == POSIX_FADV_SEQUENTIAL) {
5012 		if (S_ISFIFO(inode->i_mode))
5013 			return -ESPIPE;
5014 
5015 		mapping = filp->f_mapping;
5016 		if (!mapping || len < 0)
5017 			return -EINVAL;
5018 
5019 		bdi = inode_to_bdi(mapping->host);
5020 		filp->f_ra.ra_pages = bdi->ra_pages *
5021 			F2FS_I_SB(inode)->seq_file_ra_mul;
5022 		spin_lock(&filp->f_lock);
5023 		filp->f_mode &= ~FMODE_RANDOM;
5024 		spin_unlock(&filp->f_lock);
5025 		return 0;
5026 	} else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5027 		/* Load extent cache at the first readahead. */
5028 		f2fs_precache_extents(inode);
5029 	}
5030 
5031 	err = generic_fadvise(filp, offset, len, advice);
5032 	if (!err && advice == POSIX_FADV_DONTNEED &&
5033 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5034 		f2fs_compressed_file(inode))
5035 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5036 
5037 	return err;
5038 }
5039 
5040 #ifdef CONFIG_COMPAT
5041 struct compat_f2fs_gc_range {
5042 	u32 sync;
5043 	compat_u64 start;
5044 	compat_u64 len;
5045 };
5046 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
5047 						struct compat_f2fs_gc_range)
5048 
5049 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5050 {
5051 	struct compat_f2fs_gc_range __user *urange;
5052 	struct f2fs_gc_range range;
5053 	int err;
5054 
5055 	urange = compat_ptr(arg);
5056 	err = get_user(range.sync, &urange->sync);
5057 	err |= get_user(range.start, &urange->start);
5058 	err |= get_user(range.len, &urange->len);
5059 	if (err)
5060 		return -EFAULT;
5061 
5062 	return __f2fs_ioc_gc_range(file, &range);
5063 }
5064 
5065 struct compat_f2fs_move_range {
5066 	u32 dst_fd;
5067 	compat_u64 pos_in;
5068 	compat_u64 pos_out;
5069 	compat_u64 len;
5070 };
5071 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
5072 					struct compat_f2fs_move_range)
5073 
5074 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5075 {
5076 	struct compat_f2fs_move_range __user *urange;
5077 	struct f2fs_move_range range;
5078 	int err;
5079 
5080 	urange = compat_ptr(arg);
5081 	err = get_user(range.dst_fd, &urange->dst_fd);
5082 	err |= get_user(range.pos_in, &urange->pos_in);
5083 	err |= get_user(range.pos_out, &urange->pos_out);
5084 	err |= get_user(range.len, &urange->len);
5085 	if (err)
5086 		return -EFAULT;
5087 
5088 	return __f2fs_ioc_move_range(file, &range);
5089 }
5090 
5091 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5092 {
5093 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5094 		return -EIO;
5095 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5096 		return -ENOSPC;
5097 
5098 	switch (cmd) {
5099 	case FS_IOC32_GETVERSION:
5100 		cmd = FS_IOC_GETVERSION;
5101 		break;
5102 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5103 		return f2fs_compat_ioc_gc_range(file, arg);
5104 	case F2FS_IOC32_MOVE_RANGE:
5105 		return f2fs_compat_ioc_move_range(file, arg);
5106 	case F2FS_IOC_START_ATOMIC_WRITE:
5107 	case F2FS_IOC_START_ATOMIC_REPLACE:
5108 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5109 	case F2FS_IOC_START_VOLATILE_WRITE:
5110 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5111 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
5112 	case F2FS_IOC_SHUTDOWN:
5113 	case FITRIM:
5114 	case FS_IOC_SET_ENCRYPTION_POLICY:
5115 	case FS_IOC_GET_ENCRYPTION_PWSALT:
5116 	case FS_IOC_GET_ENCRYPTION_POLICY:
5117 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5118 	case FS_IOC_ADD_ENCRYPTION_KEY:
5119 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
5120 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5121 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5122 	case FS_IOC_GET_ENCRYPTION_NONCE:
5123 	case F2FS_IOC_GARBAGE_COLLECT:
5124 	case F2FS_IOC_WRITE_CHECKPOINT:
5125 	case F2FS_IOC_DEFRAGMENT:
5126 	case F2FS_IOC_FLUSH_DEVICE:
5127 	case F2FS_IOC_GET_FEATURES:
5128 	case F2FS_IOC_GET_PIN_FILE:
5129 	case F2FS_IOC_SET_PIN_FILE:
5130 	case F2FS_IOC_PRECACHE_EXTENTS:
5131 	case F2FS_IOC_RESIZE_FS:
5132 	case FS_IOC_ENABLE_VERITY:
5133 	case FS_IOC_MEASURE_VERITY:
5134 	case FS_IOC_READ_VERITY_METADATA:
5135 	case FS_IOC_GETFSLABEL:
5136 	case FS_IOC_SETFSLABEL:
5137 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5138 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5139 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5140 	case F2FS_IOC_SEC_TRIM_FILE:
5141 	case F2FS_IOC_GET_COMPRESS_OPTION:
5142 	case F2FS_IOC_SET_COMPRESS_OPTION:
5143 	case F2FS_IOC_DECOMPRESS_FILE:
5144 	case F2FS_IOC_COMPRESS_FILE:
5145 		break;
5146 	default:
5147 		return -ENOIOCTLCMD;
5148 	}
5149 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5150 }
5151 #endif
5152 
5153 const struct file_operations f2fs_file_operations = {
5154 	.llseek		= f2fs_llseek,
5155 	.read_iter	= f2fs_file_read_iter,
5156 	.write_iter	= f2fs_file_write_iter,
5157 	.iopoll		= iocb_bio_iopoll,
5158 	.open		= f2fs_file_open,
5159 	.release	= f2fs_release_file,
5160 	.mmap		= f2fs_file_mmap,
5161 	.flush		= f2fs_file_flush,
5162 	.fsync		= f2fs_sync_file,
5163 	.fallocate	= f2fs_fallocate,
5164 	.unlocked_ioctl	= f2fs_ioctl,
5165 #ifdef CONFIG_COMPAT
5166 	.compat_ioctl	= f2fs_compat_ioctl,
5167 #endif
5168 	.splice_read	= f2fs_file_splice_read,
5169 	.splice_write	= iter_file_splice_write,
5170 	.fadvise	= f2fs_file_fadvise,
5171 	.fop_flags	= FOP_BUFFER_RASYNC,
5172 };
5173