1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 #include <linux/fadvise.h> 27 #include <linux/iomap.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "acl.h" 34 #include "gc.h" 35 #include "iostat.h" 36 #include <trace/events/f2fs.h> 37 #include <uapi/linux/f2fs.h> 38 39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 40 { 41 struct inode *inode = file_inode(vmf->vma->vm_file); 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (!ret) 46 f2fs_update_iostat(F2FS_I_SB(inode), APP_MAPPED_READ_IO, 47 F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(IS_IMMUTABLE(inode))) 64 return VM_FAULT_SIGBUS; 65 66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 67 return VM_FAULT_SIGBUS; 68 69 if (unlikely(f2fs_cp_error(sbi))) { 70 err = -EIO; 71 goto err; 72 } 73 74 if (!f2fs_is_checkpoint_ready(sbi)) { 75 err = -ENOSPC; 76 goto err; 77 } 78 79 err = f2fs_convert_inline_inode(inode); 80 if (err) 81 goto err; 82 83 #ifdef CONFIG_F2FS_FS_COMPRESSION 84 if (f2fs_compressed_file(inode)) { 85 int ret = f2fs_is_compressed_cluster(inode, page->index); 86 87 if (ret < 0) { 88 err = ret; 89 goto err; 90 } else if (ret) { 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 filemap_invalidate_lock_shared(inode->i_mapping); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 117 set_new_dnode(&dn, inode, NULL, NULL, 0); 118 err = f2fs_get_block(&dn, page->index); 119 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 120 } 121 122 #ifdef CONFIG_F2FS_FS_COMPRESSION 123 if (!need_alloc) { 124 set_new_dnode(&dn, inode, NULL, NULL, 0); 125 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 126 f2fs_put_dnode(&dn); 127 } 128 #endif 129 if (err) { 130 unlock_page(page); 131 goto out_sem; 132 } 133 134 f2fs_wait_on_page_writeback(page, DATA, false, true); 135 136 /* wait for GCed page writeback via META_MAPPING */ 137 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 138 139 /* 140 * check to see if the page is mapped already (no holes) 141 */ 142 if (PageMappedToDisk(page)) 143 goto out_sem; 144 145 /* page is wholly or partially inside EOF */ 146 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 147 i_size_read(inode)) { 148 loff_t offset; 149 150 offset = i_size_read(inode) & ~PAGE_MASK; 151 zero_user_segment(page, offset, PAGE_SIZE); 152 } 153 set_page_dirty(page); 154 if (!PageUptodate(page)) 155 SetPageUptodate(page); 156 157 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 158 f2fs_update_time(sbi, REQ_TIME); 159 160 trace_f2fs_vm_page_mkwrite(page, DATA); 161 out_sem: 162 filemap_invalidate_unlock_shared(inode->i_mapping); 163 164 sb_end_pagefault(inode->i_sb); 165 err: 166 return block_page_mkwrite_return(err); 167 } 168 169 static const struct vm_operations_struct f2fs_file_vm_ops = { 170 .fault = f2fs_filemap_fault, 171 .map_pages = filemap_map_pages, 172 .page_mkwrite = f2fs_vm_page_mkwrite, 173 }; 174 175 static int get_parent_ino(struct inode *inode, nid_t *pino) 176 { 177 struct dentry *dentry; 178 179 /* 180 * Make sure to get the non-deleted alias. The alias associated with 181 * the open file descriptor being fsync()'ed may be deleted already. 182 */ 183 dentry = d_find_alias(inode); 184 if (!dentry) 185 return 0; 186 187 *pino = parent_ino(dentry); 188 dput(dentry); 189 return 1; 190 } 191 192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 193 { 194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 195 enum cp_reason_type cp_reason = CP_NO_NEEDED; 196 197 if (!S_ISREG(inode->i_mode)) 198 cp_reason = CP_NON_REGULAR; 199 else if (f2fs_compressed_file(inode)) 200 cp_reason = CP_COMPRESSED; 201 else if (inode->i_nlink != 1) 202 cp_reason = CP_HARDLINK; 203 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 204 cp_reason = CP_SB_NEED_CP; 205 else if (file_wrong_pino(inode)) 206 cp_reason = CP_WRONG_PINO; 207 else if (!f2fs_space_for_roll_forward(sbi)) 208 cp_reason = CP_NO_SPC_ROLL; 209 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 210 cp_reason = CP_NODE_NEED_CP; 211 else if (test_opt(sbi, FASTBOOT)) 212 cp_reason = CP_FASTBOOT_MODE; 213 else if (F2FS_OPTION(sbi).active_logs == 2) 214 cp_reason = CP_SPEC_LOG_NUM; 215 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 216 f2fs_need_dentry_mark(sbi, inode->i_ino) && 217 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 218 TRANS_DIR_INO)) 219 cp_reason = CP_RECOVER_DIR; 220 221 return cp_reason; 222 } 223 224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 225 { 226 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 227 bool ret = false; 228 /* But we need to avoid that there are some inode updates */ 229 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 230 ret = true; 231 f2fs_put_page(i, 0); 232 return ret; 233 } 234 235 static void try_to_fix_pino(struct inode *inode) 236 { 237 struct f2fs_inode_info *fi = F2FS_I(inode); 238 nid_t pino; 239 240 f2fs_down_write(&fi->i_sem); 241 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 242 get_parent_ino(inode, &pino)) { 243 f2fs_i_pino_write(inode, pino); 244 file_got_pino(inode); 245 } 246 f2fs_up_write(&fi->i_sem); 247 } 248 249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 250 int datasync, bool atomic) 251 { 252 struct inode *inode = file->f_mapping->host; 253 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 254 nid_t ino = inode->i_ino; 255 int ret = 0; 256 enum cp_reason_type cp_reason = 0; 257 struct writeback_control wbc = { 258 .sync_mode = WB_SYNC_ALL, 259 .nr_to_write = LONG_MAX, 260 .for_reclaim = 0, 261 }; 262 unsigned int seq_id = 0; 263 264 if (unlikely(f2fs_readonly(inode->i_sb))) 265 return 0; 266 267 trace_f2fs_sync_file_enter(inode); 268 269 if (S_ISDIR(inode->i_mode)) 270 goto go_write; 271 272 /* if fdatasync is triggered, let's do in-place-update */ 273 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 274 set_inode_flag(inode, FI_NEED_IPU); 275 ret = file_write_and_wait_range(file, start, end); 276 clear_inode_flag(inode, FI_NEED_IPU); 277 278 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 279 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 280 return ret; 281 } 282 283 /* if the inode is dirty, let's recover all the time */ 284 if (!f2fs_skip_inode_update(inode, datasync)) { 285 f2fs_write_inode(inode, NULL); 286 goto go_write; 287 } 288 289 /* 290 * if there is no written data, don't waste time to write recovery info. 291 */ 292 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 293 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 294 295 /* it may call write_inode just prior to fsync */ 296 if (need_inode_page_update(sbi, ino)) 297 goto go_write; 298 299 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 300 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 301 goto flush_out; 302 goto out; 303 } else { 304 /* 305 * for OPU case, during fsync(), node can be persisted before 306 * data when lower device doesn't support write barrier, result 307 * in data corruption after SPO. 308 * So for strict fsync mode, force to use atomic write sematics 309 * to keep write order in between data/node and last node to 310 * avoid potential data corruption. 311 */ 312 if (F2FS_OPTION(sbi).fsync_mode == 313 FSYNC_MODE_STRICT && !atomic) 314 atomic = true; 315 } 316 go_write: 317 /* 318 * Both of fdatasync() and fsync() are able to be recovered from 319 * sudden-power-off. 320 */ 321 f2fs_down_read(&F2FS_I(inode)->i_sem); 322 cp_reason = need_do_checkpoint(inode); 323 f2fs_up_read(&F2FS_I(inode)->i_sem); 324 325 if (cp_reason) { 326 /* all the dirty node pages should be flushed for POR */ 327 ret = f2fs_sync_fs(inode->i_sb, 1); 328 329 /* 330 * We've secured consistency through sync_fs. Following pino 331 * will be used only for fsynced inodes after checkpoint. 332 */ 333 try_to_fix_pino(inode); 334 clear_inode_flag(inode, FI_APPEND_WRITE); 335 clear_inode_flag(inode, FI_UPDATE_WRITE); 336 goto out; 337 } 338 sync_nodes: 339 atomic_inc(&sbi->wb_sync_req[NODE]); 340 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 341 atomic_dec(&sbi->wb_sync_req[NODE]); 342 if (ret) 343 goto out; 344 345 /* if cp_error was enabled, we should avoid infinite loop */ 346 if (unlikely(f2fs_cp_error(sbi))) { 347 ret = -EIO; 348 goto out; 349 } 350 351 if (f2fs_need_inode_block_update(sbi, ino)) { 352 f2fs_mark_inode_dirty_sync(inode, true); 353 f2fs_write_inode(inode, NULL); 354 goto sync_nodes; 355 } 356 357 /* 358 * If it's atomic_write, it's just fine to keep write ordering. So 359 * here we don't need to wait for node write completion, since we use 360 * node chain which serializes node blocks. If one of node writes are 361 * reordered, we can see simply broken chain, resulting in stopping 362 * roll-forward recovery. It means we'll recover all or none node blocks 363 * given fsync mark. 364 */ 365 if (!atomic) { 366 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 367 if (ret) 368 goto out; 369 } 370 371 /* once recovery info is written, don't need to tack this */ 372 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 373 clear_inode_flag(inode, FI_APPEND_WRITE); 374 flush_out: 375 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) || 376 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi))) 377 ret = f2fs_issue_flush(sbi, inode->i_ino); 378 if (!ret) { 379 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 380 clear_inode_flag(inode, FI_UPDATE_WRITE); 381 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 382 } 383 f2fs_update_time(sbi, REQ_TIME); 384 out: 385 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 386 return ret; 387 } 388 389 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 390 { 391 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 392 return -EIO; 393 return f2fs_do_sync_file(file, start, end, datasync, false); 394 } 395 396 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 397 pgoff_t index, int whence) 398 { 399 switch (whence) { 400 case SEEK_DATA: 401 if (__is_valid_data_blkaddr(blkaddr)) 402 return true; 403 if (blkaddr == NEW_ADDR && 404 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 405 return true; 406 break; 407 case SEEK_HOLE: 408 if (blkaddr == NULL_ADDR) 409 return true; 410 break; 411 } 412 return false; 413 } 414 415 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 416 { 417 struct inode *inode = file->f_mapping->host; 418 loff_t maxbytes = inode->i_sb->s_maxbytes; 419 struct dnode_of_data dn; 420 pgoff_t pgofs, end_offset; 421 loff_t data_ofs = offset; 422 loff_t isize; 423 int err = 0; 424 425 inode_lock(inode); 426 427 isize = i_size_read(inode); 428 if (offset >= isize) 429 goto fail; 430 431 /* handle inline data case */ 432 if (f2fs_has_inline_data(inode)) { 433 if (whence == SEEK_HOLE) { 434 data_ofs = isize; 435 goto found; 436 } else if (whence == SEEK_DATA) { 437 data_ofs = offset; 438 goto found; 439 } 440 } 441 442 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 443 444 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 445 set_new_dnode(&dn, inode, NULL, NULL, 0); 446 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 447 if (err && err != -ENOENT) { 448 goto fail; 449 } else if (err == -ENOENT) { 450 /* direct node does not exists */ 451 if (whence == SEEK_DATA) { 452 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 453 continue; 454 } else { 455 goto found; 456 } 457 } 458 459 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 460 461 /* find data/hole in dnode block */ 462 for (; dn.ofs_in_node < end_offset; 463 dn.ofs_in_node++, pgofs++, 464 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 465 block_t blkaddr; 466 467 blkaddr = f2fs_data_blkaddr(&dn); 468 469 if (__is_valid_data_blkaddr(blkaddr) && 470 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 471 blkaddr, DATA_GENERIC_ENHANCE)) { 472 f2fs_put_dnode(&dn); 473 goto fail; 474 } 475 476 if (__found_offset(file->f_mapping, blkaddr, 477 pgofs, whence)) { 478 f2fs_put_dnode(&dn); 479 goto found; 480 } 481 } 482 f2fs_put_dnode(&dn); 483 } 484 485 if (whence == SEEK_DATA) 486 goto fail; 487 found: 488 if (whence == SEEK_HOLE && data_ofs > isize) 489 data_ofs = isize; 490 inode_unlock(inode); 491 return vfs_setpos(file, data_ofs, maxbytes); 492 fail: 493 inode_unlock(inode); 494 return -ENXIO; 495 } 496 497 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 498 { 499 struct inode *inode = file->f_mapping->host; 500 loff_t maxbytes = inode->i_sb->s_maxbytes; 501 502 if (f2fs_compressed_file(inode)) 503 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 504 505 switch (whence) { 506 case SEEK_SET: 507 case SEEK_CUR: 508 case SEEK_END: 509 return generic_file_llseek_size(file, offset, whence, 510 maxbytes, i_size_read(inode)); 511 case SEEK_DATA: 512 case SEEK_HOLE: 513 if (offset < 0) 514 return -ENXIO; 515 return f2fs_seek_block(file, offset, whence); 516 } 517 518 return -EINVAL; 519 } 520 521 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 522 { 523 struct inode *inode = file_inode(file); 524 525 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 526 return -EIO; 527 528 if (!f2fs_is_compress_backend_ready(inode)) 529 return -EOPNOTSUPP; 530 531 file_accessed(file); 532 vma->vm_ops = &f2fs_file_vm_ops; 533 set_inode_flag(inode, FI_MMAP_FILE); 534 return 0; 535 } 536 537 static int f2fs_file_open(struct inode *inode, struct file *filp) 538 { 539 int err = fscrypt_file_open(inode, filp); 540 541 if (err) 542 return err; 543 544 if (!f2fs_is_compress_backend_ready(inode)) 545 return -EOPNOTSUPP; 546 547 err = fsverity_file_open(inode, filp); 548 if (err) 549 return err; 550 551 filp->f_mode |= FMODE_NOWAIT; 552 553 return dquot_file_open(inode, filp); 554 } 555 556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 557 { 558 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 559 struct f2fs_node *raw_node; 560 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 561 __le32 *addr; 562 int base = 0; 563 bool compressed_cluster = false; 564 int cluster_index = 0, valid_blocks = 0; 565 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 566 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 567 568 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 569 base = get_extra_isize(dn->inode); 570 571 raw_node = F2FS_NODE(dn->node_page); 572 addr = blkaddr_in_node(raw_node) + base + ofs; 573 574 /* Assumption: truncateion starts with cluster */ 575 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 576 block_t blkaddr = le32_to_cpu(*addr); 577 578 if (f2fs_compressed_file(dn->inode) && 579 !(cluster_index & (cluster_size - 1))) { 580 if (compressed_cluster) 581 f2fs_i_compr_blocks_update(dn->inode, 582 valid_blocks, false); 583 compressed_cluster = (blkaddr == COMPRESS_ADDR); 584 valid_blocks = 0; 585 } 586 587 if (blkaddr == NULL_ADDR) 588 continue; 589 590 dn->data_blkaddr = NULL_ADDR; 591 f2fs_set_data_blkaddr(dn); 592 593 if (__is_valid_data_blkaddr(blkaddr)) { 594 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 595 DATA_GENERIC_ENHANCE)) 596 continue; 597 if (compressed_cluster) 598 valid_blocks++; 599 } 600 601 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 602 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 603 604 f2fs_invalidate_blocks(sbi, blkaddr); 605 606 if (!released || blkaddr != COMPRESS_ADDR) 607 nr_free++; 608 } 609 610 if (compressed_cluster) 611 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 612 613 if (nr_free) { 614 pgoff_t fofs; 615 /* 616 * once we invalidate valid blkaddr in range [ofs, ofs + count], 617 * we will invalidate all blkaddr in the whole range. 618 */ 619 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 620 dn->inode) + ofs; 621 f2fs_update_extent_cache_range(dn, fofs, 0, len); 622 dec_valid_block_count(sbi, dn->inode, nr_free); 623 } 624 dn->ofs_in_node = ofs; 625 626 f2fs_update_time(sbi, REQ_TIME); 627 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 628 dn->ofs_in_node, nr_free); 629 } 630 631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 632 { 633 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 634 } 635 636 static int truncate_partial_data_page(struct inode *inode, u64 from, 637 bool cache_only) 638 { 639 loff_t offset = from & (PAGE_SIZE - 1); 640 pgoff_t index = from >> PAGE_SHIFT; 641 struct address_space *mapping = inode->i_mapping; 642 struct page *page; 643 644 if (!offset && !cache_only) 645 return 0; 646 647 if (cache_only) { 648 page = find_lock_page(mapping, index); 649 if (page && PageUptodate(page)) 650 goto truncate_out; 651 f2fs_put_page(page, 1); 652 return 0; 653 } 654 655 page = f2fs_get_lock_data_page(inode, index, true); 656 if (IS_ERR(page)) 657 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 658 truncate_out: 659 f2fs_wait_on_page_writeback(page, DATA, true, true); 660 zero_user(page, offset, PAGE_SIZE - offset); 661 662 /* An encrypted inode should have a key and truncate the last page. */ 663 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 664 if (!cache_only) 665 set_page_dirty(page); 666 f2fs_put_page(page, 1); 667 return 0; 668 } 669 670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 671 { 672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 673 struct dnode_of_data dn; 674 pgoff_t free_from; 675 int count = 0, err = 0; 676 struct page *ipage; 677 bool truncate_page = false; 678 679 trace_f2fs_truncate_blocks_enter(inode, from); 680 681 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 682 683 if (free_from >= max_file_blocks(inode)) 684 goto free_partial; 685 686 if (lock) 687 f2fs_lock_op(sbi); 688 689 ipage = f2fs_get_node_page(sbi, inode->i_ino); 690 if (IS_ERR(ipage)) { 691 err = PTR_ERR(ipage); 692 goto out; 693 } 694 695 if (f2fs_has_inline_data(inode)) { 696 f2fs_truncate_inline_inode(inode, ipage, from); 697 f2fs_put_page(ipage, 1); 698 truncate_page = true; 699 goto out; 700 } 701 702 set_new_dnode(&dn, inode, ipage, NULL, 0); 703 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 704 if (err) { 705 if (err == -ENOENT) 706 goto free_next; 707 goto out; 708 } 709 710 count = ADDRS_PER_PAGE(dn.node_page, inode); 711 712 count -= dn.ofs_in_node; 713 f2fs_bug_on(sbi, count < 0); 714 715 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 716 f2fs_truncate_data_blocks_range(&dn, count); 717 free_from += count; 718 } 719 720 f2fs_put_dnode(&dn); 721 free_next: 722 err = f2fs_truncate_inode_blocks(inode, free_from); 723 out: 724 if (lock) 725 f2fs_unlock_op(sbi); 726 free_partial: 727 /* lastly zero out the first data page */ 728 if (!err) 729 err = truncate_partial_data_page(inode, from, truncate_page); 730 731 trace_f2fs_truncate_blocks_exit(inode, err); 732 return err; 733 } 734 735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 736 { 737 u64 free_from = from; 738 int err; 739 740 #ifdef CONFIG_F2FS_FS_COMPRESSION 741 /* 742 * for compressed file, only support cluster size 743 * aligned truncation. 744 */ 745 if (f2fs_compressed_file(inode)) 746 free_from = round_up(from, 747 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 748 #endif 749 750 err = f2fs_do_truncate_blocks(inode, free_from, lock); 751 if (err) 752 return err; 753 754 #ifdef CONFIG_F2FS_FS_COMPRESSION 755 /* 756 * For compressed file, after release compress blocks, don't allow write 757 * direct, but we should allow write direct after truncate to zero. 758 */ 759 if (f2fs_compressed_file(inode) && !free_from 760 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 761 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 762 763 if (from != free_from) { 764 err = f2fs_truncate_partial_cluster(inode, from, lock); 765 if (err) 766 return err; 767 } 768 #endif 769 770 return 0; 771 } 772 773 int f2fs_truncate(struct inode *inode) 774 { 775 int err; 776 777 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 778 return -EIO; 779 780 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 781 S_ISLNK(inode->i_mode))) 782 return 0; 783 784 trace_f2fs_truncate(inode); 785 786 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 787 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 788 return -EIO; 789 } 790 791 err = f2fs_dquot_initialize(inode); 792 if (err) 793 return err; 794 795 /* we should check inline_data size */ 796 if (!f2fs_may_inline_data(inode)) { 797 err = f2fs_convert_inline_inode(inode); 798 if (err) 799 return err; 800 } 801 802 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 803 if (err) 804 return err; 805 806 inode->i_mtime = inode->i_ctime = current_time(inode); 807 f2fs_mark_inode_dirty_sync(inode, false); 808 return 0; 809 } 810 811 static bool f2fs_force_buffered_io(struct inode *inode, int rw) 812 { 813 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 814 815 if (!fscrypt_dio_supported(inode)) 816 return true; 817 if (fsverity_active(inode)) 818 return true; 819 if (f2fs_compressed_file(inode)) 820 return true; 821 822 /* disallow direct IO if any of devices has unaligned blksize */ 823 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 824 return true; 825 826 if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi)) 827 return true; 828 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 829 return true; 830 831 return false; 832 } 833 834 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 835 struct kstat *stat, u32 request_mask, unsigned int query_flags) 836 { 837 struct inode *inode = d_inode(path->dentry); 838 struct f2fs_inode_info *fi = F2FS_I(inode); 839 struct f2fs_inode *ri = NULL; 840 unsigned int flags; 841 842 if (f2fs_has_extra_attr(inode) && 843 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 844 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 845 stat->result_mask |= STATX_BTIME; 846 stat->btime.tv_sec = fi->i_crtime.tv_sec; 847 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 848 } 849 850 /* 851 * Return the DIO alignment restrictions if requested. We only return 852 * this information when requested, since on encrypted files it might 853 * take a fair bit of work to get if the file wasn't opened recently. 854 * 855 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN 856 * cannot represent that, so in that case we report no DIO support. 857 */ 858 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 859 unsigned int bsize = i_blocksize(inode); 860 861 stat->result_mask |= STATX_DIOALIGN; 862 if (!f2fs_force_buffered_io(inode, WRITE)) { 863 stat->dio_mem_align = bsize; 864 stat->dio_offset_align = bsize; 865 } 866 } 867 868 flags = fi->i_flags; 869 if (flags & F2FS_COMPR_FL) 870 stat->attributes |= STATX_ATTR_COMPRESSED; 871 if (flags & F2FS_APPEND_FL) 872 stat->attributes |= STATX_ATTR_APPEND; 873 if (IS_ENCRYPTED(inode)) 874 stat->attributes |= STATX_ATTR_ENCRYPTED; 875 if (flags & F2FS_IMMUTABLE_FL) 876 stat->attributes |= STATX_ATTR_IMMUTABLE; 877 if (flags & F2FS_NODUMP_FL) 878 stat->attributes |= STATX_ATTR_NODUMP; 879 if (IS_VERITY(inode)) 880 stat->attributes |= STATX_ATTR_VERITY; 881 882 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 883 STATX_ATTR_APPEND | 884 STATX_ATTR_ENCRYPTED | 885 STATX_ATTR_IMMUTABLE | 886 STATX_ATTR_NODUMP | 887 STATX_ATTR_VERITY); 888 889 generic_fillattr(mnt_userns, inode, stat); 890 891 /* we need to show initial sectors used for inline_data/dentries */ 892 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 893 f2fs_has_inline_dentry(inode)) 894 stat->blocks += (stat->size + 511) >> 9; 895 896 return 0; 897 } 898 899 #ifdef CONFIG_F2FS_FS_POSIX_ACL 900 static void __setattr_copy(struct user_namespace *mnt_userns, 901 struct inode *inode, const struct iattr *attr) 902 { 903 unsigned int ia_valid = attr->ia_valid; 904 905 i_uid_update(mnt_userns, attr, inode); 906 i_gid_update(mnt_userns, attr, inode); 907 if (ia_valid & ATTR_ATIME) 908 inode->i_atime = attr->ia_atime; 909 if (ia_valid & ATTR_MTIME) 910 inode->i_mtime = attr->ia_mtime; 911 if (ia_valid & ATTR_CTIME) 912 inode->i_ctime = attr->ia_ctime; 913 if (ia_valid & ATTR_MODE) { 914 umode_t mode = attr->ia_mode; 915 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode); 916 917 if (!in_group_p(kgid) && !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID)) 918 mode &= ~S_ISGID; 919 set_acl_inode(inode, mode); 920 } 921 } 922 #else 923 #define __setattr_copy setattr_copy 924 #endif 925 926 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 927 struct iattr *attr) 928 { 929 struct inode *inode = d_inode(dentry); 930 int err; 931 932 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 933 return -EIO; 934 935 if (unlikely(IS_IMMUTABLE(inode))) 936 return -EPERM; 937 938 if (unlikely(IS_APPEND(inode) && 939 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 940 ATTR_GID | ATTR_TIMES_SET)))) 941 return -EPERM; 942 943 if ((attr->ia_valid & ATTR_SIZE) && 944 !f2fs_is_compress_backend_ready(inode)) 945 return -EOPNOTSUPP; 946 947 err = setattr_prepare(mnt_userns, dentry, attr); 948 if (err) 949 return err; 950 951 err = fscrypt_prepare_setattr(dentry, attr); 952 if (err) 953 return err; 954 955 err = fsverity_prepare_setattr(dentry, attr); 956 if (err) 957 return err; 958 959 if (is_quota_modification(mnt_userns, inode, attr)) { 960 err = f2fs_dquot_initialize(inode); 961 if (err) 962 return err; 963 } 964 if (i_uid_needs_update(mnt_userns, attr, inode) || 965 i_gid_needs_update(mnt_userns, attr, inode)) { 966 f2fs_lock_op(F2FS_I_SB(inode)); 967 err = dquot_transfer(mnt_userns, inode, attr); 968 if (err) { 969 set_sbi_flag(F2FS_I_SB(inode), 970 SBI_QUOTA_NEED_REPAIR); 971 f2fs_unlock_op(F2FS_I_SB(inode)); 972 return err; 973 } 974 /* 975 * update uid/gid under lock_op(), so that dquot and inode can 976 * be updated atomically. 977 */ 978 i_uid_update(mnt_userns, attr, inode); 979 i_gid_update(mnt_userns, attr, inode); 980 f2fs_mark_inode_dirty_sync(inode, true); 981 f2fs_unlock_op(F2FS_I_SB(inode)); 982 } 983 984 if (attr->ia_valid & ATTR_SIZE) { 985 loff_t old_size = i_size_read(inode); 986 987 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 988 /* 989 * should convert inline inode before i_size_write to 990 * keep smaller than inline_data size with inline flag. 991 */ 992 err = f2fs_convert_inline_inode(inode); 993 if (err) 994 return err; 995 } 996 997 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 998 filemap_invalidate_lock(inode->i_mapping); 999 1000 truncate_setsize(inode, attr->ia_size); 1001 1002 if (attr->ia_size <= old_size) 1003 err = f2fs_truncate(inode); 1004 /* 1005 * do not trim all blocks after i_size if target size is 1006 * larger than i_size. 1007 */ 1008 filemap_invalidate_unlock(inode->i_mapping); 1009 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1010 if (err) 1011 return err; 1012 1013 spin_lock(&F2FS_I(inode)->i_size_lock); 1014 inode->i_mtime = inode->i_ctime = current_time(inode); 1015 F2FS_I(inode)->last_disk_size = i_size_read(inode); 1016 spin_unlock(&F2FS_I(inode)->i_size_lock); 1017 } 1018 1019 __setattr_copy(mnt_userns, inode, attr); 1020 1021 if (attr->ia_valid & ATTR_MODE) { 1022 err = posix_acl_chmod(mnt_userns, inode, f2fs_get_inode_mode(inode)); 1023 1024 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 1025 if (!err) 1026 inode->i_mode = F2FS_I(inode)->i_acl_mode; 1027 clear_inode_flag(inode, FI_ACL_MODE); 1028 } 1029 } 1030 1031 /* file size may changed here */ 1032 f2fs_mark_inode_dirty_sync(inode, true); 1033 1034 /* inode change will produce dirty node pages flushed by checkpoint */ 1035 f2fs_balance_fs(F2FS_I_SB(inode), true); 1036 1037 return err; 1038 } 1039 1040 const struct inode_operations f2fs_file_inode_operations = { 1041 .getattr = f2fs_getattr, 1042 .setattr = f2fs_setattr, 1043 .get_acl = f2fs_get_acl, 1044 .set_acl = f2fs_set_acl, 1045 .listxattr = f2fs_listxattr, 1046 .fiemap = f2fs_fiemap, 1047 .fileattr_get = f2fs_fileattr_get, 1048 .fileattr_set = f2fs_fileattr_set, 1049 }; 1050 1051 static int fill_zero(struct inode *inode, pgoff_t index, 1052 loff_t start, loff_t len) 1053 { 1054 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1055 struct page *page; 1056 1057 if (!len) 1058 return 0; 1059 1060 f2fs_balance_fs(sbi, true); 1061 1062 f2fs_lock_op(sbi); 1063 page = f2fs_get_new_data_page(inode, NULL, index, false); 1064 f2fs_unlock_op(sbi); 1065 1066 if (IS_ERR(page)) 1067 return PTR_ERR(page); 1068 1069 f2fs_wait_on_page_writeback(page, DATA, true, true); 1070 zero_user(page, start, len); 1071 set_page_dirty(page); 1072 f2fs_put_page(page, 1); 1073 return 0; 1074 } 1075 1076 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1077 { 1078 int err; 1079 1080 while (pg_start < pg_end) { 1081 struct dnode_of_data dn; 1082 pgoff_t end_offset, count; 1083 1084 set_new_dnode(&dn, inode, NULL, NULL, 0); 1085 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1086 if (err) { 1087 if (err == -ENOENT) { 1088 pg_start = f2fs_get_next_page_offset(&dn, 1089 pg_start); 1090 continue; 1091 } 1092 return err; 1093 } 1094 1095 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1096 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1097 1098 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1099 1100 f2fs_truncate_data_blocks_range(&dn, count); 1101 f2fs_put_dnode(&dn); 1102 1103 pg_start += count; 1104 } 1105 return 0; 1106 } 1107 1108 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1109 { 1110 pgoff_t pg_start, pg_end; 1111 loff_t off_start, off_end; 1112 int ret; 1113 1114 ret = f2fs_convert_inline_inode(inode); 1115 if (ret) 1116 return ret; 1117 1118 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1119 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1120 1121 off_start = offset & (PAGE_SIZE - 1); 1122 off_end = (offset + len) & (PAGE_SIZE - 1); 1123 1124 if (pg_start == pg_end) { 1125 ret = fill_zero(inode, pg_start, off_start, 1126 off_end - off_start); 1127 if (ret) 1128 return ret; 1129 } else { 1130 if (off_start) { 1131 ret = fill_zero(inode, pg_start++, off_start, 1132 PAGE_SIZE - off_start); 1133 if (ret) 1134 return ret; 1135 } 1136 if (off_end) { 1137 ret = fill_zero(inode, pg_end, 0, off_end); 1138 if (ret) 1139 return ret; 1140 } 1141 1142 if (pg_start < pg_end) { 1143 loff_t blk_start, blk_end; 1144 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1145 1146 f2fs_balance_fs(sbi, true); 1147 1148 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1149 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1150 1151 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1152 filemap_invalidate_lock(inode->i_mapping); 1153 1154 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1155 1156 f2fs_lock_op(sbi); 1157 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1158 f2fs_unlock_op(sbi); 1159 1160 filemap_invalidate_unlock(inode->i_mapping); 1161 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1162 } 1163 } 1164 1165 return ret; 1166 } 1167 1168 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1169 int *do_replace, pgoff_t off, pgoff_t len) 1170 { 1171 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1172 struct dnode_of_data dn; 1173 int ret, done, i; 1174 1175 next_dnode: 1176 set_new_dnode(&dn, inode, NULL, NULL, 0); 1177 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1178 if (ret && ret != -ENOENT) { 1179 return ret; 1180 } else if (ret == -ENOENT) { 1181 if (dn.max_level == 0) 1182 return -ENOENT; 1183 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1184 dn.ofs_in_node, len); 1185 blkaddr += done; 1186 do_replace += done; 1187 goto next; 1188 } 1189 1190 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1191 dn.ofs_in_node, len); 1192 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1193 *blkaddr = f2fs_data_blkaddr(&dn); 1194 1195 if (__is_valid_data_blkaddr(*blkaddr) && 1196 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1197 DATA_GENERIC_ENHANCE)) { 1198 f2fs_put_dnode(&dn); 1199 return -EFSCORRUPTED; 1200 } 1201 1202 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1203 1204 if (f2fs_lfs_mode(sbi)) { 1205 f2fs_put_dnode(&dn); 1206 return -EOPNOTSUPP; 1207 } 1208 1209 /* do not invalidate this block address */ 1210 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1211 *do_replace = 1; 1212 } 1213 } 1214 f2fs_put_dnode(&dn); 1215 next: 1216 len -= done; 1217 off += done; 1218 if (len) 1219 goto next_dnode; 1220 return 0; 1221 } 1222 1223 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1224 int *do_replace, pgoff_t off, int len) 1225 { 1226 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1227 struct dnode_of_data dn; 1228 int ret, i; 1229 1230 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1231 if (*do_replace == 0) 1232 continue; 1233 1234 set_new_dnode(&dn, inode, NULL, NULL, 0); 1235 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1236 if (ret) { 1237 dec_valid_block_count(sbi, inode, 1); 1238 f2fs_invalidate_blocks(sbi, *blkaddr); 1239 } else { 1240 f2fs_update_data_blkaddr(&dn, *blkaddr); 1241 } 1242 f2fs_put_dnode(&dn); 1243 } 1244 return 0; 1245 } 1246 1247 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1248 block_t *blkaddr, int *do_replace, 1249 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1250 { 1251 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1252 pgoff_t i = 0; 1253 int ret; 1254 1255 while (i < len) { 1256 if (blkaddr[i] == NULL_ADDR && !full) { 1257 i++; 1258 continue; 1259 } 1260 1261 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1262 struct dnode_of_data dn; 1263 struct node_info ni; 1264 size_t new_size; 1265 pgoff_t ilen; 1266 1267 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1268 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1269 if (ret) 1270 return ret; 1271 1272 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1273 if (ret) { 1274 f2fs_put_dnode(&dn); 1275 return ret; 1276 } 1277 1278 ilen = min((pgoff_t) 1279 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1280 dn.ofs_in_node, len - i); 1281 do { 1282 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1283 f2fs_truncate_data_blocks_range(&dn, 1); 1284 1285 if (do_replace[i]) { 1286 f2fs_i_blocks_write(src_inode, 1287 1, false, false); 1288 f2fs_i_blocks_write(dst_inode, 1289 1, true, false); 1290 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1291 blkaddr[i], ni.version, true, false); 1292 1293 do_replace[i] = 0; 1294 } 1295 dn.ofs_in_node++; 1296 i++; 1297 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1298 if (dst_inode->i_size < new_size) 1299 f2fs_i_size_write(dst_inode, new_size); 1300 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1301 1302 f2fs_put_dnode(&dn); 1303 } else { 1304 struct page *psrc, *pdst; 1305 1306 psrc = f2fs_get_lock_data_page(src_inode, 1307 src + i, true); 1308 if (IS_ERR(psrc)) 1309 return PTR_ERR(psrc); 1310 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1311 true); 1312 if (IS_ERR(pdst)) { 1313 f2fs_put_page(psrc, 1); 1314 return PTR_ERR(pdst); 1315 } 1316 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); 1317 set_page_dirty(pdst); 1318 f2fs_put_page(pdst, 1); 1319 f2fs_put_page(psrc, 1); 1320 1321 ret = f2fs_truncate_hole(src_inode, 1322 src + i, src + i + 1); 1323 if (ret) 1324 return ret; 1325 i++; 1326 } 1327 } 1328 return 0; 1329 } 1330 1331 static int __exchange_data_block(struct inode *src_inode, 1332 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1333 pgoff_t len, bool full) 1334 { 1335 block_t *src_blkaddr; 1336 int *do_replace; 1337 pgoff_t olen; 1338 int ret; 1339 1340 while (len) { 1341 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1342 1343 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1344 array_size(olen, sizeof(block_t)), 1345 GFP_NOFS); 1346 if (!src_blkaddr) 1347 return -ENOMEM; 1348 1349 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1350 array_size(olen, sizeof(int)), 1351 GFP_NOFS); 1352 if (!do_replace) { 1353 kvfree(src_blkaddr); 1354 return -ENOMEM; 1355 } 1356 1357 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1358 do_replace, src, olen); 1359 if (ret) 1360 goto roll_back; 1361 1362 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1363 do_replace, src, dst, olen, full); 1364 if (ret) 1365 goto roll_back; 1366 1367 src += olen; 1368 dst += olen; 1369 len -= olen; 1370 1371 kvfree(src_blkaddr); 1372 kvfree(do_replace); 1373 } 1374 return 0; 1375 1376 roll_back: 1377 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1378 kvfree(src_blkaddr); 1379 kvfree(do_replace); 1380 return ret; 1381 } 1382 1383 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1384 { 1385 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1386 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1387 pgoff_t start = offset >> PAGE_SHIFT; 1388 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1389 int ret; 1390 1391 f2fs_balance_fs(sbi, true); 1392 1393 /* avoid gc operation during block exchange */ 1394 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1395 filemap_invalidate_lock(inode->i_mapping); 1396 1397 f2fs_lock_op(sbi); 1398 f2fs_drop_extent_tree(inode); 1399 truncate_pagecache(inode, offset); 1400 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1401 f2fs_unlock_op(sbi); 1402 1403 filemap_invalidate_unlock(inode->i_mapping); 1404 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1405 return ret; 1406 } 1407 1408 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1409 { 1410 loff_t new_size; 1411 int ret; 1412 1413 if (offset + len >= i_size_read(inode)) 1414 return -EINVAL; 1415 1416 /* collapse range should be aligned to block size of f2fs. */ 1417 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1418 return -EINVAL; 1419 1420 ret = f2fs_convert_inline_inode(inode); 1421 if (ret) 1422 return ret; 1423 1424 /* write out all dirty pages from offset */ 1425 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1426 if (ret) 1427 return ret; 1428 1429 ret = f2fs_do_collapse(inode, offset, len); 1430 if (ret) 1431 return ret; 1432 1433 /* write out all moved pages, if possible */ 1434 filemap_invalidate_lock(inode->i_mapping); 1435 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1436 truncate_pagecache(inode, offset); 1437 1438 new_size = i_size_read(inode) - len; 1439 ret = f2fs_truncate_blocks(inode, new_size, true); 1440 filemap_invalidate_unlock(inode->i_mapping); 1441 if (!ret) 1442 f2fs_i_size_write(inode, new_size); 1443 return ret; 1444 } 1445 1446 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1447 pgoff_t end) 1448 { 1449 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1450 pgoff_t index = start; 1451 unsigned int ofs_in_node = dn->ofs_in_node; 1452 blkcnt_t count = 0; 1453 int ret; 1454 1455 for (; index < end; index++, dn->ofs_in_node++) { 1456 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1457 count++; 1458 } 1459 1460 dn->ofs_in_node = ofs_in_node; 1461 ret = f2fs_reserve_new_blocks(dn, count); 1462 if (ret) 1463 return ret; 1464 1465 dn->ofs_in_node = ofs_in_node; 1466 for (index = start; index < end; index++, dn->ofs_in_node++) { 1467 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1468 /* 1469 * f2fs_reserve_new_blocks will not guarantee entire block 1470 * allocation. 1471 */ 1472 if (dn->data_blkaddr == NULL_ADDR) { 1473 ret = -ENOSPC; 1474 break; 1475 } 1476 1477 if (dn->data_blkaddr == NEW_ADDR) 1478 continue; 1479 1480 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1481 DATA_GENERIC_ENHANCE)) { 1482 ret = -EFSCORRUPTED; 1483 break; 1484 } 1485 1486 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1487 dn->data_blkaddr = NEW_ADDR; 1488 f2fs_set_data_blkaddr(dn); 1489 } 1490 1491 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1492 1493 return ret; 1494 } 1495 1496 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1497 int mode) 1498 { 1499 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1500 struct address_space *mapping = inode->i_mapping; 1501 pgoff_t index, pg_start, pg_end; 1502 loff_t new_size = i_size_read(inode); 1503 loff_t off_start, off_end; 1504 int ret = 0; 1505 1506 ret = inode_newsize_ok(inode, (len + offset)); 1507 if (ret) 1508 return ret; 1509 1510 ret = f2fs_convert_inline_inode(inode); 1511 if (ret) 1512 return ret; 1513 1514 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1515 if (ret) 1516 return ret; 1517 1518 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1519 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1520 1521 off_start = offset & (PAGE_SIZE - 1); 1522 off_end = (offset + len) & (PAGE_SIZE - 1); 1523 1524 if (pg_start == pg_end) { 1525 ret = fill_zero(inode, pg_start, off_start, 1526 off_end - off_start); 1527 if (ret) 1528 return ret; 1529 1530 new_size = max_t(loff_t, new_size, offset + len); 1531 } else { 1532 if (off_start) { 1533 ret = fill_zero(inode, pg_start++, off_start, 1534 PAGE_SIZE - off_start); 1535 if (ret) 1536 return ret; 1537 1538 new_size = max_t(loff_t, new_size, 1539 (loff_t)pg_start << PAGE_SHIFT); 1540 } 1541 1542 for (index = pg_start; index < pg_end;) { 1543 struct dnode_of_data dn; 1544 unsigned int end_offset; 1545 pgoff_t end; 1546 1547 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1548 filemap_invalidate_lock(mapping); 1549 1550 truncate_pagecache_range(inode, 1551 (loff_t)index << PAGE_SHIFT, 1552 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1553 1554 f2fs_lock_op(sbi); 1555 1556 set_new_dnode(&dn, inode, NULL, NULL, 0); 1557 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1558 if (ret) { 1559 f2fs_unlock_op(sbi); 1560 filemap_invalidate_unlock(mapping); 1561 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1562 goto out; 1563 } 1564 1565 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1566 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1567 1568 ret = f2fs_do_zero_range(&dn, index, end); 1569 f2fs_put_dnode(&dn); 1570 1571 f2fs_unlock_op(sbi); 1572 filemap_invalidate_unlock(mapping); 1573 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1574 1575 f2fs_balance_fs(sbi, dn.node_changed); 1576 1577 if (ret) 1578 goto out; 1579 1580 index = end; 1581 new_size = max_t(loff_t, new_size, 1582 (loff_t)index << PAGE_SHIFT); 1583 } 1584 1585 if (off_end) { 1586 ret = fill_zero(inode, pg_end, 0, off_end); 1587 if (ret) 1588 goto out; 1589 1590 new_size = max_t(loff_t, new_size, offset + len); 1591 } 1592 } 1593 1594 out: 1595 if (new_size > i_size_read(inode)) { 1596 if (mode & FALLOC_FL_KEEP_SIZE) 1597 file_set_keep_isize(inode); 1598 else 1599 f2fs_i_size_write(inode, new_size); 1600 } 1601 return ret; 1602 } 1603 1604 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1605 { 1606 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1607 struct address_space *mapping = inode->i_mapping; 1608 pgoff_t nr, pg_start, pg_end, delta, idx; 1609 loff_t new_size; 1610 int ret = 0; 1611 1612 new_size = i_size_read(inode) + len; 1613 ret = inode_newsize_ok(inode, new_size); 1614 if (ret) 1615 return ret; 1616 1617 if (offset >= i_size_read(inode)) 1618 return -EINVAL; 1619 1620 /* insert range should be aligned to block size of f2fs. */ 1621 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1622 return -EINVAL; 1623 1624 ret = f2fs_convert_inline_inode(inode); 1625 if (ret) 1626 return ret; 1627 1628 f2fs_balance_fs(sbi, true); 1629 1630 filemap_invalidate_lock(mapping); 1631 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1632 filemap_invalidate_unlock(mapping); 1633 if (ret) 1634 return ret; 1635 1636 /* write out all dirty pages from offset */ 1637 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1638 if (ret) 1639 return ret; 1640 1641 pg_start = offset >> PAGE_SHIFT; 1642 pg_end = (offset + len) >> PAGE_SHIFT; 1643 delta = pg_end - pg_start; 1644 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1645 1646 /* avoid gc operation during block exchange */ 1647 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1648 filemap_invalidate_lock(mapping); 1649 truncate_pagecache(inode, offset); 1650 1651 while (!ret && idx > pg_start) { 1652 nr = idx - pg_start; 1653 if (nr > delta) 1654 nr = delta; 1655 idx -= nr; 1656 1657 f2fs_lock_op(sbi); 1658 f2fs_drop_extent_tree(inode); 1659 1660 ret = __exchange_data_block(inode, inode, idx, 1661 idx + delta, nr, false); 1662 f2fs_unlock_op(sbi); 1663 } 1664 filemap_invalidate_unlock(mapping); 1665 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1666 1667 /* write out all moved pages, if possible */ 1668 filemap_invalidate_lock(mapping); 1669 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1670 truncate_pagecache(inode, offset); 1671 filemap_invalidate_unlock(mapping); 1672 1673 if (!ret) 1674 f2fs_i_size_write(inode, new_size); 1675 return ret; 1676 } 1677 1678 static int expand_inode_data(struct inode *inode, loff_t offset, 1679 loff_t len, int mode) 1680 { 1681 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1682 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1683 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1684 .m_may_create = true }; 1685 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1686 .init_gc_type = FG_GC, 1687 .should_migrate_blocks = false, 1688 .err_gc_skipped = true, 1689 .nr_free_secs = 0 }; 1690 pgoff_t pg_start, pg_end; 1691 loff_t new_size = i_size_read(inode); 1692 loff_t off_end; 1693 block_t expanded = 0; 1694 int err; 1695 1696 err = inode_newsize_ok(inode, (len + offset)); 1697 if (err) 1698 return err; 1699 1700 err = f2fs_convert_inline_inode(inode); 1701 if (err) 1702 return err; 1703 1704 f2fs_balance_fs(sbi, true); 1705 1706 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1707 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1708 off_end = (offset + len) & (PAGE_SIZE - 1); 1709 1710 map.m_lblk = pg_start; 1711 map.m_len = pg_end - pg_start; 1712 if (off_end) 1713 map.m_len++; 1714 1715 if (!map.m_len) 1716 return 0; 1717 1718 if (f2fs_is_pinned_file(inode)) { 1719 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1720 block_t sec_len = roundup(map.m_len, sec_blks); 1721 1722 map.m_len = sec_blks; 1723 next_alloc: 1724 if (has_not_enough_free_secs(sbi, 0, 1725 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1726 f2fs_down_write(&sbi->gc_lock); 1727 err = f2fs_gc(sbi, &gc_control); 1728 if (err && err != -ENODATA) 1729 goto out_err; 1730 } 1731 1732 f2fs_down_write(&sbi->pin_sem); 1733 1734 f2fs_lock_op(sbi); 1735 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 1736 f2fs_unlock_op(sbi); 1737 1738 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1739 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1740 file_dont_truncate(inode); 1741 1742 f2fs_up_write(&sbi->pin_sem); 1743 1744 expanded += map.m_len; 1745 sec_len -= map.m_len; 1746 map.m_lblk += map.m_len; 1747 if (!err && sec_len) 1748 goto next_alloc; 1749 1750 map.m_len = expanded; 1751 } else { 1752 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1753 expanded = map.m_len; 1754 } 1755 out_err: 1756 if (err) { 1757 pgoff_t last_off; 1758 1759 if (!expanded) 1760 return err; 1761 1762 last_off = pg_start + expanded - 1; 1763 1764 /* update new size to the failed position */ 1765 new_size = (last_off == pg_end) ? offset + len : 1766 (loff_t)(last_off + 1) << PAGE_SHIFT; 1767 } else { 1768 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1769 } 1770 1771 if (new_size > i_size_read(inode)) { 1772 if (mode & FALLOC_FL_KEEP_SIZE) 1773 file_set_keep_isize(inode); 1774 else 1775 f2fs_i_size_write(inode, new_size); 1776 } 1777 1778 return err; 1779 } 1780 1781 static long f2fs_fallocate(struct file *file, int mode, 1782 loff_t offset, loff_t len) 1783 { 1784 struct inode *inode = file_inode(file); 1785 long ret = 0; 1786 1787 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1788 return -EIO; 1789 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1790 return -ENOSPC; 1791 if (!f2fs_is_compress_backend_ready(inode)) 1792 return -EOPNOTSUPP; 1793 1794 /* f2fs only support ->fallocate for regular file */ 1795 if (!S_ISREG(inode->i_mode)) 1796 return -EINVAL; 1797 1798 if (IS_ENCRYPTED(inode) && 1799 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1800 return -EOPNOTSUPP; 1801 1802 /* 1803 * Pinned file should not support partial trucation since the block 1804 * can be used by applications. 1805 */ 1806 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1807 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1808 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1809 return -EOPNOTSUPP; 1810 1811 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1812 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1813 FALLOC_FL_INSERT_RANGE)) 1814 return -EOPNOTSUPP; 1815 1816 inode_lock(inode); 1817 1818 ret = file_modified(file); 1819 if (ret) 1820 goto out; 1821 1822 if (mode & FALLOC_FL_PUNCH_HOLE) { 1823 if (offset >= inode->i_size) 1824 goto out; 1825 1826 ret = punch_hole(inode, offset, len); 1827 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1828 ret = f2fs_collapse_range(inode, offset, len); 1829 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1830 ret = f2fs_zero_range(inode, offset, len, mode); 1831 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1832 ret = f2fs_insert_range(inode, offset, len); 1833 } else { 1834 ret = expand_inode_data(inode, offset, len, mode); 1835 } 1836 1837 if (!ret) { 1838 inode->i_mtime = inode->i_ctime = current_time(inode); 1839 f2fs_mark_inode_dirty_sync(inode, false); 1840 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1841 } 1842 1843 out: 1844 inode_unlock(inode); 1845 1846 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1847 return ret; 1848 } 1849 1850 static int f2fs_release_file(struct inode *inode, struct file *filp) 1851 { 1852 /* 1853 * f2fs_relase_file is called at every close calls. So we should 1854 * not drop any inmemory pages by close called by other process. 1855 */ 1856 if (!(filp->f_mode & FMODE_WRITE) || 1857 atomic_read(&inode->i_writecount) != 1) 1858 return 0; 1859 1860 f2fs_abort_atomic_write(inode, true); 1861 return 0; 1862 } 1863 1864 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1865 { 1866 struct inode *inode = file_inode(file); 1867 1868 /* 1869 * If the process doing a transaction is crashed, we should do 1870 * roll-back. Otherwise, other reader/write can see corrupted database 1871 * until all the writers close its file. Since this should be done 1872 * before dropping file lock, it needs to do in ->flush. 1873 */ 1874 if (F2FS_I(inode)->atomic_write_task == current) 1875 f2fs_abort_atomic_write(inode, true); 1876 return 0; 1877 } 1878 1879 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1880 { 1881 struct f2fs_inode_info *fi = F2FS_I(inode); 1882 u32 masked_flags = fi->i_flags & mask; 1883 1884 /* mask can be shrunk by flags_valid selector */ 1885 iflags &= mask; 1886 1887 /* Is it quota file? Do not allow user to mess with it */ 1888 if (IS_NOQUOTA(inode)) 1889 return -EPERM; 1890 1891 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1892 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1893 return -EOPNOTSUPP; 1894 if (!f2fs_empty_dir(inode)) 1895 return -ENOTEMPTY; 1896 } 1897 1898 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1899 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1900 return -EOPNOTSUPP; 1901 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1902 return -EINVAL; 1903 } 1904 1905 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1906 if (masked_flags & F2FS_COMPR_FL) { 1907 if (!f2fs_disable_compressed_file(inode)) 1908 return -EINVAL; 1909 } else { 1910 if (!f2fs_may_compress(inode)) 1911 return -EINVAL; 1912 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 1913 return -EINVAL; 1914 if (set_compress_context(inode)) 1915 return -EOPNOTSUPP; 1916 } 1917 } 1918 1919 fi->i_flags = iflags | (fi->i_flags & ~mask); 1920 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1921 (fi->i_flags & F2FS_NOCOMP_FL)); 1922 1923 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1924 set_inode_flag(inode, FI_PROJ_INHERIT); 1925 else 1926 clear_inode_flag(inode, FI_PROJ_INHERIT); 1927 1928 inode->i_ctime = current_time(inode); 1929 f2fs_set_inode_flags(inode); 1930 f2fs_mark_inode_dirty_sync(inode, true); 1931 return 0; 1932 } 1933 1934 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 1935 1936 /* 1937 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1938 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1939 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1940 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1941 * 1942 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 1943 * FS_IOC_FSSETXATTR is done by the VFS. 1944 */ 1945 1946 static const struct { 1947 u32 iflag; 1948 u32 fsflag; 1949 } f2fs_fsflags_map[] = { 1950 { F2FS_COMPR_FL, FS_COMPR_FL }, 1951 { F2FS_SYNC_FL, FS_SYNC_FL }, 1952 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1953 { F2FS_APPEND_FL, FS_APPEND_FL }, 1954 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1955 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1956 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1957 { F2FS_INDEX_FL, FS_INDEX_FL }, 1958 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1959 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1960 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1961 }; 1962 1963 #define F2FS_GETTABLE_FS_FL ( \ 1964 FS_COMPR_FL | \ 1965 FS_SYNC_FL | \ 1966 FS_IMMUTABLE_FL | \ 1967 FS_APPEND_FL | \ 1968 FS_NODUMP_FL | \ 1969 FS_NOATIME_FL | \ 1970 FS_NOCOMP_FL | \ 1971 FS_INDEX_FL | \ 1972 FS_DIRSYNC_FL | \ 1973 FS_PROJINHERIT_FL | \ 1974 FS_ENCRYPT_FL | \ 1975 FS_INLINE_DATA_FL | \ 1976 FS_NOCOW_FL | \ 1977 FS_VERITY_FL | \ 1978 FS_CASEFOLD_FL) 1979 1980 #define F2FS_SETTABLE_FS_FL ( \ 1981 FS_COMPR_FL | \ 1982 FS_SYNC_FL | \ 1983 FS_IMMUTABLE_FL | \ 1984 FS_APPEND_FL | \ 1985 FS_NODUMP_FL | \ 1986 FS_NOATIME_FL | \ 1987 FS_NOCOMP_FL | \ 1988 FS_DIRSYNC_FL | \ 1989 FS_PROJINHERIT_FL | \ 1990 FS_CASEFOLD_FL) 1991 1992 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1993 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1994 { 1995 u32 fsflags = 0; 1996 int i; 1997 1998 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1999 if (iflags & f2fs_fsflags_map[i].iflag) 2000 fsflags |= f2fs_fsflags_map[i].fsflag; 2001 2002 return fsflags; 2003 } 2004 2005 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 2006 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 2007 { 2008 u32 iflags = 0; 2009 int i; 2010 2011 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2012 if (fsflags & f2fs_fsflags_map[i].fsflag) 2013 iflags |= f2fs_fsflags_map[i].iflag; 2014 2015 return iflags; 2016 } 2017 2018 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2019 { 2020 struct inode *inode = file_inode(filp); 2021 2022 return put_user(inode->i_generation, (int __user *)arg); 2023 } 2024 2025 static int f2fs_ioc_start_atomic_write(struct file *filp) 2026 { 2027 struct inode *inode = file_inode(filp); 2028 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2029 struct f2fs_inode_info *fi = F2FS_I(inode); 2030 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2031 struct inode *pinode; 2032 int ret; 2033 2034 if (!inode_owner_or_capable(mnt_userns, inode)) 2035 return -EACCES; 2036 2037 if (!S_ISREG(inode->i_mode)) 2038 return -EINVAL; 2039 2040 if (filp->f_flags & O_DIRECT) 2041 return -EINVAL; 2042 2043 ret = mnt_want_write_file(filp); 2044 if (ret) 2045 return ret; 2046 2047 inode_lock(inode); 2048 2049 if (!f2fs_disable_compressed_file(inode)) { 2050 ret = -EINVAL; 2051 goto out; 2052 } 2053 2054 if (f2fs_is_atomic_file(inode)) 2055 goto out; 2056 2057 ret = f2fs_convert_inline_inode(inode); 2058 if (ret) 2059 goto out; 2060 2061 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2062 2063 /* 2064 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2065 * f2fs_is_atomic_file. 2066 */ 2067 if (get_dirty_pages(inode)) 2068 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2069 inode->i_ino, get_dirty_pages(inode)); 2070 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2071 if (ret) { 2072 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2073 goto out; 2074 } 2075 2076 /* Create a COW inode for atomic write */ 2077 pinode = f2fs_iget(inode->i_sb, fi->i_pino); 2078 if (IS_ERR(pinode)) { 2079 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2080 ret = PTR_ERR(pinode); 2081 goto out; 2082 } 2083 2084 ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode); 2085 iput(pinode); 2086 if (ret) { 2087 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2088 goto out; 2089 } 2090 f2fs_i_size_write(fi->cow_inode, i_size_read(inode)); 2091 2092 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 2093 sbi->atomic_files++; 2094 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 2095 2096 set_inode_flag(inode, FI_ATOMIC_FILE); 2097 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2098 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2099 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2100 2101 f2fs_update_time(sbi, REQ_TIME); 2102 fi->atomic_write_task = current; 2103 stat_update_max_atomic_write(inode); 2104 fi->atomic_write_cnt = 0; 2105 out: 2106 inode_unlock(inode); 2107 mnt_drop_write_file(filp); 2108 return ret; 2109 } 2110 2111 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2112 { 2113 struct inode *inode = file_inode(filp); 2114 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2115 int ret; 2116 2117 if (!inode_owner_or_capable(mnt_userns, inode)) 2118 return -EACCES; 2119 2120 ret = mnt_want_write_file(filp); 2121 if (ret) 2122 return ret; 2123 2124 f2fs_balance_fs(F2FS_I_SB(inode), true); 2125 2126 inode_lock(inode); 2127 2128 if (f2fs_is_atomic_file(inode)) { 2129 ret = f2fs_commit_atomic_write(inode); 2130 if (ret) 2131 goto unlock_out; 2132 2133 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2134 if (!ret) 2135 f2fs_abort_atomic_write(inode, false); 2136 } else { 2137 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2138 } 2139 unlock_out: 2140 inode_unlock(inode); 2141 mnt_drop_write_file(filp); 2142 return ret; 2143 } 2144 2145 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2146 { 2147 struct inode *inode = file_inode(filp); 2148 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2149 int ret; 2150 2151 if (!inode_owner_or_capable(mnt_userns, inode)) 2152 return -EACCES; 2153 2154 ret = mnt_want_write_file(filp); 2155 if (ret) 2156 return ret; 2157 2158 inode_lock(inode); 2159 2160 f2fs_abort_atomic_write(inode, true); 2161 2162 inode_unlock(inode); 2163 2164 mnt_drop_write_file(filp); 2165 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2166 return ret; 2167 } 2168 2169 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2170 { 2171 struct inode *inode = file_inode(filp); 2172 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2173 struct super_block *sb = sbi->sb; 2174 __u32 in; 2175 int ret = 0; 2176 2177 if (!capable(CAP_SYS_ADMIN)) 2178 return -EPERM; 2179 2180 if (get_user(in, (__u32 __user *)arg)) 2181 return -EFAULT; 2182 2183 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2184 ret = mnt_want_write_file(filp); 2185 if (ret) { 2186 if (ret == -EROFS) { 2187 ret = 0; 2188 f2fs_stop_checkpoint(sbi, false); 2189 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2190 trace_f2fs_shutdown(sbi, in, ret); 2191 } 2192 return ret; 2193 } 2194 } 2195 2196 switch (in) { 2197 case F2FS_GOING_DOWN_FULLSYNC: 2198 ret = freeze_bdev(sb->s_bdev); 2199 if (ret) 2200 goto out; 2201 f2fs_stop_checkpoint(sbi, false); 2202 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2203 thaw_bdev(sb->s_bdev); 2204 break; 2205 case F2FS_GOING_DOWN_METASYNC: 2206 /* do checkpoint only */ 2207 ret = f2fs_sync_fs(sb, 1); 2208 if (ret) 2209 goto out; 2210 f2fs_stop_checkpoint(sbi, false); 2211 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2212 break; 2213 case F2FS_GOING_DOWN_NOSYNC: 2214 f2fs_stop_checkpoint(sbi, false); 2215 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2216 break; 2217 case F2FS_GOING_DOWN_METAFLUSH: 2218 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2219 f2fs_stop_checkpoint(sbi, false); 2220 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2221 break; 2222 case F2FS_GOING_DOWN_NEED_FSCK: 2223 set_sbi_flag(sbi, SBI_NEED_FSCK); 2224 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2225 set_sbi_flag(sbi, SBI_IS_DIRTY); 2226 /* do checkpoint only */ 2227 ret = f2fs_sync_fs(sb, 1); 2228 goto out; 2229 default: 2230 ret = -EINVAL; 2231 goto out; 2232 } 2233 2234 f2fs_stop_gc_thread(sbi); 2235 f2fs_stop_discard_thread(sbi); 2236 2237 f2fs_drop_discard_cmd(sbi); 2238 clear_opt(sbi, DISCARD); 2239 2240 f2fs_update_time(sbi, REQ_TIME); 2241 out: 2242 if (in != F2FS_GOING_DOWN_FULLSYNC) 2243 mnt_drop_write_file(filp); 2244 2245 trace_f2fs_shutdown(sbi, in, ret); 2246 2247 return ret; 2248 } 2249 2250 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2251 { 2252 struct inode *inode = file_inode(filp); 2253 struct super_block *sb = inode->i_sb; 2254 struct fstrim_range range; 2255 int ret; 2256 2257 if (!capable(CAP_SYS_ADMIN)) 2258 return -EPERM; 2259 2260 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2261 return -EOPNOTSUPP; 2262 2263 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2264 sizeof(range))) 2265 return -EFAULT; 2266 2267 ret = mnt_want_write_file(filp); 2268 if (ret) 2269 return ret; 2270 2271 range.minlen = max((unsigned int)range.minlen, 2272 bdev_discard_granularity(sb->s_bdev)); 2273 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2274 mnt_drop_write_file(filp); 2275 if (ret < 0) 2276 return ret; 2277 2278 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2279 sizeof(range))) 2280 return -EFAULT; 2281 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2282 return 0; 2283 } 2284 2285 static bool uuid_is_nonzero(__u8 u[16]) 2286 { 2287 int i; 2288 2289 for (i = 0; i < 16; i++) 2290 if (u[i]) 2291 return true; 2292 return false; 2293 } 2294 2295 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2296 { 2297 struct inode *inode = file_inode(filp); 2298 2299 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2300 return -EOPNOTSUPP; 2301 2302 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2303 2304 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2305 } 2306 2307 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2308 { 2309 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2310 return -EOPNOTSUPP; 2311 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2312 } 2313 2314 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2315 { 2316 struct inode *inode = file_inode(filp); 2317 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2318 int err; 2319 2320 if (!f2fs_sb_has_encrypt(sbi)) 2321 return -EOPNOTSUPP; 2322 2323 err = mnt_want_write_file(filp); 2324 if (err) 2325 return err; 2326 2327 f2fs_down_write(&sbi->sb_lock); 2328 2329 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2330 goto got_it; 2331 2332 /* update superblock with uuid */ 2333 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2334 2335 err = f2fs_commit_super(sbi, false); 2336 if (err) { 2337 /* undo new data */ 2338 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2339 goto out_err; 2340 } 2341 got_it: 2342 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2343 16)) 2344 err = -EFAULT; 2345 out_err: 2346 f2fs_up_write(&sbi->sb_lock); 2347 mnt_drop_write_file(filp); 2348 return err; 2349 } 2350 2351 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2352 unsigned long arg) 2353 { 2354 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2355 return -EOPNOTSUPP; 2356 2357 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2358 } 2359 2360 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2361 { 2362 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2363 return -EOPNOTSUPP; 2364 2365 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2366 } 2367 2368 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2369 { 2370 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2371 return -EOPNOTSUPP; 2372 2373 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2374 } 2375 2376 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2377 unsigned long arg) 2378 { 2379 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2380 return -EOPNOTSUPP; 2381 2382 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2383 } 2384 2385 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2386 unsigned long arg) 2387 { 2388 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2389 return -EOPNOTSUPP; 2390 2391 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2392 } 2393 2394 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2395 { 2396 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2397 return -EOPNOTSUPP; 2398 2399 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2400 } 2401 2402 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2403 { 2404 struct inode *inode = file_inode(filp); 2405 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2406 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2407 .no_bg_gc = false, 2408 .should_migrate_blocks = false, 2409 .nr_free_secs = 0 }; 2410 __u32 sync; 2411 int ret; 2412 2413 if (!capable(CAP_SYS_ADMIN)) 2414 return -EPERM; 2415 2416 if (get_user(sync, (__u32 __user *)arg)) 2417 return -EFAULT; 2418 2419 if (f2fs_readonly(sbi->sb)) 2420 return -EROFS; 2421 2422 ret = mnt_want_write_file(filp); 2423 if (ret) 2424 return ret; 2425 2426 if (!sync) { 2427 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2428 ret = -EBUSY; 2429 goto out; 2430 } 2431 } else { 2432 f2fs_down_write(&sbi->gc_lock); 2433 } 2434 2435 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2436 gc_control.err_gc_skipped = sync; 2437 ret = f2fs_gc(sbi, &gc_control); 2438 out: 2439 mnt_drop_write_file(filp); 2440 return ret; 2441 } 2442 2443 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2444 { 2445 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2446 struct f2fs_gc_control gc_control = { 2447 .init_gc_type = range->sync ? FG_GC : BG_GC, 2448 .no_bg_gc = false, 2449 .should_migrate_blocks = false, 2450 .err_gc_skipped = range->sync, 2451 .nr_free_secs = 0 }; 2452 u64 end; 2453 int ret; 2454 2455 if (!capable(CAP_SYS_ADMIN)) 2456 return -EPERM; 2457 if (f2fs_readonly(sbi->sb)) 2458 return -EROFS; 2459 2460 end = range->start + range->len; 2461 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2462 end >= MAX_BLKADDR(sbi)) 2463 return -EINVAL; 2464 2465 ret = mnt_want_write_file(filp); 2466 if (ret) 2467 return ret; 2468 2469 do_more: 2470 if (!range->sync) { 2471 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2472 ret = -EBUSY; 2473 goto out; 2474 } 2475 } else { 2476 f2fs_down_write(&sbi->gc_lock); 2477 } 2478 2479 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2480 ret = f2fs_gc(sbi, &gc_control); 2481 if (ret) { 2482 if (ret == -EBUSY) 2483 ret = -EAGAIN; 2484 goto out; 2485 } 2486 range->start += CAP_BLKS_PER_SEC(sbi); 2487 if (range->start <= end) 2488 goto do_more; 2489 out: 2490 mnt_drop_write_file(filp); 2491 return ret; 2492 } 2493 2494 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2495 { 2496 struct f2fs_gc_range range; 2497 2498 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2499 sizeof(range))) 2500 return -EFAULT; 2501 return __f2fs_ioc_gc_range(filp, &range); 2502 } 2503 2504 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2505 { 2506 struct inode *inode = file_inode(filp); 2507 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2508 int ret; 2509 2510 if (!capable(CAP_SYS_ADMIN)) 2511 return -EPERM; 2512 2513 if (f2fs_readonly(sbi->sb)) 2514 return -EROFS; 2515 2516 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2517 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2518 return -EINVAL; 2519 } 2520 2521 ret = mnt_want_write_file(filp); 2522 if (ret) 2523 return ret; 2524 2525 ret = f2fs_sync_fs(sbi->sb, 1); 2526 2527 mnt_drop_write_file(filp); 2528 return ret; 2529 } 2530 2531 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2532 struct file *filp, 2533 struct f2fs_defragment *range) 2534 { 2535 struct inode *inode = file_inode(filp); 2536 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2537 .m_seg_type = NO_CHECK_TYPE, 2538 .m_may_create = false }; 2539 struct extent_info ei = {0, 0, 0}; 2540 pgoff_t pg_start, pg_end, next_pgofs; 2541 unsigned int blk_per_seg = sbi->blocks_per_seg; 2542 unsigned int total = 0, sec_num; 2543 block_t blk_end = 0; 2544 bool fragmented = false; 2545 int err; 2546 2547 pg_start = range->start >> PAGE_SHIFT; 2548 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2549 2550 f2fs_balance_fs(sbi, true); 2551 2552 inode_lock(inode); 2553 2554 /* if in-place-update policy is enabled, don't waste time here */ 2555 set_inode_flag(inode, FI_OPU_WRITE); 2556 if (f2fs_should_update_inplace(inode, NULL)) { 2557 err = -EINVAL; 2558 goto out; 2559 } 2560 2561 /* writeback all dirty pages in the range */ 2562 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2563 range->start + range->len - 1); 2564 if (err) 2565 goto out; 2566 2567 /* 2568 * lookup mapping info in extent cache, skip defragmenting if physical 2569 * block addresses are continuous. 2570 */ 2571 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2572 if (ei.fofs + ei.len >= pg_end) 2573 goto out; 2574 } 2575 2576 map.m_lblk = pg_start; 2577 map.m_next_pgofs = &next_pgofs; 2578 2579 /* 2580 * lookup mapping info in dnode page cache, skip defragmenting if all 2581 * physical block addresses are continuous even if there are hole(s) 2582 * in logical blocks. 2583 */ 2584 while (map.m_lblk < pg_end) { 2585 map.m_len = pg_end - map.m_lblk; 2586 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2587 if (err) 2588 goto out; 2589 2590 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2591 map.m_lblk = next_pgofs; 2592 continue; 2593 } 2594 2595 if (blk_end && blk_end != map.m_pblk) 2596 fragmented = true; 2597 2598 /* record total count of block that we're going to move */ 2599 total += map.m_len; 2600 2601 blk_end = map.m_pblk + map.m_len; 2602 2603 map.m_lblk += map.m_len; 2604 } 2605 2606 if (!fragmented) { 2607 total = 0; 2608 goto out; 2609 } 2610 2611 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2612 2613 /* 2614 * make sure there are enough free section for LFS allocation, this can 2615 * avoid defragment running in SSR mode when free section are allocated 2616 * intensively 2617 */ 2618 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2619 err = -EAGAIN; 2620 goto out; 2621 } 2622 2623 map.m_lblk = pg_start; 2624 map.m_len = pg_end - pg_start; 2625 total = 0; 2626 2627 while (map.m_lblk < pg_end) { 2628 pgoff_t idx; 2629 int cnt = 0; 2630 2631 do_map: 2632 map.m_len = pg_end - map.m_lblk; 2633 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2634 if (err) 2635 goto clear_out; 2636 2637 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2638 map.m_lblk = next_pgofs; 2639 goto check; 2640 } 2641 2642 set_inode_flag(inode, FI_SKIP_WRITES); 2643 2644 idx = map.m_lblk; 2645 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2646 struct page *page; 2647 2648 page = f2fs_get_lock_data_page(inode, idx, true); 2649 if (IS_ERR(page)) { 2650 err = PTR_ERR(page); 2651 goto clear_out; 2652 } 2653 2654 set_page_dirty(page); 2655 set_page_private_gcing(page); 2656 f2fs_put_page(page, 1); 2657 2658 idx++; 2659 cnt++; 2660 total++; 2661 } 2662 2663 map.m_lblk = idx; 2664 check: 2665 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2666 goto do_map; 2667 2668 clear_inode_flag(inode, FI_SKIP_WRITES); 2669 2670 err = filemap_fdatawrite(inode->i_mapping); 2671 if (err) 2672 goto out; 2673 } 2674 clear_out: 2675 clear_inode_flag(inode, FI_SKIP_WRITES); 2676 out: 2677 clear_inode_flag(inode, FI_OPU_WRITE); 2678 inode_unlock(inode); 2679 if (!err) 2680 range->len = (u64)total << PAGE_SHIFT; 2681 return err; 2682 } 2683 2684 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2685 { 2686 struct inode *inode = file_inode(filp); 2687 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2688 struct f2fs_defragment range; 2689 int err; 2690 2691 if (!capable(CAP_SYS_ADMIN)) 2692 return -EPERM; 2693 2694 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2695 return -EINVAL; 2696 2697 if (f2fs_readonly(sbi->sb)) 2698 return -EROFS; 2699 2700 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2701 sizeof(range))) 2702 return -EFAULT; 2703 2704 /* verify alignment of offset & size */ 2705 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2706 return -EINVAL; 2707 2708 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2709 max_file_blocks(inode))) 2710 return -EINVAL; 2711 2712 err = mnt_want_write_file(filp); 2713 if (err) 2714 return err; 2715 2716 err = f2fs_defragment_range(sbi, filp, &range); 2717 mnt_drop_write_file(filp); 2718 2719 f2fs_update_time(sbi, REQ_TIME); 2720 if (err < 0) 2721 return err; 2722 2723 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2724 sizeof(range))) 2725 return -EFAULT; 2726 2727 return 0; 2728 } 2729 2730 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2731 struct file *file_out, loff_t pos_out, size_t len) 2732 { 2733 struct inode *src = file_inode(file_in); 2734 struct inode *dst = file_inode(file_out); 2735 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2736 size_t olen = len, dst_max_i_size = 0; 2737 size_t dst_osize; 2738 int ret; 2739 2740 if (file_in->f_path.mnt != file_out->f_path.mnt || 2741 src->i_sb != dst->i_sb) 2742 return -EXDEV; 2743 2744 if (unlikely(f2fs_readonly(src->i_sb))) 2745 return -EROFS; 2746 2747 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2748 return -EINVAL; 2749 2750 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2751 return -EOPNOTSUPP; 2752 2753 if (pos_out < 0 || pos_in < 0) 2754 return -EINVAL; 2755 2756 if (src == dst) { 2757 if (pos_in == pos_out) 2758 return 0; 2759 if (pos_out > pos_in && pos_out < pos_in + len) 2760 return -EINVAL; 2761 } 2762 2763 inode_lock(src); 2764 if (src != dst) { 2765 ret = -EBUSY; 2766 if (!inode_trylock(dst)) 2767 goto out; 2768 } 2769 2770 ret = -EINVAL; 2771 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2772 goto out_unlock; 2773 if (len == 0) 2774 olen = len = src->i_size - pos_in; 2775 if (pos_in + len == src->i_size) 2776 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2777 if (len == 0) { 2778 ret = 0; 2779 goto out_unlock; 2780 } 2781 2782 dst_osize = dst->i_size; 2783 if (pos_out + olen > dst->i_size) 2784 dst_max_i_size = pos_out + olen; 2785 2786 /* verify the end result is block aligned */ 2787 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2788 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2789 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2790 goto out_unlock; 2791 2792 ret = f2fs_convert_inline_inode(src); 2793 if (ret) 2794 goto out_unlock; 2795 2796 ret = f2fs_convert_inline_inode(dst); 2797 if (ret) 2798 goto out_unlock; 2799 2800 /* write out all dirty pages from offset */ 2801 ret = filemap_write_and_wait_range(src->i_mapping, 2802 pos_in, pos_in + len); 2803 if (ret) 2804 goto out_unlock; 2805 2806 ret = filemap_write_and_wait_range(dst->i_mapping, 2807 pos_out, pos_out + len); 2808 if (ret) 2809 goto out_unlock; 2810 2811 f2fs_balance_fs(sbi, true); 2812 2813 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2814 if (src != dst) { 2815 ret = -EBUSY; 2816 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2817 goto out_src; 2818 } 2819 2820 f2fs_lock_op(sbi); 2821 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2822 pos_out >> F2FS_BLKSIZE_BITS, 2823 len >> F2FS_BLKSIZE_BITS, false); 2824 2825 if (!ret) { 2826 if (dst_max_i_size) 2827 f2fs_i_size_write(dst, dst_max_i_size); 2828 else if (dst_osize != dst->i_size) 2829 f2fs_i_size_write(dst, dst_osize); 2830 } 2831 f2fs_unlock_op(sbi); 2832 2833 if (src != dst) 2834 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2835 out_src: 2836 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2837 out_unlock: 2838 if (src != dst) 2839 inode_unlock(dst); 2840 out: 2841 inode_unlock(src); 2842 return ret; 2843 } 2844 2845 static int __f2fs_ioc_move_range(struct file *filp, 2846 struct f2fs_move_range *range) 2847 { 2848 struct fd dst; 2849 int err; 2850 2851 if (!(filp->f_mode & FMODE_READ) || 2852 !(filp->f_mode & FMODE_WRITE)) 2853 return -EBADF; 2854 2855 dst = fdget(range->dst_fd); 2856 if (!dst.file) 2857 return -EBADF; 2858 2859 if (!(dst.file->f_mode & FMODE_WRITE)) { 2860 err = -EBADF; 2861 goto err_out; 2862 } 2863 2864 err = mnt_want_write_file(filp); 2865 if (err) 2866 goto err_out; 2867 2868 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2869 range->pos_out, range->len); 2870 2871 mnt_drop_write_file(filp); 2872 err_out: 2873 fdput(dst); 2874 return err; 2875 } 2876 2877 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2878 { 2879 struct f2fs_move_range range; 2880 2881 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2882 sizeof(range))) 2883 return -EFAULT; 2884 return __f2fs_ioc_move_range(filp, &range); 2885 } 2886 2887 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2888 { 2889 struct inode *inode = file_inode(filp); 2890 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2891 struct sit_info *sm = SIT_I(sbi); 2892 unsigned int start_segno = 0, end_segno = 0; 2893 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2894 struct f2fs_flush_device range; 2895 struct f2fs_gc_control gc_control = { 2896 .init_gc_type = FG_GC, 2897 .should_migrate_blocks = true, 2898 .err_gc_skipped = true, 2899 .nr_free_secs = 0 }; 2900 int ret; 2901 2902 if (!capable(CAP_SYS_ADMIN)) 2903 return -EPERM; 2904 2905 if (f2fs_readonly(sbi->sb)) 2906 return -EROFS; 2907 2908 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2909 return -EINVAL; 2910 2911 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2912 sizeof(range))) 2913 return -EFAULT; 2914 2915 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2916 __is_large_section(sbi)) { 2917 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2918 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2919 return -EINVAL; 2920 } 2921 2922 ret = mnt_want_write_file(filp); 2923 if (ret) 2924 return ret; 2925 2926 if (range.dev_num != 0) 2927 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2928 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2929 2930 start_segno = sm->last_victim[FLUSH_DEVICE]; 2931 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2932 start_segno = dev_start_segno; 2933 end_segno = min(start_segno + range.segments, dev_end_segno); 2934 2935 while (start_segno < end_segno) { 2936 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2937 ret = -EBUSY; 2938 goto out; 2939 } 2940 sm->last_victim[GC_CB] = end_segno + 1; 2941 sm->last_victim[GC_GREEDY] = end_segno + 1; 2942 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2943 2944 gc_control.victim_segno = start_segno; 2945 ret = f2fs_gc(sbi, &gc_control); 2946 if (ret == -EAGAIN) 2947 ret = 0; 2948 else if (ret < 0) 2949 break; 2950 start_segno++; 2951 } 2952 out: 2953 mnt_drop_write_file(filp); 2954 return ret; 2955 } 2956 2957 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2958 { 2959 struct inode *inode = file_inode(filp); 2960 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2961 2962 /* Must validate to set it with SQLite behavior in Android. */ 2963 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2964 2965 return put_user(sb_feature, (u32 __user *)arg); 2966 } 2967 2968 #ifdef CONFIG_QUOTA 2969 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2970 { 2971 struct dquot *transfer_to[MAXQUOTAS] = {}; 2972 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2973 struct super_block *sb = sbi->sb; 2974 int err = 0; 2975 2976 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2977 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2978 err = __dquot_transfer(inode, transfer_to); 2979 if (err) 2980 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2981 dqput(transfer_to[PRJQUOTA]); 2982 } 2983 return err; 2984 } 2985 2986 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 2987 { 2988 struct f2fs_inode_info *fi = F2FS_I(inode); 2989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2990 struct f2fs_inode *ri = NULL; 2991 kprojid_t kprojid; 2992 int err; 2993 2994 if (!f2fs_sb_has_project_quota(sbi)) { 2995 if (projid != F2FS_DEF_PROJID) 2996 return -EOPNOTSUPP; 2997 else 2998 return 0; 2999 } 3000 3001 if (!f2fs_has_extra_attr(inode)) 3002 return -EOPNOTSUPP; 3003 3004 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3005 3006 if (projid_eq(kprojid, fi->i_projid)) 3007 return 0; 3008 3009 err = -EPERM; 3010 /* Is it quota file? Do not allow user to mess with it */ 3011 if (IS_NOQUOTA(inode)) 3012 return err; 3013 3014 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 3015 return -EOVERFLOW; 3016 3017 err = f2fs_dquot_initialize(inode); 3018 if (err) 3019 return err; 3020 3021 f2fs_lock_op(sbi); 3022 err = f2fs_transfer_project_quota(inode, kprojid); 3023 if (err) 3024 goto out_unlock; 3025 3026 fi->i_projid = kprojid; 3027 inode->i_ctime = current_time(inode); 3028 f2fs_mark_inode_dirty_sync(inode, true); 3029 out_unlock: 3030 f2fs_unlock_op(sbi); 3031 return err; 3032 } 3033 #else 3034 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3035 { 3036 return 0; 3037 } 3038 3039 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3040 { 3041 if (projid != F2FS_DEF_PROJID) 3042 return -EOPNOTSUPP; 3043 return 0; 3044 } 3045 #endif 3046 3047 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3048 { 3049 struct inode *inode = d_inode(dentry); 3050 struct f2fs_inode_info *fi = F2FS_I(inode); 3051 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3052 3053 if (IS_ENCRYPTED(inode)) 3054 fsflags |= FS_ENCRYPT_FL; 3055 if (IS_VERITY(inode)) 3056 fsflags |= FS_VERITY_FL; 3057 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3058 fsflags |= FS_INLINE_DATA_FL; 3059 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3060 fsflags |= FS_NOCOW_FL; 3061 3062 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3063 3064 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3065 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3066 3067 return 0; 3068 } 3069 3070 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3071 struct dentry *dentry, struct fileattr *fa) 3072 { 3073 struct inode *inode = d_inode(dentry); 3074 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3075 u32 iflags; 3076 int err; 3077 3078 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3079 return -EIO; 3080 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3081 return -ENOSPC; 3082 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3083 return -EOPNOTSUPP; 3084 fsflags &= F2FS_SETTABLE_FS_FL; 3085 if (!fa->flags_valid) 3086 mask &= FS_COMMON_FL; 3087 3088 iflags = f2fs_fsflags_to_iflags(fsflags); 3089 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3090 return -EOPNOTSUPP; 3091 3092 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3093 if (!err) 3094 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3095 3096 return err; 3097 } 3098 3099 int f2fs_pin_file_control(struct inode *inode, bool inc) 3100 { 3101 struct f2fs_inode_info *fi = F2FS_I(inode); 3102 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3103 3104 /* Use i_gc_failures for normal file as a risk signal. */ 3105 if (inc) 3106 f2fs_i_gc_failures_write(inode, 3107 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3108 3109 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3110 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3111 __func__, inode->i_ino, 3112 fi->i_gc_failures[GC_FAILURE_PIN]); 3113 clear_inode_flag(inode, FI_PIN_FILE); 3114 return -EAGAIN; 3115 } 3116 return 0; 3117 } 3118 3119 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3120 { 3121 struct inode *inode = file_inode(filp); 3122 __u32 pin; 3123 int ret = 0; 3124 3125 if (get_user(pin, (__u32 __user *)arg)) 3126 return -EFAULT; 3127 3128 if (!S_ISREG(inode->i_mode)) 3129 return -EINVAL; 3130 3131 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3132 return -EROFS; 3133 3134 ret = mnt_want_write_file(filp); 3135 if (ret) 3136 return ret; 3137 3138 inode_lock(inode); 3139 3140 if (!pin) { 3141 clear_inode_flag(inode, FI_PIN_FILE); 3142 f2fs_i_gc_failures_write(inode, 0); 3143 goto done; 3144 } 3145 3146 if (f2fs_should_update_outplace(inode, NULL)) { 3147 ret = -EINVAL; 3148 goto out; 3149 } 3150 3151 if (f2fs_pin_file_control(inode, false)) { 3152 ret = -EAGAIN; 3153 goto out; 3154 } 3155 3156 ret = f2fs_convert_inline_inode(inode); 3157 if (ret) 3158 goto out; 3159 3160 if (!f2fs_disable_compressed_file(inode)) { 3161 ret = -EOPNOTSUPP; 3162 goto out; 3163 } 3164 3165 set_inode_flag(inode, FI_PIN_FILE); 3166 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3167 done: 3168 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3169 out: 3170 inode_unlock(inode); 3171 mnt_drop_write_file(filp); 3172 return ret; 3173 } 3174 3175 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3176 { 3177 struct inode *inode = file_inode(filp); 3178 __u32 pin = 0; 3179 3180 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3181 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3182 return put_user(pin, (u32 __user *)arg); 3183 } 3184 3185 int f2fs_precache_extents(struct inode *inode) 3186 { 3187 struct f2fs_inode_info *fi = F2FS_I(inode); 3188 struct f2fs_map_blocks map; 3189 pgoff_t m_next_extent; 3190 loff_t end; 3191 int err; 3192 3193 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3194 return -EOPNOTSUPP; 3195 3196 map.m_lblk = 0; 3197 map.m_next_pgofs = NULL; 3198 map.m_next_extent = &m_next_extent; 3199 map.m_seg_type = NO_CHECK_TYPE; 3200 map.m_may_create = false; 3201 end = max_file_blocks(inode); 3202 3203 while (map.m_lblk < end) { 3204 map.m_len = end - map.m_lblk; 3205 3206 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3207 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3208 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3209 if (err) 3210 return err; 3211 3212 map.m_lblk = m_next_extent; 3213 } 3214 3215 return 0; 3216 } 3217 3218 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3219 { 3220 return f2fs_precache_extents(file_inode(filp)); 3221 } 3222 3223 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3224 { 3225 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3226 __u64 block_count; 3227 3228 if (!capable(CAP_SYS_ADMIN)) 3229 return -EPERM; 3230 3231 if (f2fs_readonly(sbi->sb)) 3232 return -EROFS; 3233 3234 if (copy_from_user(&block_count, (void __user *)arg, 3235 sizeof(block_count))) 3236 return -EFAULT; 3237 3238 return f2fs_resize_fs(sbi, block_count); 3239 } 3240 3241 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3242 { 3243 struct inode *inode = file_inode(filp); 3244 3245 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3246 3247 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3248 f2fs_warn(F2FS_I_SB(inode), 3249 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3250 inode->i_ino); 3251 return -EOPNOTSUPP; 3252 } 3253 3254 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3255 } 3256 3257 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3258 { 3259 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3260 return -EOPNOTSUPP; 3261 3262 return fsverity_ioctl_measure(filp, (void __user *)arg); 3263 } 3264 3265 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3266 { 3267 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3268 return -EOPNOTSUPP; 3269 3270 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3271 } 3272 3273 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3274 { 3275 struct inode *inode = file_inode(filp); 3276 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3277 char *vbuf; 3278 int count; 3279 int err = 0; 3280 3281 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3282 if (!vbuf) 3283 return -ENOMEM; 3284 3285 f2fs_down_read(&sbi->sb_lock); 3286 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3287 ARRAY_SIZE(sbi->raw_super->volume_name), 3288 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3289 f2fs_up_read(&sbi->sb_lock); 3290 3291 if (copy_to_user((char __user *)arg, vbuf, 3292 min(FSLABEL_MAX, count))) 3293 err = -EFAULT; 3294 3295 kfree(vbuf); 3296 return err; 3297 } 3298 3299 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3300 { 3301 struct inode *inode = file_inode(filp); 3302 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3303 char *vbuf; 3304 int err = 0; 3305 3306 if (!capable(CAP_SYS_ADMIN)) 3307 return -EPERM; 3308 3309 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3310 if (IS_ERR(vbuf)) 3311 return PTR_ERR(vbuf); 3312 3313 err = mnt_want_write_file(filp); 3314 if (err) 3315 goto out; 3316 3317 f2fs_down_write(&sbi->sb_lock); 3318 3319 memset(sbi->raw_super->volume_name, 0, 3320 sizeof(sbi->raw_super->volume_name)); 3321 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3322 sbi->raw_super->volume_name, 3323 ARRAY_SIZE(sbi->raw_super->volume_name)); 3324 3325 err = f2fs_commit_super(sbi, false); 3326 3327 f2fs_up_write(&sbi->sb_lock); 3328 3329 mnt_drop_write_file(filp); 3330 out: 3331 kfree(vbuf); 3332 return err; 3333 } 3334 3335 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3336 { 3337 struct inode *inode = file_inode(filp); 3338 __u64 blocks; 3339 3340 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3341 return -EOPNOTSUPP; 3342 3343 if (!f2fs_compressed_file(inode)) 3344 return -EINVAL; 3345 3346 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3347 return put_user(blocks, (u64 __user *)arg); 3348 } 3349 3350 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3351 { 3352 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3353 unsigned int released_blocks = 0; 3354 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3355 block_t blkaddr; 3356 int i; 3357 3358 for (i = 0; i < count; i++) { 3359 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3360 dn->ofs_in_node + i); 3361 3362 if (!__is_valid_data_blkaddr(blkaddr)) 3363 continue; 3364 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3365 DATA_GENERIC_ENHANCE))) 3366 return -EFSCORRUPTED; 3367 } 3368 3369 while (count) { 3370 int compr_blocks = 0; 3371 3372 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3373 blkaddr = f2fs_data_blkaddr(dn); 3374 3375 if (i == 0) { 3376 if (blkaddr == COMPRESS_ADDR) 3377 continue; 3378 dn->ofs_in_node += cluster_size; 3379 goto next; 3380 } 3381 3382 if (__is_valid_data_blkaddr(blkaddr)) 3383 compr_blocks++; 3384 3385 if (blkaddr != NEW_ADDR) 3386 continue; 3387 3388 dn->data_blkaddr = NULL_ADDR; 3389 f2fs_set_data_blkaddr(dn); 3390 } 3391 3392 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3393 dec_valid_block_count(sbi, dn->inode, 3394 cluster_size - compr_blocks); 3395 3396 released_blocks += cluster_size - compr_blocks; 3397 next: 3398 count -= cluster_size; 3399 } 3400 3401 return released_blocks; 3402 } 3403 3404 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3405 { 3406 struct inode *inode = file_inode(filp); 3407 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3408 pgoff_t page_idx = 0, last_idx; 3409 unsigned int released_blocks = 0; 3410 int ret; 3411 int writecount; 3412 3413 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3414 return -EOPNOTSUPP; 3415 3416 if (!f2fs_compressed_file(inode)) 3417 return -EINVAL; 3418 3419 if (f2fs_readonly(sbi->sb)) 3420 return -EROFS; 3421 3422 ret = mnt_want_write_file(filp); 3423 if (ret) 3424 return ret; 3425 3426 f2fs_balance_fs(F2FS_I_SB(inode), true); 3427 3428 inode_lock(inode); 3429 3430 writecount = atomic_read(&inode->i_writecount); 3431 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3432 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3433 ret = -EBUSY; 3434 goto out; 3435 } 3436 3437 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3438 ret = -EINVAL; 3439 goto out; 3440 } 3441 3442 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3443 if (ret) 3444 goto out; 3445 3446 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3447 inode->i_ctime = current_time(inode); 3448 f2fs_mark_inode_dirty_sync(inode, true); 3449 3450 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3451 goto out; 3452 3453 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3454 filemap_invalidate_lock(inode->i_mapping); 3455 3456 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3457 3458 while (page_idx < last_idx) { 3459 struct dnode_of_data dn; 3460 pgoff_t end_offset, count; 3461 3462 set_new_dnode(&dn, inode, NULL, NULL, 0); 3463 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3464 if (ret) { 3465 if (ret == -ENOENT) { 3466 page_idx = f2fs_get_next_page_offset(&dn, 3467 page_idx); 3468 ret = 0; 3469 continue; 3470 } 3471 break; 3472 } 3473 3474 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3475 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3476 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3477 3478 ret = release_compress_blocks(&dn, count); 3479 3480 f2fs_put_dnode(&dn); 3481 3482 if (ret < 0) 3483 break; 3484 3485 page_idx += count; 3486 released_blocks += ret; 3487 } 3488 3489 filemap_invalidate_unlock(inode->i_mapping); 3490 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3491 out: 3492 inode_unlock(inode); 3493 3494 mnt_drop_write_file(filp); 3495 3496 if (ret >= 0) { 3497 ret = put_user(released_blocks, (u64 __user *)arg); 3498 } else if (released_blocks && 3499 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3500 set_sbi_flag(sbi, SBI_NEED_FSCK); 3501 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3502 "iblocks=%llu, released=%u, compr_blocks=%u, " 3503 "run fsck to fix.", 3504 __func__, inode->i_ino, inode->i_blocks, 3505 released_blocks, 3506 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3507 } 3508 3509 return ret; 3510 } 3511 3512 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3513 { 3514 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3515 unsigned int reserved_blocks = 0; 3516 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3517 block_t blkaddr; 3518 int i; 3519 3520 for (i = 0; i < count; i++) { 3521 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3522 dn->ofs_in_node + i); 3523 3524 if (!__is_valid_data_blkaddr(blkaddr)) 3525 continue; 3526 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3527 DATA_GENERIC_ENHANCE))) 3528 return -EFSCORRUPTED; 3529 } 3530 3531 while (count) { 3532 int compr_blocks = 0; 3533 blkcnt_t reserved; 3534 int ret; 3535 3536 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3537 blkaddr = f2fs_data_blkaddr(dn); 3538 3539 if (i == 0) { 3540 if (blkaddr == COMPRESS_ADDR) 3541 continue; 3542 dn->ofs_in_node += cluster_size; 3543 goto next; 3544 } 3545 3546 if (__is_valid_data_blkaddr(blkaddr)) { 3547 compr_blocks++; 3548 continue; 3549 } 3550 3551 dn->data_blkaddr = NEW_ADDR; 3552 f2fs_set_data_blkaddr(dn); 3553 } 3554 3555 reserved = cluster_size - compr_blocks; 3556 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3557 if (ret) 3558 return ret; 3559 3560 if (reserved != cluster_size - compr_blocks) 3561 return -ENOSPC; 3562 3563 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3564 3565 reserved_blocks += reserved; 3566 next: 3567 count -= cluster_size; 3568 } 3569 3570 return reserved_blocks; 3571 } 3572 3573 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3574 { 3575 struct inode *inode = file_inode(filp); 3576 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3577 pgoff_t page_idx = 0, last_idx; 3578 unsigned int reserved_blocks = 0; 3579 int ret; 3580 3581 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3582 return -EOPNOTSUPP; 3583 3584 if (!f2fs_compressed_file(inode)) 3585 return -EINVAL; 3586 3587 if (f2fs_readonly(sbi->sb)) 3588 return -EROFS; 3589 3590 ret = mnt_want_write_file(filp); 3591 if (ret) 3592 return ret; 3593 3594 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3595 goto out; 3596 3597 f2fs_balance_fs(F2FS_I_SB(inode), true); 3598 3599 inode_lock(inode); 3600 3601 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3602 ret = -EINVAL; 3603 goto unlock_inode; 3604 } 3605 3606 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3607 filemap_invalidate_lock(inode->i_mapping); 3608 3609 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3610 3611 while (page_idx < last_idx) { 3612 struct dnode_of_data dn; 3613 pgoff_t end_offset, count; 3614 3615 set_new_dnode(&dn, inode, NULL, NULL, 0); 3616 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3617 if (ret) { 3618 if (ret == -ENOENT) { 3619 page_idx = f2fs_get_next_page_offset(&dn, 3620 page_idx); 3621 ret = 0; 3622 continue; 3623 } 3624 break; 3625 } 3626 3627 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3628 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3629 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3630 3631 ret = reserve_compress_blocks(&dn, count); 3632 3633 f2fs_put_dnode(&dn); 3634 3635 if (ret < 0) 3636 break; 3637 3638 page_idx += count; 3639 reserved_blocks += ret; 3640 } 3641 3642 filemap_invalidate_unlock(inode->i_mapping); 3643 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3644 3645 if (ret >= 0) { 3646 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3647 inode->i_ctime = current_time(inode); 3648 f2fs_mark_inode_dirty_sync(inode, true); 3649 } 3650 unlock_inode: 3651 inode_unlock(inode); 3652 out: 3653 mnt_drop_write_file(filp); 3654 3655 if (ret >= 0) { 3656 ret = put_user(reserved_blocks, (u64 __user *)arg); 3657 } else if (reserved_blocks && 3658 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3659 set_sbi_flag(sbi, SBI_NEED_FSCK); 3660 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3661 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3662 "run fsck to fix.", 3663 __func__, inode->i_ino, inode->i_blocks, 3664 reserved_blocks, 3665 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3666 } 3667 3668 return ret; 3669 } 3670 3671 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3672 pgoff_t off, block_t block, block_t len, u32 flags) 3673 { 3674 sector_t sector = SECTOR_FROM_BLOCK(block); 3675 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3676 int ret = 0; 3677 3678 if (flags & F2FS_TRIM_FILE_DISCARD) { 3679 if (bdev_max_secure_erase_sectors(bdev)) 3680 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3681 GFP_NOFS); 3682 else 3683 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3684 GFP_NOFS); 3685 } 3686 3687 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3688 if (IS_ENCRYPTED(inode)) 3689 ret = fscrypt_zeroout_range(inode, off, block, len); 3690 else 3691 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3692 GFP_NOFS, 0); 3693 } 3694 3695 return ret; 3696 } 3697 3698 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3699 { 3700 struct inode *inode = file_inode(filp); 3701 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3702 struct address_space *mapping = inode->i_mapping; 3703 struct block_device *prev_bdev = NULL; 3704 struct f2fs_sectrim_range range; 3705 pgoff_t index, pg_end, prev_index = 0; 3706 block_t prev_block = 0, len = 0; 3707 loff_t end_addr; 3708 bool to_end = false; 3709 int ret = 0; 3710 3711 if (!(filp->f_mode & FMODE_WRITE)) 3712 return -EBADF; 3713 3714 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3715 sizeof(range))) 3716 return -EFAULT; 3717 3718 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3719 !S_ISREG(inode->i_mode)) 3720 return -EINVAL; 3721 3722 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3723 !f2fs_hw_support_discard(sbi)) || 3724 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3725 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3726 return -EOPNOTSUPP; 3727 3728 file_start_write(filp); 3729 inode_lock(inode); 3730 3731 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3732 range.start >= inode->i_size) { 3733 ret = -EINVAL; 3734 goto err; 3735 } 3736 3737 if (range.len == 0) 3738 goto err; 3739 3740 if (inode->i_size - range.start > range.len) { 3741 end_addr = range.start + range.len; 3742 } else { 3743 end_addr = range.len == (u64)-1 ? 3744 sbi->sb->s_maxbytes : inode->i_size; 3745 to_end = true; 3746 } 3747 3748 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3749 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3750 ret = -EINVAL; 3751 goto err; 3752 } 3753 3754 index = F2FS_BYTES_TO_BLK(range.start); 3755 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3756 3757 ret = f2fs_convert_inline_inode(inode); 3758 if (ret) 3759 goto err; 3760 3761 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3762 filemap_invalidate_lock(mapping); 3763 3764 ret = filemap_write_and_wait_range(mapping, range.start, 3765 to_end ? LLONG_MAX : end_addr - 1); 3766 if (ret) 3767 goto out; 3768 3769 truncate_inode_pages_range(mapping, range.start, 3770 to_end ? -1 : end_addr - 1); 3771 3772 while (index < pg_end) { 3773 struct dnode_of_data dn; 3774 pgoff_t end_offset, count; 3775 int i; 3776 3777 set_new_dnode(&dn, inode, NULL, NULL, 0); 3778 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3779 if (ret) { 3780 if (ret == -ENOENT) { 3781 index = f2fs_get_next_page_offset(&dn, index); 3782 continue; 3783 } 3784 goto out; 3785 } 3786 3787 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3788 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3789 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3790 struct block_device *cur_bdev; 3791 block_t blkaddr = f2fs_data_blkaddr(&dn); 3792 3793 if (!__is_valid_data_blkaddr(blkaddr)) 3794 continue; 3795 3796 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3797 DATA_GENERIC_ENHANCE)) { 3798 ret = -EFSCORRUPTED; 3799 f2fs_put_dnode(&dn); 3800 goto out; 3801 } 3802 3803 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3804 if (f2fs_is_multi_device(sbi)) { 3805 int di = f2fs_target_device_index(sbi, blkaddr); 3806 3807 blkaddr -= FDEV(di).start_blk; 3808 } 3809 3810 if (len) { 3811 if (prev_bdev == cur_bdev && 3812 index == prev_index + len && 3813 blkaddr == prev_block + len) { 3814 len++; 3815 } else { 3816 ret = f2fs_secure_erase(prev_bdev, 3817 inode, prev_index, prev_block, 3818 len, range.flags); 3819 if (ret) { 3820 f2fs_put_dnode(&dn); 3821 goto out; 3822 } 3823 3824 len = 0; 3825 } 3826 } 3827 3828 if (!len) { 3829 prev_bdev = cur_bdev; 3830 prev_index = index; 3831 prev_block = blkaddr; 3832 len = 1; 3833 } 3834 } 3835 3836 f2fs_put_dnode(&dn); 3837 3838 if (fatal_signal_pending(current)) { 3839 ret = -EINTR; 3840 goto out; 3841 } 3842 cond_resched(); 3843 } 3844 3845 if (len) 3846 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3847 prev_block, len, range.flags); 3848 out: 3849 filemap_invalidate_unlock(mapping); 3850 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3851 err: 3852 inode_unlock(inode); 3853 file_end_write(filp); 3854 3855 return ret; 3856 } 3857 3858 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3859 { 3860 struct inode *inode = file_inode(filp); 3861 struct f2fs_comp_option option; 3862 3863 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3864 return -EOPNOTSUPP; 3865 3866 inode_lock_shared(inode); 3867 3868 if (!f2fs_compressed_file(inode)) { 3869 inode_unlock_shared(inode); 3870 return -ENODATA; 3871 } 3872 3873 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3874 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3875 3876 inode_unlock_shared(inode); 3877 3878 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3879 sizeof(option))) 3880 return -EFAULT; 3881 3882 return 0; 3883 } 3884 3885 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 3886 { 3887 struct inode *inode = file_inode(filp); 3888 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3889 struct f2fs_comp_option option; 3890 int ret = 0; 3891 3892 if (!f2fs_sb_has_compression(sbi)) 3893 return -EOPNOTSUPP; 3894 3895 if (!(filp->f_mode & FMODE_WRITE)) 3896 return -EBADF; 3897 3898 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 3899 sizeof(option))) 3900 return -EFAULT; 3901 3902 if (!f2fs_compressed_file(inode) || 3903 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 3904 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 3905 option.algorithm >= COMPRESS_MAX) 3906 return -EINVAL; 3907 3908 file_start_write(filp); 3909 inode_lock(inode); 3910 3911 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 3912 ret = -EBUSY; 3913 goto out; 3914 } 3915 3916 if (inode->i_size != 0) { 3917 ret = -EFBIG; 3918 goto out; 3919 } 3920 3921 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 3922 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 3923 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size; 3924 f2fs_mark_inode_dirty_sync(inode, true); 3925 3926 if (!f2fs_is_compress_backend_ready(inode)) 3927 f2fs_warn(sbi, "compression algorithm is successfully set, " 3928 "but current kernel doesn't support this algorithm."); 3929 out: 3930 inode_unlock(inode); 3931 file_end_write(filp); 3932 3933 return ret; 3934 } 3935 3936 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 3937 { 3938 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 3939 struct address_space *mapping = inode->i_mapping; 3940 struct page *page; 3941 pgoff_t redirty_idx = page_idx; 3942 int i, page_len = 0, ret = 0; 3943 3944 page_cache_ra_unbounded(&ractl, len, 0); 3945 3946 for (i = 0; i < len; i++, page_idx++) { 3947 page = read_cache_page(mapping, page_idx, NULL, NULL); 3948 if (IS_ERR(page)) { 3949 ret = PTR_ERR(page); 3950 break; 3951 } 3952 page_len++; 3953 } 3954 3955 for (i = 0; i < page_len; i++, redirty_idx++) { 3956 page = find_lock_page(mapping, redirty_idx); 3957 3958 /* It will never fail, when page has pinned above */ 3959 f2fs_bug_on(F2FS_I_SB(inode), !page); 3960 3961 set_page_dirty(page); 3962 f2fs_put_page(page, 1); 3963 f2fs_put_page(page, 0); 3964 } 3965 3966 return ret; 3967 } 3968 3969 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg) 3970 { 3971 struct inode *inode = file_inode(filp); 3972 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3973 struct f2fs_inode_info *fi = F2FS_I(inode); 3974 pgoff_t page_idx = 0, last_idx; 3975 unsigned int blk_per_seg = sbi->blocks_per_seg; 3976 int cluster_size = fi->i_cluster_size; 3977 int count, ret; 3978 3979 if (!f2fs_sb_has_compression(sbi) || 3980 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 3981 return -EOPNOTSUPP; 3982 3983 if (!(filp->f_mode & FMODE_WRITE)) 3984 return -EBADF; 3985 3986 if (!f2fs_compressed_file(inode)) 3987 return -EINVAL; 3988 3989 f2fs_balance_fs(F2FS_I_SB(inode), true); 3990 3991 file_start_write(filp); 3992 inode_lock(inode); 3993 3994 if (!f2fs_is_compress_backend_ready(inode)) { 3995 ret = -EOPNOTSUPP; 3996 goto out; 3997 } 3998 3999 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4000 ret = -EINVAL; 4001 goto out; 4002 } 4003 4004 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4005 if (ret) 4006 goto out; 4007 4008 if (!atomic_read(&fi->i_compr_blocks)) 4009 goto out; 4010 4011 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4012 4013 count = last_idx - page_idx; 4014 while (count) { 4015 int len = min(cluster_size, count); 4016 4017 ret = redirty_blocks(inode, page_idx, len); 4018 if (ret < 0) 4019 break; 4020 4021 if (get_dirty_pages(inode) >= blk_per_seg) 4022 filemap_fdatawrite(inode->i_mapping); 4023 4024 count -= len; 4025 page_idx += len; 4026 } 4027 4028 if (!ret) 4029 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4030 LLONG_MAX); 4031 4032 if (ret) 4033 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4034 __func__, ret); 4035 out: 4036 inode_unlock(inode); 4037 file_end_write(filp); 4038 4039 return ret; 4040 } 4041 4042 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg) 4043 { 4044 struct inode *inode = file_inode(filp); 4045 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4046 pgoff_t page_idx = 0, last_idx; 4047 unsigned int blk_per_seg = sbi->blocks_per_seg; 4048 int cluster_size = F2FS_I(inode)->i_cluster_size; 4049 int count, ret; 4050 4051 if (!f2fs_sb_has_compression(sbi) || 4052 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4053 return -EOPNOTSUPP; 4054 4055 if (!(filp->f_mode & FMODE_WRITE)) 4056 return -EBADF; 4057 4058 if (!f2fs_compressed_file(inode)) 4059 return -EINVAL; 4060 4061 f2fs_balance_fs(F2FS_I_SB(inode), true); 4062 4063 file_start_write(filp); 4064 inode_lock(inode); 4065 4066 if (!f2fs_is_compress_backend_ready(inode)) { 4067 ret = -EOPNOTSUPP; 4068 goto out; 4069 } 4070 4071 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4072 ret = -EINVAL; 4073 goto out; 4074 } 4075 4076 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4077 if (ret) 4078 goto out; 4079 4080 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4081 4082 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4083 4084 count = last_idx - page_idx; 4085 while (count) { 4086 int len = min(cluster_size, count); 4087 4088 ret = redirty_blocks(inode, page_idx, len); 4089 if (ret < 0) 4090 break; 4091 4092 if (get_dirty_pages(inode) >= blk_per_seg) 4093 filemap_fdatawrite(inode->i_mapping); 4094 4095 count -= len; 4096 page_idx += len; 4097 } 4098 4099 if (!ret) 4100 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4101 LLONG_MAX); 4102 4103 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4104 4105 if (ret) 4106 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4107 __func__, ret); 4108 out: 4109 inode_unlock(inode); 4110 file_end_write(filp); 4111 4112 return ret; 4113 } 4114 4115 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4116 { 4117 switch (cmd) { 4118 case FS_IOC_GETVERSION: 4119 return f2fs_ioc_getversion(filp, arg); 4120 case F2FS_IOC_START_ATOMIC_WRITE: 4121 return f2fs_ioc_start_atomic_write(filp); 4122 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4123 return f2fs_ioc_commit_atomic_write(filp); 4124 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4125 return f2fs_ioc_abort_atomic_write(filp); 4126 case F2FS_IOC_START_VOLATILE_WRITE: 4127 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4128 return -EOPNOTSUPP; 4129 case F2FS_IOC_SHUTDOWN: 4130 return f2fs_ioc_shutdown(filp, arg); 4131 case FITRIM: 4132 return f2fs_ioc_fitrim(filp, arg); 4133 case FS_IOC_SET_ENCRYPTION_POLICY: 4134 return f2fs_ioc_set_encryption_policy(filp, arg); 4135 case FS_IOC_GET_ENCRYPTION_POLICY: 4136 return f2fs_ioc_get_encryption_policy(filp, arg); 4137 case FS_IOC_GET_ENCRYPTION_PWSALT: 4138 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4139 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4140 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4141 case FS_IOC_ADD_ENCRYPTION_KEY: 4142 return f2fs_ioc_add_encryption_key(filp, arg); 4143 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4144 return f2fs_ioc_remove_encryption_key(filp, arg); 4145 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4146 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4147 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4148 return f2fs_ioc_get_encryption_key_status(filp, arg); 4149 case FS_IOC_GET_ENCRYPTION_NONCE: 4150 return f2fs_ioc_get_encryption_nonce(filp, arg); 4151 case F2FS_IOC_GARBAGE_COLLECT: 4152 return f2fs_ioc_gc(filp, arg); 4153 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4154 return f2fs_ioc_gc_range(filp, arg); 4155 case F2FS_IOC_WRITE_CHECKPOINT: 4156 return f2fs_ioc_write_checkpoint(filp, arg); 4157 case F2FS_IOC_DEFRAGMENT: 4158 return f2fs_ioc_defragment(filp, arg); 4159 case F2FS_IOC_MOVE_RANGE: 4160 return f2fs_ioc_move_range(filp, arg); 4161 case F2FS_IOC_FLUSH_DEVICE: 4162 return f2fs_ioc_flush_device(filp, arg); 4163 case F2FS_IOC_GET_FEATURES: 4164 return f2fs_ioc_get_features(filp, arg); 4165 case F2FS_IOC_GET_PIN_FILE: 4166 return f2fs_ioc_get_pin_file(filp, arg); 4167 case F2FS_IOC_SET_PIN_FILE: 4168 return f2fs_ioc_set_pin_file(filp, arg); 4169 case F2FS_IOC_PRECACHE_EXTENTS: 4170 return f2fs_ioc_precache_extents(filp, arg); 4171 case F2FS_IOC_RESIZE_FS: 4172 return f2fs_ioc_resize_fs(filp, arg); 4173 case FS_IOC_ENABLE_VERITY: 4174 return f2fs_ioc_enable_verity(filp, arg); 4175 case FS_IOC_MEASURE_VERITY: 4176 return f2fs_ioc_measure_verity(filp, arg); 4177 case FS_IOC_READ_VERITY_METADATA: 4178 return f2fs_ioc_read_verity_metadata(filp, arg); 4179 case FS_IOC_GETFSLABEL: 4180 return f2fs_ioc_getfslabel(filp, arg); 4181 case FS_IOC_SETFSLABEL: 4182 return f2fs_ioc_setfslabel(filp, arg); 4183 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4184 return f2fs_get_compress_blocks(filp, arg); 4185 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4186 return f2fs_release_compress_blocks(filp, arg); 4187 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4188 return f2fs_reserve_compress_blocks(filp, arg); 4189 case F2FS_IOC_SEC_TRIM_FILE: 4190 return f2fs_sec_trim_file(filp, arg); 4191 case F2FS_IOC_GET_COMPRESS_OPTION: 4192 return f2fs_ioc_get_compress_option(filp, arg); 4193 case F2FS_IOC_SET_COMPRESS_OPTION: 4194 return f2fs_ioc_set_compress_option(filp, arg); 4195 case F2FS_IOC_DECOMPRESS_FILE: 4196 return f2fs_ioc_decompress_file(filp, arg); 4197 case F2FS_IOC_COMPRESS_FILE: 4198 return f2fs_ioc_compress_file(filp, arg); 4199 default: 4200 return -ENOTTY; 4201 } 4202 } 4203 4204 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4205 { 4206 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4207 return -EIO; 4208 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4209 return -ENOSPC; 4210 4211 return __f2fs_ioctl(filp, cmd, arg); 4212 } 4213 4214 /* 4215 * Return %true if the given read or write request should use direct I/O, or 4216 * %false if it should use buffered I/O. 4217 */ 4218 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4219 struct iov_iter *iter) 4220 { 4221 unsigned int align; 4222 4223 if (!(iocb->ki_flags & IOCB_DIRECT)) 4224 return false; 4225 4226 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) 4227 return false; 4228 4229 /* 4230 * Direct I/O not aligned to the disk's logical_block_size will be 4231 * attempted, but will fail with -EINVAL. 4232 * 4233 * f2fs additionally requires that direct I/O be aligned to the 4234 * filesystem block size, which is often a stricter requirement. 4235 * However, f2fs traditionally falls back to buffered I/O on requests 4236 * that are logical_block_size-aligned but not fs-block aligned. 4237 * 4238 * The below logic implements this behavior. 4239 */ 4240 align = iocb->ki_pos | iov_iter_alignment(iter); 4241 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4242 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4243 return false; 4244 4245 return true; 4246 } 4247 4248 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4249 unsigned int flags) 4250 { 4251 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4252 4253 dec_page_count(sbi, F2FS_DIO_READ); 4254 if (error) 4255 return error; 4256 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, size); 4257 return 0; 4258 } 4259 4260 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4261 .end_io = f2fs_dio_read_end_io, 4262 }; 4263 4264 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4265 { 4266 struct file *file = iocb->ki_filp; 4267 struct inode *inode = file_inode(file); 4268 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4269 struct f2fs_inode_info *fi = F2FS_I(inode); 4270 const loff_t pos = iocb->ki_pos; 4271 const size_t count = iov_iter_count(to); 4272 struct iomap_dio *dio; 4273 ssize_t ret; 4274 4275 if (count == 0) 4276 return 0; /* skip atime update */ 4277 4278 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4279 4280 if (iocb->ki_flags & IOCB_NOWAIT) { 4281 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4282 ret = -EAGAIN; 4283 goto out; 4284 } 4285 } else { 4286 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4287 } 4288 4289 /* 4290 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4291 * the higher-level function iomap_dio_rw() in order to ensure that the 4292 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4293 */ 4294 inc_page_count(sbi, F2FS_DIO_READ); 4295 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4296 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4297 if (IS_ERR_OR_NULL(dio)) { 4298 ret = PTR_ERR_OR_ZERO(dio); 4299 if (ret != -EIOCBQUEUED) 4300 dec_page_count(sbi, F2FS_DIO_READ); 4301 } else { 4302 ret = iomap_dio_complete(dio); 4303 } 4304 4305 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4306 4307 file_accessed(file); 4308 out: 4309 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4310 return ret; 4311 } 4312 4313 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4314 { 4315 struct inode *inode = file_inode(iocb->ki_filp); 4316 const loff_t pos = iocb->ki_pos; 4317 ssize_t ret; 4318 4319 if (!f2fs_is_compress_backend_ready(inode)) 4320 return -EOPNOTSUPP; 4321 4322 if (trace_f2fs_dataread_start_enabled()) { 4323 char *p = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL); 4324 char *path; 4325 4326 if (!p) 4327 goto skip_read_trace; 4328 4329 path = dentry_path_raw(file_dentry(iocb->ki_filp), p, PATH_MAX); 4330 if (IS_ERR(path)) { 4331 kfree(p); 4332 goto skip_read_trace; 4333 } 4334 4335 trace_f2fs_dataread_start(inode, pos, iov_iter_count(to), 4336 current->pid, path, current->comm); 4337 kfree(p); 4338 } 4339 skip_read_trace: 4340 if (f2fs_should_use_dio(inode, iocb, to)) { 4341 ret = f2fs_dio_read_iter(iocb, to); 4342 } else { 4343 ret = filemap_read(iocb, to, 0); 4344 if (ret > 0) 4345 f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_READ_IO, ret); 4346 } 4347 if (trace_f2fs_dataread_end_enabled()) 4348 trace_f2fs_dataread_end(inode, pos, ret); 4349 return ret; 4350 } 4351 4352 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4353 { 4354 struct file *file = iocb->ki_filp; 4355 struct inode *inode = file_inode(file); 4356 ssize_t count; 4357 int err; 4358 4359 if (IS_IMMUTABLE(inode)) 4360 return -EPERM; 4361 4362 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4363 return -EPERM; 4364 4365 count = generic_write_checks(iocb, from); 4366 if (count <= 0) 4367 return count; 4368 4369 err = file_modified(file); 4370 if (err) 4371 return err; 4372 return count; 4373 } 4374 4375 /* 4376 * Preallocate blocks for a write request, if it is possible and helpful to do 4377 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4378 * blocks were preallocated, or a negative errno value if something went 4379 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4380 * requested blocks (not just some of them) have been allocated. 4381 */ 4382 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4383 bool dio) 4384 { 4385 struct inode *inode = file_inode(iocb->ki_filp); 4386 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4387 const loff_t pos = iocb->ki_pos; 4388 const size_t count = iov_iter_count(iter); 4389 struct f2fs_map_blocks map = {}; 4390 int flag; 4391 int ret; 4392 4393 /* If it will be an out-of-place direct write, don't bother. */ 4394 if (dio && f2fs_lfs_mode(sbi)) 4395 return 0; 4396 /* 4397 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4398 * buffered IO, if DIO meets any holes. 4399 */ 4400 if (dio && i_size_read(inode) && 4401 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4402 return 0; 4403 4404 /* No-wait I/O can't allocate blocks. */ 4405 if (iocb->ki_flags & IOCB_NOWAIT) 4406 return 0; 4407 4408 /* If it will be a short write, don't bother. */ 4409 if (fault_in_iov_iter_readable(iter, count)) 4410 return 0; 4411 4412 if (f2fs_has_inline_data(inode)) { 4413 /* If the data will fit inline, don't bother. */ 4414 if (pos + count <= MAX_INLINE_DATA(inode)) 4415 return 0; 4416 ret = f2fs_convert_inline_inode(inode); 4417 if (ret) 4418 return ret; 4419 } 4420 4421 /* Do not preallocate blocks that will be written partially in 4KB. */ 4422 map.m_lblk = F2FS_BLK_ALIGN(pos); 4423 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4424 if (map.m_len > map.m_lblk) 4425 map.m_len -= map.m_lblk; 4426 else 4427 map.m_len = 0; 4428 map.m_may_create = true; 4429 if (dio) { 4430 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4431 flag = F2FS_GET_BLOCK_PRE_DIO; 4432 } else { 4433 map.m_seg_type = NO_CHECK_TYPE; 4434 flag = F2FS_GET_BLOCK_PRE_AIO; 4435 } 4436 4437 ret = f2fs_map_blocks(inode, &map, 1, flag); 4438 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4439 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4440 return ret; 4441 if (ret == 0) 4442 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4443 return map.m_len; 4444 } 4445 4446 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4447 struct iov_iter *from) 4448 { 4449 struct file *file = iocb->ki_filp; 4450 struct inode *inode = file_inode(file); 4451 ssize_t ret; 4452 4453 if (iocb->ki_flags & IOCB_NOWAIT) 4454 return -EOPNOTSUPP; 4455 4456 current->backing_dev_info = inode_to_bdi(inode); 4457 ret = generic_perform_write(iocb, from); 4458 current->backing_dev_info = NULL; 4459 4460 if (ret > 0) { 4461 iocb->ki_pos += ret; 4462 f2fs_update_iostat(F2FS_I_SB(inode), APP_BUFFERED_IO, ret); 4463 } 4464 return ret; 4465 } 4466 4467 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4468 unsigned int flags) 4469 { 4470 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4471 4472 dec_page_count(sbi, F2FS_DIO_WRITE); 4473 if (error) 4474 return error; 4475 f2fs_update_iostat(sbi, APP_DIRECT_IO, size); 4476 return 0; 4477 } 4478 4479 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4480 .end_io = f2fs_dio_write_end_io, 4481 }; 4482 4483 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4484 bool *may_need_sync) 4485 { 4486 struct file *file = iocb->ki_filp; 4487 struct inode *inode = file_inode(file); 4488 struct f2fs_inode_info *fi = F2FS_I(inode); 4489 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4490 const bool do_opu = f2fs_lfs_mode(sbi); 4491 const loff_t pos = iocb->ki_pos; 4492 const ssize_t count = iov_iter_count(from); 4493 unsigned int dio_flags; 4494 struct iomap_dio *dio; 4495 ssize_t ret; 4496 4497 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4498 4499 if (iocb->ki_flags & IOCB_NOWAIT) { 4500 /* f2fs_convert_inline_inode() and block allocation can block */ 4501 if (f2fs_has_inline_data(inode) || 4502 !f2fs_overwrite_io(inode, pos, count)) { 4503 ret = -EAGAIN; 4504 goto out; 4505 } 4506 4507 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4508 ret = -EAGAIN; 4509 goto out; 4510 } 4511 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4512 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4513 ret = -EAGAIN; 4514 goto out; 4515 } 4516 } else { 4517 ret = f2fs_convert_inline_inode(inode); 4518 if (ret) 4519 goto out; 4520 4521 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4522 if (do_opu) 4523 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4524 } 4525 4526 /* 4527 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4528 * the higher-level function iomap_dio_rw() in order to ensure that the 4529 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4530 */ 4531 inc_page_count(sbi, F2FS_DIO_WRITE); 4532 dio_flags = 0; 4533 if (pos + count > inode->i_size) 4534 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4535 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4536 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4537 if (IS_ERR_OR_NULL(dio)) { 4538 ret = PTR_ERR_OR_ZERO(dio); 4539 if (ret == -ENOTBLK) 4540 ret = 0; 4541 if (ret != -EIOCBQUEUED) 4542 dec_page_count(sbi, F2FS_DIO_WRITE); 4543 } else { 4544 ret = iomap_dio_complete(dio); 4545 } 4546 4547 if (do_opu) 4548 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4549 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4550 4551 if (ret < 0) 4552 goto out; 4553 if (pos + ret > inode->i_size) 4554 f2fs_i_size_write(inode, pos + ret); 4555 if (!do_opu) 4556 set_inode_flag(inode, FI_UPDATE_WRITE); 4557 4558 if (iov_iter_count(from)) { 4559 ssize_t ret2; 4560 loff_t bufio_start_pos = iocb->ki_pos; 4561 4562 /* 4563 * The direct write was partial, so we need to fall back to a 4564 * buffered write for the remainder. 4565 */ 4566 4567 ret2 = f2fs_buffered_write_iter(iocb, from); 4568 if (iov_iter_count(from)) 4569 f2fs_write_failed(inode, iocb->ki_pos); 4570 if (ret2 < 0) 4571 goto out; 4572 4573 /* 4574 * Ensure that the pagecache pages are written to disk and 4575 * invalidated to preserve the expected O_DIRECT semantics. 4576 */ 4577 if (ret2 > 0) { 4578 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4579 4580 ret += ret2; 4581 4582 ret2 = filemap_write_and_wait_range(file->f_mapping, 4583 bufio_start_pos, 4584 bufio_end_pos); 4585 if (ret2 < 0) 4586 goto out; 4587 invalidate_mapping_pages(file->f_mapping, 4588 bufio_start_pos >> PAGE_SHIFT, 4589 bufio_end_pos >> PAGE_SHIFT); 4590 } 4591 } else { 4592 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4593 *may_need_sync = false; 4594 } 4595 out: 4596 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4597 return ret; 4598 } 4599 4600 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4601 { 4602 struct inode *inode = file_inode(iocb->ki_filp); 4603 const loff_t orig_pos = iocb->ki_pos; 4604 const size_t orig_count = iov_iter_count(from); 4605 loff_t target_size; 4606 bool dio; 4607 bool may_need_sync = true; 4608 int preallocated; 4609 ssize_t ret; 4610 4611 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4612 ret = -EIO; 4613 goto out; 4614 } 4615 4616 if (!f2fs_is_compress_backend_ready(inode)) { 4617 ret = -EOPNOTSUPP; 4618 goto out; 4619 } 4620 4621 if (iocb->ki_flags & IOCB_NOWAIT) { 4622 if (!inode_trylock(inode)) { 4623 ret = -EAGAIN; 4624 goto out; 4625 } 4626 } else { 4627 inode_lock(inode); 4628 } 4629 4630 ret = f2fs_write_checks(iocb, from); 4631 if (ret <= 0) 4632 goto out_unlock; 4633 4634 /* Determine whether we will do a direct write or a buffered write. */ 4635 dio = f2fs_should_use_dio(inode, iocb, from); 4636 4637 /* Possibly preallocate the blocks for the write. */ 4638 target_size = iocb->ki_pos + iov_iter_count(from); 4639 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 4640 if (preallocated < 0) { 4641 ret = preallocated; 4642 } else { 4643 if (trace_f2fs_datawrite_start_enabled()) { 4644 char *p = f2fs_kmalloc(F2FS_I_SB(inode), 4645 PATH_MAX, GFP_KERNEL); 4646 char *path; 4647 4648 if (!p) 4649 goto skip_write_trace; 4650 path = dentry_path_raw(file_dentry(iocb->ki_filp), 4651 p, PATH_MAX); 4652 if (IS_ERR(path)) { 4653 kfree(p); 4654 goto skip_write_trace; 4655 } 4656 trace_f2fs_datawrite_start(inode, orig_pos, orig_count, 4657 current->pid, path, current->comm); 4658 kfree(p); 4659 } 4660 skip_write_trace: 4661 /* Do the actual write. */ 4662 ret = dio ? 4663 f2fs_dio_write_iter(iocb, from, &may_need_sync): 4664 f2fs_buffered_write_iter(iocb, from); 4665 4666 if (trace_f2fs_datawrite_end_enabled()) 4667 trace_f2fs_datawrite_end(inode, orig_pos, ret); 4668 } 4669 4670 /* Don't leave any preallocated blocks around past i_size. */ 4671 if (preallocated && i_size_read(inode) < target_size) { 4672 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4673 filemap_invalidate_lock(inode->i_mapping); 4674 if (!f2fs_truncate(inode)) 4675 file_dont_truncate(inode); 4676 filemap_invalidate_unlock(inode->i_mapping); 4677 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4678 } else { 4679 file_dont_truncate(inode); 4680 } 4681 4682 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 4683 out_unlock: 4684 inode_unlock(inode); 4685 out: 4686 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 4687 if (ret > 0 && may_need_sync) 4688 ret = generic_write_sync(iocb, ret); 4689 return ret; 4690 } 4691 4692 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 4693 int advice) 4694 { 4695 struct address_space *mapping; 4696 struct backing_dev_info *bdi; 4697 struct inode *inode = file_inode(filp); 4698 int err; 4699 4700 if (advice == POSIX_FADV_SEQUENTIAL) { 4701 if (S_ISFIFO(inode->i_mode)) 4702 return -ESPIPE; 4703 4704 mapping = filp->f_mapping; 4705 if (!mapping || len < 0) 4706 return -EINVAL; 4707 4708 bdi = inode_to_bdi(mapping->host); 4709 filp->f_ra.ra_pages = bdi->ra_pages * 4710 F2FS_I_SB(inode)->seq_file_ra_mul; 4711 spin_lock(&filp->f_lock); 4712 filp->f_mode &= ~FMODE_RANDOM; 4713 spin_unlock(&filp->f_lock); 4714 return 0; 4715 } 4716 4717 err = generic_fadvise(filp, offset, len, advice); 4718 if (!err && advice == POSIX_FADV_DONTNEED && 4719 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 4720 f2fs_compressed_file(inode)) 4721 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 4722 4723 return err; 4724 } 4725 4726 #ifdef CONFIG_COMPAT 4727 struct compat_f2fs_gc_range { 4728 u32 sync; 4729 compat_u64 start; 4730 compat_u64 len; 4731 }; 4732 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4733 struct compat_f2fs_gc_range) 4734 4735 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4736 { 4737 struct compat_f2fs_gc_range __user *urange; 4738 struct f2fs_gc_range range; 4739 int err; 4740 4741 urange = compat_ptr(arg); 4742 err = get_user(range.sync, &urange->sync); 4743 err |= get_user(range.start, &urange->start); 4744 err |= get_user(range.len, &urange->len); 4745 if (err) 4746 return -EFAULT; 4747 4748 return __f2fs_ioc_gc_range(file, &range); 4749 } 4750 4751 struct compat_f2fs_move_range { 4752 u32 dst_fd; 4753 compat_u64 pos_in; 4754 compat_u64 pos_out; 4755 compat_u64 len; 4756 }; 4757 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4758 struct compat_f2fs_move_range) 4759 4760 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4761 { 4762 struct compat_f2fs_move_range __user *urange; 4763 struct f2fs_move_range range; 4764 int err; 4765 4766 urange = compat_ptr(arg); 4767 err = get_user(range.dst_fd, &urange->dst_fd); 4768 err |= get_user(range.pos_in, &urange->pos_in); 4769 err |= get_user(range.pos_out, &urange->pos_out); 4770 err |= get_user(range.len, &urange->len); 4771 if (err) 4772 return -EFAULT; 4773 4774 return __f2fs_ioc_move_range(file, &range); 4775 } 4776 4777 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4778 { 4779 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4780 return -EIO; 4781 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4782 return -ENOSPC; 4783 4784 switch (cmd) { 4785 case FS_IOC32_GETVERSION: 4786 cmd = FS_IOC_GETVERSION; 4787 break; 4788 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4789 return f2fs_compat_ioc_gc_range(file, arg); 4790 case F2FS_IOC32_MOVE_RANGE: 4791 return f2fs_compat_ioc_move_range(file, arg); 4792 case F2FS_IOC_START_ATOMIC_WRITE: 4793 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4794 case F2FS_IOC_START_VOLATILE_WRITE: 4795 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4796 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4797 case F2FS_IOC_SHUTDOWN: 4798 case FITRIM: 4799 case FS_IOC_SET_ENCRYPTION_POLICY: 4800 case FS_IOC_GET_ENCRYPTION_PWSALT: 4801 case FS_IOC_GET_ENCRYPTION_POLICY: 4802 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4803 case FS_IOC_ADD_ENCRYPTION_KEY: 4804 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4805 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4806 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4807 case FS_IOC_GET_ENCRYPTION_NONCE: 4808 case F2FS_IOC_GARBAGE_COLLECT: 4809 case F2FS_IOC_WRITE_CHECKPOINT: 4810 case F2FS_IOC_DEFRAGMENT: 4811 case F2FS_IOC_FLUSH_DEVICE: 4812 case F2FS_IOC_GET_FEATURES: 4813 case F2FS_IOC_GET_PIN_FILE: 4814 case F2FS_IOC_SET_PIN_FILE: 4815 case F2FS_IOC_PRECACHE_EXTENTS: 4816 case F2FS_IOC_RESIZE_FS: 4817 case FS_IOC_ENABLE_VERITY: 4818 case FS_IOC_MEASURE_VERITY: 4819 case FS_IOC_READ_VERITY_METADATA: 4820 case FS_IOC_GETFSLABEL: 4821 case FS_IOC_SETFSLABEL: 4822 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4823 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4824 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4825 case F2FS_IOC_SEC_TRIM_FILE: 4826 case F2FS_IOC_GET_COMPRESS_OPTION: 4827 case F2FS_IOC_SET_COMPRESS_OPTION: 4828 case F2FS_IOC_DECOMPRESS_FILE: 4829 case F2FS_IOC_COMPRESS_FILE: 4830 break; 4831 default: 4832 return -ENOIOCTLCMD; 4833 } 4834 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4835 } 4836 #endif 4837 4838 const struct file_operations f2fs_file_operations = { 4839 .llseek = f2fs_llseek, 4840 .read_iter = f2fs_file_read_iter, 4841 .write_iter = f2fs_file_write_iter, 4842 .open = f2fs_file_open, 4843 .release = f2fs_release_file, 4844 .mmap = f2fs_file_mmap, 4845 .flush = f2fs_file_flush, 4846 .fsync = f2fs_sync_file, 4847 .fallocate = f2fs_fallocate, 4848 .unlocked_ioctl = f2fs_ioctl, 4849 #ifdef CONFIG_COMPAT 4850 .compat_ioctl = f2fs_compat_ioctl, 4851 #endif 4852 .splice_read = generic_file_splice_read, 4853 .splice_write = iter_file_splice_write, 4854 .fadvise = f2fs_file_fadvise, 4855 }; 4856