1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "xattr.h" 29 #include "acl.h" 30 #include "gc.h" 31 #include "trace.h" 32 #include <trace/events/f2fs.h> 33 34 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 35 { 36 struct inode *inode = file_inode(vmf->vma->vm_file); 37 vm_fault_t ret; 38 39 down_read(&F2FS_I(inode)->i_mmap_sem); 40 ret = filemap_fault(vmf); 41 up_read(&F2FS_I(inode)->i_mmap_sem); 42 43 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 44 45 return ret; 46 } 47 48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 49 { 50 struct page *page = vmf->page; 51 struct inode *inode = file_inode(vmf->vma->vm_file); 52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 53 struct dnode_of_data dn = { .node_changed = false }; 54 int err; 55 56 if (unlikely(f2fs_cp_error(sbi))) { 57 err = -EIO; 58 goto err; 59 } 60 61 if (!f2fs_is_checkpoint_ready(sbi)) { 62 err = -ENOSPC; 63 goto err; 64 } 65 66 sb_start_pagefault(inode->i_sb); 67 68 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 69 70 file_update_time(vmf->vma->vm_file); 71 down_read(&F2FS_I(inode)->i_mmap_sem); 72 lock_page(page); 73 if (unlikely(page->mapping != inode->i_mapping || 74 page_offset(page) > i_size_read(inode) || 75 !PageUptodate(page))) { 76 unlock_page(page); 77 err = -EFAULT; 78 goto out_sem; 79 } 80 81 /* block allocation */ 82 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 83 set_new_dnode(&dn, inode, NULL, NULL, 0); 84 err = f2fs_get_block(&dn, page->index); 85 f2fs_put_dnode(&dn); 86 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 87 if (err) { 88 unlock_page(page); 89 goto out_sem; 90 } 91 92 /* fill the page */ 93 f2fs_wait_on_page_writeback(page, DATA, false, true); 94 95 /* wait for GCed page writeback via META_MAPPING */ 96 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 97 98 /* 99 * check to see if the page is mapped already (no holes) 100 */ 101 if (PageMappedToDisk(page)) 102 goto out_sem; 103 104 /* page is wholly or partially inside EOF */ 105 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 106 i_size_read(inode)) { 107 loff_t offset; 108 109 offset = i_size_read(inode) & ~PAGE_MASK; 110 zero_user_segment(page, offset, PAGE_SIZE); 111 } 112 set_page_dirty(page); 113 if (!PageUptodate(page)) 114 SetPageUptodate(page); 115 116 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE); 117 f2fs_update_time(sbi, REQ_TIME); 118 119 trace_f2fs_vm_page_mkwrite(page, DATA); 120 out_sem: 121 up_read(&F2FS_I(inode)->i_mmap_sem); 122 123 f2fs_balance_fs(sbi, dn.node_changed); 124 125 sb_end_pagefault(inode->i_sb); 126 err: 127 return block_page_mkwrite_return(err); 128 } 129 130 static const struct vm_operations_struct f2fs_file_vm_ops = { 131 .fault = f2fs_filemap_fault, 132 .map_pages = filemap_map_pages, 133 .page_mkwrite = f2fs_vm_page_mkwrite, 134 }; 135 136 static int get_parent_ino(struct inode *inode, nid_t *pino) 137 { 138 struct dentry *dentry; 139 140 inode = igrab(inode); 141 dentry = d_find_any_alias(inode); 142 iput(inode); 143 if (!dentry) 144 return 0; 145 146 *pino = parent_ino(dentry); 147 dput(dentry); 148 return 1; 149 } 150 151 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 152 { 153 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 154 enum cp_reason_type cp_reason = CP_NO_NEEDED; 155 156 if (!S_ISREG(inode->i_mode)) 157 cp_reason = CP_NON_REGULAR; 158 else if (inode->i_nlink != 1) 159 cp_reason = CP_HARDLINK; 160 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 161 cp_reason = CP_SB_NEED_CP; 162 else if (file_wrong_pino(inode)) 163 cp_reason = CP_WRONG_PINO; 164 else if (!f2fs_space_for_roll_forward(sbi)) 165 cp_reason = CP_NO_SPC_ROLL; 166 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 167 cp_reason = CP_NODE_NEED_CP; 168 else if (test_opt(sbi, FASTBOOT)) 169 cp_reason = CP_FASTBOOT_MODE; 170 else if (F2FS_OPTION(sbi).active_logs == 2) 171 cp_reason = CP_SPEC_LOG_NUM; 172 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 173 f2fs_need_dentry_mark(sbi, inode->i_ino) && 174 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 175 TRANS_DIR_INO)) 176 cp_reason = CP_RECOVER_DIR; 177 178 return cp_reason; 179 } 180 181 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 182 { 183 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 184 bool ret = false; 185 /* But we need to avoid that there are some inode updates */ 186 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 187 ret = true; 188 f2fs_put_page(i, 0); 189 return ret; 190 } 191 192 static void try_to_fix_pino(struct inode *inode) 193 { 194 struct f2fs_inode_info *fi = F2FS_I(inode); 195 nid_t pino; 196 197 down_write(&fi->i_sem); 198 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 199 get_parent_ino(inode, &pino)) { 200 f2fs_i_pino_write(inode, pino); 201 file_got_pino(inode); 202 } 203 up_write(&fi->i_sem); 204 } 205 206 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 207 int datasync, bool atomic) 208 { 209 struct inode *inode = file->f_mapping->host; 210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 211 nid_t ino = inode->i_ino; 212 int ret = 0; 213 enum cp_reason_type cp_reason = 0; 214 struct writeback_control wbc = { 215 .sync_mode = WB_SYNC_ALL, 216 .nr_to_write = LONG_MAX, 217 .for_reclaim = 0, 218 }; 219 unsigned int seq_id = 0; 220 221 if (unlikely(f2fs_readonly(inode->i_sb) || 222 is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 223 return 0; 224 225 trace_f2fs_sync_file_enter(inode); 226 227 if (S_ISDIR(inode->i_mode)) 228 goto go_write; 229 230 /* if fdatasync is triggered, let's do in-place-update */ 231 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 232 set_inode_flag(inode, FI_NEED_IPU); 233 ret = file_write_and_wait_range(file, start, end); 234 clear_inode_flag(inode, FI_NEED_IPU); 235 236 if (ret) { 237 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 238 return ret; 239 } 240 241 /* if the inode is dirty, let's recover all the time */ 242 if (!f2fs_skip_inode_update(inode, datasync)) { 243 f2fs_write_inode(inode, NULL); 244 goto go_write; 245 } 246 247 /* 248 * if there is no written data, don't waste time to write recovery info. 249 */ 250 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 251 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 252 253 /* it may call write_inode just prior to fsync */ 254 if (need_inode_page_update(sbi, ino)) 255 goto go_write; 256 257 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 258 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 259 goto flush_out; 260 goto out; 261 } 262 go_write: 263 /* 264 * Both of fdatasync() and fsync() are able to be recovered from 265 * sudden-power-off. 266 */ 267 down_read(&F2FS_I(inode)->i_sem); 268 cp_reason = need_do_checkpoint(inode); 269 up_read(&F2FS_I(inode)->i_sem); 270 271 if (cp_reason) { 272 /* all the dirty node pages should be flushed for POR */ 273 ret = f2fs_sync_fs(inode->i_sb, 1); 274 275 /* 276 * We've secured consistency through sync_fs. Following pino 277 * will be used only for fsynced inodes after checkpoint. 278 */ 279 try_to_fix_pino(inode); 280 clear_inode_flag(inode, FI_APPEND_WRITE); 281 clear_inode_flag(inode, FI_UPDATE_WRITE); 282 goto out; 283 } 284 sync_nodes: 285 atomic_inc(&sbi->wb_sync_req[NODE]); 286 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 287 atomic_dec(&sbi->wb_sync_req[NODE]); 288 if (ret) 289 goto out; 290 291 /* if cp_error was enabled, we should avoid infinite loop */ 292 if (unlikely(f2fs_cp_error(sbi))) { 293 ret = -EIO; 294 goto out; 295 } 296 297 if (f2fs_need_inode_block_update(sbi, ino)) { 298 f2fs_mark_inode_dirty_sync(inode, true); 299 f2fs_write_inode(inode, NULL); 300 goto sync_nodes; 301 } 302 303 /* 304 * If it's atomic_write, it's just fine to keep write ordering. So 305 * here we don't need to wait for node write completion, since we use 306 * node chain which serializes node blocks. If one of node writes are 307 * reordered, we can see simply broken chain, resulting in stopping 308 * roll-forward recovery. It means we'll recover all or none node blocks 309 * given fsync mark. 310 */ 311 if (!atomic) { 312 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 313 if (ret) 314 goto out; 315 } 316 317 /* once recovery info is written, don't need to tack this */ 318 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 319 clear_inode_flag(inode, FI_APPEND_WRITE); 320 flush_out: 321 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) 322 ret = f2fs_issue_flush(sbi, inode->i_ino); 323 if (!ret) { 324 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 325 clear_inode_flag(inode, FI_UPDATE_WRITE); 326 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 327 } 328 f2fs_update_time(sbi, REQ_TIME); 329 out: 330 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 331 f2fs_trace_ios(NULL, 1); 332 return ret; 333 } 334 335 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 336 { 337 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 338 return -EIO; 339 return f2fs_do_sync_file(file, start, end, datasync, false); 340 } 341 342 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 343 pgoff_t pgofs, int whence) 344 { 345 struct page *page; 346 int nr_pages; 347 348 if (whence != SEEK_DATA) 349 return 0; 350 351 /* find first dirty page index */ 352 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY, 353 1, &page); 354 if (!nr_pages) 355 return ULONG_MAX; 356 pgofs = page->index; 357 put_page(page); 358 return pgofs; 359 } 360 361 static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr, 362 pgoff_t dirty, pgoff_t pgofs, int whence) 363 { 364 switch (whence) { 365 case SEEK_DATA: 366 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 367 __is_valid_data_blkaddr(blkaddr)) 368 return true; 369 break; 370 case SEEK_HOLE: 371 if (blkaddr == NULL_ADDR) 372 return true; 373 break; 374 } 375 return false; 376 } 377 378 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 379 { 380 struct inode *inode = file->f_mapping->host; 381 loff_t maxbytes = inode->i_sb->s_maxbytes; 382 struct dnode_of_data dn; 383 pgoff_t pgofs, end_offset, dirty; 384 loff_t data_ofs = offset; 385 loff_t isize; 386 int err = 0; 387 388 inode_lock(inode); 389 390 isize = i_size_read(inode); 391 if (offset >= isize) 392 goto fail; 393 394 /* handle inline data case */ 395 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 396 if (whence == SEEK_HOLE) 397 data_ofs = isize; 398 goto found; 399 } 400 401 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 402 403 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 404 405 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 406 set_new_dnode(&dn, inode, NULL, NULL, 0); 407 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 408 if (err && err != -ENOENT) { 409 goto fail; 410 } else if (err == -ENOENT) { 411 /* direct node does not exists */ 412 if (whence == SEEK_DATA) { 413 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 414 continue; 415 } else { 416 goto found; 417 } 418 } 419 420 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 421 422 /* find data/hole in dnode block */ 423 for (; dn.ofs_in_node < end_offset; 424 dn.ofs_in_node++, pgofs++, 425 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 426 block_t blkaddr; 427 428 blkaddr = datablock_addr(dn.inode, 429 dn.node_page, dn.ofs_in_node); 430 431 if (__is_valid_data_blkaddr(blkaddr) && 432 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 433 blkaddr, DATA_GENERIC_ENHANCE)) { 434 f2fs_put_dnode(&dn); 435 goto fail; 436 } 437 438 if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty, 439 pgofs, whence)) { 440 f2fs_put_dnode(&dn); 441 goto found; 442 } 443 } 444 f2fs_put_dnode(&dn); 445 } 446 447 if (whence == SEEK_DATA) 448 goto fail; 449 found: 450 if (whence == SEEK_HOLE && data_ofs > isize) 451 data_ofs = isize; 452 inode_unlock(inode); 453 return vfs_setpos(file, data_ofs, maxbytes); 454 fail: 455 inode_unlock(inode); 456 return -ENXIO; 457 } 458 459 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 460 { 461 struct inode *inode = file->f_mapping->host; 462 loff_t maxbytes = inode->i_sb->s_maxbytes; 463 464 switch (whence) { 465 case SEEK_SET: 466 case SEEK_CUR: 467 case SEEK_END: 468 return generic_file_llseek_size(file, offset, whence, 469 maxbytes, i_size_read(inode)); 470 case SEEK_DATA: 471 case SEEK_HOLE: 472 if (offset < 0) 473 return -ENXIO; 474 return f2fs_seek_block(file, offset, whence); 475 } 476 477 return -EINVAL; 478 } 479 480 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 481 { 482 struct inode *inode = file_inode(file); 483 int err; 484 485 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 486 return -EIO; 487 488 /* we don't need to use inline_data strictly */ 489 err = f2fs_convert_inline_inode(inode); 490 if (err) 491 return err; 492 493 file_accessed(file); 494 vma->vm_ops = &f2fs_file_vm_ops; 495 return 0; 496 } 497 498 static int f2fs_file_open(struct inode *inode, struct file *filp) 499 { 500 int err = fscrypt_file_open(inode, filp); 501 502 if (err) 503 return err; 504 505 err = fsverity_file_open(inode, filp); 506 if (err) 507 return err; 508 509 filp->f_mode |= FMODE_NOWAIT; 510 511 return dquot_file_open(inode, filp); 512 } 513 514 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 515 { 516 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 517 struct f2fs_node *raw_node; 518 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 519 __le32 *addr; 520 int base = 0; 521 522 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 523 base = get_extra_isize(dn->inode); 524 525 raw_node = F2FS_NODE(dn->node_page); 526 addr = blkaddr_in_node(raw_node) + base + ofs; 527 528 for (; count > 0; count--, addr++, dn->ofs_in_node++) { 529 block_t blkaddr = le32_to_cpu(*addr); 530 531 if (blkaddr == NULL_ADDR) 532 continue; 533 534 dn->data_blkaddr = NULL_ADDR; 535 f2fs_set_data_blkaddr(dn); 536 537 if (__is_valid_data_blkaddr(blkaddr) && 538 !f2fs_is_valid_blkaddr(sbi, blkaddr, 539 DATA_GENERIC_ENHANCE)) 540 continue; 541 542 f2fs_invalidate_blocks(sbi, blkaddr); 543 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 544 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 545 nr_free++; 546 } 547 548 if (nr_free) { 549 pgoff_t fofs; 550 /* 551 * once we invalidate valid blkaddr in range [ofs, ofs + count], 552 * we will invalidate all blkaddr in the whole range. 553 */ 554 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 555 dn->inode) + ofs; 556 f2fs_update_extent_cache_range(dn, fofs, 0, len); 557 dec_valid_block_count(sbi, dn->inode, nr_free); 558 } 559 dn->ofs_in_node = ofs; 560 561 f2fs_update_time(sbi, REQ_TIME); 562 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 563 dn->ofs_in_node, nr_free); 564 } 565 566 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 567 { 568 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 569 } 570 571 static int truncate_partial_data_page(struct inode *inode, u64 from, 572 bool cache_only) 573 { 574 loff_t offset = from & (PAGE_SIZE - 1); 575 pgoff_t index = from >> PAGE_SHIFT; 576 struct address_space *mapping = inode->i_mapping; 577 struct page *page; 578 579 if (!offset && !cache_only) 580 return 0; 581 582 if (cache_only) { 583 page = find_lock_page(mapping, index); 584 if (page && PageUptodate(page)) 585 goto truncate_out; 586 f2fs_put_page(page, 1); 587 return 0; 588 } 589 590 page = f2fs_get_lock_data_page(inode, index, true); 591 if (IS_ERR(page)) 592 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 593 truncate_out: 594 f2fs_wait_on_page_writeback(page, DATA, true, true); 595 zero_user(page, offset, PAGE_SIZE - offset); 596 597 /* An encrypted inode should have a key and truncate the last page. */ 598 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 599 if (!cache_only) 600 set_page_dirty(page); 601 f2fs_put_page(page, 1); 602 return 0; 603 } 604 605 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 606 { 607 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 608 struct dnode_of_data dn; 609 pgoff_t free_from; 610 int count = 0, err = 0; 611 struct page *ipage; 612 bool truncate_page = false; 613 614 trace_f2fs_truncate_blocks_enter(inode, from); 615 616 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 617 618 if (free_from >= sbi->max_file_blocks) 619 goto free_partial; 620 621 if (lock) 622 f2fs_lock_op(sbi); 623 624 ipage = f2fs_get_node_page(sbi, inode->i_ino); 625 if (IS_ERR(ipage)) { 626 err = PTR_ERR(ipage); 627 goto out; 628 } 629 630 if (f2fs_has_inline_data(inode)) { 631 f2fs_truncate_inline_inode(inode, ipage, from); 632 f2fs_put_page(ipage, 1); 633 truncate_page = true; 634 goto out; 635 } 636 637 set_new_dnode(&dn, inode, ipage, NULL, 0); 638 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 639 if (err) { 640 if (err == -ENOENT) 641 goto free_next; 642 goto out; 643 } 644 645 count = ADDRS_PER_PAGE(dn.node_page, inode); 646 647 count -= dn.ofs_in_node; 648 f2fs_bug_on(sbi, count < 0); 649 650 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 651 f2fs_truncate_data_blocks_range(&dn, count); 652 free_from += count; 653 } 654 655 f2fs_put_dnode(&dn); 656 free_next: 657 err = f2fs_truncate_inode_blocks(inode, free_from); 658 out: 659 if (lock) 660 f2fs_unlock_op(sbi); 661 free_partial: 662 /* lastly zero out the first data page */ 663 if (!err) 664 err = truncate_partial_data_page(inode, from, truncate_page); 665 666 trace_f2fs_truncate_blocks_exit(inode, err); 667 return err; 668 } 669 670 int f2fs_truncate(struct inode *inode) 671 { 672 int err; 673 674 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 675 return -EIO; 676 677 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 678 S_ISLNK(inode->i_mode))) 679 return 0; 680 681 trace_f2fs_truncate(inode); 682 683 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 684 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 685 return -EIO; 686 } 687 688 /* we should check inline_data size */ 689 if (!f2fs_may_inline_data(inode)) { 690 err = f2fs_convert_inline_inode(inode); 691 if (err) 692 return err; 693 } 694 695 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 696 if (err) 697 return err; 698 699 inode->i_mtime = inode->i_ctime = current_time(inode); 700 f2fs_mark_inode_dirty_sync(inode, false); 701 return 0; 702 } 703 704 int f2fs_getattr(const struct path *path, struct kstat *stat, 705 u32 request_mask, unsigned int query_flags) 706 { 707 struct inode *inode = d_inode(path->dentry); 708 struct f2fs_inode_info *fi = F2FS_I(inode); 709 struct f2fs_inode *ri; 710 unsigned int flags; 711 712 if (f2fs_has_extra_attr(inode) && 713 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 714 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 715 stat->result_mask |= STATX_BTIME; 716 stat->btime.tv_sec = fi->i_crtime.tv_sec; 717 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 718 } 719 720 flags = fi->i_flags; 721 if (flags & F2FS_APPEND_FL) 722 stat->attributes |= STATX_ATTR_APPEND; 723 if (IS_ENCRYPTED(inode)) 724 stat->attributes |= STATX_ATTR_ENCRYPTED; 725 if (flags & F2FS_IMMUTABLE_FL) 726 stat->attributes |= STATX_ATTR_IMMUTABLE; 727 if (flags & F2FS_NODUMP_FL) 728 stat->attributes |= STATX_ATTR_NODUMP; 729 if (IS_VERITY(inode)) 730 stat->attributes |= STATX_ATTR_VERITY; 731 732 stat->attributes_mask |= (STATX_ATTR_APPEND | 733 STATX_ATTR_ENCRYPTED | 734 STATX_ATTR_IMMUTABLE | 735 STATX_ATTR_NODUMP | 736 STATX_ATTR_VERITY); 737 738 generic_fillattr(inode, stat); 739 740 /* we need to show initial sectors used for inline_data/dentries */ 741 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 742 f2fs_has_inline_dentry(inode)) 743 stat->blocks += (stat->size + 511) >> 9; 744 745 return 0; 746 } 747 748 #ifdef CONFIG_F2FS_FS_POSIX_ACL 749 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 750 { 751 unsigned int ia_valid = attr->ia_valid; 752 753 if (ia_valid & ATTR_UID) 754 inode->i_uid = attr->ia_uid; 755 if (ia_valid & ATTR_GID) 756 inode->i_gid = attr->ia_gid; 757 if (ia_valid & ATTR_ATIME) { 758 inode->i_atime = timestamp_truncate(attr->ia_atime, 759 inode); 760 } 761 if (ia_valid & ATTR_MTIME) { 762 inode->i_mtime = timestamp_truncate(attr->ia_mtime, 763 inode); 764 } 765 if (ia_valid & ATTR_CTIME) { 766 inode->i_ctime = timestamp_truncate(attr->ia_ctime, 767 inode); 768 } 769 if (ia_valid & ATTR_MODE) { 770 umode_t mode = attr->ia_mode; 771 772 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 773 mode &= ~S_ISGID; 774 set_acl_inode(inode, mode); 775 } 776 } 777 #else 778 #define __setattr_copy setattr_copy 779 #endif 780 781 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 782 { 783 struct inode *inode = d_inode(dentry); 784 int err; 785 786 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 787 return -EIO; 788 789 err = setattr_prepare(dentry, attr); 790 if (err) 791 return err; 792 793 err = fscrypt_prepare_setattr(dentry, attr); 794 if (err) 795 return err; 796 797 err = fsverity_prepare_setattr(dentry, attr); 798 if (err) 799 return err; 800 801 if (is_quota_modification(inode, attr)) { 802 err = dquot_initialize(inode); 803 if (err) 804 return err; 805 } 806 if ((attr->ia_valid & ATTR_UID && 807 !uid_eq(attr->ia_uid, inode->i_uid)) || 808 (attr->ia_valid & ATTR_GID && 809 !gid_eq(attr->ia_gid, inode->i_gid))) { 810 f2fs_lock_op(F2FS_I_SB(inode)); 811 err = dquot_transfer(inode, attr); 812 if (err) { 813 set_sbi_flag(F2FS_I_SB(inode), 814 SBI_QUOTA_NEED_REPAIR); 815 f2fs_unlock_op(F2FS_I_SB(inode)); 816 return err; 817 } 818 /* 819 * update uid/gid under lock_op(), so that dquot and inode can 820 * be updated atomically. 821 */ 822 if (attr->ia_valid & ATTR_UID) 823 inode->i_uid = attr->ia_uid; 824 if (attr->ia_valid & ATTR_GID) 825 inode->i_gid = attr->ia_gid; 826 f2fs_mark_inode_dirty_sync(inode, true); 827 f2fs_unlock_op(F2FS_I_SB(inode)); 828 } 829 830 if (attr->ia_valid & ATTR_SIZE) { 831 loff_t old_size = i_size_read(inode); 832 833 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 834 /* 835 * should convert inline inode before i_size_write to 836 * keep smaller than inline_data size with inline flag. 837 */ 838 err = f2fs_convert_inline_inode(inode); 839 if (err) 840 return err; 841 } 842 843 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 844 down_write(&F2FS_I(inode)->i_mmap_sem); 845 846 truncate_setsize(inode, attr->ia_size); 847 848 if (attr->ia_size <= old_size) 849 err = f2fs_truncate(inode); 850 /* 851 * do not trim all blocks after i_size if target size is 852 * larger than i_size. 853 */ 854 up_write(&F2FS_I(inode)->i_mmap_sem); 855 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 856 if (err) 857 return err; 858 859 down_write(&F2FS_I(inode)->i_sem); 860 inode->i_mtime = inode->i_ctime = current_time(inode); 861 F2FS_I(inode)->last_disk_size = i_size_read(inode); 862 up_write(&F2FS_I(inode)->i_sem); 863 } 864 865 __setattr_copy(inode, attr); 866 867 if (attr->ia_valid & ATTR_MODE) { 868 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode)); 869 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) { 870 inode->i_mode = F2FS_I(inode)->i_acl_mode; 871 clear_inode_flag(inode, FI_ACL_MODE); 872 } 873 } 874 875 /* file size may changed here */ 876 f2fs_mark_inode_dirty_sync(inode, true); 877 878 /* inode change will produce dirty node pages flushed by checkpoint */ 879 f2fs_balance_fs(F2FS_I_SB(inode), true); 880 881 return err; 882 } 883 884 const struct inode_operations f2fs_file_inode_operations = { 885 .getattr = f2fs_getattr, 886 .setattr = f2fs_setattr, 887 .get_acl = f2fs_get_acl, 888 .set_acl = f2fs_set_acl, 889 #ifdef CONFIG_F2FS_FS_XATTR 890 .listxattr = f2fs_listxattr, 891 #endif 892 .fiemap = f2fs_fiemap, 893 }; 894 895 static int fill_zero(struct inode *inode, pgoff_t index, 896 loff_t start, loff_t len) 897 { 898 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 899 struct page *page; 900 901 if (!len) 902 return 0; 903 904 f2fs_balance_fs(sbi, true); 905 906 f2fs_lock_op(sbi); 907 page = f2fs_get_new_data_page(inode, NULL, index, false); 908 f2fs_unlock_op(sbi); 909 910 if (IS_ERR(page)) 911 return PTR_ERR(page); 912 913 f2fs_wait_on_page_writeback(page, DATA, true, true); 914 zero_user(page, start, len); 915 set_page_dirty(page); 916 f2fs_put_page(page, 1); 917 return 0; 918 } 919 920 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 921 { 922 int err; 923 924 while (pg_start < pg_end) { 925 struct dnode_of_data dn; 926 pgoff_t end_offset, count; 927 928 set_new_dnode(&dn, inode, NULL, NULL, 0); 929 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 930 if (err) { 931 if (err == -ENOENT) { 932 pg_start = f2fs_get_next_page_offset(&dn, 933 pg_start); 934 continue; 935 } 936 return err; 937 } 938 939 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 940 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 941 942 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 943 944 f2fs_truncate_data_blocks_range(&dn, count); 945 f2fs_put_dnode(&dn); 946 947 pg_start += count; 948 } 949 return 0; 950 } 951 952 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 953 { 954 pgoff_t pg_start, pg_end; 955 loff_t off_start, off_end; 956 int ret; 957 958 ret = f2fs_convert_inline_inode(inode); 959 if (ret) 960 return ret; 961 962 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 963 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 964 965 off_start = offset & (PAGE_SIZE - 1); 966 off_end = (offset + len) & (PAGE_SIZE - 1); 967 968 if (pg_start == pg_end) { 969 ret = fill_zero(inode, pg_start, off_start, 970 off_end - off_start); 971 if (ret) 972 return ret; 973 } else { 974 if (off_start) { 975 ret = fill_zero(inode, pg_start++, off_start, 976 PAGE_SIZE - off_start); 977 if (ret) 978 return ret; 979 } 980 if (off_end) { 981 ret = fill_zero(inode, pg_end, 0, off_end); 982 if (ret) 983 return ret; 984 } 985 986 if (pg_start < pg_end) { 987 struct address_space *mapping = inode->i_mapping; 988 loff_t blk_start, blk_end; 989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 990 991 f2fs_balance_fs(sbi, true); 992 993 blk_start = (loff_t)pg_start << PAGE_SHIFT; 994 blk_end = (loff_t)pg_end << PAGE_SHIFT; 995 996 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 997 down_write(&F2FS_I(inode)->i_mmap_sem); 998 999 truncate_inode_pages_range(mapping, blk_start, 1000 blk_end - 1); 1001 1002 f2fs_lock_op(sbi); 1003 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1004 f2fs_unlock_op(sbi); 1005 1006 up_write(&F2FS_I(inode)->i_mmap_sem); 1007 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1008 } 1009 } 1010 1011 return ret; 1012 } 1013 1014 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1015 int *do_replace, pgoff_t off, pgoff_t len) 1016 { 1017 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1018 struct dnode_of_data dn; 1019 int ret, done, i; 1020 1021 next_dnode: 1022 set_new_dnode(&dn, inode, NULL, NULL, 0); 1023 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1024 if (ret && ret != -ENOENT) { 1025 return ret; 1026 } else if (ret == -ENOENT) { 1027 if (dn.max_level == 0) 1028 return -ENOENT; 1029 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - dn.ofs_in_node, 1030 len); 1031 blkaddr += done; 1032 do_replace += done; 1033 goto next; 1034 } 1035 1036 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1037 dn.ofs_in_node, len); 1038 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1039 *blkaddr = datablock_addr(dn.inode, 1040 dn.node_page, dn.ofs_in_node); 1041 1042 if (__is_valid_data_blkaddr(*blkaddr) && 1043 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1044 DATA_GENERIC_ENHANCE)) { 1045 f2fs_put_dnode(&dn); 1046 return -EFSCORRUPTED; 1047 } 1048 1049 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1050 1051 if (test_opt(sbi, LFS)) { 1052 f2fs_put_dnode(&dn); 1053 return -EOPNOTSUPP; 1054 } 1055 1056 /* do not invalidate this block address */ 1057 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1058 *do_replace = 1; 1059 } 1060 } 1061 f2fs_put_dnode(&dn); 1062 next: 1063 len -= done; 1064 off += done; 1065 if (len) 1066 goto next_dnode; 1067 return 0; 1068 } 1069 1070 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1071 int *do_replace, pgoff_t off, int len) 1072 { 1073 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1074 struct dnode_of_data dn; 1075 int ret, i; 1076 1077 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1078 if (*do_replace == 0) 1079 continue; 1080 1081 set_new_dnode(&dn, inode, NULL, NULL, 0); 1082 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1083 if (ret) { 1084 dec_valid_block_count(sbi, inode, 1); 1085 f2fs_invalidate_blocks(sbi, *blkaddr); 1086 } else { 1087 f2fs_update_data_blkaddr(&dn, *blkaddr); 1088 } 1089 f2fs_put_dnode(&dn); 1090 } 1091 return 0; 1092 } 1093 1094 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1095 block_t *blkaddr, int *do_replace, 1096 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1097 { 1098 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1099 pgoff_t i = 0; 1100 int ret; 1101 1102 while (i < len) { 1103 if (blkaddr[i] == NULL_ADDR && !full) { 1104 i++; 1105 continue; 1106 } 1107 1108 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1109 struct dnode_of_data dn; 1110 struct node_info ni; 1111 size_t new_size; 1112 pgoff_t ilen; 1113 1114 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1115 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1116 if (ret) 1117 return ret; 1118 1119 ret = f2fs_get_node_info(sbi, dn.nid, &ni); 1120 if (ret) { 1121 f2fs_put_dnode(&dn); 1122 return ret; 1123 } 1124 1125 ilen = min((pgoff_t) 1126 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1127 dn.ofs_in_node, len - i); 1128 do { 1129 dn.data_blkaddr = datablock_addr(dn.inode, 1130 dn.node_page, dn.ofs_in_node); 1131 f2fs_truncate_data_blocks_range(&dn, 1); 1132 1133 if (do_replace[i]) { 1134 f2fs_i_blocks_write(src_inode, 1135 1, false, false); 1136 f2fs_i_blocks_write(dst_inode, 1137 1, true, false); 1138 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1139 blkaddr[i], ni.version, true, false); 1140 1141 do_replace[i] = 0; 1142 } 1143 dn.ofs_in_node++; 1144 i++; 1145 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1146 if (dst_inode->i_size < new_size) 1147 f2fs_i_size_write(dst_inode, new_size); 1148 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1149 1150 f2fs_put_dnode(&dn); 1151 } else { 1152 struct page *psrc, *pdst; 1153 1154 psrc = f2fs_get_lock_data_page(src_inode, 1155 src + i, true); 1156 if (IS_ERR(psrc)) 1157 return PTR_ERR(psrc); 1158 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1159 true); 1160 if (IS_ERR(pdst)) { 1161 f2fs_put_page(psrc, 1); 1162 return PTR_ERR(pdst); 1163 } 1164 f2fs_copy_page(psrc, pdst); 1165 set_page_dirty(pdst); 1166 f2fs_put_page(pdst, 1); 1167 f2fs_put_page(psrc, 1); 1168 1169 ret = f2fs_truncate_hole(src_inode, 1170 src + i, src + i + 1); 1171 if (ret) 1172 return ret; 1173 i++; 1174 } 1175 } 1176 return 0; 1177 } 1178 1179 static int __exchange_data_block(struct inode *src_inode, 1180 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1181 pgoff_t len, bool full) 1182 { 1183 block_t *src_blkaddr; 1184 int *do_replace; 1185 pgoff_t olen; 1186 int ret; 1187 1188 while (len) { 1189 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1190 1191 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1192 array_size(olen, sizeof(block_t)), 1193 GFP_KERNEL); 1194 if (!src_blkaddr) 1195 return -ENOMEM; 1196 1197 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1198 array_size(olen, sizeof(int)), 1199 GFP_KERNEL); 1200 if (!do_replace) { 1201 kvfree(src_blkaddr); 1202 return -ENOMEM; 1203 } 1204 1205 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1206 do_replace, src, olen); 1207 if (ret) 1208 goto roll_back; 1209 1210 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1211 do_replace, src, dst, olen, full); 1212 if (ret) 1213 goto roll_back; 1214 1215 src += olen; 1216 dst += olen; 1217 len -= olen; 1218 1219 kvfree(src_blkaddr); 1220 kvfree(do_replace); 1221 } 1222 return 0; 1223 1224 roll_back: 1225 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1226 kvfree(src_blkaddr); 1227 kvfree(do_replace); 1228 return ret; 1229 } 1230 1231 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1232 { 1233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1234 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1235 pgoff_t start = offset >> PAGE_SHIFT; 1236 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1237 int ret; 1238 1239 f2fs_balance_fs(sbi, true); 1240 1241 /* avoid gc operation during block exchange */ 1242 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1243 down_write(&F2FS_I(inode)->i_mmap_sem); 1244 1245 f2fs_lock_op(sbi); 1246 f2fs_drop_extent_tree(inode); 1247 truncate_pagecache(inode, offset); 1248 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1249 f2fs_unlock_op(sbi); 1250 1251 up_write(&F2FS_I(inode)->i_mmap_sem); 1252 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1253 return ret; 1254 } 1255 1256 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1257 { 1258 loff_t new_size; 1259 int ret; 1260 1261 if (offset + len >= i_size_read(inode)) 1262 return -EINVAL; 1263 1264 /* collapse range should be aligned to block size of f2fs. */ 1265 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1266 return -EINVAL; 1267 1268 ret = f2fs_convert_inline_inode(inode); 1269 if (ret) 1270 return ret; 1271 1272 /* write out all dirty pages from offset */ 1273 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1274 if (ret) 1275 return ret; 1276 1277 ret = f2fs_do_collapse(inode, offset, len); 1278 if (ret) 1279 return ret; 1280 1281 /* write out all moved pages, if possible */ 1282 down_write(&F2FS_I(inode)->i_mmap_sem); 1283 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1284 truncate_pagecache(inode, offset); 1285 1286 new_size = i_size_read(inode) - len; 1287 truncate_pagecache(inode, new_size); 1288 1289 ret = f2fs_truncate_blocks(inode, new_size, true); 1290 up_write(&F2FS_I(inode)->i_mmap_sem); 1291 if (!ret) 1292 f2fs_i_size_write(inode, new_size); 1293 return ret; 1294 } 1295 1296 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1297 pgoff_t end) 1298 { 1299 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1300 pgoff_t index = start; 1301 unsigned int ofs_in_node = dn->ofs_in_node; 1302 blkcnt_t count = 0; 1303 int ret; 1304 1305 for (; index < end; index++, dn->ofs_in_node++) { 1306 if (datablock_addr(dn->inode, dn->node_page, 1307 dn->ofs_in_node) == NULL_ADDR) 1308 count++; 1309 } 1310 1311 dn->ofs_in_node = ofs_in_node; 1312 ret = f2fs_reserve_new_blocks(dn, count); 1313 if (ret) 1314 return ret; 1315 1316 dn->ofs_in_node = ofs_in_node; 1317 for (index = start; index < end; index++, dn->ofs_in_node++) { 1318 dn->data_blkaddr = datablock_addr(dn->inode, 1319 dn->node_page, dn->ofs_in_node); 1320 /* 1321 * f2fs_reserve_new_blocks will not guarantee entire block 1322 * allocation. 1323 */ 1324 if (dn->data_blkaddr == NULL_ADDR) { 1325 ret = -ENOSPC; 1326 break; 1327 } 1328 if (dn->data_blkaddr != NEW_ADDR) { 1329 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1330 dn->data_blkaddr = NEW_ADDR; 1331 f2fs_set_data_blkaddr(dn); 1332 } 1333 } 1334 1335 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1336 1337 return ret; 1338 } 1339 1340 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1341 int mode) 1342 { 1343 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1344 struct address_space *mapping = inode->i_mapping; 1345 pgoff_t index, pg_start, pg_end; 1346 loff_t new_size = i_size_read(inode); 1347 loff_t off_start, off_end; 1348 int ret = 0; 1349 1350 ret = inode_newsize_ok(inode, (len + offset)); 1351 if (ret) 1352 return ret; 1353 1354 ret = f2fs_convert_inline_inode(inode); 1355 if (ret) 1356 return ret; 1357 1358 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1359 if (ret) 1360 return ret; 1361 1362 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1363 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1364 1365 off_start = offset & (PAGE_SIZE - 1); 1366 off_end = (offset + len) & (PAGE_SIZE - 1); 1367 1368 if (pg_start == pg_end) { 1369 ret = fill_zero(inode, pg_start, off_start, 1370 off_end - off_start); 1371 if (ret) 1372 return ret; 1373 1374 new_size = max_t(loff_t, new_size, offset + len); 1375 } else { 1376 if (off_start) { 1377 ret = fill_zero(inode, pg_start++, off_start, 1378 PAGE_SIZE - off_start); 1379 if (ret) 1380 return ret; 1381 1382 new_size = max_t(loff_t, new_size, 1383 (loff_t)pg_start << PAGE_SHIFT); 1384 } 1385 1386 for (index = pg_start; index < pg_end;) { 1387 struct dnode_of_data dn; 1388 unsigned int end_offset; 1389 pgoff_t end; 1390 1391 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1392 down_write(&F2FS_I(inode)->i_mmap_sem); 1393 1394 truncate_pagecache_range(inode, 1395 (loff_t)index << PAGE_SHIFT, 1396 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1397 1398 f2fs_lock_op(sbi); 1399 1400 set_new_dnode(&dn, inode, NULL, NULL, 0); 1401 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1402 if (ret) { 1403 f2fs_unlock_op(sbi); 1404 up_write(&F2FS_I(inode)->i_mmap_sem); 1405 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1406 goto out; 1407 } 1408 1409 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1410 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1411 1412 ret = f2fs_do_zero_range(&dn, index, end); 1413 f2fs_put_dnode(&dn); 1414 1415 f2fs_unlock_op(sbi); 1416 up_write(&F2FS_I(inode)->i_mmap_sem); 1417 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1418 1419 f2fs_balance_fs(sbi, dn.node_changed); 1420 1421 if (ret) 1422 goto out; 1423 1424 index = end; 1425 new_size = max_t(loff_t, new_size, 1426 (loff_t)index << PAGE_SHIFT); 1427 } 1428 1429 if (off_end) { 1430 ret = fill_zero(inode, pg_end, 0, off_end); 1431 if (ret) 1432 goto out; 1433 1434 new_size = max_t(loff_t, new_size, offset + len); 1435 } 1436 } 1437 1438 out: 1439 if (new_size > i_size_read(inode)) { 1440 if (mode & FALLOC_FL_KEEP_SIZE) 1441 file_set_keep_isize(inode); 1442 else 1443 f2fs_i_size_write(inode, new_size); 1444 } 1445 return ret; 1446 } 1447 1448 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1449 { 1450 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1451 pgoff_t nr, pg_start, pg_end, delta, idx; 1452 loff_t new_size; 1453 int ret = 0; 1454 1455 new_size = i_size_read(inode) + len; 1456 ret = inode_newsize_ok(inode, new_size); 1457 if (ret) 1458 return ret; 1459 1460 if (offset >= i_size_read(inode)) 1461 return -EINVAL; 1462 1463 /* insert range should be aligned to block size of f2fs. */ 1464 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1465 return -EINVAL; 1466 1467 ret = f2fs_convert_inline_inode(inode); 1468 if (ret) 1469 return ret; 1470 1471 f2fs_balance_fs(sbi, true); 1472 1473 down_write(&F2FS_I(inode)->i_mmap_sem); 1474 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1475 up_write(&F2FS_I(inode)->i_mmap_sem); 1476 if (ret) 1477 return ret; 1478 1479 /* write out all dirty pages from offset */ 1480 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1481 if (ret) 1482 return ret; 1483 1484 pg_start = offset >> PAGE_SHIFT; 1485 pg_end = (offset + len) >> PAGE_SHIFT; 1486 delta = pg_end - pg_start; 1487 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1488 1489 /* avoid gc operation during block exchange */ 1490 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1491 down_write(&F2FS_I(inode)->i_mmap_sem); 1492 truncate_pagecache(inode, offset); 1493 1494 while (!ret && idx > pg_start) { 1495 nr = idx - pg_start; 1496 if (nr > delta) 1497 nr = delta; 1498 idx -= nr; 1499 1500 f2fs_lock_op(sbi); 1501 f2fs_drop_extent_tree(inode); 1502 1503 ret = __exchange_data_block(inode, inode, idx, 1504 idx + delta, nr, false); 1505 f2fs_unlock_op(sbi); 1506 } 1507 up_write(&F2FS_I(inode)->i_mmap_sem); 1508 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1509 1510 /* write out all moved pages, if possible */ 1511 down_write(&F2FS_I(inode)->i_mmap_sem); 1512 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1513 truncate_pagecache(inode, offset); 1514 up_write(&F2FS_I(inode)->i_mmap_sem); 1515 1516 if (!ret) 1517 f2fs_i_size_write(inode, new_size); 1518 return ret; 1519 } 1520 1521 static int expand_inode_data(struct inode *inode, loff_t offset, 1522 loff_t len, int mode) 1523 { 1524 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1525 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1526 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1527 .m_may_create = true }; 1528 pgoff_t pg_end; 1529 loff_t new_size = i_size_read(inode); 1530 loff_t off_end; 1531 int err; 1532 1533 err = inode_newsize_ok(inode, (len + offset)); 1534 if (err) 1535 return err; 1536 1537 err = f2fs_convert_inline_inode(inode); 1538 if (err) 1539 return err; 1540 1541 f2fs_balance_fs(sbi, true); 1542 1543 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1544 off_end = (offset + len) & (PAGE_SIZE - 1); 1545 1546 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT; 1547 map.m_len = pg_end - map.m_lblk; 1548 if (off_end) 1549 map.m_len++; 1550 1551 if (!map.m_len) 1552 return 0; 1553 1554 if (f2fs_is_pinned_file(inode)) { 1555 block_t len = (map.m_len >> sbi->log_blocks_per_seg) << 1556 sbi->log_blocks_per_seg; 1557 block_t done = 0; 1558 1559 if (map.m_len % sbi->blocks_per_seg) 1560 len += sbi->blocks_per_seg; 1561 1562 map.m_len = sbi->blocks_per_seg; 1563 next_alloc: 1564 if (has_not_enough_free_secs(sbi, 0, 1565 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1566 mutex_lock(&sbi->gc_mutex); 1567 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1568 if (err && err != -ENODATA && err != -EAGAIN) 1569 goto out_err; 1570 } 1571 1572 down_write(&sbi->pin_sem); 1573 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1574 f2fs_allocate_new_segments(sbi, CURSEG_COLD_DATA); 1575 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1576 up_write(&sbi->pin_sem); 1577 1578 done += map.m_len; 1579 len -= map.m_len; 1580 map.m_lblk += map.m_len; 1581 if (!err && len) 1582 goto next_alloc; 1583 1584 map.m_len = done; 1585 } else { 1586 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1587 } 1588 out_err: 1589 if (err) { 1590 pgoff_t last_off; 1591 1592 if (!map.m_len) 1593 return err; 1594 1595 last_off = map.m_lblk + map.m_len - 1; 1596 1597 /* update new size to the failed position */ 1598 new_size = (last_off == pg_end) ? offset + len : 1599 (loff_t)(last_off + 1) << PAGE_SHIFT; 1600 } else { 1601 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1602 } 1603 1604 if (new_size > i_size_read(inode)) { 1605 if (mode & FALLOC_FL_KEEP_SIZE) 1606 file_set_keep_isize(inode); 1607 else 1608 f2fs_i_size_write(inode, new_size); 1609 } 1610 1611 return err; 1612 } 1613 1614 static long f2fs_fallocate(struct file *file, int mode, 1615 loff_t offset, loff_t len) 1616 { 1617 struct inode *inode = file_inode(file); 1618 long ret = 0; 1619 1620 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1621 return -EIO; 1622 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1623 return -ENOSPC; 1624 1625 /* f2fs only support ->fallocate for regular file */ 1626 if (!S_ISREG(inode->i_mode)) 1627 return -EINVAL; 1628 1629 if (IS_ENCRYPTED(inode) && 1630 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1631 return -EOPNOTSUPP; 1632 1633 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1634 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1635 FALLOC_FL_INSERT_RANGE)) 1636 return -EOPNOTSUPP; 1637 1638 inode_lock(inode); 1639 1640 if (mode & FALLOC_FL_PUNCH_HOLE) { 1641 if (offset >= inode->i_size) 1642 goto out; 1643 1644 ret = punch_hole(inode, offset, len); 1645 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1646 ret = f2fs_collapse_range(inode, offset, len); 1647 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1648 ret = f2fs_zero_range(inode, offset, len, mode); 1649 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1650 ret = f2fs_insert_range(inode, offset, len); 1651 } else { 1652 ret = expand_inode_data(inode, offset, len, mode); 1653 } 1654 1655 if (!ret) { 1656 inode->i_mtime = inode->i_ctime = current_time(inode); 1657 f2fs_mark_inode_dirty_sync(inode, false); 1658 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1659 } 1660 1661 out: 1662 inode_unlock(inode); 1663 1664 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1665 return ret; 1666 } 1667 1668 static int f2fs_release_file(struct inode *inode, struct file *filp) 1669 { 1670 /* 1671 * f2fs_relase_file is called at every close calls. So we should 1672 * not drop any inmemory pages by close called by other process. 1673 */ 1674 if (!(filp->f_mode & FMODE_WRITE) || 1675 atomic_read(&inode->i_writecount) != 1) 1676 return 0; 1677 1678 /* some remained atomic pages should discarded */ 1679 if (f2fs_is_atomic_file(inode)) 1680 f2fs_drop_inmem_pages(inode); 1681 if (f2fs_is_volatile_file(inode)) { 1682 set_inode_flag(inode, FI_DROP_CACHE); 1683 filemap_fdatawrite(inode->i_mapping); 1684 clear_inode_flag(inode, FI_DROP_CACHE); 1685 clear_inode_flag(inode, FI_VOLATILE_FILE); 1686 stat_dec_volatile_write(inode); 1687 } 1688 return 0; 1689 } 1690 1691 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1692 { 1693 struct inode *inode = file_inode(file); 1694 1695 /* 1696 * If the process doing a transaction is crashed, we should do 1697 * roll-back. Otherwise, other reader/write can see corrupted database 1698 * until all the writers close its file. Since this should be done 1699 * before dropping file lock, it needs to do in ->flush. 1700 */ 1701 if (f2fs_is_atomic_file(inode) && 1702 F2FS_I(inode)->inmem_task == current) 1703 f2fs_drop_inmem_pages(inode); 1704 return 0; 1705 } 1706 1707 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1708 { 1709 struct f2fs_inode_info *fi = F2FS_I(inode); 1710 1711 /* Is it quota file? Do not allow user to mess with it */ 1712 if (IS_NOQUOTA(inode)) 1713 return -EPERM; 1714 1715 if ((iflags ^ fi->i_flags) & F2FS_CASEFOLD_FL) { 1716 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1717 return -EOPNOTSUPP; 1718 if (!f2fs_empty_dir(inode)) 1719 return -ENOTEMPTY; 1720 } 1721 1722 fi->i_flags = iflags | (fi->i_flags & ~mask); 1723 1724 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1725 set_inode_flag(inode, FI_PROJ_INHERIT); 1726 else 1727 clear_inode_flag(inode, FI_PROJ_INHERIT); 1728 1729 inode->i_ctime = current_time(inode); 1730 f2fs_set_inode_flags(inode); 1731 f2fs_mark_inode_dirty_sync(inode, true); 1732 return 0; 1733 } 1734 1735 /* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */ 1736 1737 /* 1738 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1739 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1740 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1741 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1742 */ 1743 1744 static const struct { 1745 u32 iflag; 1746 u32 fsflag; 1747 } f2fs_fsflags_map[] = { 1748 { F2FS_SYNC_FL, FS_SYNC_FL }, 1749 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1750 { F2FS_APPEND_FL, FS_APPEND_FL }, 1751 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1752 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1753 { F2FS_INDEX_FL, FS_INDEX_FL }, 1754 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1755 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1756 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1757 }; 1758 1759 #define F2FS_GETTABLE_FS_FL ( \ 1760 FS_SYNC_FL | \ 1761 FS_IMMUTABLE_FL | \ 1762 FS_APPEND_FL | \ 1763 FS_NODUMP_FL | \ 1764 FS_NOATIME_FL | \ 1765 FS_INDEX_FL | \ 1766 FS_DIRSYNC_FL | \ 1767 FS_PROJINHERIT_FL | \ 1768 FS_ENCRYPT_FL | \ 1769 FS_INLINE_DATA_FL | \ 1770 FS_NOCOW_FL | \ 1771 FS_VERITY_FL | \ 1772 FS_CASEFOLD_FL) 1773 1774 #define F2FS_SETTABLE_FS_FL ( \ 1775 FS_SYNC_FL | \ 1776 FS_IMMUTABLE_FL | \ 1777 FS_APPEND_FL | \ 1778 FS_NODUMP_FL | \ 1779 FS_NOATIME_FL | \ 1780 FS_DIRSYNC_FL | \ 1781 FS_PROJINHERIT_FL | \ 1782 FS_CASEFOLD_FL) 1783 1784 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 1785 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 1786 { 1787 u32 fsflags = 0; 1788 int i; 1789 1790 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1791 if (iflags & f2fs_fsflags_map[i].iflag) 1792 fsflags |= f2fs_fsflags_map[i].fsflag; 1793 1794 return fsflags; 1795 } 1796 1797 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 1798 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 1799 { 1800 u32 iflags = 0; 1801 int i; 1802 1803 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 1804 if (fsflags & f2fs_fsflags_map[i].fsflag) 1805 iflags |= f2fs_fsflags_map[i].iflag; 1806 1807 return iflags; 1808 } 1809 1810 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 1811 { 1812 struct inode *inode = file_inode(filp); 1813 struct f2fs_inode_info *fi = F2FS_I(inode); 1814 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1815 1816 if (IS_ENCRYPTED(inode)) 1817 fsflags |= FS_ENCRYPT_FL; 1818 if (IS_VERITY(inode)) 1819 fsflags |= FS_VERITY_FL; 1820 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 1821 fsflags |= FS_INLINE_DATA_FL; 1822 if (is_inode_flag_set(inode, FI_PIN_FILE)) 1823 fsflags |= FS_NOCOW_FL; 1824 1825 fsflags &= F2FS_GETTABLE_FS_FL; 1826 1827 return put_user(fsflags, (int __user *)arg); 1828 } 1829 1830 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 1831 { 1832 struct inode *inode = file_inode(filp); 1833 struct f2fs_inode_info *fi = F2FS_I(inode); 1834 u32 fsflags, old_fsflags; 1835 u32 iflags; 1836 int ret; 1837 1838 if (!inode_owner_or_capable(inode)) 1839 return -EACCES; 1840 1841 if (get_user(fsflags, (int __user *)arg)) 1842 return -EFAULT; 1843 1844 if (fsflags & ~F2FS_GETTABLE_FS_FL) 1845 return -EOPNOTSUPP; 1846 fsflags &= F2FS_SETTABLE_FS_FL; 1847 1848 iflags = f2fs_fsflags_to_iflags(fsflags); 1849 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 1850 return -EOPNOTSUPP; 1851 1852 ret = mnt_want_write_file(filp); 1853 if (ret) 1854 return ret; 1855 1856 inode_lock(inode); 1857 1858 old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 1859 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 1860 if (ret) 1861 goto out; 1862 1863 ret = f2fs_setflags_common(inode, iflags, 1864 f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL)); 1865 out: 1866 inode_unlock(inode); 1867 mnt_drop_write_file(filp); 1868 return ret; 1869 } 1870 1871 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 1872 { 1873 struct inode *inode = file_inode(filp); 1874 1875 return put_user(inode->i_generation, (int __user *)arg); 1876 } 1877 1878 static int f2fs_ioc_start_atomic_write(struct file *filp) 1879 { 1880 struct inode *inode = file_inode(filp); 1881 struct f2fs_inode_info *fi = F2FS_I(inode); 1882 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1883 int ret; 1884 1885 if (!inode_owner_or_capable(inode)) 1886 return -EACCES; 1887 1888 if (!S_ISREG(inode->i_mode)) 1889 return -EINVAL; 1890 1891 if (filp->f_flags & O_DIRECT) 1892 return -EINVAL; 1893 1894 ret = mnt_want_write_file(filp); 1895 if (ret) 1896 return ret; 1897 1898 inode_lock(inode); 1899 1900 if (f2fs_is_atomic_file(inode)) { 1901 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) 1902 ret = -EINVAL; 1903 goto out; 1904 } 1905 1906 ret = f2fs_convert_inline_inode(inode); 1907 if (ret) 1908 goto out; 1909 1910 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1911 1912 /* 1913 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 1914 * f2fs_is_atomic_file. 1915 */ 1916 if (get_dirty_pages(inode)) 1917 f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u", 1918 inode->i_ino, get_dirty_pages(inode)); 1919 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 1920 if (ret) { 1921 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1922 goto out; 1923 } 1924 1925 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 1926 if (list_empty(&fi->inmem_ilist)) 1927 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 1928 sbi->atomic_files++; 1929 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 1930 1931 /* add inode in inmem_list first and set atomic_file */ 1932 set_inode_flag(inode, FI_ATOMIC_FILE); 1933 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 1934 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1935 1936 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1937 F2FS_I(inode)->inmem_task = current; 1938 stat_inc_atomic_write(inode); 1939 stat_update_max_atomic_write(inode); 1940 out: 1941 inode_unlock(inode); 1942 mnt_drop_write_file(filp); 1943 return ret; 1944 } 1945 1946 static int f2fs_ioc_commit_atomic_write(struct file *filp) 1947 { 1948 struct inode *inode = file_inode(filp); 1949 int ret; 1950 1951 if (!inode_owner_or_capable(inode)) 1952 return -EACCES; 1953 1954 ret = mnt_want_write_file(filp); 1955 if (ret) 1956 return ret; 1957 1958 f2fs_balance_fs(F2FS_I_SB(inode), true); 1959 1960 inode_lock(inode); 1961 1962 if (f2fs_is_volatile_file(inode)) { 1963 ret = -EINVAL; 1964 goto err_out; 1965 } 1966 1967 if (f2fs_is_atomic_file(inode)) { 1968 ret = f2fs_commit_inmem_pages(inode); 1969 if (ret) 1970 goto err_out; 1971 1972 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 1973 if (!ret) 1974 f2fs_drop_inmem_pages(inode); 1975 } else { 1976 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 1977 } 1978 err_out: 1979 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 1980 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 1981 ret = -EINVAL; 1982 } 1983 inode_unlock(inode); 1984 mnt_drop_write_file(filp); 1985 return ret; 1986 } 1987 1988 static int f2fs_ioc_start_volatile_write(struct file *filp) 1989 { 1990 struct inode *inode = file_inode(filp); 1991 int ret; 1992 1993 if (!inode_owner_or_capable(inode)) 1994 return -EACCES; 1995 1996 if (!S_ISREG(inode->i_mode)) 1997 return -EINVAL; 1998 1999 ret = mnt_want_write_file(filp); 2000 if (ret) 2001 return ret; 2002 2003 inode_lock(inode); 2004 2005 if (f2fs_is_volatile_file(inode)) 2006 goto out; 2007 2008 ret = f2fs_convert_inline_inode(inode); 2009 if (ret) 2010 goto out; 2011 2012 stat_inc_volatile_write(inode); 2013 stat_update_max_volatile_write(inode); 2014 2015 set_inode_flag(inode, FI_VOLATILE_FILE); 2016 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2017 out: 2018 inode_unlock(inode); 2019 mnt_drop_write_file(filp); 2020 return ret; 2021 } 2022 2023 static int f2fs_ioc_release_volatile_write(struct file *filp) 2024 { 2025 struct inode *inode = file_inode(filp); 2026 int ret; 2027 2028 if (!inode_owner_or_capable(inode)) 2029 return -EACCES; 2030 2031 ret = mnt_want_write_file(filp); 2032 if (ret) 2033 return ret; 2034 2035 inode_lock(inode); 2036 2037 if (!f2fs_is_volatile_file(inode)) 2038 goto out; 2039 2040 if (!f2fs_is_first_block_written(inode)) { 2041 ret = truncate_partial_data_page(inode, 0, true); 2042 goto out; 2043 } 2044 2045 ret = punch_hole(inode, 0, F2FS_BLKSIZE); 2046 out: 2047 inode_unlock(inode); 2048 mnt_drop_write_file(filp); 2049 return ret; 2050 } 2051 2052 static int f2fs_ioc_abort_volatile_write(struct file *filp) 2053 { 2054 struct inode *inode = file_inode(filp); 2055 int ret; 2056 2057 if (!inode_owner_or_capable(inode)) 2058 return -EACCES; 2059 2060 ret = mnt_want_write_file(filp); 2061 if (ret) 2062 return ret; 2063 2064 inode_lock(inode); 2065 2066 if (f2fs_is_atomic_file(inode)) 2067 f2fs_drop_inmem_pages(inode); 2068 if (f2fs_is_volatile_file(inode)) { 2069 clear_inode_flag(inode, FI_VOLATILE_FILE); 2070 stat_dec_volatile_write(inode); 2071 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2072 } 2073 2074 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 2075 2076 inode_unlock(inode); 2077 2078 mnt_drop_write_file(filp); 2079 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2080 return ret; 2081 } 2082 2083 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2084 { 2085 struct inode *inode = file_inode(filp); 2086 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2087 struct super_block *sb = sbi->sb; 2088 __u32 in; 2089 int ret = 0; 2090 2091 if (!capable(CAP_SYS_ADMIN)) 2092 return -EPERM; 2093 2094 if (get_user(in, (__u32 __user *)arg)) 2095 return -EFAULT; 2096 2097 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2098 ret = mnt_want_write_file(filp); 2099 if (ret) 2100 return ret; 2101 } 2102 2103 switch (in) { 2104 case F2FS_GOING_DOWN_FULLSYNC: 2105 sb = freeze_bdev(sb->s_bdev); 2106 if (IS_ERR(sb)) { 2107 ret = PTR_ERR(sb); 2108 goto out; 2109 } 2110 if (sb) { 2111 f2fs_stop_checkpoint(sbi, false); 2112 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2113 thaw_bdev(sb->s_bdev, sb); 2114 } 2115 break; 2116 case F2FS_GOING_DOWN_METASYNC: 2117 /* do checkpoint only */ 2118 ret = f2fs_sync_fs(sb, 1); 2119 if (ret) 2120 goto out; 2121 f2fs_stop_checkpoint(sbi, false); 2122 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2123 break; 2124 case F2FS_GOING_DOWN_NOSYNC: 2125 f2fs_stop_checkpoint(sbi, false); 2126 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2127 break; 2128 case F2FS_GOING_DOWN_METAFLUSH: 2129 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2130 f2fs_stop_checkpoint(sbi, false); 2131 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2132 break; 2133 case F2FS_GOING_DOWN_NEED_FSCK: 2134 set_sbi_flag(sbi, SBI_NEED_FSCK); 2135 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2136 set_sbi_flag(sbi, SBI_IS_DIRTY); 2137 /* do checkpoint only */ 2138 ret = f2fs_sync_fs(sb, 1); 2139 goto out; 2140 default: 2141 ret = -EINVAL; 2142 goto out; 2143 } 2144 2145 f2fs_stop_gc_thread(sbi); 2146 f2fs_stop_discard_thread(sbi); 2147 2148 f2fs_drop_discard_cmd(sbi); 2149 clear_opt(sbi, DISCARD); 2150 2151 f2fs_update_time(sbi, REQ_TIME); 2152 out: 2153 if (in != F2FS_GOING_DOWN_FULLSYNC) 2154 mnt_drop_write_file(filp); 2155 2156 trace_f2fs_shutdown(sbi, in, ret); 2157 2158 return ret; 2159 } 2160 2161 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2162 { 2163 struct inode *inode = file_inode(filp); 2164 struct super_block *sb = inode->i_sb; 2165 struct request_queue *q = bdev_get_queue(sb->s_bdev); 2166 struct fstrim_range range; 2167 int ret; 2168 2169 if (!capable(CAP_SYS_ADMIN)) 2170 return -EPERM; 2171 2172 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2173 return -EOPNOTSUPP; 2174 2175 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2176 sizeof(range))) 2177 return -EFAULT; 2178 2179 ret = mnt_want_write_file(filp); 2180 if (ret) 2181 return ret; 2182 2183 range.minlen = max((unsigned int)range.minlen, 2184 q->limits.discard_granularity); 2185 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2186 mnt_drop_write_file(filp); 2187 if (ret < 0) 2188 return ret; 2189 2190 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2191 sizeof(range))) 2192 return -EFAULT; 2193 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2194 return 0; 2195 } 2196 2197 static bool uuid_is_nonzero(__u8 u[16]) 2198 { 2199 int i; 2200 2201 for (i = 0; i < 16; i++) 2202 if (u[i]) 2203 return true; 2204 return false; 2205 } 2206 2207 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2208 { 2209 struct inode *inode = file_inode(filp); 2210 2211 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2212 return -EOPNOTSUPP; 2213 2214 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2215 2216 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2217 } 2218 2219 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2220 { 2221 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2222 return -EOPNOTSUPP; 2223 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2224 } 2225 2226 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2227 { 2228 struct inode *inode = file_inode(filp); 2229 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2230 int err; 2231 2232 if (!f2fs_sb_has_encrypt(sbi)) 2233 return -EOPNOTSUPP; 2234 2235 err = mnt_want_write_file(filp); 2236 if (err) 2237 return err; 2238 2239 down_write(&sbi->sb_lock); 2240 2241 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2242 goto got_it; 2243 2244 /* update superblock with uuid */ 2245 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2246 2247 err = f2fs_commit_super(sbi, false); 2248 if (err) { 2249 /* undo new data */ 2250 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2251 goto out_err; 2252 } 2253 got_it: 2254 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2255 16)) 2256 err = -EFAULT; 2257 out_err: 2258 up_write(&sbi->sb_lock); 2259 mnt_drop_write_file(filp); 2260 return err; 2261 } 2262 2263 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2264 unsigned long arg) 2265 { 2266 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2267 return -EOPNOTSUPP; 2268 2269 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2270 } 2271 2272 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2273 { 2274 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2275 return -EOPNOTSUPP; 2276 2277 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2278 } 2279 2280 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2281 { 2282 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2283 return -EOPNOTSUPP; 2284 2285 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2286 } 2287 2288 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2289 unsigned long arg) 2290 { 2291 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2292 return -EOPNOTSUPP; 2293 2294 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2295 } 2296 2297 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2298 unsigned long arg) 2299 { 2300 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2301 return -EOPNOTSUPP; 2302 2303 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2304 } 2305 2306 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2307 { 2308 struct inode *inode = file_inode(filp); 2309 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2310 __u32 sync; 2311 int ret; 2312 2313 if (!capable(CAP_SYS_ADMIN)) 2314 return -EPERM; 2315 2316 if (get_user(sync, (__u32 __user *)arg)) 2317 return -EFAULT; 2318 2319 if (f2fs_readonly(sbi->sb)) 2320 return -EROFS; 2321 2322 ret = mnt_want_write_file(filp); 2323 if (ret) 2324 return ret; 2325 2326 if (!sync) { 2327 if (!mutex_trylock(&sbi->gc_mutex)) { 2328 ret = -EBUSY; 2329 goto out; 2330 } 2331 } else { 2332 mutex_lock(&sbi->gc_mutex); 2333 } 2334 2335 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO); 2336 out: 2337 mnt_drop_write_file(filp); 2338 return ret; 2339 } 2340 2341 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2342 { 2343 struct inode *inode = file_inode(filp); 2344 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2345 struct f2fs_gc_range range; 2346 u64 end; 2347 int ret; 2348 2349 if (!capable(CAP_SYS_ADMIN)) 2350 return -EPERM; 2351 2352 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2353 sizeof(range))) 2354 return -EFAULT; 2355 2356 if (f2fs_readonly(sbi->sb)) 2357 return -EROFS; 2358 2359 end = range.start + range.len; 2360 if (end < range.start || range.start < MAIN_BLKADDR(sbi) || 2361 end >= MAX_BLKADDR(sbi)) 2362 return -EINVAL; 2363 2364 ret = mnt_want_write_file(filp); 2365 if (ret) 2366 return ret; 2367 2368 do_more: 2369 if (!range.sync) { 2370 if (!mutex_trylock(&sbi->gc_mutex)) { 2371 ret = -EBUSY; 2372 goto out; 2373 } 2374 } else { 2375 mutex_lock(&sbi->gc_mutex); 2376 } 2377 2378 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start)); 2379 range.start += BLKS_PER_SEC(sbi); 2380 if (range.start <= end) 2381 goto do_more; 2382 out: 2383 mnt_drop_write_file(filp); 2384 return ret; 2385 } 2386 2387 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2388 { 2389 struct inode *inode = file_inode(filp); 2390 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2391 int ret; 2392 2393 if (!capable(CAP_SYS_ADMIN)) 2394 return -EPERM; 2395 2396 if (f2fs_readonly(sbi->sb)) 2397 return -EROFS; 2398 2399 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2400 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2401 return -EINVAL; 2402 } 2403 2404 ret = mnt_want_write_file(filp); 2405 if (ret) 2406 return ret; 2407 2408 ret = f2fs_sync_fs(sbi->sb, 1); 2409 2410 mnt_drop_write_file(filp); 2411 return ret; 2412 } 2413 2414 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2415 struct file *filp, 2416 struct f2fs_defragment *range) 2417 { 2418 struct inode *inode = file_inode(filp); 2419 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2420 .m_seg_type = NO_CHECK_TYPE , 2421 .m_may_create = false }; 2422 struct extent_info ei = {0, 0, 0}; 2423 pgoff_t pg_start, pg_end, next_pgofs; 2424 unsigned int blk_per_seg = sbi->blocks_per_seg; 2425 unsigned int total = 0, sec_num; 2426 block_t blk_end = 0; 2427 bool fragmented = false; 2428 int err; 2429 2430 /* if in-place-update policy is enabled, don't waste time here */ 2431 if (f2fs_should_update_inplace(inode, NULL)) 2432 return -EINVAL; 2433 2434 pg_start = range->start >> PAGE_SHIFT; 2435 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2436 2437 f2fs_balance_fs(sbi, true); 2438 2439 inode_lock(inode); 2440 2441 /* writeback all dirty pages in the range */ 2442 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2443 range->start + range->len - 1); 2444 if (err) 2445 goto out; 2446 2447 /* 2448 * lookup mapping info in extent cache, skip defragmenting if physical 2449 * block addresses are continuous. 2450 */ 2451 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2452 if (ei.fofs + ei.len >= pg_end) 2453 goto out; 2454 } 2455 2456 map.m_lblk = pg_start; 2457 map.m_next_pgofs = &next_pgofs; 2458 2459 /* 2460 * lookup mapping info in dnode page cache, skip defragmenting if all 2461 * physical block addresses are continuous even if there are hole(s) 2462 * in logical blocks. 2463 */ 2464 while (map.m_lblk < pg_end) { 2465 map.m_len = pg_end - map.m_lblk; 2466 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2467 if (err) 2468 goto out; 2469 2470 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2471 map.m_lblk = next_pgofs; 2472 continue; 2473 } 2474 2475 if (blk_end && blk_end != map.m_pblk) 2476 fragmented = true; 2477 2478 /* record total count of block that we're going to move */ 2479 total += map.m_len; 2480 2481 blk_end = map.m_pblk + map.m_len; 2482 2483 map.m_lblk += map.m_len; 2484 } 2485 2486 if (!fragmented) { 2487 total = 0; 2488 goto out; 2489 } 2490 2491 sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi)); 2492 2493 /* 2494 * make sure there are enough free section for LFS allocation, this can 2495 * avoid defragment running in SSR mode when free section are allocated 2496 * intensively 2497 */ 2498 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2499 err = -EAGAIN; 2500 goto out; 2501 } 2502 2503 map.m_lblk = pg_start; 2504 map.m_len = pg_end - pg_start; 2505 total = 0; 2506 2507 while (map.m_lblk < pg_end) { 2508 pgoff_t idx; 2509 int cnt = 0; 2510 2511 do_map: 2512 map.m_len = pg_end - map.m_lblk; 2513 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2514 if (err) 2515 goto clear_out; 2516 2517 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2518 map.m_lblk = next_pgofs; 2519 goto check; 2520 } 2521 2522 set_inode_flag(inode, FI_DO_DEFRAG); 2523 2524 idx = map.m_lblk; 2525 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2526 struct page *page; 2527 2528 page = f2fs_get_lock_data_page(inode, idx, true); 2529 if (IS_ERR(page)) { 2530 err = PTR_ERR(page); 2531 goto clear_out; 2532 } 2533 2534 set_page_dirty(page); 2535 f2fs_put_page(page, 1); 2536 2537 idx++; 2538 cnt++; 2539 total++; 2540 } 2541 2542 map.m_lblk = idx; 2543 check: 2544 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2545 goto do_map; 2546 2547 clear_inode_flag(inode, FI_DO_DEFRAG); 2548 2549 err = filemap_fdatawrite(inode->i_mapping); 2550 if (err) 2551 goto out; 2552 } 2553 clear_out: 2554 clear_inode_flag(inode, FI_DO_DEFRAG); 2555 out: 2556 inode_unlock(inode); 2557 if (!err) 2558 range->len = (u64)total << PAGE_SHIFT; 2559 return err; 2560 } 2561 2562 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2563 { 2564 struct inode *inode = file_inode(filp); 2565 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2566 struct f2fs_defragment range; 2567 int err; 2568 2569 if (!capable(CAP_SYS_ADMIN)) 2570 return -EPERM; 2571 2572 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2573 return -EINVAL; 2574 2575 if (f2fs_readonly(sbi->sb)) 2576 return -EROFS; 2577 2578 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2579 sizeof(range))) 2580 return -EFAULT; 2581 2582 /* verify alignment of offset & size */ 2583 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2584 return -EINVAL; 2585 2586 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2587 sbi->max_file_blocks)) 2588 return -EINVAL; 2589 2590 err = mnt_want_write_file(filp); 2591 if (err) 2592 return err; 2593 2594 err = f2fs_defragment_range(sbi, filp, &range); 2595 mnt_drop_write_file(filp); 2596 2597 f2fs_update_time(sbi, REQ_TIME); 2598 if (err < 0) 2599 return err; 2600 2601 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2602 sizeof(range))) 2603 return -EFAULT; 2604 2605 return 0; 2606 } 2607 2608 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2609 struct file *file_out, loff_t pos_out, size_t len) 2610 { 2611 struct inode *src = file_inode(file_in); 2612 struct inode *dst = file_inode(file_out); 2613 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2614 size_t olen = len, dst_max_i_size = 0; 2615 size_t dst_osize; 2616 int ret; 2617 2618 if (file_in->f_path.mnt != file_out->f_path.mnt || 2619 src->i_sb != dst->i_sb) 2620 return -EXDEV; 2621 2622 if (unlikely(f2fs_readonly(src->i_sb))) 2623 return -EROFS; 2624 2625 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2626 return -EINVAL; 2627 2628 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2629 return -EOPNOTSUPP; 2630 2631 if (src == dst) { 2632 if (pos_in == pos_out) 2633 return 0; 2634 if (pos_out > pos_in && pos_out < pos_in + len) 2635 return -EINVAL; 2636 } 2637 2638 inode_lock(src); 2639 if (src != dst) { 2640 ret = -EBUSY; 2641 if (!inode_trylock(dst)) 2642 goto out; 2643 } 2644 2645 ret = -EINVAL; 2646 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2647 goto out_unlock; 2648 if (len == 0) 2649 olen = len = src->i_size - pos_in; 2650 if (pos_in + len == src->i_size) 2651 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2652 if (len == 0) { 2653 ret = 0; 2654 goto out_unlock; 2655 } 2656 2657 dst_osize = dst->i_size; 2658 if (pos_out + olen > dst->i_size) 2659 dst_max_i_size = pos_out + olen; 2660 2661 /* verify the end result is block aligned */ 2662 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2663 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2664 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2665 goto out_unlock; 2666 2667 ret = f2fs_convert_inline_inode(src); 2668 if (ret) 2669 goto out_unlock; 2670 2671 ret = f2fs_convert_inline_inode(dst); 2672 if (ret) 2673 goto out_unlock; 2674 2675 /* write out all dirty pages from offset */ 2676 ret = filemap_write_and_wait_range(src->i_mapping, 2677 pos_in, pos_in + len); 2678 if (ret) 2679 goto out_unlock; 2680 2681 ret = filemap_write_and_wait_range(dst->i_mapping, 2682 pos_out, pos_out + len); 2683 if (ret) 2684 goto out_unlock; 2685 2686 f2fs_balance_fs(sbi, true); 2687 2688 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2689 if (src != dst) { 2690 ret = -EBUSY; 2691 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2692 goto out_src; 2693 } 2694 2695 f2fs_lock_op(sbi); 2696 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2697 pos_out >> F2FS_BLKSIZE_BITS, 2698 len >> F2FS_BLKSIZE_BITS, false); 2699 2700 if (!ret) { 2701 if (dst_max_i_size) 2702 f2fs_i_size_write(dst, dst_max_i_size); 2703 else if (dst_osize != dst->i_size) 2704 f2fs_i_size_write(dst, dst_osize); 2705 } 2706 f2fs_unlock_op(sbi); 2707 2708 if (src != dst) 2709 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2710 out_src: 2711 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2712 out_unlock: 2713 if (src != dst) 2714 inode_unlock(dst); 2715 out: 2716 inode_unlock(src); 2717 return ret; 2718 } 2719 2720 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2721 { 2722 struct f2fs_move_range range; 2723 struct fd dst; 2724 int err; 2725 2726 if (!(filp->f_mode & FMODE_READ) || 2727 !(filp->f_mode & FMODE_WRITE)) 2728 return -EBADF; 2729 2730 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2731 sizeof(range))) 2732 return -EFAULT; 2733 2734 dst = fdget(range.dst_fd); 2735 if (!dst.file) 2736 return -EBADF; 2737 2738 if (!(dst.file->f_mode & FMODE_WRITE)) { 2739 err = -EBADF; 2740 goto err_out; 2741 } 2742 2743 err = mnt_want_write_file(filp); 2744 if (err) 2745 goto err_out; 2746 2747 err = f2fs_move_file_range(filp, range.pos_in, dst.file, 2748 range.pos_out, range.len); 2749 2750 mnt_drop_write_file(filp); 2751 if (err) 2752 goto err_out; 2753 2754 if (copy_to_user((struct f2fs_move_range __user *)arg, 2755 &range, sizeof(range))) 2756 err = -EFAULT; 2757 err_out: 2758 fdput(dst); 2759 return err; 2760 } 2761 2762 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2763 { 2764 struct inode *inode = file_inode(filp); 2765 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2766 struct sit_info *sm = SIT_I(sbi); 2767 unsigned int start_segno = 0, end_segno = 0; 2768 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2769 struct f2fs_flush_device range; 2770 int ret; 2771 2772 if (!capable(CAP_SYS_ADMIN)) 2773 return -EPERM; 2774 2775 if (f2fs_readonly(sbi->sb)) 2776 return -EROFS; 2777 2778 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2779 return -EINVAL; 2780 2781 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2782 sizeof(range))) 2783 return -EFAULT; 2784 2785 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2786 __is_large_section(sbi)) { 2787 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2788 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2789 return -EINVAL; 2790 } 2791 2792 ret = mnt_want_write_file(filp); 2793 if (ret) 2794 return ret; 2795 2796 if (range.dev_num != 0) 2797 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2798 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2799 2800 start_segno = sm->last_victim[FLUSH_DEVICE]; 2801 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2802 start_segno = dev_start_segno; 2803 end_segno = min(start_segno + range.segments, dev_end_segno); 2804 2805 while (start_segno < end_segno) { 2806 if (!mutex_trylock(&sbi->gc_mutex)) { 2807 ret = -EBUSY; 2808 goto out; 2809 } 2810 sm->last_victim[GC_CB] = end_segno + 1; 2811 sm->last_victim[GC_GREEDY] = end_segno + 1; 2812 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2813 ret = f2fs_gc(sbi, true, true, start_segno); 2814 if (ret == -EAGAIN) 2815 ret = 0; 2816 else if (ret < 0) 2817 break; 2818 start_segno++; 2819 } 2820 out: 2821 mnt_drop_write_file(filp); 2822 return ret; 2823 } 2824 2825 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2826 { 2827 struct inode *inode = file_inode(filp); 2828 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2829 2830 /* Must validate to set it with SQLite behavior in Android. */ 2831 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2832 2833 return put_user(sb_feature, (u32 __user *)arg); 2834 } 2835 2836 #ifdef CONFIG_QUOTA 2837 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2838 { 2839 struct dquot *transfer_to[MAXQUOTAS] = {}; 2840 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2841 struct super_block *sb = sbi->sb; 2842 int err = 0; 2843 2844 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2845 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2846 err = __dquot_transfer(inode, transfer_to); 2847 if (err) 2848 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2849 dqput(transfer_to[PRJQUOTA]); 2850 } 2851 return err; 2852 } 2853 2854 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 2855 { 2856 struct inode *inode = file_inode(filp); 2857 struct f2fs_inode_info *fi = F2FS_I(inode); 2858 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2859 struct page *ipage; 2860 kprojid_t kprojid; 2861 int err; 2862 2863 if (!f2fs_sb_has_project_quota(sbi)) { 2864 if (projid != F2FS_DEF_PROJID) 2865 return -EOPNOTSUPP; 2866 else 2867 return 0; 2868 } 2869 2870 if (!f2fs_has_extra_attr(inode)) 2871 return -EOPNOTSUPP; 2872 2873 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 2874 2875 if (projid_eq(kprojid, F2FS_I(inode)->i_projid)) 2876 return 0; 2877 2878 err = -EPERM; 2879 /* Is it quota file? Do not allow user to mess with it */ 2880 if (IS_NOQUOTA(inode)) 2881 return err; 2882 2883 ipage = f2fs_get_node_page(sbi, inode->i_ino); 2884 if (IS_ERR(ipage)) 2885 return PTR_ERR(ipage); 2886 2887 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize, 2888 i_projid)) { 2889 err = -EOVERFLOW; 2890 f2fs_put_page(ipage, 1); 2891 return err; 2892 } 2893 f2fs_put_page(ipage, 1); 2894 2895 err = dquot_initialize(inode); 2896 if (err) 2897 return err; 2898 2899 f2fs_lock_op(sbi); 2900 err = f2fs_transfer_project_quota(inode, kprojid); 2901 if (err) 2902 goto out_unlock; 2903 2904 F2FS_I(inode)->i_projid = kprojid; 2905 inode->i_ctime = current_time(inode); 2906 f2fs_mark_inode_dirty_sync(inode, true); 2907 out_unlock: 2908 f2fs_unlock_op(sbi); 2909 return err; 2910 } 2911 #else 2912 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2913 { 2914 return 0; 2915 } 2916 2917 static int f2fs_ioc_setproject(struct file *filp, __u32 projid) 2918 { 2919 if (projid != F2FS_DEF_PROJID) 2920 return -EOPNOTSUPP; 2921 return 0; 2922 } 2923 #endif 2924 2925 /* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */ 2926 2927 /* 2928 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable 2929 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its 2930 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS. 2931 */ 2932 2933 static const struct { 2934 u32 iflag; 2935 u32 xflag; 2936 } f2fs_xflags_map[] = { 2937 { F2FS_SYNC_FL, FS_XFLAG_SYNC }, 2938 { F2FS_IMMUTABLE_FL, FS_XFLAG_IMMUTABLE }, 2939 { F2FS_APPEND_FL, FS_XFLAG_APPEND }, 2940 { F2FS_NODUMP_FL, FS_XFLAG_NODUMP }, 2941 { F2FS_NOATIME_FL, FS_XFLAG_NOATIME }, 2942 { F2FS_PROJINHERIT_FL, FS_XFLAG_PROJINHERIT }, 2943 }; 2944 2945 #define F2FS_SUPPORTED_XFLAGS ( \ 2946 FS_XFLAG_SYNC | \ 2947 FS_XFLAG_IMMUTABLE | \ 2948 FS_XFLAG_APPEND | \ 2949 FS_XFLAG_NODUMP | \ 2950 FS_XFLAG_NOATIME | \ 2951 FS_XFLAG_PROJINHERIT) 2952 2953 /* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */ 2954 static inline u32 f2fs_iflags_to_xflags(u32 iflags) 2955 { 2956 u32 xflags = 0; 2957 int i; 2958 2959 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 2960 if (iflags & f2fs_xflags_map[i].iflag) 2961 xflags |= f2fs_xflags_map[i].xflag; 2962 2963 return xflags; 2964 } 2965 2966 /* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */ 2967 static inline u32 f2fs_xflags_to_iflags(u32 xflags) 2968 { 2969 u32 iflags = 0; 2970 int i; 2971 2972 for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++) 2973 if (xflags & f2fs_xflags_map[i].xflag) 2974 iflags |= f2fs_xflags_map[i].iflag; 2975 2976 return iflags; 2977 } 2978 2979 static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa) 2980 { 2981 struct f2fs_inode_info *fi = F2FS_I(inode); 2982 2983 simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags)); 2984 2985 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 2986 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 2987 } 2988 2989 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg) 2990 { 2991 struct inode *inode = file_inode(filp); 2992 struct fsxattr fa; 2993 2994 f2fs_fill_fsxattr(inode, &fa); 2995 2996 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa))) 2997 return -EFAULT; 2998 return 0; 2999 } 3000 3001 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg) 3002 { 3003 struct inode *inode = file_inode(filp); 3004 struct fsxattr fa, old_fa; 3005 u32 iflags; 3006 int err; 3007 3008 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa))) 3009 return -EFAULT; 3010 3011 /* Make sure caller has proper permission */ 3012 if (!inode_owner_or_capable(inode)) 3013 return -EACCES; 3014 3015 if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS) 3016 return -EOPNOTSUPP; 3017 3018 iflags = f2fs_xflags_to_iflags(fa.fsx_xflags); 3019 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3020 return -EOPNOTSUPP; 3021 3022 err = mnt_want_write_file(filp); 3023 if (err) 3024 return err; 3025 3026 inode_lock(inode); 3027 3028 f2fs_fill_fsxattr(inode, &old_fa); 3029 err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 3030 if (err) 3031 goto out; 3032 3033 err = f2fs_setflags_common(inode, iflags, 3034 f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS)); 3035 if (err) 3036 goto out; 3037 3038 err = f2fs_ioc_setproject(filp, fa.fsx_projid); 3039 out: 3040 inode_unlock(inode); 3041 mnt_drop_write_file(filp); 3042 return err; 3043 } 3044 3045 int f2fs_pin_file_control(struct inode *inode, bool inc) 3046 { 3047 struct f2fs_inode_info *fi = F2FS_I(inode); 3048 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3049 3050 /* Use i_gc_failures for normal file as a risk signal. */ 3051 if (inc) 3052 f2fs_i_gc_failures_write(inode, 3053 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3054 3055 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3056 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3057 __func__, inode->i_ino, 3058 fi->i_gc_failures[GC_FAILURE_PIN]); 3059 clear_inode_flag(inode, FI_PIN_FILE); 3060 return -EAGAIN; 3061 } 3062 return 0; 3063 } 3064 3065 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3066 { 3067 struct inode *inode = file_inode(filp); 3068 __u32 pin; 3069 int ret = 0; 3070 3071 if (get_user(pin, (__u32 __user *)arg)) 3072 return -EFAULT; 3073 3074 if (!S_ISREG(inode->i_mode)) 3075 return -EINVAL; 3076 3077 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3078 return -EROFS; 3079 3080 ret = mnt_want_write_file(filp); 3081 if (ret) 3082 return ret; 3083 3084 inode_lock(inode); 3085 3086 if (f2fs_should_update_outplace(inode, NULL)) { 3087 ret = -EINVAL; 3088 goto out; 3089 } 3090 3091 if (!pin) { 3092 clear_inode_flag(inode, FI_PIN_FILE); 3093 f2fs_i_gc_failures_write(inode, 0); 3094 goto done; 3095 } 3096 3097 if (f2fs_pin_file_control(inode, false)) { 3098 ret = -EAGAIN; 3099 goto out; 3100 } 3101 ret = f2fs_convert_inline_inode(inode); 3102 if (ret) 3103 goto out; 3104 3105 set_inode_flag(inode, FI_PIN_FILE); 3106 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3107 done: 3108 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3109 out: 3110 inode_unlock(inode); 3111 mnt_drop_write_file(filp); 3112 return ret; 3113 } 3114 3115 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3116 { 3117 struct inode *inode = file_inode(filp); 3118 __u32 pin = 0; 3119 3120 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3121 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3122 return put_user(pin, (u32 __user *)arg); 3123 } 3124 3125 int f2fs_precache_extents(struct inode *inode) 3126 { 3127 struct f2fs_inode_info *fi = F2FS_I(inode); 3128 struct f2fs_map_blocks map; 3129 pgoff_t m_next_extent; 3130 loff_t end; 3131 int err; 3132 3133 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3134 return -EOPNOTSUPP; 3135 3136 map.m_lblk = 0; 3137 map.m_next_pgofs = NULL; 3138 map.m_next_extent = &m_next_extent; 3139 map.m_seg_type = NO_CHECK_TYPE; 3140 map.m_may_create = false; 3141 end = F2FS_I_SB(inode)->max_file_blocks; 3142 3143 while (map.m_lblk < end) { 3144 map.m_len = end - map.m_lblk; 3145 3146 down_write(&fi->i_gc_rwsem[WRITE]); 3147 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3148 up_write(&fi->i_gc_rwsem[WRITE]); 3149 if (err) 3150 return err; 3151 3152 map.m_lblk = m_next_extent; 3153 } 3154 3155 return err; 3156 } 3157 3158 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3159 { 3160 return f2fs_precache_extents(file_inode(filp)); 3161 } 3162 3163 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3164 { 3165 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3166 __u64 block_count; 3167 int ret; 3168 3169 if (!capable(CAP_SYS_ADMIN)) 3170 return -EPERM; 3171 3172 if (f2fs_readonly(sbi->sb)) 3173 return -EROFS; 3174 3175 if (copy_from_user(&block_count, (void __user *)arg, 3176 sizeof(block_count))) 3177 return -EFAULT; 3178 3179 ret = f2fs_resize_fs(sbi, block_count); 3180 3181 return ret; 3182 } 3183 3184 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3185 { 3186 struct inode *inode = file_inode(filp); 3187 3188 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3189 3190 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3191 f2fs_warn(F2FS_I_SB(inode), 3192 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n", 3193 inode->i_ino); 3194 return -EOPNOTSUPP; 3195 } 3196 3197 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3198 } 3199 3200 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3201 { 3202 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3203 return -EOPNOTSUPP; 3204 3205 return fsverity_ioctl_measure(filp, (void __user *)arg); 3206 } 3207 3208 static int f2fs_get_volume_name(struct file *filp, unsigned long arg) 3209 { 3210 struct inode *inode = file_inode(filp); 3211 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3212 char *vbuf; 3213 int count; 3214 int err = 0; 3215 3216 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3217 if (!vbuf) 3218 return -ENOMEM; 3219 3220 down_read(&sbi->sb_lock); 3221 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3222 ARRAY_SIZE(sbi->raw_super->volume_name), 3223 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3224 up_read(&sbi->sb_lock); 3225 3226 if (copy_to_user((char __user *)arg, vbuf, 3227 min(FSLABEL_MAX, count))) 3228 err = -EFAULT; 3229 3230 kvfree(vbuf); 3231 return err; 3232 } 3233 3234 static int f2fs_set_volume_name(struct file *filp, unsigned long arg) 3235 { 3236 struct inode *inode = file_inode(filp); 3237 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3238 char *vbuf; 3239 int err = 0; 3240 3241 if (!capable(CAP_SYS_ADMIN)) 3242 return -EPERM; 3243 3244 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3245 if (IS_ERR(vbuf)) 3246 return PTR_ERR(vbuf); 3247 3248 err = mnt_want_write_file(filp); 3249 if (err) 3250 goto out; 3251 3252 down_write(&sbi->sb_lock); 3253 3254 memset(sbi->raw_super->volume_name, 0, 3255 sizeof(sbi->raw_super->volume_name)); 3256 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3257 sbi->raw_super->volume_name, 3258 ARRAY_SIZE(sbi->raw_super->volume_name)); 3259 3260 err = f2fs_commit_super(sbi, false); 3261 3262 up_write(&sbi->sb_lock); 3263 3264 mnt_drop_write_file(filp); 3265 out: 3266 kfree(vbuf); 3267 return err; 3268 } 3269 3270 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 3271 { 3272 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 3273 return -EIO; 3274 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 3275 return -ENOSPC; 3276 3277 switch (cmd) { 3278 case F2FS_IOC_GETFLAGS: 3279 return f2fs_ioc_getflags(filp, arg); 3280 case F2FS_IOC_SETFLAGS: 3281 return f2fs_ioc_setflags(filp, arg); 3282 case F2FS_IOC_GETVERSION: 3283 return f2fs_ioc_getversion(filp, arg); 3284 case F2FS_IOC_START_ATOMIC_WRITE: 3285 return f2fs_ioc_start_atomic_write(filp); 3286 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3287 return f2fs_ioc_commit_atomic_write(filp); 3288 case F2FS_IOC_START_VOLATILE_WRITE: 3289 return f2fs_ioc_start_volatile_write(filp); 3290 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3291 return f2fs_ioc_release_volatile_write(filp); 3292 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3293 return f2fs_ioc_abort_volatile_write(filp); 3294 case F2FS_IOC_SHUTDOWN: 3295 return f2fs_ioc_shutdown(filp, arg); 3296 case FITRIM: 3297 return f2fs_ioc_fitrim(filp, arg); 3298 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3299 return f2fs_ioc_set_encryption_policy(filp, arg); 3300 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3301 return f2fs_ioc_get_encryption_policy(filp, arg); 3302 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3303 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 3304 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 3305 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 3306 case FS_IOC_ADD_ENCRYPTION_KEY: 3307 return f2fs_ioc_add_encryption_key(filp, arg); 3308 case FS_IOC_REMOVE_ENCRYPTION_KEY: 3309 return f2fs_ioc_remove_encryption_key(filp, arg); 3310 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 3311 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 3312 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 3313 return f2fs_ioc_get_encryption_key_status(filp, arg); 3314 case F2FS_IOC_GARBAGE_COLLECT: 3315 return f2fs_ioc_gc(filp, arg); 3316 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3317 return f2fs_ioc_gc_range(filp, arg); 3318 case F2FS_IOC_WRITE_CHECKPOINT: 3319 return f2fs_ioc_write_checkpoint(filp, arg); 3320 case F2FS_IOC_DEFRAGMENT: 3321 return f2fs_ioc_defragment(filp, arg); 3322 case F2FS_IOC_MOVE_RANGE: 3323 return f2fs_ioc_move_range(filp, arg); 3324 case F2FS_IOC_FLUSH_DEVICE: 3325 return f2fs_ioc_flush_device(filp, arg); 3326 case F2FS_IOC_GET_FEATURES: 3327 return f2fs_ioc_get_features(filp, arg); 3328 case F2FS_IOC_FSGETXATTR: 3329 return f2fs_ioc_fsgetxattr(filp, arg); 3330 case F2FS_IOC_FSSETXATTR: 3331 return f2fs_ioc_fssetxattr(filp, arg); 3332 case F2FS_IOC_GET_PIN_FILE: 3333 return f2fs_ioc_get_pin_file(filp, arg); 3334 case F2FS_IOC_SET_PIN_FILE: 3335 return f2fs_ioc_set_pin_file(filp, arg); 3336 case F2FS_IOC_PRECACHE_EXTENTS: 3337 return f2fs_ioc_precache_extents(filp, arg); 3338 case F2FS_IOC_RESIZE_FS: 3339 return f2fs_ioc_resize_fs(filp, arg); 3340 case FS_IOC_ENABLE_VERITY: 3341 return f2fs_ioc_enable_verity(filp, arg); 3342 case FS_IOC_MEASURE_VERITY: 3343 return f2fs_ioc_measure_verity(filp, arg); 3344 case F2FS_IOC_GET_VOLUME_NAME: 3345 return f2fs_get_volume_name(filp, arg); 3346 case F2FS_IOC_SET_VOLUME_NAME: 3347 return f2fs_set_volume_name(filp, arg); 3348 default: 3349 return -ENOTTY; 3350 } 3351 } 3352 3353 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3354 { 3355 struct file *file = iocb->ki_filp; 3356 struct inode *inode = file_inode(file); 3357 ssize_t ret; 3358 3359 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 3360 ret = -EIO; 3361 goto out; 3362 } 3363 3364 if (iocb->ki_flags & IOCB_NOWAIT) { 3365 if (!inode_trylock(inode)) { 3366 ret = -EAGAIN; 3367 goto out; 3368 } 3369 } else { 3370 inode_lock(inode); 3371 } 3372 3373 ret = generic_write_checks(iocb, from); 3374 if (ret > 0) { 3375 bool preallocated = false; 3376 size_t target_size = 0; 3377 int err; 3378 3379 if (iov_iter_fault_in_readable(from, iov_iter_count(from))) 3380 set_inode_flag(inode, FI_NO_PREALLOC); 3381 3382 if ((iocb->ki_flags & IOCB_NOWAIT)) { 3383 if (!f2fs_overwrite_io(inode, iocb->ki_pos, 3384 iov_iter_count(from)) || 3385 f2fs_has_inline_data(inode) || 3386 f2fs_force_buffered_io(inode, iocb, from)) { 3387 clear_inode_flag(inode, FI_NO_PREALLOC); 3388 inode_unlock(inode); 3389 ret = -EAGAIN; 3390 goto out; 3391 } 3392 } else { 3393 preallocated = true; 3394 target_size = iocb->ki_pos + iov_iter_count(from); 3395 3396 err = f2fs_preallocate_blocks(iocb, from); 3397 if (err) { 3398 clear_inode_flag(inode, FI_NO_PREALLOC); 3399 inode_unlock(inode); 3400 ret = err; 3401 goto out; 3402 } 3403 } 3404 ret = __generic_file_write_iter(iocb, from); 3405 clear_inode_flag(inode, FI_NO_PREALLOC); 3406 3407 /* if we couldn't write data, we should deallocate blocks. */ 3408 if (preallocated && i_size_read(inode) < target_size) 3409 f2fs_truncate(inode); 3410 3411 if (ret > 0) 3412 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret); 3413 } 3414 inode_unlock(inode); 3415 out: 3416 trace_f2fs_file_write_iter(inode, iocb->ki_pos, 3417 iov_iter_count(from), ret); 3418 if (ret > 0) 3419 ret = generic_write_sync(iocb, ret); 3420 return ret; 3421 } 3422 3423 #ifdef CONFIG_COMPAT 3424 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 3425 { 3426 switch (cmd) { 3427 case F2FS_IOC32_GETFLAGS: 3428 cmd = F2FS_IOC_GETFLAGS; 3429 break; 3430 case F2FS_IOC32_SETFLAGS: 3431 cmd = F2FS_IOC_SETFLAGS; 3432 break; 3433 case F2FS_IOC32_GETVERSION: 3434 cmd = F2FS_IOC_GETVERSION; 3435 break; 3436 case F2FS_IOC_START_ATOMIC_WRITE: 3437 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 3438 case F2FS_IOC_START_VOLATILE_WRITE: 3439 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 3440 case F2FS_IOC_ABORT_VOLATILE_WRITE: 3441 case F2FS_IOC_SHUTDOWN: 3442 case FITRIM: 3443 case F2FS_IOC_SET_ENCRYPTION_POLICY: 3444 case F2FS_IOC_GET_ENCRYPTION_PWSALT: 3445 case F2FS_IOC_GET_ENCRYPTION_POLICY: 3446 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 3447 case FS_IOC_ADD_ENCRYPTION_KEY: 3448 case FS_IOC_REMOVE_ENCRYPTION_KEY: 3449 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 3450 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 3451 case F2FS_IOC_GARBAGE_COLLECT: 3452 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 3453 case F2FS_IOC_WRITE_CHECKPOINT: 3454 case F2FS_IOC_DEFRAGMENT: 3455 case F2FS_IOC_MOVE_RANGE: 3456 case F2FS_IOC_FLUSH_DEVICE: 3457 case F2FS_IOC_GET_FEATURES: 3458 case F2FS_IOC_FSGETXATTR: 3459 case F2FS_IOC_FSSETXATTR: 3460 case F2FS_IOC_GET_PIN_FILE: 3461 case F2FS_IOC_SET_PIN_FILE: 3462 case F2FS_IOC_PRECACHE_EXTENTS: 3463 case F2FS_IOC_RESIZE_FS: 3464 case FS_IOC_ENABLE_VERITY: 3465 case FS_IOC_MEASURE_VERITY: 3466 case F2FS_IOC_GET_VOLUME_NAME: 3467 case F2FS_IOC_SET_VOLUME_NAME: 3468 break; 3469 default: 3470 return -ENOIOCTLCMD; 3471 } 3472 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 3473 } 3474 #endif 3475 3476 const struct file_operations f2fs_file_operations = { 3477 .llseek = f2fs_llseek, 3478 .read_iter = generic_file_read_iter, 3479 .write_iter = f2fs_file_write_iter, 3480 .open = f2fs_file_open, 3481 .release = f2fs_release_file, 3482 .mmap = f2fs_file_mmap, 3483 .flush = f2fs_file_flush, 3484 .fsync = f2fs_sync_file, 3485 .fallocate = f2fs_fallocate, 3486 .unlocked_ioctl = f2fs_ioctl, 3487 #ifdef CONFIG_COMPAT 3488 .compat_ioctl = f2fs_compat_ioctl, 3489 #endif 3490 .splice_read = generic_file_splice_read, 3491 .splice_write = iter_file_splice_write, 3492 }; 3493