xref: /linux/fs/f2fs/file.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/file.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/falloc.h>
14 #include <linux/types.h>
15 #include <linux/compat.h>
16 #include <linux/uaccess.h>
17 #include <linux/mount.h>
18 #include <linux/pagevec.h>
19 #include <linux/uio.h>
20 #include <linux/uuid.h>
21 #include <linux/file.h>
22 #include <linux/nls.h>
23 #include <linux/sched/signal.h>
24 #include <linux/fileattr.h>
25 #include <linux/fadvise.h>
26 #include <linux/iomap.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "acl.h"
33 #include "gc.h"
34 #include "iostat.h"
35 #include <trace/events/f2fs.h>
36 #include <uapi/linux/f2fs.h>
37 
38 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
39 {
40 	struct inode *inode = file_inode(vmf->vma->vm_file);
41 	vm_flags_t flags = vmf->vma->vm_flags;
42 	vm_fault_t ret;
43 
44 	ret = filemap_fault(vmf);
45 	if (ret & VM_FAULT_LOCKED)
46 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48 
49 	trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
50 
51 	return ret;
52 }
53 
54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 	struct folio *folio = page_folio(vmf->page);
57 	struct inode *inode = file_inode(vmf->vma->vm_file);
58 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 	struct dnode_of_data dn;
60 	bool need_alloc = !f2fs_is_pinned_file(inode);
61 	int err = 0;
62 	vm_fault_t ret;
63 
64 	if (unlikely(IS_IMMUTABLE(inode)))
65 		return VM_FAULT_SIGBUS;
66 
67 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
68 		err = -EIO;
69 		goto out;
70 	}
71 
72 	if (unlikely(f2fs_cp_error(sbi))) {
73 		err = -EIO;
74 		goto out;
75 	}
76 
77 	if (!f2fs_is_checkpoint_ready(sbi)) {
78 		err = -ENOSPC;
79 		goto out;
80 	}
81 
82 	err = f2fs_convert_inline_inode(inode);
83 	if (err)
84 		goto out;
85 
86 #ifdef CONFIG_F2FS_FS_COMPRESSION
87 	if (f2fs_compressed_file(inode)) {
88 		int ret = f2fs_is_compressed_cluster(inode, folio->index);
89 
90 		if (ret < 0) {
91 			err = ret;
92 			goto out;
93 		} else if (ret) {
94 			need_alloc = false;
95 		}
96 	}
97 #endif
98 	/* should do out of any locked page */
99 	if (need_alloc)
100 		f2fs_balance_fs(sbi, true);
101 
102 	sb_start_pagefault(inode->i_sb);
103 
104 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
105 
106 	file_update_time(vmf->vma->vm_file);
107 	filemap_invalidate_lock_shared(inode->i_mapping);
108 	folio_lock(folio);
109 	if (unlikely(folio->mapping != inode->i_mapping ||
110 			folio_pos(folio) > i_size_read(inode) ||
111 			!folio_test_uptodate(folio))) {
112 		folio_unlock(folio);
113 		err = -EFAULT;
114 		goto out_sem;
115 	}
116 
117 	set_new_dnode(&dn, inode, NULL, NULL, 0);
118 	if (need_alloc) {
119 		/* block allocation */
120 		err = f2fs_get_block_locked(&dn, folio->index);
121 	} else {
122 		err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
123 		f2fs_put_dnode(&dn);
124 		if (f2fs_is_pinned_file(inode) &&
125 		    !__is_valid_data_blkaddr(dn.data_blkaddr))
126 			err = -EIO;
127 	}
128 
129 	if (err) {
130 		folio_unlock(folio);
131 		goto out_sem;
132 	}
133 
134 	f2fs_wait_on_page_writeback(folio_page(folio, 0), DATA, false, true);
135 
136 	/* wait for GCed page writeback via META_MAPPING */
137 	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
138 
139 	/*
140 	 * check to see if the page is mapped already (no holes)
141 	 */
142 	if (folio_test_mappedtodisk(folio))
143 		goto out_sem;
144 
145 	/* page is wholly or partially inside EOF */
146 	if (((loff_t)(folio->index + 1) << PAGE_SHIFT) >
147 						i_size_read(inode)) {
148 		loff_t offset;
149 
150 		offset = i_size_read(inode) & ~PAGE_MASK;
151 		folio_zero_segment(folio, offset, folio_size(folio));
152 	}
153 	folio_mark_dirty(folio);
154 
155 	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
156 	f2fs_update_time(sbi, REQ_TIME);
157 
158 out_sem:
159 	filemap_invalidate_unlock_shared(inode->i_mapping);
160 
161 	sb_end_pagefault(inode->i_sb);
162 out:
163 	ret = vmf_fs_error(err);
164 
165 	trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret);
166 	return ret;
167 }
168 
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170 	.fault		= f2fs_filemap_fault,
171 	.map_pages	= filemap_map_pages,
172 	.page_mkwrite	= f2fs_vm_page_mkwrite,
173 };
174 
175 static int get_parent_ino(struct inode *inode, nid_t *pino)
176 {
177 	struct dentry *dentry;
178 
179 	/*
180 	 * Make sure to get the non-deleted alias.  The alias associated with
181 	 * the open file descriptor being fsync()'ed may be deleted already.
182 	 */
183 	dentry = d_find_alias(inode);
184 	if (!dentry)
185 		return 0;
186 
187 	*pino = d_parent_ino(dentry);
188 	dput(dentry);
189 	return 1;
190 }
191 
192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
193 {
194 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
196 
197 	if (!S_ISREG(inode->i_mode))
198 		cp_reason = CP_NON_REGULAR;
199 	else if (f2fs_compressed_file(inode))
200 		cp_reason = CP_COMPRESSED;
201 	else if (inode->i_nlink != 1)
202 		cp_reason = CP_HARDLINK;
203 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204 		cp_reason = CP_SB_NEED_CP;
205 	else if (file_wrong_pino(inode))
206 		cp_reason = CP_WRONG_PINO;
207 	else if (!f2fs_space_for_roll_forward(sbi))
208 		cp_reason = CP_NO_SPC_ROLL;
209 	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210 		cp_reason = CP_NODE_NEED_CP;
211 	else if (test_opt(sbi, FASTBOOT))
212 		cp_reason = CP_FASTBOOT_MODE;
213 	else if (F2FS_OPTION(sbi).active_logs == 2)
214 		cp_reason = CP_SPEC_LOG_NUM;
215 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216 		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217 		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
218 							TRANS_DIR_INO))
219 		cp_reason = CP_RECOVER_DIR;
220 	else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
221 							XATTR_DIR_INO))
222 		cp_reason = CP_XATTR_DIR;
223 
224 	return cp_reason;
225 }
226 
227 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
228 {
229 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
230 	bool ret = false;
231 	/* But we need to avoid that there are some inode updates */
232 	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
233 		ret = true;
234 	f2fs_put_page(i, 0);
235 	return ret;
236 }
237 
238 static void try_to_fix_pino(struct inode *inode)
239 {
240 	struct f2fs_inode_info *fi = F2FS_I(inode);
241 	nid_t pino;
242 
243 	f2fs_down_write(&fi->i_sem);
244 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
245 			get_parent_ino(inode, &pino)) {
246 		f2fs_i_pino_write(inode, pino);
247 		file_got_pino(inode);
248 	}
249 	f2fs_up_write(&fi->i_sem);
250 }
251 
252 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
253 						int datasync, bool atomic)
254 {
255 	struct inode *inode = file->f_mapping->host;
256 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
257 	nid_t ino = inode->i_ino;
258 	int ret = 0;
259 	enum cp_reason_type cp_reason = 0;
260 	struct writeback_control wbc = {
261 		.sync_mode = WB_SYNC_ALL,
262 		.nr_to_write = LONG_MAX,
263 		.for_reclaim = 0,
264 	};
265 	unsigned int seq_id = 0;
266 
267 	if (unlikely(f2fs_readonly(inode->i_sb)))
268 		return 0;
269 
270 	trace_f2fs_sync_file_enter(inode);
271 
272 	if (S_ISDIR(inode->i_mode))
273 		goto go_write;
274 
275 	/* if fdatasync is triggered, let's do in-place-update */
276 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
277 		set_inode_flag(inode, FI_NEED_IPU);
278 	ret = file_write_and_wait_range(file, start, end);
279 	clear_inode_flag(inode, FI_NEED_IPU);
280 
281 	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
282 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
283 		return ret;
284 	}
285 
286 	/* if the inode is dirty, let's recover all the time */
287 	if (!f2fs_skip_inode_update(inode, datasync)) {
288 		f2fs_write_inode(inode, NULL);
289 		goto go_write;
290 	}
291 
292 	/*
293 	 * if there is no written data, don't waste time to write recovery info.
294 	 */
295 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
296 			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
297 
298 		/* it may call write_inode just prior to fsync */
299 		if (need_inode_page_update(sbi, ino))
300 			goto go_write;
301 
302 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
303 				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
304 			goto flush_out;
305 		goto out;
306 	} else {
307 		/*
308 		 * for OPU case, during fsync(), node can be persisted before
309 		 * data when lower device doesn't support write barrier, result
310 		 * in data corruption after SPO.
311 		 * So for strict fsync mode, force to use atomic write semantics
312 		 * to keep write order in between data/node and last node to
313 		 * avoid potential data corruption.
314 		 */
315 		if (F2FS_OPTION(sbi).fsync_mode ==
316 				FSYNC_MODE_STRICT && !atomic)
317 			atomic = true;
318 	}
319 go_write:
320 	/*
321 	 * Both of fdatasync() and fsync() are able to be recovered from
322 	 * sudden-power-off.
323 	 */
324 	f2fs_down_read(&F2FS_I(inode)->i_sem);
325 	cp_reason = need_do_checkpoint(inode);
326 	f2fs_up_read(&F2FS_I(inode)->i_sem);
327 
328 	if (cp_reason) {
329 		/* all the dirty node pages should be flushed for POR */
330 		ret = f2fs_sync_fs(inode->i_sb, 1);
331 
332 		/*
333 		 * We've secured consistency through sync_fs. Following pino
334 		 * will be used only for fsynced inodes after checkpoint.
335 		 */
336 		try_to_fix_pino(inode);
337 		clear_inode_flag(inode, FI_APPEND_WRITE);
338 		clear_inode_flag(inode, FI_UPDATE_WRITE);
339 		goto out;
340 	}
341 sync_nodes:
342 	atomic_inc(&sbi->wb_sync_req[NODE]);
343 	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
344 	atomic_dec(&sbi->wb_sync_req[NODE]);
345 	if (ret)
346 		goto out;
347 
348 	/* if cp_error was enabled, we should avoid infinite loop */
349 	if (unlikely(f2fs_cp_error(sbi))) {
350 		ret = -EIO;
351 		goto out;
352 	}
353 
354 	if (f2fs_need_inode_block_update(sbi, ino)) {
355 		f2fs_mark_inode_dirty_sync(inode, true);
356 		f2fs_write_inode(inode, NULL);
357 		goto sync_nodes;
358 	}
359 
360 	/*
361 	 * If it's atomic_write, it's just fine to keep write ordering. So
362 	 * here we don't need to wait for node write completion, since we use
363 	 * node chain which serializes node blocks. If one of node writes are
364 	 * reordered, we can see simply broken chain, resulting in stopping
365 	 * roll-forward recovery. It means we'll recover all or none node blocks
366 	 * given fsync mark.
367 	 */
368 	if (!atomic) {
369 		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
370 		if (ret)
371 			goto out;
372 	}
373 
374 	/* once recovery info is written, don't need to tack this */
375 	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
376 	clear_inode_flag(inode, FI_APPEND_WRITE);
377 flush_out:
378 	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
379 		ret = f2fs_issue_flush(sbi, inode->i_ino);
380 	if (!ret) {
381 		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
382 		clear_inode_flag(inode, FI_UPDATE_WRITE);
383 		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
384 	}
385 	f2fs_update_time(sbi, REQ_TIME);
386 out:
387 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
388 	return ret;
389 }
390 
391 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
392 {
393 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
394 		return -EIO;
395 	return f2fs_do_sync_file(file, start, end, datasync, false);
396 }
397 
398 static bool __found_offset(struct address_space *mapping,
399 		struct dnode_of_data *dn, pgoff_t index, int whence)
400 {
401 	block_t blkaddr = f2fs_data_blkaddr(dn);
402 	struct inode *inode = mapping->host;
403 	bool compressed_cluster = false;
404 
405 	if (f2fs_compressed_file(inode)) {
406 		block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
407 		    ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
408 
409 		compressed_cluster = first_blkaddr == COMPRESS_ADDR;
410 	}
411 
412 	switch (whence) {
413 	case SEEK_DATA:
414 		if (__is_valid_data_blkaddr(blkaddr))
415 			return true;
416 		if (blkaddr == NEW_ADDR &&
417 		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
418 			return true;
419 		if (compressed_cluster)
420 			return true;
421 		break;
422 	case SEEK_HOLE:
423 		if (compressed_cluster)
424 			return false;
425 		if (blkaddr == NULL_ADDR)
426 			return true;
427 		break;
428 	}
429 	return false;
430 }
431 
432 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
433 {
434 	struct inode *inode = file->f_mapping->host;
435 	loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
436 	struct dnode_of_data dn;
437 	pgoff_t pgofs, end_offset;
438 	loff_t data_ofs = offset;
439 	loff_t isize;
440 	int err = 0;
441 
442 	inode_lock_shared(inode);
443 
444 	isize = i_size_read(inode);
445 	if (offset >= isize)
446 		goto fail;
447 
448 	/* handle inline data case */
449 	if (f2fs_has_inline_data(inode)) {
450 		if (whence == SEEK_HOLE) {
451 			data_ofs = isize;
452 			goto found;
453 		} else if (whence == SEEK_DATA) {
454 			data_ofs = offset;
455 			goto found;
456 		}
457 	}
458 
459 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
460 
461 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
462 		set_new_dnode(&dn, inode, NULL, NULL, 0);
463 		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
464 		if (err && err != -ENOENT) {
465 			goto fail;
466 		} else if (err == -ENOENT) {
467 			/* direct node does not exists */
468 			if (whence == SEEK_DATA) {
469 				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
470 				continue;
471 			} else {
472 				goto found;
473 			}
474 		}
475 
476 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
477 
478 		/* find data/hole in dnode block */
479 		for (; dn.ofs_in_node < end_offset;
480 				dn.ofs_in_node++, pgofs++,
481 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
482 			block_t blkaddr;
483 
484 			blkaddr = f2fs_data_blkaddr(&dn);
485 
486 			if (__is_valid_data_blkaddr(blkaddr) &&
487 				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
488 					blkaddr, DATA_GENERIC_ENHANCE)) {
489 				f2fs_put_dnode(&dn);
490 				goto fail;
491 			}
492 
493 			if (__found_offset(file->f_mapping, &dn,
494 							pgofs, whence)) {
495 				f2fs_put_dnode(&dn);
496 				goto found;
497 			}
498 		}
499 		f2fs_put_dnode(&dn);
500 	}
501 
502 	if (whence == SEEK_DATA)
503 		goto fail;
504 found:
505 	if (whence == SEEK_HOLE && data_ofs > isize)
506 		data_ofs = isize;
507 	inode_unlock_shared(inode);
508 	return vfs_setpos(file, data_ofs, maxbytes);
509 fail:
510 	inode_unlock_shared(inode);
511 	return -ENXIO;
512 }
513 
514 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
515 {
516 	struct inode *inode = file->f_mapping->host;
517 	loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
518 
519 	switch (whence) {
520 	case SEEK_SET:
521 	case SEEK_CUR:
522 	case SEEK_END:
523 		return generic_file_llseek_size(file, offset, whence,
524 						maxbytes, i_size_read(inode));
525 	case SEEK_DATA:
526 	case SEEK_HOLE:
527 		if (offset < 0)
528 			return -ENXIO;
529 		return f2fs_seek_block(file, offset, whence);
530 	}
531 
532 	return -EINVAL;
533 }
534 
535 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
536 {
537 	struct inode *inode = file_inode(file);
538 
539 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
540 		return -EIO;
541 
542 	if (!f2fs_is_compress_backend_ready(inode))
543 		return -EOPNOTSUPP;
544 
545 	file_accessed(file);
546 	vma->vm_ops = &f2fs_file_vm_ops;
547 
548 	f2fs_down_read(&F2FS_I(inode)->i_sem);
549 	set_inode_flag(inode, FI_MMAP_FILE);
550 	f2fs_up_read(&F2FS_I(inode)->i_sem);
551 
552 	return 0;
553 }
554 
555 static int finish_preallocate_blocks(struct inode *inode)
556 {
557 	int ret;
558 
559 	inode_lock(inode);
560 	if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
561 		inode_unlock(inode);
562 		return 0;
563 	}
564 
565 	if (!file_should_truncate(inode)) {
566 		set_inode_flag(inode, FI_OPENED_FILE);
567 		inode_unlock(inode);
568 		return 0;
569 	}
570 
571 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
572 	filemap_invalidate_lock(inode->i_mapping);
573 
574 	truncate_setsize(inode, i_size_read(inode));
575 	ret = f2fs_truncate(inode);
576 
577 	filemap_invalidate_unlock(inode->i_mapping);
578 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
579 
580 	if (!ret)
581 		set_inode_flag(inode, FI_OPENED_FILE);
582 
583 	inode_unlock(inode);
584 	if (ret)
585 		return ret;
586 
587 	file_dont_truncate(inode);
588 	return 0;
589 }
590 
591 static int f2fs_file_open(struct inode *inode, struct file *filp)
592 {
593 	int err = fscrypt_file_open(inode, filp);
594 
595 	if (err)
596 		return err;
597 
598 	if (!f2fs_is_compress_backend_ready(inode))
599 		return -EOPNOTSUPP;
600 
601 	err = fsverity_file_open(inode, filp);
602 	if (err)
603 		return err;
604 
605 	filp->f_mode |= FMODE_NOWAIT;
606 	filp->f_mode |= FMODE_CAN_ODIRECT;
607 
608 	err = dquot_file_open(inode, filp);
609 	if (err)
610 		return err;
611 
612 	return finish_preallocate_blocks(inode);
613 }
614 
615 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
616 {
617 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
618 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
619 	__le32 *addr;
620 	bool compressed_cluster = false;
621 	int cluster_index = 0, valid_blocks = 0;
622 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
623 	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
624 
625 	addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
626 
627 	/* Assumption: truncation starts with cluster */
628 	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
629 		block_t blkaddr = le32_to_cpu(*addr);
630 
631 		if (f2fs_compressed_file(dn->inode) &&
632 					!(cluster_index & (cluster_size - 1))) {
633 			if (compressed_cluster)
634 				f2fs_i_compr_blocks_update(dn->inode,
635 							valid_blocks, false);
636 			compressed_cluster = (blkaddr == COMPRESS_ADDR);
637 			valid_blocks = 0;
638 		}
639 
640 		if (blkaddr == NULL_ADDR)
641 			continue;
642 
643 		f2fs_set_data_blkaddr(dn, NULL_ADDR);
644 
645 		if (__is_valid_data_blkaddr(blkaddr)) {
646 			if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
647 				continue;
648 			if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
649 						DATA_GENERIC_ENHANCE))
650 				continue;
651 			if (compressed_cluster)
652 				valid_blocks++;
653 		}
654 
655 		f2fs_invalidate_blocks(sbi, blkaddr);
656 
657 		if (!released || blkaddr != COMPRESS_ADDR)
658 			nr_free++;
659 	}
660 
661 	if (compressed_cluster)
662 		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
663 
664 	if (nr_free) {
665 		pgoff_t fofs;
666 		/*
667 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
668 		 * we will invalidate all blkaddr in the whole range.
669 		 */
670 		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
671 							dn->inode) + ofs;
672 		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
673 		f2fs_update_age_extent_cache_range(dn, fofs, len);
674 		dec_valid_block_count(sbi, dn->inode, nr_free);
675 	}
676 	dn->ofs_in_node = ofs;
677 
678 	f2fs_update_time(sbi, REQ_TIME);
679 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
680 					 dn->ofs_in_node, nr_free);
681 }
682 
683 static int truncate_partial_data_page(struct inode *inode, u64 from,
684 								bool cache_only)
685 {
686 	loff_t offset = from & (PAGE_SIZE - 1);
687 	pgoff_t index = from >> PAGE_SHIFT;
688 	struct address_space *mapping = inode->i_mapping;
689 	struct page *page;
690 
691 	if (!offset && !cache_only)
692 		return 0;
693 
694 	if (cache_only) {
695 		page = find_lock_page(mapping, index);
696 		if (page && PageUptodate(page))
697 			goto truncate_out;
698 		f2fs_put_page(page, 1);
699 		return 0;
700 	}
701 
702 	page = f2fs_get_lock_data_page(inode, index, true);
703 	if (IS_ERR(page))
704 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
705 truncate_out:
706 	f2fs_wait_on_page_writeback(page, DATA, true, true);
707 	zero_user(page, offset, PAGE_SIZE - offset);
708 
709 	/* An encrypted inode should have a key and truncate the last page. */
710 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
711 	if (!cache_only)
712 		set_page_dirty(page);
713 	f2fs_put_page(page, 1);
714 	return 0;
715 }
716 
717 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
718 {
719 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
720 	struct dnode_of_data dn;
721 	pgoff_t free_from;
722 	int count = 0, err = 0;
723 	struct page *ipage;
724 	bool truncate_page = false;
725 
726 	trace_f2fs_truncate_blocks_enter(inode, from);
727 
728 	if (IS_DEVICE_ALIASING(inode) && from) {
729 		err = -EINVAL;
730 		goto out_err;
731 	}
732 
733 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
734 
735 	if (free_from >= max_file_blocks(inode))
736 		goto free_partial;
737 
738 	if (lock)
739 		f2fs_lock_op(sbi);
740 
741 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
742 	if (IS_ERR(ipage)) {
743 		err = PTR_ERR(ipage);
744 		goto out;
745 	}
746 
747 	if (IS_DEVICE_ALIASING(inode)) {
748 		struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
749 		struct extent_info ei = et->largest;
750 		unsigned int i;
751 
752 		for (i = 0; i < ei.len; i++)
753 			f2fs_invalidate_blocks(sbi, ei.blk + i);
754 
755 		dec_valid_block_count(sbi, inode, ei.len);
756 		f2fs_update_time(sbi, REQ_TIME);
757 
758 		f2fs_put_page(ipage, 1);
759 		goto out;
760 	}
761 
762 	if (f2fs_has_inline_data(inode)) {
763 		f2fs_truncate_inline_inode(inode, ipage, from);
764 		f2fs_put_page(ipage, 1);
765 		truncate_page = true;
766 		goto out;
767 	}
768 
769 	set_new_dnode(&dn, inode, ipage, NULL, 0);
770 	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
771 	if (err) {
772 		if (err == -ENOENT)
773 			goto free_next;
774 		goto out;
775 	}
776 
777 	count = ADDRS_PER_PAGE(dn.node_page, inode);
778 
779 	count -= dn.ofs_in_node;
780 	f2fs_bug_on(sbi, count < 0);
781 
782 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
783 		f2fs_truncate_data_blocks_range(&dn, count);
784 		free_from += count;
785 	}
786 
787 	f2fs_put_dnode(&dn);
788 free_next:
789 	err = f2fs_truncate_inode_blocks(inode, free_from);
790 out:
791 	if (lock)
792 		f2fs_unlock_op(sbi);
793 free_partial:
794 	/* lastly zero out the first data page */
795 	if (!err)
796 		err = truncate_partial_data_page(inode, from, truncate_page);
797 out_err:
798 	trace_f2fs_truncate_blocks_exit(inode, err);
799 	return err;
800 }
801 
802 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
803 {
804 	u64 free_from = from;
805 	int err;
806 
807 #ifdef CONFIG_F2FS_FS_COMPRESSION
808 	/*
809 	 * for compressed file, only support cluster size
810 	 * aligned truncation.
811 	 */
812 	if (f2fs_compressed_file(inode))
813 		free_from = round_up(from,
814 				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
815 #endif
816 
817 	err = f2fs_do_truncate_blocks(inode, free_from, lock);
818 	if (err)
819 		return err;
820 
821 #ifdef CONFIG_F2FS_FS_COMPRESSION
822 	/*
823 	 * For compressed file, after release compress blocks, don't allow write
824 	 * direct, but we should allow write direct after truncate to zero.
825 	 */
826 	if (f2fs_compressed_file(inode) && !free_from
827 			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
828 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
829 
830 	if (from != free_from) {
831 		err = f2fs_truncate_partial_cluster(inode, from, lock);
832 		if (err)
833 			return err;
834 	}
835 #endif
836 
837 	return 0;
838 }
839 
840 int f2fs_truncate(struct inode *inode)
841 {
842 	int err;
843 
844 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
845 		return -EIO;
846 
847 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
848 				S_ISLNK(inode->i_mode)))
849 		return 0;
850 
851 	trace_f2fs_truncate(inode);
852 
853 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
854 		return -EIO;
855 
856 	err = f2fs_dquot_initialize(inode);
857 	if (err)
858 		return err;
859 
860 	/* we should check inline_data size */
861 	if (!f2fs_may_inline_data(inode)) {
862 		err = f2fs_convert_inline_inode(inode);
863 		if (err)
864 			return err;
865 	}
866 
867 	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
868 	if (err)
869 		return err;
870 
871 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
872 	f2fs_mark_inode_dirty_sync(inode, false);
873 	return 0;
874 }
875 
876 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
877 {
878 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
879 
880 	if (!fscrypt_dio_supported(inode))
881 		return true;
882 	if (fsverity_active(inode))
883 		return true;
884 	if (f2fs_compressed_file(inode))
885 		return true;
886 	/*
887 	 * only force direct read to use buffered IO, for direct write,
888 	 * it expects inline data conversion before committing IO.
889 	 */
890 	if (f2fs_has_inline_data(inode) && rw == READ)
891 		return true;
892 
893 	/* disallow direct IO if any of devices has unaligned blksize */
894 	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
895 		return true;
896 	/*
897 	 * for blkzoned device, fallback direct IO to buffered IO, so
898 	 * all IOs can be serialized by log-structured write.
899 	 */
900 	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
901 	    !f2fs_is_pinned_file(inode))
902 		return true;
903 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
904 		return true;
905 
906 	return false;
907 }
908 
909 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
910 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
911 {
912 	struct inode *inode = d_inode(path->dentry);
913 	struct f2fs_inode_info *fi = F2FS_I(inode);
914 	struct f2fs_inode *ri = NULL;
915 	unsigned int flags;
916 
917 	if (f2fs_has_extra_attr(inode) &&
918 			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
919 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
920 		stat->result_mask |= STATX_BTIME;
921 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
922 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
923 	}
924 
925 	/*
926 	 * Return the DIO alignment restrictions if requested.  We only return
927 	 * this information when requested, since on encrypted files it might
928 	 * take a fair bit of work to get if the file wasn't opened recently.
929 	 *
930 	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
931 	 * cannot represent that, so in that case we report no DIO support.
932 	 */
933 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
934 		unsigned int bsize = i_blocksize(inode);
935 
936 		stat->result_mask |= STATX_DIOALIGN;
937 		if (!f2fs_force_buffered_io(inode, WRITE)) {
938 			stat->dio_mem_align = bsize;
939 			stat->dio_offset_align = bsize;
940 		}
941 	}
942 
943 	flags = fi->i_flags;
944 	if (flags & F2FS_COMPR_FL)
945 		stat->attributes |= STATX_ATTR_COMPRESSED;
946 	if (flags & F2FS_APPEND_FL)
947 		stat->attributes |= STATX_ATTR_APPEND;
948 	if (IS_ENCRYPTED(inode))
949 		stat->attributes |= STATX_ATTR_ENCRYPTED;
950 	if (flags & F2FS_IMMUTABLE_FL)
951 		stat->attributes |= STATX_ATTR_IMMUTABLE;
952 	if (flags & F2FS_NODUMP_FL)
953 		stat->attributes |= STATX_ATTR_NODUMP;
954 	if (IS_VERITY(inode))
955 		stat->attributes |= STATX_ATTR_VERITY;
956 
957 	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
958 				  STATX_ATTR_APPEND |
959 				  STATX_ATTR_ENCRYPTED |
960 				  STATX_ATTR_IMMUTABLE |
961 				  STATX_ATTR_NODUMP |
962 				  STATX_ATTR_VERITY);
963 
964 	generic_fillattr(idmap, request_mask, inode, stat);
965 
966 	/* we need to show initial sectors used for inline_data/dentries */
967 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
968 					f2fs_has_inline_dentry(inode))
969 		stat->blocks += (stat->size + 511) >> 9;
970 
971 	return 0;
972 }
973 
974 #ifdef CONFIG_F2FS_FS_POSIX_ACL
975 static void __setattr_copy(struct mnt_idmap *idmap,
976 			   struct inode *inode, const struct iattr *attr)
977 {
978 	unsigned int ia_valid = attr->ia_valid;
979 
980 	i_uid_update(idmap, attr, inode);
981 	i_gid_update(idmap, attr, inode);
982 	if (ia_valid & ATTR_ATIME)
983 		inode_set_atime_to_ts(inode, attr->ia_atime);
984 	if (ia_valid & ATTR_MTIME)
985 		inode_set_mtime_to_ts(inode, attr->ia_mtime);
986 	if (ia_valid & ATTR_CTIME)
987 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
988 	if (ia_valid & ATTR_MODE) {
989 		umode_t mode = attr->ia_mode;
990 
991 		if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
992 			mode &= ~S_ISGID;
993 		set_acl_inode(inode, mode);
994 	}
995 }
996 #else
997 #define __setattr_copy setattr_copy
998 #endif
999 
1000 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1001 		 struct iattr *attr)
1002 {
1003 	struct inode *inode = d_inode(dentry);
1004 	struct f2fs_inode_info *fi = F2FS_I(inode);
1005 	int err;
1006 
1007 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1008 		return -EIO;
1009 
1010 	if (unlikely(IS_IMMUTABLE(inode)))
1011 		return -EPERM;
1012 
1013 	if (unlikely(IS_APPEND(inode) &&
1014 			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
1015 				  ATTR_GID | ATTR_TIMES_SET))))
1016 		return -EPERM;
1017 
1018 	if ((attr->ia_valid & ATTR_SIZE)) {
1019 		if (!f2fs_is_compress_backend_ready(inode) ||
1020 				IS_DEVICE_ALIASING(inode))
1021 			return -EOPNOTSUPP;
1022 		if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1023 			!IS_ALIGNED(attr->ia_size,
1024 			F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1025 			return -EINVAL;
1026 	}
1027 
1028 	err = setattr_prepare(idmap, dentry, attr);
1029 	if (err)
1030 		return err;
1031 
1032 	err = fscrypt_prepare_setattr(dentry, attr);
1033 	if (err)
1034 		return err;
1035 
1036 	err = fsverity_prepare_setattr(dentry, attr);
1037 	if (err)
1038 		return err;
1039 
1040 	if (is_quota_modification(idmap, inode, attr)) {
1041 		err = f2fs_dquot_initialize(inode);
1042 		if (err)
1043 			return err;
1044 	}
1045 	if (i_uid_needs_update(idmap, attr, inode) ||
1046 	    i_gid_needs_update(idmap, attr, inode)) {
1047 		f2fs_lock_op(F2FS_I_SB(inode));
1048 		err = dquot_transfer(idmap, inode, attr);
1049 		if (err) {
1050 			set_sbi_flag(F2FS_I_SB(inode),
1051 					SBI_QUOTA_NEED_REPAIR);
1052 			f2fs_unlock_op(F2FS_I_SB(inode));
1053 			return err;
1054 		}
1055 		/*
1056 		 * update uid/gid under lock_op(), so that dquot and inode can
1057 		 * be updated atomically.
1058 		 */
1059 		i_uid_update(idmap, attr, inode);
1060 		i_gid_update(idmap, attr, inode);
1061 		f2fs_mark_inode_dirty_sync(inode, true);
1062 		f2fs_unlock_op(F2FS_I_SB(inode));
1063 	}
1064 
1065 	if (attr->ia_valid & ATTR_SIZE) {
1066 		loff_t old_size = i_size_read(inode);
1067 
1068 		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1069 			/*
1070 			 * should convert inline inode before i_size_write to
1071 			 * keep smaller than inline_data size with inline flag.
1072 			 */
1073 			err = f2fs_convert_inline_inode(inode);
1074 			if (err)
1075 				return err;
1076 		}
1077 
1078 		/*
1079 		 * wait for inflight dio, blocks should be removed after
1080 		 * IO completion.
1081 		 */
1082 		if (attr->ia_size < old_size)
1083 			inode_dio_wait(inode);
1084 
1085 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1086 		filemap_invalidate_lock(inode->i_mapping);
1087 
1088 		truncate_setsize(inode, attr->ia_size);
1089 
1090 		if (attr->ia_size <= old_size)
1091 			err = f2fs_truncate(inode);
1092 		/*
1093 		 * do not trim all blocks after i_size if target size is
1094 		 * larger than i_size.
1095 		 */
1096 		filemap_invalidate_unlock(inode->i_mapping);
1097 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1098 		if (err)
1099 			return err;
1100 
1101 		spin_lock(&fi->i_size_lock);
1102 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1103 		fi->last_disk_size = i_size_read(inode);
1104 		spin_unlock(&fi->i_size_lock);
1105 	}
1106 
1107 	__setattr_copy(idmap, inode, attr);
1108 
1109 	if (attr->ia_valid & ATTR_MODE) {
1110 		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1111 
1112 		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1113 			if (!err)
1114 				inode->i_mode = fi->i_acl_mode;
1115 			clear_inode_flag(inode, FI_ACL_MODE);
1116 		}
1117 	}
1118 
1119 	/* file size may changed here */
1120 	f2fs_mark_inode_dirty_sync(inode, true);
1121 
1122 	/* inode change will produce dirty node pages flushed by checkpoint */
1123 	f2fs_balance_fs(F2FS_I_SB(inode), true);
1124 
1125 	return err;
1126 }
1127 
1128 const struct inode_operations f2fs_file_inode_operations = {
1129 	.getattr	= f2fs_getattr,
1130 	.setattr	= f2fs_setattr,
1131 	.get_inode_acl	= f2fs_get_acl,
1132 	.set_acl	= f2fs_set_acl,
1133 	.listxattr	= f2fs_listxattr,
1134 	.fiemap		= f2fs_fiemap,
1135 	.fileattr_get	= f2fs_fileattr_get,
1136 	.fileattr_set	= f2fs_fileattr_set,
1137 };
1138 
1139 static int fill_zero(struct inode *inode, pgoff_t index,
1140 					loff_t start, loff_t len)
1141 {
1142 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1143 	struct page *page;
1144 
1145 	if (!len)
1146 		return 0;
1147 
1148 	f2fs_balance_fs(sbi, true);
1149 
1150 	f2fs_lock_op(sbi);
1151 	page = f2fs_get_new_data_page(inode, NULL, index, false);
1152 	f2fs_unlock_op(sbi);
1153 
1154 	if (IS_ERR(page))
1155 		return PTR_ERR(page);
1156 
1157 	f2fs_wait_on_page_writeback(page, DATA, true, true);
1158 	zero_user(page, start, len);
1159 	set_page_dirty(page);
1160 	f2fs_put_page(page, 1);
1161 	return 0;
1162 }
1163 
1164 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1165 {
1166 	int err;
1167 
1168 	while (pg_start < pg_end) {
1169 		struct dnode_of_data dn;
1170 		pgoff_t end_offset, count;
1171 
1172 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1173 		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1174 		if (err) {
1175 			if (err == -ENOENT) {
1176 				pg_start = f2fs_get_next_page_offset(&dn,
1177 								pg_start);
1178 				continue;
1179 			}
1180 			return err;
1181 		}
1182 
1183 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1184 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1185 
1186 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1187 
1188 		f2fs_truncate_data_blocks_range(&dn, count);
1189 		f2fs_put_dnode(&dn);
1190 
1191 		pg_start += count;
1192 	}
1193 	return 0;
1194 }
1195 
1196 static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1197 {
1198 	pgoff_t pg_start, pg_end;
1199 	loff_t off_start, off_end;
1200 	int ret;
1201 
1202 	ret = f2fs_convert_inline_inode(inode);
1203 	if (ret)
1204 		return ret;
1205 
1206 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1207 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1208 
1209 	off_start = offset & (PAGE_SIZE - 1);
1210 	off_end = (offset + len) & (PAGE_SIZE - 1);
1211 
1212 	if (pg_start == pg_end) {
1213 		ret = fill_zero(inode, pg_start, off_start,
1214 						off_end - off_start);
1215 		if (ret)
1216 			return ret;
1217 	} else {
1218 		if (off_start) {
1219 			ret = fill_zero(inode, pg_start++, off_start,
1220 						PAGE_SIZE - off_start);
1221 			if (ret)
1222 				return ret;
1223 		}
1224 		if (off_end) {
1225 			ret = fill_zero(inode, pg_end, 0, off_end);
1226 			if (ret)
1227 				return ret;
1228 		}
1229 
1230 		if (pg_start < pg_end) {
1231 			loff_t blk_start, blk_end;
1232 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1233 
1234 			f2fs_balance_fs(sbi, true);
1235 
1236 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1237 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1238 
1239 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1240 			filemap_invalidate_lock(inode->i_mapping);
1241 
1242 			truncate_pagecache_range(inode, blk_start, blk_end - 1);
1243 
1244 			f2fs_lock_op(sbi);
1245 			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1246 			f2fs_unlock_op(sbi);
1247 
1248 			filemap_invalidate_unlock(inode->i_mapping);
1249 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1250 		}
1251 	}
1252 
1253 	return ret;
1254 }
1255 
1256 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1257 				int *do_replace, pgoff_t off, pgoff_t len)
1258 {
1259 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1260 	struct dnode_of_data dn;
1261 	int ret, done, i;
1262 
1263 next_dnode:
1264 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1265 	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1266 	if (ret && ret != -ENOENT) {
1267 		return ret;
1268 	} else if (ret == -ENOENT) {
1269 		if (dn.max_level == 0)
1270 			return -ENOENT;
1271 		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1272 						dn.ofs_in_node, len);
1273 		blkaddr += done;
1274 		do_replace += done;
1275 		goto next;
1276 	}
1277 
1278 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1279 							dn.ofs_in_node, len);
1280 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1281 		*blkaddr = f2fs_data_blkaddr(&dn);
1282 
1283 		if (__is_valid_data_blkaddr(*blkaddr) &&
1284 			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1285 					DATA_GENERIC_ENHANCE)) {
1286 			f2fs_put_dnode(&dn);
1287 			return -EFSCORRUPTED;
1288 		}
1289 
1290 		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1291 
1292 			if (f2fs_lfs_mode(sbi)) {
1293 				f2fs_put_dnode(&dn);
1294 				return -EOPNOTSUPP;
1295 			}
1296 
1297 			/* do not invalidate this block address */
1298 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1299 			*do_replace = 1;
1300 		}
1301 	}
1302 	f2fs_put_dnode(&dn);
1303 next:
1304 	len -= done;
1305 	off += done;
1306 	if (len)
1307 		goto next_dnode;
1308 	return 0;
1309 }
1310 
1311 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1312 				int *do_replace, pgoff_t off, int len)
1313 {
1314 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1315 	struct dnode_of_data dn;
1316 	int ret, i;
1317 
1318 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1319 		if (*do_replace == 0)
1320 			continue;
1321 
1322 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1323 		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1324 		if (ret) {
1325 			dec_valid_block_count(sbi, inode, 1);
1326 			f2fs_invalidate_blocks(sbi, *blkaddr);
1327 		} else {
1328 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1329 		}
1330 		f2fs_put_dnode(&dn);
1331 	}
1332 	return 0;
1333 }
1334 
1335 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1336 			block_t *blkaddr, int *do_replace,
1337 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1338 {
1339 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1340 	pgoff_t i = 0;
1341 	int ret;
1342 
1343 	while (i < len) {
1344 		if (blkaddr[i] == NULL_ADDR && !full) {
1345 			i++;
1346 			continue;
1347 		}
1348 
1349 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1350 			struct dnode_of_data dn;
1351 			struct node_info ni;
1352 			size_t new_size;
1353 			pgoff_t ilen;
1354 
1355 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1356 			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1357 			if (ret)
1358 				return ret;
1359 
1360 			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1361 			if (ret) {
1362 				f2fs_put_dnode(&dn);
1363 				return ret;
1364 			}
1365 
1366 			ilen = min((pgoff_t)
1367 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1368 						dn.ofs_in_node, len - i);
1369 			do {
1370 				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1371 				f2fs_truncate_data_blocks_range(&dn, 1);
1372 
1373 				if (do_replace[i]) {
1374 					f2fs_i_blocks_write(src_inode,
1375 							1, false, false);
1376 					f2fs_i_blocks_write(dst_inode,
1377 							1, true, false);
1378 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1379 					blkaddr[i], ni.version, true, false);
1380 
1381 					do_replace[i] = 0;
1382 				}
1383 				dn.ofs_in_node++;
1384 				i++;
1385 				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1386 				if (dst_inode->i_size < new_size)
1387 					f2fs_i_size_write(dst_inode, new_size);
1388 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1389 
1390 			f2fs_put_dnode(&dn);
1391 		} else {
1392 			struct page *psrc, *pdst;
1393 
1394 			psrc = f2fs_get_lock_data_page(src_inode,
1395 							src + i, true);
1396 			if (IS_ERR(psrc))
1397 				return PTR_ERR(psrc);
1398 			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1399 								true);
1400 			if (IS_ERR(pdst)) {
1401 				f2fs_put_page(psrc, 1);
1402 				return PTR_ERR(pdst);
1403 			}
1404 
1405 			f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1406 
1407 			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1408 			set_page_dirty(pdst);
1409 			set_page_private_gcing(pdst);
1410 			f2fs_put_page(pdst, 1);
1411 			f2fs_put_page(psrc, 1);
1412 
1413 			ret = f2fs_truncate_hole(src_inode,
1414 						src + i, src + i + 1);
1415 			if (ret)
1416 				return ret;
1417 			i++;
1418 		}
1419 	}
1420 	return 0;
1421 }
1422 
1423 static int __exchange_data_block(struct inode *src_inode,
1424 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1425 			pgoff_t len, bool full)
1426 {
1427 	block_t *src_blkaddr;
1428 	int *do_replace;
1429 	pgoff_t olen;
1430 	int ret;
1431 
1432 	while (len) {
1433 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1434 
1435 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1436 					array_size(olen, sizeof(block_t)),
1437 					GFP_NOFS);
1438 		if (!src_blkaddr)
1439 			return -ENOMEM;
1440 
1441 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1442 					array_size(olen, sizeof(int)),
1443 					GFP_NOFS);
1444 		if (!do_replace) {
1445 			kvfree(src_blkaddr);
1446 			return -ENOMEM;
1447 		}
1448 
1449 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1450 					do_replace, src, olen);
1451 		if (ret)
1452 			goto roll_back;
1453 
1454 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1455 					do_replace, src, dst, olen, full);
1456 		if (ret)
1457 			goto roll_back;
1458 
1459 		src += olen;
1460 		dst += olen;
1461 		len -= olen;
1462 
1463 		kvfree(src_blkaddr);
1464 		kvfree(do_replace);
1465 	}
1466 	return 0;
1467 
1468 roll_back:
1469 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1470 	kvfree(src_blkaddr);
1471 	kvfree(do_replace);
1472 	return ret;
1473 }
1474 
1475 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1476 {
1477 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1478 	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1479 	pgoff_t start = offset >> PAGE_SHIFT;
1480 	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1481 	int ret;
1482 
1483 	f2fs_balance_fs(sbi, true);
1484 
1485 	/* avoid gc operation during block exchange */
1486 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1487 	filemap_invalidate_lock(inode->i_mapping);
1488 
1489 	f2fs_lock_op(sbi);
1490 	f2fs_drop_extent_tree(inode);
1491 	truncate_pagecache(inode, offset);
1492 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1493 	f2fs_unlock_op(sbi);
1494 
1495 	filemap_invalidate_unlock(inode->i_mapping);
1496 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1497 	return ret;
1498 }
1499 
1500 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1501 {
1502 	loff_t new_size;
1503 	int ret;
1504 
1505 	if (offset + len >= i_size_read(inode))
1506 		return -EINVAL;
1507 
1508 	/* collapse range should be aligned to block size of f2fs. */
1509 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1510 		return -EINVAL;
1511 
1512 	ret = f2fs_convert_inline_inode(inode);
1513 	if (ret)
1514 		return ret;
1515 
1516 	/* write out all dirty pages from offset */
1517 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1518 	if (ret)
1519 		return ret;
1520 
1521 	ret = f2fs_do_collapse(inode, offset, len);
1522 	if (ret)
1523 		return ret;
1524 
1525 	/* write out all moved pages, if possible */
1526 	filemap_invalidate_lock(inode->i_mapping);
1527 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1528 	truncate_pagecache(inode, offset);
1529 
1530 	new_size = i_size_read(inode) - len;
1531 	ret = f2fs_truncate_blocks(inode, new_size, true);
1532 	filemap_invalidate_unlock(inode->i_mapping);
1533 	if (!ret)
1534 		f2fs_i_size_write(inode, new_size);
1535 	return ret;
1536 }
1537 
1538 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1539 								pgoff_t end)
1540 {
1541 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1542 	pgoff_t index = start;
1543 	unsigned int ofs_in_node = dn->ofs_in_node;
1544 	blkcnt_t count = 0;
1545 	int ret;
1546 
1547 	for (; index < end; index++, dn->ofs_in_node++) {
1548 		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1549 			count++;
1550 	}
1551 
1552 	dn->ofs_in_node = ofs_in_node;
1553 	ret = f2fs_reserve_new_blocks(dn, count);
1554 	if (ret)
1555 		return ret;
1556 
1557 	dn->ofs_in_node = ofs_in_node;
1558 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1559 		dn->data_blkaddr = f2fs_data_blkaddr(dn);
1560 		/*
1561 		 * f2fs_reserve_new_blocks will not guarantee entire block
1562 		 * allocation.
1563 		 */
1564 		if (dn->data_blkaddr == NULL_ADDR) {
1565 			ret = -ENOSPC;
1566 			break;
1567 		}
1568 
1569 		if (dn->data_blkaddr == NEW_ADDR)
1570 			continue;
1571 
1572 		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1573 					DATA_GENERIC_ENHANCE)) {
1574 			ret = -EFSCORRUPTED;
1575 			break;
1576 		}
1577 
1578 		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1579 		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1580 	}
1581 
1582 	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1583 	f2fs_update_age_extent_cache_range(dn, start, index - start);
1584 
1585 	return ret;
1586 }
1587 
1588 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1589 								int mode)
1590 {
1591 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1592 	struct address_space *mapping = inode->i_mapping;
1593 	pgoff_t index, pg_start, pg_end;
1594 	loff_t new_size = i_size_read(inode);
1595 	loff_t off_start, off_end;
1596 	int ret = 0;
1597 
1598 	ret = inode_newsize_ok(inode, (len + offset));
1599 	if (ret)
1600 		return ret;
1601 
1602 	ret = f2fs_convert_inline_inode(inode);
1603 	if (ret)
1604 		return ret;
1605 
1606 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1607 	if (ret)
1608 		return ret;
1609 
1610 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1611 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1612 
1613 	off_start = offset & (PAGE_SIZE - 1);
1614 	off_end = (offset + len) & (PAGE_SIZE - 1);
1615 
1616 	if (pg_start == pg_end) {
1617 		ret = fill_zero(inode, pg_start, off_start,
1618 						off_end - off_start);
1619 		if (ret)
1620 			return ret;
1621 
1622 		new_size = max_t(loff_t, new_size, offset + len);
1623 	} else {
1624 		if (off_start) {
1625 			ret = fill_zero(inode, pg_start++, off_start,
1626 						PAGE_SIZE - off_start);
1627 			if (ret)
1628 				return ret;
1629 
1630 			new_size = max_t(loff_t, new_size,
1631 					(loff_t)pg_start << PAGE_SHIFT);
1632 		}
1633 
1634 		for (index = pg_start; index < pg_end;) {
1635 			struct dnode_of_data dn;
1636 			unsigned int end_offset;
1637 			pgoff_t end;
1638 
1639 			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1640 			filemap_invalidate_lock(mapping);
1641 
1642 			truncate_pagecache_range(inode,
1643 				(loff_t)index << PAGE_SHIFT,
1644 				((loff_t)pg_end << PAGE_SHIFT) - 1);
1645 
1646 			f2fs_lock_op(sbi);
1647 
1648 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1649 			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1650 			if (ret) {
1651 				f2fs_unlock_op(sbi);
1652 				filemap_invalidate_unlock(mapping);
1653 				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1654 				goto out;
1655 			}
1656 
1657 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1658 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1659 
1660 			ret = f2fs_do_zero_range(&dn, index, end);
1661 			f2fs_put_dnode(&dn);
1662 
1663 			f2fs_unlock_op(sbi);
1664 			filemap_invalidate_unlock(mapping);
1665 			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1666 
1667 			f2fs_balance_fs(sbi, dn.node_changed);
1668 
1669 			if (ret)
1670 				goto out;
1671 
1672 			index = end;
1673 			new_size = max_t(loff_t, new_size,
1674 					(loff_t)index << PAGE_SHIFT);
1675 		}
1676 
1677 		if (off_end) {
1678 			ret = fill_zero(inode, pg_end, 0, off_end);
1679 			if (ret)
1680 				goto out;
1681 
1682 			new_size = max_t(loff_t, new_size, offset + len);
1683 		}
1684 	}
1685 
1686 out:
1687 	if (new_size > i_size_read(inode)) {
1688 		if (mode & FALLOC_FL_KEEP_SIZE)
1689 			file_set_keep_isize(inode);
1690 		else
1691 			f2fs_i_size_write(inode, new_size);
1692 	}
1693 	return ret;
1694 }
1695 
1696 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1697 {
1698 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1699 	struct address_space *mapping = inode->i_mapping;
1700 	pgoff_t nr, pg_start, pg_end, delta, idx;
1701 	loff_t new_size;
1702 	int ret = 0;
1703 
1704 	new_size = i_size_read(inode) + len;
1705 	ret = inode_newsize_ok(inode, new_size);
1706 	if (ret)
1707 		return ret;
1708 
1709 	if (offset >= i_size_read(inode))
1710 		return -EINVAL;
1711 
1712 	/* insert range should be aligned to block size of f2fs. */
1713 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1714 		return -EINVAL;
1715 
1716 	ret = f2fs_convert_inline_inode(inode);
1717 	if (ret)
1718 		return ret;
1719 
1720 	f2fs_balance_fs(sbi, true);
1721 
1722 	filemap_invalidate_lock(mapping);
1723 	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1724 	filemap_invalidate_unlock(mapping);
1725 	if (ret)
1726 		return ret;
1727 
1728 	/* write out all dirty pages from offset */
1729 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1730 	if (ret)
1731 		return ret;
1732 
1733 	pg_start = offset >> PAGE_SHIFT;
1734 	pg_end = (offset + len) >> PAGE_SHIFT;
1735 	delta = pg_end - pg_start;
1736 	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1737 
1738 	/* avoid gc operation during block exchange */
1739 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1740 	filemap_invalidate_lock(mapping);
1741 	truncate_pagecache(inode, offset);
1742 
1743 	while (!ret && idx > pg_start) {
1744 		nr = idx - pg_start;
1745 		if (nr > delta)
1746 			nr = delta;
1747 		idx -= nr;
1748 
1749 		f2fs_lock_op(sbi);
1750 		f2fs_drop_extent_tree(inode);
1751 
1752 		ret = __exchange_data_block(inode, inode, idx,
1753 					idx + delta, nr, false);
1754 		f2fs_unlock_op(sbi);
1755 	}
1756 	filemap_invalidate_unlock(mapping);
1757 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1758 	if (ret)
1759 		return ret;
1760 
1761 	/* write out all moved pages, if possible */
1762 	filemap_invalidate_lock(mapping);
1763 	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1764 	truncate_pagecache(inode, offset);
1765 	filemap_invalidate_unlock(mapping);
1766 
1767 	if (!ret)
1768 		f2fs_i_size_write(inode, new_size);
1769 	return ret;
1770 }
1771 
1772 static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1773 					loff_t len, int mode)
1774 {
1775 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1776 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1777 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1778 			.m_may_create = true };
1779 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1780 			.init_gc_type = FG_GC,
1781 			.should_migrate_blocks = false,
1782 			.err_gc_skipped = true,
1783 			.nr_free_secs = 0 };
1784 	pgoff_t pg_start, pg_end;
1785 	loff_t new_size;
1786 	loff_t off_end;
1787 	block_t expanded = 0;
1788 	int err;
1789 
1790 	err = inode_newsize_ok(inode, (len + offset));
1791 	if (err)
1792 		return err;
1793 
1794 	err = f2fs_convert_inline_inode(inode);
1795 	if (err)
1796 		return err;
1797 
1798 	f2fs_balance_fs(sbi, true);
1799 
1800 	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1801 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1802 	off_end = (offset + len) & (PAGE_SIZE - 1);
1803 
1804 	map.m_lblk = pg_start;
1805 	map.m_len = pg_end - pg_start;
1806 	if (off_end)
1807 		map.m_len++;
1808 
1809 	if (!map.m_len)
1810 		return 0;
1811 
1812 	if (f2fs_is_pinned_file(inode)) {
1813 		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1814 		block_t sec_len = roundup(map.m_len, sec_blks);
1815 
1816 		map.m_len = sec_blks;
1817 next_alloc:
1818 		if (has_not_enough_free_secs(sbi, 0, f2fs_sb_has_blkzoned(sbi) ?
1819 			ZONED_PIN_SEC_REQUIRED_COUNT :
1820 			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1821 			f2fs_down_write(&sbi->gc_lock);
1822 			stat_inc_gc_call_count(sbi, FOREGROUND);
1823 			err = f2fs_gc(sbi, &gc_control);
1824 			if (err && err != -ENODATA)
1825 				goto out_err;
1826 		}
1827 
1828 		f2fs_down_write(&sbi->pin_sem);
1829 
1830 		err = f2fs_allocate_pinning_section(sbi);
1831 		if (err) {
1832 			f2fs_up_write(&sbi->pin_sem);
1833 			goto out_err;
1834 		}
1835 
1836 		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1837 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1838 		file_dont_truncate(inode);
1839 
1840 		f2fs_up_write(&sbi->pin_sem);
1841 
1842 		expanded += map.m_len;
1843 		sec_len -= map.m_len;
1844 		map.m_lblk += map.m_len;
1845 		if (!err && sec_len)
1846 			goto next_alloc;
1847 
1848 		map.m_len = expanded;
1849 	} else {
1850 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1851 		expanded = map.m_len;
1852 	}
1853 out_err:
1854 	if (err) {
1855 		pgoff_t last_off;
1856 
1857 		if (!expanded)
1858 			return err;
1859 
1860 		last_off = pg_start + expanded - 1;
1861 
1862 		/* update new size to the failed position */
1863 		new_size = (last_off == pg_end) ? offset + len :
1864 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1865 	} else {
1866 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1867 	}
1868 
1869 	if (new_size > i_size_read(inode)) {
1870 		if (mode & FALLOC_FL_KEEP_SIZE)
1871 			file_set_keep_isize(inode);
1872 		else
1873 			f2fs_i_size_write(inode, new_size);
1874 	}
1875 
1876 	return err;
1877 }
1878 
1879 static long f2fs_fallocate(struct file *file, int mode,
1880 				loff_t offset, loff_t len)
1881 {
1882 	struct inode *inode = file_inode(file);
1883 	long ret = 0;
1884 
1885 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1886 		return -EIO;
1887 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1888 		return -ENOSPC;
1889 	if (!f2fs_is_compress_backend_ready(inode) || IS_DEVICE_ALIASING(inode))
1890 		return -EOPNOTSUPP;
1891 
1892 	/* f2fs only support ->fallocate for regular file */
1893 	if (!S_ISREG(inode->i_mode))
1894 		return -EINVAL;
1895 
1896 	if (IS_ENCRYPTED(inode) &&
1897 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1898 		return -EOPNOTSUPP;
1899 
1900 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1901 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1902 			FALLOC_FL_INSERT_RANGE))
1903 		return -EOPNOTSUPP;
1904 
1905 	inode_lock(inode);
1906 
1907 	/*
1908 	 * Pinned file should not support partial truncation since the block
1909 	 * can be used by applications.
1910 	 */
1911 	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1912 		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1913 			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1914 		ret = -EOPNOTSUPP;
1915 		goto out;
1916 	}
1917 
1918 	ret = file_modified(file);
1919 	if (ret)
1920 		goto out;
1921 
1922 	/*
1923 	 * wait for inflight dio, blocks should be removed after IO
1924 	 * completion.
1925 	 */
1926 	inode_dio_wait(inode);
1927 
1928 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1929 		if (offset >= inode->i_size)
1930 			goto out;
1931 
1932 		ret = f2fs_punch_hole(inode, offset, len);
1933 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1934 		ret = f2fs_collapse_range(inode, offset, len);
1935 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1936 		ret = f2fs_zero_range(inode, offset, len, mode);
1937 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1938 		ret = f2fs_insert_range(inode, offset, len);
1939 	} else {
1940 		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1941 	}
1942 
1943 	if (!ret) {
1944 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1945 		f2fs_mark_inode_dirty_sync(inode, false);
1946 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1947 	}
1948 
1949 out:
1950 	inode_unlock(inode);
1951 
1952 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1953 	return ret;
1954 }
1955 
1956 static int f2fs_release_file(struct inode *inode, struct file *filp)
1957 {
1958 	/*
1959 	 * f2fs_release_file is called at every close calls. So we should
1960 	 * not drop any inmemory pages by close called by other process.
1961 	 */
1962 	if (!(filp->f_mode & FMODE_WRITE) ||
1963 			atomic_read(&inode->i_writecount) != 1)
1964 		return 0;
1965 
1966 	inode_lock(inode);
1967 	f2fs_abort_atomic_write(inode, true);
1968 	inode_unlock(inode);
1969 
1970 	return 0;
1971 }
1972 
1973 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1974 {
1975 	struct inode *inode = file_inode(file);
1976 
1977 	/*
1978 	 * If the process doing a transaction is crashed, we should do
1979 	 * roll-back. Otherwise, other reader/write can see corrupted database
1980 	 * until all the writers close its file. Since this should be done
1981 	 * before dropping file lock, it needs to do in ->flush.
1982 	 */
1983 	if (F2FS_I(inode)->atomic_write_task == current &&
1984 				(current->flags & PF_EXITING)) {
1985 		inode_lock(inode);
1986 		f2fs_abort_atomic_write(inode, true);
1987 		inode_unlock(inode);
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1994 {
1995 	struct f2fs_inode_info *fi = F2FS_I(inode);
1996 	u32 masked_flags = fi->i_flags & mask;
1997 
1998 	/* mask can be shrunk by flags_valid selector */
1999 	iflags &= mask;
2000 
2001 	/* Is it quota file? Do not allow user to mess with it */
2002 	if (IS_NOQUOTA(inode))
2003 		return -EPERM;
2004 
2005 	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
2006 		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
2007 			return -EOPNOTSUPP;
2008 		if (!f2fs_empty_dir(inode))
2009 			return -ENOTEMPTY;
2010 	}
2011 
2012 	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
2013 		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
2014 			return -EOPNOTSUPP;
2015 		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
2016 			return -EINVAL;
2017 	}
2018 
2019 	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
2020 		if (masked_flags & F2FS_COMPR_FL) {
2021 			if (!f2fs_disable_compressed_file(inode))
2022 				return -EINVAL;
2023 		} else {
2024 			/* try to convert inline_data to support compression */
2025 			int err = f2fs_convert_inline_inode(inode);
2026 			if (err)
2027 				return err;
2028 
2029 			f2fs_down_write(&fi->i_sem);
2030 			if (!f2fs_may_compress(inode) ||
2031 					(S_ISREG(inode->i_mode) &&
2032 					F2FS_HAS_BLOCKS(inode))) {
2033 				f2fs_up_write(&fi->i_sem);
2034 				return -EINVAL;
2035 			}
2036 			err = set_compress_context(inode);
2037 			f2fs_up_write(&fi->i_sem);
2038 
2039 			if (err)
2040 				return err;
2041 		}
2042 	}
2043 
2044 	fi->i_flags = iflags | (fi->i_flags & ~mask);
2045 	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2046 					(fi->i_flags & F2FS_NOCOMP_FL));
2047 
2048 	if (fi->i_flags & F2FS_PROJINHERIT_FL)
2049 		set_inode_flag(inode, FI_PROJ_INHERIT);
2050 	else
2051 		clear_inode_flag(inode, FI_PROJ_INHERIT);
2052 
2053 	inode_set_ctime_current(inode);
2054 	f2fs_set_inode_flags(inode);
2055 	f2fs_mark_inode_dirty_sync(inode, true);
2056 	return 0;
2057 }
2058 
2059 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2060 
2061 /*
2062  * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2063  * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2064  * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
2065  * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2066  *
2067  * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2068  * FS_IOC_FSSETXATTR is done by the VFS.
2069  */
2070 
2071 static const struct {
2072 	u32 iflag;
2073 	u32 fsflag;
2074 } f2fs_fsflags_map[] = {
2075 	{ F2FS_COMPR_FL,	FS_COMPR_FL },
2076 	{ F2FS_SYNC_FL,		FS_SYNC_FL },
2077 	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
2078 	{ F2FS_APPEND_FL,	FS_APPEND_FL },
2079 	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
2080 	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
2081 	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
2082 	{ F2FS_INDEX_FL,	FS_INDEX_FL },
2083 	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
2084 	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
2085 	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
2086 };
2087 
2088 #define F2FS_GETTABLE_FS_FL (		\
2089 		FS_COMPR_FL |		\
2090 		FS_SYNC_FL |		\
2091 		FS_IMMUTABLE_FL |	\
2092 		FS_APPEND_FL |		\
2093 		FS_NODUMP_FL |		\
2094 		FS_NOATIME_FL |		\
2095 		FS_NOCOMP_FL |		\
2096 		FS_INDEX_FL |		\
2097 		FS_DIRSYNC_FL |		\
2098 		FS_PROJINHERIT_FL |	\
2099 		FS_ENCRYPT_FL |		\
2100 		FS_INLINE_DATA_FL |	\
2101 		FS_NOCOW_FL |		\
2102 		FS_VERITY_FL |		\
2103 		FS_CASEFOLD_FL)
2104 
2105 #define F2FS_SETTABLE_FS_FL (		\
2106 		FS_COMPR_FL |		\
2107 		FS_SYNC_FL |		\
2108 		FS_IMMUTABLE_FL |	\
2109 		FS_APPEND_FL |		\
2110 		FS_NODUMP_FL |		\
2111 		FS_NOATIME_FL |		\
2112 		FS_NOCOMP_FL |		\
2113 		FS_DIRSYNC_FL |		\
2114 		FS_PROJINHERIT_FL |	\
2115 		FS_CASEFOLD_FL)
2116 
2117 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2118 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2119 {
2120 	u32 fsflags = 0;
2121 	int i;
2122 
2123 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2124 		if (iflags & f2fs_fsflags_map[i].iflag)
2125 			fsflags |= f2fs_fsflags_map[i].fsflag;
2126 
2127 	return fsflags;
2128 }
2129 
2130 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2131 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2132 {
2133 	u32 iflags = 0;
2134 	int i;
2135 
2136 	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2137 		if (fsflags & f2fs_fsflags_map[i].fsflag)
2138 			iflags |= f2fs_fsflags_map[i].iflag;
2139 
2140 	return iflags;
2141 }
2142 
2143 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2144 {
2145 	struct inode *inode = file_inode(filp);
2146 
2147 	return put_user(inode->i_generation, (int __user *)arg);
2148 }
2149 
2150 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2151 {
2152 	struct inode *inode = file_inode(filp);
2153 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2154 	struct f2fs_inode_info *fi = F2FS_I(inode);
2155 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2156 	loff_t isize;
2157 	int ret;
2158 
2159 	if (!(filp->f_mode & FMODE_WRITE))
2160 		return -EBADF;
2161 
2162 	if (!inode_owner_or_capable(idmap, inode))
2163 		return -EACCES;
2164 
2165 	if (!S_ISREG(inode->i_mode))
2166 		return -EINVAL;
2167 
2168 	if (filp->f_flags & O_DIRECT)
2169 		return -EINVAL;
2170 
2171 	ret = mnt_want_write_file(filp);
2172 	if (ret)
2173 		return ret;
2174 
2175 	inode_lock(inode);
2176 
2177 	if (!f2fs_disable_compressed_file(inode) ||
2178 			f2fs_is_pinned_file(inode)) {
2179 		ret = -EINVAL;
2180 		goto out;
2181 	}
2182 
2183 	if (f2fs_is_atomic_file(inode))
2184 		goto out;
2185 
2186 	ret = f2fs_convert_inline_inode(inode);
2187 	if (ret)
2188 		goto out;
2189 
2190 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2191 	f2fs_down_write(&fi->i_gc_rwsem[READ]);
2192 
2193 	/*
2194 	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2195 	 * f2fs_is_atomic_file.
2196 	 */
2197 	if (get_dirty_pages(inode))
2198 		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2199 			  inode->i_ino, get_dirty_pages(inode));
2200 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2201 	if (ret)
2202 		goto out_unlock;
2203 
2204 	/* Check if the inode already has a COW inode */
2205 	if (fi->cow_inode == NULL) {
2206 		/* Create a COW inode for atomic write */
2207 		struct dentry *dentry = file_dentry(filp);
2208 		struct inode *dir = d_inode(dentry->d_parent);
2209 
2210 		ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2211 		if (ret)
2212 			goto out_unlock;
2213 
2214 		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2215 		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2216 
2217 		/* Set the COW inode's atomic_inode to the atomic inode */
2218 		F2FS_I(fi->cow_inode)->atomic_inode = inode;
2219 	} else {
2220 		/* Reuse the already created COW inode */
2221 		f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
2222 
2223 		invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
2224 
2225 		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
2226 		if (ret)
2227 			goto out_unlock;
2228 	}
2229 
2230 	f2fs_write_inode(inode, NULL);
2231 
2232 	stat_inc_atomic_inode(inode);
2233 
2234 	set_inode_flag(inode, FI_ATOMIC_FILE);
2235 
2236 	isize = i_size_read(inode);
2237 	fi->original_i_size = isize;
2238 	if (truncate) {
2239 		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2240 		truncate_inode_pages_final(inode->i_mapping);
2241 		f2fs_i_size_write(inode, 0);
2242 		isize = 0;
2243 	}
2244 	f2fs_i_size_write(fi->cow_inode, isize);
2245 
2246 out_unlock:
2247 	f2fs_up_write(&fi->i_gc_rwsem[READ]);
2248 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2249 	if (ret)
2250 		goto out;
2251 
2252 	f2fs_update_time(sbi, REQ_TIME);
2253 	fi->atomic_write_task = current;
2254 	stat_update_max_atomic_write(inode);
2255 	fi->atomic_write_cnt = 0;
2256 out:
2257 	inode_unlock(inode);
2258 	mnt_drop_write_file(filp);
2259 	return ret;
2260 }
2261 
2262 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2263 {
2264 	struct inode *inode = file_inode(filp);
2265 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2266 	int ret;
2267 
2268 	if (!(filp->f_mode & FMODE_WRITE))
2269 		return -EBADF;
2270 
2271 	if (!inode_owner_or_capable(idmap, inode))
2272 		return -EACCES;
2273 
2274 	ret = mnt_want_write_file(filp);
2275 	if (ret)
2276 		return ret;
2277 
2278 	f2fs_balance_fs(F2FS_I_SB(inode), true);
2279 
2280 	inode_lock(inode);
2281 
2282 	if (f2fs_is_atomic_file(inode)) {
2283 		ret = f2fs_commit_atomic_write(inode);
2284 		if (!ret)
2285 			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2286 
2287 		f2fs_abort_atomic_write(inode, ret);
2288 	} else {
2289 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2290 	}
2291 
2292 	inode_unlock(inode);
2293 	mnt_drop_write_file(filp);
2294 	return ret;
2295 }
2296 
2297 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2298 {
2299 	struct inode *inode = file_inode(filp);
2300 	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2301 	int ret;
2302 
2303 	if (!(filp->f_mode & FMODE_WRITE))
2304 		return -EBADF;
2305 
2306 	if (!inode_owner_or_capable(idmap, inode))
2307 		return -EACCES;
2308 
2309 	ret = mnt_want_write_file(filp);
2310 	if (ret)
2311 		return ret;
2312 
2313 	inode_lock(inode);
2314 
2315 	f2fs_abort_atomic_write(inode, true);
2316 
2317 	inode_unlock(inode);
2318 
2319 	mnt_drop_write_file(filp);
2320 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2321 	return ret;
2322 }
2323 
2324 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2325 						bool readonly, bool need_lock)
2326 {
2327 	struct super_block *sb = sbi->sb;
2328 	int ret = 0;
2329 
2330 	switch (flag) {
2331 	case F2FS_GOING_DOWN_FULLSYNC:
2332 		ret = bdev_freeze(sb->s_bdev);
2333 		if (ret)
2334 			goto out;
2335 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2336 		bdev_thaw(sb->s_bdev);
2337 		break;
2338 	case F2FS_GOING_DOWN_METASYNC:
2339 		/* do checkpoint only */
2340 		ret = f2fs_sync_fs(sb, 1);
2341 		if (ret) {
2342 			if (ret == -EIO)
2343 				ret = 0;
2344 			goto out;
2345 		}
2346 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2347 		break;
2348 	case F2FS_GOING_DOWN_NOSYNC:
2349 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2350 		break;
2351 	case F2FS_GOING_DOWN_METAFLUSH:
2352 		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2353 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2354 		break;
2355 	case F2FS_GOING_DOWN_NEED_FSCK:
2356 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2357 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2358 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2359 		/* do checkpoint only */
2360 		ret = f2fs_sync_fs(sb, 1);
2361 		if (ret == -EIO)
2362 			ret = 0;
2363 		goto out;
2364 	default:
2365 		ret = -EINVAL;
2366 		goto out;
2367 	}
2368 
2369 	if (readonly)
2370 		goto out;
2371 
2372 	/*
2373 	 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2374 	 * paths.
2375 	 */
2376 	if (need_lock)
2377 		down_write(&sbi->sb->s_umount);
2378 
2379 	f2fs_stop_gc_thread(sbi);
2380 	f2fs_stop_discard_thread(sbi);
2381 
2382 	f2fs_drop_discard_cmd(sbi);
2383 	clear_opt(sbi, DISCARD);
2384 
2385 	if (need_lock)
2386 		up_write(&sbi->sb->s_umount);
2387 
2388 	f2fs_update_time(sbi, REQ_TIME);
2389 out:
2390 
2391 	trace_f2fs_shutdown(sbi, flag, ret);
2392 
2393 	return ret;
2394 }
2395 
2396 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2397 {
2398 	struct inode *inode = file_inode(filp);
2399 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2400 	__u32 in;
2401 	int ret;
2402 	bool need_drop = false, readonly = false;
2403 
2404 	if (!capable(CAP_SYS_ADMIN))
2405 		return -EPERM;
2406 
2407 	if (get_user(in, (__u32 __user *)arg))
2408 		return -EFAULT;
2409 
2410 	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2411 		ret = mnt_want_write_file(filp);
2412 		if (ret) {
2413 			if (ret != -EROFS)
2414 				return ret;
2415 
2416 			/* fallback to nosync shutdown for readonly fs */
2417 			in = F2FS_GOING_DOWN_NOSYNC;
2418 			readonly = true;
2419 		} else {
2420 			need_drop = true;
2421 		}
2422 	}
2423 
2424 	ret = f2fs_do_shutdown(sbi, in, readonly, true);
2425 
2426 	if (need_drop)
2427 		mnt_drop_write_file(filp);
2428 
2429 	return ret;
2430 }
2431 
2432 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2433 {
2434 	struct inode *inode = file_inode(filp);
2435 	struct super_block *sb = inode->i_sb;
2436 	struct fstrim_range range;
2437 	int ret;
2438 
2439 	if (!capable(CAP_SYS_ADMIN))
2440 		return -EPERM;
2441 
2442 	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2443 		return -EOPNOTSUPP;
2444 
2445 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2446 				sizeof(range)))
2447 		return -EFAULT;
2448 
2449 	ret = mnt_want_write_file(filp);
2450 	if (ret)
2451 		return ret;
2452 
2453 	range.minlen = max((unsigned int)range.minlen,
2454 			   bdev_discard_granularity(sb->s_bdev));
2455 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2456 	mnt_drop_write_file(filp);
2457 	if (ret < 0)
2458 		return ret;
2459 
2460 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2461 				sizeof(range)))
2462 		return -EFAULT;
2463 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2464 	return 0;
2465 }
2466 
2467 static bool uuid_is_nonzero(__u8 u[16])
2468 {
2469 	int i;
2470 
2471 	for (i = 0; i < 16; i++)
2472 		if (u[i])
2473 			return true;
2474 	return false;
2475 }
2476 
2477 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2478 {
2479 	struct inode *inode = file_inode(filp);
2480 	int ret;
2481 
2482 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2483 		return -EOPNOTSUPP;
2484 
2485 	ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2486 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2487 	return ret;
2488 }
2489 
2490 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2491 {
2492 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2493 		return -EOPNOTSUPP;
2494 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2495 }
2496 
2497 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2498 {
2499 	struct inode *inode = file_inode(filp);
2500 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2501 	u8 encrypt_pw_salt[16];
2502 	int err;
2503 
2504 	if (!f2fs_sb_has_encrypt(sbi))
2505 		return -EOPNOTSUPP;
2506 
2507 	err = mnt_want_write_file(filp);
2508 	if (err)
2509 		return err;
2510 
2511 	f2fs_down_write(&sbi->sb_lock);
2512 
2513 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2514 		goto got_it;
2515 
2516 	/* update superblock with uuid */
2517 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2518 
2519 	err = f2fs_commit_super(sbi, false);
2520 	if (err) {
2521 		/* undo new data */
2522 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2523 		goto out_err;
2524 	}
2525 got_it:
2526 	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
2527 out_err:
2528 	f2fs_up_write(&sbi->sb_lock);
2529 	mnt_drop_write_file(filp);
2530 
2531 	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2532 		err = -EFAULT;
2533 
2534 	return err;
2535 }
2536 
2537 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2538 					     unsigned long arg)
2539 {
2540 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2541 		return -EOPNOTSUPP;
2542 
2543 	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2544 }
2545 
2546 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2547 {
2548 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2549 		return -EOPNOTSUPP;
2550 
2551 	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2552 }
2553 
2554 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2555 {
2556 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2557 		return -EOPNOTSUPP;
2558 
2559 	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2560 }
2561 
2562 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2563 						    unsigned long arg)
2564 {
2565 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2566 		return -EOPNOTSUPP;
2567 
2568 	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2569 }
2570 
2571 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2572 					      unsigned long arg)
2573 {
2574 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2575 		return -EOPNOTSUPP;
2576 
2577 	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2578 }
2579 
2580 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2581 {
2582 	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2583 		return -EOPNOTSUPP;
2584 
2585 	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2586 }
2587 
2588 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2589 {
2590 	struct inode *inode = file_inode(filp);
2591 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2592 	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2593 			.no_bg_gc = false,
2594 			.should_migrate_blocks = false,
2595 			.nr_free_secs = 0 };
2596 	__u32 sync;
2597 	int ret;
2598 
2599 	if (!capable(CAP_SYS_ADMIN))
2600 		return -EPERM;
2601 
2602 	if (get_user(sync, (__u32 __user *)arg))
2603 		return -EFAULT;
2604 
2605 	if (f2fs_readonly(sbi->sb))
2606 		return -EROFS;
2607 
2608 	ret = mnt_want_write_file(filp);
2609 	if (ret)
2610 		return ret;
2611 
2612 	if (!sync) {
2613 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2614 			ret = -EBUSY;
2615 			goto out;
2616 		}
2617 	} else {
2618 		f2fs_down_write(&sbi->gc_lock);
2619 	}
2620 
2621 	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2622 	gc_control.err_gc_skipped = sync;
2623 	stat_inc_gc_call_count(sbi, FOREGROUND);
2624 	ret = f2fs_gc(sbi, &gc_control);
2625 out:
2626 	mnt_drop_write_file(filp);
2627 	return ret;
2628 }
2629 
2630 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2631 {
2632 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2633 	struct f2fs_gc_control gc_control = {
2634 			.init_gc_type = range->sync ? FG_GC : BG_GC,
2635 			.no_bg_gc = false,
2636 			.should_migrate_blocks = false,
2637 			.err_gc_skipped = range->sync,
2638 			.nr_free_secs = 0 };
2639 	u64 end;
2640 	int ret;
2641 
2642 	if (!capable(CAP_SYS_ADMIN))
2643 		return -EPERM;
2644 	if (f2fs_readonly(sbi->sb))
2645 		return -EROFS;
2646 
2647 	end = range->start + range->len;
2648 	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2649 					end >= MAX_BLKADDR(sbi))
2650 		return -EINVAL;
2651 
2652 	ret = mnt_want_write_file(filp);
2653 	if (ret)
2654 		return ret;
2655 
2656 do_more:
2657 	if (!range->sync) {
2658 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2659 			ret = -EBUSY;
2660 			goto out;
2661 		}
2662 	} else {
2663 		f2fs_down_write(&sbi->gc_lock);
2664 	}
2665 
2666 	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2667 	stat_inc_gc_call_count(sbi, FOREGROUND);
2668 	ret = f2fs_gc(sbi, &gc_control);
2669 	if (ret) {
2670 		if (ret == -EBUSY)
2671 			ret = -EAGAIN;
2672 		goto out;
2673 	}
2674 	range->start += CAP_BLKS_PER_SEC(sbi);
2675 	if (range->start <= end)
2676 		goto do_more;
2677 out:
2678 	mnt_drop_write_file(filp);
2679 	return ret;
2680 }
2681 
2682 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2683 {
2684 	struct f2fs_gc_range range;
2685 
2686 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2687 							sizeof(range)))
2688 		return -EFAULT;
2689 	return __f2fs_ioc_gc_range(filp, &range);
2690 }
2691 
2692 static int f2fs_ioc_write_checkpoint(struct file *filp)
2693 {
2694 	struct inode *inode = file_inode(filp);
2695 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2696 	int ret;
2697 
2698 	if (!capable(CAP_SYS_ADMIN))
2699 		return -EPERM;
2700 
2701 	if (f2fs_readonly(sbi->sb))
2702 		return -EROFS;
2703 
2704 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2705 		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2706 		return -EINVAL;
2707 	}
2708 
2709 	ret = mnt_want_write_file(filp);
2710 	if (ret)
2711 		return ret;
2712 
2713 	ret = f2fs_sync_fs(sbi->sb, 1);
2714 
2715 	mnt_drop_write_file(filp);
2716 	return ret;
2717 }
2718 
2719 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2720 					struct file *filp,
2721 					struct f2fs_defragment *range)
2722 {
2723 	struct inode *inode = file_inode(filp);
2724 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2725 					.m_seg_type = NO_CHECK_TYPE,
2726 					.m_may_create = false };
2727 	struct extent_info ei = {};
2728 	pgoff_t pg_start, pg_end, next_pgofs;
2729 	unsigned int total = 0, sec_num;
2730 	block_t blk_end = 0;
2731 	bool fragmented = false;
2732 	int err;
2733 
2734 	f2fs_balance_fs(sbi, true);
2735 
2736 	inode_lock(inode);
2737 	pg_start = range->start >> PAGE_SHIFT;
2738 	pg_end = min_t(pgoff_t,
2739 				(range->start + range->len) >> PAGE_SHIFT,
2740 				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2741 
2742 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2743 		f2fs_is_atomic_file(inode)) {
2744 		err = -EINVAL;
2745 		goto unlock_out;
2746 	}
2747 
2748 	/* if in-place-update policy is enabled, don't waste time here */
2749 	set_inode_flag(inode, FI_OPU_WRITE);
2750 	if (f2fs_should_update_inplace(inode, NULL)) {
2751 		err = -EINVAL;
2752 		goto out;
2753 	}
2754 
2755 	/* writeback all dirty pages in the range */
2756 	err = filemap_write_and_wait_range(inode->i_mapping,
2757 						pg_start << PAGE_SHIFT,
2758 						(pg_end << PAGE_SHIFT) - 1);
2759 	if (err)
2760 		goto out;
2761 
2762 	/*
2763 	 * lookup mapping info in extent cache, skip defragmenting if physical
2764 	 * block addresses are continuous.
2765 	 */
2766 	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2767 		if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2768 			goto out;
2769 	}
2770 
2771 	map.m_lblk = pg_start;
2772 	map.m_next_pgofs = &next_pgofs;
2773 
2774 	/*
2775 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2776 	 * physical block addresses are continuous even if there are hole(s)
2777 	 * in logical blocks.
2778 	 */
2779 	while (map.m_lblk < pg_end) {
2780 		map.m_len = pg_end - map.m_lblk;
2781 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2782 		if (err)
2783 			goto out;
2784 
2785 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2786 			map.m_lblk = next_pgofs;
2787 			continue;
2788 		}
2789 
2790 		if (blk_end && blk_end != map.m_pblk)
2791 			fragmented = true;
2792 
2793 		/* record total count of block that we're going to move */
2794 		total += map.m_len;
2795 
2796 		blk_end = map.m_pblk + map.m_len;
2797 
2798 		map.m_lblk += map.m_len;
2799 	}
2800 
2801 	if (!fragmented) {
2802 		total = 0;
2803 		goto out;
2804 	}
2805 
2806 	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2807 
2808 	/*
2809 	 * make sure there are enough free section for LFS allocation, this can
2810 	 * avoid defragment running in SSR mode when free section are allocated
2811 	 * intensively
2812 	 */
2813 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2814 		err = -EAGAIN;
2815 		goto out;
2816 	}
2817 
2818 	map.m_lblk = pg_start;
2819 	map.m_len = pg_end - pg_start;
2820 	total = 0;
2821 
2822 	while (map.m_lblk < pg_end) {
2823 		pgoff_t idx;
2824 		int cnt = 0;
2825 
2826 do_map:
2827 		map.m_len = pg_end - map.m_lblk;
2828 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2829 		if (err)
2830 			goto clear_out;
2831 
2832 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2833 			map.m_lblk = next_pgofs;
2834 			goto check;
2835 		}
2836 
2837 		set_inode_flag(inode, FI_SKIP_WRITES);
2838 
2839 		idx = map.m_lblk;
2840 		while (idx < map.m_lblk + map.m_len &&
2841 						cnt < BLKS_PER_SEG(sbi)) {
2842 			struct page *page;
2843 
2844 			page = f2fs_get_lock_data_page(inode, idx, true);
2845 			if (IS_ERR(page)) {
2846 				err = PTR_ERR(page);
2847 				goto clear_out;
2848 			}
2849 
2850 			f2fs_wait_on_page_writeback(page, DATA, true, true);
2851 
2852 			set_page_dirty(page);
2853 			set_page_private_gcing(page);
2854 			f2fs_put_page(page, 1);
2855 
2856 			idx++;
2857 			cnt++;
2858 			total++;
2859 		}
2860 
2861 		map.m_lblk = idx;
2862 check:
2863 		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2864 			goto do_map;
2865 
2866 		clear_inode_flag(inode, FI_SKIP_WRITES);
2867 
2868 		err = filemap_fdatawrite(inode->i_mapping);
2869 		if (err)
2870 			goto out;
2871 	}
2872 clear_out:
2873 	clear_inode_flag(inode, FI_SKIP_WRITES);
2874 out:
2875 	clear_inode_flag(inode, FI_OPU_WRITE);
2876 unlock_out:
2877 	inode_unlock(inode);
2878 	if (!err)
2879 		range->len = (u64)total << PAGE_SHIFT;
2880 	return err;
2881 }
2882 
2883 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2884 {
2885 	struct inode *inode = file_inode(filp);
2886 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2887 	struct f2fs_defragment range;
2888 	int err;
2889 
2890 	if (!capable(CAP_SYS_ADMIN))
2891 		return -EPERM;
2892 
2893 	if (!S_ISREG(inode->i_mode))
2894 		return -EINVAL;
2895 
2896 	if (f2fs_readonly(sbi->sb))
2897 		return -EROFS;
2898 
2899 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2900 							sizeof(range)))
2901 		return -EFAULT;
2902 
2903 	/* verify alignment of offset & size */
2904 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2905 		return -EINVAL;
2906 
2907 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2908 					max_file_blocks(inode)))
2909 		return -EINVAL;
2910 
2911 	err = mnt_want_write_file(filp);
2912 	if (err)
2913 		return err;
2914 
2915 	err = f2fs_defragment_range(sbi, filp, &range);
2916 	mnt_drop_write_file(filp);
2917 
2918 	if (range.len)
2919 		f2fs_update_time(sbi, REQ_TIME);
2920 	if (err < 0)
2921 		return err;
2922 
2923 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2924 							sizeof(range)))
2925 		return -EFAULT;
2926 
2927 	return 0;
2928 }
2929 
2930 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2931 			struct file *file_out, loff_t pos_out, size_t len)
2932 {
2933 	struct inode *src = file_inode(file_in);
2934 	struct inode *dst = file_inode(file_out);
2935 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2936 	size_t olen = len, dst_max_i_size = 0;
2937 	size_t dst_osize;
2938 	int ret;
2939 
2940 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2941 				src->i_sb != dst->i_sb)
2942 		return -EXDEV;
2943 
2944 	if (unlikely(f2fs_readonly(src->i_sb)))
2945 		return -EROFS;
2946 
2947 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2948 		return -EINVAL;
2949 
2950 	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2951 		return -EOPNOTSUPP;
2952 
2953 	if (pos_out < 0 || pos_in < 0)
2954 		return -EINVAL;
2955 
2956 	if (src == dst) {
2957 		if (pos_in == pos_out)
2958 			return 0;
2959 		if (pos_out > pos_in && pos_out < pos_in + len)
2960 			return -EINVAL;
2961 	}
2962 
2963 	inode_lock(src);
2964 	if (src != dst) {
2965 		ret = -EBUSY;
2966 		if (!inode_trylock(dst))
2967 			goto out;
2968 	}
2969 
2970 	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2971 		f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2972 		ret = -EOPNOTSUPP;
2973 		goto out_unlock;
2974 	}
2975 
2976 	if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
2977 		ret = -EINVAL;
2978 		goto out_unlock;
2979 	}
2980 
2981 	ret = -EINVAL;
2982 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2983 		goto out_unlock;
2984 	if (len == 0)
2985 		olen = len = src->i_size - pos_in;
2986 	if (pos_in + len == src->i_size)
2987 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2988 	if (len == 0) {
2989 		ret = 0;
2990 		goto out_unlock;
2991 	}
2992 
2993 	dst_osize = dst->i_size;
2994 	if (pos_out + olen > dst->i_size)
2995 		dst_max_i_size = pos_out + olen;
2996 
2997 	/* verify the end result is block aligned */
2998 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2999 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
3000 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
3001 		goto out_unlock;
3002 
3003 	ret = f2fs_convert_inline_inode(src);
3004 	if (ret)
3005 		goto out_unlock;
3006 
3007 	ret = f2fs_convert_inline_inode(dst);
3008 	if (ret)
3009 		goto out_unlock;
3010 
3011 	/* write out all dirty pages from offset */
3012 	ret = filemap_write_and_wait_range(src->i_mapping,
3013 					pos_in, pos_in + len);
3014 	if (ret)
3015 		goto out_unlock;
3016 
3017 	ret = filemap_write_and_wait_range(dst->i_mapping,
3018 					pos_out, pos_out + len);
3019 	if (ret)
3020 		goto out_unlock;
3021 
3022 	f2fs_balance_fs(sbi, true);
3023 
3024 	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3025 	if (src != dst) {
3026 		ret = -EBUSY;
3027 		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
3028 			goto out_src;
3029 	}
3030 
3031 	f2fs_lock_op(sbi);
3032 	ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in),
3033 				F2FS_BYTES_TO_BLK(pos_out),
3034 				F2FS_BYTES_TO_BLK(len), false);
3035 
3036 	if (!ret) {
3037 		if (dst_max_i_size)
3038 			f2fs_i_size_write(dst, dst_max_i_size);
3039 		else if (dst_osize != dst->i_size)
3040 			f2fs_i_size_write(dst, dst_osize);
3041 	}
3042 	f2fs_unlock_op(sbi);
3043 
3044 	if (src != dst)
3045 		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
3046 out_src:
3047 	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3048 	if (ret)
3049 		goto out_unlock;
3050 
3051 	inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
3052 	f2fs_mark_inode_dirty_sync(src, false);
3053 	if (src != dst) {
3054 		inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
3055 		f2fs_mark_inode_dirty_sync(dst, false);
3056 	}
3057 	f2fs_update_time(sbi, REQ_TIME);
3058 
3059 out_unlock:
3060 	if (src != dst)
3061 		inode_unlock(dst);
3062 out:
3063 	inode_unlock(src);
3064 	return ret;
3065 }
3066 
3067 static int __f2fs_ioc_move_range(struct file *filp,
3068 				struct f2fs_move_range *range)
3069 {
3070 	int err;
3071 
3072 	if (!(filp->f_mode & FMODE_READ) ||
3073 			!(filp->f_mode & FMODE_WRITE))
3074 		return -EBADF;
3075 
3076 	CLASS(fd, dst)(range->dst_fd);
3077 	if (fd_empty(dst))
3078 		return -EBADF;
3079 
3080 	if (!(fd_file(dst)->f_mode & FMODE_WRITE))
3081 		return -EBADF;
3082 
3083 	err = mnt_want_write_file(filp);
3084 	if (err)
3085 		return err;
3086 
3087 	err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst),
3088 					range->pos_out, range->len);
3089 
3090 	mnt_drop_write_file(filp);
3091 	return err;
3092 }
3093 
3094 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3095 {
3096 	struct f2fs_move_range range;
3097 
3098 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3099 							sizeof(range)))
3100 		return -EFAULT;
3101 	return __f2fs_ioc_move_range(filp, &range);
3102 }
3103 
3104 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3105 {
3106 	struct inode *inode = file_inode(filp);
3107 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3108 	struct sit_info *sm = SIT_I(sbi);
3109 	unsigned int start_segno = 0, end_segno = 0;
3110 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
3111 	struct f2fs_flush_device range;
3112 	struct f2fs_gc_control gc_control = {
3113 			.init_gc_type = FG_GC,
3114 			.should_migrate_blocks = true,
3115 			.err_gc_skipped = true,
3116 			.nr_free_secs = 0 };
3117 	int ret;
3118 
3119 	if (!capable(CAP_SYS_ADMIN))
3120 		return -EPERM;
3121 
3122 	if (f2fs_readonly(sbi->sb))
3123 		return -EROFS;
3124 
3125 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3126 		return -EINVAL;
3127 
3128 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3129 							sizeof(range)))
3130 		return -EFAULT;
3131 
3132 	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3133 			__is_large_section(sbi)) {
3134 		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3135 			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3136 		return -EINVAL;
3137 	}
3138 
3139 	ret = mnt_want_write_file(filp);
3140 	if (ret)
3141 		return ret;
3142 
3143 	if (range.dev_num != 0)
3144 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3145 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3146 
3147 	start_segno = sm->last_victim[FLUSH_DEVICE];
3148 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3149 		start_segno = dev_start_segno;
3150 	end_segno = min(start_segno + range.segments, dev_end_segno);
3151 
3152 	while (start_segno < end_segno) {
3153 		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3154 			ret = -EBUSY;
3155 			goto out;
3156 		}
3157 		sm->last_victim[GC_CB] = end_segno + 1;
3158 		sm->last_victim[GC_GREEDY] = end_segno + 1;
3159 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3160 
3161 		gc_control.victim_segno = start_segno;
3162 		stat_inc_gc_call_count(sbi, FOREGROUND);
3163 		ret = f2fs_gc(sbi, &gc_control);
3164 		if (ret == -EAGAIN)
3165 			ret = 0;
3166 		else if (ret < 0)
3167 			break;
3168 		start_segno++;
3169 	}
3170 out:
3171 	mnt_drop_write_file(filp);
3172 	return ret;
3173 }
3174 
3175 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3176 {
3177 	struct inode *inode = file_inode(filp);
3178 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3179 
3180 	/* Must validate to set it with SQLite behavior in Android. */
3181 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3182 
3183 	return put_user(sb_feature, (u32 __user *)arg);
3184 }
3185 
3186 #ifdef CONFIG_QUOTA
3187 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3188 {
3189 	struct dquot *transfer_to[MAXQUOTAS] = {};
3190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3191 	struct super_block *sb = sbi->sb;
3192 	int err;
3193 
3194 	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3195 	if (IS_ERR(transfer_to[PRJQUOTA]))
3196 		return PTR_ERR(transfer_to[PRJQUOTA]);
3197 
3198 	err = __dquot_transfer(inode, transfer_to);
3199 	if (err)
3200 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3201 	dqput(transfer_to[PRJQUOTA]);
3202 	return err;
3203 }
3204 
3205 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3206 {
3207 	struct f2fs_inode_info *fi = F2FS_I(inode);
3208 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3209 	struct f2fs_inode *ri = NULL;
3210 	kprojid_t kprojid;
3211 	int err;
3212 
3213 	if (!f2fs_sb_has_project_quota(sbi)) {
3214 		if (projid != F2FS_DEF_PROJID)
3215 			return -EOPNOTSUPP;
3216 		else
3217 			return 0;
3218 	}
3219 
3220 	if (!f2fs_has_extra_attr(inode))
3221 		return -EOPNOTSUPP;
3222 
3223 	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3224 
3225 	if (projid_eq(kprojid, fi->i_projid))
3226 		return 0;
3227 
3228 	err = -EPERM;
3229 	/* Is it quota file? Do not allow user to mess with it */
3230 	if (IS_NOQUOTA(inode))
3231 		return err;
3232 
3233 	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3234 		return -EOVERFLOW;
3235 
3236 	err = f2fs_dquot_initialize(inode);
3237 	if (err)
3238 		return err;
3239 
3240 	f2fs_lock_op(sbi);
3241 	err = f2fs_transfer_project_quota(inode, kprojid);
3242 	if (err)
3243 		goto out_unlock;
3244 
3245 	fi->i_projid = kprojid;
3246 	inode_set_ctime_current(inode);
3247 	f2fs_mark_inode_dirty_sync(inode, true);
3248 out_unlock:
3249 	f2fs_unlock_op(sbi);
3250 	return err;
3251 }
3252 #else
3253 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3254 {
3255 	return 0;
3256 }
3257 
3258 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3259 {
3260 	if (projid != F2FS_DEF_PROJID)
3261 		return -EOPNOTSUPP;
3262 	return 0;
3263 }
3264 #endif
3265 
3266 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3267 {
3268 	struct inode *inode = d_inode(dentry);
3269 	struct f2fs_inode_info *fi = F2FS_I(inode);
3270 	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3271 
3272 	if (IS_ENCRYPTED(inode))
3273 		fsflags |= FS_ENCRYPT_FL;
3274 	if (IS_VERITY(inode))
3275 		fsflags |= FS_VERITY_FL;
3276 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3277 		fsflags |= FS_INLINE_DATA_FL;
3278 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3279 		fsflags |= FS_NOCOW_FL;
3280 
3281 	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3282 
3283 	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3284 		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3285 
3286 	return 0;
3287 }
3288 
3289 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3290 		      struct dentry *dentry, struct fileattr *fa)
3291 {
3292 	struct inode *inode = d_inode(dentry);
3293 	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3294 	u32 iflags;
3295 	int err;
3296 
3297 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3298 		return -EIO;
3299 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3300 		return -ENOSPC;
3301 	if (fsflags & ~F2FS_GETTABLE_FS_FL)
3302 		return -EOPNOTSUPP;
3303 	fsflags &= F2FS_SETTABLE_FS_FL;
3304 	if (!fa->flags_valid)
3305 		mask &= FS_COMMON_FL;
3306 
3307 	iflags = f2fs_fsflags_to_iflags(fsflags);
3308 	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3309 		return -EOPNOTSUPP;
3310 
3311 	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3312 	if (!err)
3313 		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3314 
3315 	return err;
3316 }
3317 
3318 int f2fs_pin_file_control(struct inode *inode, bool inc)
3319 {
3320 	struct f2fs_inode_info *fi = F2FS_I(inode);
3321 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3322 
3323 	if (IS_DEVICE_ALIASING(inode))
3324 		return -EINVAL;
3325 
3326 	if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3327 		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3328 			  __func__, inode->i_ino, fi->i_gc_failures);
3329 		clear_inode_flag(inode, FI_PIN_FILE);
3330 		return -EAGAIN;
3331 	}
3332 
3333 	/* Use i_gc_failures for normal file as a risk signal. */
3334 	if (inc)
3335 		f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3336 
3337 	return 0;
3338 }
3339 
3340 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3341 {
3342 	struct inode *inode = file_inode(filp);
3343 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3344 	__u32 pin;
3345 	int ret = 0;
3346 
3347 	if (get_user(pin, (__u32 __user *)arg))
3348 		return -EFAULT;
3349 
3350 	if (!S_ISREG(inode->i_mode))
3351 		return -EINVAL;
3352 
3353 	if (f2fs_readonly(sbi->sb))
3354 		return -EROFS;
3355 
3356 	if (!pin && IS_DEVICE_ALIASING(inode))
3357 		return -EOPNOTSUPP;
3358 
3359 	ret = mnt_want_write_file(filp);
3360 	if (ret)
3361 		return ret;
3362 
3363 	inode_lock(inode);
3364 
3365 	if (f2fs_is_atomic_file(inode)) {
3366 		ret = -EINVAL;
3367 		goto out;
3368 	}
3369 
3370 	if (!pin) {
3371 		clear_inode_flag(inode, FI_PIN_FILE);
3372 		f2fs_i_gc_failures_write(inode, 0);
3373 		goto done;
3374 	} else if (f2fs_is_pinned_file(inode)) {
3375 		goto done;
3376 	}
3377 
3378 	if (F2FS_HAS_BLOCKS(inode)) {
3379 		ret = -EFBIG;
3380 		goto out;
3381 	}
3382 
3383 	/* Let's allow file pinning on zoned device. */
3384 	if (!f2fs_sb_has_blkzoned(sbi) &&
3385 	    f2fs_should_update_outplace(inode, NULL)) {
3386 		ret = -EINVAL;
3387 		goto out;
3388 	}
3389 
3390 	if (f2fs_pin_file_control(inode, false)) {
3391 		ret = -EAGAIN;
3392 		goto out;
3393 	}
3394 
3395 	ret = f2fs_convert_inline_inode(inode);
3396 	if (ret)
3397 		goto out;
3398 
3399 	if (!f2fs_disable_compressed_file(inode)) {
3400 		ret = -EOPNOTSUPP;
3401 		goto out;
3402 	}
3403 
3404 	set_inode_flag(inode, FI_PIN_FILE);
3405 	ret = F2FS_I(inode)->i_gc_failures;
3406 done:
3407 	f2fs_update_time(sbi, REQ_TIME);
3408 out:
3409 	inode_unlock(inode);
3410 	mnt_drop_write_file(filp);
3411 	return ret;
3412 }
3413 
3414 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3415 {
3416 	struct inode *inode = file_inode(filp);
3417 	__u32 pin = 0;
3418 
3419 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3420 		pin = F2FS_I(inode)->i_gc_failures;
3421 	return put_user(pin, (u32 __user *)arg);
3422 }
3423 
3424 static int f2fs_ioc_get_dev_alias_file(struct file *filp, unsigned long arg)
3425 {
3426 	return put_user(IS_DEVICE_ALIASING(file_inode(filp)) ? 1 : 0,
3427 			(u32 __user *)arg);
3428 }
3429 
3430 int f2fs_precache_extents(struct inode *inode)
3431 {
3432 	struct f2fs_inode_info *fi = F2FS_I(inode);
3433 	struct f2fs_map_blocks map;
3434 	pgoff_t m_next_extent;
3435 	loff_t end;
3436 	int err;
3437 
3438 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3439 		return -EOPNOTSUPP;
3440 
3441 	map.m_lblk = 0;
3442 	map.m_pblk = 0;
3443 	map.m_next_pgofs = NULL;
3444 	map.m_next_extent = &m_next_extent;
3445 	map.m_seg_type = NO_CHECK_TYPE;
3446 	map.m_may_create = false;
3447 	end = F2FS_BLK_ALIGN(i_size_read(inode));
3448 
3449 	while (map.m_lblk < end) {
3450 		map.m_len = end - map.m_lblk;
3451 
3452 		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3453 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3454 		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3455 		if (err || !map.m_len)
3456 			return err;
3457 
3458 		map.m_lblk = m_next_extent;
3459 	}
3460 
3461 	return 0;
3462 }
3463 
3464 static int f2fs_ioc_precache_extents(struct file *filp)
3465 {
3466 	return f2fs_precache_extents(file_inode(filp));
3467 }
3468 
3469 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3470 {
3471 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3472 	__u64 block_count;
3473 
3474 	if (!capable(CAP_SYS_ADMIN))
3475 		return -EPERM;
3476 
3477 	if (f2fs_readonly(sbi->sb))
3478 		return -EROFS;
3479 
3480 	if (copy_from_user(&block_count, (void __user *)arg,
3481 			   sizeof(block_count)))
3482 		return -EFAULT;
3483 
3484 	return f2fs_resize_fs(filp, block_count);
3485 }
3486 
3487 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3488 {
3489 	struct inode *inode = file_inode(filp);
3490 
3491 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3492 
3493 	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3494 		f2fs_warn(F2FS_I_SB(inode),
3495 			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3496 			  inode->i_ino);
3497 		return -EOPNOTSUPP;
3498 	}
3499 
3500 	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3501 }
3502 
3503 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3504 {
3505 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3506 		return -EOPNOTSUPP;
3507 
3508 	return fsverity_ioctl_measure(filp, (void __user *)arg);
3509 }
3510 
3511 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3512 {
3513 	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3514 		return -EOPNOTSUPP;
3515 
3516 	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3517 }
3518 
3519 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3520 {
3521 	struct inode *inode = file_inode(filp);
3522 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3523 	char *vbuf;
3524 	int count;
3525 	int err = 0;
3526 
3527 	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3528 	if (!vbuf)
3529 		return -ENOMEM;
3530 
3531 	f2fs_down_read(&sbi->sb_lock);
3532 	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3533 			ARRAY_SIZE(sbi->raw_super->volume_name),
3534 			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3535 	f2fs_up_read(&sbi->sb_lock);
3536 
3537 	if (copy_to_user((char __user *)arg, vbuf,
3538 				min(FSLABEL_MAX, count)))
3539 		err = -EFAULT;
3540 
3541 	kfree(vbuf);
3542 	return err;
3543 }
3544 
3545 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3546 {
3547 	struct inode *inode = file_inode(filp);
3548 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3549 	char *vbuf;
3550 	int err = 0;
3551 
3552 	if (!capable(CAP_SYS_ADMIN))
3553 		return -EPERM;
3554 
3555 	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3556 	if (IS_ERR(vbuf))
3557 		return PTR_ERR(vbuf);
3558 
3559 	err = mnt_want_write_file(filp);
3560 	if (err)
3561 		goto out;
3562 
3563 	f2fs_down_write(&sbi->sb_lock);
3564 
3565 	memset(sbi->raw_super->volume_name, 0,
3566 			sizeof(sbi->raw_super->volume_name));
3567 	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3568 			sbi->raw_super->volume_name,
3569 			ARRAY_SIZE(sbi->raw_super->volume_name));
3570 
3571 	err = f2fs_commit_super(sbi, false);
3572 
3573 	f2fs_up_write(&sbi->sb_lock);
3574 
3575 	mnt_drop_write_file(filp);
3576 out:
3577 	kfree(vbuf);
3578 	return err;
3579 }
3580 
3581 static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3582 {
3583 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3584 		return -EOPNOTSUPP;
3585 
3586 	if (!f2fs_compressed_file(inode))
3587 		return -EINVAL;
3588 
3589 	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3590 
3591 	return 0;
3592 }
3593 
3594 static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3595 {
3596 	struct inode *inode = file_inode(filp);
3597 	__u64 blocks;
3598 	int ret;
3599 
3600 	ret = f2fs_get_compress_blocks(inode, &blocks);
3601 	if (ret < 0)
3602 		return ret;
3603 
3604 	return put_user(blocks, (u64 __user *)arg);
3605 }
3606 
3607 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3608 {
3609 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3610 	unsigned int released_blocks = 0;
3611 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3612 	block_t blkaddr;
3613 	int i;
3614 
3615 	for (i = 0; i < count; i++) {
3616 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3617 						dn->ofs_in_node + i);
3618 
3619 		if (!__is_valid_data_blkaddr(blkaddr))
3620 			continue;
3621 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3622 					DATA_GENERIC_ENHANCE)))
3623 			return -EFSCORRUPTED;
3624 	}
3625 
3626 	while (count) {
3627 		int compr_blocks = 0;
3628 
3629 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3630 			blkaddr = f2fs_data_blkaddr(dn);
3631 
3632 			if (i == 0) {
3633 				if (blkaddr == COMPRESS_ADDR)
3634 					continue;
3635 				dn->ofs_in_node += cluster_size;
3636 				goto next;
3637 			}
3638 
3639 			if (__is_valid_data_blkaddr(blkaddr))
3640 				compr_blocks++;
3641 
3642 			if (blkaddr != NEW_ADDR)
3643 				continue;
3644 
3645 			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3646 		}
3647 
3648 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3649 		dec_valid_block_count(sbi, dn->inode,
3650 					cluster_size - compr_blocks);
3651 
3652 		released_blocks += cluster_size - compr_blocks;
3653 next:
3654 		count -= cluster_size;
3655 	}
3656 
3657 	return released_blocks;
3658 }
3659 
3660 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3661 {
3662 	struct inode *inode = file_inode(filp);
3663 	struct f2fs_inode_info *fi = F2FS_I(inode);
3664 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3665 	pgoff_t page_idx = 0, last_idx;
3666 	unsigned int released_blocks = 0;
3667 	int ret;
3668 	int writecount;
3669 
3670 	if (!f2fs_sb_has_compression(sbi))
3671 		return -EOPNOTSUPP;
3672 
3673 	if (f2fs_readonly(sbi->sb))
3674 		return -EROFS;
3675 
3676 	ret = mnt_want_write_file(filp);
3677 	if (ret)
3678 		return ret;
3679 
3680 	f2fs_balance_fs(sbi, true);
3681 
3682 	inode_lock(inode);
3683 
3684 	writecount = atomic_read(&inode->i_writecount);
3685 	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3686 			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3687 		ret = -EBUSY;
3688 		goto out;
3689 	}
3690 
3691 	if (!f2fs_compressed_file(inode) ||
3692 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3693 		ret = -EINVAL;
3694 		goto out;
3695 	}
3696 
3697 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3698 	if (ret)
3699 		goto out;
3700 
3701 	if (!atomic_read(&fi->i_compr_blocks)) {
3702 		ret = -EPERM;
3703 		goto out;
3704 	}
3705 
3706 	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3707 	inode_set_ctime_current(inode);
3708 	f2fs_mark_inode_dirty_sync(inode, true);
3709 
3710 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3711 	filemap_invalidate_lock(inode->i_mapping);
3712 
3713 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3714 
3715 	while (page_idx < last_idx) {
3716 		struct dnode_of_data dn;
3717 		pgoff_t end_offset, count;
3718 
3719 		f2fs_lock_op(sbi);
3720 
3721 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3722 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3723 		if (ret) {
3724 			f2fs_unlock_op(sbi);
3725 			if (ret == -ENOENT) {
3726 				page_idx = f2fs_get_next_page_offset(&dn,
3727 								page_idx);
3728 				ret = 0;
3729 				continue;
3730 			}
3731 			break;
3732 		}
3733 
3734 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3735 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3736 		count = round_up(count, fi->i_cluster_size);
3737 
3738 		ret = release_compress_blocks(&dn, count);
3739 
3740 		f2fs_put_dnode(&dn);
3741 
3742 		f2fs_unlock_op(sbi);
3743 
3744 		if (ret < 0)
3745 			break;
3746 
3747 		page_idx += count;
3748 		released_blocks += ret;
3749 	}
3750 
3751 	filemap_invalidate_unlock(inode->i_mapping);
3752 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3753 out:
3754 	if (released_blocks)
3755 		f2fs_update_time(sbi, REQ_TIME);
3756 	inode_unlock(inode);
3757 
3758 	mnt_drop_write_file(filp);
3759 
3760 	if (ret >= 0) {
3761 		ret = put_user(released_blocks, (u64 __user *)arg);
3762 	} else if (released_blocks &&
3763 			atomic_read(&fi->i_compr_blocks)) {
3764 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3765 		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3766 			"iblocks=%llu, released=%u, compr_blocks=%u, "
3767 			"run fsck to fix.",
3768 			__func__, inode->i_ino, inode->i_blocks,
3769 			released_blocks,
3770 			atomic_read(&fi->i_compr_blocks));
3771 	}
3772 
3773 	return ret;
3774 }
3775 
3776 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3777 		unsigned int *reserved_blocks)
3778 {
3779 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3780 	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3781 	block_t blkaddr;
3782 	int i;
3783 
3784 	for (i = 0; i < count; i++) {
3785 		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3786 						dn->ofs_in_node + i);
3787 
3788 		if (!__is_valid_data_blkaddr(blkaddr))
3789 			continue;
3790 		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3791 					DATA_GENERIC_ENHANCE)))
3792 			return -EFSCORRUPTED;
3793 	}
3794 
3795 	while (count) {
3796 		int compr_blocks = 0;
3797 		blkcnt_t reserved = 0;
3798 		blkcnt_t to_reserved;
3799 		int ret;
3800 
3801 		for (i = 0; i < cluster_size; i++) {
3802 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
3803 						dn->ofs_in_node + i);
3804 
3805 			if (i == 0) {
3806 				if (blkaddr != COMPRESS_ADDR) {
3807 					dn->ofs_in_node += cluster_size;
3808 					goto next;
3809 				}
3810 				continue;
3811 			}
3812 
3813 			/*
3814 			 * compressed cluster was not released due to it
3815 			 * fails in release_compress_blocks(), so NEW_ADDR
3816 			 * is a possible case.
3817 			 */
3818 			if (blkaddr == NEW_ADDR) {
3819 				reserved++;
3820 				continue;
3821 			}
3822 			if (__is_valid_data_blkaddr(blkaddr)) {
3823 				compr_blocks++;
3824 				continue;
3825 			}
3826 		}
3827 
3828 		to_reserved = cluster_size - compr_blocks - reserved;
3829 
3830 		/* for the case all blocks in cluster were reserved */
3831 		if (reserved && to_reserved == 1) {
3832 			dn->ofs_in_node += cluster_size;
3833 			goto next;
3834 		}
3835 
3836 		ret = inc_valid_block_count(sbi, dn->inode,
3837 						&to_reserved, false);
3838 		if (unlikely(ret))
3839 			return ret;
3840 
3841 		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3842 			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3843 				f2fs_set_data_blkaddr(dn, NEW_ADDR);
3844 		}
3845 
3846 		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3847 
3848 		*reserved_blocks += to_reserved;
3849 next:
3850 		count -= cluster_size;
3851 	}
3852 
3853 	return 0;
3854 }
3855 
3856 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3857 {
3858 	struct inode *inode = file_inode(filp);
3859 	struct f2fs_inode_info *fi = F2FS_I(inode);
3860 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3861 	pgoff_t page_idx = 0, last_idx;
3862 	unsigned int reserved_blocks = 0;
3863 	int ret;
3864 
3865 	if (!f2fs_sb_has_compression(sbi))
3866 		return -EOPNOTSUPP;
3867 
3868 	if (f2fs_readonly(sbi->sb))
3869 		return -EROFS;
3870 
3871 	ret = mnt_want_write_file(filp);
3872 	if (ret)
3873 		return ret;
3874 
3875 	f2fs_balance_fs(sbi, true);
3876 
3877 	inode_lock(inode);
3878 
3879 	if (!f2fs_compressed_file(inode) ||
3880 		!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3881 		ret = -EINVAL;
3882 		goto unlock_inode;
3883 	}
3884 
3885 	if (atomic_read(&fi->i_compr_blocks))
3886 		goto unlock_inode;
3887 
3888 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3889 	filemap_invalidate_lock(inode->i_mapping);
3890 
3891 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3892 
3893 	while (page_idx < last_idx) {
3894 		struct dnode_of_data dn;
3895 		pgoff_t end_offset, count;
3896 
3897 		f2fs_lock_op(sbi);
3898 
3899 		set_new_dnode(&dn, inode, NULL, NULL, 0);
3900 		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3901 		if (ret) {
3902 			f2fs_unlock_op(sbi);
3903 			if (ret == -ENOENT) {
3904 				page_idx = f2fs_get_next_page_offset(&dn,
3905 								page_idx);
3906 				ret = 0;
3907 				continue;
3908 			}
3909 			break;
3910 		}
3911 
3912 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3913 		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3914 		count = round_up(count, fi->i_cluster_size);
3915 
3916 		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3917 
3918 		f2fs_put_dnode(&dn);
3919 
3920 		f2fs_unlock_op(sbi);
3921 
3922 		if (ret < 0)
3923 			break;
3924 
3925 		page_idx += count;
3926 	}
3927 
3928 	filemap_invalidate_unlock(inode->i_mapping);
3929 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3930 
3931 	if (!ret) {
3932 		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3933 		inode_set_ctime_current(inode);
3934 		f2fs_mark_inode_dirty_sync(inode, true);
3935 	}
3936 unlock_inode:
3937 	if (reserved_blocks)
3938 		f2fs_update_time(sbi, REQ_TIME);
3939 	inode_unlock(inode);
3940 	mnt_drop_write_file(filp);
3941 
3942 	if (!ret) {
3943 		ret = put_user(reserved_blocks, (u64 __user *)arg);
3944 	} else if (reserved_blocks &&
3945 			atomic_read(&fi->i_compr_blocks)) {
3946 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3947 		f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
3948 			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3949 			"run fsck to fix.",
3950 			__func__, inode->i_ino, inode->i_blocks,
3951 			reserved_blocks,
3952 			atomic_read(&fi->i_compr_blocks));
3953 	}
3954 
3955 	return ret;
3956 }
3957 
3958 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3959 		pgoff_t off, block_t block, block_t len, u32 flags)
3960 {
3961 	sector_t sector = SECTOR_FROM_BLOCK(block);
3962 	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3963 	int ret = 0;
3964 
3965 	if (flags & F2FS_TRIM_FILE_DISCARD) {
3966 		if (bdev_max_secure_erase_sectors(bdev))
3967 			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3968 					GFP_NOFS);
3969 		else
3970 			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3971 					GFP_NOFS);
3972 	}
3973 
3974 	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3975 		if (IS_ENCRYPTED(inode))
3976 			ret = fscrypt_zeroout_range(inode, off, block, len);
3977 		else
3978 			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3979 					GFP_NOFS, 0);
3980 	}
3981 
3982 	return ret;
3983 }
3984 
3985 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3986 {
3987 	struct inode *inode = file_inode(filp);
3988 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3989 	struct address_space *mapping = inode->i_mapping;
3990 	struct block_device *prev_bdev = NULL;
3991 	struct f2fs_sectrim_range range;
3992 	pgoff_t index, pg_end, prev_index = 0;
3993 	block_t prev_block = 0, len = 0;
3994 	loff_t end_addr;
3995 	bool to_end = false;
3996 	int ret = 0;
3997 
3998 	if (!(filp->f_mode & FMODE_WRITE))
3999 		return -EBADF;
4000 
4001 	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
4002 				sizeof(range)))
4003 		return -EFAULT;
4004 
4005 	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
4006 			!S_ISREG(inode->i_mode))
4007 		return -EINVAL;
4008 
4009 	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
4010 			!f2fs_hw_support_discard(sbi)) ||
4011 			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
4012 			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
4013 		return -EOPNOTSUPP;
4014 
4015 	ret = mnt_want_write_file(filp);
4016 	if (ret)
4017 		return ret;
4018 	inode_lock(inode);
4019 
4020 	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
4021 			range.start >= inode->i_size) {
4022 		ret = -EINVAL;
4023 		goto err;
4024 	}
4025 
4026 	if (range.len == 0)
4027 		goto err;
4028 
4029 	if (inode->i_size - range.start > range.len) {
4030 		end_addr = range.start + range.len;
4031 	} else {
4032 		end_addr = range.len == (u64)-1 ?
4033 			sbi->sb->s_maxbytes : inode->i_size;
4034 		to_end = true;
4035 	}
4036 
4037 	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
4038 			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
4039 		ret = -EINVAL;
4040 		goto err;
4041 	}
4042 
4043 	index = F2FS_BYTES_TO_BLK(range.start);
4044 	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
4045 
4046 	ret = f2fs_convert_inline_inode(inode);
4047 	if (ret)
4048 		goto err;
4049 
4050 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4051 	filemap_invalidate_lock(mapping);
4052 
4053 	ret = filemap_write_and_wait_range(mapping, range.start,
4054 			to_end ? LLONG_MAX : end_addr - 1);
4055 	if (ret)
4056 		goto out;
4057 
4058 	truncate_inode_pages_range(mapping, range.start,
4059 			to_end ? -1 : end_addr - 1);
4060 
4061 	while (index < pg_end) {
4062 		struct dnode_of_data dn;
4063 		pgoff_t end_offset, count;
4064 		int i;
4065 
4066 		set_new_dnode(&dn, inode, NULL, NULL, 0);
4067 		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
4068 		if (ret) {
4069 			if (ret == -ENOENT) {
4070 				index = f2fs_get_next_page_offset(&dn, index);
4071 				continue;
4072 			}
4073 			goto out;
4074 		}
4075 
4076 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4077 		count = min(end_offset - dn.ofs_in_node, pg_end - index);
4078 		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4079 			struct block_device *cur_bdev;
4080 			block_t blkaddr = f2fs_data_blkaddr(&dn);
4081 
4082 			if (!__is_valid_data_blkaddr(blkaddr))
4083 				continue;
4084 
4085 			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4086 						DATA_GENERIC_ENHANCE)) {
4087 				ret = -EFSCORRUPTED;
4088 				f2fs_put_dnode(&dn);
4089 				goto out;
4090 			}
4091 
4092 			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4093 			if (f2fs_is_multi_device(sbi)) {
4094 				int di = f2fs_target_device_index(sbi, blkaddr);
4095 
4096 				blkaddr -= FDEV(di).start_blk;
4097 			}
4098 
4099 			if (len) {
4100 				if (prev_bdev == cur_bdev &&
4101 						index == prev_index + len &&
4102 						blkaddr == prev_block + len) {
4103 					len++;
4104 				} else {
4105 					ret = f2fs_secure_erase(prev_bdev,
4106 						inode, prev_index, prev_block,
4107 						len, range.flags);
4108 					if (ret) {
4109 						f2fs_put_dnode(&dn);
4110 						goto out;
4111 					}
4112 
4113 					len = 0;
4114 				}
4115 			}
4116 
4117 			if (!len) {
4118 				prev_bdev = cur_bdev;
4119 				prev_index = index;
4120 				prev_block = blkaddr;
4121 				len = 1;
4122 			}
4123 		}
4124 
4125 		f2fs_put_dnode(&dn);
4126 
4127 		if (fatal_signal_pending(current)) {
4128 			ret = -EINTR;
4129 			goto out;
4130 		}
4131 		cond_resched();
4132 	}
4133 
4134 	if (len)
4135 		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4136 				prev_block, len, range.flags);
4137 	f2fs_update_time(sbi, REQ_TIME);
4138 out:
4139 	filemap_invalidate_unlock(mapping);
4140 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4141 err:
4142 	inode_unlock(inode);
4143 	mnt_drop_write_file(filp);
4144 
4145 	return ret;
4146 }
4147 
4148 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4149 {
4150 	struct inode *inode = file_inode(filp);
4151 	struct f2fs_comp_option option;
4152 
4153 	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4154 		return -EOPNOTSUPP;
4155 
4156 	inode_lock_shared(inode);
4157 
4158 	if (!f2fs_compressed_file(inode)) {
4159 		inode_unlock_shared(inode);
4160 		return -ENODATA;
4161 	}
4162 
4163 	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4164 	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4165 
4166 	inode_unlock_shared(inode);
4167 
4168 	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4169 				sizeof(option)))
4170 		return -EFAULT;
4171 
4172 	return 0;
4173 }
4174 
4175 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4176 {
4177 	struct inode *inode = file_inode(filp);
4178 	struct f2fs_inode_info *fi = F2FS_I(inode);
4179 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4180 	struct f2fs_comp_option option;
4181 	int ret = 0;
4182 
4183 	if (!f2fs_sb_has_compression(sbi))
4184 		return -EOPNOTSUPP;
4185 
4186 	if (!(filp->f_mode & FMODE_WRITE))
4187 		return -EBADF;
4188 
4189 	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4190 				sizeof(option)))
4191 		return -EFAULT;
4192 
4193 	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4194 		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4195 		option.algorithm >= COMPRESS_MAX)
4196 		return -EINVAL;
4197 
4198 	ret = mnt_want_write_file(filp);
4199 	if (ret)
4200 		return ret;
4201 	inode_lock(inode);
4202 
4203 	f2fs_down_write(&F2FS_I(inode)->i_sem);
4204 	if (!f2fs_compressed_file(inode)) {
4205 		ret = -EINVAL;
4206 		goto out;
4207 	}
4208 
4209 	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4210 		ret = -EBUSY;
4211 		goto out;
4212 	}
4213 
4214 	if (F2FS_HAS_BLOCKS(inode)) {
4215 		ret = -EFBIG;
4216 		goto out;
4217 	}
4218 
4219 	fi->i_compress_algorithm = option.algorithm;
4220 	fi->i_log_cluster_size = option.log_cluster_size;
4221 	fi->i_cluster_size = BIT(option.log_cluster_size);
4222 	/* Set default level */
4223 	if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4224 		fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4225 	else
4226 		fi->i_compress_level = 0;
4227 	/* Adjust mount option level */
4228 	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4229 	    F2FS_OPTION(sbi).compress_level)
4230 		fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4231 	f2fs_mark_inode_dirty_sync(inode, true);
4232 
4233 	if (!f2fs_is_compress_backend_ready(inode))
4234 		f2fs_warn(sbi, "compression algorithm is successfully set, "
4235 			"but current kernel doesn't support this algorithm.");
4236 out:
4237 	f2fs_up_write(&fi->i_sem);
4238 	inode_unlock(inode);
4239 	mnt_drop_write_file(filp);
4240 
4241 	return ret;
4242 }
4243 
4244 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4245 {
4246 	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4247 	struct address_space *mapping = inode->i_mapping;
4248 	struct page *page;
4249 	pgoff_t redirty_idx = page_idx;
4250 	int i, page_len = 0, ret = 0;
4251 
4252 	page_cache_ra_unbounded(&ractl, len, 0);
4253 
4254 	for (i = 0; i < len; i++, page_idx++) {
4255 		page = read_cache_page(mapping, page_idx, NULL, NULL);
4256 		if (IS_ERR(page)) {
4257 			ret = PTR_ERR(page);
4258 			break;
4259 		}
4260 		page_len++;
4261 	}
4262 
4263 	for (i = 0; i < page_len; i++, redirty_idx++) {
4264 		page = find_lock_page(mapping, redirty_idx);
4265 
4266 		/* It will never fail, when page has pinned above */
4267 		f2fs_bug_on(F2FS_I_SB(inode), !page);
4268 
4269 		f2fs_wait_on_page_writeback(page, DATA, true, true);
4270 
4271 		set_page_dirty(page);
4272 		set_page_private_gcing(page);
4273 		f2fs_put_page(page, 1);
4274 		f2fs_put_page(page, 0);
4275 	}
4276 
4277 	return ret;
4278 }
4279 
4280 static int f2fs_ioc_decompress_file(struct file *filp)
4281 {
4282 	struct inode *inode = file_inode(filp);
4283 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4284 	struct f2fs_inode_info *fi = F2FS_I(inode);
4285 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4286 	int ret;
4287 
4288 	if (!f2fs_sb_has_compression(sbi) ||
4289 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4290 		return -EOPNOTSUPP;
4291 
4292 	if (!(filp->f_mode & FMODE_WRITE))
4293 		return -EBADF;
4294 
4295 	f2fs_balance_fs(sbi, true);
4296 
4297 	ret = mnt_want_write_file(filp);
4298 	if (ret)
4299 		return ret;
4300 	inode_lock(inode);
4301 
4302 	if (!f2fs_is_compress_backend_ready(inode)) {
4303 		ret = -EOPNOTSUPP;
4304 		goto out;
4305 	}
4306 
4307 	if (!f2fs_compressed_file(inode) ||
4308 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4309 		ret = -EINVAL;
4310 		goto out;
4311 	}
4312 
4313 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4314 	if (ret)
4315 		goto out;
4316 
4317 	if (!atomic_read(&fi->i_compr_blocks))
4318 		goto out;
4319 
4320 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4321 	last_idx >>= fi->i_log_cluster_size;
4322 
4323 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4324 		page_idx = cluster_idx << fi->i_log_cluster_size;
4325 
4326 		if (!f2fs_is_compressed_cluster(inode, page_idx))
4327 			continue;
4328 
4329 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4330 		if (ret < 0)
4331 			break;
4332 
4333 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4334 			ret = filemap_fdatawrite(inode->i_mapping);
4335 			if (ret < 0)
4336 				break;
4337 		}
4338 
4339 		cond_resched();
4340 		if (fatal_signal_pending(current)) {
4341 			ret = -EINTR;
4342 			break;
4343 		}
4344 	}
4345 
4346 	if (!ret)
4347 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4348 							LLONG_MAX);
4349 
4350 	if (ret)
4351 		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4352 			  __func__, ret);
4353 	f2fs_update_time(sbi, REQ_TIME);
4354 out:
4355 	inode_unlock(inode);
4356 	mnt_drop_write_file(filp);
4357 
4358 	return ret;
4359 }
4360 
4361 static int f2fs_ioc_compress_file(struct file *filp)
4362 {
4363 	struct inode *inode = file_inode(filp);
4364 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4365 	struct f2fs_inode_info *fi = F2FS_I(inode);
4366 	pgoff_t page_idx = 0, last_idx, cluster_idx;
4367 	int ret;
4368 
4369 	if (!f2fs_sb_has_compression(sbi) ||
4370 			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4371 		return -EOPNOTSUPP;
4372 
4373 	if (!(filp->f_mode & FMODE_WRITE))
4374 		return -EBADF;
4375 
4376 	f2fs_balance_fs(sbi, true);
4377 
4378 	ret = mnt_want_write_file(filp);
4379 	if (ret)
4380 		return ret;
4381 	inode_lock(inode);
4382 
4383 	if (!f2fs_is_compress_backend_ready(inode)) {
4384 		ret = -EOPNOTSUPP;
4385 		goto out;
4386 	}
4387 
4388 	if (!f2fs_compressed_file(inode) ||
4389 		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4390 		ret = -EINVAL;
4391 		goto out;
4392 	}
4393 
4394 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4395 	if (ret)
4396 		goto out;
4397 
4398 	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4399 
4400 	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4401 	last_idx >>= fi->i_log_cluster_size;
4402 
4403 	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4404 		page_idx = cluster_idx << fi->i_log_cluster_size;
4405 
4406 		if (f2fs_is_sparse_cluster(inode, page_idx))
4407 			continue;
4408 
4409 		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4410 		if (ret < 0)
4411 			break;
4412 
4413 		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4414 			ret = filemap_fdatawrite(inode->i_mapping);
4415 			if (ret < 0)
4416 				break;
4417 		}
4418 
4419 		cond_resched();
4420 		if (fatal_signal_pending(current)) {
4421 			ret = -EINTR;
4422 			break;
4423 		}
4424 	}
4425 
4426 	if (!ret)
4427 		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4428 							LLONG_MAX);
4429 
4430 	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4431 
4432 	if (ret)
4433 		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4434 			  __func__, ret);
4435 	f2fs_update_time(sbi, REQ_TIME);
4436 out:
4437 	inode_unlock(inode);
4438 	mnt_drop_write_file(filp);
4439 
4440 	return ret;
4441 }
4442 
4443 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4444 {
4445 	switch (cmd) {
4446 	case FS_IOC_GETVERSION:
4447 		return f2fs_ioc_getversion(filp, arg);
4448 	case F2FS_IOC_START_ATOMIC_WRITE:
4449 		return f2fs_ioc_start_atomic_write(filp, false);
4450 	case F2FS_IOC_START_ATOMIC_REPLACE:
4451 		return f2fs_ioc_start_atomic_write(filp, true);
4452 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4453 		return f2fs_ioc_commit_atomic_write(filp);
4454 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4455 		return f2fs_ioc_abort_atomic_write(filp);
4456 	case F2FS_IOC_START_VOLATILE_WRITE:
4457 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4458 		return -EOPNOTSUPP;
4459 	case F2FS_IOC_SHUTDOWN:
4460 		return f2fs_ioc_shutdown(filp, arg);
4461 	case FITRIM:
4462 		return f2fs_ioc_fitrim(filp, arg);
4463 	case FS_IOC_SET_ENCRYPTION_POLICY:
4464 		return f2fs_ioc_set_encryption_policy(filp, arg);
4465 	case FS_IOC_GET_ENCRYPTION_POLICY:
4466 		return f2fs_ioc_get_encryption_policy(filp, arg);
4467 	case FS_IOC_GET_ENCRYPTION_PWSALT:
4468 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4469 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4470 		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4471 	case FS_IOC_ADD_ENCRYPTION_KEY:
4472 		return f2fs_ioc_add_encryption_key(filp, arg);
4473 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4474 		return f2fs_ioc_remove_encryption_key(filp, arg);
4475 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4476 		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4477 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4478 		return f2fs_ioc_get_encryption_key_status(filp, arg);
4479 	case FS_IOC_GET_ENCRYPTION_NONCE:
4480 		return f2fs_ioc_get_encryption_nonce(filp, arg);
4481 	case F2FS_IOC_GARBAGE_COLLECT:
4482 		return f2fs_ioc_gc(filp, arg);
4483 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4484 		return f2fs_ioc_gc_range(filp, arg);
4485 	case F2FS_IOC_WRITE_CHECKPOINT:
4486 		return f2fs_ioc_write_checkpoint(filp);
4487 	case F2FS_IOC_DEFRAGMENT:
4488 		return f2fs_ioc_defragment(filp, arg);
4489 	case F2FS_IOC_MOVE_RANGE:
4490 		return f2fs_ioc_move_range(filp, arg);
4491 	case F2FS_IOC_FLUSH_DEVICE:
4492 		return f2fs_ioc_flush_device(filp, arg);
4493 	case F2FS_IOC_GET_FEATURES:
4494 		return f2fs_ioc_get_features(filp, arg);
4495 	case F2FS_IOC_GET_PIN_FILE:
4496 		return f2fs_ioc_get_pin_file(filp, arg);
4497 	case F2FS_IOC_SET_PIN_FILE:
4498 		return f2fs_ioc_set_pin_file(filp, arg);
4499 	case F2FS_IOC_PRECACHE_EXTENTS:
4500 		return f2fs_ioc_precache_extents(filp);
4501 	case F2FS_IOC_RESIZE_FS:
4502 		return f2fs_ioc_resize_fs(filp, arg);
4503 	case FS_IOC_ENABLE_VERITY:
4504 		return f2fs_ioc_enable_verity(filp, arg);
4505 	case FS_IOC_MEASURE_VERITY:
4506 		return f2fs_ioc_measure_verity(filp, arg);
4507 	case FS_IOC_READ_VERITY_METADATA:
4508 		return f2fs_ioc_read_verity_metadata(filp, arg);
4509 	case FS_IOC_GETFSLABEL:
4510 		return f2fs_ioc_getfslabel(filp, arg);
4511 	case FS_IOC_SETFSLABEL:
4512 		return f2fs_ioc_setfslabel(filp, arg);
4513 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4514 		return f2fs_ioc_get_compress_blocks(filp, arg);
4515 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4516 		return f2fs_release_compress_blocks(filp, arg);
4517 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4518 		return f2fs_reserve_compress_blocks(filp, arg);
4519 	case F2FS_IOC_SEC_TRIM_FILE:
4520 		return f2fs_sec_trim_file(filp, arg);
4521 	case F2FS_IOC_GET_COMPRESS_OPTION:
4522 		return f2fs_ioc_get_compress_option(filp, arg);
4523 	case F2FS_IOC_SET_COMPRESS_OPTION:
4524 		return f2fs_ioc_set_compress_option(filp, arg);
4525 	case F2FS_IOC_DECOMPRESS_FILE:
4526 		return f2fs_ioc_decompress_file(filp);
4527 	case F2FS_IOC_COMPRESS_FILE:
4528 		return f2fs_ioc_compress_file(filp);
4529 	case F2FS_IOC_GET_DEV_ALIAS_FILE:
4530 		return f2fs_ioc_get_dev_alias_file(filp, arg);
4531 	default:
4532 		return -ENOTTY;
4533 	}
4534 }
4535 
4536 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4537 {
4538 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4539 		return -EIO;
4540 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4541 		return -ENOSPC;
4542 
4543 	return __f2fs_ioctl(filp, cmd, arg);
4544 }
4545 
4546 /*
4547  * Return %true if the given read or write request should use direct I/O, or
4548  * %false if it should use buffered I/O.
4549  */
4550 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4551 				struct iov_iter *iter)
4552 {
4553 	unsigned int align;
4554 
4555 	if (!(iocb->ki_flags & IOCB_DIRECT))
4556 		return false;
4557 
4558 	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4559 		return false;
4560 
4561 	/*
4562 	 * Direct I/O not aligned to the disk's logical_block_size will be
4563 	 * attempted, but will fail with -EINVAL.
4564 	 *
4565 	 * f2fs additionally requires that direct I/O be aligned to the
4566 	 * filesystem block size, which is often a stricter requirement.
4567 	 * However, f2fs traditionally falls back to buffered I/O on requests
4568 	 * that are logical_block_size-aligned but not fs-block aligned.
4569 	 *
4570 	 * The below logic implements this behavior.
4571 	 */
4572 	align = iocb->ki_pos | iov_iter_alignment(iter);
4573 	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4574 	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4575 		return false;
4576 
4577 	return true;
4578 }
4579 
4580 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4581 				unsigned int flags)
4582 {
4583 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4584 
4585 	dec_page_count(sbi, F2FS_DIO_READ);
4586 	if (error)
4587 		return error;
4588 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4589 	return 0;
4590 }
4591 
4592 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4593 	.end_io = f2fs_dio_read_end_io,
4594 };
4595 
4596 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4597 {
4598 	struct file *file = iocb->ki_filp;
4599 	struct inode *inode = file_inode(file);
4600 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4601 	struct f2fs_inode_info *fi = F2FS_I(inode);
4602 	const loff_t pos = iocb->ki_pos;
4603 	const size_t count = iov_iter_count(to);
4604 	struct iomap_dio *dio;
4605 	ssize_t ret;
4606 
4607 	if (count == 0)
4608 		return 0; /* skip atime update */
4609 
4610 	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4611 
4612 	if (iocb->ki_flags & IOCB_NOWAIT) {
4613 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4614 			ret = -EAGAIN;
4615 			goto out;
4616 		}
4617 	} else {
4618 		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4619 	}
4620 
4621 	/* dio is not compatible w/ atomic file */
4622 	if (f2fs_is_atomic_file(inode)) {
4623 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4624 		ret = -EOPNOTSUPP;
4625 		goto out;
4626 	}
4627 
4628 	/*
4629 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4630 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4631 	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4632 	 */
4633 	inc_page_count(sbi, F2FS_DIO_READ);
4634 	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4635 			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4636 	if (IS_ERR_OR_NULL(dio)) {
4637 		ret = PTR_ERR_OR_ZERO(dio);
4638 		if (ret != -EIOCBQUEUED)
4639 			dec_page_count(sbi, F2FS_DIO_READ);
4640 	} else {
4641 		ret = iomap_dio_complete(dio);
4642 	}
4643 
4644 	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4645 
4646 	file_accessed(file);
4647 out:
4648 	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4649 	return ret;
4650 }
4651 
4652 static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4653 				    int rw)
4654 {
4655 	struct inode *inode = file_inode(file);
4656 	char *buf, *path;
4657 
4658 	buf = f2fs_getname(F2FS_I_SB(inode));
4659 	if (!buf)
4660 		return;
4661 	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4662 	if (IS_ERR(path))
4663 		goto free_buf;
4664 	if (rw == WRITE)
4665 		trace_f2fs_datawrite_start(inode, pos, count,
4666 				current->pid, path, current->comm);
4667 	else
4668 		trace_f2fs_dataread_start(inode, pos, count,
4669 				current->pid, path, current->comm);
4670 free_buf:
4671 	f2fs_putname(buf);
4672 }
4673 
4674 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4675 {
4676 	struct inode *inode = file_inode(iocb->ki_filp);
4677 	const loff_t pos = iocb->ki_pos;
4678 	ssize_t ret;
4679 
4680 	if (!f2fs_is_compress_backend_ready(inode))
4681 		return -EOPNOTSUPP;
4682 
4683 	if (trace_f2fs_dataread_start_enabled())
4684 		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4685 					iov_iter_count(to), READ);
4686 
4687 	/* In LFS mode, if there is inflight dio, wait for its completion */
4688 	if (f2fs_lfs_mode(F2FS_I_SB(inode)) &&
4689 	    get_pages(F2FS_I_SB(inode), F2FS_DIO_WRITE))
4690 		inode_dio_wait(inode);
4691 
4692 	if (f2fs_should_use_dio(inode, iocb, to)) {
4693 		ret = f2fs_dio_read_iter(iocb, to);
4694 	} else {
4695 		ret = filemap_read(iocb, to, 0);
4696 		if (ret > 0)
4697 			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4698 						APP_BUFFERED_READ_IO, ret);
4699 	}
4700 	if (trace_f2fs_dataread_end_enabled())
4701 		trace_f2fs_dataread_end(inode, pos, ret);
4702 	return ret;
4703 }
4704 
4705 static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4706 				     struct pipe_inode_info *pipe,
4707 				     size_t len, unsigned int flags)
4708 {
4709 	struct inode *inode = file_inode(in);
4710 	const loff_t pos = *ppos;
4711 	ssize_t ret;
4712 
4713 	if (!f2fs_is_compress_backend_ready(inode))
4714 		return -EOPNOTSUPP;
4715 
4716 	if (trace_f2fs_dataread_start_enabled())
4717 		f2fs_trace_rw_file_path(in, pos, len, READ);
4718 
4719 	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4720 	if (ret > 0)
4721 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4722 				   APP_BUFFERED_READ_IO, ret);
4723 
4724 	if (trace_f2fs_dataread_end_enabled())
4725 		trace_f2fs_dataread_end(inode, pos, ret);
4726 	return ret;
4727 }
4728 
4729 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4730 {
4731 	struct file *file = iocb->ki_filp;
4732 	struct inode *inode = file_inode(file);
4733 	ssize_t count;
4734 	int err;
4735 
4736 	if (IS_IMMUTABLE(inode))
4737 		return -EPERM;
4738 
4739 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4740 		return -EPERM;
4741 
4742 	count = generic_write_checks(iocb, from);
4743 	if (count <= 0)
4744 		return count;
4745 
4746 	err = file_modified(file);
4747 	if (err)
4748 		return err;
4749 	return count;
4750 }
4751 
4752 /*
4753  * Preallocate blocks for a write request, if it is possible and helpful to do
4754  * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4755  * blocks were preallocated, or a negative errno value if something went
4756  * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4757  * requested blocks (not just some of them) have been allocated.
4758  */
4759 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4760 				   bool dio)
4761 {
4762 	struct inode *inode = file_inode(iocb->ki_filp);
4763 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4764 	const loff_t pos = iocb->ki_pos;
4765 	const size_t count = iov_iter_count(iter);
4766 	struct f2fs_map_blocks map = {};
4767 	int flag;
4768 	int ret;
4769 
4770 	/* If it will be an out-of-place direct write, don't bother. */
4771 	if (dio && f2fs_lfs_mode(sbi))
4772 		return 0;
4773 	/*
4774 	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4775 	 * buffered IO, if DIO meets any holes.
4776 	 */
4777 	if (dio && i_size_read(inode) &&
4778 		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4779 		return 0;
4780 
4781 	/* No-wait I/O can't allocate blocks. */
4782 	if (iocb->ki_flags & IOCB_NOWAIT)
4783 		return 0;
4784 
4785 	/* If it will be a short write, don't bother. */
4786 	if (fault_in_iov_iter_readable(iter, count))
4787 		return 0;
4788 
4789 	if (f2fs_has_inline_data(inode)) {
4790 		/* If the data will fit inline, don't bother. */
4791 		if (pos + count <= MAX_INLINE_DATA(inode))
4792 			return 0;
4793 		ret = f2fs_convert_inline_inode(inode);
4794 		if (ret)
4795 			return ret;
4796 	}
4797 
4798 	/* Do not preallocate blocks that will be written partially in 4KB. */
4799 	map.m_lblk = F2FS_BLK_ALIGN(pos);
4800 	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4801 	if (map.m_len > map.m_lblk)
4802 		map.m_len -= map.m_lblk;
4803 	else
4804 		return 0;
4805 
4806 	if (!IS_DEVICE_ALIASING(inode))
4807 		map.m_may_create = true;
4808 	if (dio) {
4809 		map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4810 						inode->i_write_hint);
4811 		flag = F2FS_GET_BLOCK_PRE_DIO;
4812 	} else {
4813 		map.m_seg_type = NO_CHECK_TYPE;
4814 		flag = F2FS_GET_BLOCK_PRE_AIO;
4815 	}
4816 
4817 	ret = f2fs_map_blocks(inode, &map, flag);
4818 	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4819 	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4820 		return ret;
4821 	if (ret == 0)
4822 		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4823 	return map.m_len;
4824 }
4825 
4826 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4827 					struct iov_iter *from)
4828 {
4829 	struct file *file = iocb->ki_filp;
4830 	struct inode *inode = file_inode(file);
4831 	ssize_t ret;
4832 
4833 	if (iocb->ki_flags & IOCB_NOWAIT)
4834 		return -EOPNOTSUPP;
4835 
4836 	ret = generic_perform_write(iocb, from);
4837 
4838 	if (ret > 0) {
4839 		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4840 						APP_BUFFERED_IO, ret);
4841 	}
4842 	return ret;
4843 }
4844 
4845 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4846 				 unsigned int flags)
4847 {
4848 	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4849 
4850 	dec_page_count(sbi, F2FS_DIO_WRITE);
4851 	if (error)
4852 		return error;
4853 	f2fs_update_time(sbi, REQ_TIME);
4854 	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4855 	return 0;
4856 }
4857 
4858 static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
4859 					struct bio *bio, loff_t file_offset)
4860 {
4861 	struct inode *inode = iter->inode;
4862 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4863 	enum log_type type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
4864 	enum temp_type temp = f2fs_get_segment_temp(sbi, type);
4865 
4866 	bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
4867 	submit_bio(bio);
4868 }
4869 
4870 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4871 	.end_io		= f2fs_dio_write_end_io,
4872 	.submit_io	= f2fs_dio_write_submit_io,
4873 };
4874 
4875 static void f2fs_flush_buffered_write(struct address_space *mapping,
4876 				      loff_t start_pos, loff_t end_pos)
4877 {
4878 	int ret;
4879 
4880 	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4881 	if (ret < 0)
4882 		return;
4883 	invalidate_mapping_pages(mapping,
4884 				 start_pos >> PAGE_SHIFT,
4885 				 end_pos >> PAGE_SHIFT);
4886 }
4887 
4888 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4889 				   bool *may_need_sync)
4890 {
4891 	struct file *file = iocb->ki_filp;
4892 	struct inode *inode = file_inode(file);
4893 	struct f2fs_inode_info *fi = F2FS_I(inode);
4894 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4895 	const bool do_opu = f2fs_lfs_mode(sbi);
4896 	const loff_t pos = iocb->ki_pos;
4897 	const ssize_t count = iov_iter_count(from);
4898 	unsigned int dio_flags;
4899 	struct iomap_dio *dio;
4900 	ssize_t ret;
4901 
4902 	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4903 
4904 	if (iocb->ki_flags & IOCB_NOWAIT) {
4905 		/* f2fs_convert_inline_inode() and block allocation can block */
4906 		if (f2fs_has_inline_data(inode) ||
4907 		    !f2fs_overwrite_io(inode, pos, count)) {
4908 			ret = -EAGAIN;
4909 			goto out;
4910 		}
4911 
4912 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4913 			ret = -EAGAIN;
4914 			goto out;
4915 		}
4916 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4917 			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4918 			ret = -EAGAIN;
4919 			goto out;
4920 		}
4921 	} else {
4922 		ret = f2fs_convert_inline_inode(inode);
4923 		if (ret)
4924 			goto out;
4925 
4926 		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4927 		if (do_opu)
4928 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4929 	}
4930 
4931 	/*
4932 	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4933 	 * the higher-level function iomap_dio_rw() in order to ensure that the
4934 	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4935 	 */
4936 	inc_page_count(sbi, F2FS_DIO_WRITE);
4937 	dio_flags = 0;
4938 	if (pos + count > inode->i_size)
4939 		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4940 	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4941 			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4942 	if (IS_ERR_OR_NULL(dio)) {
4943 		ret = PTR_ERR_OR_ZERO(dio);
4944 		if (ret == -ENOTBLK)
4945 			ret = 0;
4946 		if (ret != -EIOCBQUEUED)
4947 			dec_page_count(sbi, F2FS_DIO_WRITE);
4948 	} else {
4949 		ret = iomap_dio_complete(dio);
4950 	}
4951 
4952 	if (do_opu)
4953 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4954 	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4955 
4956 	if (ret < 0)
4957 		goto out;
4958 	if (pos + ret > inode->i_size)
4959 		f2fs_i_size_write(inode, pos + ret);
4960 	if (!do_opu)
4961 		set_inode_flag(inode, FI_UPDATE_WRITE);
4962 
4963 	if (iov_iter_count(from)) {
4964 		ssize_t ret2;
4965 		loff_t bufio_start_pos = iocb->ki_pos;
4966 
4967 		/*
4968 		 * The direct write was partial, so we need to fall back to a
4969 		 * buffered write for the remainder.
4970 		 */
4971 
4972 		ret2 = f2fs_buffered_write_iter(iocb, from);
4973 		if (iov_iter_count(from))
4974 			f2fs_write_failed(inode, iocb->ki_pos);
4975 		if (ret2 < 0)
4976 			goto out;
4977 
4978 		/*
4979 		 * Ensure that the pagecache pages are written to disk and
4980 		 * invalidated to preserve the expected O_DIRECT semantics.
4981 		 */
4982 		if (ret2 > 0) {
4983 			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4984 
4985 			ret += ret2;
4986 
4987 			f2fs_flush_buffered_write(file->f_mapping,
4988 						  bufio_start_pos,
4989 						  bufio_end_pos);
4990 		}
4991 	} else {
4992 		/* iomap_dio_rw() already handled the generic_write_sync(). */
4993 		*may_need_sync = false;
4994 	}
4995 out:
4996 	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4997 	return ret;
4998 }
4999 
5000 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
5001 {
5002 	struct inode *inode = file_inode(iocb->ki_filp);
5003 	const loff_t orig_pos = iocb->ki_pos;
5004 	const size_t orig_count = iov_iter_count(from);
5005 	loff_t target_size;
5006 	bool dio;
5007 	bool may_need_sync = true;
5008 	int preallocated;
5009 	const loff_t pos = iocb->ki_pos;
5010 	const ssize_t count = iov_iter_count(from);
5011 	ssize_t ret;
5012 
5013 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
5014 		ret = -EIO;
5015 		goto out;
5016 	}
5017 
5018 	if (!f2fs_is_compress_backend_ready(inode)) {
5019 		ret = -EOPNOTSUPP;
5020 		goto out;
5021 	}
5022 
5023 	if (iocb->ki_flags & IOCB_NOWAIT) {
5024 		if (!inode_trylock(inode)) {
5025 			ret = -EAGAIN;
5026 			goto out;
5027 		}
5028 	} else {
5029 		inode_lock(inode);
5030 	}
5031 
5032 	if (f2fs_is_pinned_file(inode) &&
5033 	    !f2fs_overwrite_io(inode, pos, count)) {
5034 		ret = -EIO;
5035 		goto out_unlock;
5036 	}
5037 
5038 	ret = f2fs_write_checks(iocb, from);
5039 	if (ret <= 0)
5040 		goto out_unlock;
5041 
5042 	/* Determine whether we will do a direct write or a buffered write. */
5043 	dio = f2fs_should_use_dio(inode, iocb, from);
5044 
5045 	/* dio is not compatible w/ atomic write */
5046 	if (dio && f2fs_is_atomic_file(inode)) {
5047 		ret = -EOPNOTSUPP;
5048 		goto out_unlock;
5049 	}
5050 
5051 	/* Possibly preallocate the blocks for the write. */
5052 	target_size = iocb->ki_pos + iov_iter_count(from);
5053 	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
5054 	if (preallocated < 0) {
5055 		ret = preallocated;
5056 	} else {
5057 		if (trace_f2fs_datawrite_start_enabled())
5058 			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
5059 						orig_count, WRITE);
5060 
5061 		/* Do the actual write. */
5062 		ret = dio ?
5063 			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
5064 			f2fs_buffered_write_iter(iocb, from);
5065 
5066 		if (trace_f2fs_datawrite_end_enabled())
5067 			trace_f2fs_datawrite_end(inode, orig_pos, ret);
5068 	}
5069 
5070 	/* Don't leave any preallocated blocks around past i_size. */
5071 	if (preallocated && i_size_read(inode) < target_size) {
5072 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5073 		filemap_invalidate_lock(inode->i_mapping);
5074 		if (!f2fs_truncate(inode))
5075 			file_dont_truncate(inode);
5076 		filemap_invalidate_unlock(inode->i_mapping);
5077 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5078 	} else {
5079 		file_dont_truncate(inode);
5080 	}
5081 
5082 	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
5083 out_unlock:
5084 	inode_unlock(inode);
5085 out:
5086 	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
5087 
5088 	if (ret > 0 && may_need_sync)
5089 		ret = generic_write_sync(iocb, ret);
5090 
5091 	/* If buffered IO was forced, flush and drop the data from
5092 	 * the page cache to preserve O_DIRECT semantics
5093 	 */
5094 	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
5095 		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
5096 					  orig_pos,
5097 					  orig_pos + ret - 1);
5098 
5099 	return ret;
5100 }
5101 
5102 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5103 		int advice)
5104 {
5105 	struct address_space *mapping;
5106 	struct backing_dev_info *bdi;
5107 	struct inode *inode = file_inode(filp);
5108 	int err;
5109 
5110 	if (advice == POSIX_FADV_SEQUENTIAL) {
5111 		if (S_ISFIFO(inode->i_mode))
5112 			return -ESPIPE;
5113 
5114 		mapping = filp->f_mapping;
5115 		if (!mapping || len < 0)
5116 			return -EINVAL;
5117 
5118 		bdi = inode_to_bdi(mapping->host);
5119 		filp->f_ra.ra_pages = bdi->ra_pages *
5120 			F2FS_I_SB(inode)->seq_file_ra_mul;
5121 		spin_lock(&filp->f_lock);
5122 		filp->f_mode &= ~FMODE_RANDOM;
5123 		spin_unlock(&filp->f_lock);
5124 		return 0;
5125 	} else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5126 		/* Load extent cache at the first readahead. */
5127 		f2fs_precache_extents(inode);
5128 	}
5129 
5130 	err = generic_fadvise(filp, offset, len, advice);
5131 	if (!err && advice == POSIX_FADV_DONTNEED &&
5132 		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5133 		f2fs_compressed_file(inode))
5134 		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5135 
5136 	return err;
5137 }
5138 
5139 #ifdef CONFIG_COMPAT
5140 struct compat_f2fs_gc_range {
5141 	u32 sync;
5142 	compat_u64 start;
5143 	compat_u64 len;
5144 };
5145 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
5146 						struct compat_f2fs_gc_range)
5147 
5148 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5149 {
5150 	struct compat_f2fs_gc_range __user *urange;
5151 	struct f2fs_gc_range range;
5152 	int err;
5153 
5154 	urange = compat_ptr(arg);
5155 	err = get_user(range.sync, &urange->sync);
5156 	err |= get_user(range.start, &urange->start);
5157 	err |= get_user(range.len, &urange->len);
5158 	if (err)
5159 		return -EFAULT;
5160 
5161 	return __f2fs_ioc_gc_range(file, &range);
5162 }
5163 
5164 struct compat_f2fs_move_range {
5165 	u32 dst_fd;
5166 	compat_u64 pos_in;
5167 	compat_u64 pos_out;
5168 	compat_u64 len;
5169 };
5170 #define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
5171 					struct compat_f2fs_move_range)
5172 
5173 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5174 {
5175 	struct compat_f2fs_move_range __user *urange;
5176 	struct f2fs_move_range range;
5177 	int err;
5178 
5179 	urange = compat_ptr(arg);
5180 	err = get_user(range.dst_fd, &urange->dst_fd);
5181 	err |= get_user(range.pos_in, &urange->pos_in);
5182 	err |= get_user(range.pos_out, &urange->pos_out);
5183 	err |= get_user(range.len, &urange->len);
5184 	if (err)
5185 		return -EFAULT;
5186 
5187 	return __f2fs_ioc_move_range(file, &range);
5188 }
5189 
5190 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5191 {
5192 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5193 		return -EIO;
5194 	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5195 		return -ENOSPC;
5196 
5197 	switch (cmd) {
5198 	case FS_IOC32_GETVERSION:
5199 		cmd = FS_IOC_GETVERSION;
5200 		break;
5201 	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5202 		return f2fs_compat_ioc_gc_range(file, arg);
5203 	case F2FS_IOC32_MOVE_RANGE:
5204 		return f2fs_compat_ioc_move_range(file, arg);
5205 	case F2FS_IOC_START_ATOMIC_WRITE:
5206 	case F2FS_IOC_START_ATOMIC_REPLACE:
5207 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5208 	case F2FS_IOC_START_VOLATILE_WRITE:
5209 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5210 	case F2FS_IOC_ABORT_ATOMIC_WRITE:
5211 	case F2FS_IOC_SHUTDOWN:
5212 	case FITRIM:
5213 	case FS_IOC_SET_ENCRYPTION_POLICY:
5214 	case FS_IOC_GET_ENCRYPTION_PWSALT:
5215 	case FS_IOC_GET_ENCRYPTION_POLICY:
5216 	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5217 	case FS_IOC_ADD_ENCRYPTION_KEY:
5218 	case FS_IOC_REMOVE_ENCRYPTION_KEY:
5219 	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5220 	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5221 	case FS_IOC_GET_ENCRYPTION_NONCE:
5222 	case F2FS_IOC_GARBAGE_COLLECT:
5223 	case F2FS_IOC_WRITE_CHECKPOINT:
5224 	case F2FS_IOC_DEFRAGMENT:
5225 	case F2FS_IOC_FLUSH_DEVICE:
5226 	case F2FS_IOC_GET_FEATURES:
5227 	case F2FS_IOC_GET_PIN_FILE:
5228 	case F2FS_IOC_SET_PIN_FILE:
5229 	case F2FS_IOC_PRECACHE_EXTENTS:
5230 	case F2FS_IOC_RESIZE_FS:
5231 	case FS_IOC_ENABLE_VERITY:
5232 	case FS_IOC_MEASURE_VERITY:
5233 	case FS_IOC_READ_VERITY_METADATA:
5234 	case FS_IOC_GETFSLABEL:
5235 	case FS_IOC_SETFSLABEL:
5236 	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5237 	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5238 	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5239 	case F2FS_IOC_SEC_TRIM_FILE:
5240 	case F2FS_IOC_GET_COMPRESS_OPTION:
5241 	case F2FS_IOC_SET_COMPRESS_OPTION:
5242 	case F2FS_IOC_DECOMPRESS_FILE:
5243 	case F2FS_IOC_COMPRESS_FILE:
5244 	case F2FS_IOC_GET_DEV_ALIAS_FILE:
5245 		break;
5246 	default:
5247 		return -ENOIOCTLCMD;
5248 	}
5249 	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5250 }
5251 #endif
5252 
5253 const struct file_operations f2fs_file_operations = {
5254 	.llseek		= f2fs_llseek,
5255 	.read_iter	= f2fs_file_read_iter,
5256 	.write_iter	= f2fs_file_write_iter,
5257 	.iopoll		= iocb_bio_iopoll,
5258 	.open		= f2fs_file_open,
5259 	.release	= f2fs_release_file,
5260 	.mmap		= f2fs_file_mmap,
5261 	.flush		= f2fs_file_flush,
5262 	.fsync		= f2fs_sync_file,
5263 	.fallocate	= f2fs_fallocate,
5264 	.unlocked_ioctl	= f2fs_ioctl,
5265 #ifdef CONFIG_COMPAT
5266 	.compat_ioctl	= f2fs_compat_ioctl,
5267 #endif
5268 	.splice_read	= f2fs_file_splice_read,
5269 	.splice_write	= iter_file_splice_write,
5270 	.fadvise	= f2fs_file_fadvise,
5271 	.fop_flags	= FOP_BUFFER_RASYNC,
5272 };
5273