1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 #include <linux/fadvise.h> 27 #include <linux/iomap.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "acl.h" 34 #include "gc.h" 35 #include "iostat.h" 36 #include <trace/events/f2fs.h> 37 #include <uapi/linux/f2fs.h> 38 39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 40 { 41 struct inode *inode = file_inode(vmf->vma->vm_file); 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (!ret) 46 f2fs_update_iostat(F2FS_I_SB(inode), inode, 47 APP_MAPPED_READ_IO, F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(IS_IMMUTABLE(inode))) 64 return VM_FAULT_SIGBUS; 65 66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 67 return VM_FAULT_SIGBUS; 68 69 if (unlikely(f2fs_cp_error(sbi))) { 70 err = -EIO; 71 goto err; 72 } 73 74 if (!f2fs_is_checkpoint_ready(sbi)) { 75 err = -ENOSPC; 76 goto err; 77 } 78 79 err = f2fs_convert_inline_inode(inode); 80 if (err) 81 goto err; 82 83 #ifdef CONFIG_F2FS_FS_COMPRESSION 84 if (f2fs_compressed_file(inode)) { 85 int ret = f2fs_is_compressed_cluster(inode, page->index); 86 87 if (ret < 0) { 88 err = ret; 89 goto err; 90 } else if (ret) { 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 filemap_invalidate_lock_shared(inode->i_mapping); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 117 set_new_dnode(&dn, inode, NULL, NULL, 0); 118 err = f2fs_get_block(&dn, page->index); 119 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 120 } 121 122 #ifdef CONFIG_F2FS_FS_COMPRESSION 123 if (!need_alloc) { 124 set_new_dnode(&dn, inode, NULL, NULL, 0); 125 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 126 f2fs_put_dnode(&dn); 127 } 128 #endif 129 if (err) { 130 unlock_page(page); 131 goto out_sem; 132 } 133 134 f2fs_wait_on_page_writeback(page, DATA, false, true); 135 136 /* wait for GCed page writeback via META_MAPPING */ 137 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 138 139 /* 140 * check to see if the page is mapped already (no holes) 141 */ 142 if (PageMappedToDisk(page)) 143 goto out_sem; 144 145 /* page is wholly or partially inside EOF */ 146 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 147 i_size_read(inode)) { 148 loff_t offset; 149 150 offset = i_size_read(inode) & ~PAGE_MASK; 151 zero_user_segment(page, offset, PAGE_SIZE); 152 } 153 set_page_dirty(page); 154 if (!PageUptodate(page)) 155 SetPageUptodate(page); 156 157 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE); 158 f2fs_update_time(sbi, REQ_TIME); 159 160 trace_f2fs_vm_page_mkwrite(page, DATA); 161 out_sem: 162 filemap_invalidate_unlock_shared(inode->i_mapping); 163 164 sb_end_pagefault(inode->i_sb); 165 err: 166 return block_page_mkwrite_return(err); 167 } 168 169 static const struct vm_operations_struct f2fs_file_vm_ops = { 170 .fault = f2fs_filemap_fault, 171 .map_pages = filemap_map_pages, 172 .page_mkwrite = f2fs_vm_page_mkwrite, 173 }; 174 175 static int get_parent_ino(struct inode *inode, nid_t *pino) 176 { 177 struct dentry *dentry; 178 179 /* 180 * Make sure to get the non-deleted alias. The alias associated with 181 * the open file descriptor being fsync()'ed may be deleted already. 182 */ 183 dentry = d_find_alias(inode); 184 if (!dentry) 185 return 0; 186 187 *pino = parent_ino(dentry); 188 dput(dentry); 189 return 1; 190 } 191 192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 193 { 194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 195 enum cp_reason_type cp_reason = CP_NO_NEEDED; 196 197 if (!S_ISREG(inode->i_mode)) 198 cp_reason = CP_NON_REGULAR; 199 else if (f2fs_compressed_file(inode)) 200 cp_reason = CP_COMPRESSED; 201 else if (inode->i_nlink != 1) 202 cp_reason = CP_HARDLINK; 203 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 204 cp_reason = CP_SB_NEED_CP; 205 else if (file_wrong_pino(inode)) 206 cp_reason = CP_WRONG_PINO; 207 else if (!f2fs_space_for_roll_forward(sbi)) 208 cp_reason = CP_NO_SPC_ROLL; 209 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 210 cp_reason = CP_NODE_NEED_CP; 211 else if (test_opt(sbi, FASTBOOT)) 212 cp_reason = CP_FASTBOOT_MODE; 213 else if (F2FS_OPTION(sbi).active_logs == 2) 214 cp_reason = CP_SPEC_LOG_NUM; 215 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 216 f2fs_need_dentry_mark(sbi, inode->i_ino) && 217 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 218 TRANS_DIR_INO)) 219 cp_reason = CP_RECOVER_DIR; 220 221 return cp_reason; 222 } 223 224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 225 { 226 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 227 bool ret = false; 228 /* But we need to avoid that there are some inode updates */ 229 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 230 ret = true; 231 f2fs_put_page(i, 0); 232 return ret; 233 } 234 235 static void try_to_fix_pino(struct inode *inode) 236 { 237 struct f2fs_inode_info *fi = F2FS_I(inode); 238 nid_t pino; 239 240 f2fs_down_write(&fi->i_sem); 241 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 242 get_parent_ino(inode, &pino)) { 243 f2fs_i_pino_write(inode, pino); 244 file_got_pino(inode); 245 } 246 f2fs_up_write(&fi->i_sem); 247 } 248 249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 250 int datasync, bool atomic) 251 { 252 struct inode *inode = file->f_mapping->host; 253 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 254 nid_t ino = inode->i_ino; 255 int ret = 0; 256 enum cp_reason_type cp_reason = 0; 257 struct writeback_control wbc = { 258 .sync_mode = WB_SYNC_ALL, 259 .nr_to_write = LONG_MAX, 260 .for_reclaim = 0, 261 }; 262 unsigned int seq_id = 0; 263 264 if (unlikely(f2fs_readonly(inode->i_sb))) 265 return 0; 266 267 trace_f2fs_sync_file_enter(inode); 268 269 if (S_ISDIR(inode->i_mode)) 270 goto go_write; 271 272 /* if fdatasync is triggered, let's do in-place-update */ 273 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 274 set_inode_flag(inode, FI_NEED_IPU); 275 ret = file_write_and_wait_range(file, start, end); 276 clear_inode_flag(inode, FI_NEED_IPU); 277 278 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 279 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 280 return ret; 281 } 282 283 /* if the inode is dirty, let's recover all the time */ 284 if (!f2fs_skip_inode_update(inode, datasync)) { 285 f2fs_write_inode(inode, NULL); 286 goto go_write; 287 } 288 289 /* 290 * if there is no written data, don't waste time to write recovery info. 291 */ 292 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 293 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 294 295 /* it may call write_inode just prior to fsync */ 296 if (need_inode_page_update(sbi, ino)) 297 goto go_write; 298 299 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 300 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 301 goto flush_out; 302 goto out; 303 } else { 304 /* 305 * for OPU case, during fsync(), node can be persisted before 306 * data when lower device doesn't support write barrier, result 307 * in data corruption after SPO. 308 * So for strict fsync mode, force to use atomic write sematics 309 * to keep write order in between data/node and last node to 310 * avoid potential data corruption. 311 */ 312 if (F2FS_OPTION(sbi).fsync_mode == 313 FSYNC_MODE_STRICT && !atomic) 314 atomic = true; 315 } 316 go_write: 317 /* 318 * Both of fdatasync() and fsync() are able to be recovered from 319 * sudden-power-off. 320 */ 321 f2fs_down_read(&F2FS_I(inode)->i_sem); 322 cp_reason = need_do_checkpoint(inode); 323 f2fs_up_read(&F2FS_I(inode)->i_sem); 324 325 if (cp_reason) { 326 /* all the dirty node pages should be flushed for POR */ 327 ret = f2fs_sync_fs(inode->i_sb, 1); 328 329 /* 330 * We've secured consistency through sync_fs. Following pino 331 * will be used only for fsynced inodes after checkpoint. 332 */ 333 try_to_fix_pino(inode); 334 clear_inode_flag(inode, FI_APPEND_WRITE); 335 clear_inode_flag(inode, FI_UPDATE_WRITE); 336 goto out; 337 } 338 sync_nodes: 339 atomic_inc(&sbi->wb_sync_req[NODE]); 340 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 341 atomic_dec(&sbi->wb_sync_req[NODE]); 342 if (ret) 343 goto out; 344 345 /* if cp_error was enabled, we should avoid infinite loop */ 346 if (unlikely(f2fs_cp_error(sbi))) { 347 ret = -EIO; 348 goto out; 349 } 350 351 if (f2fs_need_inode_block_update(sbi, ino)) { 352 f2fs_mark_inode_dirty_sync(inode, true); 353 f2fs_write_inode(inode, NULL); 354 goto sync_nodes; 355 } 356 357 /* 358 * If it's atomic_write, it's just fine to keep write ordering. So 359 * here we don't need to wait for node write completion, since we use 360 * node chain which serializes node blocks. If one of node writes are 361 * reordered, we can see simply broken chain, resulting in stopping 362 * roll-forward recovery. It means we'll recover all or none node blocks 363 * given fsync mark. 364 */ 365 if (!atomic) { 366 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 367 if (ret) 368 goto out; 369 } 370 371 /* once recovery info is written, don't need to tack this */ 372 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 373 clear_inode_flag(inode, FI_APPEND_WRITE); 374 flush_out: 375 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) || 376 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi))) 377 ret = f2fs_issue_flush(sbi, inode->i_ino); 378 if (!ret) { 379 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 380 clear_inode_flag(inode, FI_UPDATE_WRITE); 381 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 382 } 383 f2fs_update_time(sbi, REQ_TIME); 384 out: 385 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 386 return ret; 387 } 388 389 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 390 { 391 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 392 return -EIO; 393 return f2fs_do_sync_file(file, start, end, datasync, false); 394 } 395 396 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 397 pgoff_t index, int whence) 398 { 399 switch (whence) { 400 case SEEK_DATA: 401 if (__is_valid_data_blkaddr(blkaddr)) 402 return true; 403 if (blkaddr == NEW_ADDR && 404 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 405 return true; 406 break; 407 case SEEK_HOLE: 408 if (blkaddr == NULL_ADDR) 409 return true; 410 break; 411 } 412 return false; 413 } 414 415 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 416 { 417 struct inode *inode = file->f_mapping->host; 418 loff_t maxbytes = inode->i_sb->s_maxbytes; 419 struct dnode_of_data dn; 420 pgoff_t pgofs, end_offset; 421 loff_t data_ofs = offset; 422 loff_t isize; 423 int err = 0; 424 425 inode_lock(inode); 426 427 isize = i_size_read(inode); 428 if (offset >= isize) 429 goto fail; 430 431 /* handle inline data case */ 432 if (f2fs_has_inline_data(inode)) { 433 if (whence == SEEK_HOLE) { 434 data_ofs = isize; 435 goto found; 436 } else if (whence == SEEK_DATA) { 437 data_ofs = offset; 438 goto found; 439 } 440 } 441 442 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 443 444 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 445 set_new_dnode(&dn, inode, NULL, NULL, 0); 446 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 447 if (err && err != -ENOENT) { 448 goto fail; 449 } else if (err == -ENOENT) { 450 /* direct node does not exists */ 451 if (whence == SEEK_DATA) { 452 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 453 continue; 454 } else { 455 goto found; 456 } 457 } 458 459 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 460 461 /* find data/hole in dnode block */ 462 for (; dn.ofs_in_node < end_offset; 463 dn.ofs_in_node++, pgofs++, 464 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 465 block_t blkaddr; 466 467 blkaddr = f2fs_data_blkaddr(&dn); 468 469 if (__is_valid_data_blkaddr(blkaddr) && 470 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 471 blkaddr, DATA_GENERIC_ENHANCE)) { 472 f2fs_put_dnode(&dn); 473 goto fail; 474 } 475 476 if (__found_offset(file->f_mapping, blkaddr, 477 pgofs, whence)) { 478 f2fs_put_dnode(&dn); 479 goto found; 480 } 481 } 482 f2fs_put_dnode(&dn); 483 } 484 485 if (whence == SEEK_DATA) 486 goto fail; 487 found: 488 if (whence == SEEK_HOLE && data_ofs > isize) 489 data_ofs = isize; 490 inode_unlock(inode); 491 return vfs_setpos(file, data_ofs, maxbytes); 492 fail: 493 inode_unlock(inode); 494 return -ENXIO; 495 } 496 497 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 498 { 499 struct inode *inode = file->f_mapping->host; 500 loff_t maxbytes = inode->i_sb->s_maxbytes; 501 502 if (f2fs_compressed_file(inode)) 503 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 504 505 switch (whence) { 506 case SEEK_SET: 507 case SEEK_CUR: 508 case SEEK_END: 509 return generic_file_llseek_size(file, offset, whence, 510 maxbytes, i_size_read(inode)); 511 case SEEK_DATA: 512 case SEEK_HOLE: 513 if (offset < 0) 514 return -ENXIO; 515 return f2fs_seek_block(file, offset, whence); 516 } 517 518 return -EINVAL; 519 } 520 521 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 522 { 523 struct inode *inode = file_inode(file); 524 525 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 526 return -EIO; 527 528 if (!f2fs_is_compress_backend_ready(inode)) 529 return -EOPNOTSUPP; 530 531 file_accessed(file); 532 vma->vm_ops = &f2fs_file_vm_ops; 533 set_inode_flag(inode, FI_MMAP_FILE); 534 return 0; 535 } 536 537 static int f2fs_file_open(struct inode *inode, struct file *filp) 538 { 539 int err = fscrypt_file_open(inode, filp); 540 541 if (err) 542 return err; 543 544 if (!f2fs_is_compress_backend_ready(inode)) 545 return -EOPNOTSUPP; 546 547 err = fsverity_file_open(inode, filp); 548 if (err) 549 return err; 550 551 filp->f_mode |= FMODE_NOWAIT; 552 553 return dquot_file_open(inode, filp); 554 } 555 556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 557 { 558 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 559 struct f2fs_node *raw_node; 560 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 561 __le32 *addr; 562 int base = 0; 563 bool compressed_cluster = false; 564 int cluster_index = 0, valid_blocks = 0; 565 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 566 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 567 568 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 569 base = get_extra_isize(dn->inode); 570 571 raw_node = F2FS_NODE(dn->node_page); 572 addr = blkaddr_in_node(raw_node) + base + ofs; 573 574 /* Assumption: truncateion starts with cluster */ 575 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 576 block_t blkaddr = le32_to_cpu(*addr); 577 578 if (f2fs_compressed_file(dn->inode) && 579 !(cluster_index & (cluster_size - 1))) { 580 if (compressed_cluster) 581 f2fs_i_compr_blocks_update(dn->inode, 582 valid_blocks, false); 583 compressed_cluster = (blkaddr == COMPRESS_ADDR); 584 valid_blocks = 0; 585 } 586 587 if (blkaddr == NULL_ADDR) 588 continue; 589 590 dn->data_blkaddr = NULL_ADDR; 591 f2fs_set_data_blkaddr(dn); 592 593 if (__is_valid_data_blkaddr(blkaddr)) { 594 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 595 DATA_GENERIC_ENHANCE)) 596 continue; 597 if (compressed_cluster) 598 valid_blocks++; 599 } 600 601 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 602 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 603 604 f2fs_invalidate_blocks(sbi, blkaddr); 605 606 if (!released || blkaddr != COMPRESS_ADDR) 607 nr_free++; 608 } 609 610 if (compressed_cluster) 611 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 612 613 if (nr_free) { 614 pgoff_t fofs; 615 /* 616 * once we invalidate valid blkaddr in range [ofs, ofs + count], 617 * we will invalidate all blkaddr in the whole range. 618 */ 619 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 620 dn->inode) + ofs; 621 f2fs_update_extent_cache_range(dn, fofs, 0, len); 622 dec_valid_block_count(sbi, dn->inode, nr_free); 623 } 624 dn->ofs_in_node = ofs; 625 626 f2fs_update_time(sbi, REQ_TIME); 627 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 628 dn->ofs_in_node, nr_free); 629 } 630 631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 632 { 633 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 634 } 635 636 static int truncate_partial_data_page(struct inode *inode, u64 from, 637 bool cache_only) 638 { 639 loff_t offset = from & (PAGE_SIZE - 1); 640 pgoff_t index = from >> PAGE_SHIFT; 641 struct address_space *mapping = inode->i_mapping; 642 struct page *page; 643 644 if (!offset && !cache_only) 645 return 0; 646 647 if (cache_only) { 648 page = find_lock_page(mapping, index); 649 if (page && PageUptodate(page)) 650 goto truncate_out; 651 f2fs_put_page(page, 1); 652 return 0; 653 } 654 655 page = f2fs_get_lock_data_page(inode, index, true); 656 if (IS_ERR(page)) 657 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 658 truncate_out: 659 f2fs_wait_on_page_writeback(page, DATA, true, true); 660 zero_user(page, offset, PAGE_SIZE - offset); 661 662 /* An encrypted inode should have a key and truncate the last page. */ 663 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 664 if (!cache_only) 665 set_page_dirty(page); 666 f2fs_put_page(page, 1); 667 return 0; 668 } 669 670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 671 { 672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 673 struct dnode_of_data dn; 674 pgoff_t free_from; 675 int count = 0, err = 0; 676 struct page *ipage; 677 bool truncate_page = false; 678 679 trace_f2fs_truncate_blocks_enter(inode, from); 680 681 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 682 683 if (free_from >= max_file_blocks(inode)) 684 goto free_partial; 685 686 if (lock) 687 f2fs_lock_op(sbi); 688 689 ipage = f2fs_get_node_page(sbi, inode->i_ino); 690 if (IS_ERR(ipage)) { 691 err = PTR_ERR(ipage); 692 goto out; 693 } 694 695 if (f2fs_has_inline_data(inode)) { 696 f2fs_truncate_inline_inode(inode, ipage, from); 697 f2fs_put_page(ipage, 1); 698 truncate_page = true; 699 goto out; 700 } 701 702 set_new_dnode(&dn, inode, ipage, NULL, 0); 703 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 704 if (err) { 705 if (err == -ENOENT) 706 goto free_next; 707 goto out; 708 } 709 710 count = ADDRS_PER_PAGE(dn.node_page, inode); 711 712 count -= dn.ofs_in_node; 713 f2fs_bug_on(sbi, count < 0); 714 715 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 716 f2fs_truncate_data_blocks_range(&dn, count); 717 free_from += count; 718 } 719 720 f2fs_put_dnode(&dn); 721 free_next: 722 err = f2fs_truncate_inode_blocks(inode, free_from); 723 out: 724 if (lock) 725 f2fs_unlock_op(sbi); 726 free_partial: 727 /* lastly zero out the first data page */ 728 if (!err) 729 err = truncate_partial_data_page(inode, from, truncate_page); 730 731 trace_f2fs_truncate_blocks_exit(inode, err); 732 return err; 733 } 734 735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 736 { 737 u64 free_from = from; 738 int err; 739 740 #ifdef CONFIG_F2FS_FS_COMPRESSION 741 /* 742 * for compressed file, only support cluster size 743 * aligned truncation. 744 */ 745 if (f2fs_compressed_file(inode)) 746 free_from = round_up(from, 747 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 748 #endif 749 750 err = f2fs_do_truncate_blocks(inode, free_from, lock); 751 if (err) 752 return err; 753 754 #ifdef CONFIG_F2FS_FS_COMPRESSION 755 /* 756 * For compressed file, after release compress blocks, don't allow write 757 * direct, but we should allow write direct after truncate to zero. 758 */ 759 if (f2fs_compressed_file(inode) && !free_from 760 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 761 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 762 763 if (from != free_from) { 764 err = f2fs_truncate_partial_cluster(inode, from, lock); 765 if (err) 766 return err; 767 } 768 #endif 769 770 return 0; 771 } 772 773 int f2fs_truncate(struct inode *inode) 774 { 775 int err; 776 777 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 778 return -EIO; 779 780 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 781 S_ISLNK(inode->i_mode))) 782 return 0; 783 784 trace_f2fs_truncate(inode); 785 786 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 787 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 788 return -EIO; 789 } 790 791 err = f2fs_dquot_initialize(inode); 792 if (err) 793 return err; 794 795 /* we should check inline_data size */ 796 if (!f2fs_may_inline_data(inode)) { 797 err = f2fs_convert_inline_inode(inode); 798 if (err) 799 return err; 800 } 801 802 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 803 if (err) 804 return err; 805 806 inode->i_mtime = inode->i_ctime = current_time(inode); 807 f2fs_mark_inode_dirty_sync(inode, false); 808 return 0; 809 } 810 811 static bool f2fs_force_buffered_io(struct inode *inode, int rw) 812 { 813 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 814 815 if (!fscrypt_dio_supported(inode)) 816 return true; 817 if (fsverity_active(inode)) 818 return true; 819 if (f2fs_compressed_file(inode)) 820 return true; 821 822 /* disallow direct IO if any of devices has unaligned blksize */ 823 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 824 return true; 825 /* 826 * for blkzoned device, fallback direct IO to buffered IO, so 827 * all IOs can be serialized by log-structured write. 828 */ 829 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE)) 830 return true; 831 if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi)) 832 return true; 833 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 834 return true; 835 836 return false; 837 } 838 839 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 840 struct kstat *stat, u32 request_mask, unsigned int query_flags) 841 { 842 struct inode *inode = d_inode(path->dentry); 843 struct f2fs_inode_info *fi = F2FS_I(inode); 844 struct f2fs_inode *ri = NULL; 845 unsigned int flags; 846 847 if (f2fs_has_extra_attr(inode) && 848 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 849 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 850 stat->result_mask |= STATX_BTIME; 851 stat->btime.tv_sec = fi->i_crtime.tv_sec; 852 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 853 } 854 855 /* 856 * Return the DIO alignment restrictions if requested. We only return 857 * this information when requested, since on encrypted files it might 858 * take a fair bit of work to get if the file wasn't opened recently. 859 * 860 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN 861 * cannot represent that, so in that case we report no DIO support. 862 */ 863 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 864 unsigned int bsize = i_blocksize(inode); 865 866 stat->result_mask |= STATX_DIOALIGN; 867 if (!f2fs_force_buffered_io(inode, WRITE)) { 868 stat->dio_mem_align = bsize; 869 stat->dio_offset_align = bsize; 870 } 871 } 872 873 flags = fi->i_flags; 874 if (flags & F2FS_COMPR_FL) 875 stat->attributes |= STATX_ATTR_COMPRESSED; 876 if (flags & F2FS_APPEND_FL) 877 stat->attributes |= STATX_ATTR_APPEND; 878 if (IS_ENCRYPTED(inode)) 879 stat->attributes |= STATX_ATTR_ENCRYPTED; 880 if (flags & F2FS_IMMUTABLE_FL) 881 stat->attributes |= STATX_ATTR_IMMUTABLE; 882 if (flags & F2FS_NODUMP_FL) 883 stat->attributes |= STATX_ATTR_NODUMP; 884 if (IS_VERITY(inode)) 885 stat->attributes |= STATX_ATTR_VERITY; 886 887 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 888 STATX_ATTR_APPEND | 889 STATX_ATTR_ENCRYPTED | 890 STATX_ATTR_IMMUTABLE | 891 STATX_ATTR_NODUMP | 892 STATX_ATTR_VERITY); 893 894 generic_fillattr(mnt_userns, inode, stat); 895 896 /* we need to show initial sectors used for inline_data/dentries */ 897 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 898 f2fs_has_inline_dentry(inode)) 899 stat->blocks += (stat->size + 511) >> 9; 900 901 return 0; 902 } 903 904 #ifdef CONFIG_F2FS_FS_POSIX_ACL 905 static void __setattr_copy(struct user_namespace *mnt_userns, 906 struct inode *inode, const struct iattr *attr) 907 { 908 unsigned int ia_valid = attr->ia_valid; 909 910 i_uid_update(mnt_userns, attr, inode); 911 i_gid_update(mnt_userns, attr, inode); 912 if (ia_valid & ATTR_ATIME) 913 inode->i_atime = attr->ia_atime; 914 if (ia_valid & ATTR_MTIME) 915 inode->i_mtime = attr->ia_mtime; 916 if (ia_valid & ATTR_CTIME) 917 inode->i_ctime = attr->ia_ctime; 918 if (ia_valid & ATTR_MODE) { 919 umode_t mode = attr->ia_mode; 920 vfsgid_t vfsgid = i_gid_into_vfsgid(mnt_userns, inode); 921 922 if (!vfsgid_in_group_p(vfsgid) && 923 !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID)) 924 mode &= ~S_ISGID; 925 set_acl_inode(inode, mode); 926 } 927 } 928 #else 929 #define __setattr_copy setattr_copy 930 #endif 931 932 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 933 struct iattr *attr) 934 { 935 struct inode *inode = d_inode(dentry); 936 int err; 937 938 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 939 return -EIO; 940 941 if (unlikely(IS_IMMUTABLE(inode))) 942 return -EPERM; 943 944 if (unlikely(IS_APPEND(inode) && 945 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 946 ATTR_GID | ATTR_TIMES_SET)))) 947 return -EPERM; 948 949 if ((attr->ia_valid & ATTR_SIZE) && 950 !f2fs_is_compress_backend_ready(inode)) 951 return -EOPNOTSUPP; 952 953 err = setattr_prepare(mnt_userns, dentry, attr); 954 if (err) 955 return err; 956 957 err = fscrypt_prepare_setattr(dentry, attr); 958 if (err) 959 return err; 960 961 err = fsverity_prepare_setattr(dentry, attr); 962 if (err) 963 return err; 964 965 if (is_quota_modification(mnt_userns, inode, attr)) { 966 err = f2fs_dquot_initialize(inode); 967 if (err) 968 return err; 969 } 970 if (i_uid_needs_update(mnt_userns, attr, inode) || 971 i_gid_needs_update(mnt_userns, attr, inode)) { 972 f2fs_lock_op(F2FS_I_SB(inode)); 973 err = dquot_transfer(mnt_userns, inode, attr); 974 if (err) { 975 set_sbi_flag(F2FS_I_SB(inode), 976 SBI_QUOTA_NEED_REPAIR); 977 f2fs_unlock_op(F2FS_I_SB(inode)); 978 return err; 979 } 980 /* 981 * update uid/gid under lock_op(), so that dquot and inode can 982 * be updated atomically. 983 */ 984 i_uid_update(mnt_userns, attr, inode); 985 i_gid_update(mnt_userns, attr, inode); 986 f2fs_mark_inode_dirty_sync(inode, true); 987 f2fs_unlock_op(F2FS_I_SB(inode)); 988 } 989 990 if (attr->ia_valid & ATTR_SIZE) { 991 loff_t old_size = i_size_read(inode); 992 993 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 994 /* 995 * should convert inline inode before i_size_write to 996 * keep smaller than inline_data size with inline flag. 997 */ 998 err = f2fs_convert_inline_inode(inode); 999 if (err) 1000 return err; 1001 } 1002 1003 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1004 filemap_invalidate_lock(inode->i_mapping); 1005 1006 truncate_setsize(inode, attr->ia_size); 1007 1008 if (attr->ia_size <= old_size) 1009 err = f2fs_truncate(inode); 1010 /* 1011 * do not trim all blocks after i_size if target size is 1012 * larger than i_size. 1013 */ 1014 filemap_invalidate_unlock(inode->i_mapping); 1015 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1016 if (err) 1017 return err; 1018 1019 spin_lock(&F2FS_I(inode)->i_size_lock); 1020 inode->i_mtime = inode->i_ctime = current_time(inode); 1021 F2FS_I(inode)->last_disk_size = i_size_read(inode); 1022 spin_unlock(&F2FS_I(inode)->i_size_lock); 1023 } 1024 1025 __setattr_copy(mnt_userns, inode, attr); 1026 1027 if (attr->ia_valid & ATTR_MODE) { 1028 err = posix_acl_chmod(mnt_userns, inode, f2fs_get_inode_mode(inode)); 1029 1030 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 1031 if (!err) 1032 inode->i_mode = F2FS_I(inode)->i_acl_mode; 1033 clear_inode_flag(inode, FI_ACL_MODE); 1034 } 1035 } 1036 1037 /* file size may changed here */ 1038 f2fs_mark_inode_dirty_sync(inode, true); 1039 1040 /* inode change will produce dirty node pages flushed by checkpoint */ 1041 f2fs_balance_fs(F2FS_I_SB(inode), true); 1042 1043 return err; 1044 } 1045 1046 const struct inode_operations f2fs_file_inode_operations = { 1047 .getattr = f2fs_getattr, 1048 .setattr = f2fs_setattr, 1049 .get_acl = f2fs_get_acl, 1050 .set_acl = f2fs_set_acl, 1051 .listxattr = f2fs_listxattr, 1052 .fiemap = f2fs_fiemap, 1053 .fileattr_get = f2fs_fileattr_get, 1054 .fileattr_set = f2fs_fileattr_set, 1055 }; 1056 1057 static int fill_zero(struct inode *inode, pgoff_t index, 1058 loff_t start, loff_t len) 1059 { 1060 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1061 struct page *page; 1062 1063 if (!len) 1064 return 0; 1065 1066 f2fs_balance_fs(sbi, true); 1067 1068 f2fs_lock_op(sbi); 1069 page = f2fs_get_new_data_page(inode, NULL, index, false); 1070 f2fs_unlock_op(sbi); 1071 1072 if (IS_ERR(page)) 1073 return PTR_ERR(page); 1074 1075 f2fs_wait_on_page_writeback(page, DATA, true, true); 1076 zero_user(page, start, len); 1077 set_page_dirty(page); 1078 f2fs_put_page(page, 1); 1079 return 0; 1080 } 1081 1082 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1083 { 1084 int err; 1085 1086 while (pg_start < pg_end) { 1087 struct dnode_of_data dn; 1088 pgoff_t end_offset, count; 1089 1090 set_new_dnode(&dn, inode, NULL, NULL, 0); 1091 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1092 if (err) { 1093 if (err == -ENOENT) { 1094 pg_start = f2fs_get_next_page_offset(&dn, 1095 pg_start); 1096 continue; 1097 } 1098 return err; 1099 } 1100 1101 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1102 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1103 1104 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1105 1106 f2fs_truncate_data_blocks_range(&dn, count); 1107 f2fs_put_dnode(&dn); 1108 1109 pg_start += count; 1110 } 1111 return 0; 1112 } 1113 1114 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1115 { 1116 pgoff_t pg_start, pg_end; 1117 loff_t off_start, off_end; 1118 int ret; 1119 1120 ret = f2fs_convert_inline_inode(inode); 1121 if (ret) 1122 return ret; 1123 1124 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1125 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1126 1127 off_start = offset & (PAGE_SIZE - 1); 1128 off_end = (offset + len) & (PAGE_SIZE - 1); 1129 1130 if (pg_start == pg_end) { 1131 ret = fill_zero(inode, pg_start, off_start, 1132 off_end - off_start); 1133 if (ret) 1134 return ret; 1135 } else { 1136 if (off_start) { 1137 ret = fill_zero(inode, pg_start++, off_start, 1138 PAGE_SIZE - off_start); 1139 if (ret) 1140 return ret; 1141 } 1142 if (off_end) { 1143 ret = fill_zero(inode, pg_end, 0, off_end); 1144 if (ret) 1145 return ret; 1146 } 1147 1148 if (pg_start < pg_end) { 1149 loff_t blk_start, blk_end; 1150 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1151 1152 f2fs_balance_fs(sbi, true); 1153 1154 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1155 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1156 1157 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1158 filemap_invalidate_lock(inode->i_mapping); 1159 1160 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1161 1162 f2fs_lock_op(sbi); 1163 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1164 f2fs_unlock_op(sbi); 1165 1166 filemap_invalidate_unlock(inode->i_mapping); 1167 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1168 } 1169 } 1170 1171 return ret; 1172 } 1173 1174 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1175 int *do_replace, pgoff_t off, pgoff_t len) 1176 { 1177 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1178 struct dnode_of_data dn; 1179 int ret, done, i; 1180 1181 next_dnode: 1182 set_new_dnode(&dn, inode, NULL, NULL, 0); 1183 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1184 if (ret && ret != -ENOENT) { 1185 return ret; 1186 } else if (ret == -ENOENT) { 1187 if (dn.max_level == 0) 1188 return -ENOENT; 1189 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1190 dn.ofs_in_node, len); 1191 blkaddr += done; 1192 do_replace += done; 1193 goto next; 1194 } 1195 1196 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1197 dn.ofs_in_node, len); 1198 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1199 *blkaddr = f2fs_data_blkaddr(&dn); 1200 1201 if (__is_valid_data_blkaddr(*blkaddr) && 1202 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1203 DATA_GENERIC_ENHANCE)) { 1204 f2fs_put_dnode(&dn); 1205 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1206 return -EFSCORRUPTED; 1207 } 1208 1209 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1210 1211 if (f2fs_lfs_mode(sbi)) { 1212 f2fs_put_dnode(&dn); 1213 return -EOPNOTSUPP; 1214 } 1215 1216 /* do not invalidate this block address */ 1217 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1218 *do_replace = 1; 1219 } 1220 } 1221 f2fs_put_dnode(&dn); 1222 next: 1223 len -= done; 1224 off += done; 1225 if (len) 1226 goto next_dnode; 1227 return 0; 1228 } 1229 1230 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1231 int *do_replace, pgoff_t off, int len) 1232 { 1233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1234 struct dnode_of_data dn; 1235 int ret, i; 1236 1237 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1238 if (*do_replace == 0) 1239 continue; 1240 1241 set_new_dnode(&dn, inode, NULL, NULL, 0); 1242 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1243 if (ret) { 1244 dec_valid_block_count(sbi, inode, 1); 1245 f2fs_invalidate_blocks(sbi, *blkaddr); 1246 } else { 1247 f2fs_update_data_blkaddr(&dn, *blkaddr); 1248 } 1249 f2fs_put_dnode(&dn); 1250 } 1251 return 0; 1252 } 1253 1254 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1255 block_t *blkaddr, int *do_replace, 1256 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1257 { 1258 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1259 pgoff_t i = 0; 1260 int ret; 1261 1262 while (i < len) { 1263 if (blkaddr[i] == NULL_ADDR && !full) { 1264 i++; 1265 continue; 1266 } 1267 1268 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1269 struct dnode_of_data dn; 1270 struct node_info ni; 1271 size_t new_size; 1272 pgoff_t ilen; 1273 1274 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1275 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1276 if (ret) 1277 return ret; 1278 1279 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1280 if (ret) { 1281 f2fs_put_dnode(&dn); 1282 return ret; 1283 } 1284 1285 ilen = min((pgoff_t) 1286 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1287 dn.ofs_in_node, len - i); 1288 do { 1289 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1290 f2fs_truncate_data_blocks_range(&dn, 1); 1291 1292 if (do_replace[i]) { 1293 f2fs_i_blocks_write(src_inode, 1294 1, false, false); 1295 f2fs_i_blocks_write(dst_inode, 1296 1, true, false); 1297 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1298 blkaddr[i], ni.version, true, false); 1299 1300 do_replace[i] = 0; 1301 } 1302 dn.ofs_in_node++; 1303 i++; 1304 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1305 if (dst_inode->i_size < new_size) 1306 f2fs_i_size_write(dst_inode, new_size); 1307 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1308 1309 f2fs_put_dnode(&dn); 1310 } else { 1311 struct page *psrc, *pdst; 1312 1313 psrc = f2fs_get_lock_data_page(src_inode, 1314 src + i, true); 1315 if (IS_ERR(psrc)) 1316 return PTR_ERR(psrc); 1317 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1318 true); 1319 if (IS_ERR(pdst)) { 1320 f2fs_put_page(psrc, 1); 1321 return PTR_ERR(pdst); 1322 } 1323 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); 1324 set_page_dirty(pdst); 1325 f2fs_put_page(pdst, 1); 1326 f2fs_put_page(psrc, 1); 1327 1328 ret = f2fs_truncate_hole(src_inode, 1329 src + i, src + i + 1); 1330 if (ret) 1331 return ret; 1332 i++; 1333 } 1334 } 1335 return 0; 1336 } 1337 1338 static int __exchange_data_block(struct inode *src_inode, 1339 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1340 pgoff_t len, bool full) 1341 { 1342 block_t *src_blkaddr; 1343 int *do_replace; 1344 pgoff_t olen; 1345 int ret; 1346 1347 while (len) { 1348 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1349 1350 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1351 array_size(olen, sizeof(block_t)), 1352 GFP_NOFS); 1353 if (!src_blkaddr) 1354 return -ENOMEM; 1355 1356 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1357 array_size(olen, sizeof(int)), 1358 GFP_NOFS); 1359 if (!do_replace) { 1360 kvfree(src_blkaddr); 1361 return -ENOMEM; 1362 } 1363 1364 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1365 do_replace, src, olen); 1366 if (ret) 1367 goto roll_back; 1368 1369 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1370 do_replace, src, dst, olen, full); 1371 if (ret) 1372 goto roll_back; 1373 1374 src += olen; 1375 dst += olen; 1376 len -= olen; 1377 1378 kvfree(src_blkaddr); 1379 kvfree(do_replace); 1380 } 1381 return 0; 1382 1383 roll_back: 1384 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1385 kvfree(src_blkaddr); 1386 kvfree(do_replace); 1387 return ret; 1388 } 1389 1390 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1391 { 1392 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1393 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1394 pgoff_t start = offset >> PAGE_SHIFT; 1395 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1396 int ret; 1397 1398 f2fs_balance_fs(sbi, true); 1399 1400 /* avoid gc operation during block exchange */ 1401 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1402 filemap_invalidate_lock(inode->i_mapping); 1403 1404 f2fs_lock_op(sbi); 1405 f2fs_drop_extent_tree(inode); 1406 truncate_pagecache(inode, offset); 1407 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1408 f2fs_unlock_op(sbi); 1409 1410 filemap_invalidate_unlock(inode->i_mapping); 1411 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1412 return ret; 1413 } 1414 1415 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1416 { 1417 loff_t new_size; 1418 int ret; 1419 1420 if (offset + len >= i_size_read(inode)) 1421 return -EINVAL; 1422 1423 /* collapse range should be aligned to block size of f2fs. */ 1424 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1425 return -EINVAL; 1426 1427 ret = f2fs_convert_inline_inode(inode); 1428 if (ret) 1429 return ret; 1430 1431 /* write out all dirty pages from offset */ 1432 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1433 if (ret) 1434 return ret; 1435 1436 ret = f2fs_do_collapse(inode, offset, len); 1437 if (ret) 1438 return ret; 1439 1440 /* write out all moved pages, if possible */ 1441 filemap_invalidate_lock(inode->i_mapping); 1442 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1443 truncate_pagecache(inode, offset); 1444 1445 new_size = i_size_read(inode) - len; 1446 ret = f2fs_truncate_blocks(inode, new_size, true); 1447 filemap_invalidate_unlock(inode->i_mapping); 1448 if (!ret) 1449 f2fs_i_size_write(inode, new_size); 1450 return ret; 1451 } 1452 1453 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1454 pgoff_t end) 1455 { 1456 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1457 pgoff_t index = start; 1458 unsigned int ofs_in_node = dn->ofs_in_node; 1459 blkcnt_t count = 0; 1460 int ret; 1461 1462 for (; index < end; index++, dn->ofs_in_node++) { 1463 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1464 count++; 1465 } 1466 1467 dn->ofs_in_node = ofs_in_node; 1468 ret = f2fs_reserve_new_blocks(dn, count); 1469 if (ret) 1470 return ret; 1471 1472 dn->ofs_in_node = ofs_in_node; 1473 for (index = start; index < end; index++, dn->ofs_in_node++) { 1474 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1475 /* 1476 * f2fs_reserve_new_blocks will not guarantee entire block 1477 * allocation. 1478 */ 1479 if (dn->data_blkaddr == NULL_ADDR) { 1480 ret = -ENOSPC; 1481 break; 1482 } 1483 1484 if (dn->data_blkaddr == NEW_ADDR) 1485 continue; 1486 1487 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1488 DATA_GENERIC_ENHANCE)) { 1489 ret = -EFSCORRUPTED; 1490 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1491 break; 1492 } 1493 1494 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1495 dn->data_blkaddr = NEW_ADDR; 1496 f2fs_set_data_blkaddr(dn); 1497 } 1498 1499 f2fs_update_extent_cache_range(dn, start, 0, index - start); 1500 1501 return ret; 1502 } 1503 1504 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1505 int mode) 1506 { 1507 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1508 struct address_space *mapping = inode->i_mapping; 1509 pgoff_t index, pg_start, pg_end; 1510 loff_t new_size = i_size_read(inode); 1511 loff_t off_start, off_end; 1512 int ret = 0; 1513 1514 ret = inode_newsize_ok(inode, (len + offset)); 1515 if (ret) 1516 return ret; 1517 1518 ret = f2fs_convert_inline_inode(inode); 1519 if (ret) 1520 return ret; 1521 1522 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1523 if (ret) 1524 return ret; 1525 1526 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1527 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1528 1529 off_start = offset & (PAGE_SIZE - 1); 1530 off_end = (offset + len) & (PAGE_SIZE - 1); 1531 1532 if (pg_start == pg_end) { 1533 ret = fill_zero(inode, pg_start, off_start, 1534 off_end - off_start); 1535 if (ret) 1536 return ret; 1537 1538 new_size = max_t(loff_t, new_size, offset + len); 1539 } else { 1540 if (off_start) { 1541 ret = fill_zero(inode, pg_start++, off_start, 1542 PAGE_SIZE - off_start); 1543 if (ret) 1544 return ret; 1545 1546 new_size = max_t(loff_t, new_size, 1547 (loff_t)pg_start << PAGE_SHIFT); 1548 } 1549 1550 for (index = pg_start; index < pg_end;) { 1551 struct dnode_of_data dn; 1552 unsigned int end_offset; 1553 pgoff_t end; 1554 1555 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1556 filemap_invalidate_lock(mapping); 1557 1558 truncate_pagecache_range(inode, 1559 (loff_t)index << PAGE_SHIFT, 1560 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1561 1562 f2fs_lock_op(sbi); 1563 1564 set_new_dnode(&dn, inode, NULL, NULL, 0); 1565 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1566 if (ret) { 1567 f2fs_unlock_op(sbi); 1568 filemap_invalidate_unlock(mapping); 1569 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1570 goto out; 1571 } 1572 1573 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1574 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1575 1576 ret = f2fs_do_zero_range(&dn, index, end); 1577 f2fs_put_dnode(&dn); 1578 1579 f2fs_unlock_op(sbi); 1580 filemap_invalidate_unlock(mapping); 1581 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1582 1583 f2fs_balance_fs(sbi, dn.node_changed); 1584 1585 if (ret) 1586 goto out; 1587 1588 index = end; 1589 new_size = max_t(loff_t, new_size, 1590 (loff_t)index << PAGE_SHIFT); 1591 } 1592 1593 if (off_end) { 1594 ret = fill_zero(inode, pg_end, 0, off_end); 1595 if (ret) 1596 goto out; 1597 1598 new_size = max_t(loff_t, new_size, offset + len); 1599 } 1600 } 1601 1602 out: 1603 if (new_size > i_size_read(inode)) { 1604 if (mode & FALLOC_FL_KEEP_SIZE) 1605 file_set_keep_isize(inode); 1606 else 1607 f2fs_i_size_write(inode, new_size); 1608 } 1609 return ret; 1610 } 1611 1612 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1613 { 1614 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1615 struct address_space *mapping = inode->i_mapping; 1616 pgoff_t nr, pg_start, pg_end, delta, idx; 1617 loff_t new_size; 1618 int ret = 0; 1619 1620 new_size = i_size_read(inode) + len; 1621 ret = inode_newsize_ok(inode, new_size); 1622 if (ret) 1623 return ret; 1624 1625 if (offset >= i_size_read(inode)) 1626 return -EINVAL; 1627 1628 /* insert range should be aligned to block size of f2fs. */ 1629 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1630 return -EINVAL; 1631 1632 ret = f2fs_convert_inline_inode(inode); 1633 if (ret) 1634 return ret; 1635 1636 f2fs_balance_fs(sbi, true); 1637 1638 filemap_invalidate_lock(mapping); 1639 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1640 filemap_invalidate_unlock(mapping); 1641 if (ret) 1642 return ret; 1643 1644 /* write out all dirty pages from offset */ 1645 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1646 if (ret) 1647 return ret; 1648 1649 pg_start = offset >> PAGE_SHIFT; 1650 pg_end = (offset + len) >> PAGE_SHIFT; 1651 delta = pg_end - pg_start; 1652 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1653 1654 /* avoid gc operation during block exchange */ 1655 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1656 filemap_invalidate_lock(mapping); 1657 truncate_pagecache(inode, offset); 1658 1659 while (!ret && idx > pg_start) { 1660 nr = idx - pg_start; 1661 if (nr > delta) 1662 nr = delta; 1663 idx -= nr; 1664 1665 f2fs_lock_op(sbi); 1666 f2fs_drop_extent_tree(inode); 1667 1668 ret = __exchange_data_block(inode, inode, idx, 1669 idx + delta, nr, false); 1670 f2fs_unlock_op(sbi); 1671 } 1672 filemap_invalidate_unlock(mapping); 1673 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1674 1675 /* write out all moved pages, if possible */ 1676 filemap_invalidate_lock(mapping); 1677 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1678 truncate_pagecache(inode, offset); 1679 filemap_invalidate_unlock(mapping); 1680 1681 if (!ret) 1682 f2fs_i_size_write(inode, new_size); 1683 return ret; 1684 } 1685 1686 static int expand_inode_data(struct inode *inode, loff_t offset, 1687 loff_t len, int mode) 1688 { 1689 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1690 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1691 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1692 .m_may_create = true }; 1693 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1694 .init_gc_type = FG_GC, 1695 .should_migrate_blocks = false, 1696 .err_gc_skipped = true, 1697 .nr_free_secs = 0 }; 1698 pgoff_t pg_start, pg_end; 1699 loff_t new_size = i_size_read(inode); 1700 loff_t off_end; 1701 block_t expanded = 0; 1702 int err; 1703 1704 err = inode_newsize_ok(inode, (len + offset)); 1705 if (err) 1706 return err; 1707 1708 err = f2fs_convert_inline_inode(inode); 1709 if (err) 1710 return err; 1711 1712 f2fs_balance_fs(sbi, true); 1713 1714 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1715 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1716 off_end = (offset + len) & (PAGE_SIZE - 1); 1717 1718 map.m_lblk = pg_start; 1719 map.m_len = pg_end - pg_start; 1720 if (off_end) 1721 map.m_len++; 1722 1723 if (!map.m_len) 1724 return 0; 1725 1726 if (f2fs_is_pinned_file(inode)) { 1727 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1728 block_t sec_len = roundup(map.m_len, sec_blks); 1729 1730 map.m_len = sec_blks; 1731 next_alloc: 1732 if (has_not_enough_free_secs(sbi, 0, 1733 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1734 f2fs_down_write(&sbi->gc_lock); 1735 err = f2fs_gc(sbi, &gc_control); 1736 if (err && err != -ENODATA) 1737 goto out_err; 1738 } 1739 1740 f2fs_down_write(&sbi->pin_sem); 1741 1742 f2fs_lock_op(sbi); 1743 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 1744 f2fs_unlock_op(sbi); 1745 1746 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1747 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1748 file_dont_truncate(inode); 1749 1750 f2fs_up_write(&sbi->pin_sem); 1751 1752 expanded += map.m_len; 1753 sec_len -= map.m_len; 1754 map.m_lblk += map.m_len; 1755 if (!err && sec_len) 1756 goto next_alloc; 1757 1758 map.m_len = expanded; 1759 } else { 1760 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1761 expanded = map.m_len; 1762 } 1763 out_err: 1764 if (err) { 1765 pgoff_t last_off; 1766 1767 if (!expanded) 1768 return err; 1769 1770 last_off = pg_start + expanded - 1; 1771 1772 /* update new size to the failed position */ 1773 new_size = (last_off == pg_end) ? offset + len : 1774 (loff_t)(last_off + 1) << PAGE_SHIFT; 1775 } else { 1776 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1777 } 1778 1779 if (new_size > i_size_read(inode)) { 1780 if (mode & FALLOC_FL_KEEP_SIZE) 1781 file_set_keep_isize(inode); 1782 else 1783 f2fs_i_size_write(inode, new_size); 1784 } 1785 1786 return err; 1787 } 1788 1789 static long f2fs_fallocate(struct file *file, int mode, 1790 loff_t offset, loff_t len) 1791 { 1792 struct inode *inode = file_inode(file); 1793 long ret = 0; 1794 1795 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1796 return -EIO; 1797 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1798 return -ENOSPC; 1799 if (!f2fs_is_compress_backend_ready(inode)) 1800 return -EOPNOTSUPP; 1801 1802 /* f2fs only support ->fallocate for regular file */ 1803 if (!S_ISREG(inode->i_mode)) 1804 return -EINVAL; 1805 1806 if (IS_ENCRYPTED(inode) && 1807 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1808 return -EOPNOTSUPP; 1809 1810 /* 1811 * Pinned file should not support partial trucation since the block 1812 * can be used by applications. 1813 */ 1814 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1815 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1816 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1817 return -EOPNOTSUPP; 1818 1819 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1820 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1821 FALLOC_FL_INSERT_RANGE)) 1822 return -EOPNOTSUPP; 1823 1824 inode_lock(inode); 1825 1826 ret = file_modified(file); 1827 if (ret) 1828 goto out; 1829 1830 if (mode & FALLOC_FL_PUNCH_HOLE) { 1831 if (offset >= inode->i_size) 1832 goto out; 1833 1834 ret = punch_hole(inode, offset, len); 1835 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1836 ret = f2fs_collapse_range(inode, offset, len); 1837 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1838 ret = f2fs_zero_range(inode, offset, len, mode); 1839 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1840 ret = f2fs_insert_range(inode, offset, len); 1841 } else { 1842 ret = expand_inode_data(inode, offset, len, mode); 1843 } 1844 1845 if (!ret) { 1846 inode->i_mtime = inode->i_ctime = current_time(inode); 1847 f2fs_mark_inode_dirty_sync(inode, false); 1848 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1849 } 1850 1851 out: 1852 inode_unlock(inode); 1853 1854 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1855 return ret; 1856 } 1857 1858 static int f2fs_release_file(struct inode *inode, struct file *filp) 1859 { 1860 /* 1861 * f2fs_relase_file is called at every close calls. So we should 1862 * not drop any inmemory pages by close called by other process. 1863 */ 1864 if (!(filp->f_mode & FMODE_WRITE) || 1865 atomic_read(&inode->i_writecount) != 1) 1866 return 0; 1867 1868 f2fs_abort_atomic_write(inode, true); 1869 return 0; 1870 } 1871 1872 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1873 { 1874 struct inode *inode = file_inode(file); 1875 1876 /* 1877 * If the process doing a transaction is crashed, we should do 1878 * roll-back. Otherwise, other reader/write can see corrupted database 1879 * until all the writers close its file. Since this should be done 1880 * before dropping file lock, it needs to do in ->flush. 1881 */ 1882 if (F2FS_I(inode)->atomic_write_task == current) 1883 f2fs_abort_atomic_write(inode, true); 1884 return 0; 1885 } 1886 1887 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1888 { 1889 struct f2fs_inode_info *fi = F2FS_I(inode); 1890 u32 masked_flags = fi->i_flags & mask; 1891 1892 /* mask can be shrunk by flags_valid selector */ 1893 iflags &= mask; 1894 1895 /* Is it quota file? Do not allow user to mess with it */ 1896 if (IS_NOQUOTA(inode)) 1897 return -EPERM; 1898 1899 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1900 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1901 return -EOPNOTSUPP; 1902 if (!f2fs_empty_dir(inode)) 1903 return -ENOTEMPTY; 1904 } 1905 1906 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1907 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1908 return -EOPNOTSUPP; 1909 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1910 return -EINVAL; 1911 } 1912 1913 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1914 if (masked_flags & F2FS_COMPR_FL) { 1915 if (!f2fs_disable_compressed_file(inode)) 1916 return -EINVAL; 1917 } else { 1918 if (!f2fs_may_compress(inode)) 1919 return -EINVAL; 1920 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 1921 return -EINVAL; 1922 if (set_compress_context(inode)) 1923 return -EOPNOTSUPP; 1924 } 1925 } 1926 1927 fi->i_flags = iflags | (fi->i_flags & ~mask); 1928 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1929 (fi->i_flags & F2FS_NOCOMP_FL)); 1930 1931 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1932 set_inode_flag(inode, FI_PROJ_INHERIT); 1933 else 1934 clear_inode_flag(inode, FI_PROJ_INHERIT); 1935 1936 inode->i_ctime = current_time(inode); 1937 f2fs_set_inode_flags(inode); 1938 f2fs_mark_inode_dirty_sync(inode, true); 1939 return 0; 1940 } 1941 1942 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 1943 1944 /* 1945 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1946 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1947 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1948 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1949 * 1950 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 1951 * FS_IOC_FSSETXATTR is done by the VFS. 1952 */ 1953 1954 static const struct { 1955 u32 iflag; 1956 u32 fsflag; 1957 } f2fs_fsflags_map[] = { 1958 { F2FS_COMPR_FL, FS_COMPR_FL }, 1959 { F2FS_SYNC_FL, FS_SYNC_FL }, 1960 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1961 { F2FS_APPEND_FL, FS_APPEND_FL }, 1962 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1963 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1964 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1965 { F2FS_INDEX_FL, FS_INDEX_FL }, 1966 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1967 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1968 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1969 }; 1970 1971 #define F2FS_GETTABLE_FS_FL ( \ 1972 FS_COMPR_FL | \ 1973 FS_SYNC_FL | \ 1974 FS_IMMUTABLE_FL | \ 1975 FS_APPEND_FL | \ 1976 FS_NODUMP_FL | \ 1977 FS_NOATIME_FL | \ 1978 FS_NOCOMP_FL | \ 1979 FS_INDEX_FL | \ 1980 FS_DIRSYNC_FL | \ 1981 FS_PROJINHERIT_FL | \ 1982 FS_ENCRYPT_FL | \ 1983 FS_INLINE_DATA_FL | \ 1984 FS_NOCOW_FL | \ 1985 FS_VERITY_FL | \ 1986 FS_CASEFOLD_FL) 1987 1988 #define F2FS_SETTABLE_FS_FL ( \ 1989 FS_COMPR_FL | \ 1990 FS_SYNC_FL | \ 1991 FS_IMMUTABLE_FL | \ 1992 FS_APPEND_FL | \ 1993 FS_NODUMP_FL | \ 1994 FS_NOATIME_FL | \ 1995 FS_NOCOMP_FL | \ 1996 FS_DIRSYNC_FL | \ 1997 FS_PROJINHERIT_FL | \ 1998 FS_CASEFOLD_FL) 1999 2000 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 2001 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 2002 { 2003 u32 fsflags = 0; 2004 int i; 2005 2006 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2007 if (iflags & f2fs_fsflags_map[i].iflag) 2008 fsflags |= f2fs_fsflags_map[i].fsflag; 2009 2010 return fsflags; 2011 } 2012 2013 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 2014 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 2015 { 2016 u32 iflags = 0; 2017 int i; 2018 2019 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2020 if (fsflags & f2fs_fsflags_map[i].fsflag) 2021 iflags |= f2fs_fsflags_map[i].iflag; 2022 2023 return iflags; 2024 } 2025 2026 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2027 { 2028 struct inode *inode = file_inode(filp); 2029 2030 return put_user(inode->i_generation, (int __user *)arg); 2031 } 2032 2033 static int f2fs_ioc_start_atomic_write(struct file *filp) 2034 { 2035 struct inode *inode = file_inode(filp); 2036 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2037 struct f2fs_inode_info *fi = F2FS_I(inode); 2038 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2039 struct inode *pinode; 2040 int ret; 2041 2042 if (!inode_owner_or_capable(mnt_userns, inode)) 2043 return -EACCES; 2044 2045 if (!S_ISREG(inode->i_mode)) 2046 return -EINVAL; 2047 2048 if (filp->f_flags & O_DIRECT) 2049 return -EINVAL; 2050 2051 ret = mnt_want_write_file(filp); 2052 if (ret) 2053 return ret; 2054 2055 inode_lock(inode); 2056 2057 if (!f2fs_disable_compressed_file(inode)) { 2058 ret = -EINVAL; 2059 goto out; 2060 } 2061 2062 if (f2fs_is_atomic_file(inode)) 2063 goto out; 2064 2065 ret = f2fs_convert_inline_inode(inode); 2066 if (ret) 2067 goto out; 2068 2069 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2070 2071 /* 2072 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2073 * f2fs_is_atomic_file. 2074 */ 2075 if (get_dirty_pages(inode)) 2076 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2077 inode->i_ino, get_dirty_pages(inode)); 2078 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2079 if (ret) { 2080 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2081 goto out; 2082 } 2083 2084 /* Create a COW inode for atomic write */ 2085 pinode = f2fs_iget(inode->i_sb, fi->i_pino); 2086 if (IS_ERR(pinode)) { 2087 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2088 ret = PTR_ERR(pinode); 2089 goto out; 2090 } 2091 2092 ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode); 2093 iput(pinode); 2094 if (ret) { 2095 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2096 goto out; 2097 } 2098 f2fs_i_size_write(fi->cow_inode, i_size_read(inode)); 2099 2100 stat_inc_atomic_inode(inode); 2101 2102 set_inode_flag(inode, FI_ATOMIC_FILE); 2103 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2104 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2105 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2106 2107 f2fs_update_time(sbi, REQ_TIME); 2108 fi->atomic_write_task = current; 2109 stat_update_max_atomic_write(inode); 2110 fi->atomic_write_cnt = 0; 2111 out: 2112 inode_unlock(inode); 2113 mnt_drop_write_file(filp); 2114 return ret; 2115 } 2116 2117 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2118 { 2119 struct inode *inode = file_inode(filp); 2120 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2121 int ret; 2122 2123 if (!inode_owner_or_capable(mnt_userns, inode)) 2124 return -EACCES; 2125 2126 ret = mnt_want_write_file(filp); 2127 if (ret) 2128 return ret; 2129 2130 f2fs_balance_fs(F2FS_I_SB(inode), true); 2131 2132 inode_lock(inode); 2133 2134 if (f2fs_is_atomic_file(inode)) { 2135 ret = f2fs_commit_atomic_write(inode); 2136 if (ret) 2137 goto unlock_out; 2138 2139 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2140 if (!ret) 2141 f2fs_abort_atomic_write(inode, false); 2142 } else { 2143 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2144 } 2145 unlock_out: 2146 inode_unlock(inode); 2147 mnt_drop_write_file(filp); 2148 return ret; 2149 } 2150 2151 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2152 { 2153 struct inode *inode = file_inode(filp); 2154 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2155 int ret; 2156 2157 if (!inode_owner_or_capable(mnt_userns, inode)) 2158 return -EACCES; 2159 2160 ret = mnt_want_write_file(filp); 2161 if (ret) 2162 return ret; 2163 2164 inode_lock(inode); 2165 2166 f2fs_abort_atomic_write(inode, true); 2167 2168 inode_unlock(inode); 2169 2170 mnt_drop_write_file(filp); 2171 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2172 return ret; 2173 } 2174 2175 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2176 { 2177 struct inode *inode = file_inode(filp); 2178 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2179 struct super_block *sb = sbi->sb; 2180 __u32 in; 2181 int ret = 0; 2182 2183 if (!capable(CAP_SYS_ADMIN)) 2184 return -EPERM; 2185 2186 if (get_user(in, (__u32 __user *)arg)) 2187 return -EFAULT; 2188 2189 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2190 ret = mnt_want_write_file(filp); 2191 if (ret) { 2192 if (ret == -EROFS) { 2193 ret = 0; 2194 f2fs_stop_checkpoint(sbi, false, 2195 STOP_CP_REASON_SHUTDOWN); 2196 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2197 trace_f2fs_shutdown(sbi, in, ret); 2198 } 2199 return ret; 2200 } 2201 } 2202 2203 switch (in) { 2204 case F2FS_GOING_DOWN_FULLSYNC: 2205 ret = freeze_bdev(sb->s_bdev); 2206 if (ret) 2207 goto out; 2208 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2209 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2210 thaw_bdev(sb->s_bdev); 2211 break; 2212 case F2FS_GOING_DOWN_METASYNC: 2213 /* do checkpoint only */ 2214 ret = f2fs_sync_fs(sb, 1); 2215 if (ret) 2216 goto out; 2217 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2218 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2219 break; 2220 case F2FS_GOING_DOWN_NOSYNC: 2221 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2222 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2223 break; 2224 case F2FS_GOING_DOWN_METAFLUSH: 2225 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2226 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2227 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2228 break; 2229 case F2FS_GOING_DOWN_NEED_FSCK: 2230 set_sbi_flag(sbi, SBI_NEED_FSCK); 2231 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2232 set_sbi_flag(sbi, SBI_IS_DIRTY); 2233 /* do checkpoint only */ 2234 ret = f2fs_sync_fs(sb, 1); 2235 goto out; 2236 default: 2237 ret = -EINVAL; 2238 goto out; 2239 } 2240 2241 f2fs_stop_gc_thread(sbi); 2242 f2fs_stop_discard_thread(sbi); 2243 2244 f2fs_drop_discard_cmd(sbi); 2245 clear_opt(sbi, DISCARD); 2246 2247 f2fs_update_time(sbi, REQ_TIME); 2248 out: 2249 if (in != F2FS_GOING_DOWN_FULLSYNC) 2250 mnt_drop_write_file(filp); 2251 2252 trace_f2fs_shutdown(sbi, in, ret); 2253 2254 return ret; 2255 } 2256 2257 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2258 { 2259 struct inode *inode = file_inode(filp); 2260 struct super_block *sb = inode->i_sb; 2261 struct fstrim_range range; 2262 int ret; 2263 2264 if (!capable(CAP_SYS_ADMIN)) 2265 return -EPERM; 2266 2267 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2268 return -EOPNOTSUPP; 2269 2270 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2271 sizeof(range))) 2272 return -EFAULT; 2273 2274 ret = mnt_want_write_file(filp); 2275 if (ret) 2276 return ret; 2277 2278 range.minlen = max((unsigned int)range.minlen, 2279 bdev_discard_granularity(sb->s_bdev)); 2280 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2281 mnt_drop_write_file(filp); 2282 if (ret < 0) 2283 return ret; 2284 2285 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2286 sizeof(range))) 2287 return -EFAULT; 2288 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2289 return 0; 2290 } 2291 2292 static bool uuid_is_nonzero(__u8 u[16]) 2293 { 2294 int i; 2295 2296 for (i = 0; i < 16; i++) 2297 if (u[i]) 2298 return true; 2299 return false; 2300 } 2301 2302 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2303 { 2304 struct inode *inode = file_inode(filp); 2305 2306 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2307 return -EOPNOTSUPP; 2308 2309 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2310 2311 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2312 } 2313 2314 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2315 { 2316 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2317 return -EOPNOTSUPP; 2318 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2319 } 2320 2321 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2322 { 2323 struct inode *inode = file_inode(filp); 2324 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2325 int err; 2326 2327 if (!f2fs_sb_has_encrypt(sbi)) 2328 return -EOPNOTSUPP; 2329 2330 err = mnt_want_write_file(filp); 2331 if (err) 2332 return err; 2333 2334 f2fs_down_write(&sbi->sb_lock); 2335 2336 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2337 goto got_it; 2338 2339 /* update superblock with uuid */ 2340 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2341 2342 err = f2fs_commit_super(sbi, false); 2343 if (err) { 2344 /* undo new data */ 2345 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2346 goto out_err; 2347 } 2348 got_it: 2349 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2350 16)) 2351 err = -EFAULT; 2352 out_err: 2353 f2fs_up_write(&sbi->sb_lock); 2354 mnt_drop_write_file(filp); 2355 return err; 2356 } 2357 2358 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2359 unsigned long arg) 2360 { 2361 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2362 return -EOPNOTSUPP; 2363 2364 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2365 } 2366 2367 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2368 { 2369 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2370 return -EOPNOTSUPP; 2371 2372 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2373 } 2374 2375 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2376 { 2377 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2378 return -EOPNOTSUPP; 2379 2380 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2381 } 2382 2383 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2384 unsigned long arg) 2385 { 2386 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2387 return -EOPNOTSUPP; 2388 2389 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2390 } 2391 2392 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2393 unsigned long arg) 2394 { 2395 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2396 return -EOPNOTSUPP; 2397 2398 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2399 } 2400 2401 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2402 { 2403 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2404 return -EOPNOTSUPP; 2405 2406 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2407 } 2408 2409 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2410 { 2411 struct inode *inode = file_inode(filp); 2412 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2413 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2414 .no_bg_gc = false, 2415 .should_migrate_blocks = false, 2416 .nr_free_secs = 0 }; 2417 __u32 sync; 2418 int ret; 2419 2420 if (!capable(CAP_SYS_ADMIN)) 2421 return -EPERM; 2422 2423 if (get_user(sync, (__u32 __user *)arg)) 2424 return -EFAULT; 2425 2426 if (f2fs_readonly(sbi->sb)) 2427 return -EROFS; 2428 2429 ret = mnt_want_write_file(filp); 2430 if (ret) 2431 return ret; 2432 2433 if (!sync) { 2434 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2435 ret = -EBUSY; 2436 goto out; 2437 } 2438 } else { 2439 f2fs_down_write(&sbi->gc_lock); 2440 } 2441 2442 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2443 gc_control.err_gc_skipped = sync; 2444 ret = f2fs_gc(sbi, &gc_control); 2445 out: 2446 mnt_drop_write_file(filp); 2447 return ret; 2448 } 2449 2450 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2451 { 2452 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2453 struct f2fs_gc_control gc_control = { 2454 .init_gc_type = range->sync ? FG_GC : BG_GC, 2455 .no_bg_gc = false, 2456 .should_migrate_blocks = false, 2457 .err_gc_skipped = range->sync, 2458 .nr_free_secs = 0 }; 2459 u64 end; 2460 int ret; 2461 2462 if (!capable(CAP_SYS_ADMIN)) 2463 return -EPERM; 2464 if (f2fs_readonly(sbi->sb)) 2465 return -EROFS; 2466 2467 end = range->start + range->len; 2468 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2469 end >= MAX_BLKADDR(sbi)) 2470 return -EINVAL; 2471 2472 ret = mnt_want_write_file(filp); 2473 if (ret) 2474 return ret; 2475 2476 do_more: 2477 if (!range->sync) { 2478 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2479 ret = -EBUSY; 2480 goto out; 2481 } 2482 } else { 2483 f2fs_down_write(&sbi->gc_lock); 2484 } 2485 2486 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2487 ret = f2fs_gc(sbi, &gc_control); 2488 if (ret) { 2489 if (ret == -EBUSY) 2490 ret = -EAGAIN; 2491 goto out; 2492 } 2493 range->start += CAP_BLKS_PER_SEC(sbi); 2494 if (range->start <= end) 2495 goto do_more; 2496 out: 2497 mnt_drop_write_file(filp); 2498 return ret; 2499 } 2500 2501 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2502 { 2503 struct f2fs_gc_range range; 2504 2505 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2506 sizeof(range))) 2507 return -EFAULT; 2508 return __f2fs_ioc_gc_range(filp, &range); 2509 } 2510 2511 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2512 { 2513 struct inode *inode = file_inode(filp); 2514 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2515 int ret; 2516 2517 if (!capable(CAP_SYS_ADMIN)) 2518 return -EPERM; 2519 2520 if (f2fs_readonly(sbi->sb)) 2521 return -EROFS; 2522 2523 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2524 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2525 return -EINVAL; 2526 } 2527 2528 ret = mnt_want_write_file(filp); 2529 if (ret) 2530 return ret; 2531 2532 ret = f2fs_sync_fs(sbi->sb, 1); 2533 2534 mnt_drop_write_file(filp); 2535 return ret; 2536 } 2537 2538 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2539 struct file *filp, 2540 struct f2fs_defragment *range) 2541 { 2542 struct inode *inode = file_inode(filp); 2543 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2544 .m_seg_type = NO_CHECK_TYPE, 2545 .m_may_create = false }; 2546 struct extent_info ei = {0, 0, 0}; 2547 pgoff_t pg_start, pg_end, next_pgofs; 2548 unsigned int blk_per_seg = sbi->blocks_per_seg; 2549 unsigned int total = 0, sec_num; 2550 block_t blk_end = 0; 2551 bool fragmented = false; 2552 int err; 2553 2554 pg_start = range->start >> PAGE_SHIFT; 2555 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2556 2557 f2fs_balance_fs(sbi, true); 2558 2559 inode_lock(inode); 2560 2561 /* if in-place-update policy is enabled, don't waste time here */ 2562 set_inode_flag(inode, FI_OPU_WRITE); 2563 if (f2fs_should_update_inplace(inode, NULL)) { 2564 err = -EINVAL; 2565 goto out; 2566 } 2567 2568 /* writeback all dirty pages in the range */ 2569 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2570 range->start + range->len - 1); 2571 if (err) 2572 goto out; 2573 2574 /* 2575 * lookup mapping info in extent cache, skip defragmenting if physical 2576 * block addresses are continuous. 2577 */ 2578 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) { 2579 if (ei.fofs + ei.len >= pg_end) 2580 goto out; 2581 } 2582 2583 map.m_lblk = pg_start; 2584 map.m_next_pgofs = &next_pgofs; 2585 2586 /* 2587 * lookup mapping info in dnode page cache, skip defragmenting if all 2588 * physical block addresses are continuous even if there are hole(s) 2589 * in logical blocks. 2590 */ 2591 while (map.m_lblk < pg_end) { 2592 map.m_len = pg_end - map.m_lblk; 2593 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2594 if (err) 2595 goto out; 2596 2597 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2598 map.m_lblk = next_pgofs; 2599 continue; 2600 } 2601 2602 if (blk_end && blk_end != map.m_pblk) 2603 fragmented = true; 2604 2605 /* record total count of block that we're going to move */ 2606 total += map.m_len; 2607 2608 blk_end = map.m_pblk + map.m_len; 2609 2610 map.m_lblk += map.m_len; 2611 } 2612 2613 if (!fragmented) { 2614 total = 0; 2615 goto out; 2616 } 2617 2618 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2619 2620 /* 2621 * make sure there are enough free section for LFS allocation, this can 2622 * avoid defragment running in SSR mode when free section are allocated 2623 * intensively 2624 */ 2625 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2626 err = -EAGAIN; 2627 goto out; 2628 } 2629 2630 map.m_lblk = pg_start; 2631 map.m_len = pg_end - pg_start; 2632 total = 0; 2633 2634 while (map.m_lblk < pg_end) { 2635 pgoff_t idx; 2636 int cnt = 0; 2637 2638 do_map: 2639 map.m_len = pg_end - map.m_lblk; 2640 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2641 if (err) 2642 goto clear_out; 2643 2644 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2645 map.m_lblk = next_pgofs; 2646 goto check; 2647 } 2648 2649 set_inode_flag(inode, FI_SKIP_WRITES); 2650 2651 idx = map.m_lblk; 2652 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2653 struct page *page; 2654 2655 page = f2fs_get_lock_data_page(inode, idx, true); 2656 if (IS_ERR(page)) { 2657 err = PTR_ERR(page); 2658 goto clear_out; 2659 } 2660 2661 set_page_dirty(page); 2662 set_page_private_gcing(page); 2663 f2fs_put_page(page, 1); 2664 2665 idx++; 2666 cnt++; 2667 total++; 2668 } 2669 2670 map.m_lblk = idx; 2671 check: 2672 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2673 goto do_map; 2674 2675 clear_inode_flag(inode, FI_SKIP_WRITES); 2676 2677 err = filemap_fdatawrite(inode->i_mapping); 2678 if (err) 2679 goto out; 2680 } 2681 clear_out: 2682 clear_inode_flag(inode, FI_SKIP_WRITES); 2683 out: 2684 clear_inode_flag(inode, FI_OPU_WRITE); 2685 inode_unlock(inode); 2686 if (!err) 2687 range->len = (u64)total << PAGE_SHIFT; 2688 return err; 2689 } 2690 2691 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2692 { 2693 struct inode *inode = file_inode(filp); 2694 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2695 struct f2fs_defragment range; 2696 int err; 2697 2698 if (!capable(CAP_SYS_ADMIN)) 2699 return -EPERM; 2700 2701 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2702 return -EINVAL; 2703 2704 if (f2fs_readonly(sbi->sb)) 2705 return -EROFS; 2706 2707 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2708 sizeof(range))) 2709 return -EFAULT; 2710 2711 /* verify alignment of offset & size */ 2712 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2713 return -EINVAL; 2714 2715 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2716 max_file_blocks(inode))) 2717 return -EINVAL; 2718 2719 err = mnt_want_write_file(filp); 2720 if (err) 2721 return err; 2722 2723 err = f2fs_defragment_range(sbi, filp, &range); 2724 mnt_drop_write_file(filp); 2725 2726 f2fs_update_time(sbi, REQ_TIME); 2727 if (err < 0) 2728 return err; 2729 2730 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2731 sizeof(range))) 2732 return -EFAULT; 2733 2734 return 0; 2735 } 2736 2737 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2738 struct file *file_out, loff_t pos_out, size_t len) 2739 { 2740 struct inode *src = file_inode(file_in); 2741 struct inode *dst = file_inode(file_out); 2742 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2743 size_t olen = len, dst_max_i_size = 0; 2744 size_t dst_osize; 2745 int ret; 2746 2747 if (file_in->f_path.mnt != file_out->f_path.mnt || 2748 src->i_sb != dst->i_sb) 2749 return -EXDEV; 2750 2751 if (unlikely(f2fs_readonly(src->i_sb))) 2752 return -EROFS; 2753 2754 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2755 return -EINVAL; 2756 2757 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2758 return -EOPNOTSUPP; 2759 2760 if (pos_out < 0 || pos_in < 0) 2761 return -EINVAL; 2762 2763 if (src == dst) { 2764 if (pos_in == pos_out) 2765 return 0; 2766 if (pos_out > pos_in && pos_out < pos_in + len) 2767 return -EINVAL; 2768 } 2769 2770 inode_lock(src); 2771 if (src != dst) { 2772 ret = -EBUSY; 2773 if (!inode_trylock(dst)) 2774 goto out; 2775 } 2776 2777 ret = -EINVAL; 2778 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2779 goto out_unlock; 2780 if (len == 0) 2781 olen = len = src->i_size - pos_in; 2782 if (pos_in + len == src->i_size) 2783 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2784 if (len == 0) { 2785 ret = 0; 2786 goto out_unlock; 2787 } 2788 2789 dst_osize = dst->i_size; 2790 if (pos_out + olen > dst->i_size) 2791 dst_max_i_size = pos_out + olen; 2792 2793 /* verify the end result is block aligned */ 2794 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2795 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2796 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2797 goto out_unlock; 2798 2799 ret = f2fs_convert_inline_inode(src); 2800 if (ret) 2801 goto out_unlock; 2802 2803 ret = f2fs_convert_inline_inode(dst); 2804 if (ret) 2805 goto out_unlock; 2806 2807 /* write out all dirty pages from offset */ 2808 ret = filemap_write_and_wait_range(src->i_mapping, 2809 pos_in, pos_in + len); 2810 if (ret) 2811 goto out_unlock; 2812 2813 ret = filemap_write_and_wait_range(dst->i_mapping, 2814 pos_out, pos_out + len); 2815 if (ret) 2816 goto out_unlock; 2817 2818 f2fs_balance_fs(sbi, true); 2819 2820 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2821 if (src != dst) { 2822 ret = -EBUSY; 2823 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2824 goto out_src; 2825 } 2826 2827 f2fs_lock_op(sbi); 2828 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2829 pos_out >> F2FS_BLKSIZE_BITS, 2830 len >> F2FS_BLKSIZE_BITS, false); 2831 2832 if (!ret) { 2833 if (dst_max_i_size) 2834 f2fs_i_size_write(dst, dst_max_i_size); 2835 else if (dst_osize != dst->i_size) 2836 f2fs_i_size_write(dst, dst_osize); 2837 } 2838 f2fs_unlock_op(sbi); 2839 2840 if (src != dst) 2841 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2842 out_src: 2843 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2844 out_unlock: 2845 if (src != dst) 2846 inode_unlock(dst); 2847 out: 2848 inode_unlock(src); 2849 return ret; 2850 } 2851 2852 static int __f2fs_ioc_move_range(struct file *filp, 2853 struct f2fs_move_range *range) 2854 { 2855 struct fd dst; 2856 int err; 2857 2858 if (!(filp->f_mode & FMODE_READ) || 2859 !(filp->f_mode & FMODE_WRITE)) 2860 return -EBADF; 2861 2862 dst = fdget(range->dst_fd); 2863 if (!dst.file) 2864 return -EBADF; 2865 2866 if (!(dst.file->f_mode & FMODE_WRITE)) { 2867 err = -EBADF; 2868 goto err_out; 2869 } 2870 2871 err = mnt_want_write_file(filp); 2872 if (err) 2873 goto err_out; 2874 2875 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2876 range->pos_out, range->len); 2877 2878 mnt_drop_write_file(filp); 2879 err_out: 2880 fdput(dst); 2881 return err; 2882 } 2883 2884 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2885 { 2886 struct f2fs_move_range range; 2887 2888 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2889 sizeof(range))) 2890 return -EFAULT; 2891 return __f2fs_ioc_move_range(filp, &range); 2892 } 2893 2894 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2895 { 2896 struct inode *inode = file_inode(filp); 2897 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2898 struct sit_info *sm = SIT_I(sbi); 2899 unsigned int start_segno = 0, end_segno = 0; 2900 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2901 struct f2fs_flush_device range; 2902 struct f2fs_gc_control gc_control = { 2903 .init_gc_type = FG_GC, 2904 .should_migrate_blocks = true, 2905 .err_gc_skipped = true, 2906 .nr_free_secs = 0 }; 2907 int ret; 2908 2909 if (!capable(CAP_SYS_ADMIN)) 2910 return -EPERM; 2911 2912 if (f2fs_readonly(sbi->sb)) 2913 return -EROFS; 2914 2915 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2916 return -EINVAL; 2917 2918 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2919 sizeof(range))) 2920 return -EFAULT; 2921 2922 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2923 __is_large_section(sbi)) { 2924 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2925 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2926 return -EINVAL; 2927 } 2928 2929 ret = mnt_want_write_file(filp); 2930 if (ret) 2931 return ret; 2932 2933 if (range.dev_num != 0) 2934 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2935 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2936 2937 start_segno = sm->last_victim[FLUSH_DEVICE]; 2938 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2939 start_segno = dev_start_segno; 2940 end_segno = min(start_segno + range.segments, dev_end_segno); 2941 2942 while (start_segno < end_segno) { 2943 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2944 ret = -EBUSY; 2945 goto out; 2946 } 2947 sm->last_victim[GC_CB] = end_segno + 1; 2948 sm->last_victim[GC_GREEDY] = end_segno + 1; 2949 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2950 2951 gc_control.victim_segno = start_segno; 2952 ret = f2fs_gc(sbi, &gc_control); 2953 if (ret == -EAGAIN) 2954 ret = 0; 2955 else if (ret < 0) 2956 break; 2957 start_segno++; 2958 } 2959 out: 2960 mnt_drop_write_file(filp); 2961 return ret; 2962 } 2963 2964 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2965 { 2966 struct inode *inode = file_inode(filp); 2967 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2968 2969 /* Must validate to set it with SQLite behavior in Android. */ 2970 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2971 2972 return put_user(sb_feature, (u32 __user *)arg); 2973 } 2974 2975 #ifdef CONFIG_QUOTA 2976 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2977 { 2978 struct dquot *transfer_to[MAXQUOTAS] = {}; 2979 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2980 struct super_block *sb = sbi->sb; 2981 int err = 0; 2982 2983 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 2984 if (!IS_ERR(transfer_to[PRJQUOTA])) { 2985 err = __dquot_transfer(inode, transfer_to); 2986 if (err) 2987 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2988 dqput(transfer_to[PRJQUOTA]); 2989 } 2990 return err; 2991 } 2992 2993 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 2994 { 2995 struct f2fs_inode_info *fi = F2FS_I(inode); 2996 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2997 struct f2fs_inode *ri = NULL; 2998 kprojid_t kprojid; 2999 int err; 3000 3001 if (!f2fs_sb_has_project_quota(sbi)) { 3002 if (projid != F2FS_DEF_PROJID) 3003 return -EOPNOTSUPP; 3004 else 3005 return 0; 3006 } 3007 3008 if (!f2fs_has_extra_attr(inode)) 3009 return -EOPNOTSUPP; 3010 3011 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3012 3013 if (projid_eq(kprojid, fi->i_projid)) 3014 return 0; 3015 3016 err = -EPERM; 3017 /* Is it quota file? Do not allow user to mess with it */ 3018 if (IS_NOQUOTA(inode)) 3019 return err; 3020 3021 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 3022 return -EOVERFLOW; 3023 3024 err = f2fs_dquot_initialize(inode); 3025 if (err) 3026 return err; 3027 3028 f2fs_lock_op(sbi); 3029 err = f2fs_transfer_project_quota(inode, kprojid); 3030 if (err) 3031 goto out_unlock; 3032 3033 fi->i_projid = kprojid; 3034 inode->i_ctime = current_time(inode); 3035 f2fs_mark_inode_dirty_sync(inode, true); 3036 out_unlock: 3037 f2fs_unlock_op(sbi); 3038 return err; 3039 } 3040 #else 3041 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3042 { 3043 return 0; 3044 } 3045 3046 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3047 { 3048 if (projid != F2FS_DEF_PROJID) 3049 return -EOPNOTSUPP; 3050 return 0; 3051 } 3052 #endif 3053 3054 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3055 { 3056 struct inode *inode = d_inode(dentry); 3057 struct f2fs_inode_info *fi = F2FS_I(inode); 3058 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3059 3060 if (IS_ENCRYPTED(inode)) 3061 fsflags |= FS_ENCRYPT_FL; 3062 if (IS_VERITY(inode)) 3063 fsflags |= FS_VERITY_FL; 3064 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3065 fsflags |= FS_INLINE_DATA_FL; 3066 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3067 fsflags |= FS_NOCOW_FL; 3068 3069 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3070 3071 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3072 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3073 3074 return 0; 3075 } 3076 3077 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3078 struct dentry *dentry, struct fileattr *fa) 3079 { 3080 struct inode *inode = d_inode(dentry); 3081 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3082 u32 iflags; 3083 int err; 3084 3085 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3086 return -EIO; 3087 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3088 return -ENOSPC; 3089 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3090 return -EOPNOTSUPP; 3091 fsflags &= F2FS_SETTABLE_FS_FL; 3092 if (!fa->flags_valid) 3093 mask &= FS_COMMON_FL; 3094 3095 iflags = f2fs_fsflags_to_iflags(fsflags); 3096 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3097 return -EOPNOTSUPP; 3098 3099 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3100 if (!err) 3101 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3102 3103 return err; 3104 } 3105 3106 int f2fs_pin_file_control(struct inode *inode, bool inc) 3107 { 3108 struct f2fs_inode_info *fi = F2FS_I(inode); 3109 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3110 3111 /* Use i_gc_failures for normal file as a risk signal. */ 3112 if (inc) 3113 f2fs_i_gc_failures_write(inode, 3114 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3115 3116 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3117 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3118 __func__, inode->i_ino, 3119 fi->i_gc_failures[GC_FAILURE_PIN]); 3120 clear_inode_flag(inode, FI_PIN_FILE); 3121 return -EAGAIN; 3122 } 3123 return 0; 3124 } 3125 3126 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3127 { 3128 struct inode *inode = file_inode(filp); 3129 __u32 pin; 3130 int ret = 0; 3131 3132 if (get_user(pin, (__u32 __user *)arg)) 3133 return -EFAULT; 3134 3135 if (!S_ISREG(inode->i_mode)) 3136 return -EINVAL; 3137 3138 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3139 return -EROFS; 3140 3141 ret = mnt_want_write_file(filp); 3142 if (ret) 3143 return ret; 3144 3145 inode_lock(inode); 3146 3147 if (!pin) { 3148 clear_inode_flag(inode, FI_PIN_FILE); 3149 f2fs_i_gc_failures_write(inode, 0); 3150 goto done; 3151 } 3152 3153 if (f2fs_should_update_outplace(inode, NULL)) { 3154 ret = -EINVAL; 3155 goto out; 3156 } 3157 3158 if (f2fs_pin_file_control(inode, false)) { 3159 ret = -EAGAIN; 3160 goto out; 3161 } 3162 3163 ret = f2fs_convert_inline_inode(inode); 3164 if (ret) 3165 goto out; 3166 3167 if (!f2fs_disable_compressed_file(inode)) { 3168 ret = -EOPNOTSUPP; 3169 goto out; 3170 } 3171 3172 set_inode_flag(inode, FI_PIN_FILE); 3173 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3174 done: 3175 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3176 out: 3177 inode_unlock(inode); 3178 mnt_drop_write_file(filp); 3179 return ret; 3180 } 3181 3182 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3183 { 3184 struct inode *inode = file_inode(filp); 3185 __u32 pin = 0; 3186 3187 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3188 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3189 return put_user(pin, (u32 __user *)arg); 3190 } 3191 3192 int f2fs_precache_extents(struct inode *inode) 3193 { 3194 struct f2fs_inode_info *fi = F2FS_I(inode); 3195 struct f2fs_map_blocks map; 3196 pgoff_t m_next_extent; 3197 loff_t end; 3198 int err; 3199 3200 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3201 return -EOPNOTSUPP; 3202 3203 map.m_lblk = 0; 3204 map.m_next_pgofs = NULL; 3205 map.m_next_extent = &m_next_extent; 3206 map.m_seg_type = NO_CHECK_TYPE; 3207 map.m_may_create = false; 3208 end = max_file_blocks(inode); 3209 3210 while (map.m_lblk < end) { 3211 map.m_len = end - map.m_lblk; 3212 3213 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3214 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3215 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3216 if (err) 3217 return err; 3218 3219 map.m_lblk = m_next_extent; 3220 } 3221 3222 return 0; 3223 } 3224 3225 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3226 { 3227 return f2fs_precache_extents(file_inode(filp)); 3228 } 3229 3230 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3231 { 3232 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3233 __u64 block_count; 3234 3235 if (!capable(CAP_SYS_ADMIN)) 3236 return -EPERM; 3237 3238 if (f2fs_readonly(sbi->sb)) 3239 return -EROFS; 3240 3241 if (copy_from_user(&block_count, (void __user *)arg, 3242 sizeof(block_count))) 3243 return -EFAULT; 3244 3245 return f2fs_resize_fs(sbi, block_count); 3246 } 3247 3248 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3249 { 3250 struct inode *inode = file_inode(filp); 3251 3252 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3253 3254 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3255 f2fs_warn(F2FS_I_SB(inode), 3256 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3257 inode->i_ino); 3258 return -EOPNOTSUPP; 3259 } 3260 3261 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3262 } 3263 3264 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3265 { 3266 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3267 return -EOPNOTSUPP; 3268 3269 return fsverity_ioctl_measure(filp, (void __user *)arg); 3270 } 3271 3272 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3273 { 3274 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3275 return -EOPNOTSUPP; 3276 3277 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3278 } 3279 3280 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3281 { 3282 struct inode *inode = file_inode(filp); 3283 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3284 char *vbuf; 3285 int count; 3286 int err = 0; 3287 3288 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3289 if (!vbuf) 3290 return -ENOMEM; 3291 3292 f2fs_down_read(&sbi->sb_lock); 3293 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3294 ARRAY_SIZE(sbi->raw_super->volume_name), 3295 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3296 f2fs_up_read(&sbi->sb_lock); 3297 3298 if (copy_to_user((char __user *)arg, vbuf, 3299 min(FSLABEL_MAX, count))) 3300 err = -EFAULT; 3301 3302 kfree(vbuf); 3303 return err; 3304 } 3305 3306 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3307 { 3308 struct inode *inode = file_inode(filp); 3309 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3310 char *vbuf; 3311 int err = 0; 3312 3313 if (!capable(CAP_SYS_ADMIN)) 3314 return -EPERM; 3315 3316 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3317 if (IS_ERR(vbuf)) 3318 return PTR_ERR(vbuf); 3319 3320 err = mnt_want_write_file(filp); 3321 if (err) 3322 goto out; 3323 3324 f2fs_down_write(&sbi->sb_lock); 3325 3326 memset(sbi->raw_super->volume_name, 0, 3327 sizeof(sbi->raw_super->volume_name)); 3328 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3329 sbi->raw_super->volume_name, 3330 ARRAY_SIZE(sbi->raw_super->volume_name)); 3331 3332 err = f2fs_commit_super(sbi, false); 3333 3334 f2fs_up_write(&sbi->sb_lock); 3335 3336 mnt_drop_write_file(filp); 3337 out: 3338 kfree(vbuf); 3339 return err; 3340 } 3341 3342 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3343 { 3344 struct inode *inode = file_inode(filp); 3345 __u64 blocks; 3346 3347 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3348 return -EOPNOTSUPP; 3349 3350 if (!f2fs_compressed_file(inode)) 3351 return -EINVAL; 3352 3353 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3354 return put_user(blocks, (u64 __user *)arg); 3355 } 3356 3357 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3358 { 3359 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3360 unsigned int released_blocks = 0; 3361 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3362 block_t blkaddr; 3363 int i; 3364 3365 for (i = 0; i < count; i++) { 3366 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3367 dn->ofs_in_node + i); 3368 3369 if (!__is_valid_data_blkaddr(blkaddr)) 3370 continue; 3371 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3372 DATA_GENERIC_ENHANCE))) { 3373 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3374 return -EFSCORRUPTED; 3375 } 3376 } 3377 3378 while (count) { 3379 int compr_blocks = 0; 3380 3381 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3382 blkaddr = f2fs_data_blkaddr(dn); 3383 3384 if (i == 0) { 3385 if (blkaddr == COMPRESS_ADDR) 3386 continue; 3387 dn->ofs_in_node += cluster_size; 3388 goto next; 3389 } 3390 3391 if (__is_valid_data_blkaddr(blkaddr)) 3392 compr_blocks++; 3393 3394 if (blkaddr != NEW_ADDR) 3395 continue; 3396 3397 dn->data_blkaddr = NULL_ADDR; 3398 f2fs_set_data_blkaddr(dn); 3399 } 3400 3401 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3402 dec_valid_block_count(sbi, dn->inode, 3403 cluster_size - compr_blocks); 3404 3405 released_blocks += cluster_size - compr_blocks; 3406 next: 3407 count -= cluster_size; 3408 } 3409 3410 return released_blocks; 3411 } 3412 3413 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3414 { 3415 struct inode *inode = file_inode(filp); 3416 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3417 pgoff_t page_idx = 0, last_idx; 3418 unsigned int released_blocks = 0; 3419 int ret; 3420 int writecount; 3421 3422 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3423 return -EOPNOTSUPP; 3424 3425 if (!f2fs_compressed_file(inode)) 3426 return -EINVAL; 3427 3428 if (f2fs_readonly(sbi->sb)) 3429 return -EROFS; 3430 3431 ret = mnt_want_write_file(filp); 3432 if (ret) 3433 return ret; 3434 3435 f2fs_balance_fs(F2FS_I_SB(inode), true); 3436 3437 inode_lock(inode); 3438 3439 writecount = atomic_read(&inode->i_writecount); 3440 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3441 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3442 ret = -EBUSY; 3443 goto out; 3444 } 3445 3446 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3447 ret = -EINVAL; 3448 goto out; 3449 } 3450 3451 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3452 if (ret) 3453 goto out; 3454 3455 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3456 inode->i_ctime = current_time(inode); 3457 f2fs_mark_inode_dirty_sync(inode, true); 3458 3459 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3460 goto out; 3461 3462 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3463 filemap_invalidate_lock(inode->i_mapping); 3464 3465 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3466 3467 while (page_idx < last_idx) { 3468 struct dnode_of_data dn; 3469 pgoff_t end_offset, count; 3470 3471 set_new_dnode(&dn, inode, NULL, NULL, 0); 3472 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3473 if (ret) { 3474 if (ret == -ENOENT) { 3475 page_idx = f2fs_get_next_page_offset(&dn, 3476 page_idx); 3477 ret = 0; 3478 continue; 3479 } 3480 break; 3481 } 3482 3483 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3484 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3485 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3486 3487 ret = release_compress_blocks(&dn, count); 3488 3489 f2fs_put_dnode(&dn); 3490 3491 if (ret < 0) 3492 break; 3493 3494 page_idx += count; 3495 released_blocks += ret; 3496 } 3497 3498 filemap_invalidate_unlock(inode->i_mapping); 3499 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3500 out: 3501 inode_unlock(inode); 3502 3503 mnt_drop_write_file(filp); 3504 3505 if (ret >= 0) { 3506 ret = put_user(released_blocks, (u64 __user *)arg); 3507 } else if (released_blocks && 3508 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3509 set_sbi_flag(sbi, SBI_NEED_FSCK); 3510 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3511 "iblocks=%llu, released=%u, compr_blocks=%u, " 3512 "run fsck to fix.", 3513 __func__, inode->i_ino, inode->i_blocks, 3514 released_blocks, 3515 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3516 } 3517 3518 return ret; 3519 } 3520 3521 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3522 { 3523 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3524 unsigned int reserved_blocks = 0; 3525 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3526 block_t blkaddr; 3527 int i; 3528 3529 for (i = 0; i < count; i++) { 3530 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3531 dn->ofs_in_node + i); 3532 3533 if (!__is_valid_data_blkaddr(blkaddr)) 3534 continue; 3535 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3536 DATA_GENERIC_ENHANCE))) { 3537 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3538 return -EFSCORRUPTED; 3539 } 3540 } 3541 3542 while (count) { 3543 int compr_blocks = 0; 3544 blkcnt_t reserved; 3545 int ret; 3546 3547 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3548 blkaddr = f2fs_data_blkaddr(dn); 3549 3550 if (i == 0) { 3551 if (blkaddr == COMPRESS_ADDR) 3552 continue; 3553 dn->ofs_in_node += cluster_size; 3554 goto next; 3555 } 3556 3557 if (__is_valid_data_blkaddr(blkaddr)) { 3558 compr_blocks++; 3559 continue; 3560 } 3561 3562 dn->data_blkaddr = NEW_ADDR; 3563 f2fs_set_data_blkaddr(dn); 3564 } 3565 3566 reserved = cluster_size - compr_blocks; 3567 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3568 if (ret) 3569 return ret; 3570 3571 if (reserved != cluster_size - compr_blocks) 3572 return -ENOSPC; 3573 3574 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3575 3576 reserved_blocks += reserved; 3577 next: 3578 count -= cluster_size; 3579 } 3580 3581 return reserved_blocks; 3582 } 3583 3584 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3585 { 3586 struct inode *inode = file_inode(filp); 3587 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3588 pgoff_t page_idx = 0, last_idx; 3589 unsigned int reserved_blocks = 0; 3590 int ret; 3591 3592 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3593 return -EOPNOTSUPP; 3594 3595 if (!f2fs_compressed_file(inode)) 3596 return -EINVAL; 3597 3598 if (f2fs_readonly(sbi->sb)) 3599 return -EROFS; 3600 3601 ret = mnt_want_write_file(filp); 3602 if (ret) 3603 return ret; 3604 3605 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3606 goto out; 3607 3608 f2fs_balance_fs(F2FS_I_SB(inode), true); 3609 3610 inode_lock(inode); 3611 3612 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3613 ret = -EINVAL; 3614 goto unlock_inode; 3615 } 3616 3617 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3618 filemap_invalidate_lock(inode->i_mapping); 3619 3620 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3621 3622 while (page_idx < last_idx) { 3623 struct dnode_of_data dn; 3624 pgoff_t end_offset, count; 3625 3626 set_new_dnode(&dn, inode, NULL, NULL, 0); 3627 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3628 if (ret) { 3629 if (ret == -ENOENT) { 3630 page_idx = f2fs_get_next_page_offset(&dn, 3631 page_idx); 3632 ret = 0; 3633 continue; 3634 } 3635 break; 3636 } 3637 3638 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3639 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3640 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3641 3642 ret = reserve_compress_blocks(&dn, count); 3643 3644 f2fs_put_dnode(&dn); 3645 3646 if (ret < 0) 3647 break; 3648 3649 page_idx += count; 3650 reserved_blocks += ret; 3651 } 3652 3653 filemap_invalidate_unlock(inode->i_mapping); 3654 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3655 3656 if (ret >= 0) { 3657 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3658 inode->i_ctime = current_time(inode); 3659 f2fs_mark_inode_dirty_sync(inode, true); 3660 } 3661 unlock_inode: 3662 inode_unlock(inode); 3663 out: 3664 mnt_drop_write_file(filp); 3665 3666 if (ret >= 0) { 3667 ret = put_user(reserved_blocks, (u64 __user *)arg); 3668 } else if (reserved_blocks && 3669 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3670 set_sbi_flag(sbi, SBI_NEED_FSCK); 3671 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3672 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3673 "run fsck to fix.", 3674 __func__, inode->i_ino, inode->i_blocks, 3675 reserved_blocks, 3676 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3677 } 3678 3679 return ret; 3680 } 3681 3682 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3683 pgoff_t off, block_t block, block_t len, u32 flags) 3684 { 3685 sector_t sector = SECTOR_FROM_BLOCK(block); 3686 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3687 int ret = 0; 3688 3689 if (flags & F2FS_TRIM_FILE_DISCARD) { 3690 if (bdev_max_secure_erase_sectors(bdev)) 3691 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3692 GFP_NOFS); 3693 else 3694 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3695 GFP_NOFS); 3696 } 3697 3698 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3699 if (IS_ENCRYPTED(inode)) 3700 ret = fscrypt_zeroout_range(inode, off, block, len); 3701 else 3702 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3703 GFP_NOFS, 0); 3704 } 3705 3706 return ret; 3707 } 3708 3709 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3710 { 3711 struct inode *inode = file_inode(filp); 3712 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3713 struct address_space *mapping = inode->i_mapping; 3714 struct block_device *prev_bdev = NULL; 3715 struct f2fs_sectrim_range range; 3716 pgoff_t index, pg_end, prev_index = 0; 3717 block_t prev_block = 0, len = 0; 3718 loff_t end_addr; 3719 bool to_end = false; 3720 int ret = 0; 3721 3722 if (!(filp->f_mode & FMODE_WRITE)) 3723 return -EBADF; 3724 3725 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3726 sizeof(range))) 3727 return -EFAULT; 3728 3729 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3730 !S_ISREG(inode->i_mode)) 3731 return -EINVAL; 3732 3733 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3734 !f2fs_hw_support_discard(sbi)) || 3735 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3736 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3737 return -EOPNOTSUPP; 3738 3739 file_start_write(filp); 3740 inode_lock(inode); 3741 3742 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3743 range.start >= inode->i_size) { 3744 ret = -EINVAL; 3745 goto err; 3746 } 3747 3748 if (range.len == 0) 3749 goto err; 3750 3751 if (inode->i_size - range.start > range.len) { 3752 end_addr = range.start + range.len; 3753 } else { 3754 end_addr = range.len == (u64)-1 ? 3755 sbi->sb->s_maxbytes : inode->i_size; 3756 to_end = true; 3757 } 3758 3759 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3760 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3761 ret = -EINVAL; 3762 goto err; 3763 } 3764 3765 index = F2FS_BYTES_TO_BLK(range.start); 3766 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3767 3768 ret = f2fs_convert_inline_inode(inode); 3769 if (ret) 3770 goto err; 3771 3772 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3773 filemap_invalidate_lock(mapping); 3774 3775 ret = filemap_write_and_wait_range(mapping, range.start, 3776 to_end ? LLONG_MAX : end_addr - 1); 3777 if (ret) 3778 goto out; 3779 3780 truncate_inode_pages_range(mapping, range.start, 3781 to_end ? -1 : end_addr - 1); 3782 3783 while (index < pg_end) { 3784 struct dnode_of_data dn; 3785 pgoff_t end_offset, count; 3786 int i; 3787 3788 set_new_dnode(&dn, inode, NULL, NULL, 0); 3789 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3790 if (ret) { 3791 if (ret == -ENOENT) { 3792 index = f2fs_get_next_page_offset(&dn, index); 3793 continue; 3794 } 3795 goto out; 3796 } 3797 3798 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3799 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3800 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3801 struct block_device *cur_bdev; 3802 block_t blkaddr = f2fs_data_blkaddr(&dn); 3803 3804 if (!__is_valid_data_blkaddr(blkaddr)) 3805 continue; 3806 3807 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3808 DATA_GENERIC_ENHANCE)) { 3809 ret = -EFSCORRUPTED; 3810 f2fs_put_dnode(&dn); 3811 f2fs_handle_error(sbi, 3812 ERROR_INVALID_BLKADDR); 3813 goto out; 3814 } 3815 3816 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3817 if (f2fs_is_multi_device(sbi)) { 3818 int di = f2fs_target_device_index(sbi, blkaddr); 3819 3820 blkaddr -= FDEV(di).start_blk; 3821 } 3822 3823 if (len) { 3824 if (prev_bdev == cur_bdev && 3825 index == prev_index + len && 3826 blkaddr == prev_block + len) { 3827 len++; 3828 } else { 3829 ret = f2fs_secure_erase(prev_bdev, 3830 inode, prev_index, prev_block, 3831 len, range.flags); 3832 if (ret) { 3833 f2fs_put_dnode(&dn); 3834 goto out; 3835 } 3836 3837 len = 0; 3838 } 3839 } 3840 3841 if (!len) { 3842 prev_bdev = cur_bdev; 3843 prev_index = index; 3844 prev_block = blkaddr; 3845 len = 1; 3846 } 3847 } 3848 3849 f2fs_put_dnode(&dn); 3850 3851 if (fatal_signal_pending(current)) { 3852 ret = -EINTR; 3853 goto out; 3854 } 3855 cond_resched(); 3856 } 3857 3858 if (len) 3859 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3860 prev_block, len, range.flags); 3861 out: 3862 filemap_invalidate_unlock(mapping); 3863 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3864 err: 3865 inode_unlock(inode); 3866 file_end_write(filp); 3867 3868 return ret; 3869 } 3870 3871 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3872 { 3873 struct inode *inode = file_inode(filp); 3874 struct f2fs_comp_option option; 3875 3876 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3877 return -EOPNOTSUPP; 3878 3879 inode_lock_shared(inode); 3880 3881 if (!f2fs_compressed_file(inode)) { 3882 inode_unlock_shared(inode); 3883 return -ENODATA; 3884 } 3885 3886 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3887 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3888 3889 inode_unlock_shared(inode); 3890 3891 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3892 sizeof(option))) 3893 return -EFAULT; 3894 3895 return 0; 3896 } 3897 3898 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 3899 { 3900 struct inode *inode = file_inode(filp); 3901 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3902 struct f2fs_comp_option option; 3903 int ret = 0; 3904 3905 if (!f2fs_sb_has_compression(sbi)) 3906 return -EOPNOTSUPP; 3907 3908 if (!(filp->f_mode & FMODE_WRITE)) 3909 return -EBADF; 3910 3911 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 3912 sizeof(option))) 3913 return -EFAULT; 3914 3915 if (!f2fs_compressed_file(inode) || 3916 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 3917 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 3918 option.algorithm >= COMPRESS_MAX) 3919 return -EINVAL; 3920 3921 file_start_write(filp); 3922 inode_lock(inode); 3923 3924 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 3925 ret = -EBUSY; 3926 goto out; 3927 } 3928 3929 if (inode->i_size != 0) { 3930 ret = -EFBIG; 3931 goto out; 3932 } 3933 3934 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 3935 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 3936 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size; 3937 f2fs_mark_inode_dirty_sync(inode, true); 3938 3939 if (!f2fs_is_compress_backend_ready(inode)) 3940 f2fs_warn(sbi, "compression algorithm is successfully set, " 3941 "but current kernel doesn't support this algorithm."); 3942 out: 3943 inode_unlock(inode); 3944 file_end_write(filp); 3945 3946 return ret; 3947 } 3948 3949 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 3950 { 3951 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 3952 struct address_space *mapping = inode->i_mapping; 3953 struct page *page; 3954 pgoff_t redirty_idx = page_idx; 3955 int i, page_len = 0, ret = 0; 3956 3957 page_cache_ra_unbounded(&ractl, len, 0); 3958 3959 for (i = 0; i < len; i++, page_idx++) { 3960 page = read_cache_page(mapping, page_idx, NULL, NULL); 3961 if (IS_ERR(page)) { 3962 ret = PTR_ERR(page); 3963 break; 3964 } 3965 page_len++; 3966 } 3967 3968 for (i = 0; i < page_len; i++, redirty_idx++) { 3969 page = find_lock_page(mapping, redirty_idx); 3970 3971 /* It will never fail, when page has pinned above */ 3972 f2fs_bug_on(F2FS_I_SB(inode), !page); 3973 3974 set_page_dirty(page); 3975 f2fs_put_page(page, 1); 3976 f2fs_put_page(page, 0); 3977 } 3978 3979 return ret; 3980 } 3981 3982 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg) 3983 { 3984 struct inode *inode = file_inode(filp); 3985 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3986 struct f2fs_inode_info *fi = F2FS_I(inode); 3987 pgoff_t page_idx = 0, last_idx; 3988 unsigned int blk_per_seg = sbi->blocks_per_seg; 3989 int cluster_size = fi->i_cluster_size; 3990 int count, ret; 3991 3992 if (!f2fs_sb_has_compression(sbi) || 3993 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 3994 return -EOPNOTSUPP; 3995 3996 if (!(filp->f_mode & FMODE_WRITE)) 3997 return -EBADF; 3998 3999 if (!f2fs_compressed_file(inode)) 4000 return -EINVAL; 4001 4002 f2fs_balance_fs(F2FS_I_SB(inode), true); 4003 4004 file_start_write(filp); 4005 inode_lock(inode); 4006 4007 if (!f2fs_is_compress_backend_ready(inode)) { 4008 ret = -EOPNOTSUPP; 4009 goto out; 4010 } 4011 4012 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4013 ret = -EINVAL; 4014 goto out; 4015 } 4016 4017 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4018 if (ret) 4019 goto out; 4020 4021 if (!atomic_read(&fi->i_compr_blocks)) 4022 goto out; 4023 4024 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4025 4026 count = last_idx - page_idx; 4027 while (count) { 4028 int len = min(cluster_size, count); 4029 4030 ret = redirty_blocks(inode, page_idx, len); 4031 if (ret < 0) 4032 break; 4033 4034 if (get_dirty_pages(inode) >= blk_per_seg) 4035 filemap_fdatawrite(inode->i_mapping); 4036 4037 count -= len; 4038 page_idx += len; 4039 } 4040 4041 if (!ret) 4042 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4043 LLONG_MAX); 4044 4045 if (ret) 4046 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4047 __func__, ret); 4048 out: 4049 inode_unlock(inode); 4050 file_end_write(filp); 4051 4052 return ret; 4053 } 4054 4055 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg) 4056 { 4057 struct inode *inode = file_inode(filp); 4058 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4059 pgoff_t page_idx = 0, last_idx; 4060 unsigned int blk_per_seg = sbi->blocks_per_seg; 4061 int cluster_size = F2FS_I(inode)->i_cluster_size; 4062 int count, ret; 4063 4064 if (!f2fs_sb_has_compression(sbi) || 4065 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4066 return -EOPNOTSUPP; 4067 4068 if (!(filp->f_mode & FMODE_WRITE)) 4069 return -EBADF; 4070 4071 if (!f2fs_compressed_file(inode)) 4072 return -EINVAL; 4073 4074 f2fs_balance_fs(F2FS_I_SB(inode), true); 4075 4076 file_start_write(filp); 4077 inode_lock(inode); 4078 4079 if (!f2fs_is_compress_backend_ready(inode)) { 4080 ret = -EOPNOTSUPP; 4081 goto out; 4082 } 4083 4084 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4085 ret = -EINVAL; 4086 goto out; 4087 } 4088 4089 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4090 if (ret) 4091 goto out; 4092 4093 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4094 4095 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4096 4097 count = last_idx - page_idx; 4098 while (count) { 4099 int len = min(cluster_size, count); 4100 4101 ret = redirty_blocks(inode, page_idx, len); 4102 if (ret < 0) 4103 break; 4104 4105 if (get_dirty_pages(inode) >= blk_per_seg) 4106 filemap_fdatawrite(inode->i_mapping); 4107 4108 count -= len; 4109 page_idx += len; 4110 } 4111 4112 if (!ret) 4113 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4114 LLONG_MAX); 4115 4116 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4117 4118 if (ret) 4119 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4120 __func__, ret); 4121 out: 4122 inode_unlock(inode); 4123 file_end_write(filp); 4124 4125 return ret; 4126 } 4127 4128 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4129 { 4130 switch (cmd) { 4131 case FS_IOC_GETVERSION: 4132 return f2fs_ioc_getversion(filp, arg); 4133 case F2FS_IOC_START_ATOMIC_WRITE: 4134 return f2fs_ioc_start_atomic_write(filp); 4135 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4136 return f2fs_ioc_commit_atomic_write(filp); 4137 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4138 return f2fs_ioc_abort_atomic_write(filp); 4139 case F2FS_IOC_START_VOLATILE_WRITE: 4140 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4141 return -EOPNOTSUPP; 4142 case F2FS_IOC_SHUTDOWN: 4143 return f2fs_ioc_shutdown(filp, arg); 4144 case FITRIM: 4145 return f2fs_ioc_fitrim(filp, arg); 4146 case FS_IOC_SET_ENCRYPTION_POLICY: 4147 return f2fs_ioc_set_encryption_policy(filp, arg); 4148 case FS_IOC_GET_ENCRYPTION_POLICY: 4149 return f2fs_ioc_get_encryption_policy(filp, arg); 4150 case FS_IOC_GET_ENCRYPTION_PWSALT: 4151 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4152 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4153 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4154 case FS_IOC_ADD_ENCRYPTION_KEY: 4155 return f2fs_ioc_add_encryption_key(filp, arg); 4156 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4157 return f2fs_ioc_remove_encryption_key(filp, arg); 4158 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4159 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4160 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4161 return f2fs_ioc_get_encryption_key_status(filp, arg); 4162 case FS_IOC_GET_ENCRYPTION_NONCE: 4163 return f2fs_ioc_get_encryption_nonce(filp, arg); 4164 case F2FS_IOC_GARBAGE_COLLECT: 4165 return f2fs_ioc_gc(filp, arg); 4166 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4167 return f2fs_ioc_gc_range(filp, arg); 4168 case F2FS_IOC_WRITE_CHECKPOINT: 4169 return f2fs_ioc_write_checkpoint(filp, arg); 4170 case F2FS_IOC_DEFRAGMENT: 4171 return f2fs_ioc_defragment(filp, arg); 4172 case F2FS_IOC_MOVE_RANGE: 4173 return f2fs_ioc_move_range(filp, arg); 4174 case F2FS_IOC_FLUSH_DEVICE: 4175 return f2fs_ioc_flush_device(filp, arg); 4176 case F2FS_IOC_GET_FEATURES: 4177 return f2fs_ioc_get_features(filp, arg); 4178 case F2FS_IOC_GET_PIN_FILE: 4179 return f2fs_ioc_get_pin_file(filp, arg); 4180 case F2FS_IOC_SET_PIN_FILE: 4181 return f2fs_ioc_set_pin_file(filp, arg); 4182 case F2FS_IOC_PRECACHE_EXTENTS: 4183 return f2fs_ioc_precache_extents(filp, arg); 4184 case F2FS_IOC_RESIZE_FS: 4185 return f2fs_ioc_resize_fs(filp, arg); 4186 case FS_IOC_ENABLE_VERITY: 4187 return f2fs_ioc_enable_verity(filp, arg); 4188 case FS_IOC_MEASURE_VERITY: 4189 return f2fs_ioc_measure_verity(filp, arg); 4190 case FS_IOC_READ_VERITY_METADATA: 4191 return f2fs_ioc_read_verity_metadata(filp, arg); 4192 case FS_IOC_GETFSLABEL: 4193 return f2fs_ioc_getfslabel(filp, arg); 4194 case FS_IOC_SETFSLABEL: 4195 return f2fs_ioc_setfslabel(filp, arg); 4196 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4197 return f2fs_get_compress_blocks(filp, arg); 4198 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4199 return f2fs_release_compress_blocks(filp, arg); 4200 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4201 return f2fs_reserve_compress_blocks(filp, arg); 4202 case F2FS_IOC_SEC_TRIM_FILE: 4203 return f2fs_sec_trim_file(filp, arg); 4204 case F2FS_IOC_GET_COMPRESS_OPTION: 4205 return f2fs_ioc_get_compress_option(filp, arg); 4206 case F2FS_IOC_SET_COMPRESS_OPTION: 4207 return f2fs_ioc_set_compress_option(filp, arg); 4208 case F2FS_IOC_DECOMPRESS_FILE: 4209 return f2fs_ioc_decompress_file(filp, arg); 4210 case F2FS_IOC_COMPRESS_FILE: 4211 return f2fs_ioc_compress_file(filp, arg); 4212 default: 4213 return -ENOTTY; 4214 } 4215 } 4216 4217 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4218 { 4219 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4220 return -EIO; 4221 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4222 return -ENOSPC; 4223 4224 return __f2fs_ioctl(filp, cmd, arg); 4225 } 4226 4227 /* 4228 * Return %true if the given read or write request should use direct I/O, or 4229 * %false if it should use buffered I/O. 4230 */ 4231 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4232 struct iov_iter *iter) 4233 { 4234 unsigned int align; 4235 4236 if (!(iocb->ki_flags & IOCB_DIRECT)) 4237 return false; 4238 4239 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) 4240 return false; 4241 4242 /* 4243 * Direct I/O not aligned to the disk's logical_block_size will be 4244 * attempted, but will fail with -EINVAL. 4245 * 4246 * f2fs additionally requires that direct I/O be aligned to the 4247 * filesystem block size, which is often a stricter requirement. 4248 * However, f2fs traditionally falls back to buffered I/O on requests 4249 * that are logical_block_size-aligned but not fs-block aligned. 4250 * 4251 * The below logic implements this behavior. 4252 */ 4253 align = iocb->ki_pos | iov_iter_alignment(iter); 4254 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4255 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4256 return false; 4257 4258 return true; 4259 } 4260 4261 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4262 unsigned int flags) 4263 { 4264 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4265 4266 dec_page_count(sbi, F2FS_DIO_READ); 4267 if (error) 4268 return error; 4269 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size); 4270 return 0; 4271 } 4272 4273 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4274 .end_io = f2fs_dio_read_end_io, 4275 }; 4276 4277 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4278 { 4279 struct file *file = iocb->ki_filp; 4280 struct inode *inode = file_inode(file); 4281 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4282 struct f2fs_inode_info *fi = F2FS_I(inode); 4283 const loff_t pos = iocb->ki_pos; 4284 const size_t count = iov_iter_count(to); 4285 struct iomap_dio *dio; 4286 ssize_t ret; 4287 4288 if (count == 0) 4289 return 0; /* skip atime update */ 4290 4291 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4292 4293 if (iocb->ki_flags & IOCB_NOWAIT) { 4294 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4295 ret = -EAGAIN; 4296 goto out; 4297 } 4298 } else { 4299 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4300 } 4301 4302 /* 4303 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4304 * the higher-level function iomap_dio_rw() in order to ensure that the 4305 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4306 */ 4307 inc_page_count(sbi, F2FS_DIO_READ); 4308 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4309 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4310 if (IS_ERR_OR_NULL(dio)) { 4311 ret = PTR_ERR_OR_ZERO(dio); 4312 if (ret != -EIOCBQUEUED) 4313 dec_page_count(sbi, F2FS_DIO_READ); 4314 } else { 4315 ret = iomap_dio_complete(dio); 4316 } 4317 4318 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4319 4320 file_accessed(file); 4321 out: 4322 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4323 return ret; 4324 } 4325 4326 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4327 { 4328 struct inode *inode = file_inode(iocb->ki_filp); 4329 const loff_t pos = iocb->ki_pos; 4330 ssize_t ret; 4331 4332 if (!f2fs_is_compress_backend_ready(inode)) 4333 return -EOPNOTSUPP; 4334 4335 if (trace_f2fs_dataread_start_enabled()) { 4336 char *p = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL); 4337 char *path; 4338 4339 if (!p) 4340 goto skip_read_trace; 4341 4342 path = dentry_path_raw(file_dentry(iocb->ki_filp), p, PATH_MAX); 4343 if (IS_ERR(path)) { 4344 kfree(p); 4345 goto skip_read_trace; 4346 } 4347 4348 trace_f2fs_dataread_start(inode, pos, iov_iter_count(to), 4349 current->pid, path, current->comm); 4350 kfree(p); 4351 } 4352 skip_read_trace: 4353 if (f2fs_should_use_dio(inode, iocb, to)) { 4354 ret = f2fs_dio_read_iter(iocb, to); 4355 } else { 4356 ret = filemap_read(iocb, to, 0); 4357 if (ret > 0) 4358 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4359 APP_BUFFERED_READ_IO, ret); 4360 } 4361 if (trace_f2fs_dataread_end_enabled()) 4362 trace_f2fs_dataread_end(inode, pos, ret); 4363 return ret; 4364 } 4365 4366 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4367 { 4368 struct file *file = iocb->ki_filp; 4369 struct inode *inode = file_inode(file); 4370 ssize_t count; 4371 int err; 4372 4373 if (IS_IMMUTABLE(inode)) 4374 return -EPERM; 4375 4376 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4377 return -EPERM; 4378 4379 count = generic_write_checks(iocb, from); 4380 if (count <= 0) 4381 return count; 4382 4383 err = file_modified(file); 4384 if (err) 4385 return err; 4386 return count; 4387 } 4388 4389 /* 4390 * Preallocate blocks for a write request, if it is possible and helpful to do 4391 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4392 * blocks were preallocated, or a negative errno value if something went 4393 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4394 * requested blocks (not just some of them) have been allocated. 4395 */ 4396 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4397 bool dio) 4398 { 4399 struct inode *inode = file_inode(iocb->ki_filp); 4400 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4401 const loff_t pos = iocb->ki_pos; 4402 const size_t count = iov_iter_count(iter); 4403 struct f2fs_map_blocks map = {}; 4404 int flag; 4405 int ret; 4406 4407 /* If it will be an out-of-place direct write, don't bother. */ 4408 if (dio && f2fs_lfs_mode(sbi)) 4409 return 0; 4410 /* 4411 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4412 * buffered IO, if DIO meets any holes. 4413 */ 4414 if (dio && i_size_read(inode) && 4415 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4416 return 0; 4417 4418 /* No-wait I/O can't allocate blocks. */ 4419 if (iocb->ki_flags & IOCB_NOWAIT) 4420 return 0; 4421 4422 /* If it will be a short write, don't bother. */ 4423 if (fault_in_iov_iter_readable(iter, count)) 4424 return 0; 4425 4426 if (f2fs_has_inline_data(inode)) { 4427 /* If the data will fit inline, don't bother. */ 4428 if (pos + count <= MAX_INLINE_DATA(inode)) 4429 return 0; 4430 ret = f2fs_convert_inline_inode(inode); 4431 if (ret) 4432 return ret; 4433 } 4434 4435 /* Do not preallocate blocks that will be written partially in 4KB. */ 4436 map.m_lblk = F2FS_BLK_ALIGN(pos); 4437 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4438 if (map.m_len > map.m_lblk) 4439 map.m_len -= map.m_lblk; 4440 else 4441 map.m_len = 0; 4442 map.m_may_create = true; 4443 if (dio) { 4444 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4445 flag = F2FS_GET_BLOCK_PRE_DIO; 4446 } else { 4447 map.m_seg_type = NO_CHECK_TYPE; 4448 flag = F2FS_GET_BLOCK_PRE_AIO; 4449 } 4450 4451 ret = f2fs_map_blocks(inode, &map, 1, flag); 4452 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4453 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4454 return ret; 4455 if (ret == 0) 4456 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4457 return map.m_len; 4458 } 4459 4460 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4461 struct iov_iter *from) 4462 { 4463 struct file *file = iocb->ki_filp; 4464 struct inode *inode = file_inode(file); 4465 ssize_t ret; 4466 4467 if (iocb->ki_flags & IOCB_NOWAIT) 4468 return -EOPNOTSUPP; 4469 4470 current->backing_dev_info = inode_to_bdi(inode); 4471 ret = generic_perform_write(iocb, from); 4472 current->backing_dev_info = NULL; 4473 4474 if (ret > 0) { 4475 iocb->ki_pos += ret; 4476 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4477 APP_BUFFERED_IO, ret); 4478 } 4479 return ret; 4480 } 4481 4482 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4483 unsigned int flags) 4484 { 4485 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4486 4487 dec_page_count(sbi, F2FS_DIO_WRITE); 4488 if (error) 4489 return error; 4490 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size); 4491 return 0; 4492 } 4493 4494 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4495 .end_io = f2fs_dio_write_end_io, 4496 }; 4497 4498 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4499 bool *may_need_sync) 4500 { 4501 struct file *file = iocb->ki_filp; 4502 struct inode *inode = file_inode(file); 4503 struct f2fs_inode_info *fi = F2FS_I(inode); 4504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4505 const bool do_opu = f2fs_lfs_mode(sbi); 4506 const loff_t pos = iocb->ki_pos; 4507 const ssize_t count = iov_iter_count(from); 4508 unsigned int dio_flags; 4509 struct iomap_dio *dio; 4510 ssize_t ret; 4511 4512 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4513 4514 if (iocb->ki_flags & IOCB_NOWAIT) { 4515 /* f2fs_convert_inline_inode() and block allocation can block */ 4516 if (f2fs_has_inline_data(inode) || 4517 !f2fs_overwrite_io(inode, pos, count)) { 4518 ret = -EAGAIN; 4519 goto out; 4520 } 4521 4522 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4523 ret = -EAGAIN; 4524 goto out; 4525 } 4526 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4527 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4528 ret = -EAGAIN; 4529 goto out; 4530 } 4531 } else { 4532 ret = f2fs_convert_inline_inode(inode); 4533 if (ret) 4534 goto out; 4535 4536 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4537 if (do_opu) 4538 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4539 } 4540 4541 /* 4542 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4543 * the higher-level function iomap_dio_rw() in order to ensure that the 4544 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4545 */ 4546 inc_page_count(sbi, F2FS_DIO_WRITE); 4547 dio_flags = 0; 4548 if (pos + count > inode->i_size) 4549 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4550 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4551 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4552 if (IS_ERR_OR_NULL(dio)) { 4553 ret = PTR_ERR_OR_ZERO(dio); 4554 if (ret == -ENOTBLK) 4555 ret = 0; 4556 if (ret != -EIOCBQUEUED) 4557 dec_page_count(sbi, F2FS_DIO_WRITE); 4558 } else { 4559 ret = iomap_dio_complete(dio); 4560 } 4561 4562 if (do_opu) 4563 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4564 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4565 4566 if (ret < 0) 4567 goto out; 4568 if (pos + ret > inode->i_size) 4569 f2fs_i_size_write(inode, pos + ret); 4570 if (!do_opu) 4571 set_inode_flag(inode, FI_UPDATE_WRITE); 4572 4573 if (iov_iter_count(from)) { 4574 ssize_t ret2; 4575 loff_t bufio_start_pos = iocb->ki_pos; 4576 4577 /* 4578 * The direct write was partial, so we need to fall back to a 4579 * buffered write for the remainder. 4580 */ 4581 4582 ret2 = f2fs_buffered_write_iter(iocb, from); 4583 if (iov_iter_count(from)) 4584 f2fs_write_failed(inode, iocb->ki_pos); 4585 if (ret2 < 0) 4586 goto out; 4587 4588 /* 4589 * Ensure that the pagecache pages are written to disk and 4590 * invalidated to preserve the expected O_DIRECT semantics. 4591 */ 4592 if (ret2 > 0) { 4593 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4594 4595 ret += ret2; 4596 4597 ret2 = filemap_write_and_wait_range(file->f_mapping, 4598 bufio_start_pos, 4599 bufio_end_pos); 4600 if (ret2 < 0) 4601 goto out; 4602 invalidate_mapping_pages(file->f_mapping, 4603 bufio_start_pos >> PAGE_SHIFT, 4604 bufio_end_pos >> PAGE_SHIFT); 4605 } 4606 } else { 4607 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4608 *may_need_sync = false; 4609 } 4610 out: 4611 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4612 return ret; 4613 } 4614 4615 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4616 { 4617 struct inode *inode = file_inode(iocb->ki_filp); 4618 const loff_t orig_pos = iocb->ki_pos; 4619 const size_t orig_count = iov_iter_count(from); 4620 loff_t target_size; 4621 bool dio; 4622 bool may_need_sync = true; 4623 int preallocated; 4624 ssize_t ret; 4625 4626 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4627 ret = -EIO; 4628 goto out; 4629 } 4630 4631 if (!f2fs_is_compress_backend_ready(inode)) { 4632 ret = -EOPNOTSUPP; 4633 goto out; 4634 } 4635 4636 if (iocb->ki_flags & IOCB_NOWAIT) { 4637 if (!inode_trylock(inode)) { 4638 ret = -EAGAIN; 4639 goto out; 4640 } 4641 } else { 4642 inode_lock(inode); 4643 } 4644 4645 ret = f2fs_write_checks(iocb, from); 4646 if (ret <= 0) 4647 goto out_unlock; 4648 4649 /* Determine whether we will do a direct write or a buffered write. */ 4650 dio = f2fs_should_use_dio(inode, iocb, from); 4651 4652 /* Possibly preallocate the blocks for the write. */ 4653 target_size = iocb->ki_pos + iov_iter_count(from); 4654 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 4655 if (preallocated < 0) { 4656 ret = preallocated; 4657 } else { 4658 if (trace_f2fs_datawrite_start_enabled()) { 4659 char *p = f2fs_kmalloc(F2FS_I_SB(inode), 4660 PATH_MAX, GFP_KERNEL); 4661 char *path; 4662 4663 if (!p) 4664 goto skip_write_trace; 4665 path = dentry_path_raw(file_dentry(iocb->ki_filp), 4666 p, PATH_MAX); 4667 if (IS_ERR(path)) { 4668 kfree(p); 4669 goto skip_write_trace; 4670 } 4671 trace_f2fs_datawrite_start(inode, orig_pos, orig_count, 4672 current->pid, path, current->comm); 4673 kfree(p); 4674 } 4675 skip_write_trace: 4676 /* Do the actual write. */ 4677 ret = dio ? 4678 f2fs_dio_write_iter(iocb, from, &may_need_sync) : 4679 f2fs_buffered_write_iter(iocb, from); 4680 4681 if (trace_f2fs_datawrite_end_enabled()) 4682 trace_f2fs_datawrite_end(inode, orig_pos, ret); 4683 } 4684 4685 /* Don't leave any preallocated blocks around past i_size. */ 4686 if (preallocated && i_size_read(inode) < target_size) { 4687 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4688 filemap_invalidate_lock(inode->i_mapping); 4689 if (!f2fs_truncate(inode)) 4690 file_dont_truncate(inode); 4691 filemap_invalidate_unlock(inode->i_mapping); 4692 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4693 } else { 4694 file_dont_truncate(inode); 4695 } 4696 4697 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 4698 out_unlock: 4699 inode_unlock(inode); 4700 out: 4701 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 4702 if (ret > 0 && may_need_sync) 4703 ret = generic_write_sync(iocb, ret); 4704 return ret; 4705 } 4706 4707 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 4708 int advice) 4709 { 4710 struct address_space *mapping; 4711 struct backing_dev_info *bdi; 4712 struct inode *inode = file_inode(filp); 4713 int err; 4714 4715 if (advice == POSIX_FADV_SEQUENTIAL) { 4716 if (S_ISFIFO(inode->i_mode)) 4717 return -ESPIPE; 4718 4719 mapping = filp->f_mapping; 4720 if (!mapping || len < 0) 4721 return -EINVAL; 4722 4723 bdi = inode_to_bdi(mapping->host); 4724 filp->f_ra.ra_pages = bdi->ra_pages * 4725 F2FS_I_SB(inode)->seq_file_ra_mul; 4726 spin_lock(&filp->f_lock); 4727 filp->f_mode &= ~FMODE_RANDOM; 4728 spin_unlock(&filp->f_lock); 4729 return 0; 4730 } 4731 4732 err = generic_fadvise(filp, offset, len, advice); 4733 if (!err && advice == POSIX_FADV_DONTNEED && 4734 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 4735 f2fs_compressed_file(inode)) 4736 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 4737 4738 return err; 4739 } 4740 4741 #ifdef CONFIG_COMPAT 4742 struct compat_f2fs_gc_range { 4743 u32 sync; 4744 compat_u64 start; 4745 compat_u64 len; 4746 }; 4747 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4748 struct compat_f2fs_gc_range) 4749 4750 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4751 { 4752 struct compat_f2fs_gc_range __user *urange; 4753 struct f2fs_gc_range range; 4754 int err; 4755 4756 urange = compat_ptr(arg); 4757 err = get_user(range.sync, &urange->sync); 4758 err |= get_user(range.start, &urange->start); 4759 err |= get_user(range.len, &urange->len); 4760 if (err) 4761 return -EFAULT; 4762 4763 return __f2fs_ioc_gc_range(file, &range); 4764 } 4765 4766 struct compat_f2fs_move_range { 4767 u32 dst_fd; 4768 compat_u64 pos_in; 4769 compat_u64 pos_out; 4770 compat_u64 len; 4771 }; 4772 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4773 struct compat_f2fs_move_range) 4774 4775 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4776 { 4777 struct compat_f2fs_move_range __user *urange; 4778 struct f2fs_move_range range; 4779 int err; 4780 4781 urange = compat_ptr(arg); 4782 err = get_user(range.dst_fd, &urange->dst_fd); 4783 err |= get_user(range.pos_in, &urange->pos_in); 4784 err |= get_user(range.pos_out, &urange->pos_out); 4785 err |= get_user(range.len, &urange->len); 4786 if (err) 4787 return -EFAULT; 4788 4789 return __f2fs_ioc_move_range(file, &range); 4790 } 4791 4792 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4793 { 4794 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4795 return -EIO; 4796 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4797 return -ENOSPC; 4798 4799 switch (cmd) { 4800 case FS_IOC32_GETVERSION: 4801 cmd = FS_IOC_GETVERSION; 4802 break; 4803 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4804 return f2fs_compat_ioc_gc_range(file, arg); 4805 case F2FS_IOC32_MOVE_RANGE: 4806 return f2fs_compat_ioc_move_range(file, arg); 4807 case F2FS_IOC_START_ATOMIC_WRITE: 4808 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4809 case F2FS_IOC_START_VOLATILE_WRITE: 4810 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4811 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4812 case F2FS_IOC_SHUTDOWN: 4813 case FITRIM: 4814 case FS_IOC_SET_ENCRYPTION_POLICY: 4815 case FS_IOC_GET_ENCRYPTION_PWSALT: 4816 case FS_IOC_GET_ENCRYPTION_POLICY: 4817 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4818 case FS_IOC_ADD_ENCRYPTION_KEY: 4819 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4820 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4821 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4822 case FS_IOC_GET_ENCRYPTION_NONCE: 4823 case F2FS_IOC_GARBAGE_COLLECT: 4824 case F2FS_IOC_WRITE_CHECKPOINT: 4825 case F2FS_IOC_DEFRAGMENT: 4826 case F2FS_IOC_FLUSH_DEVICE: 4827 case F2FS_IOC_GET_FEATURES: 4828 case F2FS_IOC_GET_PIN_FILE: 4829 case F2FS_IOC_SET_PIN_FILE: 4830 case F2FS_IOC_PRECACHE_EXTENTS: 4831 case F2FS_IOC_RESIZE_FS: 4832 case FS_IOC_ENABLE_VERITY: 4833 case FS_IOC_MEASURE_VERITY: 4834 case FS_IOC_READ_VERITY_METADATA: 4835 case FS_IOC_GETFSLABEL: 4836 case FS_IOC_SETFSLABEL: 4837 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4838 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4839 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4840 case F2FS_IOC_SEC_TRIM_FILE: 4841 case F2FS_IOC_GET_COMPRESS_OPTION: 4842 case F2FS_IOC_SET_COMPRESS_OPTION: 4843 case F2FS_IOC_DECOMPRESS_FILE: 4844 case F2FS_IOC_COMPRESS_FILE: 4845 break; 4846 default: 4847 return -ENOIOCTLCMD; 4848 } 4849 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4850 } 4851 #endif 4852 4853 const struct file_operations f2fs_file_operations = { 4854 .llseek = f2fs_llseek, 4855 .read_iter = f2fs_file_read_iter, 4856 .write_iter = f2fs_file_write_iter, 4857 .open = f2fs_file_open, 4858 .release = f2fs_release_file, 4859 .mmap = f2fs_file_mmap, 4860 .flush = f2fs_file_flush, 4861 .fsync = f2fs_sync_file, 4862 .fallocate = f2fs_fallocate, 4863 .unlocked_ioctl = f2fs_ioctl, 4864 #ifdef CONFIG_COMPAT 4865 .compat_ioctl = f2fs_compat_ioctl, 4866 #endif 4867 .splice_read = generic_file_splice_read, 4868 .splice_write = iter_file_splice_write, 4869 .fadvise = f2fs_file_fadvise, 4870 }; 4871