1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/file.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/stat.h> 11 #include <linux/buffer_head.h> 12 #include <linux/writeback.h> 13 #include <linux/blkdev.h> 14 #include <linux/falloc.h> 15 #include <linux/types.h> 16 #include <linux/compat.h> 17 #include <linux/uaccess.h> 18 #include <linux/mount.h> 19 #include <linux/pagevec.h> 20 #include <linux/uio.h> 21 #include <linux/uuid.h> 22 #include <linux/file.h> 23 #include <linux/nls.h> 24 #include <linux/sched/signal.h> 25 #include <linux/fileattr.h> 26 #include <linux/fadvise.h> 27 #include <linux/iomap.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "acl.h" 34 #include "gc.h" 35 #include "iostat.h" 36 #include <trace/events/f2fs.h> 37 #include <uapi/linux/f2fs.h> 38 39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf) 40 { 41 struct inode *inode = file_inode(vmf->vma->vm_file); 42 vm_fault_t ret; 43 44 ret = filemap_fault(vmf); 45 if (!ret) 46 f2fs_update_iostat(F2FS_I_SB(inode), inode, 47 APP_MAPPED_READ_IO, F2FS_BLKSIZE); 48 49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret); 50 51 return ret; 52 } 53 54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf) 55 { 56 struct page *page = vmf->page; 57 struct inode *inode = file_inode(vmf->vma->vm_file); 58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 59 struct dnode_of_data dn; 60 bool need_alloc = true; 61 int err = 0; 62 63 if (unlikely(IS_IMMUTABLE(inode))) 64 return VM_FAULT_SIGBUS; 65 66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 67 return VM_FAULT_SIGBUS; 68 69 if (unlikely(f2fs_cp_error(sbi))) { 70 err = -EIO; 71 goto err; 72 } 73 74 if (!f2fs_is_checkpoint_ready(sbi)) { 75 err = -ENOSPC; 76 goto err; 77 } 78 79 err = f2fs_convert_inline_inode(inode); 80 if (err) 81 goto err; 82 83 #ifdef CONFIG_F2FS_FS_COMPRESSION 84 if (f2fs_compressed_file(inode)) { 85 int ret = f2fs_is_compressed_cluster(inode, page->index); 86 87 if (ret < 0) { 88 err = ret; 89 goto err; 90 } else if (ret) { 91 need_alloc = false; 92 } 93 } 94 #endif 95 /* should do out of any locked page */ 96 if (need_alloc) 97 f2fs_balance_fs(sbi, true); 98 99 sb_start_pagefault(inode->i_sb); 100 101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 102 103 file_update_time(vmf->vma->vm_file); 104 filemap_invalidate_lock_shared(inode->i_mapping); 105 lock_page(page); 106 if (unlikely(page->mapping != inode->i_mapping || 107 page_offset(page) > i_size_read(inode) || 108 !PageUptodate(page))) { 109 unlock_page(page); 110 err = -EFAULT; 111 goto out_sem; 112 } 113 114 if (need_alloc) { 115 /* block allocation */ 116 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 117 set_new_dnode(&dn, inode, NULL, NULL, 0); 118 err = f2fs_get_block(&dn, page->index); 119 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 120 } 121 122 #ifdef CONFIG_F2FS_FS_COMPRESSION 123 if (!need_alloc) { 124 set_new_dnode(&dn, inode, NULL, NULL, 0); 125 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 126 f2fs_put_dnode(&dn); 127 } 128 #endif 129 if (err) { 130 unlock_page(page); 131 goto out_sem; 132 } 133 134 f2fs_wait_on_page_writeback(page, DATA, false, true); 135 136 /* wait for GCed page writeback via META_MAPPING */ 137 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr); 138 139 /* 140 * check to see if the page is mapped already (no holes) 141 */ 142 if (PageMappedToDisk(page)) 143 goto out_sem; 144 145 /* page is wholly or partially inside EOF */ 146 if (((loff_t)(page->index + 1) << PAGE_SHIFT) > 147 i_size_read(inode)) { 148 loff_t offset; 149 150 offset = i_size_read(inode) & ~PAGE_MASK; 151 zero_user_segment(page, offset, PAGE_SIZE); 152 } 153 set_page_dirty(page); 154 if (!PageUptodate(page)) 155 SetPageUptodate(page); 156 157 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE); 158 f2fs_update_time(sbi, REQ_TIME); 159 160 trace_f2fs_vm_page_mkwrite(page, DATA); 161 out_sem: 162 filemap_invalidate_unlock_shared(inode->i_mapping); 163 164 sb_end_pagefault(inode->i_sb); 165 err: 166 return block_page_mkwrite_return(err); 167 } 168 169 static const struct vm_operations_struct f2fs_file_vm_ops = { 170 .fault = f2fs_filemap_fault, 171 .map_pages = filemap_map_pages, 172 .page_mkwrite = f2fs_vm_page_mkwrite, 173 }; 174 175 static int get_parent_ino(struct inode *inode, nid_t *pino) 176 { 177 struct dentry *dentry; 178 179 /* 180 * Make sure to get the non-deleted alias. The alias associated with 181 * the open file descriptor being fsync()'ed may be deleted already. 182 */ 183 dentry = d_find_alias(inode); 184 if (!dentry) 185 return 0; 186 187 *pino = parent_ino(dentry); 188 dput(dentry); 189 return 1; 190 } 191 192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode) 193 { 194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 195 enum cp_reason_type cp_reason = CP_NO_NEEDED; 196 197 if (!S_ISREG(inode->i_mode)) 198 cp_reason = CP_NON_REGULAR; 199 else if (f2fs_compressed_file(inode)) 200 cp_reason = CP_COMPRESSED; 201 else if (inode->i_nlink != 1) 202 cp_reason = CP_HARDLINK; 203 else if (is_sbi_flag_set(sbi, SBI_NEED_CP)) 204 cp_reason = CP_SB_NEED_CP; 205 else if (file_wrong_pino(inode)) 206 cp_reason = CP_WRONG_PINO; 207 else if (!f2fs_space_for_roll_forward(sbi)) 208 cp_reason = CP_NO_SPC_ROLL; 209 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 210 cp_reason = CP_NODE_NEED_CP; 211 else if (test_opt(sbi, FASTBOOT)) 212 cp_reason = CP_FASTBOOT_MODE; 213 else if (F2FS_OPTION(sbi).active_logs == 2) 214 cp_reason = CP_SPEC_LOG_NUM; 215 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT && 216 f2fs_need_dentry_mark(sbi, inode->i_ino) && 217 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino, 218 TRANS_DIR_INO)) 219 cp_reason = CP_RECOVER_DIR; 220 221 return cp_reason; 222 } 223 224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 225 { 226 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 227 bool ret = false; 228 /* But we need to avoid that there are some inode updates */ 229 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino)) 230 ret = true; 231 f2fs_put_page(i, 0); 232 return ret; 233 } 234 235 static void try_to_fix_pino(struct inode *inode) 236 { 237 struct f2fs_inode_info *fi = F2FS_I(inode); 238 nid_t pino; 239 240 f2fs_down_write(&fi->i_sem); 241 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 242 get_parent_ino(inode, &pino)) { 243 f2fs_i_pino_write(inode, pino); 244 file_got_pino(inode); 245 } 246 f2fs_up_write(&fi->i_sem); 247 } 248 249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end, 250 int datasync, bool atomic) 251 { 252 struct inode *inode = file->f_mapping->host; 253 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 254 nid_t ino = inode->i_ino; 255 int ret = 0; 256 enum cp_reason_type cp_reason = 0; 257 struct writeback_control wbc = { 258 .sync_mode = WB_SYNC_ALL, 259 .nr_to_write = LONG_MAX, 260 .for_reclaim = 0, 261 }; 262 unsigned int seq_id = 0; 263 264 if (unlikely(f2fs_readonly(inode->i_sb))) 265 return 0; 266 267 trace_f2fs_sync_file_enter(inode); 268 269 if (S_ISDIR(inode->i_mode)) 270 goto go_write; 271 272 /* if fdatasync is triggered, let's do in-place-update */ 273 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 274 set_inode_flag(inode, FI_NEED_IPU); 275 ret = file_write_and_wait_range(file, start, end); 276 clear_inode_flag(inode, FI_NEED_IPU); 277 278 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 279 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 280 return ret; 281 } 282 283 /* if the inode is dirty, let's recover all the time */ 284 if (!f2fs_skip_inode_update(inode, datasync)) { 285 f2fs_write_inode(inode, NULL); 286 goto go_write; 287 } 288 289 /* 290 * if there is no written data, don't waste time to write recovery info. 291 */ 292 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) && 293 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) { 294 295 /* it may call write_inode just prior to fsync */ 296 if (need_inode_page_update(sbi, ino)) 297 goto go_write; 298 299 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) || 300 f2fs_exist_written_data(sbi, ino, UPDATE_INO)) 301 goto flush_out; 302 goto out; 303 } else { 304 /* 305 * for OPU case, during fsync(), node can be persisted before 306 * data when lower device doesn't support write barrier, result 307 * in data corruption after SPO. 308 * So for strict fsync mode, force to use atomic write sematics 309 * to keep write order in between data/node and last node to 310 * avoid potential data corruption. 311 */ 312 if (F2FS_OPTION(sbi).fsync_mode == 313 FSYNC_MODE_STRICT && !atomic) 314 atomic = true; 315 } 316 go_write: 317 /* 318 * Both of fdatasync() and fsync() are able to be recovered from 319 * sudden-power-off. 320 */ 321 f2fs_down_read(&F2FS_I(inode)->i_sem); 322 cp_reason = need_do_checkpoint(inode); 323 f2fs_up_read(&F2FS_I(inode)->i_sem); 324 325 if (cp_reason) { 326 /* all the dirty node pages should be flushed for POR */ 327 ret = f2fs_sync_fs(inode->i_sb, 1); 328 329 /* 330 * We've secured consistency through sync_fs. Following pino 331 * will be used only for fsynced inodes after checkpoint. 332 */ 333 try_to_fix_pino(inode); 334 clear_inode_flag(inode, FI_APPEND_WRITE); 335 clear_inode_flag(inode, FI_UPDATE_WRITE); 336 goto out; 337 } 338 sync_nodes: 339 atomic_inc(&sbi->wb_sync_req[NODE]); 340 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id); 341 atomic_dec(&sbi->wb_sync_req[NODE]); 342 if (ret) 343 goto out; 344 345 /* if cp_error was enabled, we should avoid infinite loop */ 346 if (unlikely(f2fs_cp_error(sbi))) { 347 ret = -EIO; 348 goto out; 349 } 350 351 if (f2fs_need_inode_block_update(sbi, ino)) { 352 f2fs_mark_inode_dirty_sync(inode, true); 353 f2fs_write_inode(inode, NULL); 354 goto sync_nodes; 355 } 356 357 /* 358 * If it's atomic_write, it's just fine to keep write ordering. So 359 * here we don't need to wait for node write completion, since we use 360 * node chain which serializes node blocks. If one of node writes are 361 * reordered, we can see simply broken chain, resulting in stopping 362 * roll-forward recovery. It means we'll recover all or none node blocks 363 * given fsync mark. 364 */ 365 if (!atomic) { 366 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id); 367 if (ret) 368 goto out; 369 } 370 371 /* once recovery info is written, don't need to tack this */ 372 f2fs_remove_ino_entry(sbi, ino, APPEND_INO); 373 clear_inode_flag(inode, FI_APPEND_WRITE); 374 flush_out: 375 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) || 376 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi))) 377 ret = f2fs_issue_flush(sbi, inode->i_ino); 378 if (!ret) { 379 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO); 380 clear_inode_flag(inode, FI_UPDATE_WRITE); 381 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO); 382 } 383 f2fs_update_time(sbi, REQ_TIME); 384 out: 385 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret); 386 return ret; 387 } 388 389 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 390 { 391 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 392 return -EIO; 393 return f2fs_do_sync_file(file, start, end, datasync, false); 394 } 395 396 static bool __found_offset(struct address_space *mapping, block_t blkaddr, 397 pgoff_t index, int whence) 398 { 399 switch (whence) { 400 case SEEK_DATA: 401 if (__is_valid_data_blkaddr(blkaddr)) 402 return true; 403 if (blkaddr == NEW_ADDR && 404 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY)) 405 return true; 406 break; 407 case SEEK_HOLE: 408 if (blkaddr == NULL_ADDR) 409 return true; 410 break; 411 } 412 return false; 413 } 414 415 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 416 { 417 struct inode *inode = file->f_mapping->host; 418 loff_t maxbytes = inode->i_sb->s_maxbytes; 419 struct dnode_of_data dn; 420 pgoff_t pgofs, end_offset; 421 loff_t data_ofs = offset; 422 loff_t isize; 423 int err = 0; 424 425 inode_lock(inode); 426 427 isize = i_size_read(inode); 428 if (offset >= isize) 429 goto fail; 430 431 /* handle inline data case */ 432 if (f2fs_has_inline_data(inode)) { 433 if (whence == SEEK_HOLE) { 434 data_ofs = isize; 435 goto found; 436 } else if (whence == SEEK_DATA) { 437 data_ofs = offset; 438 goto found; 439 } 440 } 441 442 pgofs = (pgoff_t)(offset >> PAGE_SHIFT); 443 444 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 445 set_new_dnode(&dn, inode, NULL, NULL, 0); 446 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE); 447 if (err && err != -ENOENT) { 448 goto fail; 449 } else if (err == -ENOENT) { 450 /* direct node does not exists */ 451 if (whence == SEEK_DATA) { 452 pgofs = f2fs_get_next_page_offset(&dn, pgofs); 453 continue; 454 } else { 455 goto found; 456 } 457 } 458 459 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 460 461 /* find data/hole in dnode block */ 462 for (; dn.ofs_in_node < end_offset; 463 dn.ofs_in_node++, pgofs++, 464 data_ofs = (loff_t)pgofs << PAGE_SHIFT) { 465 block_t blkaddr; 466 467 blkaddr = f2fs_data_blkaddr(&dn); 468 469 if (__is_valid_data_blkaddr(blkaddr) && 470 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 471 blkaddr, DATA_GENERIC_ENHANCE)) { 472 f2fs_put_dnode(&dn); 473 goto fail; 474 } 475 476 if (__found_offset(file->f_mapping, blkaddr, 477 pgofs, whence)) { 478 f2fs_put_dnode(&dn); 479 goto found; 480 } 481 } 482 f2fs_put_dnode(&dn); 483 } 484 485 if (whence == SEEK_DATA) 486 goto fail; 487 found: 488 if (whence == SEEK_HOLE && data_ofs > isize) 489 data_ofs = isize; 490 inode_unlock(inode); 491 return vfs_setpos(file, data_ofs, maxbytes); 492 fail: 493 inode_unlock(inode); 494 return -ENXIO; 495 } 496 497 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 498 { 499 struct inode *inode = file->f_mapping->host; 500 loff_t maxbytes = inode->i_sb->s_maxbytes; 501 502 if (f2fs_compressed_file(inode)) 503 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 504 505 switch (whence) { 506 case SEEK_SET: 507 case SEEK_CUR: 508 case SEEK_END: 509 return generic_file_llseek_size(file, offset, whence, 510 maxbytes, i_size_read(inode)); 511 case SEEK_DATA: 512 case SEEK_HOLE: 513 if (offset < 0) 514 return -ENXIO; 515 return f2fs_seek_block(file, offset, whence); 516 } 517 518 return -EINVAL; 519 } 520 521 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 522 { 523 struct inode *inode = file_inode(file); 524 525 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 526 return -EIO; 527 528 if (!f2fs_is_compress_backend_ready(inode)) 529 return -EOPNOTSUPP; 530 531 file_accessed(file); 532 vma->vm_ops = &f2fs_file_vm_ops; 533 set_inode_flag(inode, FI_MMAP_FILE); 534 return 0; 535 } 536 537 static int f2fs_file_open(struct inode *inode, struct file *filp) 538 { 539 int err = fscrypt_file_open(inode, filp); 540 541 if (err) 542 return err; 543 544 if (!f2fs_is_compress_backend_ready(inode)) 545 return -EOPNOTSUPP; 546 547 err = fsverity_file_open(inode, filp); 548 if (err) 549 return err; 550 551 filp->f_mode |= FMODE_NOWAIT; 552 553 return dquot_file_open(inode, filp); 554 } 555 556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count) 557 { 558 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 559 struct f2fs_node *raw_node; 560 int nr_free = 0, ofs = dn->ofs_in_node, len = count; 561 __le32 *addr; 562 int base = 0; 563 bool compressed_cluster = false; 564 int cluster_index = 0, valid_blocks = 0; 565 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 566 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks); 567 568 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 569 base = get_extra_isize(dn->inode); 570 571 raw_node = F2FS_NODE(dn->node_page); 572 addr = blkaddr_in_node(raw_node) + base + ofs; 573 574 /* Assumption: truncation starts with cluster */ 575 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) { 576 block_t blkaddr = le32_to_cpu(*addr); 577 578 if (f2fs_compressed_file(dn->inode) && 579 !(cluster_index & (cluster_size - 1))) { 580 if (compressed_cluster) 581 f2fs_i_compr_blocks_update(dn->inode, 582 valid_blocks, false); 583 compressed_cluster = (blkaddr == COMPRESS_ADDR); 584 valid_blocks = 0; 585 } 586 587 if (blkaddr == NULL_ADDR) 588 continue; 589 590 dn->data_blkaddr = NULL_ADDR; 591 f2fs_set_data_blkaddr(dn); 592 593 if (__is_valid_data_blkaddr(blkaddr)) { 594 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 595 DATA_GENERIC_ENHANCE)) 596 continue; 597 if (compressed_cluster) 598 valid_blocks++; 599 } 600 601 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page)) 602 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN); 603 604 f2fs_invalidate_blocks(sbi, blkaddr); 605 606 if (!released || blkaddr != COMPRESS_ADDR) 607 nr_free++; 608 } 609 610 if (compressed_cluster) 611 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false); 612 613 if (nr_free) { 614 pgoff_t fofs; 615 /* 616 * once we invalidate valid blkaddr in range [ofs, ofs + count], 617 * we will invalidate all blkaddr in the whole range. 618 */ 619 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), 620 dn->inode) + ofs; 621 f2fs_update_read_extent_cache_range(dn, fofs, 0, len); 622 f2fs_update_age_extent_cache_range(dn, fofs, nr_free); 623 dec_valid_block_count(sbi, dn->inode, nr_free); 624 } 625 dn->ofs_in_node = ofs; 626 627 f2fs_update_time(sbi, REQ_TIME); 628 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 629 dn->ofs_in_node, nr_free); 630 } 631 632 void f2fs_truncate_data_blocks(struct dnode_of_data *dn) 633 { 634 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode)); 635 } 636 637 static int truncate_partial_data_page(struct inode *inode, u64 from, 638 bool cache_only) 639 { 640 loff_t offset = from & (PAGE_SIZE - 1); 641 pgoff_t index = from >> PAGE_SHIFT; 642 struct address_space *mapping = inode->i_mapping; 643 struct page *page; 644 645 if (!offset && !cache_only) 646 return 0; 647 648 if (cache_only) { 649 page = find_lock_page(mapping, index); 650 if (page && PageUptodate(page)) 651 goto truncate_out; 652 f2fs_put_page(page, 1); 653 return 0; 654 } 655 656 page = f2fs_get_lock_data_page(inode, index, true); 657 if (IS_ERR(page)) 658 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page); 659 truncate_out: 660 f2fs_wait_on_page_writeback(page, DATA, true, true); 661 zero_user(page, offset, PAGE_SIZE - offset); 662 663 /* An encrypted inode should have a key and truncate the last page. */ 664 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode)); 665 if (!cache_only) 666 set_page_dirty(page); 667 f2fs_put_page(page, 1); 668 return 0; 669 } 670 671 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock) 672 { 673 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 674 struct dnode_of_data dn; 675 pgoff_t free_from; 676 int count = 0, err = 0; 677 struct page *ipage; 678 bool truncate_page = false; 679 680 trace_f2fs_truncate_blocks_enter(inode, from); 681 682 free_from = (pgoff_t)F2FS_BLK_ALIGN(from); 683 684 if (free_from >= max_file_blocks(inode)) 685 goto free_partial; 686 687 if (lock) 688 f2fs_lock_op(sbi); 689 690 ipage = f2fs_get_node_page(sbi, inode->i_ino); 691 if (IS_ERR(ipage)) { 692 err = PTR_ERR(ipage); 693 goto out; 694 } 695 696 if (f2fs_has_inline_data(inode)) { 697 f2fs_truncate_inline_inode(inode, ipage, from); 698 f2fs_put_page(ipage, 1); 699 truncate_page = true; 700 goto out; 701 } 702 703 set_new_dnode(&dn, inode, ipage, NULL, 0); 704 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA); 705 if (err) { 706 if (err == -ENOENT) 707 goto free_next; 708 goto out; 709 } 710 711 count = ADDRS_PER_PAGE(dn.node_page, inode); 712 713 count -= dn.ofs_in_node; 714 f2fs_bug_on(sbi, count < 0); 715 716 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 717 f2fs_truncate_data_blocks_range(&dn, count); 718 free_from += count; 719 } 720 721 f2fs_put_dnode(&dn); 722 free_next: 723 err = f2fs_truncate_inode_blocks(inode, free_from); 724 out: 725 if (lock) 726 f2fs_unlock_op(sbi); 727 free_partial: 728 /* lastly zero out the first data page */ 729 if (!err) 730 err = truncate_partial_data_page(inode, from, truncate_page); 731 732 trace_f2fs_truncate_blocks_exit(inode, err); 733 return err; 734 } 735 736 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock) 737 { 738 u64 free_from = from; 739 int err; 740 741 #ifdef CONFIG_F2FS_FS_COMPRESSION 742 /* 743 * for compressed file, only support cluster size 744 * aligned truncation. 745 */ 746 if (f2fs_compressed_file(inode)) 747 free_from = round_up(from, 748 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT); 749 #endif 750 751 err = f2fs_do_truncate_blocks(inode, free_from, lock); 752 if (err) 753 return err; 754 755 #ifdef CONFIG_F2FS_FS_COMPRESSION 756 /* 757 * For compressed file, after release compress blocks, don't allow write 758 * direct, but we should allow write direct after truncate to zero. 759 */ 760 if (f2fs_compressed_file(inode) && !free_from 761 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 762 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 763 764 if (from != free_from) { 765 err = f2fs_truncate_partial_cluster(inode, from, lock); 766 if (err) 767 return err; 768 } 769 #endif 770 771 return 0; 772 } 773 774 int f2fs_truncate(struct inode *inode) 775 { 776 int err; 777 778 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 779 return -EIO; 780 781 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 782 S_ISLNK(inode->i_mode))) 783 return 0; 784 785 trace_f2fs_truncate(inode); 786 787 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) { 788 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE); 789 return -EIO; 790 } 791 792 err = f2fs_dquot_initialize(inode); 793 if (err) 794 return err; 795 796 /* we should check inline_data size */ 797 if (!f2fs_may_inline_data(inode)) { 798 err = f2fs_convert_inline_inode(inode); 799 if (err) 800 return err; 801 } 802 803 err = f2fs_truncate_blocks(inode, i_size_read(inode), true); 804 if (err) 805 return err; 806 807 inode->i_mtime = inode->i_ctime = current_time(inode); 808 f2fs_mark_inode_dirty_sync(inode, false); 809 return 0; 810 } 811 812 static bool f2fs_force_buffered_io(struct inode *inode, int rw) 813 { 814 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 815 816 if (!fscrypt_dio_supported(inode)) 817 return true; 818 if (fsverity_active(inode)) 819 return true; 820 if (f2fs_compressed_file(inode)) 821 return true; 822 823 /* disallow direct IO if any of devices has unaligned blksize */ 824 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize) 825 return true; 826 /* 827 * for blkzoned device, fallback direct IO to buffered IO, so 828 * all IOs can be serialized by log-structured write. 829 */ 830 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE)) 831 return true; 832 if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi)) 833 return true; 834 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED)) 835 return true; 836 837 return false; 838 } 839 840 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 841 struct kstat *stat, u32 request_mask, unsigned int query_flags) 842 { 843 struct inode *inode = d_inode(path->dentry); 844 struct f2fs_inode_info *fi = F2FS_I(inode); 845 struct f2fs_inode *ri = NULL; 846 unsigned int flags; 847 848 if (f2fs_has_extra_attr(inode) && 849 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) && 850 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) { 851 stat->result_mask |= STATX_BTIME; 852 stat->btime.tv_sec = fi->i_crtime.tv_sec; 853 stat->btime.tv_nsec = fi->i_crtime.tv_nsec; 854 } 855 856 /* 857 * Return the DIO alignment restrictions if requested. We only return 858 * this information when requested, since on encrypted files it might 859 * take a fair bit of work to get if the file wasn't opened recently. 860 * 861 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN 862 * cannot represent that, so in that case we report no DIO support. 863 */ 864 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 865 unsigned int bsize = i_blocksize(inode); 866 867 stat->result_mask |= STATX_DIOALIGN; 868 if (!f2fs_force_buffered_io(inode, WRITE)) { 869 stat->dio_mem_align = bsize; 870 stat->dio_offset_align = bsize; 871 } 872 } 873 874 flags = fi->i_flags; 875 if (flags & F2FS_COMPR_FL) 876 stat->attributes |= STATX_ATTR_COMPRESSED; 877 if (flags & F2FS_APPEND_FL) 878 stat->attributes |= STATX_ATTR_APPEND; 879 if (IS_ENCRYPTED(inode)) 880 stat->attributes |= STATX_ATTR_ENCRYPTED; 881 if (flags & F2FS_IMMUTABLE_FL) 882 stat->attributes |= STATX_ATTR_IMMUTABLE; 883 if (flags & F2FS_NODUMP_FL) 884 stat->attributes |= STATX_ATTR_NODUMP; 885 if (IS_VERITY(inode)) 886 stat->attributes |= STATX_ATTR_VERITY; 887 888 stat->attributes_mask |= (STATX_ATTR_COMPRESSED | 889 STATX_ATTR_APPEND | 890 STATX_ATTR_ENCRYPTED | 891 STATX_ATTR_IMMUTABLE | 892 STATX_ATTR_NODUMP | 893 STATX_ATTR_VERITY); 894 895 generic_fillattr(mnt_userns, inode, stat); 896 897 /* we need to show initial sectors used for inline_data/dentries */ 898 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) || 899 f2fs_has_inline_dentry(inode)) 900 stat->blocks += (stat->size + 511) >> 9; 901 902 return 0; 903 } 904 905 #ifdef CONFIG_F2FS_FS_POSIX_ACL 906 static void __setattr_copy(struct user_namespace *mnt_userns, 907 struct inode *inode, const struct iattr *attr) 908 { 909 unsigned int ia_valid = attr->ia_valid; 910 911 i_uid_update(mnt_userns, attr, inode); 912 i_gid_update(mnt_userns, attr, inode); 913 if (ia_valid & ATTR_ATIME) 914 inode->i_atime = attr->ia_atime; 915 if (ia_valid & ATTR_MTIME) 916 inode->i_mtime = attr->ia_mtime; 917 if (ia_valid & ATTR_CTIME) 918 inode->i_ctime = attr->ia_ctime; 919 if (ia_valid & ATTR_MODE) { 920 umode_t mode = attr->ia_mode; 921 vfsgid_t vfsgid = i_gid_into_vfsgid(mnt_userns, inode); 922 923 if (!vfsgid_in_group_p(vfsgid) && 924 !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID)) 925 mode &= ~S_ISGID; 926 set_acl_inode(inode, mode); 927 } 928 } 929 #else 930 #define __setattr_copy setattr_copy 931 #endif 932 933 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 934 struct iattr *attr) 935 { 936 struct inode *inode = d_inode(dentry); 937 int err; 938 939 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 940 return -EIO; 941 942 if (unlikely(IS_IMMUTABLE(inode))) 943 return -EPERM; 944 945 if (unlikely(IS_APPEND(inode) && 946 (attr->ia_valid & (ATTR_MODE | ATTR_UID | 947 ATTR_GID | ATTR_TIMES_SET)))) 948 return -EPERM; 949 950 if ((attr->ia_valid & ATTR_SIZE) && 951 !f2fs_is_compress_backend_ready(inode)) 952 return -EOPNOTSUPP; 953 954 err = setattr_prepare(mnt_userns, dentry, attr); 955 if (err) 956 return err; 957 958 err = fscrypt_prepare_setattr(dentry, attr); 959 if (err) 960 return err; 961 962 err = fsverity_prepare_setattr(dentry, attr); 963 if (err) 964 return err; 965 966 if (is_quota_modification(mnt_userns, inode, attr)) { 967 err = f2fs_dquot_initialize(inode); 968 if (err) 969 return err; 970 } 971 if (i_uid_needs_update(mnt_userns, attr, inode) || 972 i_gid_needs_update(mnt_userns, attr, inode)) { 973 f2fs_lock_op(F2FS_I_SB(inode)); 974 err = dquot_transfer(mnt_userns, inode, attr); 975 if (err) { 976 set_sbi_flag(F2FS_I_SB(inode), 977 SBI_QUOTA_NEED_REPAIR); 978 f2fs_unlock_op(F2FS_I_SB(inode)); 979 return err; 980 } 981 /* 982 * update uid/gid under lock_op(), so that dquot and inode can 983 * be updated atomically. 984 */ 985 i_uid_update(mnt_userns, attr, inode); 986 i_gid_update(mnt_userns, attr, inode); 987 f2fs_mark_inode_dirty_sync(inode, true); 988 f2fs_unlock_op(F2FS_I_SB(inode)); 989 } 990 991 if (attr->ia_valid & ATTR_SIZE) { 992 loff_t old_size = i_size_read(inode); 993 994 if (attr->ia_size > MAX_INLINE_DATA(inode)) { 995 /* 996 * should convert inline inode before i_size_write to 997 * keep smaller than inline_data size with inline flag. 998 */ 999 err = f2fs_convert_inline_inode(inode); 1000 if (err) 1001 return err; 1002 } 1003 1004 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1005 filemap_invalidate_lock(inode->i_mapping); 1006 1007 truncate_setsize(inode, attr->ia_size); 1008 1009 if (attr->ia_size <= old_size) 1010 err = f2fs_truncate(inode); 1011 /* 1012 * do not trim all blocks after i_size if target size is 1013 * larger than i_size. 1014 */ 1015 filemap_invalidate_unlock(inode->i_mapping); 1016 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1017 if (err) 1018 return err; 1019 1020 spin_lock(&F2FS_I(inode)->i_size_lock); 1021 inode->i_mtime = inode->i_ctime = current_time(inode); 1022 F2FS_I(inode)->last_disk_size = i_size_read(inode); 1023 spin_unlock(&F2FS_I(inode)->i_size_lock); 1024 } 1025 1026 __setattr_copy(mnt_userns, inode, attr); 1027 1028 if (attr->ia_valid & ATTR_MODE) { 1029 err = posix_acl_chmod(mnt_userns, dentry, f2fs_get_inode_mode(inode)); 1030 1031 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 1032 if (!err) 1033 inode->i_mode = F2FS_I(inode)->i_acl_mode; 1034 clear_inode_flag(inode, FI_ACL_MODE); 1035 } 1036 } 1037 1038 /* file size may changed here */ 1039 f2fs_mark_inode_dirty_sync(inode, true); 1040 1041 /* inode change will produce dirty node pages flushed by checkpoint */ 1042 f2fs_balance_fs(F2FS_I_SB(inode), true); 1043 1044 return err; 1045 } 1046 1047 const struct inode_operations f2fs_file_inode_operations = { 1048 .getattr = f2fs_getattr, 1049 .setattr = f2fs_setattr, 1050 .get_inode_acl = f2fs_get_acl, 1051 .set_acl = f2fs_set_acl, 1052 .listxattr = f2fs_listxattr, 1053 .fiemap = f2fs_fiemap, 1054 .fileattr_get = f2fs_fileattr_get, 1055 .fileattr_set = f2fs_fileattr_set, 1056 }; 1057 1058 static int fill_zero(struct inode *inode, pgoff_t index, 1059 loff_t start, loff_t len) 1060 { 1061 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1062 struct page *page; 1063 1064 if (!len) 1065 return 0; 1066 1067 f2fs_balance_fs(sbi, true); 1068 1069 f2fs_lock_op(sbi); 1070 page = f2fs_get_new_data_page(inode, NULL, index, false); 1071 f2fs_unlock_op(sbi); 1072 1073 if (IS_ERR(page)) 1074 return PTR_ERR(page); 1075 1076 f2fs_wait_on_page_writeback(page, DATA, true, true); 1077 zero_user(page, start, len); 1078 set_page_dirty(page); 1079 f2fs_put_page(page, 1); 1080 return 0; 1081 } 1082 1083 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 1084 { 1085 int err; 1086 1087 while (pg_start < pg_end) { 1088 struct dnode_of_data dn; 1089 pgoff_t end_offset, count; 1090 1091 set_new_dnode(&dn, inode, NULL, NULL, 0); 1092 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); 1093 if (err) { 1094 if (err == -ENOENT) { 1095 pg_start = f2fs_get_next_page_offset(&dn, 1096 pg_start); 1097 continue; 1098 } 1099 return err; 1100 } 1101 1102 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1103 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); 1104 1105 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); 1106 1107 f2fs_truncate_data_blocks_range(&dn, count); 1108 f2fs_put_dnode(&dn); 1109 1110 pg_start += count; 1111 } 1112 return 0; 1113 } 1114 1115 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 1116 { 1117 pgoff_t pg_start, pg_end; 1118 loff_t off_start, off_end; 1119 int ret; 1120 1121 ret = f2fs_convert_inline_inode(inode); 1122 if (ret) 1123 return ret; 1124 1125 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1126 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1127 1128 off_start = offset & (PAGE_SIZE - 1); 1129 off_end = (offset + len) & (PAGE_SIZE - 1); 1130 1131 if (pg_start == pg_end) { 1132 ret = fill_zero(inode, pg_start, off_start, 1133 off_end - off_start); 1134 if (ret) 1135 return ret; 1136 } else { 1137 if (off_start) { 1138 ret = fill_zero(inode, pg_start++, off_start, 1139 PAGE_SIZE - off_start); 1140 if (ret) 1141 return ret; 1142 } 1143 if (off_end) { 1144 ret = fill_zero(inode, pg_end, 0, off_end); 1145 if (ret) 1146 return ret; 1147 } 1148 1149 if (pg_start < pg_end) { 1150 loff_t blk_start, blk_end; 1151 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1152 1153 f2fs_balance_fs(sbi, true); 1154 1155 blk_start = (loff_t)pg_start << PAGE_SHIFT; 1156 blk_end = (loff_t)pg_end << PAGE_SHIFT; 1157 1158 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1159 filemap_invalidate_lock(inode->i_mapping); 1160 1161 truncate_pagecache_range(inode, blk_start, blk_end - 1); 1162 1163 f2fs_lock_op(sbi); 1164 ret = f2fs_truncate_hole(inode, pg_start, pg_end); 1165 f2fs_unlock_op(sbi); 1166 1167 filemap_invalidate_unlock(inode->i_mapping); 1168 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1169 } 1170 } 1171 1172 return ret; 1173 } 1174 1175 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr, 1176 int *do_replace, pgoff_t off, pgoff_t len) 1177 { 1178 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1179 struct dnode_of_data dn; 1180 int ret, done, i; 1181 1182 next_dnode: 1183 set_new_dnode(&dn, inode, NULL, NULL, 0); 1184 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 1185 if (ret && ret != -ENOENT) { 1186 return ret; 1187 } else if (ret == -ENOENT) { 1188 if (dn.max_level == 0) 1189 return -ENOENT; 1190 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - 1191 dn.ofs_in_node, len); 1192 blkaddr += done; 1193 do_replace += done; 1194 goto next; 1195 } 1196 1197 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) - 1198 dn.ofs_in_node, len); 1199 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) { 1200 *blkaddr = f2fs_data_blkaddr(&dn); 1201 1202 if (__is_valid_data_blkaddr(*blkaddr) && 1203 !f2fs_is_valid_blkaddr(sbi, *blkaddr, 1204 DATA_GENERIC_ENHANCE)) { 1205 f2fs_put_dnode(&dn); 1206 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1207 return -EFSCORRUPTED; 1208 } 1209 1210 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) { 1211 1212 if (f2fs_lfs_mode(sbi)) { 1213 f2fs_put_dnode(&dn); 1214 return -EOPNOTSUPP; 1215 } 1216 1217 /* do not invalidate this block address */ 1218 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 1219 *do_replace = 1; 1220 } 1221 } 1222 f2fs_put_dnode(&dn); 1223 next: 1224 len -= done; 1225 off += done; 1226 if (len) 1227 goto next_dnode; 1228 return 0; 1229 } 1230 1231 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr, 1232 int *do_replace, pgoff_t off, int len) 1233 { 1234 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1235 struct dnode_of_data dn; 1236 int ret, i; 1237 1238 for (i = 0; i < len; i++, do_replace++, blkaddr++) { 1239 if (*do_replace == 0) 1240 continue; 1241 1242 set_new_dnode(&dn, inode, NULL, NULL, 0); 1243 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA); 1244 if (ret) { 1245 dec_valid_block_count(sbi, inode, 1); 1246 f2fs_invalidate_blocks(sbi, *blkaddr); 1247 } else { 1248 f2fs_update_data_blkaddr(&dn, *blkaddr); 1249 } 1250 f2fs_put_dnode(&dn); 1251 } 1252 return 0; 1253 } 1254 1255 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode, 1256 block_t *blkaddr, int *do_replace, 1257 pgoff_t src, pgoff_t dst, pgoff_t len, bool full) 1258 { 1259 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode); 1260 pgoff_t i = 0; 1261 int ret; 1262 1263 while (i < len) { 1264 if (blkaddr[i] == NULL_ADDR && !full) { 1265 i++; 1266 continue; 1267 } 1268 1269 if (do_replace[i] || blkaddr[i] == NULL_ADDR) { 1270 struct dnode_of_data dn; 1271 struct node_info ni; 1272 size_t new_size; 1273 pgoff_t ilen; 1274 1275 set_new_dnode(&dn, dst_inode, NULL, NULL, 0); 1276 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE); 1277 if (ret) 1278 return ret; 1279 1280 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false); 1281 if (ret) { 1282 f2fs_put_dnode(&dn); 1283 return ret; 1284 } 1285 1286 ilen = min((pgoff_t) 1287 ADDRS_PER_PAGE(dn.node_page, dst_inode) - 1288 dn.ofs_in_node, len - i); 1289 do { 1290 dn.data_blkaddr = f2fs_data_blkaddr(&dn); 1291 f2fs_truncate_data_blocks_range(&dn, 1); 1292 1293 if (do_replace[i]) { 1294 f2fs_i_blocks_write(src_inode, 1295 1, false, false); 1296 f2fs_i_blocks_write(dst_inode, 1297 1, true, false); 1298 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 1299 blkaddr[i], ni.version, true, false); 1300 1301 do_replace[i] = 0; 1302 } 1303 dn.ofs_in_node++; 1304 i++; 1305 new_size = (loff_t)(dst + i) << PAGE_SHIFT; 1306 if (dst_inode->i_size < new_size) 1307 f2fs_i_size_write(dst_inode, new_size); 1308 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR)); 1309 1310 f2fs_put_dnode(&dn); 1311 } else { 1312 struct page *psrc, *pdst; 1313 1314 psrc = f2fs_get_lock_data_page(src_inode, 1315 src + i, true); 1316 if (IS_ERR(psrc)) 1317 return PTR_ERR(psrc); 1318 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i, 1319 true); 1320 if (IS_ERR(pdst)) { 1321 f2fs_put_page(psrc, 1); 1322 return PTR_ERR(pdst); 1323 } 1324 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE); 1325 set_page_dirty(pdst); 1326 f2fs_put_page(pdst, 1); 1327 f2fs_put_page(psrc, 1); 1328 1329 ret = f2fs_truncate_hole(src_inode, 1330 src + i, src + i + 1); 1331 if (ret) 1332 return ret; 1333 i++; 1334 } 1335 } 1336 return 0; 1337 } 1338 1339 static int __exchange_data_block(struct inode *src_inode, 1340 struct inode *dst_inode, pgoff_t src, pgoff_t dst, 1341 pgoff_t len, bool full) 1342 { 1343 block_t *src_blkaddr; 1344 int *do_replace; 1345 pgoff_t olen; 1346 int ret; 1347 1348 while (len) { 1349 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len); 1350 1351 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1352 array_size(olen, sizeof(block_t)), 1353 GFP_NOFS); 1354 if (!src_blkaddr) 1355 return -ENOMEM; 1356 1357 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode), 1358 array_size(olen, sizeof(int)), 1359 GFP_NOFS); 1360 if (!do_replace) { 1361 kvfree(src_blkaddr); 1362 return -ENOMEM; 1363 } 1364 1365 ret = __read_out_blkaddrs(src_inode, src_blkaddr, 1366 do_replace, src, olen); 1367 if (ret) 1368 goto roll_back; 1369 1370 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr, 1371 do_replace, src, dst, olen, full); 1372 if (ret) 1373 goto roll_back; 1374 1375 src += olen; 1376 dst += olen; 1377 len -= olen; 1378 1379 kvfree(src_blkaddr); 1380 kvfree(do_replace); 1381 } 1382 return 0; 1383 1384 roll_back: 1385 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen); 1386 kvfree(src_blkaddr); 1387 kvfree(do_replace); 1388 return ret; 1389 } 1390 1391 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len) 1392 { 1393 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1394 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1395 pgoff_t start = offset >> PAGE_SHIFT; 1396 pgoff_t end = (offset + len) >> PAGE_SHIFT; 1397 int ret; 1398 1399 f2fs_balance_fs(sbi, true); 1400 1401 /* avoid gc operation during block exchange */ 1402 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1403 filemap_invalidate_lock(inode->i_mapping); 1404 1405 f2fs_lock_op(sbi); 1406 f2fs_drop_extent_tree(inode); 1407 truncate_pagecache(inode, offset); 1408 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true); 1409 f2fs_unlock_op(sbi); 1410 1411 filemap_invalidate_unlock(inode->i_mapping); 1412 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1413 return ret; 1414 } 1415 1416 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len) 1417 { 1418 loff_t new_size; 1419 int ret; 1420 1421 if (offset + len >= i_size_read(inode)) 1422 return -EINVAL; 1423 1424 /* collapse range should be aligned to block size of f2fs. */ 1425 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1426 return -EINVAL; 1427 1428 ret = f2fs_convert_inline_inode(inode); 1429 if (ret) 1430 return ret; 1431 1432 /* write out all dirty pages from offset */ 1433 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1434 if (ret) 1435 return ret; 1436 1437 ret = f2fs_do_collapse(inode, offset, len); 1438 if (ret) 1439 return ret; 1440 1441 /* write out all moved pages, if possible */ 1442 filemap_invalidate_lock(inode->i_mapping); 1443 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); 1444 truncate_pagecache(inode, offset); 1445 1446 new_size = i_size_read(inode) - len; 1447 ret = f2fs_truncate_blocks(inode, new_size, true); 1448 filemap_invalidate_unlock(inode->i_mapping); 1449 if (!ret) 1450 f2fs_i_size_write(inode, new_size); 1451 return ret; 1452 } 1453 1454 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start, 1455 pgoff_t end) 1456 { 1457 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1458 pgoff_t index = start; 1459 unsigned int ofs_in_node = dn->ofs_in_node; 1460 blkcnt_t count = 0; 1461 int ret; 1462 1463 for (; index < end; index++, dn->ofs_in_node++) { 1464 if (f2fs_data_blkaddr(dn) == NULL_ADDR) 1465 count++; 1466 } 1467 1468 dn->ofs_in_node = ofs_in_node; 1469 ret = f2fs_reserve_new_blocks(dn, count); 1470 if (ret) 1471 return ret; 1472 1473 dn->ofs_in_node = ofs_in_node; 1474 for (index = start; index < end; index++, dn->ofs_in_node++) { 1475 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1476 /* 1477 * f2fs_reserve_new_blocks will not guarantee entire block 1478 * allocation. 1479 */ 1480 if (dn->data_blkaddr == NULL_ADDR) { 1481 ret = -ENOSPC; 1482 break; 1483 } 1484 1485 if (dn->data_blkaddr == NEW_ADDR) 1486 continue; 1487 1488 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr, 1489 DATA_GENERIC_ENHANCE)) { 1490 ret = -EFSCORRUPTED; 1491 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1492 break; 1493 } 1494 1495 f2fs_invalidate_blocks(sbi, dn->data_blkaddr); 1496 dn->data_blkaddr = NEW_ADDR; 1497 f2fs_set_data_blkaddr(dn); 1498 } 1499 1500 f2fs_update_read_extent_cache_range(dn, start, 0, index - start); 1501 1502 return ret; 1503 } 1504 1505 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len, 1506 int mode) 1507 { 1508 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1509 struct address_space *mapping = inode->i_mapping; 1510 pgoff_t index, pg_start, pg_end; 1511 loff_t new_size = i_size_read(inode); 1512 loff_t off_start, off_end; 1513 int ret = 0; 1514 1515 ret = inode_newsize_ok(inode, (len + offset)); 1516 if (ret) 1517 return ret; 1518 1519 ret = f2fs_convert_inline_inode(inode); 1520 if (ret) 1521 return ret; 1522 1523 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1); 1524 if (ret) 1525 return ret; 1526 1527 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT; 1528 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT; 1529 1530 off_start = offset & (PAGE_SIZE - 1); 1531 off_end = (offset + len) & (PAGE_SIZE - 1); 1532 1533 if (pg_start == pg_end) { 1534 ret = fill_zero(inode, pg_start, off_start, 1535 off_end - off_start); 1536 if (ret) 1537 return ret; 1538 1539 new_size = max_t(loff_t, new_size, offset + len); 1540 } else { 1541 if (off_start) { 1542 ret = fill_zero(inode, pg_start++, off_start, 1543 PAGE_SIZE - off_start); 1544 if (ret) 1545 return ret; 1546 1547 new_size = max_t(loff_t, new_size, 1548 (loff_t)pg_start << PAGE_SHIFT); 1549 } 1550 1551 for (index = pg_start; index < pg_end;) { 1552 struct dnode_of_data dn; 1553 unsigned int end_offset; 1554 pgoff_t end; 1555 1556 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1557 filemap_invalidate_lock(mapping); 1558 1559 truncate_pagecache_range(inode, 1560 (loff_t)index << PAGE_SHIFT, 1561 ((loff_t)pg_end << PAGE_SHIFT) - 1); 1562 1563 f2fs_lock_op(sbi); 1564 1565 set_new_dnode(&dn, inode, NULL, NULL, 0); 1566 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 1567 if (ret) { 1568 f2fs_unlock_op(sbi); 1569 filemap_invalidate_unlock(mapping); 1570 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1571 goto out; 1572 } 1573 1574 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1575 end = min(pg_end, end_offset - dn.ofs_in_node + index); 1576 1577 ret = f2fs_do_zero_range(&dn, index, end); 1578 f2fs_put_dnode(&dn); 1579 1580 f2fs_unlock_op(sbi); 1581 filemap_invalidate_unlock(mapping); 1582 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1583 1584 f2fs_balance_fs(sbi, dn.node_changed); 1585 1586 if (ret) 1587 goto out; 1588 1589 index = end; 1590 new_size = max_t(loff_t, new_size, 1591 (loff_t)index << PAGE_SHIFT); 1592 } 1593 1594 if (off_end) { 1595 ret = fill_zero(inode, pg_end, 0, off_end); 1596 if (ret) 1597 goto out; 1598 1599 new_size = max_t(loff_t, new_size, offset + len); 1600 } 1601 } 1602 1603 out: 1604 if (new_size > i_size_read(inode)) { 1605 if (mode & FALLOC_FL_KEEP_SIZE) 1606 file_set_keep_isize(inode); 1607 else 1608 f2fs_i_size_write(inode, new_size); 1609 } 1610 return ret; 1611 } 1612 1613 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) 1614 { 1615 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1616 struct address_space *mapping = inode->i_mapping; 1617 pgoff_t nr, pg_start, pg_end, delta, idx; 1618 loff_t new_size; 1619 int ret = 0; 1620 1621 new_size = i_size_read(inode) + len; 1622 ret = inode_newsize_ok(inode, new_size); 1623 if (ret) 1624 return ret; 1625 1626 if (offset >= i_size_read(inode)) 1627 return -EINVAL; 1628 1629 /* insert range should be aligned to block size of f2fs. */ 1630 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) 1631 return -EINVAL; 1632 1633 ret = f2fs_convert_inline_inode(inode); 1634 if (ret) 1635 return ret; 1636 1637 f2fs_balance_fs(sbi, true); 1638 1639 filemap_invalidate_lock(mapping); 1640 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true); 1641 filemap_invalidate_unlock(mapping); 1642 if (ret) 1643 return ret; 1644 1645 /* write out all dirty pages from offset */ 1646 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1647 if (ret) 1648 return ret; 1649 1650 pg_start = offset >> PAGE_SHIFT; 1651 pg_end = (offset + len) >> PAGE_SHIFT; 1652 delta = pg_end - pg_start; 1653 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1654 1655 /* avoid gc operation during block exchange */ 1656 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1657 filemap_invalidate_lock(mapping); 1658 truncate_pagecache(inode, offset); 1659 1660 while (!ret && idx > pg_start) { 1661 nr = idx - pg_start; 1662 if (nr > delta) 1663 nr = delta; 1664 idx -= nr; 1665 1666 f2fs_lock_op(sbi); 1667 f2fs_drop_extent_tree(inode); 1668 1669 ret = __exchange_data_block(inode, inode, idx, 1670 idx + delta, nr, false); 1671 f2fs_unlock_op(sbi); 1672 } 1673 filemap_invalidate_unlock(mapping); 1674 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 1675 1676 /* write out all moved pages, if possible */ 1677 filemap_invalidate_lock(mapping); 1678 filemap_write_and_wait_range(mapping, offset, LLONG_MAX); 1679 truncate_pagecache(inode, offset); 1680 filemap_invalidate_unlock(mapping); 1681 1682 if (!ret) 1683 f2fs_i_size_write(inode, new_size); 1684 return ret; 1685 } 1686 1687 static int expand_inode_data(struct inode *inode, loff_t offset, 1688 loff_t len, int mode) 1689 { 1690 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1691 struct f2fs_map_blocks map = { .m_next_pgofs = NULL, 1692 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE, 1693 .m_may_create = true }; 1694 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 1695 .init_gc_type = FG_GC, 1696 .should_migrate_blocks = false, 1697 .err_gc_skipped = true, 1698 .nr_free_secs = 0 }; 1699 pgoff_t pg_start, pg_end; 1700 loff_t new_size = i_size_read(inode); 1701 loff_t off_end; 1702 block_t expanded = 0; 1703 int err; 1704 1705 err = inode_newsize_ok(inode, (len + offset)); 1706 if (err) 1707 return err; 1708 1709 err = f2fs_convert_inline_inode(inode); 1710 if (err) 1711 return err; 1712 1713 f2fs_balance_fs(sbi, true); 1714 1715 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT; 1716 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT; 1717 off_end = (offset + len) & (PAGE_SIZE - 1); 1718 1719 map.m_lblk = pg_start; 1720 map.m_len = pg_end - pg_start; 1721 if (off_end) 1722 map.m_len++; 1723 1724 if (!map.m_len) 1725 return 0; 1726 1727 if (f2fs_is_pinned_file(inode)) { 1728 block_t sec_blks = CAP_BLKS_PER_SEC(sbi); 1729 block_t sec_len = roundup(map.m_len, sec_blks); 1730 1731 map.m_len = sec_blks; 1732 next_alloc: 1733 if (has_not_enough_free_secs(sbi, 0, 1734 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) { 1735 f2fs_down_write(&sbi->gc_lock); 1736 err = f2fs_gc(sbi, &gc_control); 1737 if (err && err != -ENODATA) 1738 goto out_err; 1739 } 1740 1741 f2fs_down_write(&sbi->pin_sem); 1742 1743 f2fs_lock_op(sbi); 1744 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 1745 f2fs_unlock_op(sbi); 1746 1747 map.m_seg_type = CURSEG_COLD_DATA_PINNED; 1748 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 1749 file_dont_truncate(inode); 1750 1751 f2fs_up_write(&sbi->pin_sem); 1752 1753 expanded += map.m_len; 1754 sec_len -= map.m_len; 1755 map.m_lblk += map.m_len; 1756 if (!err && sec_len) 1757 goto next_alloc; 1758 1759 map.m_len = expanded; 1760 } else { 1761 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 1762 expanded = map.m_len; 1763 } 1764 out_err: 1765 if (err) { 1766 pgoff_t last_off; 1767 1768 if (!expanded) 1769 return err; 1770 1771 last_off = pg_start + expanded - 1; 1772 1773 /* update new size to the failed position */ 1774 new_size = (last_off == pg_end) ? offset + len : 1775 (loff_t)(last_off + 1) << PAGE_SHIFT; 1776 } else { 1777 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end; 1778 } 1779 1780 if (new_size > i_size_read(inode)) { 1781 if (mode & FALLOC_FL_KEEP_SIZE) 1782 file_set_keep_isize(inode); 1783 else 1784 f2fs_i_size_write(inode, new_size); 1785 } 1786 1787 return err; 1788 } 1789 1790 static long f2fs_fallocate(struct file *file, int mode, 1791 loff_t offset, loff_t len) 1792 { 1793 struct inode *inode = file_inode(file); 1794 long ret = 0; 1795 1796 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 1797 return -EIO; 1798 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 1799 return -ENOSPC; 1800 if (!f2fs_is_compress_backend_ready(inode)) 1801 return -EOPNOTSUPP; 1802 1803 /* f2fs only support ->fallocate for regular file */ 1804 if (!S_ISREG(inode->i_mode)) 1805 return -EINVAL; 1806 1807 if (IS_ENCRYPTED(inode) && 1808 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE))) 1809 return -EOPNOTSUPP; 1810 1811 /* 1812 * Pinned file should not support partial trucation since the block 1813 * can be used by applications. 1814 */ 1815 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) && 1816 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE | 1817 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) 1818 return -EOPNOTSUPP; 1819 1820 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 1821 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | 1822 FALLOC_FL_INSERT_RANGE)) 1823 return -EOPNOTSUPP; 1824 1825 inode_lock(inode); 1826 1827 ret = file_modified(file); 1828 if (ret) 1829 goto out; 1830 1831 if (mode & FALLOC_FL_PUNCH_HOLE) { 1832 if (offset >= inode->i_size) 1833 goto out; 1834 1835 ret = punch_hole(inode, offset, len); 1836 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) { 1837 ret = f2fs_collapse_range(inode, offset, len); 1838 } else if (mode & FALLOC_FL_ZERO_RANGE) { 1839 ret = f2fs_zero_range(inode, offset, len, mode); 1840 } else if (mode & FALLOC_FL_INSERT_RANGE) { 1841 ret = f2fs_insert_range(inode, offset, len); 1842 } else { 1843 ret = expand_inode_data(inode, offset, len, mode); 1844 } 1845 1846 if (!ret) { 1847 inode->i_mtime = inode->i_ctime = current_time(inode); 1848 f2fs_mark_inode_dirty_sync(inode, false); 1849 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1850 } 1851 1852 out: 1853 inode_unlock(inode); 1854 1855 trace_f2fs_fallocate(inode, mode, offset, len, ret); 1856 return ret; 1857 } 1858 1859 static int f2fs_release_file(struct inode *inode, struct file *filp) 1860 { 1861 /* 1862 * f2fs_relase_file is called at every close calls. So we should 1863 * not drop any inmemory pages by close called by other process. 1864 */ 1865 if (!(filp->f_mode & FMODE_WRITE) || 1866 atomic_read(&inode->i_writecount) != 1) 1867 return 0; 1868 1869 f2fs_abort_atomic_write(inode, true); 1870 return 0; 1871 } 1872 1873 static int f2fs_file_flush(struct file *file, fl_owner_t id) 1874 { 1875 struct inode *inode = file_inode(file); 1876 1877 /* 1878 * If the process doing a transaction is crashed, we should do 1879 * roll-back. Otherwise, other reader/write can see corrupted database 1880 * until all the writers close its file. Since this should be done 1881 * before dropping file lock, it needs to do in ->flush. 1882 */ 1883 if (F2FS_I(inode)->atomic_write_task == current) 1884 f2fs_abort_atomic_write(inode, true); 1885 return 0; 1886 } 1887 1888 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask) 1889 { 1890 struct f2fs_inode_info *fi = F2FS_I(inode); 1891 u32 masked_flags = fi->i_flags & mask; 1892 1893 /* mask can be shrunk by flags_valid selector */ 1894 iflags &= mask; 1895 1896 /* Is it quota file? Do not allow user to mess with it */ 1897 if (IS_NOQUOTA(inode)) 1898 return -EPERM; 1899 1900 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) { 1901 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode))) 1902 return -EOPNOTSUPP; 1903 if (!f2fs_empty_dir(inode)) 1904 return -ENOTEMPTY; 1905 } 1906 1907 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) { 1908 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 1909 return -EOPNOTSUPP; 1910 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL)) 1911 return -EINVAL; 1912 } 1913 1914 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) { 1915 if (masked_flags & F2FS_COMPR_FL) { 1916 if (!f2fs_disable_compressed_file(inode)) 1917 return -EINVAL; 1918 } else { 1919 /* try to convert inline_data to support compression */ 1920 int err = f2fs_convert_inline_inode(inode); 1921 if (err) 1922 return err; 1923 if (!f2fs_may_compress(inode)) 1924 return -EINVAL; 1925 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 1926 return -EINVAL; 1927 if (set_compress_context(inode)) 1928 return -EOPNOTSUPP; 1929 } 1930 } 1931 1932 fi->i_flags = iflags | (fi->i_flags & ~mask); 1933 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) && 1934 (fi->i_flags & F2FS_NOCOMP_FL)); 1935 1936 if (fi->i_flags & F2FS_PROJINHERIT_FL) 1937 set_inode_flag(inode, FI_PROJ_INHERIT); 1938 else 1939 clear_inode_flag(inode, FI_PROJ_INHERIT); 1940 1941 inode->i_ctime = current_time(inode); 1942 f2fs_set_inode_flags(inode); 1943 f2fs_mark_inode_dirty_sync(inode, true); 1944 return 0; 1945 } 1946 1947 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */ 1948 1949 /* 1950 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry 1951 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to 1952 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add 1953 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL. 1954 * 1955 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and 1956 * FS_IOC_FSSETXATTR is done by the VFS. 1957 */ 1958 1959 static const struct { 1960 u32 iflag; 1961 u32 fsflag; 1962 } f2fs_fsflags_map[] = { 1963 { F2FS_COMPR_FL, FS_COMPR_FL }, 1964 { F2FS_SYNC_FL, FS_SYNC_FL }, 1965 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL }, 1966 { F2FS_APPEND_FL, FS_APPEND_FL }, 1967 { F2FS_NODUMP_FL, FS_NODUMP_FL }, 1968 { F2FS_NOATIME_FL, FS_NOATIME_FL }, 1969 { F2FS_NOCOMP_FL, FS_NOCOMP_FL }, 1970 { F2FS_INDEX_FL, FS_INDEX_FL }, 1971 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL }, 1972 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL }, 1973 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL }, 1974 }; 1975 1976 #define F2FS_GETTABLE_FS_FL ( \ 1977 FS_COMPR_FL | \ 1978 FS_SYNC_FL | \ 1979 FS_IMMUTABLE_FL | \ 1980 FS_APPEND_FL | \ 1981 FS_NODUMP_FL | \ 1982 FS_NOATIME_FL | \ 1983 FS_NOCOMP_FL | \ 1984 FS_INDEX_FL | \ 1985 FS_DIRSYNC_FL | \ 1986 FS_PROJINHERIT_FL | \ 1987 FS_ENCRYPT_FL | \ 1988 FS_INLINE_DATA_FL | \ 1989 FS_NOCOW_FL | \ 1990 FS_VERITY_FL | \ 1991 FS_CASEFOLD_FL) 1992 1993 #define F2FS_SETTABLE_FS_FL ( \ 1994 FS_COMPR_FL | \ 1995 FS_SYNC_FL | \ 1996 FS_IMMUTABLE_FL | \ 1997 FS_APPEND_FL | \ 1998 FS_NODUMP_FL | \ 1999 FS_NOATIME_FL | \ 2000 FS_NOCOMP_FL | \ 2001 FS_DIRSYNC_FL | \ 2002 FS_PROJINHERIT_FL | \ 2003 FS_CASEFOLD_FL) 2004 2005 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */ 2006 static inline u32 f2fs_iflags_to_fsflags(u32 iflags) 2007 { 2008 u32 fsflags = 0; 2009 int i; 2010 2011 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2012 if (iflags & f2fs_fsflags_map[i].iflag) 2013 fsflags |= f2fs_fsflags_map[i].fsflag; 2014 2015 return fsflags; 2016 } 2017 2018 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */ 2019 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags) 2020 { 2021 u32 iflags = 0; 2022 int i; 2023 2024 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++) 2025 if (fsflags & f2fs_fsflags_map[i].fsflag) 2026 iflags |= f2fs_fsflags_map[i].iflag; 2027 2028 return iflags; 2029 } 2030 2031 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg) 2032 { 2033 struct inode *inode = file_inode(filp); 2034 2035 return put_user(inode->i_generation, (int __user *)arg); 2036 } 2037 2038 static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate) 2039 { 2040 struct inode *inode = file_inode(filp); 2041 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2042 struct f2fs_inode_info *fi = F2FS_I(inode); 2043 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2044 struct inode *pinode; 2045 loff_t isize; 2046 int ret; 2047 2048 if (!inode_owner_or_capable(mnt_userns, inode)) 2049 return -EACCES; 2050 2051 if (!S_ISREG(inode->i_mode)) 2052 return -EINVAL; 2053 2054 if (filp->f_flags & O_DIRECT) 2055 return -EINVAL; 2056 2057 ret = mnt_want_write_file(filp); 2058 if (ret) 2059 return ret; 2060 2061 inode_lock(inode); 2062 2063 if (!f2fs_disable_compressed_file(inode)) { 2064 ret = -EINVAL; 2065 goto out; 2066 } 2067 2068 if (f2fs_is_atomic_file(inode)) 2069 goto out; 2070 2071 ret = f2fs_convert_inline_inode(inode); 2072 if (ret) 2073 goto out; 2074 2075 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 2076 2077 /* 2078 * Should wait end_io to count F2FS_WB_CP_DATA correctly by 2079 * f2fs_is_atomic_file. 2080 */ 2081 if (get_dirty_pages(inode)) 2082 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u", 2083 inode->i_ino, get_dirty_pages(inode)); 2084 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 2085 if (ret) { 2086 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2087 goto out; 2088 } 2089 2090 /* Create a COW inode for atomic write */ 2091 pinode = f2fs_iget(inode->i_sb, fi->i_pino); 2092 if (IS_ERR(pinode)) { 2093 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2094 ret = PTR_ERR(pinode); 2095 goto out; 2096 } 2097 2098 ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode); 2099 iput(pinode); 2100 if (ret) { 2101 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2102 goto out; 2103 } 2104 2105 f2fs_write_inode(inode, NULL); 2106 2107 stat_inc_atomic_inode(inode); 2108 2109 set_inode_flag(inode, FI_ATOMIC_FILE); 2110 set_inode_flag(fi->cow_inode, FI_COW_FILE); 2111 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA); 2112 2113 isize = i_size_read(inode); 2114 fi->original_i_size = isize; 2115 if (truncate) { 2116 set_inode_flag(inode, FI_ATOMIC_REPLACE); 2117 truncate_inode_pages_final(inode->i_mapping); 2118 f2fs_i_size_write(inode, 0); 2119 isize = 0; 2120 } 2121 f2fs_i_size_write(fi->cow_inode, isize); 2122 2123 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 2124 2125 f2fs_update_time(sbi, REQ_TIME); 2126 fi->atomic_write_task = current; 2127 stat_update_max_atomic_write(inode); 2128 fi->atomic_write_cnt = 0; 2129 out: 2130 inode_unlock(inode); 2131 mnt_drop_write_file(filp); 2132 return ret; 2133 } 2134 2135 static int f2fs_ioc_commit_atomic_write(struct file *filp) 2136 { 2137 struct inode *inode = file_inode(filp); 2138 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2139 int ret; 2140 2141 if (!inode_owner_or_capable(mnt_userns, inode)) 2142 return -EACCES; 2143 2144 ret = mnt_want_write_file(filp); 2145 if (ret) 2146 return ret; 2147 2148 f2fs_balance_fs(F2FS_I_SB(inode), true); 2149 2150 inode_lock(inode); 2151 2152 if (f2fs_is_atomic_file(inode)) { 2153 ret = f2fs_commit_atomic_write(inode); 2154 if (!ret) 2155 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true); 2156 2157 f2fs_abort_atomic_write(inode, ret); 2158 } else { 2159 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false); 2160 } 2161 2162 inode_unlock(inode); 2163 mnt_drop_write_file(filp); 2164 return ret; 2165 } 2166 2167 static int f2fs_ioc_abort_atomic_write(struct file *filp) 2168 { 2169 struct inode *inode = file_inode(filp); 2170 struct user_namespace *mnt_userns = file_mnt_user_ns(filp); 2171 int ret; 2172 2173 if (!inode_owner_or_capable(mnt_userns, inode)) 2174 return -EACCES; 2175 2176 ret = mnt_want_write_file(filp); 2177 if (ret) 2178 return ret; 2179 2180 inode_lock(inode); 2181 2182 f2fs_abort_atomic_write(inode, true); 2183 2184 inode_unlock(inode); 2185 2186 mnt_drop_write_file(filp); 2187 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2188 return ret; 2189 } 2190 2191 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg) 2192 { 2193 struct inode *inode = file_inode(filp); 2194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2195 struct super_block *sb = sbi->sb; 2196 __u32 in; 2197 int ret = 0; 2198 2199 if (!capable(CAP_SYS_ADMIN)) 2200 return -EPERM; 2201 2202 if (get_user(in, (__u32 __user *)arg)) 2203 return -EFAULT; 2204 2205 if (in != F2FS_GOING_DOWN_FULLSYNC) { 2206 ret = mnt_want_write_file(filp); 2207 if (ret) { 2208 if (ret == -EROFS) { 2209 ret = 0; 2210 f2fs_stop_checkpoint(sbi, false, 2211 STOP_CP_REASON_SHUTDOWN); 2212 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2213 trace_f2fs_shutdown(sbi, in, ret); 2214 } 2215 return ret; 2216 } 2217 } 2218 2219 switch (in) { 2220 case F2FS_GOING_DOWN_FULLSYNC: 2221 ret = freeze_bdev(sb->s_bdev); 2222 if (ret) 2223 goto out; 2224 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2225 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2226 thaw_bdev(sb->s_bdev); 2227 break; 2228 case F2FS_GOING_DOWN_METASYNC: 2229 /* do checkpoint only */ 2230 ret = f2fs_sync_fs(sb, 1); 2231 if (ret) 2232 goto out; 2233 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2234 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2235 break; 2236 case F2FS_GOING_DOWN_NOSYNC: 2237 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2238 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2239 break; 2240 case F2FS_GOING_DOWN_METAFLUSH: 2241 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO); 2242 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN); 2243 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 2244 break; 2245 case F2FS_GOING_DOWN_NEED_FSCK: 2246 set_sbi_flag(sbi, SBI_NEED_FSCK); 2247 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 2248 set_sbi_flag(sbi, SBI_IS_DIRTY); 2249 /* do checkpoint only */ 2250 ret = f2fs_sync_fs(sb, 1); 2251 goto out; 2252 default: 2253 ret = -EINVAL; 2254 goto out; 2255 } 2256 2257 f2fs_stop_gc_thread(sbi); 2258 f2fs_stop_discard_thread(sbi); 2259 2260 f2fs_drop_discard_cmd(sbi); 2261 clear_opt(sbi, DISCARD); 2262 2263 f2fs_update_time(sbi, REQ_TIME); 2264 out: 2265 if (in != F2FS_GOING_DOWN_FULLSYNC) 2266 mnt_drop_write_file(filp); 2267 2268 trace_f2fs_shutdown(sbi, in, ret); 2269 2270 return ret; 2271 } 2272 2273 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 2274 { 2275 struct inode *inode = file_inode(filp); 2276 struct super_block *sb = inode->i_sb; 2277 struct fstrim_range range; 2278 int ret; 2279 2280 if (!capable(CAP_SYS_ADMIN)) 2281 return -EPERM; 2282 2283 if (!f2fs_hw_support_discard(F2FS_SB(sb))) 2284 return -EOPNOTSUPP; 2285 2286 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 2287 sizeof(range))) 2288 return -EFAULT; 2289 2290 ret = mnt_want_write_file(filp); 2291 if (ret) 2292 return ret; 2293 2294 range.minlen = max((unsigned int)range.minlen, 2295 bdev_discard_granularity(sb->s_bdev)); 2296 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 2297 mnt_drop_write_file(filp); 2298 if (ret < 0) 2299 return ret; 2300 2301 if (copy_to_user((struct fstrim_range __user *)arg, &range, 2302 sizeof(range))) 2303 return -EFAULT; 2304 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2305 return 0; 2306 } 2307 2308 static bool uuid_is_nonzero(__u8 u[16]) 2309 { 2310 int i; 2311 2312 for (i = 0; i < 16; i++) 2313 if (u[i]) 2314 return true; 2315 return false; 2316 } 2317 2318 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg) 2319 { 2320 struct inode *inode = file_inode(filp); 2321 2322 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode))) 2323 return -EOPNOTSUPP; 2324 2325 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 2326 2327 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg); 2328 } 2329 2330 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg) 2331 { 2332 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2333 return -EOPNOTSUPP; 2334 return fscrypt_ioctl_get_policy(filp, (void __user *)arg); 2335 } 2336 2337 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg) 2338 { 2339 struct inode *inode = file_inode(filp); 2340 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2341 int err; 2342 2343 if (!f2fs_sb_has_encrypt(sbi)) 2344 return -EOPNOTSUPP; 2345 2346 err = mnt_want_write_file(filp); 2347 if (err) 2348 return err; 2349 2350 f2fs_down_write(&sbi->sb_lock); 2351 2352 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt)) 2353 goto got_it; 2354 2355 /* update superblock with uuid */ 2356 generate_random_uuid(sbi->raw_super->encrypt_pw_salt); 2357 2358 err = f2fs_commit_super(sbi, false); 2359 if (err) { 2360 /* undo new data */ 2361 memset(sbi->raw_super->encrypt_pw_salt, 0, 16); 2362 goto out_err; 2363 } 2364 got_it: 2365 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt, 2366 16)) 2367 err = -EFAULT; 2368 out_err: 2369 f2fs_up_write(&sbi->sb_lock); 2370 mnt_drop_write_file(filp); 2371 return err; 2372 } 2373 2374 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp, 2375 unsigned long arg) 2376 { 2377 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2378 return -EOPNOTSUPP; 2379 2380 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg); 2381 } 2382 2383 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg) 2384 { 2385 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2386 return -EOPNOTSUPP; 2387 2388 return fscrypt_ioctl_add_key(filp, (void __user *)arg); 2389 } 2390 2391 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg) 2392 { 2393 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2394 return -EOPNOTSUPP; 2395 2396 return fscrypt_ioctl_remove_key(filp, (void __user *)arg); 2397 } 2398 2399 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp, 2400 unsigned long arg) 2401 { 2402 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2403 return -EOPNOTSUPP; 2404 2405 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg); 2406 } 2407 2408 static int f2fs_ioc_get_encryption_key_status(struct file *filp, 2409 unsigned long arg) 2410 { 2411 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2412 return -EOPNOTSUPP; 2413 2414 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg); 2415 } 2416 2417 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg) 2418 { 2419 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp)))) 2420 return -EOPNOTSUPP; 2421 2422 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg); 2423 } 2424 2425 static int f2fs_ioc_gc(struct file *filp, unsigned long arg) 2426 { 2427 struct inode *inode = file_inode(filp); 2428 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2429 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO, 2430 .no_bg_gc = false, 2431 .should_migrate_blocks = false, 2432 .nr_free_secs = 0 }; 2433 __u32 sync; 2434 int ret; 2435 2436 if (!capable(CAP_SYS_ADMIN)) 2437 return -EPERM; 2438 2439 if (get_user(sync, (__u32 __user *)arg)) 2440 return -EFAULT; 2441 2442 if (f2fs_readonly(sbi->sb)) 2443 return -EROFS; 2444 2445 ret = mnt_want_write_file(filp); 2446 if (ret) 2447 return ret; 2448 2449 if (!sync) { 2450 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2451 ret = -EBUSY; 2452 goto out; 2453 } 2454 } else { 2455 f2fs_down_write(&sbi->gc_lock); 2456 } 2457 2458 gc_control.init_gc_type = sync ? FG_GC : BG_GC; 2459 gc_control.err_gc_skipped = sync; 2460 ret = f2fs_gc(sbi, &gc_control); 2461 out: 2462 mnt_drop_write_file(filp); 2463 return ret; 2464 } 2465 2466 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range) 2467 { 2468 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 2469 struct f2fs_gc_control gc_control = { 2470 .init_gc_type = range->sync ? FG_GC : BG_GC, 2471 .no_bg_gc = false, 2472 .should_migrate_blocks = false, 2473 .err_gc_skipped = range->sync, 2474 .nr_free_secs = 0 }; 2475 u64 end; 2476 int ret; 2477 2478 if (!capable(CAP_SYS_ADMIN)) 2479 return -EPERM; 2480 if (f2fs_readonly(sbi->sb)) 2481 return -EROFS; 2482 2483 end = range->start + range->len; 2484 if (end < range->start || range->start < MAIN_BLKADDR(sbi) || 2485 end >= MAX_BLKADDR(sbi)) 2486 return -EINVAL; 2487 2488 ret = mnt_want_write_file(filp); 2489 if (ret) 2490 return ret; 2491 2492 do_more: 2493 if (!range->sync) { 2494 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2495 ret = -EBUSY; 2496 goto out; 2497 } 2498 } else { 2499 f2fs_down_write(&sbi->gc_lock); 2500 } 2501 2502 gc_control.victim_segno = GET_SEGNO(sbi, range->start); 2503 ret = f2fs_gc(sbi, &gc_control); 2504 if (ret) { 2505 if (ret == -EBUSY) 2506 ret = -EAGAIN; 2507 goto out; 2508 } 2509 range->start += CAP_BLKS_PER_SEC(sbi); 2510 if (range->start <= end) 2511 goto do_more; 2512 out: 2513 mnt_drop_write_file(filp); 2514 return ret; 2515 } 2516 2517 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg) 2518 { 2519 struct f2fs_gc_range range; 2520 2521 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg, 2522 sizeof(range))) 2523 return -EFAULT; 2524 return __f2fs_ioc_gc_range(filp, &range); 2525 } 2526 2527 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg) 2528 { 2529 struct inode *inode = file_inode(filp); 2530 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2531 int ret; 2532 2533 if (!capable(CAP_SYS_ADMIN)) 2534 return -EPERM; 2535 2536 if (f2fs_readonly(sbi->sb)) 2537 return -EROFS; 2538 2539 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2540 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled."); 2541 return -EINVAL; 2542 } 2543 2544 ret = mnt_want_write_file(filp); 2545 if (ret) 2546 return ret; 2547 2548 ret = f2fs_sync_fs(sbi->sb, 1); 2549 2550 mnt_drop_write_file(filp); 2551 return ret; 2552 } 2553 2554 static int f2fs_defragment_range(struct f2fs_sb_info *sbi, 2555 struct file *filp, 2556 struct f2fs_defragment *range) 2557 { 2558 struct inode *inode = file_inode(filp); 2559 struct f2fs_map_blocks map = { .m_next_extent = NULL, 2560 .m_seg_type = NO_CHECK_TYPE, 2561 .m_may_create = false }; 2562 struct extent_info ei = {0, }; 2563 pgoff_t pg_start, pg_end, next_pgofs; 2564 unsigned int blk_per_seg = sbi->blocks_per_seg; 2565 unsigned int total = 0, sec_num; 2566 block_t blk_end = 0; 2567 bool fragmented = false; 2568 int err; 2569 2570 pg_start = range->start >> PAGE_SHIFT; 2571 pg_end = (range->start + range->len) >> PAGE_SHIFT; 2572 2573 f2fs_balance_fs(sbi, true); 2574 2575 inode_lock(inode); 2576 2577 /* if in-place-update policy is enabled, don't waste time here */ 2578 set_inode_flag(inode, FI_OPU_WRITE); 2579 if (f2fs_should_update_inplace(inode, NULL)) { 2580 err = -EINVAL; 2581 goto out; 2582 } 2583 2584 /* writeback all dirty pages in the range */ 2585 err = filemap_write_and_wait_range(inode->i_mapping, range->start, 2586 range->start + range->len - 1); 2587 if (err) 2588 goto out; 2589 2590 /* 2591 * lookup mapping info in extent cache, skip defragmenting if physical 2592 * block addresses are continuous. 2593 */ 2594 if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) { 2595 if (ei.fofs + ei.len >= pg_end) 2596 goto out; 2597 } 2598 2599 map.m_lblk = pg_start; 2600 map.m_next_pgofs = &next_pgofs; 2601 2602 /* 2603 * lookup mapping info in dnode page cache, skip defragmenting if all 2604 * physical block addresses are continuous even if there are hole(s) 2605 * in logical blocks. 2606 */ 2607 while (map.m_lblk < pg_end) { 2608 map.m_len = pg_end - map.m_lblk; 2609 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2610 if (err) 2611 goto out; 2612 2613 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2614 map.m_lblk = next_pgofs; 2615 continue; 2616 } 2617 2618 if (blk_end && blk_end != map.m_pblk) 2619 fragmented = true; 2620 2621 /* record total count of block that we're going to move */ 2622 total += map.m_len; 2623 2624 blk_end = map.m_pblk + map.m_len; 2625 2626 map.m_lblk += map.m_len; 2627 } 2628 2629 if (!fragmented) { 2630 total = 0; 2631 goto out; 2632 } 2633 2634 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi)); 2635 2636 /* 2637 * make sure there are enough free section for LFS allocation, this can 2638 * avoid defragment running in SSR mode when free section are allocated 2639 * intensively 2640 */ 2641 if (has_not_enough_free_secs(sbi, 0, sec_num)) { 2642 err = -EAGAIN; 2643 goto out; 2644 } 2645 2646 map.m_lblk = pg_start; 2647 map.m_len = pg_end - pg_start; 2648 total = 0; 2649 2650 while (map.m_lblk < pg_end) { 2651 pgoff_t idx; 2652 int cnt = 0; 2653 2654 do_map: 2655 map.m_len = pg_end - map.m_lblk; 2656 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 2657 if (err) 2658 goto clear_out; 2659 2660 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 2661 map.m_lblk = next_pgofs; 2662 goto check; 2663 } 2664 2665 set_inode_flag(inode, FI_SKIP_WRITES); 2666 2667 idx = map.m_lblk; 2668 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) { 2669 struct page *page; 2670 2671 page = f2fs_get_lock_data_page(inode, idx, true); 2672 if (IS_ERR(page)) { 2673 err = PTR_ERR(page); 2674 goto clear_out; 2675 } 2676 2677 set_page_dirty(page); 2678 set_page_private_gcing(page); 2679 f2fs_put_page(page, 1); 2680 2681 idx++; 2682 cnt++; 2683 total++; 2684 } 2685 2686 map.m_lblk = idx; 2687 check: 2688 if (map.m_lblk < pg_end && cnt < blk_per_seg) 2689 goto do_map; 2690 2691 clear_inode_flag(inode, FI_SKIP_WRITES); 2692 2693 err = filemap_fdatawrite(inode->i_mapping); 2694 if (err) 2695 goto out; 2696 } 2697 clear_out: 2698 clear_inode_flag(inode, FI_SKIP_WRITES); 2699 out: 2700 clear_inode_flag(inode, FI_OPU_WRITE); 2701 inode_unlock(inode); 2702 if (!err) 2703 range->len = (u64)total << PAGE_SHIFT; 2704 return err; 2705 } 2706 2707 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg) 2708 { 2709 struct inode *inode = file_inode(filp); 2710 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2711 struct f2fs_defragment range; 2712 int err; 2713 2714 if (!capable(CAP_SYS_ADMIN)) 2715 return -EPERM; 2716 2717 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode)) 2718 return -EINVAL; 2719 2720 if (f2fs_readonly(sbi->sb)) 2721 return -EROFS; 2722 2723 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg, 2724 sizeof(range))) 2725 return -EFAULT; 2726 2727 /* verify alignment of offset & size */ 2728 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1)) 2729 return -EINVAL; 2730 2731 if (unlikely((range.start + range.len) >> PAGE_SHIFT > 2732 max_file_blocks(inode))) 2733 return -EINVAL; 2734 2735 err = mnt_want_write_file(filp); 2736 if (err) 2737 return err; 2738 2739 err = f2fs_defragment_range(sbi, filp, &range); 2740 mnt_drop_write_file(filp); 2741 2742 f2fs_update_time(sbi, REQ_TIME); 2743 if (err < 0) 2744 return err; 2745 2746 if (copy_to_user((struct f2fs_defragment __user *)arg, &range, 2747 sizeof(range))) 2748 return -EFAULT; 2749 2750 return 0; 2751 } 2752 2753 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in, 2754 struct file *file_out, loff_t pos_out, size_t len) 2755 { 2756 struct inode *src = file_inode(file_in); 2757 struct inode *dst = file_inode(file_out); 2758 struct f2fs_sb_info *sbi = F2FS_I_SB(src); 2759 size_t olen = len, dst_max_i_size = 0; 2760 size_t dst_osize; 2761 int ret; 2762 2763 if (file_in->f_path.mnt != file_out->f_path.mnt || 2764 src->i_sb != dst->i_sb) 2765 return -EXDEV; 2766 2767 if (unlikely(f2fs_readonly(src->i_sb))) 2768 return -EROFS; 2769 2770 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode)) 2771 return -EINVAL; 2772 2773 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst)) 2774 return -EOPNOTSUPP; 2775 2776 if (pos_out < 0 || pos_in < 0) 2777 return -EINVAL; 2778 2779 if (src == dst) { 2780 if (pos_in == pos_out) 2781 return 0; 2782 if (pos_out > pos_in && pos_out < pos_in + len) 2783 return -EINVAL; 2784 } 2785 2786 inode_lock(src); 2787 if (src != dst) { 2788 ret = -EBUSY; 2789 if (!inode_trylock(dst)) 2790 goto out; 2791 } 2792 2793 ret = -EINVAL; 2794 if (pos_in + len > src->i_size || pos_in + len < pos_in) 2795 goto out_unlock; 2796 if (len == 0) 2797 olen = len = src->i_size - pos_in; 2798 if (pos_in + len == src->i_size) 2799 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in; 2800 if (len == 0) { 2801 ret = 0; 2802 goto out_unlock; 2803 } 2804 2805 dst_osize = dst->i_size; 2806 if (pos_out + olen > dst->i_size) 2807 dst_max_i_size = pos_out + olen; 2808 2809 /* verify the end result is block aligned */ 2810 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) || 2811 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) || 2812 !IS_ALIGNED(pos_out, F2FS_BLKSIZE)) 2813 goto out_unlock; 2814 2815 ret = f2fs_convert_inline_inode(src); 2816 if (ret) 2817 goto out_unlock; 2818 2819 ret = f2fs_convert_inline_inode(dst); 2820 if (ret) 2821 goto out_unlock; 2822 2823 /* write out all dirty pages from offset */ 2824 ret = filemap_write_and_wait_range(src->i_mapping, 2825 pos_in, pos_in + len); 2826 if (ret) 2827 goto out_unlock; 2828 2829 ret = filemap_write_and_wait_range(dst->i_mapping, 2830 pos_out, pos_out + len); 2831 if (ret) 2832 goto out_unlock; 2833 2834 f2fs_balance_fs(sbi, true); 2835 2836 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2837 if (src != dst) { 2838 ret = -EBUSY; 2839 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) 2840 goto out_src; 2841 } 2842 2843 f2fs_lock_op(sbi); 2844 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS, 2845 pos_out >> F2FS_BLKSIZE_BITS, 2846 len >> F2FS_BLKSIZE_BITS, false); 2847 2848 if (!ret) { 2849 if (dst_max_i_size) 2850 f2fs_i_size_write(dst, dst_max_i_size); 2851 else if (dst_osize != dst->i_size) 2852 f2fs_i_size_write(dst, dst_osize); 2853 } 2854 f2fs_unlock_op(sbi); 2855 2856 if (src != dst) 2857 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]); 2858 out_src: 2859 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]); 2860 out_unlock: 2861 if (src != dst) 2862 inode_unlock(dst); 2863 out: 2864 inode_unlock(src); 2865 return ret; 2866 } 2867 2868 static int __f2fs_ioc_move_range(struct file *filp, 2869 struct f2fs_move_range *range) 2870 { 2871 struct fd dst; 2872 int err; 2873 2874 if (!(filp->f_mode & FMODE_READ) || 2875 !(filp->f_mode & FMODE_WRITE)) 2876 return -EBADF; 2877 2878 dst = fdget(range->dst_fd); 2879 if (!dst.file) 2880 return -EBADF; 2881 2882 if (!(dst.file->f_mode & FMODE_WRITE)) { 2883 err = -EBADF; 2884 goto err_out; 2885 } 2886 2887 err = mnt_want_write_file(filp); 2888 if (err) 2889 goto err_out; 2890 2891 err = f2fs_move_file_range(filp, range->pos_in, dst.file, 2892 range->pos_out, range->len); 2893 2894 mnt_drop_write_file(filp); 2895 err_out: 2896 fdput(dst); 2897 return err; 2898 } 2899 2900 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg) 2901 { 2902 struct f2fs_move_range range; 2903 2904 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg, 2905 sizeof(range))) 2906 return -EFAULT; 2907 return __f2fs_ioc_move_range(filp, &range); 2908 } 2909 2910 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg) 2911 { 2912 struct inode *inode = file_inode(filp); 2913 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2914 struct sit_info *sm = SIT_I(sbi); 2915 unsigned int start_segno = 0, end_segno = 0; 2916 unsigned int dev_start_segno = 0, dev_end_segno = 0; 2917 struct f2fs_flush_device range; 2918 struct f2fs_gc_control gc_control = { 2919 .init_gc_type = FG_GC, 2920 .should_migrate_blocks = true, 2921 .err_gc_skipped = true, 2922 .nr_free_secs = 0 }; 2923 int ret; 2924 2925 if (!capable(CAP_SYS_ADMIN)) 2926 return -EPERM; 2927 2928 if (f2fs_readonly(sbi->sb)) 2929 return -EROFS; 2930 2931 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2932 return -EINVAL; 2933 2934 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg, 2935 sizeof(range))) 2936 return -EFAULT; 2937 2938 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num || 2939 __is_large_section(sbi)) { 2940 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1", 2941 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec); 2942 return -EINVAL; 2943 } 2944 2945 ret = mnt_want_write_file(filp); 2946 if (ret) 2947 return ret; 2948 2949 if (range.dev_num != 0) 2950 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk); 2951 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk); 2952 2953 start_segno = sm->last_victim[FLUSH_DEVICE]; 2954 if (start_segno < dev_start_segno || start_segno >= dev_end_segno) 2955 start_segno = dev_start_segno; 2956 end_segno = min(start_segno + range.segments, dev_end_segno); 2957 2958 while (start_segno < end_segno) { 2959 if (!f2fs_down_write_trylock(&sbi->gc_lock)) { 2960 ret = -EBUSY; 2961 goto out; 2962 } 2963 sm->last_victim[GC_CB] = end_segno + 1; 2964 sm->last_victim[GC_GREEDY] = end_segno + 1; 2965 sm->last_victim[ALLOC_NEXT] = end_segno + 1; 2966 2967 gc_control.victim_segno = start_segno; 2968 ret = f2fs_gc(sbi, &gc_control); 2969 if (ret == -EAGAIN) 2970 ret = 0; 2971 else if (ret < 0) 2972 break; 2973 start_segno++; 2974 } 2975 out: 2976 mnt_drop_write_file(filp); 2977 return ret; 2978 } 2979 2980 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg) 2981 { 2982 struct inode *inode = file_inode(filp); 2983 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature); 2984 2985 /* Must validate to set it with SQLite behavior in Android. */ 2986 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE; 2987 2988 return put_user(sb_feature, (u32 __user *)arg); 2989 } 2990 2991 #ifdef CONFIG_QUOTA 2992 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 2993 { 2994 struct dquot *transfer_to[MAXQUOTAS] = {}; 2995 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2996 struct super_block *sb = sbi->sb; 2997 int err = 0; 2998 2999 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid)); 3000 if (!IS_ERR(transfer_to[PRJQUOTA])) { 3001 err = __dquot_transfer(inode, transfer_to); 3002 if (err) 3003 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3004 dqput(transfer_to[PRJQUOTA]); 3005 } 3006 return err; 3007 } 3008 3009 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3010 { 3011 struct f2fs_inode_info *fi = F2FS_I(inode); 3012 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3013 struct f2fs_inode *ri = NULL; 3014 kprojid_t kprojid; 3015 int err; 3016 3017 if (!f2fs_sb_has_project_quota(sbi)) { 3018 if (projid != F2FS_DEF_PROJID) 3019 return -EOPNOTSUPP; 3020 else 3021 return 0; 3022 } 3023 3024 if (!f2fs_has_extra_attr(inode)) 3025 return -EOPNOTSUPP; 3026 3027 kprojid = make_kprojid(&init_user_ns, (projid_t)projid); 3028 3029 if (projid_eq(kprojid, fi->i_projid)) 3030 return 0; 3031 3032 err = -EPERM; 3033 /* Is it quota file? Do not allow user to mess with it */ 3034 if (IS_NOQUOTA(inode)) 3035 return err; 3036 3037 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid)) 3038 return -EOVERFLOW; 3039 3040 err = f2fs_dquot_initialize(inode); 3041 if (err) 3042 return err; 3043 3044 f2fs_lock_op(sbi); 3045 err = f2fs_transfer_project_quota(inode, kprojid); 3046 if (err) 3047 goto out_unlock; 3048 3049 fi->i_projid = kprojid; 3050 inode->i_ctime = current_time(inode); 3051 f2fs_mark_inode_dirty_sync(inode, true); 3052 out_unlock: 3053 f2fs_unlock_op(sbi); 3054 return err; 3055 } 3056 #else 3057 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid) 3058 { 3059 return 0; 3060 } 3061 3062 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid) 3063 { 3064 if (projid != F2FS_DEF_PROJID) 3065 return -EOPNOTSUPP; 3066 return 0; 3067 } 3068 #endif 3069 3070 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 3071 { 3072 struct inode *inode = d_inode(dentry); 3073 struct f2fs_inode_info *fi = F2FS_I(inode); 3074 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags); 3075 3076 if (IS_ENCRYPTED(inode)) 3077 fsflags |= FS_ENCRYPT_FL; 3078 if (IS_VERITY(inode)) 3079 fsflags |= FS_VERITY_FL; 3080 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) 3081 fsflags |= FS_INLINE_DATA_FL; 3082 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3083 fsflags |= FS_NOCOW_FL; 3084 3085 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL); 3086 3087 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode))) 3088 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid); 3089 3090 return 0; 3091 } 3092 3093 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3094 struct dentry *dentry, struct fileattr *fa) 3095 { 3096 struct inode *inode = d_inode(dentry); 3097 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL; 3098 u32 iflags; 3099 int err; 3100 3101 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3102 return -EIO; 3103 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode))) 3104 return -ENOSPC; 3105 if (fsflags & ~F2FS_GETTABLE_FS_FL) 3106 return -EOPNOTSUPP; 3107 fsflags &= F2FS_SETTABLE_FS_FL; 3108 if (!fa->flags_valid) 3109 mask &= FS_COMMON_FL; 3110 3111 iflags = f2fs_fsflags_to_iflags(fsflags); 3112 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags) 3113 return -EOPNOTSUPP; 3114 3115 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask)); 3116 if (!err) 3117 err = f2fs_ioc_setproject(inode, fa->fsx_projid); 3118 3119 return err; 3120 } 3121 3122 int f2fs_pin_file_control(struct inode *inode, bool inc) 3123 { 3124 struct f2fs_inode_info *fi = F2FS_I(inode); 3125 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3126 3127 /* Use i_gc_failures for normal file as a risk signal. */ 3128 if (inc) 3129 f2fs_i_gc_failures_write(inode, 3130 fi->i_gc_failures[GC_FAILURE_PIN] + 1); 3131 3132 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) { 3133 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials", 3134 __func__, inode->i_ino, 3135 fi->i_gc_failures[GC_FAILURE_PIN]); 3136 clear_inode_flag(inode, FI_PIN_FILE); 3137 return -EAGAIN; 3138 } 3139 return 0; 3140 } 3141 3142 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg) 3143 { 3144 struct inode *inode = file_inode(filp); 3145 __u32 pin; 3146 int ret = 0; 3147 3148 if (get_user(pin, (__u32 __user *)arg)) 3149 return -EFAULT; 3150 3151 if (!S_ISREG(inode->i_mode)) 3152 return -EINVAL; 3153 3154 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3155 return -EROFS; 3156 3157 ret = mnt_want_write_file(filp); 3158 if (ret) 3159 return ret; 3160 3161 inode_lock(inode); 3162 3163 if (!pin) { 3164 clear_inode_flag(inode, FI_PIN_FILE); 3165 f2fs_i_gc_failures_write(inode, 0); 3166 goto done; 3167 } 3168 3169 if (f2fs_should_update_outplace(inode, NULL)) { 3170 ret = -EINVAL; 3171 goto out; 3172 } 3173 3174 if (f2fs_pin_file_control(inode, false)) { 3175 ret = -EAGAIN; 3176 goto out; 3177 } 3178 3179 ret = f2fs_convert_inline_inode(inode); 3180 if (ret) 3181 goto out; 3182 3183 if (!f2fs_disable_compressed_file(inode)) { 3184 ret = -EOPNOTSUPP; 3185 goto out; 3186 } 3187 3188 set_inode_flag(inode, FI_PIN_FILE); 3189 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3190 done: 3191 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3192 out: 3193 inode_unlock(inode); 3194 mnt_drop_write_file(filp); 3195 return ret; 3196 } 3197 3198 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg) 3199 { 3200 struct inode *inode = file_inode(filp); 3201 __u32 pin = 0; 3202 3203 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3204 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]; 3205 return put_user(pin, (u32 __user *)arg); 3206 } 3207 3208 int f2fs_precache_extents(struct inode *inode) 3209 { 3210 struct f2fs_inode_info *fi = F2FS_I(inode); 3211 struct f2fs_map_blocks map; 3212 pgoff_t m_next_extent; 3213 loff_t end; 3214 int err; 3215 3216 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 3217 return -EOPNOTSUPP; 3218 3219 map.m_lblk = 0; 3220 map.m_next_pgofs = NULL; 3221 map.m_next_extent = &m_next_extent; 3222 map.m_seg_type = NO_CHECK_TYPE; 3223 map.m_may_create = false; 3224 end = max_file_blocks(inode); 3225 3226 while (map.m_lblk < end) { 3227 map.m_len = end - map.m_lblk; 3228 3229 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 3230 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE); 3231 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 3232 if (err) 3233 return err; 3234 3235 map.m_lblk = m_next_extent; 3236 } 3237 3238 return 0; 3239 } 3240 3241 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg) 3242 { 3243 return f2fs_precache_extents(file_inode(filp)); 3244 } 3245 3246 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg) 3247 { 3248 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp)); 3249 __u64 block_count; 3250 3251 if (!capable(CAP_SYS_ADMIN)) 3252 return -EPERM; 3253 3254 if (f2fs_readonly(sbi->sb)) 3255 return -EROFS; 3256 3257 if (copy_from_user(&block_count, (void __user *)arg, 3258 sizeof(block_count))) 3259 return -EFAULT; 3260 3261 return f2fs_resize_fs(sbi, block_count); 3262 } 3263 3264 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg) 3265 { 3266 struct inode *inode = file_inode(filp); 3267 3268 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3269 3270 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) { 3271 f2fs_warn(F2FS_I_SB(inode), 3272 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem", 3273 inode->i_ino); 3274 return -EOPNOTSUPP; 3275 } 3276 3277 return fsverity_ioctl_enable(filp, (const void __user *)arg); 3278 } 3279 3280 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg) 3281 { 3282 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3283 return -EOPNOTSUPP; 3284 3285 return fsverity_ioctl_measure(filp, (void __user *)arg); 3286 } 3287 3288 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg) 3289 { 3290 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp)))) 3291 return -EOPNOTSUPP; 3292 3293 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg); 3294 } 3295 3296 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg) 3297 { 3298 struct inode *inode = file_inode(filp); 3299 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3300 char *vbuf; 3301 int count; 3302 int err = 0; 3303 3304 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL); 3305 if (!vbuf) 3306 return -ENOMEM; 3307 3308 f2fs_down_read(&sbi->sb_lock); 3309 count = utf16s_to_utf8s(sbi->raw_super->volume_name, 3310 ARRAY_SIZE(sbi->raw_super->volume_name), 3311 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME); 3312 f2fs_up_read(&sbi->sb_lock); 3313 3314 if (copy_to_user((char __user *)arg, vbuf, 3315 min(FSLABEL_MAX, count))) 3316 err = -EFAULT; 3317 3318 kfree(vbuf); 3319 return err; 3320 } 3321 3322 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg) 3323 { 3324 struct inode *inode = file_inode(filp); 3325 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3326 char *vbuf; 3327 int err = 0; 3328 3329 if (!capable(CAP_SYS_ADMIN)) 3330 return -EPERM; 3331 3332 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX); 3333 if (IS_ERR(vbuf)) 3334 return PTR_ERR(vbuf); 3335 3336 err = mnt_want_write_file(filp); 3337 if (err) 3338 goto out; 3339 3340 f2fs_down_write(&sbi->sb_lock); 3341 3342 memset(sbi->raw_super->volume_name, 0, 3343 sizeof(sbi->raw_super->volume_name)); 3344 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN, 3345 sbi->raw_super->volume_name, 3346 ARRAY_SIZE(sbi->raw_super->volume_name)); 3347 3348 err = f2fs_commit_super(sbi, false); 3349 3350 f2fs_up_write(&sbi->sb_lock); 3351 3352 mnt_drop_write_file(filp); 3353 out: 3354 kfree(vbuf); 3355 return err; 3356 } 3357 3358 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg) 3359 { 3360 struct inode *inode = file_inode(filp); 3361 __u64 blocks; 3362 3363 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3364 return -EOPNOTSUPP; 3365 3366 if (!f2fs_compressed_file(inode)) 3367 return -EINVAL; 3368 3369 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks); 3370 return put_user(blocks, (u64 __user *)arg); 3371 } 3372 3373 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3374 { 3375 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3376 unsigned int released_blocks = 0; 3377 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3378 block_t blkaddr; 3379 int i; 3380 3381 for (i = 0; i < count; i++) { 3382 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3383 dn->ofs_in_node + i); 3384 3385 if (!__is_valid_data_blkaddr(blkaddr)) 3386 continue; 3387 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3388 DATA_GENERIC_ENHANCE))) { 3389 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3390 return -EFSCORRUPTED; 3391 } 3392 } 3393 3394 while (count) { 3395 int compr_blocks = 0; 3396 3397 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3398 blkaddr = f2fs_data_blkaddr(dn); 3399 3400 if (i == 0) { 3401 if (blkaddr == COMPRESS_ADDR) 3402 continue; 3403 dn->ofs_in_node += cluster_size; 3404 goto next; 3405 } 3406 3407 if (__is_valid_data_blkaddr(blkaddr)) 3408 compr_blocks++; 3409 3410 if (blkaddr != NEW_ADDR) 3411 continue; 3412 3413 dn->data_blkaddr = NULL_ADDR; 3414 f2fs_set_data_blkaddr(dn); 3415 } 3416 3417 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false); 3418 dec_valid_block_count(sbi, dn->inode, 3419 cluster_size - compr_blocks); 3420 3421 released_blocks += cluster_size - compr_blocks; 3422 next: 3423 count -= cluster_size; 3424 } 3425 3426 return released_blocks; 3427 } 3428 3429 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg) 3430 { 3431 struct inode *inode = file_inode(filp); 3432 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3433 pgoff_t page_idx = 0, last_idx; 3434 unsigned int released_blocks = 0; 3435 int ret; 3436 int writecount; 3437 3438 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3439 return -EOPNOTSUPP; 3440 3441 if (!f2fs_compressed_file(inode)) 3442 return -EINVAL; 3443 3444 if (f2fs_readonly(sbi->sb)) 3445 return -EROFS; 3446 3447 ret = mnt_want_write_file(filp); 3448 if (ret) 3449 return ret; 3450 3451 f2fs_balance_fs(F2FS_I_SB(inode), true); 3452 3453 inode_lock(inode); 3454 3455 writecount = atomic_read(&inode->i_writecount); 3456 if ((filp->f_mode & FMODE_WRITE && writecount != 1) || 3457 (!(filp->f_mode & FMODE_WRITE) && writecount)) { 3458 ret = -EBUSY; 3459 goto out; 3460 } 3461 3462 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3463 ret = -EINVAL; 3464 goto out; 3465 } 3466 3467 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 3468 if (ret) 3469 goto out; 3470 3471 set_inode_flag(inode, FI_COMPRESS_RELEASED); 3472 inode->i_ctime = current_time(inode); 3473 f2fs_mark_inode_dirty_sync(inode, true); 3474 3475 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3476 goto out; 3477 3478 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3479 filemap_invalidate_lock(inode->i_mapping); 3480 3481 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3482 3483 while (page_idx < last_idx) { 3484 struct dnode_of_data dn; 3485 pgoff_t end_offset, count; 3486 3487 set_new_dnode(&dn, inode, NULL, NULL, 0); 3488 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3489 if (ret) { 3490 if (ret == -ENOENT) { 3491 page_idx = f2fs_get_next_page_offset(&dn, 3492 page_idx); 3493 ret = 0; 3494 continue; 3495 } 3496 break; 3497 } 3498 3499 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3500 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3501 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3502 3503 ret = release_compress_blocks(&dn, count); 3504 3505 f2fs_put_dnode(&dn); 3506 3507 if (ret < 0) 3508 break; 3509 3510 page_idx += count; 3511 released_blocks += ret; 3512 } 3513 3514 filemap_invalidate_unlock(inode->i_mapping); 3515 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3516 out: 3517 inode_unlock(inode); 3518 3519 mnt_drop_write_file(filp); 3520 3521 if (ret >= 0) { 3522 ret = put_user(released_blocks, (u64 __user *)arg); 3523 } else if (released_blocks && 3524 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3525 set_sbi_flag(sbi, SBI_NEED_FSCK); 3526 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3527 "iblocks=%llu, released=%u, compr_blocks=%u, " 3528 "run fsck to fix.", 3529 __func__, inode->i_ino, inode->i_blocks, 3530 released_blocks, 3531 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3532 } 3533 3534 return ret; 3535 } 3536 3537 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count) 3538 { 3539 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 3540 unsigned int reserved_blocks = 0; 3541 int cluster_size = F2FS_I(dn->inode)->i_cluster_size; 3542 block_t blkaddr; 3543 int i; 3544 3545 for (i = 0; i < count; i++) { 3546 blkaddr = data_blkaddr(dn->inode, dn->node_page, 3547 dn->ofs_in_node + i); 3548 3549 if (!__is_valid_data_blkaddr(blkaddr)) 3550 continue; 3551 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr, 3552 DATA_GENERIC_ENHANCE))) { 3553 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3554 return -EFSCORRUPTED; 3555 } 3556 } 3557 3558 while (count) { 3559 int compr_blocks = 0; 3560 blkcnt_t reserved; 3561 int ret; 3562 3563 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) { 3564 blkaddr = f2fs_data_blkaddr(dn); 3565 3566 if (i == 0) { 3567 if (blkaddr == COMPRESS_ADDR) 3568 continue; 3569 dn->ofs_in_node += cluster_size; 3570 goto next; 3571 } 3572 3573 if (__is_valid_data_blkaddr(blkaddr)) { 3574 compr_blocks++; 3575 continue; 3576 } 3577 3578 dn->data_blkaddr = NEW_ADDR; 3579 f2fs_set_data_blkaddr(dn); 3580 } 3581 3582 reserved = cluster_size - compr_blocks; 3583 ret = inc_valid_block_count(sbi, dn->inode, &reserved); 3584 if (ret) 3585 return ret; 3586 3587 if (reserved != cluster_size - compr_blocks) 3588 return -ENOSPC; 3589 3590 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true); 3591 3592 reserved_blocks += reserved; 3593 next: 3594 count -= cluster_size; 3595 } 3596 3597 return reserved_blocks; 3598 } 3599 3600 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg) 3601 { 3602 struct inode *inode = file_inode(filp); 3603 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3604 pgoff_t page_idx = 0, last_idx; 3605 unsigned int reserved_blocks = 0; 3606 int ret; 3607 3608 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3609 return -EOPNOTSUPP; 3610 3611 if (!f2fs_compressed_file(inode)) 3612 return -EINVAL; 3613 3614 if (f2fs_readonly(sbi->sb)) 3615 return -EROFS; 3616 3617 ret = mnt_want_write_file(filp); 3618 if (ret) 3619 return ret; 3620 3621 if (atomic_read(&F2FS_I(inode)->i_compr_blocks)) 3622 goto out; 3623 3624 f2fs_balance_fs(F2FS_I_SB(inode), true); 3625 3626 inode_lock(inode); 3627 3628 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 3629 ret = -EINVAL; 3630 goto unlock_inode; 3631 } 3632 3633 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3634 filemap_invalidate_lock(inode->i_mapping); 3635 3636 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3637 3638 while (page_idx < last_idx) { 3639 struct dnode_of_data dn; 3640 pgoff_t end_offset, count; 3641 3642 set_new_dnode(&dn, inode, NULL, NULL, 0); 3643 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE); 3644 if (ret) { 3645 if (ret == -ENOENT) { 3646 page_idx = f2fs_get_next_page_offset(&dn, 3647 page_idx); 3648 ret = 0; 3649 continue; 3650 } 3651 break; 3652 } 3653 3654 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3655 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx); 3656 count = round_up(count, F2FS_I(inode)->i_cluster_size); 3657 3658 ret = reserve_compress_blocks(&dn, count); 3659 3660 f2fs_put_dnode(&dn); 3661 3662 if (ret < 0) 3663 break; 3664 3665 page_idx += count; 3666 reserved_blocks += ret; 3667 } 3668 3669 filemap_invalidate_unlock(inode->i_mapping); 3670 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3671 3672 if (ret >= 0) { 3673 clear_inode_flag(inode, FI_COMPRESS_RELEASED); 3674 inode->i_ctime = current_time(inode); 3675 f2fs_mark_inode_dirty_sync(inode, true); 3676 } 3677 unlock_inode: 3678 inode_unlock(inode); 3679 out: 3680 mnt_drop_write_file(filp); 3681 3682 if (ret >= 0) { 3683 ret = put_user(reserved_blocks, (u64 __user *)arg); 3684 } else if (reserved_blocks && 3685 atomic_read(&F2FS_I(inode)->i_compr_blocks)) { 3686 set_sbi_flag(sbi, SBI_NEED_FSCK); 3687 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx " 3688 "iblocks=%llu, reserved=%u, compr_blocks=%u, " 3689 "run fsck to fix.", 3690 __func__, inode->i_ino, inode->i_blocks, 3691 reserved_blocks, 3692 atomic_read(&F2FS_I(inode)->i_compr_blocks)); 3693 } 3694 3695 return ret; 3696 } 3697 3698 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode, 3699 pgoff_t off, block_t block, block_t len, u32 flags) 3700 { 3701 sector_t sector = SECTOR_FROM_BLOCK(block); 3702 sector_t nr_sects = SECTOR_FROM_BLOCK(len); 3703 int ret = 0; 3704 3705 if (flags & F2FS_TRIM_FILE_DISCARD) { 3706 if (bdev_max_secure_erase_sectors(bdev)) 3707 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects, 3708 GFP_NOFS); 3709 else 3710 ret = blkdev_issue_discard(bdev, sector, nr_sects, 3711 GFP_NOFS); 3712 } 3713 3714 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) { 3715 if (IS_ENCRYPTED(inode)) 3716 ret = fscrypt_zeroout_range(inode, off, block, len); 3717 else 3718 ret = blkdev_issue_zeroout(bdev, sector, nr_sects, 3719 GFP_NOFS, 0); 3720 } 3721 3722 return ret; 3723 } 3724 3725 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg) 3726 { 3727 struct inode *inode = file_inode(filp); 3728 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3729 struct address_space *mapping = inode->i_mapping; 3730 struct block_device *prev_bdev = NULL; 3731 struct f2fs_sectrim_range range; 3732 pgoff_t index, pg_end, prev_index = 0; 3733 block_t prev_block = 0, len = 0; 3734 loff_t end_addr; 3735 bool to_end = false; 3736 int ret = 0; 3737 3738 if (!(filp->f_mode & FMODE_WRITE)) 3739 return -EBADF; 3740 3741 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg, 3742 sizeof(range))) 3743 return -EFAULT; 3744 3745 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) || 3746 !S_ISREG(inode->i_mode)) 3747 return -EINVAL; 3748 3749 if (((range.flags & F2FS_TRIM_FILE_DISCARD) && 3750 !f2fs_hw_support_discard(sbi)) || 3751 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) && 3752 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi))) 3753 return -EOPNOTSUPP; 3754 3755 file_start_write(filp); 3756 inode_lock(inode); 3757 3758 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) || 3759 range.start >= inode->i_size) { 3760 ret = -EINVAL; 3761 goto err; 3762 } 3763 3764 if (range.len == 0) 3765 goto err; 3766 3767 if (inode->i_size - range.start > range.len) { 3768 end_addr = range.start + range.len; 3769 } else { 3770 end_addr = range.len == (u64)-1 ? 3771 sbi->sb->s_maxbytes : inode->i_size; 3772 to_end = true; 3773 } 3774 3775 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) || 3776 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) { 3777 ret = -EINVAL; 3778 goto err; 3779 } 3780 3781 index = F2FS_BYTES_TO_BLK(range.start); 3782 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE); 3783 3784 ret = f2fs_convert_inline_inode(inode); 3785 if (ret) 3786 goto err; 3787 3788 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3789 filemap_invalidate_lock(mapping); 3790 3791 ret = filemap_write_and_wait_range(mapping, range.start, 3792 to_end ? LLONG_MAX : end_addr - 1); 3793 if (ret) 3794 goto out; 3795 3796 truncate_inode_pages_range(mapping, range.start, 3797 to_end ? -1 : end_addr - 1); 3798 3799 while (index < pg_end) { 3800 struct dnode_of_data dn; 3801 pgoff_t end_offset, count; 3802 int i; 3803 3804 set_new_dnode(&dn, inode, NULL, NULL, 0); 3805 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3806 if (ret) { 3807 if (ret == -ENOENT) { 3808 index = f2fs_get_next_page_offset(&dn, index); 3809 continue; 3810 } 3811 goto out; 3812 } 3813 3814 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 3815 count = min(end_offset - dn.ofs_in_node, pg_end - index); 3816 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) { 3817 struct block_device *cur_bdev; 3818 block_t blkaddr = f2fs_data_blkaddr(&dn); 3819 3820 if (!__is_valid_data_blkaddr(blkaddr)) 3821 continue; 3822 3823 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3824 DATA_GENERIC_ENHANCE)) { 3825 ret = -EFSCORRUPTED; 3826 f2fs_put_dnode(&dn); 3827 f2fs_handle_error(sbi, 3828 ERROR_INVALID_BLKADDR); 3829 goto out; 3830 } 3831 3832 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL); 3833 if (f2fs_is_multi_device(sbi)) { 3834 int di = f2fs_target_device_index(sbi, blkaddr); 3835 3836 blkaddr -= FDEV(di).start_blk; 3837 } 3838 3839 if (len) { 3840 if (prev_bdev == cur_bdev && 3841 index == prev_index + len && 3842 blkaddr == prev_block + len) { 3843 len++; 3844 } else { 3845 ret = f2fs_secure_erase(prev_bdev, 3846 inode, prev_index, prev_block, 3847 len, range.flags); 3848 if (ret) { 3849 f2fs_put_dnode(&dn); 3850 goto out; 3851 } 3852 3853 len = 0; 3854 } 3855 } 3856 3857 if (!len) { 3858 prev_bdev = cur_bdev; 3859 prev_index = index; 3860 prev_block = blkaddr; 3861 len = 1; 3862 } 3863 } 3864 3865 f2fs_put_dnode(&dn); 3866 3867 if (fatal_signal_pending(current)) { 3868 ret = -EINTR; 3869 goto out; 3870 } 3871 cond_resched(); 3872 } 3873 3874 if (len) 3875 ret = f2fs_secure_erase(prev_bdev, inode, prev_index, 3876 prev_block, len, range.flags); 3877 out: 3878 filemap_invalidate_unlock(mapping); 3879 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3880 err: 3881 inode_unlock(inode); 3882 file_end_write(filp); 3883 3884 return ret; 3885 } 3886 3887 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg) 3888 { 3889 struct inode *inode = file_inode(filp); 3890 struct f2fs_comp_option option; 3891 3892 if (!f2fs_sb_has_compression(F2FS_I_SB(inode))) 3893 return -EOPNOTSUPP; 3894 3895 inode_lock_shared(inode); 3896 3897 if (!f2fs_compressed_file(inode)) { 3898 inode_unlock_shared(inode); 3899 return -ENODATA; 3900 } 3901 3902 option.algorithm = F2FS_I(inode)->i_compress_algorithm; 3903 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size; 3904 3905 inode_unlock_shared(inode); 3906 3907 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option, 3908 sizeof(option))) 3909 return -EFAULT; 3910 3911 return 0; 3912 } 3913 3914 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg) 3915 { 3916 struct inode *inode = file_inode(filp); 3917 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3918 struct f2fs_comp_option option; 3919 int ret = 0; 3920 3921 if (!f2fs_sb_has_compression(sbi)) 3922 return -EOPNOTSUPP; 3923 3924 if (!(filp->f_mode & FMODE_WRITE)) 3925 return -EBADF; 3926 3927 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg, 3928 sizeof(option))) 3929 return -EFAULT; 3930 3931 if (!f2fs_compressed_file(inode) || 3932 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE || 3933 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE || 3934 option.algorithm >= COMPRESS_MAX) 3935 return -EINVAL; 3936 3937 file_start_write(filp); 3938 inode_lock(inode); 3939 3940 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) { 3941 ret = -EBUSY; 3942 goto out; 3943 } 3944 3945 if (inode->i_size != 0) { 3946 ret = -EFBIG; 3947 goto out; 3948 } 3949 3950 F2FS_I(inode)->i_compress_algorithm = option.algorithm; 3951 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size; 3952 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size; 3953 f2fs_mark_inode_dirty_sync(inode, true); 3954 3955 if (!f2fs_is_compress_backend_ready(inode)) 3956 f2fs_warn(sbi, "compression algorithm is successfully set, " 3957 "but current kernel doesn't support this algorithm."); 3958 out: 3959 inode_unlock(inode); 3960 file_end_write(filp); 3961 3962 return ret; 3963 } 3964 3965 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len) 3966 { 3967 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx); 3968 struct address_space *mapping = inode->i_mapping; 3969 struct page *page; 3970 pgoff_t redirty_idx = page_idx; 3971 int i, page_len = 0, ret = 0; 3972 3973 page_cache_ra_unbounded(&ractl, len, 0); 3974 3975 for (i = 0; i < len; i++, page_idx++) { 3976 page = read_cache_page(mapping, page_idx, NULL, NULL); 3977 if (IS_ERR(page)) { 3978 ret = PTR_ERR(page); 3979 break; 3980 } 3981 page_len++; 3982 } 3983 3984 for (i = 0; i < page_len; i++, redirty_idx++) { 3985 page = find_lock_page(mapping, redirty_idx); 3986 3987 /* It will never fail, when page has pinned above */ 3988 f2fs_bug_on(F2FS_I_SB(inode), !page); 3989 3990 set_page_dirty(page); 3991 f2fs_put_page(page, 1); 3992 f2fs_put_page(page, 0); 3993 } 3994 3995 return ret; 3996 } 3997 3998 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg) 3999 { 4000 struct inode *inode = file_inode(filp); 4001 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4002 struct f2fs_inode_info *fi = F2FS_I(inode); 4003 pgoff_t page_idx = 0, last_idx; 4004 unsigned int blk_per_seg = sbi->blocks_per_seg; 4005 int cluster_size = fi->i_cluster_size; 4006 int count, ret; 4007 4008 if (!f2fs_sb_has_compression(sbi) || 4009 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4010 return -EOPNOTSUPP; 4011 4012 if (!(filp->f_mode & FMODE_WRITE)) 4013 return -EBADF; 4014 4015 if (!f2fs_compressed_file(inode)) 4016 return -EINVAL; 4017 4018 f2fs_balance_fs(F2FS_I_SB(inode), true); 4019 4020 file_start_write(filp); 4021 inode_lock(inode); 4022 4023 if (!f2fs_is_compress_backend_ready(inode)) { 4024 ret = -EOPNOTSUPP; 4025 goto out; 4026 } 4027 4028 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4029 ret = -EINVAL; 4030 goto out; 4031 } 4032 4033 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4034 if (ret) 4035 goto out; 4036 4037 if (!atomic_read(&fi->i_compr_blocks)) 4038 goto out; 4039 4040 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4041 4042 count = last_idx - page_idx; 4043 while (count) { 4044 int len = min(cluster_size, count); 4045 4046 ret = redirty_blocks(inode, page_idx, len); 4047 if (ret < 0) 4048 break; 4049 4050 if (get_dirty_pages(inode) >= blk_per_seg) 4051 filemap_fdatawrite(inode->i_mapping); 4052 4053 count -= len; 4054 page_idx += len; 4055 } 4056 4057 if (!ret) 4058 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4059 LLONG_MAX); 4060 4061 if (ret) 4062 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.", 4063 __func__, ret); 4064 out: 4065 inode_unlock(inode); 4066 file_end_write(filp); 4067 4068 return ret; 4069 } 4070 4071 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg) 4072 { 4073 struct inode *inode = file_inode(filp); 4074 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4075 pgoff_t page_idx = 0, last_idx; 4076 unsigned int blk_per_seg = sbi->blocks_per_seg; 4077 int cluster_size = F2FS_I(inode)->i_cluster_size; 4078 int count, ret; 4079 4080 if (!f2fs_sb_has_compression(sbi) || 4081 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER) 4082 return -EOPNOTSUPP; 4083 4084 if (!(filp->f_mode & FMODE_WRITE)) 4085 return -EBADF; 4086 4087 if (!f2fs_compressed_file(inode)) 4088 return -EINVAL; 4089 4090 f2fs_balance_fs(F2FS_I_SB(inode), true); 4091 4092 file_start_write(filp); 4093 inode_lock(inode); 4094 4095 if (!f2fs_is_compress_backend_ready(inode)) { 4096 ret = -EOPNOTSUPP; 4097 goto out; 4098 } 4099 4100 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) { 4101 ret = -EINVAL; 4102 goto out; 4103 } 4104 4105 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 4106 if (ret) 4107 goto out; 4108 4109 set_inode_flag(inode, FI_ENABLE_COMPRESS); 4110 4111 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 4112 4113 count = last_idx - page_idx; 4114 while (count) { 4115 int len = min(cluster_size, count); 4116 4117 ret = redirty_blocks(inode, page_idx, len); 4118 if (ret < 0) 4119 break; 4120 4121 if (get_dirty_pages(inode) >= blk_per_seg) 4122 filemap_fdatawrite(inode->i_mapping); 4123 4124 count -= len; 4125 page_idx += len; 4126 } 4127 4128 if (!ret) 4129 ret = filemap_write_and_wait_range(inode->i_mapping, 0, 4130 LLONG_MAX); 4131 4132 clear_inode_flag(inode, FI_ENABLE_COMPRESS); 4133 4134 if (ret) 4135 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.", 4136 __func__, ret); 4137 out: 4138 inode_unlock(inode); 4139 file_end_write(filp); 4140 4141 return ret; 4142 } 4143 4144 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4145 { 4146 switch (cmd) { 4147 case FS_IOC_GETVERSION: 4148 return f2fs_ioc_getversion(filp, arg); 4149 case F2FS_IOC_START_ATOMIC_WRITE: 4150 return f2fs_ioc_start_atomic_write(filp, false); 4151 case F2FS_IOC_START_ATOMIC_REPLACE: 4152 return f2fs_ioc_start_atomic_write(filp, true); 4153 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4154 return f2fs_ioc_commit_atomic_write(filp); 4155 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4156 return f2fs_ioc_abort_atomic_write(filp); 4157 case F2FS_IOC_START_VOLATILE_WRITE: 4158 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4159 return -EOPNOTSUPP; 4160 case F2FS_IOC_SHUTDOWN: 4161 return f2fs_ioc_shutdown(filp, arg); 4162 case FITRIM: 4163 return f2fs_ioc_fitrim(filp, arg); 4164 case FS_IOC_SET_ENCRYPTION_POLICY: 4165 return f2fs_ioc_set_encryption_policy(filp, arg); 4166 case FS_IOC_GET_ENCRYPTION_POLICY: 4167 return f2fs_ioc_get_encryption_policy(filp, arg); 4168 case FS_IOC_GET_ENCRYPTION_PWSALT: 4169 return f2fs_ioc_get_encryption_pwsalt(filp, arg); 4170 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4171 return f2fs_ioc_get_encryption_policy_ex(filp, arg); 4172 case FS_IOC_ADD_ENCRYPTION_KEY: 4173 return f2fs_ioc_add_encryption_key(filp, arg); 4174 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4175 return f2fs_ioc_remove_encryption_key(filp, arg); 4176 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4177 return f2fs_ioc_remove_encryption_key_all_users(filp, arg); 4178 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4179 return f2fs_ioc_get_encryption_key_status(filp, arg); 4180 case FS_IOC_GET_ENCRYPTION_NONCE: 4181 return f2fs_ioc_get_encryption_nonce(filp, arg); 4182 case F2FS_IOC_GARBAGE_COLLECT: 4183 return f2fs_ioc_gc(filp, arg); 4184 case F2FS_IOC_GARBAGE_COLLECT_RANGE: 4185 return f2fs_ioc_gc_range(filp, arg); 4186 case F2FS_IOC_WRITE_CHECKPOINT: 4187 return f2fs_ioc_write_checkpoint(filp, arg); 4188 case F2FS_IOC_DEFRAGMENT: 4189 return f2fs_ioc_defragment(filp, arg); 4190 case F2FS_IOC_MOVE_RANGE: 4191 return f2fs_ioc_move_range(filp, arg); 4192 case F2FS_IOC_FLUSH_DEVICE: 4193 return f2fs_ioc_flush_device(filp, arg); 4194 case F2FS_IOC_GET_FEATURES: 4195 return f2fs_ioc_get_features(filp, arg); 4196 case F2FS_IOC_GET_PIN_FILE: 4197 return f2fs_ioc_get_pin_file(filp, arg); 4198 case F2FS_IOC_SET_PIN_FILE: 4199 return f2fs_ioc_set_pin_file(filp, arg); 4200 case F2FS_IOC_PRECACHE_EXTENTS: 4201 return f2fs_ioc_precache_extents(filp, arg); 4202 case F2FS_IOC_RESIZE_FS: 4203 return f2fs_ioc_resize_fs(filp, arg); 4204 case FS_IOC_ENABLE_VERITY: 4205 return f2fs_ioc_enable_verity(filp, arg); 4206 case FS_IOC_MEASURE_VERITY: 4207 return f2fs_ioc_measure_verity(filp, arg); 4208 case FS_IOC_READ_VERITY_METADATA: 4209 return f2fs_ioc_read_verity_metadata(filp, arg); 4210 case FS_IOC_GETFSLABEL: 4211 return f2fs_ioc_getfslabel(filp, arg); 4212 case FS_IOC_SETFSLABEL: 4213 return f2fs_ioc_setfslabel(filp, arg); 4214 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4215 return f2fs_get_compress_blocks(filp, arg); 4216 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4217 return f2fs_release_compress_blocks(filp, arg); 4218 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4219 return f2fs_reserve_compress_blocks(filp, arg); 4220 case F2FS_IOC_SEC_TRIM_FILE: 4221 return f2fs_sec_trim_file(filp, arg); 4222 case F2FS_IOC_GET_COMPRESS_OPTION: 4223 return f2fs_ioc_get_compress_option(filp, arg); 4224 case F2FS_IOC_SET_COMPRESS_OPTION: 4225 return f2fs_ioc_set_compress_option(filp, arg); 4226 case F2FS_IOC_DECOMPRESS_FILE: 4227 return f2fs_ioc_decompress_file(filp, arg); 4228 case F2FS_IOC_COMPRESS_FILE: 4229 return f2fs_ioc_compress_file(filp, arg); 4230 default: 4231 return -ENOTTY; 4232 } 4233 } 4234 4235 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 4236 { 4237 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp))))) 4238 return -EIO; 4239 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp)))) 4240 return -ENOSPC; 4241 4242 return __f2fs_ioctl(filp, cmd, arg); 4243 } 4244 4245 /* 4246 * Return %true if the given read or write request should use direct I/O, or 4247 * %false if it should use buffered I/O. 4248 */ 4249 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb, 4250 struct iov_iter *iter) 4251 { 4252 unsigned int align; 4253 4254 if (!(iocb->ki_flags & IOCB_DIRECT)) 4255 return false; 4256 4257 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter))) 4258 return false; 4259 4260 /* 4261 * Direct I/O not aligned to the disk's logical_block_size will be 4262 * attempted, but will fail with -EINVAL. 4263 * 4264 * f2fs additionally requires that direct I/O be aligned to the 4265 * filesystem block size, which is often a stricter requirement. 4266 * However, f2fs traditionally falls back to buffered I/O on requests 4267 * that are logical_block_size-aligned but not fs-block aligned. 4268 * 4269 * The below logic implements this behavior. 4270 */ 4271 align = iocb->ki_pos | iov_iter_alignment(iter); 4272 if (!IS_ALIGNED(align, i_blocksize(inode)) && 4273 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev))) 4274 return false; 4275 4276 return true; 4277 } 4278 4279 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error, 4280 unsigned int flags) 4281 { 4282 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4283 4284 dec_page_count(sbi, F2FS_DIO_READ); 4285 if (error) 4286 return error; 4287 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size); 4288 return 0; 4289 } 4290 4291 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = { 4292 .end_io = f2fs_dio_read_end_io, 4293 }; 4294 4295 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to) 4296 { 4297 struct file *file = iocb->ki_filp; 4298 struct inode *inode = file_inode(file); 4299 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4300 struct f2fs_inode_info *fi = F2FS_I(inode); 4301 const loff_t pos = iocb->ki_pos; 4302 const size_t count = iov_iter_count(to); 4303 struct iomap_dio *dio; 4304 ssize_t ret; 4305 4306 if (count == 0) 4307 return 0; /* skip atime update */ 4308 4309 trace_f2fs_direct_IO_enter(inode, iocb, count, READ); 4310 4311 if (iocb->ki_flags & IOCB_NOWAIT) { 4312 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4313 ret = -EAGAIN; 4314 goto out; 4315 } 4316 } else { 4317 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4318 } 4319 4320 /* 4321 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4322 * the higher-level function iomap_dio_rw() in order to ensure that the 4323 * F2FS_DIO_READ counter will be decremented correctly in all cases. 4324 */ 4325 inc_page_count(sbi, F2FS_DIO_READ); 4326 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops, 4327 &f2fs_iomap_dio_read_ops, 0, NULL, 0); 4328 if (IS_ERR_OR_NULL(dio)) { 4329 ret = PTR_ERR_OR_ZERO(dio); 4330 if (ret != -EIOCBQUEUED) 4331 dec_page_count(sbi, F2FS_DIO_READ); 4332 } else { 4333 ret = iomap_dio_complete(dio); 4334 } 4335 4336 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4337 4338 file_accessed(file); 4339 out: 4340 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret); 4341 return ret; 4342 } 4343 4344 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 4345 { 4346 struct inode *inode = file_inode(iocb->ki_filp); 4347 const loff_t pos = iocb->ki_pos; 4348 ssize_t ret; 4349 4350 if (!f2fs_is_compress_backend_ready(inode)) 4351 return -EOPNOTSUPP; 4352 4353 if (trace_f2fs_dataread_start_enabled()) { 4354 char *p = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL); 4355 char *path; 4356 4357 if (!p) 4358 goto skip_read_trace; 4359 4360 path = dentry_path_raw(file_dentry(iocb->ki_filp), p, PATH_MAX); 4361 if (IS_ERR(path)) { 4362 kfree(p); 4363 goto skip_read_trace; 4364 } 4365 4366 trace_f2fs_dataread_start(inode, pos, iov_iter_count(to), 4367 current->pid, path, current->comm); 4368 kfree(p); 4369 } 4370 skip_read_trace: 4371 if (f2fs_should_use_dio(inode, iocb, to)) { 4372 ret = f2fs_dio_read_iter(iocb, to); 4373 } else { 4374 ret = filemap_read(iocb, to, 0); 4375 if (ret > 0) 4376 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4377 APP_BUFFERED_READ_IO, ret); 4378 } 4379 if (trace_f2fs_dataread_end_enabled()) 4380 trace_f2fs_dataread_end(inode, pos, ret); 4381 return ret; 4382 } 4383 4384 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from) 4385 { 4386 struct file *file = iocb->ki_filp; 4387 struct inode *inode = file_inode(file); 4388 ssize_t count; 4389 int err; 4390 4391 if (IS_IMMUTABLE(inode)) 4392 return -EPERM; 4393 4394 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 4395 return -EPERM; 4396 4397 count = generic_write_checks(iocb, from); 4398 if (count <= 0) 4399 return count; 4400 4401 err = file_modified(file); 4402 if (err) 4403 return err; 4404 return count; 4405 } 4406 4407 /* 4408 * Preallocate blocks for a write request, if it is possible and helpful to do 4409 * so. Returns a positive number if blocks may have been preallocated, 0 if no 4410 * blocks were preallocated, or a negative errno value if something went 4411 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the 4412 * requested blocks (not just some of them) have been allocated. 4413 */ 4414 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter, 4415 bool dio) 4416 { 4417 struct inode *inode = file_inode(iocb->ki_filp); 4418 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4419 const loff_t pos = iocb->ki_pos; 4420 const size_t count = iov_iter_count(iter); 4421 struct f2fs_map_blocks map = {}; 4422 int flag; 4423 int ret; 4424 4425 /* If it will be an out-of-place direct write, don't bother. */ 4426 if (dio && f2fs_lfs_mode(sbi)) 4427 return 0; 4428 /* 4429 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into 4430 * buffered IO, if DIO meets any holes. 4431 */ 4432 if (dio && i_size_read(inode) && 4433 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode)))) 4434 return 0; 4435 4436 /* No-wait I/O can't allocate blocks. */ 4437 if (iocb->ki_flags & IOCB_NOWAIT) 4438 return 0; 4439 4440 /* If it will be a short write, don't bother. */ 4441 if (fault_in_iov_iter_readable(iter, count)) 4442 return 0; 4443 4444 if (f2fs_has_inline_data(inode)) { 4445 /* If the data will fit inline, don't bother. */ 4446 if (pos + count <= MAX_INLINE_DATA(inode)) 4447 return 0; 4448 ret = f2fs_convert_inline_inode(inode); 4449 if (ret) 4450 return ret; 4451 } 4452 4453 /* Do not preallocate blocks that will be written partially in 4KB. */ 4454 map.m_lblk = F2FS_BLK_ALIGN(pos); 4455 map.m_len = F2FS_BYTES_TO_BLK(pos + count); 4456 if (map.m_len > map.m_lblk) 4457 map.m_len -= map.m_lblk; 4458 else 4459 map.m_len = 0; 4460 map.m_may_create = true; 4461 if (dio) { 4462 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4463 flag = F2FS_GET_BLOCK_PRE_DIO; 4464 } else { 4465 map.m_seg_type = NO_CHECK_TYPE; 4466 flag = F2FS_GET_BLOCK_PRE_AIO; 4467 } 4468 4469 ret = f2fs_map_blocks(inode, &map, 1, flag); 4470 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */ 4471 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0)) 4472 return ret; 4473 if (ret == 0) 4474 set_inode_flag(inode, FI_PREALLOCATED_ALL); 4475 return map.m_len; 4476 } 4477 4478 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb, 4479 struct iov_iter *from) 4480 { 4481 struct file *file = iocb->ki_filp; 4482 struct inode *inode = file_inode(file); 4483 ssize_t ret; 4484 4485 if (iocb->ki_flags & IOCB_NOWAIT) 4486 return -EOPNOTSUPP; 4487 4488 current->backing_dev_info = inode_to_bdi(inode); 4489 ret = generic_perform_write(iocb, from); 4490 current->backing_dev_info = NULL; 4491 4492 if (ret > 0) { 4493 iocb->ki_pos += ret; 4494 f2fs_update_iostat(F2FS_I_SB(inode), inode, 4495 APP_BUFFERED_IO, ret); 4496 } 4497 return ret; 4498 } 4499 4500 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error, 4501 unsigned int flags) 4502 { 4503 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp)); 4504 4505 dec_page_count(sbi, F2FS_DIO_WRITE); 4506 if (error) 4507 return error; 4508 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size); 4509 return 0; 4510 } 4511 4512 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = { 4513 .end_io = f2fs_dio_write_end_io, 4514 }; 4515 4516 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from, 4517 bool *may_need_sync) 4518 { 4519 struct file *file = iocb->ki_filp; 4520 struct inode *inode = file_inode(file); 4521 struct f2fs_inode_info *fi = F2FS_I(inode); 4522 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4523 const bool do_opu = f2fs_lfs_mode(sbi); 4524 const loff_t pos = iocb->ki_pos; 4525 const ssize_t count = iov_iter_count(from); 4526 unsigned int dio_flags; 4527 struct iomap_dio *dio; 4528 ssize_t ret; 4529 4530 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE); 4531 4532 if (iocb->ki_flags & IOCB_NOWAIT) { 4533 /* f2fs_convert_inline_inode() and block allocation can block */ 4534 if (f2fs_has_inline_data(inode) || 4535 !f2fs_overwrite_io(inode, pos, count)) { 4536 ret = -EAGAIN; 4537 goto out; 4538 } 4539 4540 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) { 4541 ret = -EAGAIN; 4542 goto out; 4543 } 4544 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) { 4545 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4546 ret = -EAGAIN; 4547 goto out; 4548 } 4549 } else { 4550 ret = f2fs_convert_inline_inode(inode); 4551 if (ret) 4552 goto out; 4553 4554 f2fs_down_read(&fi->i_gc_rwsem[WRITE]); 4555 if (do_opu) 4556 f2fs_down_read(&fi->i_gc_rwsem[READ]); 4557 } 4558 4559 /* 4560 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of 4561 * the higher-level function iomap_dio_rw() in order to ensure that the 4562 * F2FS_DIO_WRITE counter will be decremented correctly in all cases. 4563 */ 4564 inc_page_count(sbi, F2FS_DIO_WRITE); 4565 dio_flags = 0; 4566 if (pos + count > inode->i_size) 4567 dio_flags |= IOMAP_DIO_FORCE_WAIT; 4568 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops, 4569 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0); 4570 if (IS_ERR_OR_NULL(dio)) { 4571 ret = PTR_ERR_OR_ZERO(dio); 4572 if (ret == -ENOTBLK) 4573 ret = 0; 4574 if (ret != -EIOCBQUEUED) 4575 dec_page_count(sbi, F2FS_DIO_WRITE); 4576 } else { 4577 ret = iomap_dio_complete(dio); 4578 } 4579 4580 if (do_opu) 4581 f2fs_up_read(&fi->i_gc_rwsem[READ]); 4582 f2fs_up_read(&fi->i_gc_rwsem[WRITE]); 4583 4584 if (ret < 0) 4585 goto out; 4586 if (pos + ret > inode->i_size) 4587 f2fs_i_size_write(inode, pos + ret); 4588 if (!do_opu) 4589 set_inode_flag(inode, FI_UPDATE_WRITE); 4590 4591 if (iov_iter_count(from)) { 4592 ssize_t ret2; 4593 loff_t bufio_start_pos = iocb->ki_pos; 4594 4595 /* 4596 * The direct write was partial, so we need to fall back to a 4597 * buffered write for the remainder. 4598 */ 4599 4600 ret2 = f2fs_buffered_write_iter(iocb, from); 4601 if (iov_iter_count(from)) 4602 f2fs_write_failed(inode, iocb->ki_pos); 4603 if (ret2 < 0) 4604 goto out; 4605 4606 /* 4607 * Ensure that the pagecache pages are written to disk and 4608 * invalidated to preserve the expected O_DIRECT semantics. 4609 */ 4610 if (ret2 > 0) { 4611 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1; 4612 4613 ret += ret2; 4614 4615 ret2 = filemap_write_and_wait_range(file->f_mapping, 4616 bufio_start_pos, 4617 bufio_end_pos); 4618 if (ret2 < 0) 4619 goto out; 4620 invalidate_mapping_pages(file->f_mapping, 4621 bufio_start_pos >> PAGE_SHIFT, 4622 bufio_end_pos >> PAGE_SHIFT); 4623 } 4624 } else { 4625 /* iomap_dio_rw() already handled the generic_write_sync(). */ 4626 *may_need_sync = false; 4627 } 4628 out: 4629 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret); 4630 return ret; 4631 } 4632 4633 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4634 { 4635 struct inode *inode = file_inode(iocb->ki_filp); 4636 const loff_t orig_pos = iocb->ki_pos; 4637 const size_t orig_count = iov_iter_count(from); 4638 loff_t target_size; 4639 bool dio; 4640 bool may_need_sync = true; 4641 int preallocated; 4642 ssize_t ret; 4643 4644 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { 4645 ret = -EIO; 4646 goto out; 4647 } 4648 4649 if (!f2fs_is_compress_backend_ready(inode)) { 4650 ret = -EOPNOTSUPP; 4651 goto out; 4652 } 4653 4654 if (iocb->ki_flags & IOCB_NOWAIT) { 4655 if (!inode_trylock(inode)) { 4656 ret = -EAGAIN; 4657 goto out; 4658 } 4659 } else { 4660 inode_lock(inode); 4661 } 4662 4663 ret = f2fs_write_checks(iocb, from); 4664 if (ret <= 0) 4665 goto out_unlock; 4666 4667 /* Determine whether we will do a direct write or a buffered write. */ 4668 dio = f2fs_should_use_dio(inode, iocb, from); 4669 4670 /* Possibly preallocate the blocks for the write. */ 4671 target_size = iocb->ki_pos + iov_iter_count(from); 4672 preallocated = f2fs_preallocate_blocks(iocb, from, dio); 4673 if (preallocated < 0) { 4674 ret = preallocated; 4675 } else { 4676 if (trace_f2fs_datawrite_start_enabled()) { 4677 char *p = f2fs_kmalloc(F2FS_I_SB(inode), 4678 PATH_MAX, GFP_KERNEL); 4679 char *path; 4680 4681 if (!p) 4682 goto skip_write_trace; 4683 path = dentry_path_raw(file_dentry(iocb->ki_filp), 4684 p, PATH_MAX); 4685 if (IS_ERR(path)) { 4686 kfree(p); 4687 goto skip_write_trace; 4688 } 4689 trace_f2fs_datawrite_start(inode, orig_pos, orig_count, 4690 current->pid, path, current->comm); 4691 kfree(p); 4692 } 4693 skip_write_trace: 4694 /* Do the actual write. */ 4695 ret = dio ? 4696 f2fs_dio_write_iter(iocb, from, &may_need_sync) : 4697 f2fs_buffered_write_iter(iocb, from); 4698 4699 if (trace_f2fs_datawrite_end_enabled()) 4700 trace_f2fs_datawrite_end(inode, orig_pos, ret); 4701 } 4702 4703 /* Don't leave any preallocated blocks around past i_size. */ 4704 if (preallocated && i_size_read(inode) < target_size) { 4705 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4706 filemap_invalidate_lock(inode->i_mapping); 4707 if (!f2fs_truncate(inode)) 4708 file_dont_truncate(inode); 4709 filemap_invalidate_unlock(inode->i_mapping); 4710 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 4711 } else { 4712 file_dont_truncate(inode); 4713 } 4714 4715 clear_inode_flag(inode, FI_PREALLOCATED_ALL); 4716 out_unlock: 4717 inode_unlock(inode); 4718 out: 4719 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret); 4720 if (ret > 0 && may_need_sync) 4721 ret = generic_write_sync(iocb, ret); 4722 return ret; 4723 } 4724 4725 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len, 4726 int advice) 4727 { 4728 struct address_space *mapping; 4729 struct backing_dev_info *bdi; 4730 struct inode *inode = file_inode(filp); 4731 int err; 4732 4733 if (advice == POSIX_FADV_SEQUENTIAL) { 4734 if (S_ISFIFO(inode->i_mode)) 4735 return -ESPIPE; 4736 4737 mapping = filp->f_mapping; 4738 if (!mapping || len < 0) 4739 return -EINVAL; 4740 4741 bdi = inode_to_bdi(mapping->host); 4742 filp->f_ra.ra_pages = bdi->ra_pages * 4743 F2FS_I_SB(inode)->seq_file_ra_mul; 4744 spin_lock(&filp->f_lock); 4745 filp->f_mode &= ~FMODE_RANDOM; 4746 spin_unlock(&filp->f_lock); 4747 return 0; 4748 } 4749 4750 err = generic_fadvise(filp, offset, len, advice); 4751 if (!err && advice == POSIX_FADV_DONTNEED && 4752 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) && 4753 f2fs_compressed_file(inode)) 4754 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino); 4755 4756 return err; 4757 } 4758 4759 #ifdef CONFIG_COMPAT 4760 struct compat_f2fs_gc_range { 4761 u32 sync; 4762 compat_u64 start; 4763 compat_u64 len; 4764 }; 4765 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\ 4766 struct compat_f2fs_gc_range) 4767 4768 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg) 4769 { 4770 struct compat_f2fs_gc_range __user *urange; 4771 struct f2fs_gc_range range; 4772 int err; 4773 4774 urange = compat_ptr(arg); 4775 err = get_user(range.sync, &urange->sync); 4776 err |= get_user(range.start, &urange->start); 4777 err |= get_user(range.len, &urange->len); 4778 if (err) 4779 return -EFAULT; 4780 4781 return __f2fs_ioc_gc_range(file, &range); 4782 } 4783 4784 struct compat_f2fs_move_range { 4785 u32 dst_fd; 4786 compat_u64 pos_in; 4787 compat_u64 pos_out; 4788 compat_u64 len; 4789 }; 4790 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 4791 struct compat_f2fs_move_range) 4792 4793 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg) 4794 { 4795 struct compat_f2fs_move_range __user *urange; 4796 struct f2fs_move_range range; 4797 int err; 4798 4799 urange = compat_ptr(arg); 4800 err = get_user(range.dst_fd, &urange->dst_fd); 4801 err |= get_user(range.pos_in, &urange->pos_in); 4802 err |= get_user(range.pos_out, &urange->pos_out); 4803 err |= get_user(range.len, &urange->len); 4804 if (err) 4805 return -EFAULT; 4806 4807 return __f2fs_ioc_move_range(file, &range); 4808 } 4809 4810 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4811 { 4812 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file))))) 4813 return -EIO; 4814 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file)))) 4815 return -ENOSPC; 4816 4817 switch (cmd) { 4818 case FS_IOC32_GETVERSION: 4819 cmd = FS_IOC_GETVERSION; 4820 break; 4821 case F2FS_IOC32_GARBAGE_COLLECT_RANGE: 4822 return f2fs_compat_ioc_gc_range(file, arg); 4823 case F2FS_IOC32_MOVE_RANGE: 4824 return f2fs_compat_ioc_move_range(file, arg); 4825 case F2FS_IOC_START_ATOMIC_WRITE: 4826 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 4827 case F2FS_IOC_START_VOLATILE_WRITE: 4828 case F2FS_IOC_RELEASE_VOLATILE_WRITE: 4829 case F2FS_IOC_ABORT_ATOMIC_WRITE: 4830 case F2FS_IOC_SHUTDOWN: 4831 case FITRIM: 4832 case FS_IOC_SET_ENCRYPTION_POLICY: 4833 case FS_IOC_GET_ENCRYPTION_PWSALT: 4834 case FS_IOC_GET_ENCRYPTION_POLICY: 4835 case FS_IOC_GET_ENCRYPTION_POLICY_EX: 4836 case FS_IOC_ADD_ENCRYPTION_KEY: 4837 case FS_IOC_REMOVE_ENCRYPTION_KEY: 4838 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS: 4839 case FS_IOC_GET_ENCRYPTION_KEY_STATUS: 4840 case FS_IOC_GET_ENCRYPTION_NONCE: 4841 case F2FS_IOC_GARBAGE_COLLECT: 4842 case F2FS_IOC_WRITE_CHECKPOINT: 4843 case F2FS_IOC_DEFRAGMENT: 4844 case F2FS_IOC_FLUSH_DEVICE: 4845 case F2FS_IOC_GET_FEATURES: 4846 case F2FS_IOC_GET_PIN_FILE: 4847 case F2FS_IOC_SET_PIN_FILE: 4848 case F2FS_IOC_PRECACHE_EXTENTS: 4849 case F2FS_IOC_RESIZE_FS: 4850 case FS_IOC_ENABLE_VERITY: 4851 case FS_IOC_MEASURE_VERITY: 4852 case FS_IOC_READ_VERITY_METADATA: 4853 case FS_IOC_GETFSLABEL: 4854 case FS_IOC_SETFSLABEL: 4855 case F2FS_IOC_GET_COMPRESS_BLOCKS: 4856 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS: 4857 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS: 4858 case F2FS_IOC_SEC_TRIM_FILE: 4859 case F2FS_IOC_GET_COMPRESS_OPTION: 4860 case F2FS_IOC_SET_COMPRESS_OPTION: 4861 case F2FS_IOC_DECOMPRESS_FILE: 4862 case F2FS_IOC_COMPRESS_FILE: 4863 break; 4864 default: 4865 return -ENOIOCTLCMD; 4866 } 4867 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4868 } 4869 #endif 4870 4871 const struct file_operations f2fs_file_operations = { 4872 .llseek = f2fs_llseek, 4873 .read_iter = f2fs_file_read_iter, 4874 .write_iter = f2fs_file_write_iter, 4875 .open = f2fs_file_open, 4876 .release = f2fs_release_file, 4877 .mmap = f2fs_file_mmap, 4878 .flush = f2fs_file_flush, 4879 .fsync = f2fs_sync_file, 4880 .fallocate = f2fs_fallocate, 4881 .unlocked_ioctl = f2fs_ioctl, 4882 #ifdef CONFIG_COMPAT 4883 .compat_ioctl = f2fs_compat_ioctl, 4884 #endif 4885 .splice_read = generic_file_splice_read, 4886 .splice_write = iter_file_splice_write, 4887 .fadvise = f2fs_file_fadvise, 4888 }; 4889