xref: /linux/fs/f2fs/file.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/random.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33 
34 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
35 						struct vm_fault *vmf)
36 {
37 	struct page *page = vmf->page;
38 	struct inode *inode = file_inode(vma->vm_file);
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	struct dnode_of_data dn;
41 	int err;
42 
43 	sb_start_pagefault(inode->i_sb);
44 
45 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
46 
47 	/* block allocation */
48 	f2fs_lock_op(sbi);
49 	set_new_dnode(&dn, inode, NULL, NULL, 0);
50 	err = f2fs_reserve_block(&dn, page->index);
51 	if (err) {
52 		f2fs_unlock_op(sbi);
53 		goto out;
54 	}
55 	f2fs_put_dnode(&dn);
56 	f2fs_unlock_op(sbi);
57 
58 	f2fs_balance_fs(sbi, dn.node_changed);
59 
60 	file_update_time(vma->vm_file);
61 	lock_page(page);
62 	if (unlikely(page->mapping != inode->i_mapping ||
63 			page_offset(page) > i_size_read(inode) ||
64 			!PageUptodate(page))) {
65 		unlock_page(page);
66 		err = -EFAULT;
67 		goto out;
68 	}
69 
70 	/*
71 	 * check to see if the page is mapped already (no holes)
72 	 */
73 	if (PageMappedToDisk(page))
74 		goto mapped;
75 
76 	/* page is wholly or partially inside EOF */
77 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
78 						i_size_read(inode)) {
79 		unsigned offset;
80 		offset = i_size_read(inode) & ~PAGE_MASK;
81 		zero_user_segment(page, offset, PAGE_SIZE);
82 	}
83 	set_page_dirty(page);
84 	SetPageUptodate(page);
85 
86 	trace_f2fs_vm_page_mkwrite(page, DATA);
87 mapped:
88 	/* fill the page */
89 	f2fs_wait_on_page_writeback(page, DATA, false);
90 
91 	/* wait for GCed encrypted page writeback */
92 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
93 		f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
94 
95 	/* if gced page is attached, don't write to cold segment */
96 	clear_cold_data(page);
97 out:
98 	sb_end_pagefault(inode->i_sb);
99 	f2fs_update_time(sbi, REQ_TIME);
100 	return block_page_mkwrite_return(err);
101 }
102 
103 static const struct vm_operations_struct f2fs_file_vm_ops = {
104 	.fault		= filemap_fault,
105 	.map_pages	= filemap_map_pages,
106 	.page_mkwrite	= f2fs_vm_page_mkwrite,
107 };
108 
109 static int get_parent_ino(struct inode *inode, nid_t *pino)
110 {
111 	struct dentry *dentry;
112 
113 	inode = igrab(inode);
114 	dentry = d_find_any_alias(inode);
115 	iput(inode);
116 	if (!dentry)
117 		return 0;
118 
119 	if (update_dent_inode(inode, inode, &dentry->d_name)) {
120 		dput(dentry);
121 		return 0;
122 	}
123 
124 	*pino = parent_ino(dentry);
125 	dput(dentry);
126 	return 1;
127 }
128 
129 static inline bool need_do_checkpoint(struct inode *inode)
130 {
131 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
132 	bool need_cp = false;
133 
134 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
135 		need_cp = true;
136 	else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
137 		need_cp = true;
138 	else if (file_wrong_pino(inode))
139 		need_cp = true;
140 	else if (!space_for_roll_forward(sbi))
141 		need_cp = true;
142 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
143 		need_cp = true;
144 	else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
145 		need_cp = true;
146 	else if (test_opt(sbi, FASTBOOT))
147 		need_cp = true;
148 	else if (sbi->active_logs == 2)
149 		need_cp = true;
150 
151 	return need_cp;
152 }
153 
154 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
155 {
156 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
157 	bool ret = false;
158 	/* But we need to avoid that there are some inode updates */
159 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
160 		ret = true;
161 	f2fs_put_page(i, 0);
162 	return ret;
163 }
164 
165 static void try_to_fix_pino(struct inode *inode)
166 {
167 	struct f2fs_inode_info *fi = F2FS_I(inode);
168 	nid_t pino;
169 
170 	down_write(&fi->i_sem);
171 	fi->xattr_ver = 0;
172 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
173 			get_parent_ino(inode, &pino)) {
174 		fi->i_pino = pino;
175 		file_got_pino(inode);
176 		up_write(&fi->i_sem);
177 
178 		mark_inode_dirty_sync(inode);
179 		f2fs_write_inode(inode, NULL);
180 	} else {
181 		up_write(&fi->i_sem);
182 	}
183 }
184 
185 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
186 {
187 	struct inode *inode = file->f_mapping->host;
188 	struct f2fs_inode_info *fi = F2FS_I(inode);
189 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 	nid_t ino = inode->i_ino;
191 	int ret = 0;
192 	bool need_cp = false;
193 	struct writeback_control wbc = {
194 		.sync_mode = WB_SYNC_ALL,
195 		.nr_to_write = LONG_MAX,
196 		.for_reclaim = 0,
197 	};
198 
199 	if (unlikely(f2fs_readonly(inode->i_sb)))
200 		return 0;
201 
202 	trace_f2fs_sync_file_enter(inode);
203 
204 	/* if fdatasync is triggered, let's do in-place-update */
205 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
206 		set_inode_flag(fi, FI_NEED_IPU);
207 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
208 	clear_inode_flag(fi, FI_NEED_IPU);
209 
210 	if (ret) {
211 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
212 		return ret;
213 	}
214 
215 	/* if the inode is dirty, let's recover all the time */
216 	if (!datasync) {
217 		f2fs_write_inode(inode, NULL);
218 		goto go_write;
219 	}
220 
221 	/*
222 	 * if there is no written data, don't waste time to write recovery info.
223 	 */
224 	if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
225 			!exist_written_data(sbi, ino, APPEND_INO)) {
226 
227 		/* it may call write_inode just prior to fsync */
228 		if (need_inode_page_update(sbi, ino))
229 			goto go_write;
230 
231 		if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
232 				exist_written_data(sbi, ino, UPDATE_INO))
233 			goto flush_out;
234 		goto out;
235 	}
236 go_write:
237 	/*
238 	 * Both of fdatasync() and fsync() are able to be recovered from
239 	 * sudden-power-off.
240 	 */
241 	down_read(&fi->i_sem);
242 	need_cp = need_do_checkpoint(inode);
243 	up_read(&fi->i_sem);
244 
245 	if (need_cp) {
246 		/* all the dirty node pages should be flushed for POR */
247 		ret = f2fs_sync_fs(inode->i_sb, 1);
248 
249 		/*
250 		 * We've secured consistency through sync_fs. Following pino
251 		 * will be used only for fsynced inodes after checkpoint.
252 		 */
253 		try_to_fix_pino(inode);
254 		clear_inode_flag(fi, FI_APPEND_WRITE);
255 		clear_inode_flag(fi, FI_UPDATE_WRITE);
256 		goto out;
257 	}
258 sync_nodes:
259 	sync_node_pages(sbi, ino, &wbc);
260 
261 	/* if cp_error was enabled, we should avoid infinite loop */
262 	if (unlikely(f2fs_cp_error(sbi))) {
263 		ret = -EIO;
264 		goto out;
265 	}
266 
267 	if (need_inode_block_update(sbi, ino)) {
268 		mark_inode_dirty_sync(inode);
269 		f2fs_write_inode(inode, NULL);
270 		goto sync_nodes;
271 	}
272 
273 	ret = wait_on_node_pages_writeback(sbi, ino);
274 	if (ret)
275 		goto out;
276 
277 	/* once recovery info is written, don't need to tack this */
278 	remove_ino_entry(sbi, ino, APPEND_INO);
279 	clear_inode_flag(fi, FI_APPEND_WRITE);
280 flush_out:
281 	remove_ino_entry(sbi, ino, UPDATE_INO);
282 	clear_inode_flag(fi, FI_UPDATE_WRITE);
283 	ret = f2fs_issue_flush(sbi);
284 	f2fs_update_time(sbi, REQ_TIME);
285 out:
286 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
287 	f2fs_trace_ios(NULL, 1);
288 	return ret;
289 }
290 
291 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
292 						pgoff_t pgofs, int whence)
293 {
294 	struct pagevec pvec;
295 	int nr_pages;
296 
297 	if (whence != SEEK_DATA)
298 		return 0;
299 
300 	/* find first dirty page index */
301 	pagevec_init(&pvec, 0);
302 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
303 					PAGECACHE_TAG_DIRTY, 1);
304 	pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
305 	pagevec_release(&pvec);
306 	return pgofs;
307 }
308 
309 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
310 							int whence)
311 {
312 	switch (whence) {
313 	case SEEK_DATA:
314 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
315 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
316 			return true;
317 		break;
318 	case SEEK_HOLE:
319 		if (blkaddr == NULL_ADDR)
320 			return true;
321 		break;
322 	}
323 	return false;
324 }
325 
326 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
327 {
328 	struct inode *inode = file->f_mapping->host;
329 	loff_t maxbytes = inode->i_sb->s_maxbytes;
330 	struct dnode_of_data dn;
331 	pgoff_t pgofs, end_offset, dirty;
332 	loff_t data_ofs = offset;
333 	loff_t isize;
334 	int err = 0;
335 
336 	inode_lock(inode);
337 
338 	isize = i_size_read(inode);
339 	if (offset >= isize)
340 		goto fail;
341 
342 	/* handle inline data case */
343 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
344 		if (whence == SEEK_HOLE)
345 			data_ofs = isize;
346 		goto found;
347 	}
348 
349 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
350 
351 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
352 
353 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
354 		set_new_dnode(&dn, inode, NULL, NULL, 0);
355 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
356 		if (err && err != -ENOENT) {
357 			goto fail;
358 		} else if (err == -ENOENT) {
359 			/* direct node does not exists */
360 			if (whence == SEEK_DATA) {
361 				pgofs = get_next_page_offset(&dn, pgofs);
362 				continue;
363 			} else {
364 				goto found;
365 			}
366 		}
367 
368 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
369 
370 		/* find data/hole in dnode block */
371 		for (; dn.ofs_in_node < end_offset;
372 				dn.ofs_in_node++, pgofs++,
373 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
374 			block_t blkaddr;
375 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
376 
377 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
378 				f2fs_put_dnode(&dn);
379 				goto found;
380 			}
381 		}
382 		f2fs_put_dnode(&dn);
383 	}
384 
385 	if (whence == SEEK_DATA)
386 		goto fail;
387 found:
388 	if (whence == SEEK_HOLE && data_ofs > isize)
389 		data_ofs = isize;
390 	inode_unlock(inode);
391 	return vfs_setpos(file, data_ofs, maxbytes);
392 fail:
393 	inode_unlock(inode);
394 	return -ENXIO;
395 }
396 
397 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
398 {
399 	struct inode *inode = file->f_mapping->host;
400 	loff_t maxbytes = inode->i_sb->s_maxbytes;
401 
402 	switch (whence) {
403 	case SEEK_SET:
404 	case SEEK_CUR:
405 	case SEEK_END:
406 		return generic_file_llseek_size(file, offset, whence,
407 						maxbytes, i_size_read(inode));
408 	case SEEK_DATA:
409 	case SEEK_HOLE:
410 		if (offset < 0)
411 			return -ENXIO;
412 		return f2fs_seek_block(file, offset, whence);
413 	}
414 
415 	return -EINVAL;
416 }
417 
418 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
419 {
420 	struct inode *inode = file_inode(file);
421 	int err;
422 
423 	if (f2fs_encrypted_inode(inode)) {
424 		err = fscrypt_get_encryption_info(inode);
425 		if (err)
426 			return 0;
427 		if (!f2fs_encrypted_inode(inode))
428 			return -ENOKEY;
429 	}
430 
431 	/* we don't need to use inline_data strictly */
432 	err = f2fs_convert_inline_inode(inode);
433 	if (err)
434 		return err;
435 
436 	file_accessed(file);
437 	vma->vm_ops = &f2fs_file_vm_ops;
438 	return 0;
439 }
440 
441 static int f2fs_file_open(struct inode *inode, struct file *filp)
442 {
443 	int ret = generic_file_open(inode, filp);
444 	struct inode *dir = filp->f_path.dentry->d_parent->d_inode;
445 
446 	if (!ret && f2fs_encrypted_inode(inode)) {
447 		ret = fscrypt_get_encryption_info(inode);
448 		if (ret)
449 			return -EACCES;
450 		if (!fscrypt_has_encryption_key(inode))
451 			return -ENOKEY;
452 	}
453 	if (f2fs_encrypted_inode(dir) &&
454 			!fscrypt_has_permitted_context(dir, inode))
455 		return -EPERM;
456 	return ret;
457 }
458 
459 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
460 {
461 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
462 	struct f2fs_node *raw_node;
463 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
464 	__le32 *addr;
465 
466 	raw_node = F2FS_NODE(dn->node_page);
467 	addr = blkaddr_in_node(raw_node) + ofs;
468 
469 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
470 		block_t blkaddr = le32_to_cpu(*addr);
471 		if (blkaddr == NULL_ADDR)
472 			continue;
473 
474 		dn->data_blkaddr = NULL_ADDR;
475 		set_data_blkaddr(dn);
476 		invalidate_blocks(sbi, blkaddr);
477 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
478 			clear_inode_flag(F2FS_I(dn->inode),
479 						FI_FIRST_BLOCK_WRITTEN);
480 		nr_free++;
481 	}
482 
483 	if (nr_free) {
484 		pgoff_t fofs;
485 		/*
486 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
487 		 * we will invalidate all blkaddr in the whole range.
488 		 */
489 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
490 							dn->inode) + ofs;
491 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
492 		dec_valid_block_count(sbi, dn->inode, nr_free);
493 		sync_inode_page(dn);
494 	}
495 	dn->ofs_in_node = ofs;
496 
497 	f2fs_update_time(sbi, REQ_TIME);
498 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
499 					 dn->ofs_in_node, nr_free);
500 	return nr_free;
501 }
502 
503 void truncate_data_blocks(struct dnode_of_data *dn)
504 {
505 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
506 }
507 
508 static int truncate_partial_data_page(struct inode *inode, u64 from,
509 								bool cache_only)
510 {
511 	unsigned offset = from & (PAGE_SIZE - 1);
512 	pgoff_t index = from >> PAGE_SHIFT;
513 	struct address_space *mapping = inode->i_mapping;
514 	struct page *page;
515 
516 	if (!offset && !cache_only)
517 		return 0;
518 
519 	if (cache_only) {
520 		page = f2fs_grab_cache_page(mapping, index, false);
521 		if (page && PageUptodate(page))
522 			goto truncate_out;
523 		f2fs_put_page(page, 1);
524 		return 0;
525 	}
526 
527 	page = get_lock_data_page(inode, index, true);
528 	if (IS_ERR(page))
529 		return 0;
530 truncate_out:
531 	f2fs_wait_on_page_writeback(page, DATA, true);
532 	zero_user(page, offset, PAGE_SIZE - offset);
533 	if (!cache_only || !f2fs_encrypted_inode(inode) ||
534 					!S_ISREG(inode->i_mode))
535 		set_page_dirty(page);
536 	f2fs_put_page(page, 1);
537 	return 0;
538 }
539 
540 int truncate_blocks(struct inode *inode, u64 from, bool lock)
541 {
542 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
543 	unsigned int blocksize = inode->i_sb->s_blocksize;
544 	struct dnode_of_data dn;
545 	pgoff_t free_from;
546 	int count = 0, err = 0;
547 	struct page *ipage;
548 	bool truncate_page = false;
549 
550 	trace_f2fs_truncate_blocks_enter(inode, from);
551 
552 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
553 
554 	if (lock)
555 		f2fs_lock_op(sbi);
556 
557 	ipage = get_node_page(sbi, inode->i_ino);
558 	if (IS_ERR(ipage)) {
559 		err = PTR_ERR(ipage);
560 		goto out;
561 	}
562 
563 	if (f2fs_has_inline_data(inode)) {
564 		if (truncate_inline_inode(ipage, from))
565 			set_page_dirty(ipage);
566 		f2fs_put_page(ipage, 1);
567 		truncate_page = true;
568 		goto out;
569 	}
570 
571 	set_new_dnode(&dn, inode, ipage, NULL, 0);
572 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
573 	if (err) {
574 		if (err == -ENOENT)
575 			goto free_next;
576 		goto out;
577 	}
578 
579 	count = ADDRS_PER_PAGE(dn.node_page, inode);
580 
581 	count -= dn.ofs_in_node;
582 	f2fs_bug_on(sbi, count < 0);
583 
584 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
585 		truncate_data_blocks_range(&dn, count);
586 		free_from += count;
587 	}
588 
589 	f2fs_put_dnode(&dn);
590 free_next:
591 	err = truncate_inode_blocks(inode, free_from);
592 out:
593 	if (lock)
594 		f2fs_unlock_op(sbi);
595 
596 	/* lastly zero out the first data page */
597 	if (!err)
598 		err = truncate_partial_data_page(inode, from, truncate_page);
599 
600 	trace_f2fs_truncate_blocks_exit(inode, err);
601 	return err;
602 }
603 
604 int f2fs_truncate(struct inode *inode, bool lock)
605 {
606 	int err;
607 
608 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
609 				S_ISLNK(inode->i_mode)))
610 		return 0;
611 
612 	trace_f2fs_truncate(inode);
613 
614 	/* we should check inline_data size */
615 	if (!f2fs_may_inline_data(inode)) {
616 		err = f2fs_convert_inline_inode(inode);
617 		if (err)
618 			return err;
619 	}
620 
621 	err = truncate_blocks(inode, i_size_read(inode), lock);
622 	if (err)
623 		return err;
624 
625 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
626 	mark_inode_dirty(inode);
627 	return 0;
628 }
629 
630 int f2fs_getattr(struct vfsmount *mnt,
631 			 struct dentry *dentry, struct kstat *stat)
632 {
633 	struct inode *inode = d_inode(dentry);
634 	generic_fillattr(inode, stat);
635 	stat->blocks <<= 3;
636 	return 0;
637 }
638 
639 #ifdef CONFIG_F2FS_FS_POSIX_ACL
640 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
641 {
642 	struct f2fs_inode_info *fi = F2FS_I(inode);
643 	unsigned int ia_valid = attr->ia_valid;
644 
645 	if (ia_valid & ATTR_UID)
646 		inode->i_uid = attr->ia_uid;
647 	if (ia_valid & ATTR_GID)
648 		inode->i_gid = attr->ia_gid;
649 	if (ia_valid & ATTR_ATIME)
650 		inode->i_atime = timespec_trunc(attr->ia_atime,
651 						inode->i_sb->s_time_gran);
652 	if (ia_valid & ATTR_MTIME)
653 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
654 						inode->i_sb->s_time_gran);
655 	if (ia_valid & ATTR_CTIME)
656 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
657 						inode->i_sb->s_time_gran);
658 	if (ia_valid & ATTR_MODE) {
659 		umode_t mode = attr->ia_mode;
660 
661 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
662 			mode &= ~S_ISGID;
663 		set_acl_inode(fi, mode);
664 	}
665 }
666 #else
667 #define __setattr_copy setattr_copy
668 #endif
669 
670 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
671 {
672 	struct inode *inode = d_inode(dentry);
673 	struct f2fs_inode_info *fi = F2FS_I(inode);
674 	int err;
675 
676 	err = inode_change_ok(inode, attr);
677 	if (err)
678 		return err;
679 
680 	if (attr->ia_valid & ATTR_SIZE) {
681 		if (f2fs_encrypted_inode(inode) &&
682 				fscrypt_get_encryption_info(inode))
683 			return -EACCES;
684 
685 		if (attr->ia_size <= i_size_read(inode)) {
686 			truncate_setsize(inode, attr->ia_size);
687 			err = f2fs_truncate(inode, true);
688 			if (err)
689 				return err;
690 			f2fs_balance_fs(F2FS_I_SB(inode), true);
691 		} else {
692 			/*
693 			 * do not trim all blocks after i_size if target size is
694 			 * larger than i_size.
695 			 */
696 			truncate_setsize(inode, attr->ia_size);
697 
698 			/* should convert inline inode here */
699 			if (!f2fs_may_inline_data(inode)) {
700 				err = f2fs_convert_inline_inode(inode);
701 				if (err)
702 					return err;
703 			}
704 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
705 		}
706 	}
707 
708 	__setattr_copy(inode, attr);
709 
710 	if (attr->ia_valid & ATTR_MODE) {
711 		err = posix_acl_chmod(inode, get_inode_mode(inode));
712 		if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
713 			inode->i_mode = fi->i_acl_mode;
714 			clear_inode_flag(fi, FI_ACL_MODE);
715 		}
716 	}
717 
718 	mark_inode_dirty(inode);
719 	return err;
720 }
721 
722 const struct inode_operations f2fs_file_inode_operations = {
723 	.getattr	= f2fs_getattr,
724 	.setattr	= f2fs_setattr,
725 	.get_acl	= f2fs_get_acl,
726 	.set_acl	= f2fs_set_acl,
727 #ifdef CONFIG_F2FS_FS_XATTR
728 	.setxattr	= generic_setxattr,
729 	.getxattr	= generic_getxattr,
730 	.listxattr	= f2fs_listxattr,
731 	.removexattr	= generic_removexattr,
732 #endif
733 	.fiemap		= f2fs_fiemap,
734 };
735 
736 static int fill_zero(struct inode *inode, pgoff_t index,
737 					loff_t start, loff_t len)
738 {
739 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
740 	struct page *page;
741 
742 	if (!len)
743 		return 0;
744 
745 	f2fs_balance_fs(sbi, true);
746 
747 	f2fs_lock_op(sbi);
748 	page = get_new_data_page(inode, NULL, index, false);
749 	f2fs_unlock_op(sbi);
750 
751 	if (IS_ERR(page))
752 		return PTR_ERR(page);
753 
754 	f2fs_wait_on_page_writeback(page, DATA, true);
755 	zero_user(page, start, len);
756 	set_page_dirty(page);
757 	f2fs_put_page(page, 1);
758 	return 0;
759 }
760 
761 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
762 {
763 	int err;
764 
765 	while (pg_start < pg_end) {
766 		struct dnode_of_data dn;
767 		pgoff_t end_offset, count;
768 
769 		set_new_dnode(&dn, inode, NULL, NULL, 0);
770 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
771 		if (err) {
772 			if (err == -ENOENT) {
773 				pg_start++;
774 				continue;
775 			}
776 			return err;
777 		}
778 
779 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
780 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
781 
782 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
783 
784 		truncate_data_blocks_range(&dn, count);
785 		f2fs_put_dnode(&dn);
786 
787 		pg_start += count;
788 	}
789 	return 0;
790 }
791 
792 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
793 {
794 	pgoff_t pg_start, pg_end;
795 	loff_t off_start, off_end;
796 	int ret;
797 
798 	ret = f2fs_convert_inline_inode(inode);
799 	if (ret)
800 		return ret;
801 
802 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
803 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
804 
805 	off_start = offset & (PAGE_SIZE - 1);
806 	off_end = (offset + len) & (PAGE_SIZE - 1);
807 
808 	if (pg_start == pg_end) {
809 		ret = fill_zero(inode, pg_start, off_start,
810 						off_end - off_start);
811 		if (ret)
812 			return ret;
813 	} else {
814 		if (off_start) {
815 			ret = fill_zero(inode, pg_start++, off_start,
816 						PAGE_SIZE - off_start);
817 			if (ret)
818 				return ret;
819 		}
820 		if (off_end) {
821 			ret = fill_zero(inode, pg_end, 0, off_end);
822 			if (ret)
823 				return ret;
824 		}
825 
826 		if (pg_start < pg_end) {
827 			struct address_space *mapping = inode->i_mapping;
828 			loff_t blk_start, blk_end;
829 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
830 
831 			f2fs_balance_fs(sbi, true);
832 
833 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
834 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
835 			truncate_inode_pages_range(mapping, blk_start,
836 					blk_end - 1);
837 
838 			f2fs_lock_op(sbi);
839 			ret = truncate_hole(inode, pg_start, pg_end);
840 			f2fs_unlock_op(sbi);
841 		}
842 	}
843 
844 	return ret;
845 }
846 
847 static int __exchange_data_block(struct inode *inode, pgoff_t src,
848 					pgoff_t dst, bool full)
849 {
850 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
851 	struct dnode_of_data dn;
852 	block_t new_addr;
853 	bool do_replace = false;
854 	int ret;
855 
856 	set_new_dnode(&dn, inode, NULL, NULL, 0);
857 	ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA);
858 	if (ret && ret != -ENOENT) {
859 		return ret;
860 	} else if (ret == -ENOENT) {
861 		new_addr = NULL_ADDR;
862 	} else {
863 		new_addr = dn.data_blkaddr;
864 		if (!is_checkpointed_data(sbi, new_addr)) {
865 			/* do not invalidate this block address */
866 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
867 			do_replace = true;
868 		}
869 		f2fs_put_dnode(&dn);
870 	}
871 
872 	if (new_addr == NULL_ADDR)
873 		return full ? truncate_hole(inode, dst, dst + 1) : 0;
874 
875 	if (do_replace) {
876 		struct page *ipage = get_node_page(sbi, inode->i_ino);
877 		struct node_info ni;
878 
879 		if (IS_ERR(ipage)) {
880 			ret = PTR_ERR(ipage);
881 			goto err_out;
882 		}
883 
884 		set_new_dnode(&dn, inode, ipage, NULL, 0);
885 		ret = f2fs_reserve_block(&dn, dst);
886 		if (ret)
887 			goto err_out;
888 
889 		truncate_data_blocks_range(&dn, 1);
890 
891 		get_node_info(sbi, dn.nid, &ni);
892 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
893 				ni.version, true, false);
894 		f2fs_put_dnode(&dn);
895 	} else {
896 		struct page *psrc, *pdst;
897 
898 		psrc = get_lock_data_page(inode, src, true);
899 		if (IS_ERR(psrc))
900 			return PTR_ERR(psrc);
901 		pdst = get_new_data_page(inode, NULL, dst, true);
902 		if (IS_ERR(pdst)) {
903 			f2fs_put_page(psrc, 1);
904 			return PTR_ERR(pdst);
905 		}
906 		f2fs_copy_page(psrc, pdst);
907 		set_page_dirty(pdst);
908 		f2fs_put_page(pdst, 1);
909 		f2fs_put_page(psrc, 1);
910 
911 		return truncate_hole(inode, src, src + 1);
912 	}
913 	return 0;
914 
915 err_out:
916 	if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) {
917 		f2fs_update_data_blkaddr(&dn, new_addr);
918 		f2fs_put_dnode(&dn);
919 	}
920 	return ret;
921 }
922 
923 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
924 {
925 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
926 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
927 	int ret = 0;
928 
929 	for (; end < nrpages; start++, end++) {
930 		f2fs_balance_fs(sbi, true);
931 		f2fs_lock_op(sbi);
932 		ret = __exchange_data_block(inode, end, start, true);
933 		f2fs_unlock_op(sbi);
934 		if (ret)
935 			break;
936 	}
937 	return ret;
938 }
939 
940 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
941 {
942 	pgoff_t pg_start, pg_end;
943 	loff_t new_size;
944 	int ret;
945 
946 	if (offset + len >= i_size_read(inode))
947 		return -EINVAL;
948 
949 	/* collapse range should be aligned to block size of f2fs. */
950 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
951 		return -EINVAL;
952 
953 	ret = f2fs_convert_inline_inode(inode);
954 	if (ret)
955 		return ret;
956 
957 	pg_start = offset >> PAGE_SHIFT;
958 	pg_end = (offset + len) >> PAGE_SHIFT;
959 
960 	/* write out all dirty pages from offset */
961 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
962 	if (ret)
963 		return ret;
964 
965 	truncate_pagecache(inode, offset);
966 
967 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
968 	if (ret)
969 		return ret;
970 
971 	/* write out all moved pages, if possible */
972 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
973 	truncate_pagecache(inode, offset);
974 
975 	new_size = i_size_read(inode) - len;
976 	truncate_pagecache(inode, new_size);
977 
978 	ret = truncate_blocks(inode, new_size, true);
979 	if (!ret)
980 		i_size_write(inode, new_size);
981 
982 	return ret;
983 }
984 
985 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
986 								int mode)
987 {
988 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
989 	struct address_space *mapping = inode->i_mapping;
990 	pgoff_t index, pg_start, pg_end;
991 	loff_t new_size = i_size_read(inode);
992 	loff_t off_start, off_end;
993 	int ret = 0;
994 
995 	ret = inode_newsize_ok(inode, (len + offset));
996 	if (ret)
997 		return ret;
998 
999 	ret = f2fs_convert_inline_inode(inode);
1000 	if (ret)
1001 		return ret;
1002 
1003 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1004 	if (ret)
1005 		return ret;
1006 
1007 	truncate_pagecache_range(inode, offset, offset + len - 1);
1008 
1009 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1010 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1011 
1012 	off_start = offset & (PAGE_SIZE - 1);
1013 	off_end = (offset + len) & (PAGE_SIZE - 1);
1014 
1015 	if (pg_start == pg_end) {
1016 		ret = fill_zero(inode, pg_start, off_start,
1017 						off_end - off_start);
1018 		if (ret)
1019 			return ret;
1020 
1021 		if (offset + len > new_size)
1022 			new_size = offset + len;
1023 		new_size = max_t(loff_t, new_size, offset + len);
1024 	} else {
1025 		if (off_start) {
1026 			ret = fill_zero(inode, pg_start++, off_start,
1027 						PAGE_SIZE - off_start);
1028 			if (ret)
1029 				return ret;
1030 
1031 			new_size = max_t(loff_t, new_size,
1032 					(loff_t)pg_start << PAGE_SHIFT);
1033 		}
1034 
1035 		for (index = pg_start; index < pg_end; index++) {
1036 			struct dnode_of_data dn;
1037 			struct page *ipage;
1038 
1039 			f2fs_lock_op(sbi);
1040 
1041 			ipage = get_node_page(sbi, inode->i_ino);
1042 			if (IS_ERR(ipage)) {
1043 				ret = PTR_ERR(ipage);
1044 				f2fs_unlock_op(sbi);
1045 				goto out;
1046 			}
1047 
1048 			set_new_dnode(&dn, inode, ipage, NULL, 0);
1049 			ret = f2fs_reserve_block(&dn, index);
1050 			if (ret) {
1051 				f2fs_unlock_op(sbi);
1052 				goto out;
1053 			}
1054 
1055 			if (dn.data_blkaddr != NEW_ADDR) {
1056 				invalidate_blocks(sbi, dn.data_blkaddr);
1057 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1058 			}
1059 			f2fs_put_dnode(&dn);
1060 			f2fs_unlock_op(sbi);
1061 
1062 			new_size = max_t(loff_t, new_size,
1063 				(loff_t)(index + 1) << PAGE_SHIFT);
1064 		}
1065 
1066 		if (off_end) {
1067 			ret = fill_zero(inode, pg_end, 0, off_end);
1068 			if (ret)
1069 				goto out;
1070 
1071 			new_size = max_t(loff_t, new_size, offset + len);
1072 		}
1073 	}
1074 
1075 out:
1076 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1077 		i_size_write(inode, new_size);
1078 		mark_inode_dirty(inode);
1079 		update_inode_page(inode);
1080 	}
1081 
1082 	return ret;
1083 }
1084 
1085 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1086 {
1087 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1088 	pgoff_t pg_start, pg_end, delta, nrpages, idx;
1089 	loff_t new_size;
1090 	int ret = 0;
1091 
1092 	new_size = i_size_read(inode) + len;
1093 	if (new_size > inode->i_sb->s_maxbytes)
1094 		return -EFBIG;
1095 
1096 	if (offset >= i_size_read(inode))
1097 		return -EINVAL;
1098 
1099 	/* insert range should be aligned to block size of f2fs. */
1100 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1101 		return -EINVAL;
1102 
1103 	ret = f2fs_convert_inline_inode(inode);
1104 	if (ret)
1105 		return ret;
1106 
1107 	f2fs_balance_fs(sbi, true);
1108 
1109 	ret = truncate_blocks(inode, i_size_read(inode), true);
1110 	if (ret)
1111 		return ret;
1112 
1113 	/* write out all dirty pages from offset */
1114 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1115 	if (ret)
1116 		return ret;
1117 
1118 	truncate_pagecache(inode, offset);
1119 
1120 	pg_start = offset >> PAGE_SHIFT;
1121 	pg_end = (offset + len) >> PAGE_SHIFT;
1122 	delta = pg_end - pg_start;
1123 	nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1124 
1125 	for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
1126 		f2fs_lock_op(sbi);
1127 		ret = __exchange_data_block(inode, idx, idx + delta, false);
1128 		f2fs_unlock_op(sbi);
1129 		if (ret)
1130 			break;
1131 	}
1132 
1133 	/* write out all moved pages, if possible */
1134 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1135 	truncate_pagecache(inode, offset);
1136 
1137 	if (!ret)
1138 		i_size_write(inode, new_size);
1139 	return ret;
1140 }
1141 
1142 static int expand_inode_data(struct inode *inode, loff_t offset,
1143 					loff_t len, int mode)
1144 {
1145 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1146 	pgoff_t index, pg_start, pg_end;
1147 	loff_t new_size = i_size_read(inode);
1148 	loff_t off_start, off_end;
1149 	int ret = 0;
1150 
1151 	ret = inode_newsize_ok(inode, (len + offset));
1152 	if (ret)
1153 		return ret;
1154 
1155 	ret = f2fs_convert_inline_inode(inode);
1156 	if (ret)
1157 		return ret;
1158 
1159 	f2fs_balance_fs(sbi, true);
1160 
1161 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1162 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1163 
1164 	off_start = offset & (PAGE_SIZE - 1);
1165 	off_end = (offset + len) & (PAGE_SIZE - 1);
1166 
1167 	f2fs_lock_op(sbi);
1168 
1169 	for (index = pg_start; index <= pg_end; index++) {
1170 		struct dnode_of_data dn;
1171 
1172 		if (index == pg_end && !off_end)
1173 			goto noalloc;
1174 
1175 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1176 		ret = f2fs_reserve_block(&dn, index);
1177 		if (ret)
1178 			break;
1179 noalloc:
1180 		if (pg_start == pg_end)
1181 			new_size = offset + len;
1182 		else if (index == pg_start && off_start)
1183 			new_size = (loff_t)(index + 1) << PAGE_SHIFT;
1184 		else if (index == pg_end)
1185 			new_size = ((loff_t)index << PAGE_SHIFT) +
1186 								off_end;
1187 		else
1188 			new_size += PAGE_SIZE;
1189 	}
1190 
1191 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1192 		i_size_read(inode) < new_size) {
1193 		i_size_write(inode, new_size);
1194 		mark_inode_dirty(inode);
1195 		update_inode_page(inode);
1196 	}
1197 	f2fs_unlock_op(sbi);
1198 
1199 	return ret;
1200 }
1201 
1202 static long f2fs_fallocate(struct file *file, int mode,
1203 				loff_t offset, loff_t len)
1204 {
1205 	struct inode *inode = file_inode(file);
1206 	long ret = 0;
1207 
1208 	/* f2fs only support ->fallocate for regular file */
1209 	if (!S_ISREG(inode->i_mode))
1210 		return -EINVAL;
1211 
1212 	if (f2fs_encrypted_inode(inode) &&
1213 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1214 		return -EOPNOTSUPP;
1215 
1216 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1217 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1218 			FALLOC_FL_INSERT_RANGE))
1219 		return -EOPNOTSUPP;
1220 
1221 	inode_lock(inode);
1222 
1223 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1224 		if (offset >= inode->i_size)
1225 			goto out;
1226 
1227 		ret = punch_hole(inode, offset, len);
1228 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1229 		ret = f2fs_collapse_range(inode, offset, len);
1230 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1231 		ret = f2fs_zero_range(inode, offset, len, mode);
1232 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1233 		ret = f2fs_insert_range(inode, offset, len);
1234 	} else {
1235 		ret = expand_inode_data(inode, offset, len, mode);
1236 	}
1237 
1238 	if (!ret) {
1239 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1240 		mark_inode_dirty(inode);
1241 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1242 	}
1243 
1244 out:
1245 	inode_unlock(inode);
1246 
1247 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1248 	return ret;
1249 }
1250 
1251 static int f2fs_release_file(struct inode *inode, struct file *filp)
1252 {
1253 	/* some remained atomic pages should discarded */
1254 	if (f2fs_is_atomic_file(inode))
1255 		drop_inmem_pages(inode);
1256 	if (f2fs_is_volatile_file(inode)) {
1257 		set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1258 		filemap_fdatawrite(inode->i_mapping);
1259 		clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1260 	}
1261 	return 0;
1262 }
1263 
1264 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1265 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1266 
1267 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1268 {
1269 	if (S_ISDIR(mode))
1270 		return flags;
1271 	else if (S_ISREG(mode))
1272 		return flags & F2FS_REG_FLMASK;
1273 	else
1274 		return flags & F2FS_OTHER_FLMASK;
1275 }
1276 
1277 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1278 {
1279 	struct inode *inode = file_inode(filp);
1280 	struct f2fs_inode_info *fi = F2FS_I(inode);
1281 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1282 	return put_user(flags, (int __user *)arg);
1283 }
1284 
1285 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1286 {
1287 	struct inode *inode = file_inode(filp);
1288 	struct f2fs_inode_info *fi = F2FS_I(inode);
1289 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1290 	unsigned int oldflags;
1291 	int ret;
1292 
1293 	ret = mnt_want_write_file(filp);
1294 	if (ret)
1295 		return ret;
1296 
1297 	if (!inode_owner_or_capable(inode)) {
1298 		ret = -EACCES;
1299 		goto out;
1300 	}
1301 
1302 	if (get_user(flags, (int __user *)arg)) {
1303 		ret = -EFAULT;
1304 		goto out;
1305 	}
1306 
1307 	flags = f2fs_mask_flags(inode->i_mode, flags);
1308 
1309 	inode_lock(inode);
1310 
1311 	oldflags = fi->i_flags;
1312 
1313 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1314 		if (!capable(CAP_LINUX_IMMUTABLE)) {
1315 			inode_unlock(inode);
1316 			ret = -EPERM;
1317 			goto out;
1318 		}
1319 	}
1320 
1321 	flags = flags & FS_FL_USER_MODIFIABLE;
1322 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1323 	fi->i_flags = flags;
1324 	inode_unlock(inode);
1325 
1326 	f2fs_set_inode_flags(inode);
1327 	inode->i_ctime = CURRENT_TIME;
1328 	mark_inode_dirty(inode);
1329 out:
1330 	mnt_drop_write_file(filp);
1331 	return ret;
1332 }
1333 
1334 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1335 {
1336 	struct inode *inode = file_inode(filp);
1337 
1338 	return put_user(inode->i_generation, (int __user *)arg);
1339 }
1340 
1341 static int f2fs_ioc_start_atomic_write(struct file *filp)
1342 {
1343 	struct inode *inode = file_inode(filp);
1344 	int ret;
1345 
1346 	if (!inode_owner_or_capable(inode))
1347 		return -EACCES;
1348 
1349 	if (f2fs_is_atomic_file(inode))
1350 		return 0;
1351 
1352 	ret = f2fs_convert_inline_inode(inode);
1353 	if (ret)
1354 		return ret;
1355 
1356 	set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1357 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1358 
1359 	return 0;
1360 }
1361 
1362 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1363 {
1364 	struct inode *inode = file_inode(filp);
1365 	int ret;
1366 
1367 	if (!inode_owner_or_capable(inode))
1368 		return -EACCES;
1369 
1370 	if (f2fs_is_volatile_file(inode))
1371 		return 0;
1372 
1373 	ret = mnt_want_write_file(filp);
1374 	if (ret)
1375 		return ret;
1376 
1377 	if (f2fs_is_atomic_file(inode)) {
1378 		clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1379 		ret = commit_inmem_pages(inode);
1380 		if (ret) {
1381 			set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1382 			goto err_out;
1383 		}
1384 	}
1385 
1386 	ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1387 err_out:
1388 	mnt_drop_write_file(filp);
1389 	return ret;
1390 }
1391 
1392 static int f2fs_ioc_start_volatile_write(struct file *filp)
1393 {
1394 	struct inode *inode = file_inode(filp);
1395 	int ret;
1396 
1397 	if (!inode_owner_or_capable(inode))
1398 		return -EACCES;
1399 
1400 	if (f2fs_is_volatile_file(inode))
1401 		return 0;
1402 
1403 	ret = f2fs_convert_inline_inode(inode);
1404 	if (ret)
1405 		return ret;
1406 
1407 	set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1408 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1409 	return 0;
1410 }
1411 
1412 static int f2fs_ioc_release_volatile_write(struct file *filp)
1413 {
1414 	struct inode *inode = file_inode(filp);
1415 
1416 	if (!inode_owner_or_capable(inode))
1417 		return -EACCES;
1418 
1419 	if (!f2fs_is_volatile_file(inode))
1420 		return 0;
1421 
1422 	if (!f2fs_is_first_block_written(inode))
1423 		return truncate_partial_data_page(inode, 0, true);
1424 
1425 	return punch_hole(inode, 0, F2FS_BLKSIZE);
1426 }
1427 
1428 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1429 {
1430 	struct inode *inode = file_inode(filp);
1431 	int ret;
1432 
1433 	if (!inode_owner_or_capable(inode))
1434 		return -EACCES;
1435 
1436 	ret = mnt_want_write_file(filp);
1437 	if (ret)
1438 		return ret;
1439 
1440 	if (f2fs_is_atomic_file(inode)) {
1441 		clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1442 		drop_inmem_pages(inode);
1443 	}
1444 	if (f2fs_is_volatile_file(inode)) {
1445 		clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1446 		ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1447 	}
1448 
1449 	mnt_drop_write_file(filp);
1450 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1451 	return ret;
1452 }
1453 
1454 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1455 {
1456 	struct inode *inode = file_inode(filp);
1457 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1458 	struct super_block *sb = sbi->sb;
1459 	__u32 in;
1460 
1461 	if (!capable(CAP_SYS_ADMIN))
1462 		return -EPERM;
1463 
1464 	if (get_user(in, (__u32 __user *)arg))
1465 		return -EFAULT;
1466 
1467 	switch (in) {
1468 	case F2FS_GOING_DOWN_FULLSYNC:
1469 		sb = freeze_bdev(sb->s_bdev);
1470 		if (sb && !IS_ERR(sb)) {
1471 			f2fs_stop_checkpoint(sbi);
1472 			thaw_bdev(sb->s_bdev, sb);
1473 		}
1474 		break;
1475 	case F2FS_GOING_DOWN_METASYNC:
1476 		/* do checkpoint only */
1477 		f2fs_sync_fs(sb, 1);
1478 		f2fs_stop_checkpoint(sbi);
1479 		break;
1480 	case F2FS_GOING_DOWN_NOSYNC:
1481 		f2fs_stop_checkpoint(sbi);
1482 		break;
1483 	case F2FS_GOING_DOWN_METAFLUSH:
1484 		sync_meta_pages(sbi, META, LONG_MAX);
1485 		f2fs_stop_checkpoint(sbi);
1486 		break;
1487 	default:
1488 		return -EINVAL;
1489 	}
1490 	f2fs_update_time(sbi, REQ_TIME);
1491 	return 0;
1492 }
1493 
1494 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1495 {
1496 	struct inode *inode = file_inode(filp);
1497 	struct super_block *sb = inode->i_sb;
1498 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1499 	struct fstrim_range range;
1500 	int ret;
1501 
1502 	if (!capable(CAP_SYS_ADMIN))
1503 		return -EPERM;
1504 
1505 	if (!blk_queue_discard(q))
1506 		return -EOPNOTSUPP;
1507 
1508 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1509 				sizeof(range)))
1510 		return -EFAULT;
1511 
1512 	range.minlen = max((unsigned int)range.minlen,
1513 				q->limits.discard_granularity);
1514 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1515 	if (ret < 0)
1516 		return ret;
1517 
1518 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1519 				sizeof(range)))
1520 		return -EFAULT;
1521 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1522 	return 0;
1523 }
1524 
1525 static bool uuid_is_nonzero(__u8 u[16])
1526 {
1527 	int i;
1528 
1529 	for (i = 0; i < 16; i++)
1530 		if (u[i])
1531 			return true;
1532 	return false;
1533 }
1534 
1535 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1536 {
1537 	struct fscrypt_policy policy;
1538 	struct inode *inode = file_inode(filp);
1539 
1540 	if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1541 							sizeof(policy)))
1542 		return -EFAULT;
1543 
1544 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1545 	return fscrypt_process_policy(inode, &policy);
1546 }
1547 
1548 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1549 {
1550 	struct fscrypt_policy policy;
1551 	struct inode *inode = file_inode(filp);
1552 	int err;
1553 
1554 	err = fscrypt_get_policy(inode, &policy);
1555 	if (err)
1556 		return err;
1557 
1558 	if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1559 		return -EFAULT;
1560 	return 0;
1561 }
1562 
1563 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1564 {
1565 	struct inode *inode = file_inode(filp);
1566 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1567 	int err;
1568 
1569 	if (!f2fs_sb_has_crypto(inode->i_sb))
1570 		return -EOPNOTSUPP;
1571 
1572 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1573 		goto got_it;
1574 
1575 	err = mnt_want_write_file(filp);
1576 	if (err)
1577 		return err;
1578 
1579 	/* update superblock with uuid */
1580 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1581 
1582 	err = f2fs_commit_super(sbi, false);
1583 	if (err) {
1584 		/* undo new data */
1585 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1586 		mnt_drop_write_file(filp);
1587 		return err;
1588 	}
1589 	mnt_drop_write_file(filp);
1590 got_it:
1591 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1592 									16))
1593 		return -EFAULT;
1594 	return 0;
1595 }
1596 
1597 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1598 {
1599 	struct inode *inode = file_inode(filp);
1600 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1601 	__u32 sync;
1602 
1603 	if (!capable(CAP_SYS_ADMIN))
1604 		return -EPERM;
1605 
1606 	if (get_user(sync, (__u32 __user *)arg))
1607 		return -EFAULT;
1608 
1609 	if (f2fs_readonly(sbi->sb))
1610 		return -EROFS;
1611 
1612 	if (!sync) {
1613 		if (!mutex_trylock(&sbi->gc_mutex))
1614 			return -EBUSY;
1615 	} else {
1616 		mutex_lock(&sbi->gc_mutex);
1617 	}
1618 
1619 	return f2fs_gc(sbi, sync);
1620 }
1621 
1622 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1623 {
1624 	struct inode *inode = file_inode(filp);
1625 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1626 
1627 	if (!capable(CAP_SYS_ADMIN))
1628 		return -EPERM;
1629 
1630 	if (f2fs_readonly(sbi->sb))
1631 		return -EROFS;
1632 
1633 	return f2fs_sync_fs(sbi->sb, 1);
1634 }
1635 
1636 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1637 					struct file *filp,
1638 					struct f2fs_defragment *range)
1639 {
1640 	struct inode *inode = file_inode(filp);
1641 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1642 	struct extent_info ei;
1643 	pgoff_t pg_start, pg_end;
1644 	unsigned int blk_per_seg = sbi->blocks_per_seg;
1645 	unsigned int total = 0, sec_num;
1646 	unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1647 	block_t blk_end = 0;
1648 	bool fragmented = false;
1649 	int err;
1650 
1651 	/* if in-place-update policy is enabled, don't waste time here */
1652 	if (need_inplace_update(inode))
1653 		return -EINVAL;
1654 
1655 	pg_start = range->start >> PAGE_SHIFT;
1656 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
1657 
1658 	f2fs_balance_fs(sbi, true);
1659 
1660 	inode_lock(inode);
1661 
1662 	/* writeback all dirty pages in the range */
1663 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1664 						range->start + range->len - 1);
1665 	if (err)
1666 		goto out;
1667 
1668 	/*
1669 	 * lookup mapping info in extent cache, skip defragmenting if physical
1670 	 * block addresses are continuous.
1671 	 */
1672 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1673 		if (ei.fofs + ei.len >= pg_end)
1674 			goto out;
1675 	}
1676 
1677 	map.m_lblk = pg_start;
1678 
1679 	/*
1680 	 * lookup mapping info in dnode page cache, skip defragmenting if all
1681 	 * physical block addresses are continuous even if there are hole(s)
1682 	 * in logical blocks.
1683 	 */
1684 	while (map.m_lblk < pg_end) {
1685 		map.m_len = pg_end - map.m_lblk;
1686 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1687 		if (err)
1688 			goto out;
1689 
1690 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1691 			map.m_lblk++;
1692 			continue;
1693 		}
1694 
1695 		if (blk_end && blk_end != map.m_pblk) {
1696 			fragmented = true;
1697 			break;
1698 		}
1699 		blk_end = map.m_pblk + map.m_len;
1700 
1701 		map.m_lblk += map.m_len;
1702 	}
1703 
1704 	if (!fragmented)
1705 		goto out;
1706 
1707 	map.m_lblk = pg_start;
1708 	map.m_len = pg_end - pg_start;
1709 
1710 	sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1711 
1712 	/*
1713 	 * make sure there are enough free section for LFS allocation, this can
1714 	 * avoid defragment running in SSR mode when free section are allocated
1715 	 * intensively
1716 	 */
1717 	if (has_not_enough_free_secs(sbi, sec_num)) {
1718 		err = -EAGAIN;
1719 		goto out;
1720 	}
1721 
1722 	while (map.m_lblk < pg_end) {
1723 		pgoff_t idx;
1724 		int cnt = 0;
1725 
1726 do_map:
1727 		map.m_len = pg_end - map.m_lblk;
1728 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1729 		if (err)
1730 			goto clear_out;
1731 
1732 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1733 			map.m_lblk++;
1734 			continue;
1735 		}
1736 
1737 		set_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1738 
1739 		idx = map.m_lblk;
1740 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1741 			struct page *page;
1742 
1743 			page = get_lock_data_page(inode, idx, true);
1744 			if (IS_ERR(page)) {
1745 				err = PTR_ERR(page);
1746 				goto clear_out;
1747 			}
1748 
1749 			set_page_dirty(page);
1750 			f2fs_put_page(page, 1);
1751 
1752 			idx++;
1753 			cnt++;
1754 			total++;
1755 		}
1756 
1757 		map.m_lblk = idx;
1758 
1759 		if (idx < pg_end && cnt < blk_per_seg)
1760 			goto do_map;
1761 
1762 		clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1763 
1764 		err = filemap_fdatawrite(inode->i_mapping);
1765 		if (err)
1766 			goto out;
1767 	}
1768 clear_out:
1769 	clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1770 out:
1771 	inode_unlock(inode);
1772 	if (!err)
1773 		range->len = (u64)total << PAGE_SHIFT;
1774 	return err;
1775 }
1776 
1777 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
1778 {
1779 	struct inode *inode = file_inode(filp);
1780 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1781 	struct f2fs_defragment range;
1782 	int err;
1783 
1784 	if (!capable(CAP_SYS_ADMIN))
1785 		return -EPERM;
1786 
1787 	if (!S_ISREG(inode->i_mode))
1788 		return -EINVAL;
1789 
1790 	err = mnt_want_write_file(filp);
1791 	if (err)
1792 		return err;
1793 
1794 	if (f2fs_readonly(sbi->sb)) {
1795 		err = -EROFS;
1796 		goto out;
1797 	}
1798 
1799 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
1800 							sizeof(range))) {
1801 		err = -EFAULT;
1802 		goto out;
1803 	}
1804 
1805 	/* verify alignment of offset & size */
1806 	if (range.start & (F2FS_BLKSIZE - 1) ||
1807 		range.len & (F2FS_BLKSIZE - 1)) {
1808 		err = -EINVAL;
1809 		goto out;
1810 	}
1811 
1812 	err = f2fs_defragment_range(sbi, filp, &range);
1813 	f2fs_update_time(sbi, REQ_TIME);
1814 	if (err < 0)
1815 		goto out;
1816 
1817 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
1818 							sizeof(range)))
1819 		err = -EFAULT;
1820 out:
1821 	mnt_drop_write_file(filp);
1822 	return err;
1823 }
1824 
1825 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1826 {
1827 	switch (cmd) {
1828 	case F2FS_IOC_GETFLAGS:
1829 		return f2fs_ioc_getflags(filp, arg);
1830 	case F2FS_IOC_SETFLAGS:
1831 		return f2fs_ioc_setflags(filp, arg);
1832 	case F2FS_IOC_GETVERSION:
1833 		return f2fs_ioc_getversion(filp, arg);
1834 	case F2FS_IOC_START_ATOMIC_WRITE:
1835 		return f2fs_ioc_start_atomic_write(filp);
1836 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1837 		return f2fs_ioc_commit_atomic_write(filp);
1838 	case F2FS_IOC_START_VOLATILE_WRITE:
1839 		return f2fs_ioc_start_volatile_write(filp);
1840 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1841 		return f2fs_ioc_release_volatile_write(filp);
1842 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
1843 		return f2fs_ioc_abort_volatile_write(filp);
1844 	case F2FS_IOC_SHUTDOWN:
1845 		return f2fs_ioc_shutdown(filp, arg);
1846 	case FITRIM:
1847 		return f2fs_ioc_fitrim(filp, arg);
1848 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
1849 		return f2fs_ioc_set_encryption_policy(filp, arg);
1850 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
1851 		return f2fs_ioc_get_encryption_policy(filp, arg);
1852 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1853 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1854 	case F2FS_IOC_GARBAGE_COLLECT:
1855 		return f2fs_ioc_gc(filp, arg);
1856 	case F2FS_IOC_WRITE_CHECKPOINT:
1857 		return f2fs_ioc_write_checkpoint(filp, arg);
1858 	case F2FS_IOC_DEFRAGMENT:
1859 		return f2fs_ioc_defragment(filp, arg);
1860 	default:
1861 		return -ENOTTY;
1862 	}
1863 }
1864 
1865 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1866 {
1867 	struct file *file = iocb->ki_filp;
1868 	struct inode *inode = file_inode(file);
1869 	ssize_t ret;
1870 
1871 	if (f2fs_encrypted_inode(inode) &&
1872 				!fscrypt_has_encryption_key(inode) &&
1873 				fscrypt_get_encryption_info(inode))
1874 		return -EACCES;
1875 
1876 	inode_lock(inode);
1877 	ret = generic_write_checks(iocb, from);
1878 	if (ret > 0) {
1879 		ret = f2fs_preallocate_blocks(iocb, from);
1880 		if (!ret)
1881 			ret = __generic_file_write_iter(iocb, from);
1882 	}
1883 	inode_unlock(inode);
1884 
1885 	if (ret > 0) {
1886 		ssize_t err;
1887 
1888 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1889 		if (err < 0)
1890 			ret = err;
1891 	}
1892 	return ret;
1893 }
1894 
1895 #ifdef CONFIG_COMPAT
1896 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1897 {
1898 	switch (cmd) {
1899 	case F2FS_IOC32_GETFLAGS:
1900 		cmd = F2FS_IOC_GETFLAGS;
1901 		break;
1902 	case F2FS_IOC32_SETFLAGS:
1903 		cmd = F2FS_IOC_SETFLAGS;
1904 		break;
1905 	case F2FS_IOC32_GETVERSION:
1906 		cmd = F2FS_IOC_GETVERSION;
1907 		break;
1908 	case F2FS_IOC_START_ATOMIC_WRITE:
1909 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1910 	case F2FS_IOC_START_VOLATILE_WRITE:
1911 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1912 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
1913 	case F2FS_IOC_SHUTDOWN:
1914 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
1915 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1916 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
1917 	case F2FS_IOC_GARBAGE_COLLECT:
1918 	case F2FS_IOC_WRITE_CHECKPOINT:
1919 	case F2FS_IOC_DEFRAGMENT:
1920 		break;
1921 	default:
1922 		return -ENOIOCTLCMD;
1923 	}
1924 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1925 }
1926 #endif
1927 
1928 const struct file_operations f2fs_file_operations = {
1929 	.llseek		= f2fs_llseek,
1930 	.read_iter	= generic_file_read_iter,
1931 	.write_iter	= f2fs_file_write_iter,
1932 	.open		= f2fs_file_open,
1933 	.release	= f2fs_release_file,
1934 	.mmap		= f2fs_file_mmap,
1935 	.fsync		= f2fs_sync_file,
1936 	.fallocate	= f2fs_fallocate,
1937 	.unlocked_ioctl	= f2fs_ioctl,
1938 #ifdef CONFIG_COMPAT
1939 	.compat_ioctl	= f2fs_compat_ioctl,
1940 #endif
1941 	.splice_read	= generic_file_splice_read,
1942 	.splice_write	= iter_file_splice_write,
1943 };
1944