xref: /linux/fs/f2fs/file.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uuid.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33 
34 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
35 						struct vm_fault *vmf)
36 {
37 	struct page *page = vmf->page;
38 	struct inode *inode = file_inode(vma->vm_file);
39 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 	struct dnode_of_data dn;
41 	int err;
42 
43 	sb_start_pagefault(inode->i_sb);
44 
45 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
46 
47 	/* block allocation */
48 	f2fs_lock_op(sbi);
49 	set_new_dnode(&dn, inode, NULL, NULL, 0);
50 	err = f2fs_reserve_block(&dn, page->index);
51 	if (err) {
52 		f2fs_unlock_op(sbi);
53 		goto out;
54 	}
55 	f2fs_put_dnode(&dn);
56 	f2fs_unlock_op(sbi);
57 
58 	f2fs_balance_fs(sbi, dn.node_changed);
59 
60 	file_update_time(vma->vm_file);
61 	lock_page(page);
62 	if (unlikely(page->mapping != inode->i_mapping ||
63 			page_offset(page) > i_size_read(inode) ||
64 			!PageUptodate(page))) {
65 		unlock_page(page);
66 		err = -EFAULT;
67 		goto out;
68 	}
69 
70 	/*
71 	 * check to see if the page is mapped already (no holes)
72 	 */
73 	if (PageMappedToDisk(page))
74 		goto mapped;
75 
76 	/* page is wholly or partially inside EOF */
77 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
78 						i_size_read(inode)) {
79 		unsigned offset;
80 		offset = i_size_read(inode) & ~PAGE_MASK;
81 		zero_user_segment(page, offset, PAGE_SIZE);
82 	}
83 	set_page_dirty(page);
84 	SetPageUptodate(page);
85 
86 	trace_f2fs_vm_page_mkwrite(page, DATA);
87 mapped:
88 	/* fill the page */
89 	f2fs_wait_on_page_writeback(page, DATA, false);
90 
91 	/* wait for GCed encrypted page writeback */
92 	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
93 		f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
94 
95 	/* if gced page is attached, don't write to cold segment */
96 	clear_cold_data(page);
97 out:
98 	sb_end_pagefault(inode->i_sb);
99 	f2fs_update_time(sbi, REQ_TIME);
100 	return block_page_mkwrite_return(err);
101 }
102 
103 static const struct vm_operations_struct f2fs_file_vm_ops = {
104 	.fault		= filemap_fault,
105 	.map_pages	= filemap_map_pages,
106 	.page_mkwrite	= f2fs_vm_page_mkwrite,
107 };
108 
109 static int get_parent_ino(struct inode *inode, nid_t *pino)
110 {
111 	struct dentry *dentry;
112 
113 	inode = igrab(inode);
114 	dentry = d_find_any_alias(inode);
115 	iput(inode);
116 	if (!dentry)
117 		return 0;
118 
119 	if (update_dent_inode(inode, inode, &dentry->d_name)) {
120 		dput(dentry);
121 		return 0;
122 	}
123 
124 	*pino = parent_ino(dentry);
125 	dput(dentry);
126 	return 1;
127 }
128 
129 static inline bool need_do_checkpoint(struct inode *inode)
130 {
131 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
132 	bool need_cp = false;
133 
134 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
135 		need_cp = true;
136 	else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
137 		need_cp = true;
138 	else if (file_wrong_pino(inode))
139 		need_cp = true;
140 	else if (!space_for_roll_forward(sbi))
141 		need_cp = true;
142 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
143 		need_cp = true;
144 	else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
145 		need_cp = true;
146 	else if (test_opt(sbi, FASTBOOT))
147 		need_cp = true;
148 	else if (sbi->active_logs == 2)
149 		need_cp = true;
150 
151 	return need_cp;
152 }
153 
154 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
155 {
156 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
157 	bool ret = false;
158 	/* But we need to avoid that there are some inode updates */
159 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
160 		ret = true;
161 	f2fs_put_page(i, 0);
162 	return ret;
163 }
164 
165 static void try_to_fix_pino(struct inode *inode)
166 {
167 	struct f2fs_inode_info *fi = F2FS_I(inode);
168 	nid_t pino;
169 
170 	down_write(&fi->i_sem);
171 	fi->xattr_ver = 0;
172 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
173 			get_parent_ino(inode, &pino)) {
174 		fi->i_pino = pino;
175 		file_got_pino(inode);
176 		up_write(&fi->i_sem);
177 
178 		mark_inode_dirty_sync(inode);
179 		f2fs_write_inode(inode, NULL);
180 	} else {
181 		up_write(&fi->i_sem);
182 	}
183 }
184 
185 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
186 						int datasync, bool atomic)
187 {
188 	struct inode *inode = file->f_mapping->host;
189 	struct f2fs_inode_info *fi = F2FS_I(inode);
190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
191 	nid_t ino = inode->i_ino;
192 	int ret = 0;
193 	bool need_cp = false;
194 	struct writeback_control wbc = {
195 		.sync_mode = WB_SYNC_ALL,
196 		.nr_to_write = LONG_MAX,
197 		.for_reclaim = 0,
198 	};
199 
200 	if (unlikely(f2fs_readonly(inode->i_sb)))
201 		return 0;
202 
203 	trace_f2fs_sync_file_enter(inode);
204 
205 	/* if fdatasync is triggered, let's do in-place-update */
206 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
207 		set_inode_flag(fi, FI_NEED_IPU);
208 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
209 	clear_inode_flag(fi, FI_NEED_IPU);
210 
211 	if (ret) {
212 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
213 		return ret;
214 	}
215 
216 	/* if the inode is dirty, let's recover all the time */
217 	if (!datasync) {
218 		f2fs_write_inode(inode, NULL);
219 		goto go_write;
220 	}
221 
222 	/*
223 	 * if there is no written data, don't waste time to write recovery info.
224 	 */
225 	if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
226 			!exist_written_data(sbi, ino, APPEND_INO)) {
227 
228 		/* it may call write_inode just prior to fsync */
229 		if (need_inode_page_update(sbi, ino))
230 			goto go_write;
231 
232 		if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
233 				exist_written_data(sbi, ino, UPDATE_INO))
234 			goto flush_out;
235 		goto out;
236 	}
237 go_write:
238 	/*
239 	 * Both of fdatasync() and fsync() are able to be recovered from
240 	 * sudden-power-off.
241 	 */
242 	down_read(&fi->i_sem);
243 	need_cp = need_do_checkpoint(inode);
244 	up_read(&fi->i_sem);
245 
246 	if (need_cp) {
247 		/* all the dirty node pages should be flushed for POR */
248 		ret = f2fs_sync_fs(inode->i_sb, 1);
249 
250 		/*
251 		 * We've secured consistency through sync_fs. Following pino
252 		 * will be used only for fsynced inodes after checkpoint.
253 		 */
254 		try_to_fix_pino(inode);
255 		clear_inode_flag(fi, FI_APPEND_WRITE);
256 		clear_inode_flag(fi, FI_UPDATE_WRITE);
257 		goto out;
258 	}
259 sync_nodes:
260 	ret = fsync_node_pages(sbi, ino, &wbc, atomic);
261 	if (ret)
262 		goto out;
263 
264 	/* if cp_error was enabled, we should avoid infinite loop */
265 	if (unlikely(f2fs_cp_error(sbi))) {
266 		ret = -EIO;
267 		goto out;
268 	}
269 
270 	if (need_inode_block_update(sbi, ino)) {
271 		mark_inode_dirty_sync(inode);
272 		f2fs_write_inode(inode, NULL);
273 		goto sync_nodes;
274 	}
275 
276 	ret = wait_on_node_pages_writeback(sbi, ino);
277 	if (ret)
278 		goto out;
279 
280 	/* once recovery info is written, don't need to tack this */
281 	remove_ino_entry(sbi, ino, APPEND_INO);
282 	clear_inode_flag(fi, FI_APPEND_WRITE);
283 flush_out:
284 	remove_ino_entry(sbi, ino, UPDATE_INO);
285 	clear_inode_flag(fi, FI_UPDATE_WRITE);
286 	ret = f2fs_issue_flush(sbi);
287 	f2fs_update_time(sbi, REQ_TIME);
288 out:
289 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
290 	f2fs_trace_ios(NULL, 1);
291 	return ret;
292 }
293 
294 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
295 {
296 	return f2fs_do_sync_file(file, start, end, datasync, false);
297 }
298 
299 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
300 						pgoff_t pgofs, int whence)
301 {
302 	struct pagevec pvec;
303 	int nr_pages;
304 
305 	if (whence != SEEK_DATA)
306 		return 0;
307 
308 	/* find first dirty page index */
309 	pagevec_init(&pvec, 0);
310 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
311 					PAGECACHE_TAG_DIRTY, 1);
312 	pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
313 	pagevec_release(&pvec);
314 	return pgofs;
315 }
316 
317 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
318 							int whence)
319 {
320 	switch (whence) {
321 	case SEEK_DATA:
322 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
323 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
324 			return true;
325 		break;
326 	case SEEK_HOLE:
327 		if (blkaddr == NULL_ADDR)
328 			return true;
329 		break;
330 	}
331 	return false;
332 }
333 
334 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
335 {
336 	struct inode *inode = file->f_mapping->host;
337 	loff_t maxbytes = inode->i_sb->s_maxbytes;
338 	struct dnode_of_data dn;
339 	pgoff_t pgofs, end_offset, dirty;
340 	loff_t data_ofs = offset;
341 	loff_t isize;
342 	int err = 0;
343 
344 	inode_lock(inode);
345 
346 	isize = i_size_read(inode);
347 	if (offset >= isize)
348 		goto fail;
349 
350 	/* handle inline data case */
351 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
352 		if (whence == SEEK_HOLE)
353 			data_ofs = isize;
354 		goto found;
355 	}
356 
357 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
358 
359 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
360 
361 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
362 		set_new_dnode(&dn, inode, NULL, NULL, 0);
363 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
364 		if (err && err != -ENOENT) {
365 			goto fail;
366 		} else if (err == -ENOENT) {
367 			/* direct node does not exists */
368 			if (whence == SEEK_DATA) {
369 				pgofs = get_next_page_offset(&dn, pgofs);
370 				continue;
371 			} else {
372 				goto found;
373 			}
374 		}
375 
376 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
377 
378 		/* find data/hole in dnode block */
379 		for (; dn.ofs_in_node < end_offset;
380 				dn.ofs_in_node++, pgofs++,
381 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
382 			block_t blkaddr;
383 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
384 
385 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
386 				f2fs_put_dnode(&dn);
387 				goto found;
388 			}
389 		}
390 		f2fs_put_dnode(&dn);
391 	}
392 
393 	if (whence == SEEK_DATA)
394 		goto fail;
395 found:
396 	if (whence == SEEK_HOLE && data_ofs > isize)
397 		data_ofs = isize;
398 	inode_unlock(inode);
399 	return vfs_setpos(file, data_ofs, maxbytes);
400 fail:
401 	inode_unlock(inode);
402 	return -ENXIO;
403 }
404 
405 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
406 {
407 	struct inode *inode = file->f_mapping->host;
408 	loff_t maxbytes = inode->i_sb->s_maxbytes;
409 
410 	switch (whence) {
411 	case SEEK_SET:
412 	case SEEK_CUR:
413 	case SEEK_END:
414 		return generic_file_llseek_size(file, offset, whence,
415 						maxbytes, i_size_read(inode));
416 	case SEEK_DATA:
417 	case SEEK_HOLE:
418 		if (offset < 0)
419 			return -ENXIO;
420 		return f2fs_seek_block(file, offset, whence);
421 	}
422 
423 	return -EINVAL;
424 }
425 
426 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
427 {
428 	struct inode *inode = file_inode(file);
429 	int err;
430 
431 	if (f2fs_encrypted_inode(inode)) {
432 		err = fscrypt_get_encryption_info(inode);
433 		if (err)
434 			return 0;
435 		if (!f2fs_encrypted_inode(inode))
436 			return -ENOKEY;
437 	}
438 
439 	/* we don't need to use inline_data strictly */
440 	err = f2fs_convert_inline_inode(inode);
441 	if (err)
442 		return err;
443 
444 	file_accessed(file);
445 	vma->vm_ops = &f2fs_file_vm_ops;
446 	return 0;
447 }
448 
449 static int f2fs_file_open(struct inode *inode, struct file *filp)
450 {
451 	int ret = generic_file_open(inode, filp);
452 	struct dentry *dir;
453 
454 	if (!ret && f2fs_encrypted_inode(inode)) {
455 		ret = fscrypt_get_encryption_info(inode);
456 		if (ret)
457 			return -EACCES;
458 		if (!fscrypt_has_encryption_key(inode))
459 			return -ENOKEY;
460 	}
461 	dir = dget_parent(file_dentry(filp));
462 	if (f2fs_encrypted_inode(d_inode(dir)) &&
463 			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
464 		dput(dir);
465 		return -EPERM;
466 	}
467 	dput(dir);
468 	return ret;
469 }
470 
471 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
472 {
473 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
474 	struct f2fs_node *raw_node;
475 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
476 	__le32 *addr;
477 
478 	raw_node = F2FS_NODE(dn->node_page);
479 	addr = blkaddr_in_node(raw_node) + ofs;
480 
481 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
482 		block_t blkaddr = le32_to_cpu(*addr);
483 		if (blkaddr == NULL_ADDR)
484 			continue;
485 
486 		dn->data_blkaddr = NULL_ADDR;
487 		set_data_blkaddr(dn);
488 		invalidate_blocks(sbi, blkaddr);
489 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
490 			clear_inode_flag(F2FS_I(dn->inode),
491 						FI_FIRST_BLOCK_WRITTEN);
492 		nr_free++;
493 	}
494 
495 	if (nr_free) {
496 		pgoff_t fofs;
497 		/*
498 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
499 		 * we will invalidate all blkaddr in the whole range.
500 		 */
501 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
502 							dn->inode) + ofs;
503 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
504 		dec_valid_block_count(sbi, dn->inode, nr_free);
505 		sync_inode_page(dn);
506 	}
507 	dn->ofs_in_node = ofs;
508 
509 	f2fs_update_time(sbi, REQ_TIME);
510 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
511 					 dn->ofs_in_node, nr_free);
512 	return nr_free;
513 }
514 
515 void truncate_data_blocks(struct dnode_of_data *dn)
516 {
517 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
518 }
519 
520 static int truncate_partial_data_page(struct inode *inode, u64 from,
521 								bool cache_only)
522 {
523 	unsigned offset = from & (PAGE_SIZE - 1);
524 	pgoff_t index = from >> PAGE_SHIFT;
525 	struct address_space *mapping = inode->i_mapping;
526 	struct page *page;
527 
528 	if (!offset && !cache_only)
529 		return 0;
530 
531 	if (cache_only) {
532 		page = f2fs_grab_cache_page(mapping, index, false);
533 		if (page && PageUptodate(page))
534 			goto truncate_out;
535 		f2fs_put_page(page, 1);
536 		return 0;
537 	}
538 
539 	page = get_lock_data_page(inode, index, true);
540 	if (IS_ERR(page))
541 		return 0;
542 truncate_out:
543 	f2fs_wait_on_page_writeback(page, DATA, true);
544 	zero_user(page, offset, PAGE_SIZE - offset);
545 	if (!cache_only || !f2fs_encrypted_inode(inode) ||
546 					!S_ISREG(inode->i_mode))
547 		set_page_dirty(page);
548 	f2fs_put_page(page, 1);
549 	return 0;
550 }
551 
552 int truncate_blocks(struct inode *inode, u64 from, bool lock)
553 {
554 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
555 	unsigned int blocksize = inode->i_sb->s_blocksize;
556 	struct dnode_of_data dn;
557 	pgoff_t free_from;
558 	int count = 0, err = 0;
559 	struct page *ipage;
560 	bool truncate_page = false;
561 
562 	trace_f2fs_truncate_blocks_enter(inode, from);
563 
564 	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
565 
566 	if (free_from >= sbi->max_file_blocks)
567 		goto free_partial;
568 
569 	if (lock)
570 		f2fs_lock_op(sbi);
571 
572 	ipage = get_node_page(sbi, inode->i_ino);
573 	if (IS_ERR(ipage)) {
574 		err = PTR_ERR(ipage);
575 		goto out;
576 	}
577 
578 	if (f2fs_has_inline_data(inode)) {
579 		if (truncate_inline_inode(ipage, from))
580 			set_page_dirty(ipage);
581 		f2fs_put_page(ipage, 1);
582 		truncate_page = true;
583 		goto out;
584 	}
585 
586 	set_new_dnode(&dn, inode, ipage, NULL, 0);
587 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
588 	if (err) {
589 		if (err == -ENOENT)
590 			goto free_next;
591 		goto out;
592 	}
593 
594 	count = ADDRS_PER_PAGE(dn.node_page, inode);
595 
596 	count -= dn.ofs_in_node;
597 	f2fs_bug_on(sbi, count < 0);
598 
599 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
600 		truncate_data_blocks_range(&dn, count);
601 		free_from += count;
602 	}
603 
604 	f2fs_put_dnode(&dn);
605 free_next:
606 	err = truncate_inode_blocks(inode, free_from);
607 out:
608 	if (lock)
609 		f2fs_unlock_op(sbi);
610 free_partial:
611 	/* lastly zero out the first data page */
612 	if (!err)
613 		err = truncate_partial_data_page(inode, from, truncate_page);
614 
615 	trace_f2fs_truncate_blocks_exit(inode, err);
616 	return err;
617 }
618 
619 int f2fs_truncate(struct inode *inode, bool lock)
620 {
621 	int err;
622 
623 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
624 				S_ISLNK(inode->i_mode)))
625 		return 0;
626 
627 	trace_f2fs_truncate(inode);
628 
629 	/* we should check inline_data size */
630 	if (!f2fs_may_inline_data(inode)) {
631 		err = f2fs_convert_inline_inode(inode);
632 		if (err)
633 			return err;
634 	}
635 
636 	err = truncate_blocks(inode, i_size_read(inode), lock);
637 	if (err)
638 		return err;
639 
640 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
641 	mark_inode_dirty(inode);
642 	return 0;
643 }
644 
645 int f2fs_getattr(struct vfsmount *mnt,
646 			 struct dentry *dentry, struct kstat *stat)
647 {
648 	struct inode *inode = d_inode(dentry);
649 	generic_fillattr(inode, stat);
650 	stat->blocks <<= 3;
651 	return 0;
652 }
653 
654 #ifdef CONFIG_F2FS_FS_POSIX_ACL
655 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
656 {
657 	struct f2fs_inode_info *fi = F2FS_I(inode);
658 	unsigned int ia_valid = attr->ia_valid;
659 
660 	if (ia_valid & ATTR_UID)
661 		inode->i_uid = attr->ia_uid;
662 	if (ia_valid & ATTR_GID)
663 		inode->i_gid = attr->ia_gid;
664 	if (ia_valid & ATTR_ATIME)
665 		inode->i_atime = timespec_trunc(attr->ia_atime,
666 						inode->i_sb->s_time_gran);
667 	if (ia_valid & ATTR_MTIME)
668 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
669 						inode->i_sb->s_time_gran);
670 	if (ia_valid & ATTR_CTIME)
671 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
672 						inode->i_sb->s_time_gran);
673 	if (ia_valid & ATTR_MODE) {
674 		umode_t mode = attr->ia_mode;
675 
676 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
677 			mode &= ~S_ISGID;
678 		set_acl_inode(fi, mode);
679 	}
680 }
681 #else
682 #define __setattr_copy setattr_copy
683 #endif
684 
685 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
686 {
687 	struct inode *inode = d_inode(dentry);
688 	struct f2fs_inode_info *fi = F2FS_I(inode);
689 	int err;
690 
691 	err = inode_change_ok(inode, attr);
692 	if (err)
693 		return err;
694 
695 	if (attr->ia_valid & ATTR_SIZE) {
696 		if (f2fs_encrypted_inode(inode) &&
697 				fscrypt_get_encryption_info(inode))
698 			return -EACCES;
699 
700 		if (attr->ia_size <= i_size_read(inode)) {
701 			truncate_setsize(inode, attr->ia_size);
702 			err = f2fs_truncate(inode, true);
703 			if (err)
704 				return err;
705 			f2fs_balance_fs(F2FS_I_SB(inode), true);
706 		} else {
707 			/*
708 			 * do not trim all blocks after i_size if target size is
709 			 * larger than i_size.
710 			 */
711 			truncate_setsize(inode, attr->ia_size);
712 
713 			/* should convert inline inode here */
714 			if (!f2fs_may_inline_data(inode)) {
715 				err = f2fs_convert_inline_inode(inode);
716 				if (err)
717 					return err;
718 			}
719 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
720 		}
721 	}
722 
723 	__setattr_copy(inode, attr);
724 
725 	if (attr->ia_valid & ATTR_MODE) {
726 		err = posix_acl_chmod(inode, get_inode_mode(inode));
727 		if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
728 			inode->i_mode = fi->i_acl_mode;
729 			clear_inode_flag(fi, FI_ACL_MODE);
730 		}
731 	}
732 
733 	mark_inode_dirty(inode);
734 	return err;
735 }
736 
737 const struct inode_operations f2fs_file_inode_operations = {
738 	.getattr	= f2fs_getattr,
739 	.setattr	= f2fs_setattr,
740 	.get_acl	= f2fs_get_acl,
741 	.set_acl	= f2fs_set_acl,
742 #ifdef CONFIG_F2FS_FS_XATTR
743 	.setxattr	= generic_setxattr,
744 	.getxattr	= generic_getxattr,
745 	.listxattr	= f2fs_listxattr,
746 	.removexattr	= generic_removexattr,
747 #endif
748 	.fiemap		= f2fs_fiemap,
749 };
750 
751 static int fill_zero(struct inode *inode, pgoff_t index,
752 					loff_t start, loff_t len)
753 {
754 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
755 	struct page *page;
756 
757 	if (!len)
758 		return 0;
759 
760 	f2fs_balance_fs(sbi, true);
761 
762 	f2fs_lock_op(sbi);
763 	page = get_new_data_page(inode, NULL, index, false);
764 	f2fs_unlock_op(sbi);
765 
766 	if (IS_ERR(page))
767 		return PTR_ERR(page);
768 
769 	f2fs_wait_on_page_writeback(page, DATA, true);
770 	zero_user(page, start, len);
771 	set_page_dirty(page);
772 	f2fs_put_page(page, 1);
773 	return 0;
774 }
775 
776 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
777 {
778 	int err;
779 
780 	while (pg_start < pg_end) {
781 		struct dnode_of_data dn;
782 		pgoff_t end_offset, count;
783 
784 		set_new_dnode(&dn, inode, NULL, NULL, 0);
785 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
786 		if (err) {
787 			if (err == -ENOENT) {
788 				pg_start++;
789 				continue;
790 			}
791 			return err;
792 		}
793 
794 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
795 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
796 
797 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
798 
799 		truncate_data_blocks_range(&dn, count);
800 		f2fs_put_dnode(&dn);
801 
802 		pg_start += count;
803 	}
804 	return 0;
805 }
806 
807 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
808 {
809 	pgoff_t pg_start, pg_end;
810 	loff_t off_start, off_end;
811 	int ret;
812 
813 	ret = f2fs_convert_inline_inode(inode);
814 	if (ret)
815 		return ret;
816 
817 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
818 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
819 
820 	off_start = offset & (PAGE_SIZE - 1);
821 	off_end = (offset + len) & (PAGE_SIZE - 1);
822 
823 	if (pg_start == pg_end) {
824 		ret = fill_zero(inode, pg_start, off_start,
825 						off_end - off_start);
826 		if (ret)
827 			return ret;
828 	} else {
829 		if (off_start) {
830 			ret = fill_zero(inode, pg_start++, off_start,
831 						PAGE_SIZE - off_start);
832 			if (ret)
833 				return ret;
834 		}
835 		if (off_end) {
836 			ret = fill_zero(inode, pg_end, 0, off_end);
837 			if (ret)
838 				return ret;
839 		}
840 
841 		if (pg_start < pg_end) {
842 			struct address_space *mapping = inode->i_mapping;
843 			loff_t blk_start, blk_end;
844 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
845 
846 			f2fs_balance_fs(sbi, true);
847 
848 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
849 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
850 			truncate_inode_pages_range(mapping, blk_start,
851 					blk_end - 1);
852 
853 			f2fs_lock_op(sbi);
854 			ret = truncate_hole(inode, pg_start, pg_end);
855 			f2fs_unlock_op(sbi);
856 		}
857 	}
858 
859 	return ret;
860 }
861 
862 static int __exchange_data_block(struct inode *inode, pgoff_t src,
863 					pgoff_t dst, bool full)
864 {
865 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
866 	struct dnode_of_data dn;
867 	block_t new_addr;
868 	bool do_replace = false;
869 	int ret;
870 
871 	set_new_dnode(&dn, inode, NULL, NULL, 0);
872 	ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA);
873 	if (ret && ret != -ENOENT) {
874 		return ret;
875 	} else if (ret == -ENOENT) {
876 		new_addr = NULL_ADDR;
877 	} else {
878 		new_addr = dn.data_blkaddr;
879 		if (!is_checkpointed_data(sbi, new_addr)) {
880 			/* do not invalidate this block address */
881 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
882 			do_replace = true;
883 		}
884 		f2fs_put_dnode(&dn);
885 	}
886 
887 	if (new_addr == NULL_ADDR)
888 		return full ? truncate_hole(inode, dst, dst + 1) : 0;
889 
890 	if (do_replace) {
891 		struct page *ipage = get_node_page(sbi, inode->i_ino);
892 		struct node_info ni;
893 
894 		if (IS_ERR(ipage)) {
895 			ret = PTR_ERR(ipage);
896 			goto err_out;
897 		}
898 
899 		set_new_dnode(&dn, inode, ipage, NULL, 0);
900 		ret = f2fs_reserve_block(&dn, dst);
901 		if (ret)
902 			goto err_out;
903 
904 		truncate_data_blocks_range(&dn, 1);
905 
906 		get_node_info(sbi, dn.nid, &ni);
907 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
908 				ni.version, true, false);
909 		f2fs_put_dnode(&dn);
910 	} else {
911 		struct page *psrc, *pdst;
912 
913 		psrc = get_lock_data_page(inode, src, true);
914 		if (IS_ERR(psrc))
915 			return PTR_ERR(psrc);
916 		pdst = get_new_data_page(inode, NULL, dst, true);
917 		if (IS_ERR(pdst)) {
918 			f2fs_put_page(psrc, 1);
919 			return PTR_ERR(pdst);
920 		}
921 		f2fs_copy_page(psrc, pdst);
922 		set_page_dirty(pdst);
923 		f2fs_put_page(pdst, 1);
924 		f2fs_put_page(psrc, 1);
925 
926 		return truncate_hole(inode, src, src + 1);
927 	}
928 	return 0;
929 
930 err_out:
931 	if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) {
932 		f2fs_update_data_blkaddr(&dn, new_addr);
933 		f2fs_put_dnode(&dn);
934 	}
935 	return ret;
936 }
937 
938 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
939 {
940 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
941 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
942 	int ret = 0;
943 
944 	for (; end < nrpages; start++, end++) {
945 		f2fs_balance_fs(sbi, true);
946 		f2fs_lock_op(sbi);
947 		ret = __exchange_data_block(inode, end, start, true);
948 		f2fs_unlock_op(sbi);
949 		if (ret)
950 			break;
951 	}
952 	return ret;
953 }
954 
955 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
956 {
957 	pgoff_t pg_start, pg_end;
958 	loff_t new_size;
959 	int ret;
960 
961 	if (offset + len >= i_size_read(inode))
962 		return -EINVAL;
963 
964 	/* collapse range should be aligned to block size of f2fs. */
965 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
966 		return -EINVAL;
967 
968 	ret = f2fs_convert_inline_inode(inode);
969 	if (ret)
970 		return ret;
971 
972 	pg_start = offset >> PAGE_SHIFT;
973 	pg_end = (offset + len) >> PAGE_SHIFT;
974 
975 	/* write out all dirty pages from offset */
976 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
977 	if (ret)
978 		return ret;
979 
980 	truncate_pagecache(inode, offset);
981 
982 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
983 	if (ret)
984 		return ret;
985 
986 	/* write out all moved pages, if possible */
987 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
988 	truncate_pagecache(inode, offset);
989 
990 	new_size = i_size_read(inode) - len;
991 	truncate_pagecache(inode, new_size);
992 
993 	ret = truncate_blocks(inode, new_size, true);
994 	if (!ret)
995 		i_size_write(inode, new_size);
996 
997 	return ret;
998 }
999 
1000 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1001 								pgoff_t end)
1002 {
1003 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1004 	pgoff_t index = start;
1005 	unsigned int ofs_in_node = dn->ofs_in_node;
1006 	blkcnt_t count = 0;
1007 	int ret;
1008 
1009 	for (; index < end; index++, dn->ofs_in_node++) {
1010 		if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1011 			count++;
1012 	}
1013 
1014 	dn->ofs_in_node = ofs_in_node;
1015 	ret = reserve_new_blocks(dn, count);
1016 	if (ret)
1017 		return ret;
1018 
1019 	dn->ofs_in_node = ofs_in_node;
1020 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1021 		dn->data_blkaddr =
1022 				datablock_addr(dn->node_page, dn->ofs_in_node);
1023 		/*
1024 		 * reserve_new_blocks will not guarantee entire block
1025 		 * allocation.
1026 		 */
1027 		if (dn->data_blkaddr == NULL_ADDR) {
1028 			ret = -ENOSPC;
1029 			break;
1030 		}
1031 		if (dn->data_blkaddr != NEW_ADDR) {
1032 			invalidate_blocks(sbi, dn->data_blkaddr);
1033 			dn->data_blkaddr = NEW_ADDR;
1034 			set_data_blkaddr(dn);
1035 		}
1036 	}
1037 
1038 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1039 
1040 	return ret;
1041 }
1042 
1043 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1044 								int mode)
1045 {
1046 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1047 	struct address_space *mapping = inode->i_mapping;
1048 	pgoff_t index, pg_start, pg_end;
1049 	loff_t new_size = i_size_read(inode);
1050 	loff_t off_start, off_end;
1051 	int ret = 0;
1052 
1053 	ret = inode_newsize_ok(inode, (len + offset));
1054 	if (ret)
1055 		return ret;
1056 
1057 	ret = f2fs_convert_inline_inode(inode);
1058 	if (ret)
1059 		return ret;
1060 
1061 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1062 	if (ret)
1063 		return ret;
1064 
1065 	truncate_pagecache_range(inode, offset, offset + len - 1);
1066 
1067 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1068 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1069 
1070 	off_start = offset & (PAGE_SIZE - 1);
1071 	off_end = (offset + len) & (PAGE_SIZE - 1);
1072 
1073 	if (pg_start == pg_end) {
1074 		ret = fill_zero(inode, pg_start, off_start,
1075 						off_end - off_start);
1076 		if (ret)
1077 			return ret;
1078 
1079 		if (offset + len > new_size)
1080 			new_size = offset + len;
1081 		new_size = max_t(loff_t, new_size, offset + len);
1082 	} else {
1083 		if (off_start) {
1084 			ret = fill_zero(inode, pg_start++, off_start,
1085 						PAGE_SIZE - off_start);
1086 			if (ret)
1087 				return ret;
1088 
1089 			new_size = max_t(loff_t, new_size,
1090 					(loff_t)pg_start << PAGE_SHIFT);
1091 		}
1092 
1093 		for (index = pg_start; index < pg_end;) {
1094 			struct dnode_of_data dn;
1095 			unsigned int end_offset;
1096 			pgoff_t end;
1097 
1098 			f2fs_lock_op(sbi);
1099 
1100 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1101 			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1102 			if (ret) {
1103 				f2fs_unlock_op(sbi);
1104 				goto out;
1105 			}
1106 
1107 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1108 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1109 
1110 			ret = f2fs_do_zero_range(&dn, index, end);
1111 			f2fs_put_dnode(&dn);
1112 			f2fs_unlock_op(sbi);
1113 			if (ret)
1114 				goto out;
1115 
1116 			index = end;
1117 			new_size = max_t(loff_t, new_size,
1118 					(loff_t)index << PAGE_SHIFT);
1119 		}
1120 
1121 		if (off_end) {
1122 			ret = fill_zero(inode, pg_end, 0, off_end);
1123 			if (ret)
1124 				goto out;
1125 
1126 			new_size = max_t(loff_t, new_size, offset + len);
1127 		}
1128 	}
1129 
1130 out:
1131 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1132 		i_size_write(inode, new_size);
1133 		mark_inode_dirty(inode);
1134 		update_inode_page(inode);
1135 	}
1136 
1137 	return ret;
1138 }
1139 
1140 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1141 {
1142 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1143 	pgoff_t pg_start, pg_end, delta, nrpages, idx;
1144 	loff_t new_size;
1145 	int ret = 0;
1146 
1147 	new_size = i_size_read(inode) + len;
1148 	if (new_size > inode->i_sb->s_maxbytes)
1149 		return -EFBIG;
1150 
1151 	if (offset >= i_size_read(inode))
1152 		return -EINVAL;
1153 
1154 	/* insert range should be aligned to block size of f2fs. */
1155 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1156 		return -EINVAL;
1157 
1158 	ret = f2fs_convert_inline_inode(inode);
1159 	if (ret)
1160 		return ret;
1161 
1162 	f2fs_balance_fs(sbi, true);
1163 
1164 	ret = truncate_blocks(inode, i_size_read(inode), true);
1165 	if (ret)
1166 		return ret;
1167 
1168 	/* write out all dirty pages from offset */
1169 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1170 	if (ret)
1171 		return ret;
1172 
1173 	truncate_pagecache(inode, offset);
1174 
1175 	pg_start = offset >> PAGE_SHIFT;
1176 	pg_end = (offset + len) >> PAGE_SHIFT;
1177 	delta = pg_end - pg_start;
1178 	nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1179 
1180 	for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
1181 		f2fs_lock_op(sbi);
1182 		ret = __exchange_data_block(inode, idx, idx + delta, false);
1183 		f2fs_unlock_op(sbi);
1184 		if (ret)
1185 			break;
1186 	}
1187 
1188 	/* write out all moved pages, if possible */
1189 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1190 	truncate_pagecache(inode, offset);
1191 
1192 	if (!ret)
1193 		i_size_write(inode, new_size);
1194 	return ret;
1195 }
1196 
1197 static int expand_inode_data(struct inode *inode, loff_t offset,
1198 					loff_t len, int mode)
1199 {
1200 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1201 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1202 	pgoff_t pg_end;
1203 	loff_t new_size = i_size_read(inode);
1204 	loff_t off_end;
1205 	int ret;
1206 
1207 	ret = inode_newsize_ok(inode, (len + offset));
1208 	if (ret)
1209 		return ret;
1210 
1211 	ret = f2fs_convert_inline_inode(inode);
1212 	if (ret)
1213 		return ret;
1214 
1215 	f2fs_balance_fs(sbi, true);
1216 
1217 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1218 	off_end = (offset + len) & (PAGE_SIZE - 1);
1219 
1220 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1221 	map.m_len = pg_end - map.m_lblk;
1222 	if (off_end)
1223 		map.m_len++;
1224 
1225 	ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1226 	if (ret) {
1227 		pgoff_t last_off;
1228 
1229 		if (!map.m_len)
1230 			return ret;
1231 
1232 		last_off = map.m_lblk + map.m_len - 1;
1233 
1234 		/* update new size to the failed position */
1235 		new_size = (last_off == pg_end) ? offset + len:
1236 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1237 	} else {
1238 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1239 	}
1240 
1241 	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1242 		i_size_write(inode, new_size);
1243 		mark_inode_dirty(inode);
1244 		update_inode_page(inode);
1245 	}
1246 
1247 	return ret;
1248 }
1249 
1250 static long f2fs_fallocate(struct file *file, int mode,
1251 				loff_t offset, loff_t len)
1252 {
1253 	struct inode *inode = file_inode(file);
1254 	long ret = 0;
1255 
1256 	/* f2fs only support ->fallocate for regular file */
1257 	if (!S_ISREG(inode->i_mode))
1258 		return -EINVAL;
1259 
1260 	if (f2fs_encrypted_inode(inode) &&
1261 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1262 		return -EOPNOTSUPP;
1263 
1264 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1265 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1266 			FALLOC_FL_INSERT_RANGE))
1267 		return -EOPNOTSUPP;
1268 
1269 	inode_lock(inode);
1270 
1271 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1272 		if (offset >= inode->i_size)
1273 			goto out;
1274 
1275 		ret = punch_hole(inode, offset, len);
1276 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1277 		ret = f2fs_collapse_range(inode, offset, len);
1278 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1279 		ret = f2fs_zero_range(inode, offset, len, mode);
1280 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1281 		ret = f2fs_insert_range(inode, offset, len);
1282 	} else {
1283 		ret = expand_inode_data(inode, offset, len, mode);
1284 	}
1285 
1286 	if (!ret) {
1287 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1288 		mark_inode_dirty(inode);
1289 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1290 	}
1291 
1292 out:
1293 	inode_unlock(inode);
1294 
1295 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1296 	return ret;
1297 }
1298 
1299 static int f2fs_release_file(struct inode *inode, struct file *filp)
1300 {
1301 	/*
1302 	 * f2fs_relase_file is called at every close calls. So we should
1303 	 * not drop any inmemory pages by close called by other process.
1304 	 */
1305 	if (!(filp->f_mode & FMODE_WRITE) ||
1306 			atomic_read(&inode->i_writecount) != 1)
1307 		return 0;
1308 
1309 	/* some remained atomic pages should discarded */
1310 	if (f2fs_is_atomic_file(inode))
1311 		drop_inmem_pages(inode);
1312 	if (f2fs_is_volatile_file(inode)) {
1313 		clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1314 		set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1315 		filemap_fdatawrite(inode->i_mapping);
1316 		clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1317 	}
1318 	return 0;
1319 }
1320 
1321 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1322 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1323 
1324 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1325 {
1326 	if (S_ISDIR(mode))
1327 		return flags;
1328 	else if (S_ISREG(mode))
1329 		return flags & F2FS_REG_FLMASK;
1330 	else
1331 		return flags & F2FS_OTHER_FLMASK;
1332 }
1333 
1334 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1335 {
1336 	struct inode *inode = file_inode(filp);
1337 	struct f2fs_inode_info *fi = F2FS_I(inode);
1338 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1339 	return put_user(flags, (int __user *)arg);
1340 }
1341 
1342 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1343 {
1344 	struct inode *inode = file_inode(filp);
1345 	struct f2fs_inode_info *fi = F2FS_I(inode);
1346 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1347 	unsigned int oldflags;
1348 	int ret;
1349 
1350 	if (!inode_owner_or_capable(inode))
1351 		return -EACCES;
1352 
1353 	if (get_user(flags, (int __user *)arg))
1354 		return -EFAULT;
1355 
1356 	ret = mnt_want_write_file(filp);
1357 	if (ret)
1358 		return ret;
1359 
1360 	flags = f2fs_mask_flags(inode->i_mode, flags);
1361 
1362 	inode_lock(inode);
1363 
1364 	oldflags = fi->i_flags;
1365 
1366 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1367 		if (!capable(CAP_LINUX_IMMUTABLE)) {
1368 			inode_unlock(inode);
1369 			ret = -EPERM;
1370 			goto out;
1371 		}
1372 	}
1373 
1374 	flags = flags & FS_FL_USER_MODIFIABLE;
1375 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1376 	fi->i_flags = flags;
1377 	inode_unlock(inode);
1378 
1379 	f2fs_set_inode_flags(inode);
1380 	inode->i_ctime = CURRENT_TIME;
1381 	mark_inode_dirty(inode);
1382 out:
1383 	mnt_drop_write_file(filp);
1384 	return ret;
1385 }
1386 
1387 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1388 {
1389 	struct inode *inode = file_inode(filp);
1390 
1391 	return put_user(inode->i_generation, (int __user *)arg);
1392 }
1393 
1394 static int f2fs_ioc_start_atomic_write(struct file *filp)
1395 {
1396 	struct inode *inode = file_inode(filp);
1397 	int ret;
1398 
1399 	if (!inode_owner_or_capable(inode))
1400 		return -EACCES;
1401 
1402 	ret = mnt_want_write_file(filp);
1403 	if (ret)
1404 		return ret;
1405 
1406 	inode_lock(inode);
1407 
1408 	if (f2fs_is_atomic_file(inode))
1409 		goto out;
1410 
1411 	ret = f2fs_convert_inline_inode(inode);
1412 	if (ret)
1413 		goto out;
1414 
1415 	set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1416 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1417 
1418 	if (!get_dirty_pages(inode))
1419 		goto out;
1420 
1421 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1422 		"Unexpected flush for atomic writes: ino=%lu, npages=%lld",
1423 					inode->i_ino, get_dirty_pages(inode));
1424 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1425 	if (ret)
1426 		clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1427 out:
1428 	inode_unlock(inode);
1429 	mnt_drop_write_file(filp);
1430 	return ret;
1431 }
1432 
1433 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1434 {
1435 	struct inode *inode = file_inode(filp);
1436 	int ret;
1437 
1438 	if (!inode_owner_or_capable(inode))
1439 		return -EACCES;
1440 
1441 	ret = mnt_want_write_file(filp);
1442 	if (ret)
1443 		return ret;
1444 
1445 	inode_lock(inode);
1446 
1447 	if (f2fs_is_volatile_file(inode))
1448 		goto err_out;
1449 
1450 	if (f2fs_is_atomic_file(inode)) {
1451 		clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1452 		ret = commit_inmem_pages(inode);
1453 		if (ret) {
1454 			set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1455 			goto err_out;
1456 		}
1457 	}
1458 
1459 	ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1460 err_out:
1461 	inode_unlock(inode);
1462 	mnt_drop_write_file(filp);
1463 	return ret;
1464 }
1465 
1466 static int f2fs_ioc_start_volatile_write(struct file *filp)
1467 {
1468 	struct inode *inode = file_inode(filp);
1469 	int ret;
1470 
1471 	if (!inode_owner_or_capable(inode))
1472 		return -EACCES;
1473 
1474 	ret = mnt_want_write_file(filp);
1475 	if (ret)
1476 		return ret;
1477 
1478 	inode_lock(inode);
1479 
1480 	if (f2fs_is_volatile_file(inode))
1481 		goto out;
1482 
1483 	ret = f2fs_convert_inline_inode(inode);
1484 	if (ret)
1485 		goto out;
1486 
1487 	set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1488 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1489 out:
1490 	inode_unlock(inode);
1491 	mnt_drop_write_file(filp);
1492 	return ret;
1493 }
1494 
1495 static int f2fs_ioc_release_volatile_write(struct file *filp)
1496 {
1497 	struct inode *inode = file_inode(filp);
1498 	int ret;
1499 
1500 	if (!inode_owner_or_capable(inode))
1501 		return -EACCES;
1502 
1503 	ret = mnt_want_write_file(filp);
1504 	if (ret)
1505 		return ret;
1506 
1507 	inode_lock(inode);
1508 
1509 	if (!f2fs_is_volatile_file(inode))
1510 		goto out;
1511 
1512 	if (!f2fs_is_first_block_written(inode)) {
1513 		ret = truncate_partial_data_page(inode, 0, true);
1514 		goto out;
1515 	}
1516 
1517 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1518 out:
1519 	inode_unlock(inode);
1520 	mnt_drop_write_file(filp);
1521 	return ret;
1522 }
1523 
1524 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1525 {
1526 	struct inode *inode = file_inode(filp);
1527 	int ret;
1528 
1529 	if (!inode_owner_or_capable(inode))
1530 		return -EACCES;
1531 
1532 	ret = mnt_want_write_file(filp);
1533 	if (ret)
1534 		return ret;
1535 
1536 	inode_lock(inode);
1537 
1538 	if (f2fs_is_atomic_file(inode))
1539 		drop_inmem_pages(inode);
1540 	if (f2fs_is_volatile_file(inode)) {
1541 		clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1542 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1543 	}
1544 
1545 	inode_unlock(inode);
1546 
1547 	mnt_drop_write_file(filp);
1548 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1549 	return ret;
1550 }
1551 
1552 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1553 {
1554 	struct inode *inode = file_inode(filp);
1555 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1556 	struct super_block *sb = sbi->sb;
1557 	__u32 in;
1558 	int ret;
1559 
1560 	if (!capable(CAP_SYS_ADMIN))
1561 		return -EPERM;
1562 
1563 	if (get_user(in, (__u32 __user *)arg))
1564 		return -EFAULT;
1565 
1566 	ret = mnt_want_write_file(filp);
1567 	if (ret)
1568 		return ret;
1569 
1570 	switch (in) {
1571 	case F2FS_GOING_DOWN_FULLSYNC:
1572 		sb = freeze_bdev(sb->s_bdev);
1573 		if (sb && !IS_ERR(sb)) {
1574 			f2fs_stop_checkpoint(sbi, false);
1575 			thaw_bdev(sb->s_bdev, sb);
1576 		}
1577 		break;
1578 	case F2FS_GOING_DOWN_METASYNC:
1579 		/* do checkpoint only */
1580 		f2fs_sync_fs(sb, 1);
1581 		f2fs_stop_checkpoint(sbi, false);
1582 		break;
1583 	case F2FS_GOING_DOWN_NOSYNC:
1584 		f2fs_stop_checkpoint(sbi, false);
1585 		break;
1586 	case F2FS_GOING_DOWN_METAFLUSH:
1587 		sync_meta_pages(sbi, META, LONG_MAX);
1588 		f2fs_stop_checkpoint(sbi, false);
1589 		break;
1590 	default:
1591 		ret = -EINVAL;
1592 		goto out;
1593 	}
1594 	f2fs_update_time(sbi, REQ_TIME);
1595 out:
1596 	mnt_drop_write_file(filp);
1597 	return ret;
1598 }
1599 
1600 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1601 {
1602 	struct inode *inode = file_inode(filp);
1603 	struct super_block *sb = inode->i_sb;
1604 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1605 	struct fstrim_range range;
1606 	int ret;
1607 
1608 	if (!capable(CAP_SYS_ADMIN))
1609 		return -EPERM;
1610 
1611 	if (!blk_queue_discard(q))
1612 		return -EOPNOTSUPP;
1613 
1614 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1615 				sizeof(range)))
1616 		return -EFAULT;
1617 
1618 	ret = mnt_want_write_file(filp);
1619 	if (ret)
1620 		return ret;
1621 
1622 	range.minlen = max((unsigned int)range.minlen,
1623 				q->limits.discard_granularity);
1624 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1625 	mnt_drop_write_file(filp);
1626 	if (ret < 0)
1627 		return ret;
1628 
1629 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1630 				sizeof(range)))
1631 		return -EFAULT;
1632 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1633 	return 0;
1634 }
1635 
1636 static bool uuid_is_nonzero(__u8 u[16])
1637 {
1638 	int i;
1639 
1640 	for (i = 0; i < 16; i++)
1641 		if (u[i])
1642 			return true;
1643 	return false;
1644 }
1645 
1646 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1647 {
1648 	struct fscrypt_policy policy;
1649 	struct inode *inode = file_inode(filp);
1650 	int ret;
1651 
1652 	if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1653 							sizeof(policy)))
1654 		return -EFAULT;
1655 
1656 	ret = mnt_want_write_file(filp);
1657 	if (ret)
1658 		return ret;
1659 
1660 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1661 	ret = fscrypt_process_policy(inode, &policy);
1662 
1663 	mnt_drop_write_file(filp);
1664 	return ret;
1665 }
1666 
1667 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1668 {
1669 	struct fscrypt_policy policy;
1670 	struct inode *inode = file_inode(filp);
1671 	int err;
1672 
1673 	err = fscrypt_get_policy(inode, &policy);
1674 	if (err)
1675 		return err;
1676 
1677 	if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1678 		return -EFAULT;
1679 	return 0;
1680 }
1681 
1682 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1683 {
1684 	struct inode *inode = file_inode(filp);
1685 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1686 	int err;
1687 
1688 	if (!f2fs_sb_has_crypto(inode->i_sb))
1689 		return -EOPNOTSUPP;
1690 
1691 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1692 		goto got_it;
1693 
1694 	err = mnt_want_write_file(filp);
1695 	if (err)
1696 		return err;
1697 
1698 	/* update superblock with uuid */
1699 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1700 
1701 	err = f2fs_commit_super(sbi, false);
1702 	if (err) {
1703 		/* undo new data */
1704 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1705 		mnt_drop_write_file(filp);
1706 		return err;
1707 	}
1708 	mnt_drop_write_file(filp);
1709 got_it:
1710 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1711 									16))
1712 		return -EFAULT;
1713 	return 0;
1714 }
1715 
1716 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1717 {
1718 	struct inode *inode = file_inode(filp);
1719 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1720 	__u32 sync;
1721 	int ret;
1722 
1723 	if (!capable(CAP_SYS_ADMIN))
1724 		return -EPERM;
1725 
1726 	if (get_user(sync, (__u32 __user *)arg))
1727 		return -EFAULT;
1728 
1729 	if (f2fs_readonly(sbi->sb))
1730 		return -EROFS;
1731 
1732 	ret = mnt_want_write_file(filp);
1733 	if (ret)
1734 		return ret;
1735 
1736 	if (!sync) {
1737 		if (!mutex_trylock(&sbi->gc_mutex)) {
1738 			ret = -EBUSY;
1739 			goto out;
1740 		}
1741 	} else {
1742 		mutex_lock(&sbi->gc_mutex);
1743 	}
1744 
1745 	ret = f2fs_gc(sbi, sync);
1746 out:
1747 	mnt_drop_write_file(filp);
1748 	return ret;
1749 }
1750 
1751 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1752 {
1753 	struct inode *inode = file_inode(filp);
1754 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1755 	int ret;
1756 
1757 	if (!capable(CAP_SYS_ADMIN))
1758 		return -EPERM;
1759 
1760 	if (f2fs_readonly(sbi->sb))
1761 		return -EROFS;
1762 
1763 	ret = mnt_want_write_file(filp);
1764 	if (ret)
1765 		return ret;
1766 
1767 	ret = f2fs_sync_fs(sbi->sb, 1);
1768 
1769 	mnt_drop_write_file(filp);
1770 	return ret;
1771 }
1772 
1773 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1774 					struct file *filp,
1775 					struct f2fs_defragment *range)
1776 {
1777 	struct inode *inode = file_inode(filp);
1778 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1779 	struct extent_info ei;
1780 	pgoff_t pg_start, pg_end;
1781 	unsigned int blk_per_seg = sbi->blocks_per_seg;
1782 	unsigned int total = 0, sec_num;
1783 	unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1784 	block_t blk_end = 0;
1785 	bool fragmented = false;
1786 	int err;
1787 
1788 	/* if in-place-update policy is enabled, don't waste time here */
1789 	if (need_inplace_update(inode))
1790 		return -EINVAL;
1791 
1792 	pg_start = range->start >> PAGE_SHIFT;
1793 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
1794 
1795 	f2fs_balance_fs(sbi, true);
1796 
1797 	inode_lock(inode);
1798 
1799 	/* writeback all dirty pages in the range */
1800 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1801 						range->start + range->len - 1);
1802 	if (err)
1803 		goto out;
1804 
1805 	/*
1806 	 * lookup mapping info in extent cache, skip defragmenting if physical
1807 	 * block addresses are continuous.
1808 	 */
1809 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1810 		if (ei.fofs + ei.len >= pg_end)
1811 			goto out;
1812 	}
1813 
1814 	map.m_lblk = pg_start;
1815 
1816 	/*
1817 	 * lookup mapping info in dnode page cache, skip defragmenting if all
1818 	 * physical block addresses are continuous even if there are hole(s)
1819 	 * in logical blocks.
1820 	 */
1821 	while (map.m_lblk < pg_end) {
1822 		map.m_len = pg_end - map.m_lblk;
1823 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1824 		if (err)
1825 			goto out;
1826 
1827 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1828 			map.m_lblk++;
1829 			continue;
1830 		}
1831 
1832 		if (blk_end && blk_end != map.m_pblk) {
1833 			fragmented = true;
1834 			break;
1835 		}
1836 		blk_end = map.m_pblk + map.m_len;
1837 
1838 		map.m_lblk += map.m_len;
1839 	}
1840 
1841 	if (!fragmented)
1842 		goto out;
1843 
1844 	map.m_lblk = pg_start;
1845 	map.m_len = pg_end - pg_start;
1846 
1847 	sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1848 
1849 	/*
1850 	 * make sure there are enough free section for LFS allocation, this can
1851 	 * avoid defragment running in SSR mode when free section are allocated
1852 	 * intensively
1853 	 */
1854 	if (has_not_enough_free_secs(sbi, sec_num)) {
1855 		err = -EAGAIN;
1856 		goto out;
1857 	}
1858 
1859 	while (map.m_lblk < pg_end) {
1860 		pgoff_t idx;
1861 		int cnt = 0;
1862 
1863 do_map:
1864 		map.m_len = pg_end - map.m_lblk;
1865 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1866 		if (err)
1867 			goto clear_out;
1868 
1869 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1870 			map.m_lblk++;
1871 			continue;
1872 		}
1873 
1874 		set_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1875 
1876 		idx = map.m_lblk;
1877 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1878 			struct page *page;
1879 
1880 			page = get_lock_data_page(inode, idx, true);
1881 			if (IS_ERR(page)) {
1882 				err = PTR_ERR(page);
1883 				goto clear_out;
1884 			}
1885 
1886 			set_page_dirty(page);
1887 			f2fs_put_page(page, 1);
1888 
1889 			idx++;
1890 			cnt++;
1891 			total++;
1892 		}
1893 
1894 		map.m_lblk = idx;
1895 
1896 		if (idx < pg_end && cnt < blk_per_seg)
1897 			goto do_map;
1898 
1899 		clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1900 
1901 		err = filemap_fdatawrite(inode->i_mapping);
1902 		if (err)
1903 			goto out;
1904 	}
1905 clear_out:
1906 	clear_inode_flag(F2FS_I(inode), FI_DO_DEFRAG);
1907 out:
1908 	inode_unlock(inode);
1909 	if (!err)
1910 		range->len = (u64)total << PAGE_SHIFT;
1911 	return err;
1912 }
1913 
1914 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
1915 {
1916 	struct inode *inode = file_inode(filp);
1917 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1918 	struct f2fs_defragment range;
1919 	int err;
1920 
1921 	if (!capable(CAP_SYS_ADMIN))
1922 		return -EPERM;
1923 
1924 	if (!S_ISREG(inode->i_mode))
1925 		return -EINVAL;
1926 
1927 	err = mnt_want_write_file(filp);
1928 	if (err)
1929 		return err;
1930 
1931 	if (f2fs_readonly(sbi->sb)) {
1932 		err = -EROFS;
1933 		goto out;
1934 	}
1935 
1936 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
1937 							sizeof(range))) {
1938 		err = -EFAULT;
1939 		goto out;
1940 	}
1941 
1942 	/* verify alignment of offset & size */
1943 	if (range.start & (F2FS_BLKSIZE - 1) ||
1944 		range.len & (F2FS_BLKSIZE - 1)) {
1945 		err = -EINVAL;
1946 		goto out;
1947 	}
1948 
1949 	err = f2fs_defragment_range(sbi, filp, &range);
1950 	f2fs_update_time(sbi, REQ_TIME);
1951 	if (err < 0)
1952 		goto out;
1953 
1954 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
1955 							sizeof(range)))
1956 		err = -EFAULT;
1957 out:
1958 	mnt_drop_write_file(filp);
1959 	return err;
1960 }
1961 
1962 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1963 {
1964 	switch (cmd) {
1965 	case F2FS_IOC_GETFLAGS:
1966 		return f2fs_ioc_getflags(filp, arg);
1967 	case F2FS_IOC_SETFLAGS:
1968 		return f2fs_ioc_setflags(filp, arg);
1969 	case F2FS_IOC_GETVERSION:
1970 		return f2fs_ioc_getversion(filp, arg);
1971 	case F2FS_IOC_START_ATOMIC_WRITE:
1972 		return f2fs_ioc_start_atomic_write(filp);
1973 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1974 		return f2fs_ioc_commit_atomic_write(filp);
1975 	case F2FS_IOC_START_VOLATILE_WRITE:
1976 		return f2fs_ioc_start_volatile_write(filp);
1977 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1978 		return f2fs_ioc_release_volatile_write(filp);
1979 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
1980 		return f2fs_ioc_abort_volatile_write(filp);
1981 	case F2FS_IOC_SHUTDOWN:
1982 		return f2fs_ioc_shutdown(filp, arg);
1983 	case FITRIM:
1984 		return f2fs_ioc_fitrim(filp, arg);
1985 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
1986 		return f2fs_ioc_set_encryption_policy(filp, arg);
1987 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
1988 		return f2fs_ioc_get_encryption_policy(filp, arg);
1989 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1990 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1991 	case F2FS_IOC_GARBAGE_COLLECT:
1992 		return f2fs_ioc_gc(filp, arg);
1993 	case F2FS_IOC_WRITE_CHECKPOINT:
1994 		return f2fs_ioc_write_checkpoint(filp, arg);
1995 	case F2FS_IOC_DEFRAGMENT:
1996 		return f2fs_ioc_defragment(filp, arg);
1997 	default:
1998 		return -ENOTTY;
1999 	}
2000 }
2001 
2002 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2003 {
2004 	struct file *file = iocb->ki_filp;
2005 	struct inode *inode = file_inode(file);
2006 	ssize_t ret;
2007 
2008 	if (f2fs_encrypted_inode(inode) &&
2009 				!fscrypt_has_encryption_key(inode) &&
2010 				fscrypt_get_encryption_info(inode))
2011 		return -EACCES;
2012 
2013 	inode_lock(inode);
2014 	ret = generic_write_checks(iocb, from);
2015 	if (ret > 0) {
2016 		ret = f2fs_preallocate_blocks(iocb, from);
2017 		if (!ret)
2018 			ret = __generic_file_write_iter(iocb, from);
2019 	}
2020 	inode_unlock(inode);
2021 
2022 	if (ret > 0)
2023 		ret = generic_write_sync(iocb, ret);
2024 	return ret;
2025 }
2026 
2027 #ifdef CONFIG_COMPAT
2028 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2029 {
2030 	switch (cmd) {
2031 	case F2FS_IOC32_GETFLAGS:
2032 		cmd = F2FS_IOC_GETFLAGS;
2033 		break;
2034 	case F2FS_IOC32_SETFLAGS:
2035 		cmd = F2FS_IOC_SETFLAGS;
2036 		break;
2037 	case F2FS_IOC32_GETVERSION:
2038 		cmd = F2FS_IOC_GETVERSION;
2039 		break;
2040 	case F2FS_IOC_START_ATOMIC_WRITE:
2041 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2042 	case F2FS_IOC_START_VOLATILE_WRITE:
2043 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2044 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2045 	case F2FS_IOC_SHUTDOWN:
2046 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2047 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2048 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2049 	case F2FS_IOC_GARBAGE_COLLECT:
2050 	case F2FS_IOC_WRITE_CHECKPOINT:
2051 	case F2FS_IOC_DEFRAGMENT:
2052 		break;
2053 	default:
2054 		return -ENOIOCTLCMD;
2055 	}
2056 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2057 }
2058 #endif
2059 
2060 const struct file_operations f2fs_file_operations = {
2061 	.llseek		= f2fs_llseek,
2062 	.read_iter	= generic_file_read_iter,
2063 	.write_iter	= f2fs_file_write_iter,
2064 	.open		= f2fs_file_open,
2065 	.release	= f2fs_release_file,
2066 	.mmap		= f2fs_file_mmap,
2067 	.fsync		= f2fs_sync_file,
2068 	.fallocate	= f2fs_fallocate,
2069 	.unlocked_ioctl	= f2fs_ioctl,
2070 #ifdef CONFIG_COMPAT
2071 	.compat_ioctl	= f2fs_compat_ioctl,
2072 #endif
2073 	.splice_read	= generic_file_splice_read,
2074 	.splice_write	= iter_file_splice_write,
2075 };
2076