1 /* 2 * fs/f2fs/file.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/stat.h> 14 #include <linux/buffer_head.h> 15 #include <linux/writeback.h> 16 #include <linux/blkdev.h> 17 #include <linux/falloc.h> 18 #include <linux/types.h> 19 #include <linux/compat.h> 20 #include <linux/uaccess.h> 21 #include <linux/mount.h> 22 #include <linux/pagevec.h> 23 24 #include "f2fs.h" 25 #include "node.h" 26 #include "segment.h" 27 #include "xattr.h" 28 #include "acl.h" 29 #include <trace/events/f2fs.h> 30 31 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma, 32 struct vm_fault *vmf) 33 { 34 struct page *page = vmf->page; 35 struct inode *inode = file_inode(vma->vm_file); 36 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 37 struct dnode_of_data dn; 38 int err; 39 40 f2fs_balance_fs(sbi); 41 42 sb_start_pagefault(inode->i_sb); 43 44 f2fs_bug_on(sbi, f2fs_has_inline_data(inode)); 45 46 /* block allocation */ 47 f2fs_lock_op(sbi); 48 set_new_dnode(&dn, inode, NULL, NULL, 0); 49 err = f2fs_reserve_block(&dn, page->index); 50 if (err) { 51 f2fs_unlock_op(sbi); 52 goto out; 53 } 54 f2fs_put_dnode(&dn); 55 f2fs_unlock_op(sbi); 56 57 file_update_time(vma->vm_file); 58 lock_page(page); 59 if (unlikely(page->mapping != inode->i_mapping || 60 page_offset(page) > i_size_read(inode) || 61 !PageUptodate(page))) { 62 unlock_page(page); 63 err = -EFAULT; 64 goto out; 65 } 66 67 /* 68 * check to see if the page is mapped already (no holes) 69 */ 70 if (PageMappedToDisk(page)) 71 goto mapped; 72 73 /* page is wholly or partially inside EOF */ 74 if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) { 75 unsigned offset; 76 offset = i_size_read(inode) & ~PAGE_CACHE_MASK; 77 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 78 } 79 set_page_dirty(page); 80 SetPageUptodate(page); 81 82 trace_f2fs_vm_page_mkwrite(page, DATA); 83 mapped: 84 /* fill the page */ 85 f2fs_wait_on_page_writeback(page, DATA); 86 out: 87 sb_end_pagefault(inode->i_sb); 88 return block_page_mkwrite_return(err); 89 } 90 91 static const struct vm_operations_struct f2fs_file_vm_ops = { 92 .fault = filemap_fault, 93 .map_pages = filemap_map_pages, 94 .page_mkwrite = f2fs_vm_page_mkwrite, 95 }; 96 97 static int get_parent_ino(struct inode *inode, nid_t *pino) 98 { 99 struct dentry *dentry; 100 101 inode = igrab(inode); 102 dentry = d_find_any_alias(inode); 103 iput(inode); 104 if (!dentry) 105 return 0; 106 107 if (update_dent_inode(inode, &dentry->d_name)) { 108 dput(dentry); 109 return 0; 110 } 111 112 *pino = parent_ino(dentry); 113 dput(dentry); 114 return 1; 115 } 116 117 static inline bool need_do_checkpoint(struct inode *inode) 118 { 119 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 120 bool need_cp = false; 121 122 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1) 123 need_cp = true; 124 else if (file_wrong_pino(inode)) 125 need_cp = true; 126 else if (!space_for_roll_forward(sbi)) 127 need_cp = true; 128 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino)) 129 need_cp = true; 130 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi))) 131 need_cp = true; 132 else if (test_opt(sbi, FASTBOOT)) 133 need_cp = true; 134 else if (sbi->active_logs == 2) 135 need_cp = true; 136 137 return need_cp; 138 } 139 140 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino) 141 { 142 struct page *i = find_get_page(NODE_MAPPING(sbi), ino); 143 bool ret = false; 144 /* But we need to avoid that there are some inode updates */ 145 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino)) 146 ret = true; 147 f2fs_put_page(i, 0); 148 return ret; 149 } 150 151 static void try_to_fix_pino(struct inode *inode) 152 { 153 struct f2fs_inode_info *fi = F2FS_I(inode); 154 nid_t pino; 155 156 down_write(&fi->i_sem); 157 fi->xattr_ver = 0; 158 if (file_wrong_pino(inode) && inode->i_nlink == 1 && 159 get_parent_ino(inode, &pino)) { 160 fi->i_pino = pino; 161 file_got_pino(inode); 162 up_write(&fi->i_sem); 163 164 mark_inode_dirty_sync(inode); 165 f2fs_write_inode(inode, NULL); 166 } else { 167 up_write(&fi->i_sem); 168 } 169 } 170 171 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) 172 { 173 struct inode *inode = file->f_mapping->host; 174 struct f2fs_inode_info *fi = F2FS_I(inode); 175 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 176 nid_t ino = inode->i_ino; 177 int ret = 0; 178 bool need_cp = false; 179 struct writeback_control wbc = { 180 .sync_mode = WB_SYNC_ALL, 181 .nr_to_write = LONG_MAX, 182 .for_reclaim = 0, 183 }; 184 185 if (unlikely(f2fs_readonly(inode->i_sb))) 186 return 0; 187 188 trace_f2fs_sync_file_enter(inode); 189 190 /* if fdatasync is triggered, let's do in-place-update */ 191 if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) 192 set_inode_flag(fi, FI_NEED_IPU); 193 ret = filemap_write_and_wait_range(inode->i_mapping, start, end); 194 clear_inode_flag(fi, FI_NEED_IPU); 195 196 if (ret) { 197 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); 198 return ret; 199 } 200 201 /* if the inode is dirty, let's recover all the time */ 202 if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) { 203 update_inode_page(inode); 204 goto go_write; 205 } 206 207 /* 208 * if there is no written data, don't waste time to write recovery info. 209 */ 210 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) && 211 !exist_written_data(sbi, ino, APPEND_INO)) { 212 213 /* it may call write_inode just prior to fsync */ 214 if (need_inode_page_update(sbi, ino)) 215 goto go_write; 216 217 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) || 218 exist_written_data(sbi, ino, UPDATE_INO)) 219 goto flush_out; 220 goto out; 221 } 222 go_write: 223 /* guarantee free sections for fsync */ 224 f2fs_balance_fs(sbi); 225 226 /* 227 * Both of fdatasync() and fsync() are able to be recovered from 228 * sudden-power-off. 229 */ 230 down_read(&fi->i_sem); 231 need_cp = need_do_checkpoint(inode); 232 up_read(&fi->i_sem); 233 234 if (need_cp) { 235 /* all the dirty node pages should be flushed for POR */ 236 ret = f2fs_sync_fs(inode->i_sb, 1); 237 238 /* 239 * We've secured consistency through sync_fs. Following pino 240 * will be used only for fsynced inodes after checkpoint. 241 */ 242 try_to_fix_pino(inode); 243 goto out; 244 } 245 sync_nodes: 246 sync_node_pages(sbi, ino, &wbc); 247 248 if (need_inode_block_update(sbi, ino)) { 249 mark_inode_dirty_sync(inode); 250 f2fs_write_inode(inode, NULL); 251 goto sync_nodes; 252 } 253 254 ret = wait_on_node_pages_writeback(sbi, ino); 255 if (ret) 256 goto out; 257 258 /* once recovery info is written, don't need to tack this */ 259 remove_dirty_inode(sbi, ino, APPEND_INO); 260 clear_inode_flag(fi, FI_APPEND_WRITE); 261 flush_out: 262 remove_dirty_inode(sbi, ino, UPDATE_INO); 263 clear_inode_flag(fi, FI_UPDATE_WRITE); 264 ret = f2fs_issue_flush(sbi); 265 out: 266 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); 267 return ret; 268 } 269 270 static pgoff_t __get_first_dirty_index(struct address_space *mapping, 271 pgoff_t pgofs, int whence) 272 { 273 struct pagevec pvec; 274 int nr_pages; 275 276 if (whence != SEEK_DATA) 277 return 0; 278 279 /* find first dirty page index */ 280 pagevec_init(&pvec, 0); 281 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs, 282 PAGECACHE_TAG_DIRTY, 1); 283 pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX; 284 pagevec_release(&pvec); 285 return pgofs; 286 } 287 288 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs, 289 int whence) 290 { 291 switch (whence) { 292 case SEEK_DATA: 293 if ((blkaddr == NEW_ADDR && dirty == pgofs) || 294 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR)) 295 return true; 296 break; 297 case SEEK_HOLE: 298 if (blkaddr == NULL_ADDR) 299 return true; 300 break; 301 } 302 return false; 303 } 304 305 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) 306 { 307 struct inode *inode = file->f_mapping->host; 308 loff_t maxbytes = inode->i_sb->s_maxbytes; 309 struct dnode_of_data dn; 310 pgoff_t pgofs, end_offset, dirty; 311 loff_t data_ofs = offset; 312 loff_t isize; 313 int err = 0; 314 315 mutex_lock(&inode->i_mutex); 316 317 isize = i_size_read(inode); 318 if (offset >= isize) 319 goto fail; 320 321 /* handle inline data case */ 322 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 323 if (whence == SEEK_HOLE) 324 data_ofs = isize; 325 goto found; 326 } 327 328 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT); 329 330 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); 331 332 for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) { 333 set_new_dnode(&dn, inode, NULL, NULL, 0); 334 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA); 335 if (err && err != -ENOENT) { 336 goto fail; 337 } else if (err == -ENOENT) { 338 /* direct node does not exists */ 339 if (whence == SEEK_DATA) { 340 pgofs = PGOFS_OF_NEXT_DNODE(pgofs, 341 F2FS_I(inode)); 342 continue; 343 } else { 344 goto found; 345 } 346 } 347 348 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); 349 350 /* find data/hole in dnode block */ 351 for (; dn.ofs_in_node < end_offset; 352 dn.ofs_in_node++, pgofs++, 353 data_ofs = pgofs << PAGE_CACHE_SHIFT) { 354 block_t blkaddr; 355 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 356 357 if (__found_offset(blkaddr, dirty, pgofs, whence)) { 358 f2fs_put_dnode(&dn); 359 goto found; 360 } 361 } 362 f2fs_put_dnode(&dn); 363 } 364 365 if (whence == SEEK_DATA) 366 goto fail; 367 found: 368 if (whence == SEEK_HOLE && data_ofs > isize) 369 data_ofs = isize; 370 mutex_unlock(&inode->i_mutex); 371 return vfs_setpos(file, data_ofs, maxbytes); 372 fail: 373 mutex_unlock(&inode->i_mutex); 374 return -ENXIO; 375 } 376 377 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) 378 { 379 struct inode *inode = file->f_mapping->host; 380 loff_t maxbytes = inode->i_sb->s_maxbytes; 381 382 switch (whence) { 383 case SEEK_SET: 384 case SEEK_CUR: 385 case SEEK_END: 386 return generic_file_llseek_size(file, offset, whence, 387 maxbytes, i_size_read(inode)); 388 case SEEK_DATA: 389 case SEEK_HOLE: 390 if (offset < 0) 391 return -ENXIO; 392 return f2fs_seek_block(file, offset, whence); 393 } 394 395 return -EINVAL; 396 } 397 398 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) 399 { 400 struct inode *inode = file_inode(file); 401 402 /* we don't need to use inline_data strictly */ 403 if (f2fs_has_inline_data(inode)) { 404 int err = f2fs_convert_inline_inode(inode); 405 if (err) 406 return err; 407 } 408 409 file_accessed(file); 410 vma->vm_ops = &f2fs_file_vm_ops; 411 return 0; 412 } 413 414 int truncate_data_blocks_range(struct dnode_of_data *dn, int count) 415 { 416 int nr_free = 0, ofs = dn->ofs_in_node; 417 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 418 struct f2fs_node *raw_node; 419 __le32 *addr; 420 421 raw_node = F2FS_NODE(dn->node_page); 422 addr = blkaddr_in_node(raw_node) + ofs; 423 424 for (; count > 0; count--, addr++, dn->ofs_in_node++) { 425 block_t blkaddr = le32_to_cpu(*addr); 426 if (blkaddr == NULL_ADDR) 427 continue; 428 429 update_extent_cache(NULL_ADDR, dn); 430 invalidate_blocks(sbi, blkaddr); 431 nr_free++; 432 } 433 if (nr_free) { 434 dec_valid_block_count(sbi, dn->inode, nr_free); 435 set_page_dirty(dn->node_page); 436 sync_inode_page(dn); 437 } 438 dn->ofs_in_node = ofs; 439 440 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid, 441 dn->ofs_in_node, nr_free); 442 return nr_free; 443 } 444 445 void truncate_data_blocks(struct dnode_of_data *dn) 446 { 447 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK); 448 } 449 450 static int truncate_partial_data_page(struct inode *inode, u64 from) 451 { 452 unsigned offset = from & (PAGE_CACHE_SIZE - 1); 453 struct page *page; 454 455 if (!offset) 456 return 0; 457 458 page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false); 459 if (IS_ERR(page)) 460 return 0; 461 462 lock_page(page); 463 if (unlikely(!PageUptodate(page) || 464 page->mapping != inode->i_mapping)) 465 goto out; 466 467 f2fs_wait_on_page_writeback(page, DATA); 468 zero_user(page, offset, PAGE_CACHE_SIZE - offset); 469 set_page_dirty(page); 470 out: 471 f2fs_put_page(page, 1); 472 return 0; 473 } 474 475 int truncate_blocks(struct inode *inode, u64 from, bool lock) 476 { 477 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 478 unsigned int blocksize = inode->i_sb->s_blocksize; 479 struct dnode_of_data dn; 480 pgoff_t free_from; 481 int count = 0, err = 0; 482 struct page *ipage; 483 484 trace_f2fs_truncate_blocks_enter(inode, from); 485 486 free_from = (pgoff_t) 487 ((from + blocksize - 1) >> (sbi->log_blocksize)); 488 489 if (lock) 490 f2fs_lock_op(sbi); 491 492 ipage = get_node_page(sbi, inode->i_ino); 493 if (IS_ERR(ipage)) { 494 err = PTR_ERR(ipage); 495 goto out; 496 } 497 498 if (f2fs_has_inline_data(inode)) { 499 f2fs_put_page(ipage, 1); 500 goto out; 501 } 502 503 set_new_dnode(&dn, inode, ipage, NULL, 0); 504 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE); 505 if (err) { 506 if (err == -ENOENT) 507 goto free_next; 508 goto out; 509 } 510 511 count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); 512 513 count -= dn.ofs_in_node; 514 f2fs_bug_on(sbi, count < 0); 515 516 if (dn.ofs_in_node || IS_INODE(dn.node_page)) { 517 truncate_data_blocks_range(&dn, count); 518 free_from += count; 519 } 520 521 f2fs_put_dnode(&dn); 522 free_next: 523 err = truncate_inode_blocks(inode, free_from); 524 out: 525 if (lock) 526 f2fs_unlock_op(sbi); 527 528 /* lastly zero out the first data page */ 529 if (!err) 530 err = truncate_partial_data_page(inode, from); 531 532 trace_f2fs_truncate_blocks_exit(inode, err); 533 return err; 534 } 535 536 void f2fs_truncate(struct inode *inode) 537 { 538 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 539 S_ISLNK(inode->i_mode))) 540 return; 541 542 trace_f2fs_truncate(inode); 543 544 /* we should check inline_data size */ 545 if (f2fs_has_inline_data(inode) && !f2fs_may_inline(inode)) { 546 if (f2fs_convert_inline_inode(inode)) 547 return; 548 } 549 550 if (!truncate_blocks(inode, i_size_read(inode), true)) { 551 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 552 mark_inode_dirty(inode); 553 } 554 } 555 556 int f2fs_getattr(struct vfsmount *mnt, 557 struct dentry *dentry, struct kstat *stat) 558 { 559 struct inode *inode = dentry->d_inode; 560 generic_fillattr(inode, stat); 561 stat->blocks <<= 3; 562 return 0; 563 } 564 565 #ifdef CONFIG_F2FS_FS_POSIX_ACL 566 static void __setattr_copy(struct inode *inode, const struct iattr *attr) 567 { 568 struct f2fs_inode_info *fi = F2FS_I(inode); 569 unsigned int ia_valid = attr->ia_valid; 570 571 if (ia_valid & ATTR_UID) 572 inode->i_uid = attr->ia_uid; 573 if (ia_valid & ATTR_GID) 574 inode->i_gid = attr->ia_gid; 575 if (ia_valid & ATTR_ATIME) 576 inode->i_atime = timespec_trunc(attr->ia_atime, 577 inode->i_sb->s_time_gran); 578 if (ia_valid & ATTR_MTIME) 579 inode->i_mtime = timespec_trunc(attr->ia_mtime, 580 inode->i_sb->s_time_gran); 581 if (ia_valid & ATTR_CTIME) 582 inode->i_ctime = timespec_trunc(attr->ia_ctime, 583 inode->i_sb->s_time_gran); 584 if (ia_valid & ATTR_MODE) { 585 umode_t mode = attr->ia_mode; 586 587 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 588 mode &= ~S_ISGID; 589 set_acl_inode(fi, mode); 590 } 591 } 592 #else 593 #define __setattr_copy setattr_copy 594 #endif 595 596 int f2fs_setattr(struct dentry *dentry, struct iattr *attr) 597 { 598 struct inode *inode = dentry->d_inode; 599 struct f2fs_inode_info *fi = F2FS_I(inode); 600 int err; 601 602 err = inode_change_ok(inode, attr); 603 if (err) 604 return err; 605 606 if (attr->ia_valid & ATTR_SIZE) { 607 if (attr->ia_size != i_size_read(inode)) { 608 truncate_setsize(inode, attr->ia_size); 609 f2fs_truncate(inode); 610 f2fs_balance_fs(F2FS_I_SB(inode)); 611 } else { 612 /* 613 * giving a chance to truncate blocks past EOF which 614 * are fallocated with FALLOC_FL_KEEP_SIZE. 615 */ 616 f2fs_truncate(inode); 617 } 618 } 619 620 __setattr_copy(inode, attr); 621 622 if (attr->ia_valid & ATTR_MODE) { 623 err = posix_acl_chmod(inode, get_inode_mode(inode)); 624 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) { 625 inode->i_mode = fi->i_acl_mode; 626 clear_inode_flag(fi, FI_ACL_MODE); 627 } 628 } 629 630 mark_inode_dirty(inode); 631 return err; 632 } 633 634 const struct inode_operations f2fs_file_inode_operations = { 635 .getattr = f2fs_getattr, 636 .setattr = f2fs_setattr, 637 .get_acl = f2fs_get_acl, 638 .set_acl = f2fs_set_acl, 639 #ifdef CONFIG_F2FS_FS_XATTR 640 .setxattr = generic_setxattr, 641 .getxattr = generic_getxattr, 642 .listxattr = f2fs_listxattr, 643 .removexattr = generic_removexattr, 644 #endif 645 .fiemap = f2fs_fiemap, 646 }; 647 648 static void fill_zero(struct inode *inode, pgoff_t index, 649 loff_t start, loff_t len) 650 { 651 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 652 struct page *page; 653 654 if (!len) 655 return; 656 657 f2fs_balance_fs(sbi); 658 659 f2fs_lock_op(sbi); 660 page = get_new_data_page(inode, NULL, index, false); 661 f2fs_unlock_op(sbi); 662 663 if (!IS_ERR(page)) { 664 f2fs_wait_on_page_writeback(page, DATA); 665 zero_user(page, start, len); 666 set_page_dirty(page); 667 f2fs_put_page(page, 1); 668 } 669 } 670 671 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) 672 { 673 pgoff_t index; 674 int err; 675 676 for (index = pg_start; index < pg_end; index++) { 677 struct dnode_of_data dn; 678 679 set_new_dnode(&dn, inode, NULL, NULL, 0); 680 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 681 if (err) { 682 if (err == -ENOENT) 683 continue; 684 return err; 685 } 686 687 if (dn.data_blkaddr != NULL_ADDR) 688 truncate_data_blocks_range(&dn, 1); 689 f2fs_put_dnode(&dn); 690 } 691 return 0; 692 } 693 694 static int punch_hole(struct inode *inode, loff_t offset, loff_t len) 695 { 696 pgoff_t pg_start, pg_end; 697 loff_t off_start, off_end; 698 int ret = 0; 699 700 if (!S_ISREG(inode->i_mode)) 701 return -EOPNOTSUPP; 702 703 /* skip punching hole beyond i_size */ 704 if (offset >= inode->i_size) 705 return ret; 706 707 if (f2fs_has_inline_data(inode)) { 708 ret = f2fs_convert_inline_inode(inode); 709 if (ret) 710 return ret; 711 } 712 713 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; 714 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; 715 716 off_start = offset & (PAGE_CACHE_SIZE - 1); 717 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); 718 719 if (pg_start == pg_end) { 720 fill_zero(inode, pg_start, off_start, 721 off_end - off_start); 722 } else { 723 if (off_start) 724 fill_zero(inode, pg_start++, off_start, 725 PAGE_CACHE_SIZE - off_start); 726 if (off_end) 727 fill_zero(inode, pg_end, 0, off_end); 728 729 if (pg_start < pg_end) { 730 struct address_space *mapping = inode->i_mapping; 731 loff_t blk_start, blk_end; 732 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 733 734 f2fs_balance_fs(sbi); 735 736 blk_start = pg_start << PAGE_CACHE_SHIFT; 737 blk_end = pg_end << PAGE_CACHE_SHIFT; 738 truncate_inode_pages_range(mapping, blk_start, 739 blk_end - 1); 740 741 f2fs_lock_op(sbi); 742 ret = truncate_hole(inode, pg_start, pg_end); 743 f2fs_unlock_op(sbi); 744 } 745 } 746 747 return ret; 748 } 749 750 static int expand_inode_data(struct inode *inode, loff_t offset, 751 loff_t len, int mode) 752 { 753 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 754 pgoff_t index, pg_start, pg_end; 755 loff_t new_size = i_size_read(inode); 756 loff_t off_start, off_end; 757 int ret = 0; 758 759 f2fs_balance_fs(sbi); 760 761 ret = inode_newsize_ok(inode, (len + offset)); 762 if (ret) 763 return ret; 764 765 if (f2fs_has_inline_data(inode)) { 766 ret = f2fs_convert_inline_inode(inode); 767 if (ret) 768 return ret; 769 } 770 771 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT; 772 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT; 773 774 off_start = offset & (PAGE_CACHE_SIZE - 1); 775 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1); 776 777 f2fs_lock_op(sbi); 778 779 for (index = pg_start; index <= pg_end; index++) { 780 struct dnode_of_data dn; 781 782 if (index == pg_end && !off_end) 783 goto noalloc; 784 785 set_new_dnode(&dn, inode, NULL, NULL, 0); 786 ret = f2fs_reserve_block(&dn, index); 787 if (ret) 788 break; 789 noalloc: 790 if (pg_start == pg_end) 791 new_size = offset + len; 792 else if (index == pg_start && off_start) 793 new_size = (index + 1) << PAGE_CACHE_SHIFT; 794 else if (index == pg_end) 795 new_size = (index << PAGE_CACHE_SHIFT) + off_end; 796 else 797 new_size += PAGE_CACHE_SIZE; 798 } 799 800 if (!(mode & FALLOC_FL_KEEP_SIZE) && 801 i_size_read(inode) < new_size) { 802 i_size_write(inode, new_size); 803 mark_inode_dirty(inode); 804 update_inode_page(inode); 805 } 806 f2fs_unlock_op(sbi); 807 808 return ret; 809 } 810 811 static long f2fs_fallocate(struct file *file, int mode, 812 loff_t offset, loff_t len) 813 { 814 struct inode *inode = file_inode(file); 815 long ret; 816 817 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 818 return -EOPNOTSUPP; 819 820 mutex_lock(&inode->i_mutex); 821 822 if (mode & FALLOC_FL_PUNCH_HOLE) 823 ret = punch_hole(inode, offset, len); 824 else 825 ret = expand_inode_data(inode, offset, len, mode); 826 827 if (!ret) { 828 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 829 mark_inode_dirty(inode); 830 } 831 832 mutex_unlock(&inode->i_mutex); 833 834 trace_f2fs_fallocate(inode, mode, offset, len, ret); 835 return ret; 836 } 837 838 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 839 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 840 841 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 842 { 843 if (S_ISDIR(mode)) 844 return flags; 845 else if (S_ISREG(mode)) 846 return flags & F2FS_REG_FLMASK; 847 else 848 return flags & F2FS_OTHER_FLMASK; 849 } 850 851 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg) 852 { 853 struct inode *inode = file_inode(filp); 854 struct f2fs_inode_info *fi = F2FS_I(inode); 855 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE; 856 return put_user(flags, (int __user *)arg); 857 } 858 859 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg) 860 { 861 struct inode *inode = file_inode(filp); 862 struct f2fs_inode_info *fi = F2FS_I(inode); 863 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE; 864 unsigned int oldflags; 865 int ret; 866 867 ret = mnt_want_write_file(filp); 868 if (ret) 869 return ret; 870 871 if (!inode_owner_or_capable(inode)) { 872 ret = -EACCES; 873 goto out; 874 } 875 876 if (get_user(flags, (int __user *)arg)) { 877 ret = -EFAULT; 878 goto out; 879 } 880 881 flags = f2fs_mask_flags(inode->i_mode, flags); 882 883 mutex_lock(&inode->i_mutex); 884 885 oldflags = fi->i_flags; 886 887 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 888 if (!capable(CAP_LINUX_IMMUTABLE)) { 889 mutex_unlock(&inode->i_mutex); 890 ret = -EPERM; 891 goto out; 892 } 893 } 894 895 flags = flags & FS_FL_USER_MODIFIABLE; 896 flags |= oldflags & ~FS_FL_USER_MODIFIABLE; 897 fi->i_flags = flags; 898 mutex_unlock(&inode->i_mutex); 899 900 f2fs_set_inode_flags(inode); 901 inode->i_ctime = CURRENT_TIME; 902 mark_inode_dirty(inode); 903 out: 904 mnt_drop_write_file(filp); 905 return ret; 906 } 907 908 static int f2fs_ioc_start_atomic_write(struct file *filp) 909 { 910 struct inode *inode = file_inode(filp); 911 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 912 913 if (!inode_owner_or_capable(inode)) 914 return -EACCES; 915 916 f2fs_balance_fs(sbi); 917 918 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE); 919 920 return f2fs_convert_inline_inode(inode); 921 } 922 923 static int f2fs_release_file(struct inode *inode, struct file *filp) 924 { 925 /* some remained atomic pages should discarded */ 926 if (f2fs_is_atomic_file(inode) || f2fs_is_volatile_file(inode)) 927 commit_inmem_pages(inode, true); 928 return 0; 929 } 930 931 static int f2fs_ioc_commit_atomic_write(struct file *filp) 932 { 933 struct inode *inode = file_inode(filp); 934 int ret; 935 936 if (!inode_owner_or_capable(inode)) 937 return -EACCES; 938 939 if (f2fs_is_volatile_file(inode)) 940 return 0; 941 942 ret = mnt_want_write_file(filp); 943 if (ret) 944 return ret; 945 946 if (f2fs_is_atomic_file(inode)) 947 commit_inmem_pages(inode, false); 948 949 ret = f2fs_sync_file(filp, 0, LONG_MAX, 0); 950 mnt_drop_write_file(filp); 951 return ret; 952 } 953 954 static int f2fs_ioc_start_volatile_write(struct file *filp) 955 { 956 struct inode *inode = file_inode(filp); 957 958 if (!inode_owner_or_capable(inode)) 959 return -EACCES; 960 961 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE); 962 963 return f2fs_convert_inline_inode(inode); 964 } 965 966 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg) 967 { 968 struct inode *inode = file_inode(filp); 969 struct super_block *sb = inode->i_sb; 970 struct request_queue *q = bdev_get_queue(sb->s_bdev); 971 struct fstrim_range range; 972 int ret; 973 974 if (!capable(CAP_SYS_ADMIN)) 975 return -EPERM; 976 977 if (!blk_queue_discard(q)) 978 return -EOPNOTSUPP; 979 980 if (copy_from_user(&range, (struct fstrim_range __user *)arg, 981 sizeof(range))) 982 return -EFAULT; 983 984 range.minlen = max((unsigned int)range.minlen, 985 q->limits.discard_granularity); 986 ret = f2fs_trim_fs(F2FS_SB(sb), &range); 987 if (ret < 0) 988 return ret; 989 990 if (copy_to_user((struct fstrim_range __user *)arg, &range, 991 sizeof(range))) 992 return -EFAULT; 993 return 0; 994 } 995 996 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 997 { 998 switch (cmd) { 999 case F2FS_IOC_GETFLAGS: 1000 return f2fs_ioc_getflags(filp, arg); 1001 case F2FS_IOC_SETFLAGS: 1002 return f2fs_ioc_setflags(filp, arg); 1003 case F2FS_IOC_START_ATOMIC_WRITE: 1004 return f2fs_ioc_start_atomic_write(filp); 1005 case F2FS_IOC_COMMIT_ATOMIC_WRITE: 1006 return f2fs_ioc_commit_atomic_write(filp); 1007 case F2FS_IOC_START_VOLATILE_WRITE: 1008 return f2fs_ioc_start_volatile_write(filp); 1009 case FITRIM: 1010 return f2fs_ioc_fitrim(filp, arg); 1011 default: 1012 return -ENOTTY; 1013 } 1014 } 1015 1016 #ifdef CONFIG_COMPAT 1017 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1018 { 1019 switch (cmd) { 1020 case F2FS_IOC32_GETFLAGS: 1021 cmd = F2FS_IOC_GETFLAGS; 1022 break; 1023 case F2FS_IOC32_SETFLAGS: 1024 cmd = F2FS_IOC_SETFLAGS; 1025 break; 1026 default: 1027 return -ENOIOCTLCMD; 1028 } 1029 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 1030 } 1031 #endif 1032 1033 const struct file_operations f2fs_file_operations = { 1034 .llseek = f2fs_llseek, 1035 .read = new_sync_read, 1036 .write = new_sync_write, 1037 .read_iter = generic_file_read_iter, 1038 .write_iter = generic_file_write_iter, 1039 .open = generic_file_open, 1040 .release = f2fs_release_file, 1041 .mmap = f2fs_file_mmap, 1042 .fsync = f2fs_sync_file, 1043 .fallocate = f2fs_fallocate, 1044 .unlocked_ioctl = f2fs_ioctl, 1045 #ifdef CONFIG_COMPAT 1046 .compat_ioctl = f2fs_compat_ioctl, 1047 #endif 1048 .splice_read = generic_file_splice_read, 1049 .splice_write = iter_file_splice_write, 1050 }; 1051