xref: /linux/fs/f2fs/file.c (revision 04303f8ec14269b0ea2553863553bc7eaadca1f8)
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "xattr.h"
28 #include "acl.h"
29 #include <trace/events/f2fs.h>
30 
31 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
32 						struct vm_fault *vmf)
33 {
34 	struct page *page = vmf->page;
35 	struct inode *inode = file_inode(vma->vm_file);
36 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
37 	struct dnode_of_data dn;
38 	int err;
39 
40 	f2fs_balance_fs(sbi);
41 
42 	sb_start_pagefault(inode->i_sb);
43 
44 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
45 
46 	/* block allocation */
47 	f2fs_lock_op(sbi);
48 	set_new_dnode(&dn, inode, NULL, NULL, 0);
49 	err = f2fs_reserve_block(&dn, page->index);
50 	if (err) {
51 		f2fs_unlock_op(sbi);
52 		goto out;
53 	}
54 	f2fs_put_dnode(&dn);
55 	f2fs_unlock_op(sbi);
56 
57 	file_update_time(vma->vm_file);
58 	lock_page(page);
59 	if (unlikely(page->mapping != inode->i_mapping ||
60 			page_offset(page) > i_size_read(inode) ||
61 			!PageUptodate(page))) {
62 		unlock_page(page);
63 		err = -EFAULT;
64 		goto out;
65 	}
66 
67 	/*
68 	 * check to see if the page is mapped already (no holes)
69 	 */
70 	if (PageMappedToDisk(page))
71 		goto mapped;
72 
73 	/* page is wholly or partially inside EOF */
74 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
75 		unsigned offset;
76 		offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
77 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
78 	}
79 	set_page_dirty(page);
80 	SetPageUptodate(page);
81 
82 	trace_f2fs_vm_page_mkwrite(page, DATA);
83 mapped:
84 	/* fill the page */
85 	f2fs_wait_on_page_writeback(page, DATA);
86 out:
87 	sb_end_pagefault(inode->i_sb);
88 	return block_page_mkwrite_return(err);
89 }
90 
91 static const struct vm_operations_struct f2fs_file_vm_ops = {
92 	.fault		= filemap_fault,
93 	.map_pages	= filemap_map_pages,
94 	.page_mkwrite	= f2fs_vm_page_mkwrite,
95 };
96 
97 static int get_parent_ino(struct inode *inode, nid_t *pino)
98 {
99 	struct dentry *dentry;
100 
101 	inode = igrab(inode);
102 	dentry = d_find_any_alias(inode);
103 	iput(inode);
104 	if (!dentry)
105 		return 0;
106 
107 	if (update_dent_inode(inode, &dentry->d_name)) {
108 		dput(dentry);
109 		return 0;
110 	}
111 
112 	*pino = parent_ino(dentry);
113 	dput(dentry);
114 	return 1;
115 }
116 
117 static inline bool need_do_checkpoint(struct inode *inode)
118 {
119 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
120 	bool need_cp = false;
121 
122 	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
123 		need_cp = true;
124 	else if (file_wrong_pino(inode))
125 		need_cp = true;
126 	else if (!space_for_roll_forward(sbi))
127 		need_cp = true;
128 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
129 		need_cp = true;
130 	else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
131 		need_cp = true;
132 	else if (test_opt(sbi, FASTBOOT))
133 		need_cp = true;
134 	else if (sbi->active_logs == 2)
135 		need_cp = true;
136 
137 	return need_cp;
138 }
139 
140 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
141 {
142 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
143 	bool ret = false;
144 	/* But we need to avoid that there are some inode updates */
145 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
146 		ret = true;
147 	f2fs_put_page(i, 0);
148 	return ret;
149 }
150 
151 static void try_to_fix_pino(struct inode *inode)
152 {
153 	struct f2fs_inode_info *fi = F2FS_I(inode);
154 	nid_t pino;
155 
156 	down_write(&fi->i_sem);
157 	fi->xattr_ver = 0;
158 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
159 			get_parent_ino(inode, &pino)) {
160 		fi->i_pino = pino;
161 		file_got_pino(inode);
162 		up_write(&fi->i_sem);
163 
164 		mark_inode_dirty_sync(inode);
165 		f2fs_write_inode(inode, NULL);
166 	} else {
167 		up_write(&fi->i_sem);
168 	}
169 }
170 
171 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
172 {
173 	struct inode *inode = file->f_mapping->host;
174 	struct f2fs_inode_info *fi = F2FS_I(inode);
175 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
176 	nid_t ino = inode->i_ino;
177 	int ret = 0;
178 	bool need_cp = false;
179 	struct writeback_control wbc = {
180 		.sync_mode = WB_SYNC_ALL,
181 		.nr_to_write = LONG_MAX,
182 		.for_reclaim = 0,
183 	};
184 
185 	if (unlikely(f2fs_readonly(inode->i_sb)))
186 		return 0;
187 
188 	trace_f2fs_sync_file_enter(inode);
189 
190 	/* if fdatasync is triggered, let's do in-place-update */
191 	if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
192 		set_inode_flag(fi, FI_NEED_IPU);
193 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
194 	clear_inode_flag(fi, FI_NEED_IPU);
195 
196 	if (ret) {
197 		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
198 		return ret;
199 	}
200 
201 	/* if the inode is dirty, let's recover all the time */
202 	if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) {
203 		update_inode_page(inode);
204 		goto go_write;
205 	}
206 
207 	/*
208 	 * if there is no written data, don't waste time to write recovery info.
209 	 */
210 	if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
211 			!exist_written_data(sbi, ino, APPEND_INO)) {
212 
213 		/* it may call write_inode just prior to fsync */
214 		if (need_inode_page_update(sbi, ino))
215 			goto go_write;
216 
217 		if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
218 				exist_written_data(sbi, ino, UPDATE_INO))
219 			goto flush_out;
220 		goto out;
221 	}
222 go_write:
223 	/* guarantee free sections for fsync */
224 	f2fs_balance_fs(sbi);
225 
226 	/*
227 	 * Both of fdatasync() and fsync() are able to be recovered from
228 	 * sudden-power-off.
229 	 */
230 	down_read(&fi->i_sem);
231 	need_cp = need_do_checkpoint(inode);
232 	up_read(&fi->i_sem);
233 
234 	if (need_cp) {
235 		/* all the dirty node pages should be flushed for POR */
236 		ret = f2fs_sync_fs(inode->i_sb, 1);
237 
238 		/*
239 		 * We've secured consistency through sync_fs. Following pino
240 		 * will be used only for fsynced inodes after checkpoint.
241 		 */
242 		try_to_fix_pino(inode);
243 		goto out;
244 	}
245 sync_nodes:
246 	sync_node_pages(sbi, ino, &wbc);
247 
248 	if (need_inode_block_update(sbi, ino)) {
249 		mark_inode_dirty_sync(inode);
250 		f2fs_write_inode(inode, NULL);
251 		goto sync_nodes;
252 	}
253 
254 	ret = wait_on_node_pages_writeback(sbi, ino);
255 	if (ret)
256 		goto out;
257 
258 	/* once recovery info is written, don't need to tack this */
259 	remove_dirty_inode(sbi, ino, APPEND_INO);
260 	clear_inode_flag(fi, FI_APPEND_WRITE);
261 flush_out:
262 	remove_dirty_inode(sbi, ino, UPDATE_INO);
263 	clear_inode_flag(fi, FI_UPDATE_WRITE);
264 	ret = f2fs_issue_flush(sbi);
265 out:
266 	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
267 	return ret;
268 }
269 
270 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
271 						pgoff_t pgofs, int whence)
272 {
273 	struct pagevec pvec;
274 	int nr_pages;
275 
276 	if (whence != SEEK_DATA)
277 		return 0;
278 
279 	/* find first dirty page index */
280 	pagevec_init(&pvec, 0);
281 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
282 					PAGECACHE_TAG_DIRTY, 1);
283 	pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
284 	pagevec_release(&pvec);
285 	return pgofs;
286 }
287 
288 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
289 							int whence)
290 {
291 	switch (whence) {
292 	case SEEK_DATA:
293 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
294 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
295 			return true;
296 		break;
297 	case SEEK_HOLE:
298 		if (blkaddr == NULL_ADDR)
299 			return true;
300 		break;
301 	}
302 	return false;
303 }
304 
305 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
306 {
307 	struct inode *inode = file->f_mapping->host;
308 	loff_t maxbytes = inode->i_sb->s_maxbytes;
309 	struct dnode_of_data dn;
310 	pgoff_t pgofs, end_offset, dirty;
311 	loff_t data_ofs = offset;
312 	loff_t isize;
313 	int err = 0;
314 
315 	mutex_lock(&inode->i_mutex);
316 
317 	isize = i_size_read(inode);
318 	if (offset >= isize)
319 		goto fail;
320 
321 	/* handle inline data case */
322 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
323 		if (whence == SEEK_HOLE)
324 			data_ofs = isize;
325 		goto found;
326 	}
327 
328 	pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
329 
330 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
331 
332 	for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
333 		set_new_dnode(&dn, inode, NULL, NULL, 0);
334 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
335 		if (err && err != -ENOENT) {
336 			goto fail;
337 		} else if (err == -ENOENT) {
338 			/* direct node does not exists */
339 			if (whence == SEEK_DATA) {
340 				pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
341 							F2FS_I(inode));
342 				continue;
343 			} else {
344 				goto found;
345 			}
346 		}
347 
348 		end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
349 
350 		/* find data/hole in dnode block */
351 		for (; dn.ofs_in_node < end_offset;
352 				dn.ofs_in_node++, pgofs++,
353 				data_ofs = pgofs << PAGE_CACHE_SHIFT) {
354 			block_t blkaddr;
355 			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
356 
357 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
358 				f2fs_put_dnode(&dn);
359 				goto found;
360 			}
361 		}
362 		f2fs_put_dnode(&dn);
363 	}
364 
365 	if (whence == SEEK_DATA)
366 		goto fail;
367 found:
368 	if (whence == SEEK_HOLE && data_ofs > isize)
369 		data_ofs = isize;
370 	mutex_unlock(&inode->i_mutex);
371 	return vfs_setpos(file, data_ofs, maxbytes);
372 fail:
373 	mutex_unlock(&inode->i_mutex);
374 	return -ENXIO;
375 }
376 
377 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
378 {
379 	struct inode *inode = file->f_mapping->host;
380 	loff_t maxbytes = inode->i_sb->s_maxbytes;
381 
382 	switch (whence) {
383 	case SEEK_SET:
384 	case SEEK_CUR:
385 	case SEEK_END:
386 		return generic_file_llseek_size(file, offset, whence,
387 						maxbytes, i_size_read(inode));
388 	case SEEK_DATA:
389 	case SEEK_HOLE:
390 		if (offset < 0)
391 			return -ENXIO;
392 		return f2fs_seek_block(file, offset, whence);
393 	}
394 
395 	return -EINVAL;
396 }
397 
398 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
399 {
400 	struct inode *inode = file_inode(file);
401 
402 	/* we don't need to use inline_data strictly */
403 	if (f2fs_has_inline_data(inode)) {
404 		int err = f2fs_convert_inline_inode(inode);
405 		if (err)
406 			return err;
407 	}
408 
409 	file_accessed(file);
410 	vma->vm_ops = &f2fs_file_vm_ops;
411 	return 0;
412 }
413 
414 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
415 {
416 	int nr_free = 0, ofs = dn->ofs_in_node;
417 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
418 	struct f2fs_node *raw_node;
419 	__le32 *addr;
420 
421 	raw_node = F2FS_NODE(dn->node_page);
422 	addr = blkaddr_in_node(raw_node) + ofs;
423 
424 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
425 		block_t blkaddr = le32_to_cpu(*addr);
426 		if (blkaddr == NULL_ADDR)
427 			continue;
428 
429 		update_extent_cache(NULL_ADDR, dn);
430 		invalidate_blocks(sbi, blkaddr);
431 		nr_free++;
432 	}
433 	if (nr_free) {
434 		dec_valid_block_count(sbi, dn->inode, nr_free);
435 		set_page_dirty(dn->node_page);
436 		sync_inode_page(dn);
437 	}
438 	dn->ofs_in_node = ofs;
439 
440 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
441 					 dn->ofs_in_node, nr_free);
442 	return nr_free;
443 }
444 
445 void truncate_data_blocks(struct dnode_of_data *dn)
446 {
447 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
448 }
449 
450 static int truncate_partial_data_page(struct inode *inode, u64 from)
451 {
452 	unsigned offset = from & (PAGE_CACHE_SIZE - 1);
453 	struct page *page;
454 
455 	if (!offset)
456 		return 0;
457 
458 	page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
459 	if (IS_ERR(page))
460 		return 0;
461 
462 	lock_page(page);
463 	if (unlikely(!PageUptodate(page) ||
464 			page->mapping != inode->i_mapping))
465 		goto out;
466 
467 	f2fs_wait_on_page_writeback(page, DATA);
468 	zero_user(page, offset, PAGE_CACHE_SIZE - offset);
469 	set_page_dirty(page);
470 out:
471 	f2fs_put_page(page, 1);
472 	return 0;
473 }
474 
475 int truncate_blocks(struct inode *inode, u64 from, bool lock)
476 {
477 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
478 	unsigned int blocksize = inode->i_sb->s_blocksize;
479 	struct dnode_of_data dn;
480 	pgoff_t free_from;
481 	int count = 0, err = 0;
482 	struct page *ipage;
483 
484 	trace_f2fs_truncate_blocks_enter(inode, from);
485 
486 	free_from = (pgoff_t)
487 		((from + blocksize - 1) >> (sbi->log_blocksize));
488 
489 	if (lock)
490 		f2fs_lock_op(sbi);
491 
492 	ipage = get_node_page(sbi, inode->i_ino);
493 	if (IS_ERR(ipage)) {
494 		err = PTR_ERR(ipage);
495 		goto out;
496 	}
497 
498 	if (f2fs_has_inline_data(inode)) {
499 		f2fs_put_page(ipage, 1);
500 		goto out;
501 	}
502 
503 	set_new_dnode(&dn, inode, ipage, NULL, 0);
504 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
505 	if (err) {
506 		if (err == -ENOENT)
507 			goto free_next;
508 		goto out;
509 	}
510 
511 	count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
512 
513 	count -= dn.ofs_in_node;
514 	f2fs_bug_on(sbi, count < 0);
515 
516 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
517 		truncate_data_blocks_range(&dn, count);
518 		free_from += count;
519 	}
520 
521 	f2fs_put_dnode(&dn);
522 free_next:
523 	err = truncate_inode_blocks(inode, free_from);
524 out:
525 	if (lock)
526 		f2fs_unlock_op(sbi);
527 
528 	/* lastly zero out the first data page */
529 	if (!err)
530 		err = truncate_partial_data_page(inode, from);
531 
532 	trace_f2fs_truncate_blocks_exit(inode, err);
533 	return err;
534 }
535 
536 void f2fs_truncate(struct inode *inode)
537 {
538 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
539 				S_ISLNK(inode->i_mode)))
540 		return;
541 
542 	trace_f2fs_truncate(inode);
543 
544 	/* we should check inline_data size */
545 	if (f2fs_has_inline_data(inode) && !f2fs_may_inline(inode)) {
546 		if (f2fs_convert_inline_inode(inode))
547 			return;
548 	}
549 
550 	if (!truncate_blocks(inode, i_size_read(inode), true)) {
551 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
552 		mark_inode_dirty(inode);
553 	}
554 }
555 
556 int f2fs_getattr(struct vfsmount *mnt,
557 			 struct dentry *dentry, struct kstat *stat)
558 {
559 	struct inode *inode = dentry->d_inode;
560 	generic_fillattr(inode, stat);
561 	stat->blocks <<= 3;
562 	return 0;
563 }
564 
565 #ifdef CONFIG_F2FS_FS_POSIX_ACL
566 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
567 {
568 	struct f2fs_inode_info *fi = F2FS_I(inode);
569 	unsigned int ia_valid = attr->ia_valid;
570 
571 	if (ia_valid & ATTR_UID)
572 		inode->i_uid = attr->ia_uid;
573 	if (ia_valid & ATTR_GID)
574 		inode->i_gid = attr->ia_gid;
575 	if (ia_valid & ATTR_ATIME)
576 		inode->i_atime = timespec_trunc(attr->ia_atime,
577 						inode->i_sb->s_time_gran);
578 	if (ia_valid & ATTR_MTIME)
579 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
580 						inode->i_sb->s_time_gran);
581 	if (ia_valid & ATTR_CTIME)
582 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
583 						inode->i_sb->s_time_gran);
584 	if (ia_valid & ATTR_MODE) {
585 		umode_t mode = attr->ia_mode;
586 
587 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
588 			mode &= ~S_ISGID;
589 		set_acl_inode(fi, mode);
590 	}
591 }
592 #else
593 #define __setattr_copy setattr_copy
594 #endif
595 
596 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
597 {
598 	struct inode *inode = dentry->d_inode;
599 	struct f2fs_inode_info *fi = F2FS_I(inode);
600 	int err;
601 
602 	err = inode_change_ok(inode, attr);
603 	if (err)
604 		return err;
605 
606 	if (attr->ia_valid & ATTR_SIZE) {
607 		if (attr->ia_size != i_size_read(inode)) {
608 			truncate_setsize(inode, attr->ia_size);
609 			f2fs_truncate(inode);
610 			f2fs_balance_fs(F2FS_I_SB(inode));
611 		} else {
612 			/*
613 			 * giving a chance to truncate blocks past EOF which
614 			 * are fallocated with FALLOC_FL_KEEP_SIZE.
615 			 */
616 			f2fs_truncate(inode);
617 		}
618 	}
619 
620 	__setattr_copy(inode, attr);
621 
622 	if (attr->ia_valid & ATTR_MODE) {
623 		err = posix_acl_chmod(inode, get_inode_mode(inode));
624 		if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
625 			inode->i_mode = fi->i_acl_mode;
626 			clear_inode_flag(fi, FI_ACL_MODE);
627 		}
628 	}
629 
630 	mark_inode_dirty(inode);
631 	return err;
632 }
633 
634 const struct inode_operations f2fs_file_inode_operations = {
635 	.getattr	= f2fs_getattr,
636 	.setattr	= f2fs_setattr,
637 	.get_acl	= f2fs_get_acl,
638 	.set_acl	= f2fs_set_acl,
639 #ifdef CONFIG_F2FS_FS_XATTR
640 	.setxattr	= generic_setxattr,
641 	.getxattr	= generic_getxattr,
642 	.listxattr	= f2fs_listxattr,
643 	.removexattr	= generic_removexattr,
644 #endif
645 	.fiemap		= f2fs_fiemap,
646 };
647 
648 static void fill_zero(struct inode *inode, pgoff_t index,
649 					loff_t start, loff_t len)
650 {
651 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
652 	struct page *page;
653 
654 	if (!len)
655 		return;
656 
657 	f2fs_balance_fs(sbi);
658 
659 	f2fs_lock_op(sbi);
660 	page = get_new_data_page(inode, NULL, index, false);
661 	f2fs_unlock_op(sbi);
662 
663 	if (!IS_ERR(page)) {
664 		f2fs_wait_on_page_writeback(page, DATA);
665 		zero_user(page, start, len);
666 		set_page_dirty(page);
667 		f2fs_put_page(page, 1);
668 	}
669 }
670 
671 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
672 {
673 	pgoff_t index;
674 	int err;
675 
676 	for (index = pg_start; index < pg_end; index++) {
677 		struct dnode_of_data dn;
678 
679 		set_new_dnode(&dn, inode, NULL, NULL, 0);
680 		err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
681 		if (err) {
682 			if (err == -ENOENT)
683 				continue;
684 			return err;
685 		}
686 
687 		if (dn.data_blkaddr != NULL_ADDR)
688 			truncate_data_blocks_range(&dn, 1);
689 		f2fs_put_dnode(&dn);
690 	}
691 	return 0;
692 }
693 
694 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
695 {
696 	pgoff_t pg_start, pg_end;
697 	loff_t off_start, off_end;
698 	int ret = 0;
699 
700 	if (!S_ISREG(inode->i_mode))
701 		return -EOPNOTSUPP;
702 
703 	/* skip punching hole beyond i_size */
704 	if (offset >= inode->i_size)
705 		return ret;
706 
707 	if (f2fs_has_inline_data(inode)) {
708 		ret = f2fs_convert_inline_inode(inode);
709 		if (ret)
710 			return ret;
711 	}
712 
713 	pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
714 	pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
715 
716 	off_start = offset & (PAGE_CACHE_SIZE - 1);
717 	off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
718 
719 	if (pg_start == pg_end) {
720 		fill_zero(inode, pg_start, off_start,
721 						off_end - off_start);
722 	} else {
723 		if (off_start)
724 			fill_zero(inode, pg_start++, off_start,
725 					PAGE_CACHE_SIZE - off_start);
726 		if (off_end)
727 			fill_zero(inode, pg_end, 0, off_end);
728 
729 		if (pg_start < pg_end) {
730 			struct address_space *mapping = inode->i_mapping;
731 			loff_t blk_start, blk_end;
732 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
733 
734 			f2fs_balance_fs(sbi);
735 
736 			blk_start = pg_start << PAGE_CACHE_SHIFT;
737 			blk_end = pg_end << PAGE_CACHE_SHIFT;
738 			truncate_inode_pages_range(mapping, blk_start,
739 					blk_end - 1);
740 
741 			f2fs_lock_op(sbi);
742 			ret = truncate_hole(inode, pg_start, pg_end);
743 			f2fs_unlock_op(sbi);
744 		}
745 	}
746 
747 	return ret;
748 }
749 
750 static int expand_inode_data(struct inode *inode, loff_t offset,
751 					loff_t len, int mode)
752 {
753 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
754 	pgoff_t index, pg_start, pg_end;
755 	loff_t new_size = i_size_read(inode);
756 	loff_t off_start, off_end;
757 	int ret = 0;
758 
759 	f2fs_balance_fs(sbi);
760 
761 	ret = inode_newsize_ok(inode, (len + offset));
762 	if (ret)
763 		return ret;
764 
765 	if (f2fs_has_inline_data(inode)) {
766 		ret = f2fs_convert_inline_inode(inode);
767 		if (ret)
768 			return ret;
769 	}
770 
771 	pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
772 	pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
773 
774 	off_start = offset & (PAGE_CACHE_SIZE - 1);
775 	off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
776 
777 	f2fs_lock_op(sbi);
778 
779 	for (index = pg_start; index <= pg_end; index++) {
780 		struct dnode_of_data dn;
781 
782 		if (index == pg_end && !off_end)
783 			goto noalloc;
784 
785 		set_new_dnode(&dn, inode, NULL, NULL, 0);
786 		ret = f2fs_reserve_block(&dn, index);
787 		if (ret)
788 			break;
789 noalloc:
790 		if (pg_start == pg_end)
791 			new_size = offset + len;
792 		else if (index == pg_start && off_start)
793 			new_size = (index + 1) << PAGE_CACHE_SHIFT;
794 		else if (index == pg_end)
795 			new_size = (index << PAGE_CACHE_SHIFT) + off_end;
796 		else
797 			new_size += PAGE_CACHE_SIZE;
798 	}
799 
800 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
801 		i_size_read(inode) < new_size) {
802 		i_size_write(inode, new_size);
803 		mark_inode_dirty(inode);
804 		update_inode_page(inode);
805 	}
806 	f2fs_unlock_op(sbi);
807 
808 	return ret;
809 }
810 
811 static long f2fs_fallocate(struct file *file, int mode,
812 				loff_t offset, loff_t len)
813 {
814 	struct inode *inode = file_inode(file);
815 	long ret;
816 
817 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
818 		return -EOPNOTSUPP;
819 
820 	mutex_lock(&inode->i_mutex);
821 
822 	if (mode & FALLOC_FL_PUNCH_HOLE)
823 		ret = punch_hole(inode, offset, len);
824 	else
825 		ret = expand_inode_data(inode, offset, len, mode);
826 
827 	if (!ret) {
828 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
829 		mark_inode_dirty(inode);
830 	}
831 
832 	mutex_unlock(&inode->i_mutex);
833 
834 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
835 	return ret;
836 }
837 
838 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
839 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
840 
841 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
842 {
843 	if (S_ISDIR(mode))
844 		return flags;
845 	else if (S_ISREG(mode))
846 		return flags & F2FS_REG_FLMASK;
847 	else
848 		return flags & F2FS_OTHER_FLMASK;
849 }
850 
851 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
852 {
853 	struct inode *inode = file_inode(filp);
854 	struct f2fs_inode_info *fi = F2FS_I(inode);
855 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
856 	return put_user(flags, (int __user *)arg);
857 }
858 
859 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
860 {
861 	struct inode *inode = file_inode(filp);
862 	struct f2fs_inode_info *fi = F2FS_I(inode);
863 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
864 	unsigned int oldflags;
865 	int ret;
866 
867 	ret = mnt_want_write_file(filp);
868 	if (ret)
869 		return ret;
870 
871 	if (!inode_owner_or_capable(inode)) {
872 		ret = -EACCES;
873 		goto out;
874 	}
875 
876 	if (get_user(flags, (int __user *)arg)) {
877 		ret = -EFAULT;
878 		goto out;
879 	}
880 
881 	flags = f2fs_mask_flags(inode->i_mode, flags);
882 
883 	mutex_lock(&inode->i_mutex);
884 
885 	oldflags = fi->i_flags;
886 
887 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
888 		if (!capable(CAP_LINUX_IMMUTABLE)) {
889 			mutex_unlock(&inode->i_mutex);
890 			ret = -EPERM;
891 			goto out;
892 		}
893 	}
894 
895 	flags = flags & FS_FL_USER_MODIFIABLE;
896 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
897 	fi->i_flags = flags;
898 	mutex_unlock(&inode->i_mutex);
899 
900 	f2fs_set_inode_flags(inode);
901 	inode->i_ctime = CURRENT_TIME;
902 	mark_inode_dirty(inode);
903 out:
904 	mnt_drop_write_file(filp);
905 	return ret;
906 }
907 
908 static int f2fs_ioc_start_atomic_write(struct file *filp)
909 {
910 	struct inode *inode = file_inode(filp);
911 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
912 
913 	if (!inode_owner_or_capable(inode))
914 		return -EACCES;
915 
916 	f2fs_balance_fs(sbi);
917 
918 	set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
919 
920 	return f2fs_convert_inline_inode(inode);
921 }
922 
923 static int f2fs_release_file(struct inode *inode, struct file *filp)
924 {
925 	/* some remained atomic pages should discarded */
926 	if (f2fs_is_atomic_file(inode) || f2fs_is_volatile_file(inode))
927 		commit_inmem_pages(inode, true);
928 	return 0;
929 }
930 
931 static int f2fs_ioc_commit_atomic_write(struct file *filp)
932 {
933 	struct inode *inode = file_inode(filp);
934 	int ret;
935 
936 	if (!inode_owner_or_capable(inode))
937 		return -EACCES;
938 
939 	if (f2fs_is_volatile_file(inode))
940 		return 0;
941 
942 	ret = mnt_want_write_file(filp);
943 	if (ret)
944 		return ret;
945 
946 	if (f2fs_is_atomic_file(inode))
947 		commit_inmem_pages(inode, false);
948 
949 	ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
950 	mnt_drop_write_file(filp);
951 	return ret;
952 }
953 
954 static int f2fs_ioc_start_volatile_write(struct file *filp)
955 {
956 	struct inode *inode = file_inode(filp);
957 
958 	if (!inode_owner_or_capable(inode))
959 		return -EACCES;
960 
961 	set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
962 
963 	return f2fs_convert_inline_inode(inode);
964 }
965 
966 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
967 {
968 	struct inode *inode = file_inode(filp);
969 	struct super_block *sb = inode->i_sb;
970 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
971 	struct fstrim_range range;
972 	int ret;
973 
974 	if (!capable(CAP_SYS_ADMIN))
975 		return -EPERM;
976 
977 	if (!blk_queue_discard(q))
978 		return -EOPNOTSUPP;
979 
980 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
981 				sizeof(range)))
982 		return -EFAULT;
983 
984 	range.minlen = max((unsigned int)range.minlen,
985 				q->limits.discard_granularity);
986 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
987 	if (ret < 0)
988 		return ret;
989 
990 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
991 				sizeof(range)))
992 		return -EFAULT;
993 	return 0;
994 }
995 
996 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
997 {
998 	switch (cmd) {
999 	case F2FS_IOC_GETFLAGS:
1000 		return f2fs_ioc_getflags(filp, arg);
1001 	case F2FS_IOC_SETFLAGS:
1002 		return f2fs_ioc_setflags(filp, arg);
1003 	case F2FS_IOC_START_ATOMIC_WRITE:
1004 		return f2fs_ioc_start_atomic_write(filp);
1005 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1006 		return f2fs_ioc_commit_atomic_write(filp);
1007 	case F2FS_IOC_START_VOLATILE_WRITE:
1008 		return f2fs_ioc_start_volatile_write(filp);
1009 	case FITRIM:
1010 		return f2fs_ioc_fitrim(filp, arg);
1011 	default:
1012 		return -ENOTTY;
1013 	}
1014 }
1015 
1016 #ifdef CONFIG_COMPAT
1017 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1018 {
1019 	switch (cmd) {
1020 	case F2FS_IOC32_GETFLAGS:
1021 		cmd = F2FS_IOC_GETFLAGS;
1022 		break;
1023 	case F2FS_IOC32_SETFLAGS:
1024 		cmd = F2FS_IOC_SETFLAGS;
1025 		break;
1026 	default:
1027 		return -ENOIOCTLCMD;
1028 	}
1029 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1030 }
1031 #endif
1032 
1033 const struct file_operations f2fs_file_operations = {
1034 	.llseek		= f2fs_llseek,
1035 	.read		= new_sync_read,
1036 	.write		= new_sync_write,
1037 	.read_iter	= generic_file_read_iter,
1038 	.write_iter	= generic_file_write_iter,
1039 	.open		= generic_file_open,
1040 	.release	= f2fs_release_file,
1041 	.mmap		= f2fs_file_mmap,
1042 	.fsync		= f2fs_sync_file,
1043 	.fallocate	= f2fs_fallocate,
1044 	.unlocked_ioctl	= f2fs_ioctl,
1045 #ifdef CONFIG_COMPAT
1046 	.compat_ioctl	= f2fs_compat_ioctl,
1047 #endif
1048 	.splice_read	= generic_file_splice_read,
1049 	.splice_write	= iter_file_splice_write,
1050 };
1051