xref: /linux/fs/f2fs/f2fs.h (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 
21 /*
22  * For mount options
23  */
24 #define F2FS_MOUNT_BG_GC		0x00000001
25 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
26 #define F2FS_MOUNT_DISCARD		0x00000004
27 #define F2FS_MOUNT_NOHEAP		0x00000008
28 #define F2FS_MOUNT_XATTR_USER		0x00000010
29 #define F2FS_MOUNT_POSIX_ACL		0x00000020
30 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
31 
32 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
33 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
34 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
35 
36 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
37 		typecheck(unsigned long long, b) &&			\
38 		((long long)((a) - (b)) > 0))
39 
40 typedef u32 block_t;	/*
41 			 * should not change u32, since it is the on-disk block
42 			 * address format, __le32.
43 			 */
44 typedef u32 nid_t;
45 
46 struct f2fs_mount_info {
47 	unsigned int	opt;
48 };
49 
50 #define CRCPOLY_LE 0xedb88320
51 
52 static inline __u32 f2fs_crc32(void *buf, size_t len)
53 {
54 	unsigned char *p = (unsigned char *)buf;
55 	__u32 crc = F2FS_SUPER_MAGIC;
56 	int i;
57 
58 	while (len--) {
59 		crc ^= *p++;
60 		for (i = 0; i < 8; i++)
61 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
62 	}
63 	return crc;
64 }
65 
66 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
67 {
68 	return f2fs_crc32(buf, buf_size) == blk_crc;
69 }
70 
71 /*
72  * For checkpoint manager
73  */
74 enum {
75 	NAT_BITMAP,
76 	SIT_BITMAP
77 };
78 
79 /* for the list of orphan inodes */
80 struct orphan_inode_entry {
81 	struct list_head list;	/* list head */
82 	nid_t ino;		/* inode number */
83 };
84 
85 /* for the list of directory inodes */
86 struct dir_inode_entry {
87 	struct list_head list;	/* list head */
88 	struct inode *inode;	/* vfs inode pointer */
89 };
90 
91 /* for the list of fsync inodes, used only during recovery */
92 struct fsync_inode_entry {
93 	struct list_head list;	/* list head */
94 	struct inode *inode;	/* vfs inode pointer */
95 	block_t blkaddr;	/* block address locating the last inode */
96 };
97 
98 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
99 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
100 
101 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
102 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
103 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
104 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
105 
106 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
107 {
108 	int before = nats_in_cursum(rs);
109 	rs->n_nats = cpu_to_le16(before + i);
110 	return before;
111 }
112 
113 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
114 {
115 	int before = sits_in_cursum(rs);
116 	rs->n_sits = cpu_to_le16(before + i);
117 	return before;
118 }
119 
120 /*
121  * ioctl commands
122  */
123 #define F2FS_IOC_GETFLAGS               FS_IOC_GETFLAGS
124 #define F2FS_IOC_SETFLAGS               FS_IOC_SETFLAGS
125 
126 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
127 /*
128  * ioctl commands in 32 bit emulation
129  */
130 #define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
131 #define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
132 #endif
133 
134 /*
135  * For INODE and NODE manager
136  */
137 #define XATTR_NODE_OFFSET	(-1)	/*
138 					 * store xattrs to one node block per
139 					 * file keeping -1 as its node offset to
140 					 * distinguish from index node blocks.
141 					 */
142 enum {
143 	ALLOC_NODE,			/* allocate a new node page if needed */
144 	LOOKUP_NODE,			/* look up a node without readahead */
145 	LOOKUP_NODE_RA,			/*
146 					 * look up a node with readahead called
147 					 * by get_datablock_ro.
148 					 */
149 };
150 
151 #define F2FS_LINK_MAX		32000	/* maximum link count per file */
152 
153 /* for in-memory extent cache entry */
154 struct extent_info {
155 	rwlock_t ext_lock;	/* rwlock for consistency */
156 	unsigned int fofs;	/* start offset in a file */
157 	u32 blk_addr;		/* start block address of the extent */
158 	unsigned int len;	/* length of the extent */
159 };
160 
161 /*
162  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
163  */
164 #define FADVISE_COLD_BIT	0x01
165 #define FADVISE_LOST_PINO_BIT	0x02
166 
167 struct f2fs_inode_info {
168 	struct inode vfs_inode;		/* serve a vfs inode */
169 	unsigned long i_flags;		/* keep an inode flags for ioctl */
170 	unsigned char i_advise;		/* use to give file attribute hints */
171 	unsigned int i_current_depth;	/* use only in directory structure */
172 	unsigned int i_pino;		/* parent inode number */
173 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
174 
175 	/* Use below internally in f2fs*/
176 	unsigned long flags;		/* use to pass per-file flags */
177 	atomic_t dirty_dents;		/* # of dirty dentry pages */
178 	f2fs_hash_t chash;		/* hash value of given file name */
179 	unsigned int clevel;		/* maximum level of given file name */
180 	nid_t i_xattr_nid;		/* node id that contains xattrs */
181 	struct extent_info ext;		/* in-memory extent cache entry */
182 };
183 
184 static inline void get_extent_info(struct extent_info *ext,
185 					struct f2fs_extent i_ext)
186 {
187 	write_lock(&ext->ext_lock);
188 	ext->fofs = le32_to_cpu(i_ext.fofs);
189 	ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
190 	ext->len = le32_to_cpu(i_ext.len);
191 	write_unlock(&ext->ext_lock);
192 }
193 
194 static inline void set_raw_extent(struct extent_info *ext,
195 					struct f2fs_extent *i_ext)
196 {
197 	read_lock(&ext->ext_lock);
198 	i_ext->fofs = cpu_to_le32(ext->fofs);
199 	i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
200 	i_ext->len = cpu_to_le32(ext->len);
201 	read_unlock(&ext->ext_lock);
202 }
203 
204 struct f2fs_nm_info {
205 	block_t nat_blkaddr;		/* base disk address of NAT */
206 	nid_t max_nid;			/* maximum possible node ids */
207 	nid_t next_scan_nid;		/* the next nid to be scanned */
208 
209 	/* NAT cache management */
210 	struct radix_tree_root nat_root;/* root of the nat entry cache */
211 	rwlock_t nat_tree_lock;		/* protect nat_tree_lock */
212 	unsigned int nat_cnt;		/* the # of cached nat entries */
213 	struct list_head nat_entries;	/* cached nat entry list (clean) */
214 	struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */
215 
216 	/* free node ids management */
217 	struct list_head free_nid_list;	/* a list for free nids */
218 	spinlock_t free_nid_list_lock;	/* protect free nid list */
219 	unsigned int fcnt;		/* the number of free node id */
220 	struct mutex build_lock;	/* lock for build free nids */
221 
222 	/* for checkpoint */
223 	char *nat_bitmap;		/* NAT bitmap pointer */
224 	int bitmap_size;		/* bitmap size */
225 };
226 
227 /*
228  * this structure is used as one of function parameters.
229  * all the information are dedicated to a given direct node block determined
230  * by the data offset in a file.
231  */
232 struct dnode_of_data {
233 	struct inode *inode;		/* vfs inode pointer */
234 	struct page *inode_page;	/* its inode page, NULL is possible */
235 	struct page *node_page;		/* cached direct node page */
236 	nid_t nid;			/* node id of the direct node block */
237 	unsigned int ofs_in_node;	/* data offset in the node page */
238 	bool inode_page_locked;		/* inode page is locked or not */
239 	block_t	data_blkaddr;		/* block address of the node block */
240 };
241 
242 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
243 		struct page *ipage, struct page *npage, nid_t nid)
244 {
245 	memset(dn, 0, sizeof(*dn));
246 	dn->inode = inode;
247 	dn->inode_page = ipage;
248 	dn->node_page = npage;
249 	dn->nid = nid;
250 }
251 
252 /*
253  * For SIT manager
254  *
255  * By default, there are 6 active log areas across the whole main area.
256  * When considering hot and cold data separation to reduce cleaning overhead,
257  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
258  * respectively.
259  * In the current design, you should not change the numbers intentionally.
260  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
261  * logs individually according to the underlying devices. (default: 6)
262  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
263  * data and 8 for node logs.
264  */
265 #define	NR_CURSEG_DATA_TYPE	(3)
266 #define NR_CURSEG_NODE_TYPE	(3)
267 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
268 
269 enum {
270 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
271 	CURSEG_WARM_DATA,	/* data blocks */
272 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
273 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
274 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
275 	CURSEG_COLD_NODE,	/* indirect node blocks */
276 	NO_CHECK_TYPE
277 };
278 
279 struct f2fs_sm_info {
280 	struct sit_info *sit_info;		/* whole segment information */
281 	struct free_segmap_info *free_info;	/* free segment information */
282 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
283 	struct curseg_info *curseg_array;	/* active segment information */
284 
285 	struct list_head wblist_head;	/* list of under-writeback pages */
286 	spinlock_t wblist_lock;		/* lock for checkpoint */
287 
288 	block_t seg0_blkaddr;		/* block address of 0'th segment */
289 	block_t main_blkaddr;		/* start block address of main area */
290 	block_t ssa_blkaddr;		/* start block address of SSA area */
291 
292 	unsigned int segment_count;	/* total # of segments */
293 	unsigned int main_segments;	/* # of segments in main area */
294 	unsigned int reserved_segments;	/* # of reserved segments */
295 	unsigned int ovp_segments;	/* # of overprovision segments */
296 };
297 
298 /*
299  * For directory operation
300  */
301 #define	NODE_DIR1_BLOCK		(ADDRS_PER_INODE + 1)
302 #define	NODE_DIR2_BLOCK		(ADDRS_PER_INODE + 2)
303 #define	NODE_IND1_BLOCK		(ADDRS_PER_INODE + 3)
304 #define	NODE_IND2_BLOCK		(ADDRS_PER_INODE + 4)
305 #define	NODE_DIND_BLOCK		(ADDRS_PER_INODE + 5)
306 
307 /*
308  * For superblock
309  */
310 /*
311  * COUNT_TYPE for monitoring
312  *
313  * f2fs monitors the number of several block types such as on-writeback,
314  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
315  */
316 enum count_type {
317 	F2FS_WRITEBACK,
318 	F2FS_DIRTY_DENTS,
319 	F2FS_DIRTY_NODES,
320 	F2FS_DIRTY_META,
321 	NR_COUNT_TYPE,
322 };
323 
324 /*
325  * Uses as sbi->fs_lock[NR_GLOBAL_LOCKS].
326  * The checkpoint procedure blocks all the locks in this fs_lock array.
327  * Some FS operations grab free locks, and if there is no free lock,
328  * then wait to grab a lock in a round-robin manner.
329  */
330 #define NR_GLOBAL_LOCKS	8
331 
332 /*
333  * The below are the page types of bios used in submti_bio().
334  * The available types are:
335  * DATA			User data pages. It operates as async mode.
336  * NODE			Node pages. It operates as async mode.
337  * META			FS metadata pages such as SIT, NAT, CP.
338  * NR_PAGE_TYPE		The number of page types.
339  * META_FLUSH		Make sure the previous pages are written
340  *			with waiting the bio's completion
341  * ...			Only can be used with META.
342  */
343 enum page_type {
344 	DATA,
345 	NODE,
346 	META,
347 	NR_PAGE_TYPE,
348 	META_FLUSH,
349 };
350 
351 struct f2fs_sb_info {
352 	struct super_block *sb;			/* pointer to VFS super block */
353 	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
354 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
355 	int s_dirty;				/* dirty flag for checkpoint */
356 
357 	/* for node-related operations */
358 	struct f2fs_nm_info *nm_info;		/* node manager */
359 	struct inode *node_inode;		/* cache node blocks */
360 
361 	/* for segment-related operations */
362 	struct f2fs_sm_info *sm_info;		/* segment manager */
363 	struct bio *bio[NR_PAGE_TYPE];		/* bios to merge */
364 	sector_t last_block_in_bio[NR_PAGE_TYPE];	/* last block number */
365 	struct rw_semaphore bio_sem;		/* IO semaphore */
366 
367 	/* for checkpoint */
368 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
369 	struct inode *meta_inode;		/* cache meta blocks */
370 	struct mutex cp_mutex;			/* checkpoint procedure lock */
371 	struct mutex fs_lock[NR_GLOBAL_LOCKS];	/* blocking FS operations */
372 	struct mutex node_write;		/* locking node writes */
373 	struct mutex writepages;		/* mutex for writepages() */
374 	unsigned char next_lock_num;		/* round-robin global locks */
375 	int por_doing;				/* recovery is doing or not */
376 	int on_build_free_nids;			/* build_free_nids is doing */
377 
378 	/* for orphan inode management */
379 	struct list_head orphan_inode_list;	/* orphan inode list */
380 	struct mutex orphan_inode_mutex;	/* for orphan inode list */
381 	unsigned int n_orphans;			/* # of orphan inodes */
382 
383 	/* for directory inode management */
384 	struct list_head dir_inode_list;	/* dir inode list */
385 	spinlock_t dir_inode_lock;		/* for dir inode list lock */
386 
387 	/* basic file system units */
388 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
389 	unsigned int log_blocksize;		/* log2 block size */
390 	unsigned int blocksize;			/* block size */
391 	unsigned int root_ino_num;		/* root inode number*/
392 	unsigned int node_ino_num;		/* node inode number*/
393 	unsigned int meta_ino_num;		/* meta inode number*/
394 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
395 	unsigned int blocks_per_seg;		/* blocks per segment */
396 	unsigned int segs_per_sec;		/* segments per section */
397 	unsigned int secs_per_zone;		/* sections per zone */
398 	unsigned int total_sections;		/* total section count */
399 	unsigned int total_node_count;		/* total node block count */
400 	unsigned int total_valid_node_count;	/* valid node block count */
401 	unsigned int total_valid_inode_count;	/* valid inode count */
402 	int active_logs;			/* # of active logs */
403 
404 	block_t user_block_count;		/* # of user blocks */
405 	block_t total_valid_block_count;	/* # of valid blocks */
406 	block_t alloc_valid_block_count;	/* # of allocated blocks */
407 	block_t last_valid_block_count;		/* for recovery */
408 	u32 s_next_generation;			/* for NFS support */
409 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
410 
411 	struct f2fs_mount_info mount_opt;	/* mount options */
412 
413 	/* for cleaning operations */
414 	struct mutex gc_mutex;			/* mutex for GC */
415 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
416 	unsigned int cur_victim_sec;		/* current victim section num */
417 
418 	/*
419 	 * for stat information.
420 	 * one is for the LFS mode, and the other is for the SSR mode.
421 	 */
422 #ifdef CONFIG_F2FS_STAT_FS
423 	struct f2fs_stat_info *stat_info;	/* FS status information */
424 	unsigned int segment_count[2];		/* # of allocated segments */
425 	unsigned int block_count[2];		/* # of allocated blocks */
426 	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
427 	int bg_gc;				/* background gc calls */
428 	unsigned int n_dirty_dirs;		/* # of dir inodes */
429 #endif
430 	unsigned int last_victim[2];		/* last victim segment # */
431 	spinlock_t stat_lock;			/* lock for stat operations */
432 };
433 
434 /*
435  * Inline functions
436  */
437 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
438 {
439 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
440 }
441 
442 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
443 {
444 	return sb->s_fs_info;
445 }
446 
447 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
448 {
449 	return (struct f2fs_super_block *)(sbi->raw_super);
450 }
451 
452 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
453 {
454 	return (struct f2fs_checkpoint *)(sbi->ckpt);
455 }
456 
457 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
458 {
459 	return (struct f2fs_nm_info *)(sbi->nm_info);
460 }
461 
462 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
463 {
464 	return (struct f2fs_sm_info *)(sbi->sm_info);
465 }
466 
467 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
468 {
469 	return (struct sit_info *)(SM_I(sbi)->sit_info);
470 }
471 
472 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
473 {
474 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
475 }
476 
477 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
478 {
479 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
480 }
481 
482 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
483 {
484 	sbi->s_dirty = 1;
485 }
486 
487 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
488 {
489 	sbi->s_dirty = 0;
490 }
491 
492 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
493 {
494 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
495 	return ckpt_flags & f;
496 }
497 
498 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
499 {
500 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
501 	ckpt_flags |= f;
502 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
503 }
504 
505 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
506 {
507 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
508 	ckpt_flags &= (~f);
509 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
510 }
511 
512 static inline void mutex_lock_all(struct f2fs_sb_info *sbi)
513 {
514 	int i;
515 
516 	for (i = 0; i < NR_GLOBAL_LOCKS; i++) {
517 		/*
518 		 * This is the only time we take multiple fs_lock[]
519 		 * instances; the order is immaterial since we
520 		 * always hold cp_mutex, which serializes multiple
521 		 * such operations.
522 		 */
523 		mutex_lock_nest_lock(&sbi->fs_lock[i], &sbi->cp_mutex);
524 	}
525 }
526 
527 static inline void mutex_unlock_all(struct f2fs_sb_info *sbi)
528 {
529 	int i = 0;
530 	for (; i < NR_GLOBAL_LOCKS; i++)
531 		mutex_unlock(&sbi->fs_lock[i]);
532 }
533 
534 static inline int mutex_lock_op(struct f2fs_sb_info *sbi)
535 {
536 	unsigned char next_lock = sbi->next_lock_num % NR_GLOBAL_LOCKS;
537 	int i = 0;
538 
539 	for (; i < NR_GLOBAL_LOCKS; i++)
540 		if (mutex_trylock(&sbi->fs_lock[i]))
541 			return i;
542 
543 	mutex_lock(&sbi->fs_lock[next_lock]);
544 	sbi->next_lock_num++;
545 	return next_lock;
546 }
547 
548 static inline void mutex_unlock_op(struct f2fs_sb_info *sbi, int ilock)
549 {
550 	if (ilock < 0)
551 		return;
552 	BUG_ON(ilock >= NR_GLOBAL_LOCKS);
553 	mutex_unlock(&sbi->fs_lock[ilock]);
554 }
555 
556 /*
557  * Check whether the given nid is within node id range.
558  */
559 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
560 {
561 	WARN_ON((nid >= NM_I(sbi)->max_nid));
562 	if (nid >= NM_I(sbi)->max_nid)
563 		return -EINVAL;
564 	return 0;
565 }
566 
567 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
568 
569 /*
570  * Check whether the inode has blocks or not
571  */
572 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
573 {
574 	if (F2FS_I(inode)->i_xattr_nid)
575 		return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1);
576 	else
577 		return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS);
578 }
579 
580 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
581 				 struct inode *inode, blkcnt_t count)
582 {
583 	block_t	valid_block_count;
584 
585 	spin_lock(&sbi->stat_lock);
586 	valid_block_count =
587 		sbi->total_valid_block_count + (block_t)count;
588 	if (valid_block_count > sbi->user_block_count) {
589 		spin_unlock(&sbi->stat_lock);
590 		return false;
591 	}
592 	inode->i_blocks += count;
593 	sbi->total_valid_block_count = valid_block_count;
594 	sbi->alloc_valid_block_count += (block_t)count;
595 	spin_unlock(&sbi->stat_lock);
596 	return true;
597 }
598 
599 static inline int dec_valid_block_count(struct f2fs_sb_info *sbi,
600 						struct inode *inode,
601 						blkcnt_t count)
602 {
603 	spin_lock(&sbi->stat_lock);
604 	BUG_ON(sbi->total_valid_block_count < (block_t) count);
605 	BUG_ON(inode->i_blocks < count);
606 	inode->i_blocks -= count;
607 	sbi->total_valid_block_count -= (block_t)count;
608 	spin_unlock(&sbi->stat_lock);
609 	return 0;
610 }
611 
612 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
613 {
614 	atomic_inc(&sbi->nr_pages[count_type]);
615 	F2FS_SET_SB_DIRT(sbi);
616 }
617 
618 static inline void inode_inc_dirty_dents(struct inode *inode)
619 {
620 	atomic_inc(&F2FS_I(inode)->dirty_dents);
621 }
622 
623 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
624 {
625 	atomic_dec(&sbi->nr_pages[count_type]);
626 }
627 
628 static inline void inode_dec_dirty_dents(struct inode *inode)
629 {
630 	atomic_dec(&F2FS_I(inode)->dirty_dents);
631 }
632 
633 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
634 {
635 	return atomic_read(&sbi->nr_pages[count_type]);
636 }
637 
638 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
639 {
640 	unsigned int pages_per_sec = sbi->segs_per_sec *
641 					(1 << sbi->log_blocks_per_seg);
642 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
643 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
644 }
645 
646 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
647 {
648 	block_t ret;
649 	spin_lock(&sbi->stat_lock);
650 	ret = sbi->total_valid_block_count;
651 	spin_unlock(&sbi->stat_lock);
652 	return ret;
653 }
654 
655 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
656 {
657 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
658 
659 	/* return NAT or SIT bitmap */
660 	if (flag == NAT_BITMAP)
661 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
662 	else if (flag == SIT_BITMAP)
663 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
664 
665 	return 0;
666 }
667 
668 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
669 {
670 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
671 	int offset = (flag == NAT_BITMAP) ?
672 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
673 	return &ckpt->sit_nat_version_bitmap + offset;
674 }
675 
676 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
677 {
678 	block_t start_addr;
679 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
680 	unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver);
681 
682 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
683 
684 	/*
685 	 * odd numbered checkpoint should at cp segment 0
686 	 * and even segent must be at cp segment 1
687 	 */
688 	if (!(ckpt_version & 1))
689 		start_addr += sbi->blocks_per_seg;
690 
691 	return start_addr;
692 }
693 
694 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
695 {
696 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
697 }
698 
699 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
700 						struct inode *inode,
701 						unsigned int count)
702 {
703 	block_t	valid_block_count;
704 	unsigned int valid_node_count;
705 
706 	spin_lock(&sbi->stat_lock);
707 
708 	valid_block_count = sbi->total_valid_block_count + (block_t)count;
709 	sbi->alloc_valid_block_count += (block_t)count;
710 	valid_node_count = sbi->total_valid_node_count + count;
711 
712 	if (valid_block_count > sbi->user_block_count) {
713 		spin_unlock(&sbi->stat_lock);
714 		return false;
715 	}
716 
717 	if (valid_node_count > sbi->total_node_count) {
718 		spin_unlock(&sbi->stat_lock);
719 		return false;
720 	}
721 
722 	if (inode)
723 		inode->i_blocks += count;
724 	sbi->total_valid_node_count = valid_node_count;
725 	sbi->total_valid_block_count = valid_block_count;
726 	spin_unlock(&sbi->stat_lock);
727 
728 	return true;
729 }
730 
731 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
732 						struct inode *inode,
733 						unsigned int count)
734 {
735 	spin_lock(&sbi->stat_lock);
736 
737 	BUG_ON(sbi->total_valid_block_count < count);
738 	BUG_ON(sbi->total_valid_node_count < count);
739 	BUG_ON(inode->i_blocks < count);
740 
741 	inode->i_blocks -= count;
742 	sbi->total_valid_node_count -= count;
743 	sbi->total_valid_block_count -= (block_t)count;
744 
745 	spin_unlock(&sbi->stat_lock);
746 }
747 
748 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
749 {
750 	unsigned int ret;
751 	spin_lock(&sbi->stat_lock);
752 	ret = sbi->total_valid_node_count;
753 	spin_unlock(&sbi->stat_lock);
754 	return ret;
755 }
756 
757 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
758 {
759 	spin_lock(&sbi->stat_lock);
760 	BUG_ON(sbi->total_valid_inode_count == sbi->total_node_count);
761 	sbi->total_valid_inode_count++;
762 	spin_unlock(&sbi->stat_lock);
763 }
764 
765 static inline int dec_valid_inode_count(struct f2fs_sb_info *sbi)
766 {
767 	spin_lock(&sbi->stat_lock);
768 	BUG_ON(!sbi->total_valid_inode_count);
769 	sbi->total_valid_inode_count--;
770 	spin_unlock(&sbi->stat_lock);
771 	return 0;
772 }
773 
774 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
775 {
776 	unsigned int ret;
777 	spin_lock(&sbi->stat_lock);
778 	ret = sbi->total_valid_inode_count;
779 	spin_unlock(&sbi->stat_lock);
780 	return ret;
781 }
782 
783 static inline void f2fs_put_page(struct page *page, int unlock)
784 {
785 	if (!page || IS_ERR(page))
786 		return;
787 
788 	if (unlock) {
789 		BUG_ON(!PageLocked(page));
790 		unlock_page(page);
791 	}
792 	page_cache_release(page);
793 }
794 
795 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
796 {
797 	if (dn->node_page)
798 		f2fs_put_page(dn->node_page, 1);
799 	if (dn->inode_page && dn->node_page != dn->inode_page)
800 		f2fs_put_page(dn->inode_page, 0);
801 	dn->node_page = NULL;
802 	dn->inode_page = NULL;
803 }
804 
805 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
806 					size_t size, void (*ctor)(void *))
807 {
808 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, ctor);
809 }
810 
811 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
812 
813 static inline bool IS_INODE(struct page *page)
814 {
815 	struct f2fs_node *p = (struct f2fs_node *)page_address(page);
816 	return RAW_IS_INODE(p);
817 }
818 
819 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
820 {
821 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
822 }
823 
824 static inline block_t datablock_addr(struct page *node_page,
825 		unsigned int offset)
826 {
827 	struct f2fs_node *raw_node;
828 	__le32 *addr_array;
829 	raw_node = (struct f2fs_node *)page_address(node_page);
830 	addr_array = blkaddr_in_node(raw_node);
831 	return le32_to_cpu(addr_array[offset]);
832 }
833 
834 static inline int f2fs_test_bit(unsigned int nr, char *addr)
835 {
836 	int mask;
837 
838 	addr += (nr >> 3);
839 	mask = 1 << (7 - (nr & 0x07));
840 	return mask & *addr;
841 }
842 
843 static inline int f2fs_set_bit(unsigned int nr, char *addr)
844 {
845 	int mask;
846 	int ret;
847 
848 	addr += (nr >> 3);
849 	mask = 1 << (7 - (nr & 0x07));
850 	ret = mask & *addr;
851 	*addr |= mask;
852 	return ret;
853 }
854 
855 static inline int f2fs_clear_bit(unsigned int nr, char *addr)
856 {
857 	int mask;
858 	int ret;
859 
860 	addr += (nr >> 3);
861 	mask = 1 << (7 - (nr & 0x07));
862 	ret = mask & *addr;
863 	*addr &= ~mask;
864 	return ret;
865 }
866 
867 /* used for f2fs_inode_info->flags */
868 enum {
869 	FI_NEW_INODE,		/* indicate newly allocated inode */
870 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
871 	FI_INC_LINK,		/* need to increment i_nlink */
872 	FI_ACL_MODE,		/* indicate acl mode */
873 	FI_NO_ALLOC,		/* should not allocate any blocks */
874 	FI_UPDATE_DIR,		/* should update inode block for consistency */
875 	FI_DELAY_IPUT,		/* used for the recovery */
876 };
877 
878 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
879 {
880 	set_bit(flag, &fi->flags);
881 }
882 
883 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
884 {
885 	return test_bit(flag, &fi->flags);
886 }
887 
888 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
889 {
890 	clear_bit(flag, &fi->flags);
891 }
892 
893 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
894 {
895 	fi->i_acl_mode = mode;
896 	set_inode_flag(fi, FI_ACL_MODE);
897 }
898 
899 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
900 {
901 	if (is_inode_flag_set(fi, FI_ACL_MODE)) {
902 		clear_inode_flag(fi, FI_ACL_MODE);
903 		return 1;
904 	}
905 	return 0;
906 }
907 
908 static inline int f2fs_readonly(struct super_block *sb)
909 {
910 	return sb->s_flags & MS_RDONLY;
911 }
912 
913 /*
914  * file.c
915  */
916 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
917 void truncate_data_blocks(struct dnode_of_data *);
918 void f2fs_truncate(struct inode *);
919 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
920 int f2fs_setattr(struct dentry *, struct iattr *);
921 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
922 int truncate_data_blocks_range(struct dnode_of_data *, int);
923 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
924 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
925 
926 /*
927  * inode.c
928  */
929 void f2fs_set_inode_flags(struct inode *);
930 struct inode *f2fs_iget(struct super_block *, unsigned long);
931 void update_inode(struct inode *, struct page *);
932 int update_inode_page(struct inode *);
933 int f2fs_write_inode(struct inode *, struct writeback_control *);
934 void f2fs_evict_inode(struct inode *);
935 
936 /*
937  * namei.c
938  */
939 struct dentry *f2fs_get_parent(struct dentry *child);
940 
941 /*
942  * dir.c
943  */
944 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
945 							struct page **);
946 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
947 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
948 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
949 				struct page *, struct inode *);
950 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
951 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
952 int f2fs_make_empty(struct inode *, struct inode *);
953 bool f2fs_empty_dir(struct inode *);
954 
955 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
956 {
957 	return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
958 				inode);
959 }
960 
961 /*
962  * super.c
963  */
964 int f2fs_sync_fs(struct super_block *, int);
965 extern __printf(3, 4)
966 void f2fs_msg(struct super_block *, const char *, const char *, ...);
967 
968 /*
969  * hash.c
970  */
971 f2fs_hash_t f2fs_dentry_hash(const char *, size_t);
972 
973 /*
974  * node.c
975  */
976 struct dnode_of_data;
977 struct node_info;
978 
979 int is_checkpointed_node(struct f2fs_sb_info *, nid_t);
980 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
981 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
982 int truncate_inode_blocks(struct inode *, pgoff_t);
983 int remove_inode_page(struct inode *);
984 struct page *new_inode_page(struct inode *, const struct qstr *);
985 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
986 void ra_node_page(struct f2fs_sb_info *, nid_t);
987 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
988 struct page *get_node_page_ra(struct page *, int);
989 void sync_inode_page(struct dnode_of_data *);
990 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
991 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
992 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
993 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
994 void recover_node_page(struct f2fs_sb_info *, struct page *,
995 		struct f2fs_summary *, struct node_info *, block_t);
996 int recover_inode_page(struct f2fs_sb_info *, struct page *);
997 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
998 				struct f2fs_summary_block *);
999 void flush_nat_entries(struct f2fs_sb_info *);
1000 int build_node_manager(struct f2fs_sb_info *);
1001 void destroy_node_manager(struct f2fs_sb_info *);
1002 int __init create_node_manager_caches(void);
1003 void destroy_node_manager_caches(void);
1004 
1005 /*
1006  * segment.c
1007  */
1008 void f2fs_balance_fs(struct f2fs_sb_info *);
1009 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1010 void clear_prefree_segments(struct f2fs_sb_info *);
1011 int npages_for_summary_flush(struct f2fs_sb_info *);
1012 void allocate_new_segments(struct f2fs_sb_info *);
1013 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1014 struct bio *f2fs_bio_alloc(struct block_device *, int);
1015 void f2fs_submit_bio(struct f2fs_sb_info *, enum page_type, bool sync);
1016 void write_meta_page(struct f2fs_sb_info *, struct page *);
1017 void write_node_page(struct f2fs_sb_info *, struct page *, unsigned int,
1018 					block_t, block_t *);
1019 void write_data_page(struct inode *, struct page *, struct dnode_of_data*,
1020 					block_t, block_t *);
1021 void rewrite_data_page(struct f2fs_sb_info *, struct page *, block_t);
1022 void recover_data_page(struct f2fs_sb_info *, struct page *,
1023 				struct f2fs_summary *, block_t, block_t);
1024 void rewrite_node_page(struct f2fs_sb_info *, struct page *,
1025 				struct f2fs_summary *, block_t, block_t);
1026 void write_data_summaries(struct f2fs_sb_info *, block_t);
1027 void write_node_summaries(struct f2fs_sb_info *, block_t);
1028 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1029 					int, unsigned int, int);
1030 void flush_sit_entries(struct f2fs_sb_info *);
1031 int build_segment_manager(struct f2fs_sb_info *);
1032 void destroy_segment_manager(struct f2fs_sb_info *);
1033 
1034 /*
1035  * checkpoint.c
1036  */
1037 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1038 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1039 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1040 int check_orphan_space(struct f2fs_sb_info *);
1041 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1042 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1043 int recover_orphan_inodes(struct f2fs_sb_info *);
1044 int get_valid_checkpoint(struct f2fs_sb_info *);
1045 void set_dirty_dir_page(struct inode *, struct page *);
1046 void add_dirty_dir_inode(struct inode *);
1047 void remove_dirty_dir_inode(struct inode *);
1048 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *, nid_t);
1049 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1050 void write_checkpoint(struct f2fs_sb_info *, bool);
1051 void init_orphan_info(struct f2fs_sb_info *);
1052 int __init create_checkpoint_caches(void);
1053 void destroy_checkpoint_caches(void);
1054 
1055 /*
1056  * data.c
1057  */
1058 int reserve_new_block(struct dnode_of_data *);
1059 void update_extent_cache(block_t, struct dnode_of_data *);
1060 struct page *find_data_page(struct inode *, pgoff_t, bool);
1061 struct page *get_lock_data_page(struct inode *, pgoff_t);
1062 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1063 int f2fs_readpage(struct f2fs_sb_info *, struct page *, block_t, int);
1064 int do_write_data_page(struct page *);
1065 
1066 /*
1067  * gc.c
1068  */
1069 int start_gc_thread(struct f2fs_sb_info *);
1070 void stop_gc_thread(struct f2fs_sb_info *);
1071 block_t start_bidx_of_node(unsigned int);
1072 int f2fs_gc(struct f2fs_sb_info *);
1073 void build_gc_manager(struct f2fs_sb_info *);
1074 int __init create_gc_caches(void);
1075 void destroy_gc_caches(void);
1076 
1077 /*
1078  * recovery.c
1079  */
1080 int recover_fsync_data(struct f2fs_sb_info *);
1081 bool space_for_roll_forward(struct f2fs_sb_info *);
1082 
1083 /*
1084  * debug.c
1085  */
1086 #ifdef CONFIG_F2FS_STAT_FS
1087 struct f2fs_stat_info {
1088 	struct list_head stat_list;
1089 	struct f2fs_sb_info *sbi;
1090 	struct mutex stat_lock;
1091 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1092 	int main_area_segs, main_area_sections, main_area_zones;
1093 	int hit_ext, total_ext;
1094 	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1095 	int nats, sits, fnids;
1096 	int total_count, utilization;
1097 	int bg_gc;
1098 	unsigned int valid_count, valid_node_count, valid_inode_count;
1099 	unsigned int bimodal, avg_vblocks;
1100 	int util_free, util_valid, util_invalid;
1101 	int rsvd_segs, overp_segs;
1102 	int dirty_count, node_pages, meta_pages;
1103 	int prefree_count, call_count;
1104 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1105 	int tot_blks, data_blks, node_blks;
1106 	int curseg[NR_CURSEG_TYPE];
1107 	int cursec[NR_CURSEG_TYPE];
1108 	int curzone[NR_CURSEG_TYPE];
1109 
1110 	unsigned int segment_count[2];
1111 	unsigned int block_count[2];
1112 	unsigned base_mem, cache_mem;
1113 };
1114 
1115 #define stat_inc_call_count(si)	((si)->call_count++)
1116 
1117 #define stat_inc_seg_count(sbi, type)					\
1118 	do {								\
1119 		struct f2fs_stat_info *si = sbi->stat_info;		\
1120 		(si)->tot_segs++;					\
1121 		if (type == SUM_TYPE_DATA)				\
1122 			si->data_segs++;				\
1123 		else							\
1124 			si->node_segs++;				\
1125 	} while (0)
1126 
1127 #define stat_inc_tot_blk_count(si, blks)				\
1128 	(si->tot_blks += (blks))
1129 
1130 #define stat_inc_data_blk_count(sbi, blks)				\
1131 	do {								\
1132 		struct f2fs_stat_info *si = sbi->stat_info;		\
1133 		stat_inc_tot_blk_count(si, blks);			\
1134 		si->data_blks += (blks);				\
1135 	} while (0)
1136 
1137 #define stat_inc_node_blk_count(sbi, blks)				\
1138 	do {								\
1139 		struct f2fs_stat_info *si = sbi->stat_info;		\
1140 		stat_inc_tot_blk_count(si, blks);			\
1141 		si->node_blks += (blks);				\
1142 	} while (0)
1143 
1144 int f2fs_build_stats(struct f2fs_sb_info *);
1145 void f2fs_destroy_stats(struct f2fs_sb_info *);
1146 void __init f2fs_create_root_stats(void);
1147 void f2fs_destroy_root_stats(void);
1148 #else
1149 #define stat_inc_call_count(si)
1150 #define stat_inc_seg_count(si, type)
1151 #define stat_inc_tot_blk_count(si, blks)
1152 #define stat_inc_data_blk_count(si, blks)
1153 #define stat_inc_node_blk_count(sbi, blks)
1154 
1155 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1156 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1157 static inline void __init f2fs_create_root_stats(void) { }
1158 static inline void f2fs_destroy_root_stats(void) { }
1159 #endif
1160 
1161 extern const struct file_operations f2fs_dir_operations;
1162 extern const struct file_operations f2fs_file_operations;
1163 extern const struct inode_operations f2fs_file_inode_operations;
1164 extern const struct address_space_operations f2fs_dblock_aops;
1165 extern const struct address_space_operations f2fs_node_aops;
1166 extern const struct address_space_operations f2fs_meta_aops;
1167 extern const struct inode_operations f2fs_dir_inode_operations;
1168 extern const struct inode_operations f2fs_symlink_inode_operations;
1169 extern const struct inode_operations f2fs_special_inode_operations;
1170 #endif
1171