1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 21 /* 22 * For mount options 23 */ 24 #define F2FS_MOUNT_BG_GC 0x00000001 25 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 26 #define F2FS_MOUNT_DISCARD 0x00000004 27 #define F2FS_MOUNT_NOHEAP 0x00000008 28 #define F2FS_MOUNT_XATTR_USER 0x00000010 29 #define F2FS_MOUNT_POSIX_ACL 0x00000020 30 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 31 32 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 33 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 34 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 35 36 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 37 typecheck(unsigned long long, b) && \ 38 ((long long)((a) - (b)) > 0)) 39 40 typedef u32 block_t; /* 41 * should not change u32, since it is the on-disk block 42 * address format, __le32. 43 */ 44 typedef u32 nid_t; 45 46 struct f2fs_mount_info { 47 unsigned int opt; 48 }; 49 50 #define CRCPOLY_LE 0xedb88320 51 52 static inline __u32 f2fs_crc32(void *buf, size_t len) 53 { 54 unsigned char *p = (unsigned char *)buf; 55 __u32 crc = F2FS_SUPER_MAGIC; 56 int i; 57 58 while (len--) { 59 crc ^= *p++; 60 for (i = 0; i < 8; i++) 61 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 62 } 63 return crc; 64 } 65 66 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size) 67 { 68 return f2fs_crc32(buf, buf_size) == blk_crc; 69 } 70 71 /* 72 * For checkpoint manager 73 */ 74 enum { 75 NAT_BITMAP, 76 SIT_BITMAP 77 }; 78 79 /* for the list of orphan inodes */ 80 struct orphan_inode_entry { 81 struct list_head list; /* list head */ 82 nid_t ino; /* inode number */ 83 }; 84 85 /* for the list of directory inodes */ 86 struct dir_inode_entry { 87 struct list_head list; /* list head */ 88 struct inode *inode; /* vfs inode pointer */ 89 }; 90 91 /* for the list of fsync inodes, used only during recovery */ 92 struct fsync_inode_entry { 93 struct list_head list; /* list head */ 94 struct inode *inode; /* vfs inode pointer */ 95 block_t blkaddr; /* block address locating the last inode */ 96 }; 97 98 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) 99 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) 100 101 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) 102 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) 103 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) 104 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) 105 106 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) 107 { 108 int before = nats_in_cursum(rs); 109 rs->n_nats = cpu_to_le16(before + i); 110 return before; 111 } 112 113 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) 114 { 115 int before = sits_in_cursum(rs); 116 rs->n_sits = cpu_to_le16(before + i); 117 return before; 118 } 119 120 /* 121 * ioctl commands 122 */ 123 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 124 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 125 126 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 127 /* 128 * ioctl commands in 32 bit emulation 129 */ 130 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 131 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 132 #endif 133 134 /* 135 * For INODE and NODE manager 136 */ 137 #define XATTR_NODE_OFFSET (-1) /* 138 * store xattrs to one node block per 139 * file keeping -1 as its node offset to 140 * distinguish from index node blocks. 141 */ 142 enum { 143 ALLOC_NODE, /* allocate a new node page if needed */ 144 LOOKUP_NODE, /* look up a node without readahead */ 145 LOOKUP_NODE_RA, /* 146 * look up a node with readahead called 147 * by get_datablock_ro. 148 */ 149 }; 150 151 #define F2FS_LINK_MAX 32000 /* maximum link count per file */ 152 153 /* for in-memory extent cache entry */ 154 struct extent_info { 155 rwlock_t ext_lock; /* rwlock for consistency */ 156 unsigned int fofs; /* start offset in a file */ 157 u32 blk_addr; /* start block address of the extent */ 158 unsigned int len; /* length of the extent */ 159 }; 160 161 /* 162 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 163 */ 164 #define FADVISE_COLD_BIT 0x01 165 #define FADVISE_LOST_PINO_BIT 0x02 166 167 struct f2fs_inode_info { 168 struct inode vfs_inode; /* serve a vfs inode */ 169 unsigned long i_flags; /* keep an inode flags for ioctl */ 170 unsigned char i_advise; /* use to give file attribute hints */ 171 unsigned int i_current_depth; /* use only in directory structure */ 172 unsigned int i_pino; /* parent inode number */ 173 umode_t i_acl_mode; /* keep file acl mode temporarily */ 174 175 /* Use below internally in f2fs*/ 176 unsigned long flags; /* use to pass per-file flags */ 177 atomic_t dirty_dents; /* # of dirty dentry pages */ 178 f2fs_hash_t chash; /* hash value of given file name */ 179 unsigned int clevel; /* maximum level of given file name */ 180 nid_t i_xattr_nid; /* node id that contains xattrs */ 181 struct extent_info ext; /* in-memory extent cache entry */ 182 }; 183 184 static inline void get_extent_info(struct extent_info *ext, 185 struct f2fs_extent i_ext) 186 { 187 write_lock(&ext->ext_lock); 188 ext->fofs = le32_to_cpu(i_ext.fofs); 189 ext->blk_addr = le32_to_cpu(i_ext.blk_addr); 190 ext->len = le32_to_cpu(i_ext.len); 191 write_unlock(&ext->ext_lock); 192 } 193 194 static inline void set_raw_extent(struct extent_info *ext, 195 struct f2fs_extent *i_ext) 196 { 197 read_lock(&ext->ext_lock); 198 i_ext->fofs = cpu_to_le32(ext->fofs); 199 i_ext->blk_addr = cpu_to_le32(ext->blk_addr); 200 i_ext->len = cpu_to_le32(ext->len); 201 read_unlock(&ext->ext_lock); 202 } 203 204 struct f2fs_nm_info { 205 block_t nat_blkaddr; /* base disk address of NAT */ 206 nid_t max_nid; /* maximum possible node ids */ 207 nid_t next_scan_nid; /* the next nid to be scanned */ 208 209 /* NAT cache management */ 210 struct radix_tree_root nat_root;/* root of the nat entry cache */ 211 rwlock_t nat_tree_lock; /* protect nat_tree_lock */ 212 unsigned int nat_cnt; /* the # of cached nat entries */ 213 struct list_head nat_entries; /* cached nat entry list (clean) */ 214 struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */ 215 216 /* free node ids management */ 217 struct list_head free_nid_list; /* a list for free nids */ 218 spinlock_t free_nid_list_lock; /* protect free nid list */ 219 unsigned int fcnt; /* the number of free node id */ 220 struct mutex build_lock; /* lock for build free nids */ 221 222 /* for checkpoint */ 223 char *nat_bitmap; /* NAT bitmap pointer */ 224 int bitmap_size; /* bitmap size */ 225 }; 226 227 /* 228 * this structure is used as one of function parameters. 229 * all the information are dedicated to a given direct node block determined 230 * by the data offset in a file. 231 */ 232 struct dnode_of_data { 233 struct inode *inode; /* vfs inode pointer */ 234 struct page *inode_page; /* its inode page, NULL is possible */ 235 struct page *node_page; /* cached direct node page */ 236 nid_t nid; /* node id of the direct node block */ 237 unsigned int ofs_in_node; /* data offset in the node page */ 238 bool inode_page_locked; /* inode page is locked or not */ 239 block_t data_blkaddr; /* block address of the node block */ 240 }; 241 242 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 243 struct page *ipage, struct page *npage, nid_t nid) 244 { 245 memset(dn, 0, sizeof(*dn)); 246 dn->inode = inode; 247 dn->inode_page = ipage; 248 dn->node_page = npage; 249 dn->nid = nid; 250 } 251 252 /* 253 * For SIT manager 254 * 255 * By default, there are 6 active log areas across the whole main area. 256 * When considering hot and cold data separation to reduce cleaning overhead, 257 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 258 * respectively. 259 * In the current design, you should not change the numbers intentionally. 260 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 261 * logs individually according to the underlying devices. (default: 6) 262 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 263 * data and 8 for node logs. 264 */ 265 #define NR_CURSEG_DATA_TYPE (3) 266 #define NR_CURSEG_NODE_TYPE (3) 267 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 268 269 enum { 270 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 271 CURSEG_WARM_DATA, /* data blocks */ 272 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 273 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 274 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 275 CURSEG_COLD_NODE, /* indirect node blocks */ 276 NO_CHECK_TYPE 277 }; 278 279 struct f2fs_sm_info { 280 struct sit_info *sit_info; /* whole segment information */ 281 struct free_segmap_info *free_info; /* free segment information */ 282 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 283 struct curseg_info *curseg_array; /* active segment information */ 284 285 struct list_head wblist_head; /* list of under-writeback pages */ 286 spinlock_t wblist_lock; /* lock for checkpoint */ 287 288 block_t seg0_blkaddr; /* block address of 0'th segment */ 289 block_t main_blkaddr; /* start block address of main area */ 290 block_t ssa_blkaddr; /* start block address of SSA area */ 291 292 unsigned int segment_count; /* total # of segments */ 293 unsigned int main_segments; /* # of segments in main area */ 294 unsigned int reserved_segments; /* # of reserved segments */ 295 unsigned int ovp_segments; /* # of overprovision segments */ 296 }; 297 298 /* 299 * For directory operation 300 */ 301 #define NODE_DIR1_BLOCK (ADDRS_PER_INODE + 1) 302 #define NODE_DIR2_BLOCK (ADDRS_PER_INODE + 2) 303 #define NODE_IND1_BLOCK (ADDRS_PER_INODE + 3) 304 #define NODE_IND2_BLOCK (ADDRS_PER_INODE + 4) 305 #define NODE_DIND_BLOCK (ADDRS_PER_INODE + 5) 306 307 /* 308 * For superblock 309 */ 310 /* 311 * COUNT_TYPE for monitoring 312 * 313 * f2fs monitors the number of several block types such as on-writeback, 314 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 315 */ 316 enum count_type { 317 F2FS_WRITEBACK, 318 F2FS_DIRTY_DENTS, 319 F2FS_DIRTY_NODES, 320 F2FS_DIRTY_META, 321 NR_COUNT_TYPE, 322 }; 323 324 /* 325 * Uses as sbi->fs_lock[NR_GLOBAL_LOCKS]. 326 * The checkpoint procedure blocks all the locks in this fs_lock array. 327 * Some FS operations grab free locks, and if there is no free lock, 328 * then wait to grab a lock in a round-robin manner. 329 */ 330 #define NR_GLOBAL_LOCKS 8 331 332 /* 333 * The below are the page types of bios used in submti_bio(). 334 * The available types are: 335 * DATA User data pages. It operates as async mode. 336 * NODE Node pages. It operates as async mode. 337 * META FS metadata pages such as SIT, NAT, CP. 338 * NR_PAGE_TYPE The number of page types. 339 * META_FLUSH Make sure the previous pages are written 340 * with waiting the bio's completion 341 * ... Only can be used with META. 342 */ 343 enum page_type { 344 DATA, 345 NODE, 346 META, 347 NR_PAGE_TYPE, 348 META_FLUSH, 349 }; 350 351 struct f2fs_sb_info { 352 struct super_block *sb; /* pointer to VFS super block */ 353 struct buffer_head *raw_super_buf; /* buffer head of raw sb */ 354 struct f2fs_super_block *raw_super; /* raw super block pointer */ 355 int s_dirty; /* dirty flag for checkpoint */ 356 357 /* for node-related operations */ 358 struct f2fs_nm_info *nm_info; /* node manager */ 359 struct inode *node_inode; /* cache node blocks */ 360 361 /* for segment-related operations */ 362 struct f2fs_sm_info *sm_info; /* segment manager */ 363 struct bio *bio[NR_PAGE_TYPE]; /* bios to merge */ 364 sector_t last_block_in_bio[NR_PAGE_TYPE]; /* last block number */ 365 struct rw_semaphore bio_sem; /* IO semaphore */ 366 367 /* for checkpoint */ 368 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 369 struct inode *meta_inode; /* cache meta blocks */ 370 struct mutex cp_mutex; /* checkpoint procedure lock */ 371 struct mutex fs_lock[NR_GLOBAL_LOCKS]; /* blocking FS operations */ 372 struct mutex node_write; /* locking node writes */ 373 struct mutex writepages; /* mutex for writepages() */ 374 unsigned char next_lock_num; /* round-robin global locks */ 375 int por_doing; /* recovery is doing or not */ 376 int on_build_free_nids; /* build_free_nids is doing */ 377 378 /* for orphan inode management */ 379 struct list_head orphan_inode_list; /* orphan inode list */ 380 struct mutex orphan_inode_mutex; /* for orphan inode list */ 381 unsigned int n_orphans; /* # of orphan inodes */ 382 383 /* for directory inode management */ 384 struct list_head dir_inode_list; /* dir inode list */ 385 spinlock_t dir_inode_lock; /* for dir inode list lock */ 386 387 /* basic file system units */ 388 unsigned int log_sectors_per_block; /* log2 sectors per block */ 389 unsigned int log_blocksize; /* log2 block size */ 390 unsigned int blocksize; /* block size */ 391 unsigned int root_ino_num; /* root inode number*/ 392 unsigned int node_ino_num; /* node inode number*/ 393 unsigned int meta_ino_num; /* meta inode number*/ 394 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 395 unsigned int blocks_per_seg; /* blocks per segment */ 396 unsigned int segs_per_sec; /* segments per section */ 397 unsigned int secs_per_zone; /* sections per zone */ 398 unsigned int total_sections; /* total section count */ 399 unsigned int total_node_count; /* total node block count */ 400 unsigned int total_valid_node_count; /* valid node block count */ 401 unsigned int total_valid_inode_count; /* valid inode count */ 402 int active_logs; /* # of active logs */ 403 404 block_t user_block_count; /* # of user blocks */ 405 block_t total_valid_block_count; /* # of valid blocks */ 406 block_t alloc_valid_block_count; /* # of allocated blocks */ 407 block_t last_valid_block_count; /* for recovery */ 408 u32 s_next_generation; /* for NFS support */ 409 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 410 411 struct f2fs_mount_info mount_opt; /* mount options */ 412 413 /* for cleaning operations */ 414 struct mutex gc_mutex; /* mutex for GC */ 415 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 416 unsigned int cur_victim_sec; /* current victim section num */ 417 418 /* 419 * for stat information. 420 * one is for the LFS mode, and the other is for the SSR mode. 421 */ 422 #ifdef CONFIG_F2FS_STAT_FS 423 struct f2fs_stat_info *stat_info; /* FS status information */ 424 unsigned int segment_count[2]; /* # of allocated segments */ 425 unsigned int block_count[2]; /* # of allocated blocks */ 426 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */ 427 int bg_gc; /* background gc calls */ 428 unsigned int n_dirty_dirs; /* # of dir inodes */ 429 #endif 430 unsigned int last_victim[2]; /* last victim segment # */ 431 spinlock_t stat_lock; /* lock for stat operations */ 432 }; 433 434 /* 435 * Inline functions 436 */ 437 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 438 { 439 return container_of(inode, struct f2fs_inode_info, vfs_inode); 440 } 441 442 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 443 { 444 return sb->s_fs_info; 445 } 446 447 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 448 { 449 return (struct f2fs_super_block *)(sbi->raw_super); 450 } 451 452 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 453 { 454 return (struct f2fs_checkpoint *)(sbi->ckpt); 455 } 456 457 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 458 { 459 return (struct f2fs_nm_info *)(sbi->nm_info); 460 } 461 462 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 463 { 464 return (struct f2fs_sm_info *)(sbi->sm_info); 465 } 466 467 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 468 { 469 return (struct sit_info *)(SM_I(sbi)->sit_info); 470 } 471 472 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 473 { 474 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 475 } 476 477 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 478 { 479 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 480 } 481 482 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi) 483 { 484 sbi->s_dirty = 1; 485 } 486 487 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi) 488 { 489 sbi->s_dirty = 0; 490 } 491 492 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 493 { 494 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 495 return ckpt_flags & f; 496 } 497 498 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 499 { 500 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 501 ckpt_flags |= f; 502 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 503 } 504 505 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 506 { 507 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 508 ckpt_flags &= (~f); 509 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 510 } 511 512 static inline void mutex_lock_all(struct f2fs_sb_info *sbi) 513 { 514 int i; 515 516 for (i = 0; i < NR_GLOBAL_LOCKS; i++) { 517 /* 518 * This is the only time we take multiple fs_lock[] 519 * instances; the order is immaterial since we 520 * always hold cp_mutex, which serializes multiple 521 * such operations. 522 */ 523 mutex_lock_nest_lock(&sbi->fs_lock[i], &sbi->cp_mutex); 524 } 525 } 526 527 static inline void mutex_unlock_all(struct f2fs_sb_info *sbi) 528 { 529 int i = 0; 530 for (; i < NR_GLOBAL_LOCKS; i++) 531 mutex_unlock(&sbi->fs_lock[i]); 532 } 533 534 static inline int mutex_lock_op(struct f2fs_sb_info *sbi) 535 { 536 unsigned char next_lock = sbi->next_lock_num % NR_GLOBAL_LOCKS; 537 int i = 0; 538 539 for (; i < NR_GLOBAL_LOCKS; i++) 540 if (mutex_trylock(&sbi->fs_lock[i])) 541 return i; 542 543 mutex_lock(&sbi->fs_lock[next_lock]); 544 sbi->next_lock_num++; 545 return next_lock; 546 } 547 548 static inline void mutex_unlock_op(struct f2fs_sb_info *sbi, int ilock) 549 { 550 if (ilock < 0) 551 return; 552 BUG_ON(ilock >= NR_GLOBAL_LOCKS); 553 mutex_unlock(&sbi->fs_lock[ilock]); 554 } 555 556 /* 557 * Check whether the given nid is within node id range. 558 */ 559 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 560 { 561 WARN_ON((nid >= NM_I(sbi)->max_nid)); 562 if (nid >= NM_I(sbi)->max_nid) 563 return -EINVAL; 564 return 0; 565 } 566 567 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 568 569 /* 570 * Check whether the inode has blocks or not 571 */ 572 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 573 { 574 if (F2FS_I(inode)->i_xattr_nid) 575 return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1); 576 else 577 return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS); 578 } 579 580 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 581 struct inode *inode, blkcnt_t count) 582 { 583 block_t valid_block_count; 584 585 spin_lock(&sbi->stat_lock); 586 valid_block_count = 587 sbi->total_valid_block_count + (block_t)count; 588 if (valid_block_count > sbi->user_block_count) { 589 spin_unlock(&sbi->stat_lock); 590 return false; 591 } 592 inode->i_blocks += count; 593 sbi->total_valid_block_count = valid_block_count; 594 sbi->alloc_valid_block_count += (block_t)count; 595 spin_unlock(&sbi->stat_lock); 596 return true; 597 } 598 599 static inline int dec_valid_block_count(struct f2fs_sb_info *sbi, 600 struct inode *inode, 601 blkcnt_t count) 602 { 603 spin_lock(&sbi->stat_lock); 604 BUG_ON(sbi->total_valid_block_count < (block_t) count); 605 BUG_ON(inode->i_blocks < count); 606 inode->i_blocks -= count; 607 sbi->total_valid_block_count -= (block_t)count; 608 spin_unlock(&sbi->stat_lock); 609 return 0; 610 } 611 612 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 613 { 614 atomic_inc(&sbi->nr_pages[count_type]); 615 F2FS_SET_SB_DIRT(sbi); 616 } 617 618 static inline void inode_inc_dirty_dents(struct inode *inode) 619 { 620 atomic_inc(&F2FS_I(inode)->dirty_dents); 621 } 622 623 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 624 { 625 atomic_dec(&sbi->nr_pages[count_type]); 626 } 627 628 static inline void inode_dec_dirty_dents(struct inode *inode) 629 { 630 atomic_dec(&F2FS_I(inode)->dirty_dents); 631 } 632 633 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 634 { 635 return atomic_read(&sbi->nr_pages[count_type]); 636 } 637 638 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 639 { 640 unsigned int pages_per_sec = sbi->segs_per_sec * 641 (1 << sbi->log_blocks_per_seg); 642 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 643 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 644 } 645 646 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 647 { 648 block_t ret; 649 spin_lock(&sbi->stat_lock); 650 ret = sbi->total_valid_block_count; 651 spin_unlock(&sbi->stat_lock); 652 return ret; 653 } 654 655 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 656 { 657 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 658 659 /* return NAT or SIT bitmap */ 660 if (flag == NAT_BITMAP) 661 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 662 else if (flag == SIT_BITMAP) 663 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 664 665 return 0; 666 } 667 668 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 669 { 670 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 671 int offset = (flag == NAT_BITMAP) ? 672 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 673 return &ckpt->sit_nat_version_bitmap + offset; 674 } 675 676 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 677 { 678 block_t start_addr; 679 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 680 unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver); 681 682 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 683 684 /* 685 * odd numbered checkpoint should at cp segment 0 686 * and even segent must be at cp segment 1 687 */ 688 if (!(ckpt_version & 1)) 689 start_addr += sbi->blocks_per_seg; 690 691 return start_addr; 692 } 693 694 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 695 { 696 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 697 } 698 699 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 700 struct inode *inode, 701 unsigned int count) 702 { 703 block_t valid_block_count; 704 unsigned int valid_node_count; 705 706 spin_lock(&sbi->stat_lock); 707 708 valid_block_count = sbi->total_valid_block_count + (block_t)count; 709 sbi->alloc_valid_block_count += (block_t)count; 710 valid_node_count = sbi->total_valid_node_count + count; 711 712 if (valid_block_count > sbi->user_block_count) { 713 spin_unlock(&sbi->stat_lock); 714 return false; 715 } 716 717 if (valid_node_count > sbi->total_node_count) { 718 spin_unlock(&sbi->stat_lock); 719 return false; 720 } 721 722 if (inode) 723 inode->i_blocks += count; 724 sbi->total_valid_node_count = valid_node_count; 725 sbi->total_valid_block_count = valid_block_count; 726 spin_unlock(&sbi->stat_lock); 727 728 return true; 729 } 730 731 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 732 struct inode *inode, 733 unsigned int count) 734 { 735 spin_lock(&sbi->stat_lock); 736 737 BUG_ON(sbi->total_valid_block_count < count); 738 BUG_ON(sbi->total_valid_node_count < count); 739 BUG_ON(inode->i_blocks < count); 740 741 inode->i_blocks -= count; 742 sbi->total_valid_node_count -= count; 743 sbi->total_valid_block_count -= (block_t)count; 744 745 spin_unlock(&sbi->stat_lock); 746 } 747 748 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 749 { 750 unsigned int ret; 751 spin_lock(&sbi->stat_lock); 752 ret = sbi->total_valid_node_count; 753 spin_unlock(&sbi->stat_lock); 754 return ret; 755 } 756 757 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 758 { 759 spin_lock(&sbi->stat_lock); 760 BUG_ON(sbi->total_valid_inode_count == sbi->total_node_count); 761 sbi->total_valid_inode_count++; 762 spin_unlock(&sbi->stat_lock); 763 } 764 765 static inline int dec_valid_inode_count(struct f2fs_sb_info *sbi) 766 { 767 spin_lock(&sbi->stat_lock); 768 BUG_ON(!sbi->total_valid_inode_count); 769 sbi->total_valid_inode_count--; 770 spin_unlock(&sbi->stat_lock); 771 return 0; 772 } 773 774 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 775 { 776 unsigned int ret; 777 spin_lock(&sbi->stat_lock); 778 ret = sbi->total_valid_inode_count; 779 spin_unlock(&sbi->stat_lock); 780 return ret; 781 } 782 783 static inline void f2fs_put_page(struct page *page, int unlock) 784 { 785 if (!page || IS_ERR(page)) 786 return; 787 788 if (unlock) { 789 BUG_ON(!PageLocked(page)); 790 unlock_page(page); 791 } 792 page_cache_release(page); 793 } 794 795 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 796 { 797 if (dn->node_page) 798 f2fs_put_page(dn->node_page, 1); 799 if (dn->inode_page && dn->node_page != dn->inode_page) 800 f2fs_put_page(dn->inode_page, 0); 801 dn->node_page = NULL; 802 dn->inode_page = NULL; 803 } 804 805 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 806 size_t size, void (*ctor)(void *)) 807 { 808 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, ctor); 809 } 810 811 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 812 813 static inline bool IS_INODE(struct page *page) 814 { 815 struct f2fs_node *p = (struct f2fs_node *)page_address(page); 816 return RAW_IS_INODE(p); 817 } 818 819 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 820 { 821 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 822 } 823 824 static inline block_t datablock_addr(struct page *node_page, 825 unsigned int offset) 826 { 827 struct f2fs_node *raw_node; 828 __le32 *addr_array; 829 raw_node = (struct f2fs_node *)page_address(node_page); 830 addr_array = blkaddr_in_node(raw_node); 831 return le32_to_cpu(addr_array[offset]); 832 } 833 834 static inline int f2fs_test_bit(unsigned int nr, char *addr) 835 { 836 int mask; 837 838 addr += (nr >> 3); 839 mask = 1 << (7 - (nr & 0x07)); 840 return mask & *addr; 841 } 842 843 static inline int f2fs_set_bit(unsigned int nr, char *addr) 844 { 845 int mask; 846 int ret; 847 848 addr += (nr >> 3); 849 mask = 1 << (7 - (nr & 0x07)); 850 ret = mask & *addr; 851 *addr |= mask; 852 return ret; 853 } 854 855 static inline int f2fs_clear_bit(unsigned int nr, char *addr) 856 { 857 int mask; 858 int ret; 859 860 addr += (nr >> 3); 861 mask = 1 << (7 - (nr & 0x07)); 862 ret = mask & *addr; 863 *addr &= ~mask; 864 return ret; 865 } 866 867 /* used for f2fs_inode_info->flags */ 868 enum { 869 FI_NEW_INODE, /* indicate newly allocated inode */ 870 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 871 FI_INC_LINK, /* need to increment i_nlink */ 872 FI_ACL_MODE, /* indicate acl mode */ 873 FI_NO_ALLOC, /* should not allocate any blocks */ 874 FI_UPDATE_DIR, /* should update inode block for consistency */ 875 FI_DELAY_IPUT, /* used for the recovery */ 876 }; 877 878 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 879 { 880 set_bit(flag, &fi->flags); 881 } 882 883 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 884 { 885 return test_bit(flag, &fi->flags); 886 } 887 888 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 889 { 890 clear_bit(flag, &fi->flags); 891 } 892 893 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 894 { 895 fi->i_acl_mode = mode; 896 set_inode_flag(fi, FI_ACL_MODE); 897 } 898 899 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag) 900 { 901 if (is_inode_flag_set(fi, FI_ACL_MODE)) { 902 clear_inode_flag(fi, FI_ACL_MODE); 903 return 1; 904 } 905 return 0; 906 } 907 908 static inline int f2fs_readonly(struct super_block *sb) 909 { 910 return sb->s_flags & MS_RDONLY; 911 } 912 913 /* 914 * file.c 915 */ 916 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 917 void truncate_data_blocks(struct dnode_of_data *); 918 void f2fs_truncate(struct inode *); 919 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 920 int f2fs_setattr(struct dentry *, struct iattr *); 921 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 922 int truncate_data_blocks_range(struct dnode_of_data *, int); 923 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 924 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 925 926 /* 927 * inode.c 928 */ 929 void f2fs_set_inode_flags(struct inode *); 930 struct inode *f2fs_iget(struct super_block *, unsigned long); 931 void update_inode(struct inode *, struct page *); 932 int update_inode_page(struct inode *); 933 int f2fs_write_inode(struct inode *, struct writeback_control *); 934 void f2fs_evict_inode(struct inode *); 935 936 /* 937 * namei.c 938 */ 939 struct dentry *f2fs_get_parent(struct dentry *child); 940 941 /* 942 * dir.c 943 */ 944 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 945 struct page **); 946 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 947 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 948 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 949 struct page *, struct inode *); 950 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *); 951 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *); 952 int f2fs_make_empty(struct inode *, struct inode *); 953 bool f2fs_empty_dir(struct inode *); 954 955 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 956 { 957 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name, 958 inode); 959 } 960 961 /* 962 * super.c 963 */ 964 int f2fs_sync_fs(struct super_block *, int); 965 extern __printf(3, 4) 966 void f2fs_msg(struct super_block *, const char *, const char *, ...); 967 968 /* 969 * hash.c 970 */ 971 f2fs_hash_t f2fs_dentry_hash(const char *, size_t); 972 973 /* 974 * node.c 975 */ 976 struct dnode_of_data; 977 struct node_info; 978 979 int is_checkpointed_node(struct f2fs_sb_info *, nid_t); 980 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 981 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 982 int truncate_inode_blocks(struct inode *, pgoff_t); 983 int remove_inode_page(struct inode *); 984 struct page *new_inode_page(struct inode *, const struct qstr *); 985 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 986 void ra_node_page(struct f2fs_sb_info *, nid_t); 987 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 988 struct page *get_node_page_ra(struct page *, int); 989 void sync_inode_page(struct dnode_of_data *); 990 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 991 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 992 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 993 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 994 void recover_node_page(struct f2fs_sb_info *, struct page *, 995 struct f2fs_summary *, struct node_info *, block_t); 996 int recover_inode_page(struct f2fs_sb_info *, struct page *); 997 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 998 struct f2fs_summary_block *); 999 void flush_nat_entries(struct f2fs_sb_info *); 1000 int build_node_manager(struct f2fs_sb_info *); 1001 void destroy_node_manager(struct f2fs_sb_info *); 1002 int __init create_node_manager_caches(void); 1003 void destroy_node_manager_caches(void); 1004 1005 /* 1006 * segment.c 1007 */ 1008 void f2fs_balance_fs(struct f2fs_sb_info *); 1009 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1010 void clear_prefree_segments(struct f2fs_sb_info *); 1011 int npages_for_summary_flush(struct f2fs_sb_info *); 1012 void allocate_new_segments(struct f2fs_sb_info *); 1013 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1014 struct bio *f2fs_bio_alloc(struct block_device *, int); 1015 void f2fs_submit_bio(struct f2fs_sb_info *, enum page_type, bool sync); 1016 void write_meta_page(struct f2fs_sb_info *, struct page *); 1017 void write_node_page(struct f2fs_sb_info *, struct page *, unsigned int, 1018 block_t, block_t *); 1019 void write_data_page(struct inode *, struct page *, struct dnode_of_data*, 1020 block_t, block_t *); 1021 void rewrite_data_page(struct f2fs_sb_info *, struct page *, block_t); 1022 void recover_data_page(struct f2fs_sb_info *, struct page *, 1023 struct f2fs_summary *, block_t, block_t); 1024 void rewrite_node_page(struct f2fs_sb_info *, struct page *, 1025 struct f2fs_summary *, block_t, block_t); 1026 void write_data_summaries(struct f2fs_sb_info *, block_t); 1027 void write_node_summaries(struct f2fs_sb_info *, block_t); 1028 int lookup_journal_in_cursum(struct f2fs_summary_block *, 1029 int, unsigned int, int); 1030 void flush_sit_entries(struct f2fs_sb_info *); 1031 int build_segment_manager(struct f2fs_sb_info *); 1032 void destroy_segment_manager(struct f2fs_sb_info *); 1033 1034 /* 1035 * checkpoint.c 1036 */ 1037 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1038 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1039 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1040 int check_orphan_space(struct f2fs_sb_info *); 1041 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1042 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1043 int recover_orphan_inodes(struct f2fs_sb_info *); 1044 int get_valid_checkpoint(struct f2fs_sb_info *); 1045 void set_dirty_dir_page(struct inode *, struct page *); 1046 void add_dirty_dir_inode(struct inode *); 1047 void remove_dirty_dir_inode(struct inode *); 1048 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *, nid_t); 1049 void sync_dirty_dir_inodes(struct f2fs_sb_info *); 1050 void write_checkpoint(struct f2fs_sb_info *, bool); 1051 void init_orphan_info(struct f2fs_sb_info *); 1052 int __init create_checkpoint_caches(void); 1053 void destroy_checkpoint_caches(void); 1054 1055 /* 1056 * data.c 1057 */ 1058 int reserve_new_block(struct dnode_of_data *); 1059 void update_extent_cache(block_t, struct dnode_of_data *); 1060 struct page *find_data_page(struct inode *, pgoff_t, bool); 1061 struct page *get_lock_data_page(struct inode *, pgoff_t); 1062 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1063 int f2fs_readpage(struct f2fs_sb_info *, struct page *, block_t, int); 1064 int do_write_data_page(struct page *); 1065 1066 /* 1067 * gc.c 1068 */ 1069 int start_gc_thread(struct f2fs_sb_info *); 1070 void stop_gc_thread(struct f2fs_sb_info *); 1071 block_t start_bidx_of_node(unsigned int); 1072 int f2fs_gc(struct f2fs_sb_info *); 1073 void build_gc_manager(struct f2fs_sb_info *); 1074 int __init create_gc_caches(void); 1075 void destroy_gc_caches(void); 1076 1077 /* 1078 * recovery.c 1079 */ 1080 int recover_fsync_data(struct f2fs_sb_info *); 1081 bool space_for_roll_forward(struct f2fs_sb_info *); 1082 1083 /* 1084 * debug.c 1085 */ 1086 #ifdef CONFIG_F2FS_STAT_FS 1087 struct f2fs_stat_info { 1088 struct list_head stat_list; 1089 struct f2fs_sb_info *sbi; 1090 struct mutex stat_lock; 1091 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1092 int main_area_segs, main_area_sections, main_area_zones; 1093 int hit_ext, total_ext; 1094 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; 1095 int nats, sits, fnids; 1096 int total_count, utilization; 1097 int bg_gc; 1098 unsigned int valid_count, valid_node_count, valid_inode_count; 1099 unsigned int bimodal, avg_vblocks; 1100 int util_free, util_valid, util_invalid; 1101 int rsvd_segs, overp_segs; 1102 int dirty_count, node_pages, meta_pages; 1103 int prefree_count, call_count; 1104 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1105 int tot_blks, data_blks, node_blks; 1106 int curseg[NR_CURSEG_TYPE]; 1107 int cursec[NR_CURSEG_TYPE]; 1108 int curzone[NR_CURSEG_TYPE]; 1109 1110 unsigned int segment_count[2]; 1111 unsigned int block_count[2]; 1112 unsigned base_mem, cache_mem; 1113 }; 1114 1115 #define stat_inc_call_count(si) ((si)->call_count++) 1116 1117 #define stat_inc_seg_count(sbi, type) \ 1118 do { \ 1119 struct f2fs_stat_info *si = sbi->stat_info; \ 1120 (si)->tot_segs++; \ 1121 if (type == SUM_TYPE_DATA) \ 1122 si->data_segs++; \ 1123 else \ 1124 si->node_segs++; \ 1125 } while (0) 1126 1127 #define stat_inc_tot_blk_count(si, blks) \ 1128 (si->tot_blks += (blks)) 1129 1130 #define stat_inc_data_blk_count(sbi, blks) \ 1131 do { \ 1132 struct f2fs_stat_info *si = sbi->stat_info; \ 1133 stat_inc_tot_blk_count(si, blks); \ 1134 si->data_blks += (blks); \ 1135 } while (0) 1136 1137 #define stat_inc_node_blk_count(sbi, blks) \ 1138 do { \ 1139 struct f2fs_stat_info *si = sbi->stat_info; \ 1140 stat_inc_tot_blk_count(si, blks); \ 1141 si->node_blks += (blks); \ 1142 } while (0) 1143 1144 int f2fs_build_stats(struct f2fs_sb_info *); 1145 void f2fs_destroy_stats(struct f2fs_sb_info *); 1146 void __init f2fs_create_root_stats(void); 1147 void f2fs_destroy_root_stats(void); 1148 #else 1149 #define stat_inc_call_count(si) 1150 #define stat_inc_seg_count(si, type) 1151 #define stat_inc_tot_blk_count(si, blks) 1152 #define stat_inc_data_blk_count(si, blks) 1153 #define stat_inc_node_blk_count(sbi, blks) 1154 1155 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 1156 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 1157 static inline void __init f2fs_create_root_stats(void) { } 1158 static inline void f2fs_destroy_root_stats(void) { } 1159 #endif 1160 1161 extern const struct file_operations f2fs_dir_operations; 1162 extern const struct file_operations f2fs_file_operations; 1163 extern const struct inode_operations f2fs_file_inode_operations; 1164 extern const struct address_space_operations f2fs_dblock_aops; 1165 extern const struct address_space_operations f2fs_node_aops; 1166 extern const struct address_space_operations f2fs_meta_aops; 1167 extern const struct inode_operations f2fs_dir_inode_operations; 1168 extern const struct inode_operations f2fs_symlink_inode_operations; 1169 extern const struct inode_operations f2fs_special_inode_operations; 1170 #endif 1171