1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/cred.h> 23 #include <linux/vmalloc.h> 24 #include <linux/bio.h> 25 #include <linux/blkdev.h> 26 #include <linux/quotaops.h> 27 #include <crypto/hash.h> 28 29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 30 #include <linux/fscrypt.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_KVMALLOC, 48 FAULT_PAGE_ALLOC, 49 FAULT_PAGE_GET, 50 FAULT_ALLOC_BIO, 51 FAULT_ALLOC_NID, 52 FAULT_ORPHAN, 53 FAULT_BLOCK, 54 FAULT_DIR_DEPTH, 55 FAULT_EVICT_INODE, 56 FAULT_TRUNCATE, 57 FAULT_IO, 58 FAULT_CHECKPOINT, 59 FAULT_MAX, 60 }; 61 62 struct f2fs_fault_info { 63 atomic_t inject_ops; 64 unsigned int inject_rate; 65 unsigned int inject_type; 66 }; 67 68 extern char *fault_name[FAULT_MAX]; 69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 70 #endif 71 72 /* 73 * For mount options 74 */ 75 #define F2FS_MOUNT_BG_GC 0x00000001 76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 77 #define F2FS_MOUNT_DISCARD 0x00000004 78 #define F2FS_MOUNT_NOHEAP 0x00000008 79 #define F2FS_MOUNT_XATTR_USER 0x00000010 80 #define F2FS_MOUNT_POSIX_ACL 0x00000020 81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 83 #define F2FS_MOUNT_INLINE_DATA 0x00000100 84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 86 #define F2FS_MOUNT_NOBARRIER 0x00000800 87 #define F2FS_MOUNT_FASTBOOT 0x00001000 88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 89 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 92 #define F2FS_MOUNT_ADAPTIVE 0x00020000 93 #define F2FS_MOUNT_LFS 0x00040000 94 #define F2FS_MOUNT_USRQUOTA 0x00080000 95 #define F2FS_MOUNT_GRPQUOTA 0x00100000 96 #define F2FS_MOUNT_PRJQUOTA 0x00200000 97 #define F2FS_MOUNT_QUOTA 0x00400000 98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 100 101 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 102 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 103 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 104 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 105 106 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 107 typecheck(unsigned long long, b) && \ 108 ((long long)((a) - (b)) > 0)) 109 110 typedef u32 block_t; /* 111 * should not change u32, since it is the on-disk block 112 * address format, __le32. 113 */ 114 typedef u32 nid_t; 115 116 struct f2fs_mount_info { 117 unsigned int opt; 118 int write_io_size_bits; /* Write IO size bits */ 119 block_t root_reserved_blocks; /* root reserved blocks */ 120 kuid_t s_resuid; /* reserved blocks for uid */ 121 kgid_t s_resgid; /* reserved blocks for gid */ 122 int active_logs; /* # of active logs */ 123 int inline_xattr_size; /* inline xattr size */ 124 #ifdef CONFIG_F2FS_FAULT_INJECTION 125 struct f2fs_fault_info fault_info; /* For fault injection */ 126 #endif 127 #ifdef CONFIG_QUOTA 128 /* Names of quota files with journalled quota */ 129 char *s_qf_names[MAXQUOTAS]; 130 int s_jquota_fmt; /* Format of quota to use */ 131 #endif 132 /* For which write hints are passed down to block layer */ 133 int whint_mode; 134 int alloc_mode; /* segment allocation policy */ 135 int fsync_mode; /* fsync policy */ 136 bool test_dummy_encryption; /* test dummy encryption */ 137 }; 138 139 #define F2FS_FEATURE_ENCRYPT 0x0001 140 #define F2FS_FEATURE_BLKZONED 0x0002 141 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 142 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 143 #define F2FS_FEATURE_PRJQUOTA 0x0010 144 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 145 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 146 #define F2FS_FEATURE_QUOTA_INO 0x0080 147 #define F2FS_FEATURE_INODE_CRTIME 0x0100 148 #define F2FS_FEATURE_LOST_FOUND 0x0200 149 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */ 150 151 #define F2FS_HAS_FEATURE(sb, mask) \ 152 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 153 #define F2FS_SET_FEATURE(sb, mask) \ 154 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 155 #define F2FS_CLEAR_FEATURE(sb, mask) \ 156 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 157 158 /* 159 * Default values for user and/or group using reserved blocks 160 */ 161 #define F2FS_DEF_RESUID 0 162 #define F2FS_DEF_RESGID 0 163 164 /* 165 * For checkpoint manager 166 */ 167 enum { 168 NAT_BITMAP, 169 SIT_BITMAP 170 }; 171 172 #define CP_UMOUNT 0x00000001 173 #define CP_FASTBOOT 0x00000002 174 #define CP_SYNC 0x00000004 175 #define CP_RECOVERY 0x00000008 176 #define CP_DISCARD 0x00000010 177 #define CP_TRIMMED 0x00000020 178 179 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 180 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 181 #define DEF_MAX_DISCARD_LEN 512 /* Max. 2MB per discard */ 182 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 183 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 184 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 185 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 186 #define DEF_CP_INTERVAL 60 /* 60 secs */ 187 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 188 189 struct cp_control { 190 int reason; 191 __u64 trim_start; 192 __u64 trim_end; 193 __u64 trim_minlen; 194 }; 195 196 /* 197 * For CP/NAT/SIT/SSA readahead 198 */ 199 enum { 200 META_CP, 201 META_NAT, 202 META_SIT, 203 META_SSA, 204 META_POR, 205 }; 206 207 /* for the list of ino */ 208 enum { 209 ORPHAN_INO, /* for orphan ino list */ 210 APPEND_INO, /* for append ino list */ 211 UPDATE_INO, /* for update ino list */ 212 TRANS_DIR_INO, /* for trasactions dir ino list */ 213 FLUSH_INO, /* for multiple device flushing */ 214 MAX_INO_ENTRY, /* max. list */ 215 }; 216 217 struct ino_entry { 218 struct list_head list; /* list head */ 219 nid_t ino; /* inode number */ 220 unsigned int dirty_device; /* dirty device bitmap */ 221 }; 222 223 /* for the list of inodes to be GCed */ 224 struct inode_entry { 225 struct list_head list; /* list head */ 226 struct inode *inode; /* vfs inode pointer */ 227 }; 228 229 /* for the bitmap indicate blocks to be discarded */ 230 struct discard_entry { 231 struct list_head list; /* list head */ 232 block_t start_blkaddr; /* start blockaddr of current segment */ 233 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 234 }; 235 236 /* default discard granularity of inner discard thread, unit: block count */ 237 #define DEFAULT_DISCARD_GRANULARITY 16 238 239 /* max discard pend list number */ 240 #define MAX_PLIST_NUM 512 241 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 242 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 243 244 enum { 245 D_PREP, 246 D_SUBMIT, 247 D_DONE, 248 }; 249 250 struct discard_info { 251 block_t lstart; /* logical start address */ 252 block_t len; /* length */ 253 block_t start; /* actual start address in dev */ 254 }; 255 256 struct discard_cmd { 257 struct rb_node rb_node; /* rb node located in rb-tree */ 258 union { 259 struct { 260 block_t lstart; /* logical start address */ 261 block_t len; /* length */ 262 block_t start; /* actual start address in dev */ 263 }; 264 struct discard_info di; /* discard info */ 265 266 }; 267 struct list_head list; /* command list */ 268 struct completion wait; /* compleation */ 269 struct block_device *bdev; /* bdev */ 270 unsigned short ref; /* reference count */ 271 unsigned char state; /* state */ 272 int error; /* bio error */ 273 }; 274 275 enum { 276 DPOLICY_BG, 277 DPOLICY_FORCE, 278 DPOLICY_FSTRIM, 279 DPOLICY_UMOUNT, 280 MAX_DPOLICY, 281 }; 282 283 struct discard_policy { 284 int type; /* type of discard */ 285 unsigned int min_interval; /* used for candidates exist */ 286 unsigned int mid_interval; /* used for device busy */ 287 unsigned int max_interval; /* used for candidates not exist */ 288 unsigned int max_requests; /* # of discards issued per round */ 289 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 290 bool io_aware; /* issue discard in idle time */ 291 bool sync; /* submit discard with REQ_SYNC flag */ 292 unsigned int granularity; /* discard granularity */ 293 }; 294 295 struct discard_cmd_control { 296 struct task_struct *f2fs_issue_discard; /* discard thread */ 297 struct list_head entry_list; /* 4KB discard entry list */ 298 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 299 struct list_head wait_list; /* store on-flushing entries */ 300 struct list_head fstrim_list; /* in-flight discard from fstrim */ 301 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 302 unsigned int discard_wake; /* to wake up discard thread */ 303 struct mutex cmd_lock; 304 unsigned int nr_discards; /* # of discards in the list */ 305 unsigned int max_discards; /* max. discards to be issued */ 306 unsigned int discard_granularity; /* discard granularity */ 307 unsigned int undiscard_blks; /* # of undiscard blocks */ 308 atomic_t issued_discard; /* # of issued discard */ 309 atomic_t issing_discard; /* # of issing discard */ 310 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 311 struct rb_root root; /* root of discard rb-tree */ 312 }; 313 314 /* for the list of fsync inodes, used only during recovery */ 315 struct fsync_inode_entry { 316 struct list_head list; /* list head */ 317 struct inode *inode; /* vfs inode pointer */ 318 block_t blkaddr; /* block address locating the last fsync */ 319 block_t last_dentry; /* block address locating the last dentry */ 320 }; 321 322 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 323 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 324 325 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 326 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 327 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 328 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 329 330 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 331 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 332 333 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 334 { 335 int before = nats_in_cursum(journal); 336 337 journal->n_nats = cpu_to_le16(before + i); 338 return before; 339 } 340 341 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 342 { 343 int before = sits_in_cursum(journal); 344 345 journal->n_sits = cpu_to_le16(before + i); 346 return before; 347 } 348 349 static inline bool __has_cursum_space(struct f2fs_journal *journal, 350 int size, int type) 351 { 352 if (type == NAT_JOURNAL) 353 return size <= MAX_NAT_JENTRIES(journal); 354 return size <= MAX_SIT_JENTRIES(journal); 355 } 356 357 /* 358 * ioctl commands 359 */ 360 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 361 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 362 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 363 364 #define F2FS_IOCTL_MAGIC 0xf5 365 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 366 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 367 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 368 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 369 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 370 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 371 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 372 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 373 struct f2fs_defragment) 374 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 375 struct f2fs_move_range) 376 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 377 struct f2fs_flush_device) 378 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 379 struct f2fs_gc_range) 380 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 381 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 382 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 383 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 384 385 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 386 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 387 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 388 389 /* 390 * should be same as XFS_IOC_GOINGDOWN. 391 * Flags for going down operation used by FS_IOC_GOINGDOWN 392 */ 393 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 394 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 395 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 396 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 397 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 398 399 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 400 /* 401 * ioctl commands in 32 bit emulation 402 */ 403 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 404 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 405 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 406 #endif 407 408 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 409 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 410 411 struct f2fs_gc_range { 412 u32 sync; 413 u64 start; 414 u64 len; 415 }; 416 417 struct f2fs_defragment { 418 u64 start; 419 u64 len; 420 }; 421 422 struct f2fs_move_range { 423 u32 dst_fd; /* destination fd */ 424 u64 pos_in; /* start position in src_fd */ 425 u64 pos_out; /* start position in dst_fd */ 426 u64 len; /* size to move */ 427 }; 428 429 struct f2fs_flush_device { 430 u32 dev_num; /* device number to flush */ 431 u32 segments; /* # of segments to flush */ 432 }; 433 434 /* for inline stuff */ 435 #define DEF_INLINE_RESERVED_SIZE 1 436 #define DEF_MIN_INLINE_SIZE 1 437 static inline int get_extra_isize(struct inode *inode); 438 static inline int get_inline_xattr_addrs(struct inode *inode); 439 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 440 (CUR_ADDRS_PER_INODE(inode) - \ 441 get_inline_xattr_addrs(inode) - \ 442 DEF_INLINE_RESERVED_SIZE)) 443 444 /* for inline dir */ 445 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 446 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 447 BITS_PER_BYTE + 1)) 448 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 449 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 450 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 451 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 452 NR_INLINE_DENTRY(inode) + \ 453 INLINE_DENTRY_BITMAP_SIZE(inode))) 454 455 /* 456 * For INODE and NODE manager 457 */ 458 /* for directory operations */ 459 struct f2fs_dentry_ptr { 460 struct inode *inode; 461 void *bitmap; 462 struct f2fs_dir_entry *dentry; 463 __u8 (*filename)[F2FS_SLOT_LEN]; 464 int max; 465 int nr_bitmap; 466 }; 467 468 static inline void make_dentry_ptr_block(struct inode *inode, 469 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 470 { 471 d->inode = inode; 472 d->max = NR_DENTRY_IN_BLOCK; 473 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 474 d->bitmap = t->dentry_bitmap; 475 d->dentry = t->dentry; 476 d->filename = t->filename; 477 } 478 479 static inline void make_dentry_ptr_inline(struct inode *inode, 480 struct f2fs_dentry_ptr *d, void *t) 481 { 482 int entry_cnt = NR_INLINE_DENTRY(inode); 483 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 484 int reserved_size = INLINE_RESERVED_SIZE(inode); 485 486 d->inode = inode; 487 d->max = entry_cnt; 488 d->nr_bitmap = bitmap_size; 489 d->bitmap = t; 490 d->dentry = t + bitmap_size + reserved_size; 491 d->filename = t + bitmap_size + reserved_size + 492 SIZE_OF_DIR_ENTRY * entry_cnt; 493 } 494 495 /* 496 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 497 * as its node offset to distinguish from index node blocks. 498 * But some bits are used to mark the node block. 499 */ 500 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 501 >> OFFSET_BIT_SHIFT) 502 enum { 503 ALLOC_NODE, /* allocate a new node page if needed */ 504 LOOKUP_NODE, /* look up a node without readahead */ 505 LOOKUP_NODE_RA, /* 506 * look up a node with readahead called 507 * by get_data_block. 508 */ 509 }; 510 511 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 512 513 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 514 515 /* vector size for gang look-up from extent cache that consists of radix tree */ 516 #define EXT_TREE_VEC_SIZE 64 517 518 /* for in-memory extent cache entry */ 519 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 520 521 /* number of extent info in extent cache we try to shrink */ 522 #define EXTENT_CACHE_SHRINK_NUMBER 128 523 524 struct rb_entry { 525 struct rb_node rb_node; /* rb node located in rb-tree */ 526 unsigned int ofs; /* start offset of the entry */ 527 unsigned int len; /* length of the entry */ 528 }; 529 530 struct extent_info { 531 unsigned int fofs; /* start offset in a file */ 532 unsigned int len; /* length of the extent */ 533 u32 blk; /* start block address of the extent */ 534 }; 535 536 struct extent_node { 537 struct rb_node rb_node; 538 union { 539 struct { 540 unsigned int fofs; 541 unsigned int len; 542 u32 blk; 543 }; 544 struct extent_info ei; /* extent info */ 545 546 }; 547 struct list_head list; /* node in global extent list of sbi */ 548 struct extent_tree *et; /* extent tree pointer */ 549 }; 550 551 struct extent_tree { 552 nid_t ino; /* inode number */ 553 struct rb_root root; /* root of extent info rb-tree */ 554 struct extent_node *cached_en; /* recently accessed extent node */ 555 struct extent_info largest; /* largested extent info */ 556 struct list_head list; /* to be used by sbi->zombie_list */ 557 rwlock_t lock; /* protect extent info rb-tree */ 558 atomic_t node_cnt; /* # of extent node in rb-tree*/ 559 }; 560 561 /* 562 * This structure is taken from ext4_map_blocks. 563 * 564 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 565 */ 566 #define F2FS_MAP_NEW (1 << BH_New) 567 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 568 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 569 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 570 F2FS_MAP_UNWRITTEN) 571 572 struct f2fs_map_blocks { 573 block_t m_pblk; 574 block_t m_lblk; 575 unsigned int m_len; 576 unsigned int m_flags; 577 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 578 pgoff_t *m_next_extent; /* point to next possible extent */ 579 int m_seg_type; 580 }; 581 582 /* for flag in get_data_block */ 583 enum { 584 F2FS_GET_BLOCK_DEFAULT, 585 F2FS_GET_BLOCK_FIEMAP, 586 F2FS_GET_BLOCK_BMAP, 587 F2FS_GET_BLOCK_PRE_DIO, 588 F2FS_GET_BLOCK_PRE_AIO, 589 F2FS_GET_BLOCK_PRECACHE, 590 }; 591 592 /* 593 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 594 */ 595 #define FADVISE_COLD_BIT 0x01 596 #define FADVISE_LOST_PINO_BIT 0x02 597 #define FADVISE_ENCRYPT_BIT 0x04 598 #define FADVISE_ENC_NAME_BIT 0x08 599 #define FADVISE_KEEP_SIZE_BIT 0x10 600 #define FADVISE_HOT_BIT 0x20 601 #define FADVISE_VERITY_BIT 0x40 /* reserved */ 602 603 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 604 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 605 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 606 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 607 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 608 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 609 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 610 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 611 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 612 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 613 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 614 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 615 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 616 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 617 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 618 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 619 620 #define DEF_DIR_LEVEL 0 621 622 enum { 623 GC_FAILURE_PIN, 624 GC_FAILURE_ATOMIC, 625 MAX_GC_FAILURE 626 }; 627 628 struct f2fs_inode_info { 629 struct inode vfs_inode; /* serve a vfs inode */ 630 unsigned long i_flags; /* keep an inode flags for ioctl */ 631 unsigned char i_advise; /* use to give file attribute hints */ 632 unsigned char i_dir_level; /* use for dentry level for large dir */ 633 unsigned int i_current_depth; /* only for directory depth */ 634 /* for gc failure statistic */ 635 unsigned int i_gc_failures[MAX_GC_FAILURE]; 636 unsigned int i_pino; /* parent inode number */ 637 umode_t i_acl_mode; /* keep file acl mode temporarily */ 638 639 /* Use below internally in f2fs*/ 640 unsigned long flags; /* use to pass per-file flags */ 641 struct rw_semaphore i_sem; /* protect fi info */ 642 atomic_t dirty_pages; /* # of dirty pages */ 643 f2fs_hash_t chash; /* hash value of given file name */ 644 unsigned int clevel; /* maximum level of given file name */ 645 struct task_struct *task; /* lookup and create consistency */ 646 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 647 nid_t i_xattr_nid; /* node id that contains xattrs */ 648 loff_t last_disk_size; /* lastly written file size */ 649 650 #ifdef CONFIG_QUOTA 651 struct dquot *i_dquot[MAXQUOTAS]; 652 653 /* quota space reservation, managed internally by quota code */ 654 qsize_t i_reserved_quota; 655 #endif 656 struct list_head dirty_list; /* dirty list for dirs and files */ 657 struct list_head gdirty_list; /* linked in global dirty list */ 658 struct list_head inmem_ilist; /* list for inmem inodes */ 659 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 660 struct task_struct *inmem_task; /* store inmemory task */ 661 struct mutex inmem_lock; /* lock for inmemory pages */ 662 struct extent_tree *extent_tree; /* cached extent_tree entry */ 663 664 /* avoid racing between foreground op and gc */ 665 struct rw_semaphore i_gc_rwsem[2]; 666 struct rw_semaphore i_mmap_sem; 667 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 668 669 int i_extra_isize; /* size of extra space located in i_addr */ 670 kprojid_t i_projid; /* id for project quota */ 671 int i_inline_xattr_size; /* inline xattr size */ 672 struct timespec i_crtime; /* inode creation time */ 673 struct timespec i_disk_time[4]; /* inode disk times */ 674 }; 675 676 static inline void get_extent_info(struct extent_info *ext, 677 struct f2fs_extent *i_ext) 678 { 679 ext->fofs = le32_to_cpu(i_ext->fofs); 680 ext->blk = le32_to_cpu(i_ext->blk); 681 ext->len = le32_to_cpu(i_ext->len); 682 } 683 684 static inline void set_raw_extent(struct extent_info *ext, 685 struct f2fs_extent *i_ext) 686 { 687 i_ext->fofs = cpu_to_le32(ext->fofs); 688 i_ext->blk = cpu_to_le32(ext->blk); 689 i_ext->len = cpu_to_le32(ext->len); 690 } 691 692 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 693 u32 blk, unsigned int len) 694 { 695 ei->fofs = fofs; 696 ei->blk = blk; 697 ei->len = len; 698 } 699 700 static inline bool __is_discard_mergeable(struct discard_info *back, 701 struct discard_info *front) 702 { 703 return (back->lstart + back->len == front->lstart) && 704 (back->len + front->len < DEF_MAX_DISCARD_LEN); 705 } 706 707 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 708 struct discard_info *back) 709 { 710 return __is_discard_mergeable(back, cur); 711 } 712 713 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 714 struct discard_info *front) 715 { 716 return __is_discard_mergeable(cur, front); 717 } 718 719 static inline bool __is_extent_mergeable(struct extent_info *back, 720 struct extent_info *front) 721 { 722 return (back->fofs + back->len == front->fofs && 723 back->blk + back->len == front->blk); 724 } 725 726 static inline bool __is_back_mergeable(struct extent_info *cur, 727 struct extent_info *back) 728 { 729 return __is_extent_mergeable(back, cur); 730 } 731 732 static inline bool __is_front_mergeable(struct extent_info *cur, 733 struct extent_info *front) 734 { 735 return __is_extent_mergeable(cur, front); 736 } 737 738 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 739 static inline void __try_update_largest_extent(struct inode *inode, 740 struct extent_tree *et, struct extent_node *en) 741 { 742 if (en->ei.len > et->largest.len) { 743 et->largest = en->ei; 744 f2fs_mark_inode_dirty_sync(inode, true); 745 } 746 } 747 748 /* 749 * For free nid management 750 */ 751 enum nid_state { 752 FREE_NID, /* newly added to free nid list */ 753 PREALLOC_NID, /* it is preallocated */ 754 MAX_NID_STATE, 755 }; 756 757 struct f2fs_nm_info { 758 block_t nat_blkaddr; /* base disk address of NAT */ 759 nid_t max_nid; /* maximum possible node ids */ 760 nid_t available_nids; /* # of available node ids */ 761 nid_t next_scan_nid; /* the next nid to be scanned */ 762 unsigned int ram_thresh; /* control the memory footprint */ 763 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 764 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 765 766 /* NAT cache management */ 767 struct radix_tree_root nat_root;/* root of the nat entry cache */ 768 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 769 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 770 struct list_head nat_entries; /* cached nat entry list (clean) */ 771 unsigned int nat_cnt; /* the # of cached nat entries */ 772 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 773 unsigned int nat_blocks; /* # of nat blocks */ 774 775 /* free node ids management */ 776 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 777 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 778 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 779 spinlock_t nid_list_lock; /* protect nid lists ops */ 780 struct mutex build_lock; /* lock for build free nids */ 781 unsigned char **free_nid_bitmap; 782 unsigned char *nat_block_bitmap; 783 unsigned short *free_nid_count; /* free nid count of NAT block */ 784 785 /* for checkpoint */ 786 char *nat_bitmap; /* NAT bitmap pointer */ 787 788 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 789 unsigned char *nat_bits; /* NAT bits blocks */ 790 unsigned char *full_nat_bits; /* full NAT pages */ 791 unsigned char *empty_nat_bits; /* empty NAT pages */ 792 #ifdef CONFIG_F2FS_CHECK_FS 793 char *nat_bitmap_mir; /* NAT bitmap mirror */ 794 #endif 795 int bitmap_size; /* bitmap size */ 796 }; 797 798 /* 799 * this structure is used as one of function parameters. 800 * all the information are dedicated to a given direct node block determined 801 * by the data offset in a file. 802 */ 803 struct dnode_of_data { 804 struct inode *inode; /* vfs inode pointer */ 805 struct page *inode_page; /* its inode page, NULL is possible */ 806 struct page *node_page; /* cached direct node page */ 807 nid_t nid; /* node id of the direct node block */ 808 unsigned int ofs_in_node; /* data offset in the node page */ 809 bool inode_page_locked; /* inode page is locked or not */ 810 bool node_changed; /* is node block changed */ 811 char cur_level; /* level of hole node page */ 812 char max_level; /* level of current page located */ 813 block_t data_blkaddr; /* block address of the node block */ 814 }; 815 816 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 817 struct page *ipage, struct page *npage, nid_t nid) 818 { 819 memset(dn, 0, sizeof(*dn)); 820 dn->inode = inode; 821 dn->inode_page = ipage; 822 dn->node_page = npage; 823 dn->nid = nid; 824 } 825 826 /* 827 * For SIT manager 828 * 829 * By default, there are 6 active log areas across the whole main area. 830 * When considering hot and cold data separation to reduce cleaning overhead, 831 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 832 * respectively. 833 * In the current design, you should not change the numbers intentionally. 834 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 835 * logs individually according to the underlying devices. (default: 6) 836 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 837 * data and 8 for node logs. 838 */ 839 #define NR_CURSEG_DATA_TYPE (3) 840 #define NR_CURSEG_NODE_TYPE (3) 841 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 842 843 enum { 844 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 845 CURSEG_WARM_DATA, /* data blocks */ 846 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 847 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 848 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 849 CURSEG_COLD_NODE, /* indirect node blocks */ 850 NO_CHECK_TYPE, 851 }; 852 853 struct flush_cmd { 854 struct completion wait; 855 struct llist_node llnode; 856 nid_t ino; 857 int ret; 858 }; 859 860 struct flush_cmd_control { 861 struct task_struct *f2fs_issue_flush; /* flush thread */ 862 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 863 atomic_t issued_flush; /* # of issued flushes */ 864 atomic_t issing_flush; /* # of issing flushes */ 865 struct llist_head issue_list; /* list for command issue */ 866 struct llist_node *dispatch_list; /* list for command dispatch */ 867 }; 868 869 struct f2fs_sm_info { 870 struct sit_info *sit_info; /* whole segment information */ 871 struct free_segmap_info *free_info; /* free segment information */ 872 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 873 struct curseg_info *curseg_array; /* active segment information */ 874 875 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 876 877 block_t seg0_blkaddr; /* block address of 0'th segment */ 878 block_t main_blkaddr; /* start block address of main area */ 879 block_t ssa_blkaddr; /* start block address of SSA area */ 880 881 unsigned int segment_count; /* total # of segments */ 882 unsigned int main_segments; /* # of segments in main area */ 883 unsigned int reserved_segments; /* # of reserved segments */ 884 unsigned int ovp_segments; /* # of overprovision segments */ 885 886 /* a threshold to reclaim prefree segments */ 887 unsigned int rec_prefree_segments; 888 889 /* for batched trimming */ 890 unsigned int trim_sections; /* # of sections to trim */ 891 892 struct list_head sit_entry_set; /* sit entry set list */ 893 894 unsigned int ipu_policy; /* in-place-update policy */ 895 unsigned int min_ipu_util; /* in-place-update threshold */ 896 unsigned int min_fsync_blocks; /* threshold for fsync */ 897 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 898 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 899 900 /* for flush command control */ 901 struct flush_cmd_control *fcc_info; 902 903 /* for discard command control */ 904 struct discard_cmd_control *dcc_info; 905 }; 906 907 /* 908 * For superblock 909 */ 910 /* 911 * COUNT_TYPE for monitoring 912 * 913 * f2fs monitors the number of several block types such as on-writeback, 914 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 915 */ 916 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 917 enum count_type { 918 F2FS_DIRTY_DENTS, 919 F2FS_DIRTY_DATA, 920 F2FS_DIRTY_QDATA, 921 F2FS_DIRTY_NODES, 922 F2FS_DIRTY_META, 923 F2FS_INMEM_PAGES, 924 F2FS_DIRTY_IMETA, 925 F2FS_WB_CP_DATA, 926 F2FS_WB_DATA, 927 NR_COUNT_TYPE, 928 }; 929 930 /* 931 * The below are the page types of bios used in submit_bio(). 932 * The available types are: 933 * DATA User data pages. It operates as async mode. 934 * NODE Node pages. It operates as async mode. 935 * META FS metadata pages such as SIT, NAT, CP. 936 * NR_PAGE_TYPE The number of page types. 937 * META_FLUSH Make sure the previous pages are written 938 * with waiting the bio's completion 939 * ... Only can be used with META. 940 */ 941 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 942 enum page_type { 943 DATA, 944 NODE, 945 META, 946 NR_PAGE_TYPE, 947 META_FLUSH, 948 INMEM, /* the below types are used by tracepoints only. */ 949 INMEM_DROP, 950 INMEM_INVALIDATE, 951 INMEM_REVOKE, 952 IPU, 953 OPU, 954 }; 955 956 enum temp_type { 957 HOT = 0, /* must be zero for meta bio */ 958 WARM, 959 COLD, 960 NR_TEMP_TYPE, 961 }; 962 963 enum need_lock_type { 964 LOCK_REQ = 0, 965 LOCK_DONE, 966 LOCK_RETRY, 967 }; 968 969 enum cp_reason_type { 970 CP_NO_NEEDED, 971 CP_NON_REGULAR, 972 CP_HARDLINK, 973 CP_SB_NEED_CP, 974 CP_WRONG_PINO, 975 CP_NO_SPC_ROLL, 976 CP_NODE_NEED_CP, 977 CP_FASTBOOT_MODE, 978 CP_SPEC_LOG_NUM, 979 CP_RECOVER_DIR, 980 }; 981 982 enum iostat_type { 983 APP_DIRECT_IO, /* app direct IOs */ 984 APP_BUFFERED_IO, /* app buffered IOs */ 985 APP_WRITE_IO, /* app write IOs */ 986 APP_MAPPED_IO, /* app mapped IOs */ 987 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 988 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 989 FS_META_IO, /* meta IOs from kworker/reclaimer */ 990 FS_GC_DATA_IO, /* data IOs from forground gc */ 991 FS_GC_NODE_IO, /* node IOs from forground gc */ 992 FS_CP_DATA_IO, /* data IOs from checkpoint */ 993 FS_CP_NODE_IO, /* node IOs from checkpoint */ 994 FS_CP_META_IO, /* meta IOs from checkpoint */ 995 FS_DISCARD, /* discard */ 996 NR_IO_TYPE, 997 }; 998 999 struct f2fs_io_info { 1000 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1001 nid_t ino; /* inode number */ 1002 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1003 enum temp_type temp; /* contains HOT/WARM/COLD */ 1004 int op; /* contains REQ_OP_ */ 1005 int op_flags; /* req_flag_bits */ 1006 block_t new_blkaddr; /* new block address to be written */ 1007 block_t old_blkaddr; /* old block address before Cow */ 1008 struct page *page; /* page to be written */ 1009 struct page *encrypted_page; /* encrypted page */ 1010 struct list_head list; /* serialize IOs */ 1011 bool submitted; /* indicate IO submission */ 1012 int need_lock; /* indicate we need to lock cp_rwsem */ 1013 bool in_list; /* indicate fio is in io_list */ 1014 bool is_meta; /* indicate borrow meta inode mapping or not */ 1015 bool retry; /* need to reallocate block address */ 1016 enum iostat_type io_type; /* io type */ 1017 struct writeback_control *io_wbc; /* writeback control */ 1018 }; 1019 1020 #define is_read_io(rw) ((rw) == READ) 1021 struct f2fs_bio_info { 1022 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1023 struct bio *bio; /* bios to merge */ 1024 sector_t last_block_in_bio; /* last block number */ 1025 struct f2fs_io_info fio; /* store buffered io info. */ 1026 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1027 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1028 struct list_head io_list; /* track fios */ 1029 }; 1030 1031 #define FDEV(i) (sbi->devs[i]) 1032 #define RDEV(i) (raw_super->devs[i]) 1033 struct f2fs_dev_info { 1034 struct block_device *bdev; 1035 char path[MAX_PATH_LEN]; 1036 unsigned int total_segments; 1037 block_t start_blk; 1038 block_t end_blk; 1039 #ifdef CONFIG_BLK_DEV_ZONED 1040 unsigned int nr_blkz; /* Total number of zones */ 1041 u8 *blkz_type; /* Array of zones type */ 1042 #endif 1043 }; 1044 1045 enum inode_type { 1046 DIR_INODE, /* for dirty dir inode */ 1047 FILE_INODE, /* for dirty regular/symlink inode */ 1048 DIRTY_META, /* for all dirtied inode metadata */ 1049 ATOMIC_FILE, /* for all atomic files */ 1050 NR_INODE_TYPE, 1051 }; 1052 1053 /* for inner inode cache management */ 1054 struct inode_management { 1055 struct radix_tree_root ino_root; /* ino entry array */ 1056 spinlock_t ino_lock; /* for ino entry lock */ 1057 struct list_head ino_list; /* inode list head */ 1058 unsigned long ino_num; /* number of entries */ 1059 }; 1060 1061 /* For s_flag in struct f2fs_sb_info */ 1062 enum { 1063 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1064 SBI_IS_CLOSE, /* specify unmounting */ 1065 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1066 SBI_POR_DOING, /* recovery is doing or not */ 1067 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1068 SBI_NEED_CP, /* need to checkpoint */ 1069 }; 1070 1071 enum { 1072 CP_TIME, 1073 REQ_TIME, 1074 MAX_TIME, 1075 }; 1076 1077 enum { 1078 GC_NORMAL, 1079 GC_IDLE_CB, 1080 GC_IDLE_GREEDY, 1081 GC_URGENT, 1082 }; 1083 1084 enum { 1085 WHINT_MODE_OFF, /* not pass down write hints */ 1086 WHINT_MODE_USER, /* try to pass down hints given by users */ 1087 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1088 }; 1089 1090 enum { 1091 ALLOC_MODE_DEFAULT, /* stay default */ 1092 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1093 }; 1094 1095 enum fsync_mode { 1096 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1097 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1098 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1099 }; 1100 1101 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1102 #define DUMMY_ENCRYPTION_ENABLED(sbi) \ 1103 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption)) 1104 #else 1105 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0) 1106 #endif 1107 1108 struct f2fs_sb_info { 1109 struct super_block *sb; /* pointer to VFS super block */ 1110 struct proc_dir_entry *s_proc; /* proc entry */ 1111 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1112 struct rw_semaphore sb_lock; /* lock for raw super block */ 1113 int valid_super_block; /* valid super block no */ 1114 unsigned long s_flag; /* flags for sbi */ 1115 1116 #ifdef CONFIG_BLK_DEV_ZONED 1117 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1118 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1119 #endif 1120 1121 /* for node-related operations */ 1122 struct f2fs_nm_info *nm_info; /* node manager */ 1123 struct inode *node_inode; /* cache node blocks */ 1124 1125 /* for segment-related operations */ 1126 struct f2fs_sm_info *sm_info; /* segment manager */ 1127 1128 /* for bio operations */ 1129 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1130 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1131 /* bio ordering for NODE/DATA */ 1132 /* keep migration IO order for LFS mode */ 1133 struct rw_semaphore io_order_lock; 1134 mempool_t *write_io_dummy; /* Dummy pages */ 1135 1136 /* for checkpoint */ 1137 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1138 int cur_cp_pack; /* remain current cp pack */ 1139 spinlock_t cp_lock; /* for flag in ckpt */ 1140 struct inode *meta_inode; /* cache meta blocks */ 1141 struct mutex cp_mutex; /* checkpoint procedure lock */ 1142 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1143 struct rw_semaphore node_write; /* locking node writes */ 1144 struct rw_semaphore node_change; /* locking node change */ 1145 wait_queue_head_t cp_wait; 1146 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1147 long interval_time[MAX_TIME]; /* to store thresholds */ 1148 1149 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1150 1151 /* for orphan inode, use 0'th array */ 1152 unsigned int max_orphans; /* max orphan inodes */ 1153 1154 /* for inode management */ 1155 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1156 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1157 1158 /* for extent tree cache */ 1159 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1160 struct mutex extent_tree_lock; /* locking extent radix tree */ 1161 struct list_head extent_list; /* lru list for shrinker */ 1162 spinlock_t extent_lock; /* locking extent lru list */ 1163 atomic_t total_ext_tree; /* extent tree count */ 1164 struct list_head zombie_list; /* extent zombie tree list */ 1165 atomic_t total_zombie_tree; /* extent zombie tree count */ 1166 atomic_t total_ext_node; /* extent info count */ 1167 1168 /* basic filesystem units */ 1169 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1170 unsigned int log_blocksize; /* log2 block size */ 1171 unsigned int blocksize; /* block size */ 1172 unsigned int root_ino_num; /* root inode number*/ 1173 unsigned int node_ino_num; /* node inode number*/ 1174 unsigned int meta_ino_num; /* meta inode number*/ 1175 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1176 unsigned int blocks_per_seg; /* blocks per segment */ 1177 unsigned int segs_per_sec; /* segments per section */ 1178 unsigned int secs_per_zone; /* sections per zone */ 1179 unsigned int total_sections; /* total section count */ 1180 unsigned int total_node_count; /* total node block count */ 1181 unsigned int total_valid_node_count; /* valid node block count */ 1182 loff_t max_file_blocks; /* max block index of file */ 1183 int dir_level; /* directory level */ 1184 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */ 1185 int readdir_ra; /* readahead inode in readdir */ 1186 1187 block_t user_block_count; /* # of user blocks */ 1188 block_t total_valid_block_count; /* # of valid blocks */ 1189 block_t discard_blks; /* discard command candidats */ 1190 block_t last_valid_block_count; /* for recovery */ 1191 block_t reserved_blocks; /* configurable reserved blocks */ 1192 block_t current_reserved_blocks; /* current reserved blocks */ 1193 1194 unsigned int nquota_files; /* # of quota sysfile */ 1195 1196 u32 s_next_generation; /* for NFS support */ 1197 1198 /* # of pages, see count_type */ 1199 atomic_t nr_pages[NR_COUNT_TYPE]; 1200 /* # of allocated blocks */ 1201 struct percpu_counter alloc_valid_block_count; 1202 1203 /* writeback control */ 1204 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1205 1206 /* valid inode count */ 1207 struct percpu_counter total_valid_inode_count; 1208 1209 struct f2fs_mount_info mount_opt; /* mount options */ 1210 1211 /* for cleaning operations */ 1212 struct mutex gc_mutex; /* mutex for GC */ 1213 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1214 unsigned int cur_victim_sec; /* current victim section num */ 1215 unsigned int gc_mode; /* current GC state */ 1216 /* for skip statistic */ 1217 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1218 1219 /* threshold for gc trials on pinned files */ 1220 u64 gc_pin_file_threshold; 1221 1222 /* maximum # of trials to find a victim segment for SSR and GC */ 1223 unsigned int max_victim_search; 1224 1225 /* 1226 * for stat information. 1227 * one is for the LFS mode, and the other is for the SSR mode. 1228 */ 1229 #ifdef CONFIG_F2FS_STAT_FS 1230 struct f2fs_stat_info *stat_info; /* FS status information */ 1231 unsigned int segment_count[2]; /* # of allocated segments */ 1232 unsigned int block_count[2]; /* # of allocated blocks */ 1233 atomic_t inplace_count; /* # of inplace update */ 1234 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1235 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1236 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1237 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1238 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1239 atomic_t inline_inode; /* # of inline_data inodes */ 1240 atomic_t inline_dir; /* # of inline_dentry inodes */ 1241 atomic_t aw_cnt; /* # of atomic writes */ 1242 atomic_t vw_cnt; /* # of volatile writes */ 1243 atomic_t max_aw_cnt; /* max # of atomic writes */ 1244 atomic_t max_vw_cnt; /* max # of volatile writes */ 1245 int bg_gc; /* background gc calls */ 1246 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1247 #endif 1248 spinlock_t stat_lock; /* lock for stat operations */ 1249 1250 /* For app/fs IO statistics */ 1251 spinlock_t iostat_lock; 1252 unsigned long long write_iostat[NR_IO_TYPE]; 1253 bool iostat_enable; 1254 1255 /* For sysfs suppport */ 1256 struct kobject s_kobj; 1257 struct completion s_kobj_unregister; 1258 1259 /* For shrinker support */ 1260 struct list_head s_list; 1261 int s_ndevs; /* number of devices */ 1262 struct f2fs_dev_info *devs; /* for device list */ 1263 unsigned int dirty_device; /* for checkpoint data flush */ 1264 spinlock_t dev_lock; /* protect dirty_device */ 1265 struct mutex umount_mutex; 1266 unsigned int shrinker_run_no; 1267 1268 /* For write statistics */ 1269 u64 sectors_written_start; 1270 u64 kbytes_written; 1271 1272 /* Reference to checksum algorithm driver via cryptoapi */ 1273 struct crypto_shash *s_chksum_driver; 1274 1275 /* Precomputed FS UUID checksum for seeding other checksums */ 1276 __u32 s_chksum_seed; 1277 }; 1278 1279 #ifdef CONFIG_F2FS_FAULT_INJECTION 1280 #define f2fs_show_injection_info(type) \ 1281 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1282 KERN_INFO, fault_name[type], \ 1283 __func__, __builtin_return_address(0)) 1284 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1285 { 1286 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1287 1288 if (!ffi->inject_rate) 1289 return false; 1290 1291 if (!IS_FAULT_SET(ffi, type)) 1292 return false; 1293 1294 atomic_inc(&ffi->inject_ops); 1295 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1296 atomic_set(&ffi->inject_ops, 0); 1297 return true; 1298 } 1299 return false; 1300 } 1301 #endif 1302 1303 /* For write statistics. Suppose sector size is 512 bytes, 1304 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1305 */ 1306 #define BD_PART_WRITTEN(s) \ 1307 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1308 (s)->sectors_written_start) >> 1) 1309 1310 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1311 { 1312 sbi->last_time[type] = jiffies; 1313 } 1314 1315 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1316 { 1317 unsigned long interval = sbi->interval_time[type] * HZ; 1318 1319 return time_after(jiffies, sbi->last_time[type] + interval); 1320 } 1321 1322 static inline bool is_idle(struct f2fs_sb_info *sbi) 1323 { 1324 struct block_device *bdev = sbi->sb->s_bdev; 1325 struct request_queue *q = bdev_get_queue(bdev); 1326 struct request_list *rl = &q->root_rl; 1327 1328 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1329 return 0; 1330 1331 return f2fs_time_over(sbi, REQ_TIME); 1332 } 1333 1334 /* 1335 * Inline functions 1336 */ 1337 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1338 const void *address, unsigned int length) 1339 { 1340 struct { 1341 struct shash_desc shash; 1342 char ctx[4]; 1343 } desc; 1344 int err; 1345 1346 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1347 1348 desc.shash.tfm = sbi->s_chksum_driver; 1349 desc.shash.flags = 0; 1350 *(u32 *)desc.ctx = crc; 1351 1352 err = crypto_shash_update(&desc.shash, address, length); 1353 BUG_ON(err); 1354 1355 return *(u32 *)desc.ctx; 1356 } 1357 1358 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1359 unsigned int length) 1360 { 1361 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1362 } 1363 1364 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1365 void *buf, size_t buf_size) 1366 { 1367 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1368 } 1369 1370 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1371 const void *address, unsigned int length) 1372 { 1373 return __f2fs_crc32(sbi, crc, address, length); 1374 } 1375 1376 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1377 { 1378 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1379 } 1380 1381 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1382 { 1383 return sb->s_fs_info; 1384 } 1385 1386 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1387 { 1388 return F2FS_SB(inode->i_sb); 1389 } 1390 1391 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1392 { 1393 return F2FS_I_SB(mapping->host); 1394 } 1395 1396 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1397 { 1398 return F2FS_M_SB(page->mapping); 1399 } 1400 1401 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1402 { 1403 return (struct f2fs_super_block *)(sbi->raw_super); 1404 } 1405 1406 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1407 { 1408 return (struct f2fs_checkpoint *)(sbi->ckpt); 1409 } 1410 1411 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1412 { 1413 return (struct f2fs_node *)page_address(page); 1414 } 1415 1416 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1417 { 1418 return &((struct f2fs_node *)page_address(page))->i; 1419 } 1420 1421 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1422 { 1423 return (struct f2fs_nm_info *)(sbi->nm_info); 1424 } 1425 1426 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1427 { 1428 return (struct f2fs_sm_info *)(sbi->sm_info); 1429 } 1430 1431 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1432 { 1433 return (struct sit_info *)(SM_I(sbi)->sit_info); 1434 } 1435 1436 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1437 { 1438 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1439 } 1440 1441 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1442 { 1443 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1444 } 1445 1446 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1447 { 1448 return sbi->meta_inode->i_mapping; 1449 } 1450 1451 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1452 { 1453 return sbi->node_inode->i_mapping; 1454 } 1455 1456 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1457 { 1458 return test_bit(type, &sbi->s_flag); 1459 } 1460 1461 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1462 { 1463 set_bit(type, &sbi->s_flag); 1464 } 1465 1466 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1467 { 1468 clear_bit(type, &sbi->s_flag); 1469 } 1470 1471 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1472 { 1473 return le64_to_cpu(cp->checkpoint_ver); 1474 } 1475 1476 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1477 { 1478 if (type < F2FS_MAX_QUOTAS) 1479 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1480 return 0; 1481 } 1482 1483 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1484 { 1485 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1486 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1487 } 1488 1489 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1490 { 1491 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1492 1493 return ckpt_flags & f; 1494 } 1495 1496 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1497 { 1498 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1499 } 1500 1501 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1502 { 1503 unsigned int ckpt_flags; 1504 1505 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1506 ckpt_flags |= f; 1507 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1508 } 1509 1510 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1511 { 1512 unsigned long flags; 1513 1514 spin_lock_irqsave(&sbi->cp_lock, flags); 1515 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1516 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1517 } 1518 1519 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1520 { 1521 unsigned int ckpt_flags; 1522 1523 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1524 ckpt_flags &= (~f); 1525 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1526 } 1527 1528 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1529 { 1530 unsigned long flags; 1531 1532 spin_lock_irqsave(&sbi->cp_lock, flags); 1533 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1534 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1535 } 1536 1537 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1538 { 1539 unsigned long flags; 1540 1541 set_sbi_flag(sbi, SBI_NEED_FSCK); 1542 1543 if (lock) 1544 spin_lock_irqsave(&sbi->cp_lock, flags); 1545 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1546 kfree(NM_I(sbi)->nat_bits); 1547 NM_I(sbi)->nat_bits = NULL; 1548 if (lock) 1549 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1550 } 1551 1552 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1553 struct cp_control *cpc) 1554 { 1555 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1556 1557 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1558 } 1559 1560 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1561 { 1562 down_read(&sbi->cp_rwsem); 1563 } 1564 1565 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1566 { 1567 return down_read_trylock(&sbi->cp_rwsem); 1568 } 1569 1570 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1571 { 1572 up_read(&sbi->cp_rwsem); 1573 } 1574 1575 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1576 { 1577 down_write(&sbi->cp_rwsem); 1578 } 1579 1580 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1581 { 1582 up_write(&sbi->cp_rwsem); 1583 } 1584 1585 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1586 { 1587 int reason = CP_SYNC; 1588 1589 if (test_opt(sbi, FASTBOOT)) 1590 reason = CP_FASTBOOT; 1591 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1592 reason = CP_UMOUNT; 1593 return reason; 1594 } 1595 1596 static inline bool __remain_node_summaries(int reason) 1597 { 1598 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1599 } 1600 1601 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1602 { 1603 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1604 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1605 } 1606 1607 /* 1608 * Check whether the inode has blocks or not 1609 */ 1610 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1611 { 1612 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1613 1614 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1615 } 1616 1617 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1618 { 1619 return ofs == XATTR_NODE_OFFSET; 1620 } 1621 1622 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1623 struct inode *inode, bool cap) 1624 { 1625 if (!inode) 1626 return true; 1627 if (!test_opt(sbi, RESERVE_ROOT)) 1628 return false; 1629 if (IS_NOQUOTA(inode)) 1630 return true; 1631 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1632 return true; 1633 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1634 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1635 return true; 1636 if (cap && capable(CAP_SYS_RESOURCE)) 1637 return true; 1638 return false; 1639 } 1640 1641 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1642 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1643 struct inode *inode, blkcnt_t *count) 1644 { 1645 blkcnt_t diff = 0, release = 0; 1646 block_t avail_user_block_count; 1647 int ret; 1648 1649 ret = dquot_reserve_block(inode, *count); 1650 if (ret) 1651 return ret; 1652 1653 #ifdef CONFIG_F2FS_FAULT_INJECTION 1654 if (time_to_inject(sbi, FAULT_BLOCK)) { 1655 f2fs_show_injection_info(FAULT_BLOCK); 1656 release = *count; 1657 goto enospc; 1658 } 1659 #endif 1660 /* 1661 * let's increase this in prior to actual block count change in order 1662 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1663 */ 1664 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1665 1666 spin_lock(&sbi->stat_lock); 1667 sbi->total_valid_block_count += (block_t)(*count); 1668 avail_user_block_count = sbi->user_block_count - 1669 sbi->current_reserved_blocks; 1670 1671 if (!__allow_reserved_blocks(sbi, inode, true)) 1672 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1673 1674 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1675 diff = sbi->total_valid_block_count - avail_user_block_count; 1676 if (diff > *count) 1677 diff = *count; 1678 *count -= diff; 1679 release = diff; 1680 sbi->total_valid_block_count -= diff; 1681 if (!*count) { 1682 spin_unlock(&sbi->stat_lock); 1683 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1684 goto enospc; 1685 } 1686 } 1687 spin_unlock(&sbi->stat_lock); 1688 1689 if (unlikely(release)) 1690 dquot_release_reservation_block(inode, release); 1691 f2fs_i_blocks_write(inode, *count, true, true); 1692 return 0; 1693 1694 enospc: 1695 dquot_release_reservation_block(inode, release); 1696 return -ENOSPC; 1697 } 1698 1699 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1700 struct inode *inode, 1701 block_t count) 1702 { 1703 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1704 1705 spin_lock(&sbi->stat_lock); 1706 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1707 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1708 sbi->total_valid_block_count -= (block_t)count; 1709 if (sbi->reserved_blocks && 1710 sbi->current_reserved_blocks < sbi->reserved_blocks) 1711 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1712 sbi->current_reserved_blocks + count); 1713 spin_unlock(&sbi->stat_lock); 1714 f2fs_i_blocks_write(inode, count, false, true); 1715 } 1716 1717 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1718 { 1719 atomic_inc(&sbi->nr_pages[count_type]); 1720 1721 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1722 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1723 return; 1724 1725 set_sbi_flag(sbi, SBI_IS_DIRTY); 1726 } 1727 1728 static inline void inode_inc_dirty_pages(struct inode *inode) 1729 { 1730 atomic_inc(&F2FS_I(inode)->dirty_pages); 1731 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1732 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1733 if (IS_NOQUOTA(inode)) 1734 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1735 } 1736 1737 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1738 { 1739 atomic_dec(&sbi->nr_pages[count_type]); 1740 } 1741 1742 static inline void inode_dec_dirty_pages(struct inode *inode) 1743 { 1744 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1745 !S_ISLNK(inode->i_mode)) 1746 return; 1747 1748 atomic_dec(&F2FS_I(inode)->dirty_pages); 1749 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1750 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1751 if (IS_NOQUOTA(inode)) 1752 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1753 } 1754 1755 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1756 { 1757 return atomic_read(&sbi->nr_pages[count_type]); 1758 } 1759 1760 static inline int get_dirty_pages(struct inode *inode) 1761 { 1762 return atomic_read(&F2FS_I(inode)->dirty_pages); 1763 } 1764 1765 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1766 { 1767 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1768 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1769 sbi->log_blocks_per_seg; 1770 1771 return segs / sbi->segs_per_sec; 1772 } 1773 1774 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1775 { 1776 return sbi->total_valid_block_count; 1777 } 1778 1779 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1780 { 1781 return sbi->discard_blks; 1782 } 1783 1784 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1785 { 1786 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1787 1788 /* return NAT or SIT bitmap */ 1789 if (flag == NAT_BITMAP) 1790 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1791 else if (flag == SIT_BITMAP) 1792 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1793 1794 return 0; 1795 } 1796 1797 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1798 { 1799 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1800 } 1801 1802 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1803 { 1804 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1805 int offset; 1806 1807 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 1808 offset = (flag == SIT_BITMAP) ? 1809 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 1810 return &ckpt->sit_nat_version_bitmap + offset; 1811 } 1812 1813 if (__cp_payload(sbi) > 0) { 1814 if (flag == NAT_BITMAP) 1815 return &ckpt->sit_nat_version_bitmap; 1816 else 1817 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1818 } else { 1819 offset = (flag == NAT_BITMAP) ? 1820 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1821 return &ckpt->sit_nat_version_bitmap + offset; 1822 } 1823 } 1824 1825 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1826 { 1827 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1828 1829 if (sbi->cur_cp_pack == 2) 1830 start_addr += sbi->blocks_per_seg; 1831 return start_addr; 1832 } 1833 1834 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1835 { 1836 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1837 1838 if (sbi->cur_cp_pack == 1) 1839 start_addr += sbi->blocks_per_seg; 1840 return start_addr; 1841 } 1842 1843 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1844 { 1845 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1846 } 1847 1848 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1849 { 1850 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1851 } 1852 1853 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1854 struct inode *inode, bool is_inode) 1855 { 1856 block_t valid_block_count; 1857 unsigned int valid_node_count; 1858 bool quota = inode && !is_inode; 1859 1860 if (quota) { 1861 int ret = dquot_reserve_block(inode, 1); 1862 if (ret) 1863 return ret; 1864 } 1865 1866 #ifdef CONFIG_F2FS_FAULT_INJECTION 1867 if (time_to_inject(sbi, FAULT_BLOCK)) { 1868 f2fs_show_injection_info(FAULT_BLOCK); 1869 goto enospc; 1870 } 1871 #endif 1872 1873 spin_lock(&sbi->stat_lock); 1874 1875 valid_block_count = sbi->total_valid_block_count + 1876 sbi->current_reserved_blocks + 1; 1877 1878 if (!__allow_reserved_blocks(sbi, inode, false)) 1879 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 1880 1881 if (unlikely(valid_block_count > sbi->user_block_count)) { 1882 spin_unlock(&sbi->stat_lock); 1883 goto enospc; 1884 } 1885 1886 valid_node_count = sbi->total_valid_node_count + 1; 1887 if (unlikely(valid_node_count > sbi->total_node_count)) { 1888 spin_unlock(&sbi->stat_lock); 1889 goto enospc; 1890 } 1891 1892 sbi->total_valid_node_count++; 1893 sbi->total_valid_block_count++; 1894 spin_unlock(&sbi->stat_lock); 1895 1896 if (inode) { 1897 if (is_inode) 1898 f2fs_mark_inode_dirty_sync(inode, true); 1899 else 1900 f2fs_i_blocks_write(inode, 1, true, true); 1901 } 1902 1903 percpu_counter_inc(&sbi->alloc_valid_block_count); 1904 return 0; 1905 1906 enospc: 1907 if (quota) 1908 dquot_release_reservation_block(inode, 1); 1909 return -ENOSPC; 1910 } 1911 1912 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1913 struct inode *inode, bool is_inode) 1914 { 1915 spin_lock(&sbi->stat_lock); 1916 1917 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1918 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1919 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1920 1921 sbi->total_valid_node_count--; 1922 sbi->total_valid_block_count--; 1923 if (sbi->reserved_blocks && 1924 sbi->current_reserved_blocks < sbi->reserved_blocks) 1925 sbi->current_reserved_blocks++; 1926 1927 spin_unlock(&sbi->stat_lock); 1928 1929 if (!is_inode) 1930 f2fs_i_blocks_write(inode, 1, false, true); 1931 } 1932 1933 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1934 { 1935 return sbi->total_valid_node_count; 1936 } 1937 1938 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1939 { 1940 percpu_counter_inc(&sbi->total_valid_inode_count); 1941 } 1942 1943 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1944 { 1945 percpu_counter_dec(&sbi->total_valid_inode_count); 1946 } 1947 1948 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1949 { 1950 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1951 } 1952 1953 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1954 pgoff_t index, bool for_write) 1955 { 1956 #ifdef CONFIG_F2FS_FAULT_INJECTION 1957 struct page *page = find_lock_page(mapping, index); 1958 1959 if (page) 1960 return page; 1961 1962 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1963 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1964 return NULL; 1965 } 1966 #endif 1967 if (!for_write) 1968 return grab_cache_page(mapping, index); 1969 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1970 } 1971 1972 static inline struct page *f2fs_pagecache_get_page( 1973 struct address_space *mapping, pgoff_t index, 1974 int fgp_flags, gfp_t gfp_mask) 1975 { 1976 #ifdef CONFIG_F2FS_FAULT_INJECTION 1977 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 1978 f2fs_show_injection_info(FAULT_PAGE_GET); 1979 return NULL; 1980 } 1981 #endif 1982 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 1983 } 1984 1985 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1986 { 1987 char *src_kaddr = kmap(src); 1988 char *dst_kaddr = kmap(dst); 1989 1990 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1991 kunmap(dst); 1992 kunmap(src); 1993 } 1994 1995 static inline void f2fs_put_page(struct page *page, int unlock) 1996 { 1997 if (!page) 1998 return; 1999 2000 if (unlock) { 2001 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2002 unlock_page(page); 2003 } 2004 put_page(page); 2005 } 2006 2007 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2008 { 2009 if (dn->node_page) 2010 f2fs_put_page(dn->node_page, 1); 2011 if (dn->inode_page && dn->node_page != dn->inode_page) 2012 f2fs_put_page(dn->inode_page, 0); 2013 dn->node_page = NULL; 2014 dn->inode_page = NULL; 2015 } 2016 2017 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2018 size_t size) 2019 { 2020 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2021 } 2022 2023 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2024 gfp_t flags) 2025 { 2026 void *entry; 2027 2028 entry = kmem_cache_alloc(cachep, flags); 2029 if (!entry) 2030 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2031 return entry; 2032 } 2033 2034 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 2035 int npages, bool no_fail) 2036 { 2037 struct bio *bio; 2038 2039 if (no_fail) { 2040 /* No failure on bio allocation */ 2041 bio = bio_alloc(GFP_NOIO, npages); 2042 if (!bio) 2043 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 2044 return bio; 2045 } 2046 #ifdef CONFIG_F2FS_FAULT_INJECTION 2047 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2048 f2fs_show_injection_info(FAULT_ALLOC_BIO); 2049 return NULL; 2050 } 2051 #endif 2052 return bio_alloc(GFP_KERNEL, npages); 2053 } 2054 2055 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2056 unsigned long index, void *item) 2057 { 2058 while (radix_tree_insert(root, index, item)) 2059 cond_resched(); 2060 } 2061 2062 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2063 2064 static inline bool IS_INODE(struct page *page) 2065 { 2066 struct f2fs_node *p = F2FS_NODE(page); 2067 2068 return RAW_IS_INODE(p); 2069 } 2070 2071 static inline int offset_in_addr(struct f2fs_inode *i) 2072 { 2073 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2074 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2075 } 2076 2077 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2078 { 2079 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2080 } 2081 2082 static inline int f2fs_has_extra_attr(struct inode *inode); 2083 static inline block_t datablock_addr(struct inode *inode, 2084 struct page *node_page, unsigned int offset) 2085 { 2086 struct f2fs_node *raw_node; 2087 __le32 *addr_array; 2088 int base = 0; 2089 bool is_inode = IS_INODE(node_page); 2090 2091 raw_node = F2FS_NODE(node_page); 2092 2093 /* from GC path only */ 2094 if (is_inode) { 2095 if (!inode) 2096 base = offset_in_addr(&raw_node->i); 2097 else if (f2fs_has_extra_attr(inode)) 2098 base = get_extra_isize(inode); 2099 } 2100 2101 addr_array = blkaddr_in_node(raw_node); 2102 return le32_to_cpu(addr_array[base + offset]); 2103 } 2104 2105 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2106 { 2107 int mask; 2108 2109 addr += (nr >> 3); 2110 mask = 1 << (7 - (nr & 0x07)); 2111 return mask & *addr; 2112 } 2113 2114 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2115 { 2116 int mask; 2117 2118 addr += (nr >> 3); 2119 mask = 1 << (7 - (nr & 0x07)); 2120 *addr |= mask; 2121 } 2122 2123 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2124 { 2125 int mask; 2126 2127 addr += (nr >> 3); 2128 mask = 1 << (7 - (nr & 0x07)); 2129 *addr &= ~mask; 2130 } 2131 2132 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2133 { 2134 int mask; 2135 int ret; 2136 2137 addr += (nr >> 3); 2138 mask = 1 << (7 - (nr & 0x07)); 2139 ret = mask & *addr; 2140 *addr |= mask; 2141 return ret; 2142 } 2143 2144 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2145 { 2146 int mask; 2147 int ret; 2148 2149 addr += (nr >> 3); 2150 mask = 1 << (7 - (nr & 0x07)); 2151 ret = mask & *addr; 2152 *addr &= ~mask; 2153 return ret; 2154 } 2155 2156 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2157 { 2158 int mask; 2159 2160 addr += (nr >> 3); 2161 mask = 1 << (7 - (nr & 0x07)); 2162 *addr ^= mask; 2163 } 2164 2165 /* 2166 * Inode flags 2167 */ 2168 #define F2FS_SECRM_FL 0x00000001 /* Secure deletion */ 2169 #define F2FS_UNRM_FL 0x00000002 /* Undelete */ 2170 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2171 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2172 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2173 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2174 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2175 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2176 /* Reserved for compression usage... */ 2177 #define F2FS_DIRTY_FL 0x00000100 2178 #define F2FS_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */ 2179 #define F2FS_NOCOMPR_FL 0x00000400 /* Don't compress */ 2180 #define F2FS_ENCRYPT_FL 0x00000800 /* encrypted file */ 2181 /* End compression flags --- maybe not all used */ 2182 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2183 #define F2FS_IMAGIC_FL 0x00002000 /* AFS directory */ 2184 #define F2FS_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */ 2185 #define F2FS_NOTAIL_FL 0x00008000 /* file tail should not be merged */ 2186 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2187 #define F2FS_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/ 2188 #define F2FS_HUGE_FILE_FL 0x00040000 /* Set to each huge file */ 2189 #define F2FS_EXTENTS_FL 0x00080000 /* Inode uses extents */ 2190 #define F2FS_EA_INODE_FL 0x00200000 /* Inode used for large EA */ 2191 #define F2FS_EOFBLOCKS_FL 0x00400000 /* Blocks allocated beyond EOF */ 2192 #define F2FS_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */ 2193 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2194 #define F2FS_RESERVED_FL 0x80000000 /* reserved for ext4 lib */ 2195 2196 #define F2FS_FL_USER_VISIBLE 0x304BDFFF /* User visible flags */ 2197 #define F2FS_FL_USER_MODIFIABLE 0x204BC0FF /* User modifiable flags */ 2198 2199 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */ 2200 #define F2FS_FL_XFLAG_VISIBLE (F2FS_SYNC_FL | \ 2201 F2FS_IMMUTABLE_FL | \ 2202 F2FS_APPEND_FL | \ 2203 F2FS_NODUMP_FL | \ 2204 F2FS_NOATIME_FL | \ 2205 F2FS_PROJINHERIT_FL) 2206 2207 /* Flags that should be inherited by new inodes from their parent. */ 2208 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\ 2209 F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\ 2210 F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\ 2211 F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\ 2212 F2FS_PROJINHERIT_FL) 2213 2214 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2215 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL)) 2216 2217 /* Flags that are appropriate for non-directories/regular files. */ 2218 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2219 2220 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2221 { 2222 if (S_ISDIR(mode)) 2223 return flags; 2224 else if (S_ISREG(mode)) 2225 return flags & F2FS_REG_FLMASK; 2226 else 2227 return flags & F2FS_OTHER_FLMASK; 2228 } 2229 2230 /* used for f2fs_inode_info->flags */ 2231 enum { 2232 FI_NEW_INODE, /* indicate newly allocated inode */ 2233 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2234 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2235 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2236 FI_INC_LINK, /* need to increment i_nlink */ 2237 FI_ACL_MODE, /* indicate acl mode */ 2238 FI_NO_ALLOC, /* should not allocate any blocks */ 2239 FI_FREE_NID, /* free allocated nide */ 2240 FI_NO_EXTENT, /* not to use the extent cache */ 2241 FI_INLINE_XATTR, /* used for inline xattr */ 2242 FI_INLINE_DATA, /* used for inline data*/ 2243 FI_INLINE_DENTRY, /* used for inline dentry */ 2244 FI_APPEND_WRITE, /* inode has appended data */ 2245 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2246 FI_NEED_IPU, /* used for ipu per file */ 2247 FI_ATOMIC_FILE, /* indicate atomic file */ 2248 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2249 FI_VOLATILE_FILE, /* indicate volatile file */ 2250 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2251 FI_DROP_CACHE, /* drop dirty page cache */ 2252 FI_DATA_EXIST, /* indicate data exists */ 2253 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2254 FI_DO_DEFRAG, /* indicate defragment is running */ 2255 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2256 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2257 FI_HOT_DATA, /* indicate file is hot */ 2258 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2259 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2260 FI_PIN_FILE, /* indicate file should not be gced */ 2261 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 2262 }; 2263 2264 static inline void __mark_inode_dirty_flag(struct inode *inode, 2265 int flag, bool set) 2266 { 2267 switch (flag) { 2268 case FI_INLINE_XATTR: 2269 case FI_INLINE_DATA: 2270 case FI_INLINE_DENTRY: 2271 case FI_NEW_INODE: 2272 if (set) 2273 return; 2274 case FI_DATA_EXIST: 2275 case FI_INLINE_DOTS: 2276 case FI_PIN_FILE: 2277 f2fs_mark_inode_dirty_sync(inode, true); 2278 } 2279 } 2280 2281 static inline void set_inode_flag(struct inode *inode, int flag) 2282 { 2283 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2284 set_bit(flag, &F2FS_I(inode)->flags); 2285 __mark_inode_dirty_flag(inode, flag, true); 2286 } 2287 2288 static inline int is_inode_flag_set(struct inode *inode, int flag) 2289 { 2290 return test_bit(flag, &F2FS_I(inode)->flags); 2291 } 2292 2293 static inline void clear_inode_flag(struct inode *inode, int flag) 2294 { 2295 if (test_bit(flag, &F2FS_I(inode)->flags)) 2296 clear_bit(flag, &F2FS_I(inode)->flags); 2297 __mark_inode_dirty_flag(inode, flag, false); 2298 } 2299 2300 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2301 { 2302 F2FS_I(inode)->i_acl_mode = mode; 2303 set_inode_flag(inode, FI_ACL_MODE); 2304 f2fs_mark_inode_dirty_sync(inode, false); 2305 } 2306 2307 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2308 { 2309 if (inc) 2310 inc_nlink(inode); 2311 else 2312 drop_nlink(inode); 2313 f2fs_mark_inode_dirty_sync(inode, true); 2314 } 2315 2316 static inline void f2fs_i_blocks_write(struct inode *inode, 2317 block_t diff, bool add, bool claim) 2318 { 2319 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2320 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2321 2322 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2323 if (add) { 2324 if (claim) 2325 dquot_claim_block(inode, diff); 2326 else 2327 dquot_alloc_block_nofail(inode, diff); 2328 } else { 2329 dquot_free_block(inode, diff); 2330 } 2331 2332 f2fs_mark_inode_dirty_sync(inode, true); 2333 if (clean || recover) 2334 set_inode_flag(inode, FI_AUTO_RECOVER); 2335 } 2336 2337 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2338 { 2339 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2340 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2341 2342 if (i_size_read(inode) == i_size) 2343 return; 2344 2345 i_size_write(inode, i_size); 2346 f2fs_mark_inode_dirty_sync(inode, true); 2347 if (clean || recover) 2348 set_inode_flag(inode, FI_AUTO_RECOVER); 2349 } 2350 2351 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2352 { 2353 F2FS_I(inode)->i_current_depth = depth; 2354 f2fs_mark_inode_dirty_sync(inode, true); 2355 } 2356 2357 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2358 unsigned int count) 2359 { 2360 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2361 f2fs_mark_inode_dirty_sync(inode, true); 2362 } 2363 2364 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2365 { 2366 F2FS_I(inode)->i_xattr_nid = xnid; 2367 f2fs_mark_inode_dirty_sync(inode, true); 2368 } 2369 2370 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2371 { 2372 F2FS_I(inode)->i_pino = pino; 2373 f2fs_mark_inode_dirty_sync(inode, true); 2374 } 2375 2376 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2377 { 2378 struct f2fs_inode_info *fi = F2FS_I(inode); 2379 2380 if (ri->i_inline & F2FS_INLINE_XATTR) 2381 set_bit(FI_INLINE_XATTR, &fi->flags); 2382 if (ri->i_inline & F2FS_INLINE_DATA) 2383 set_bit(FI_INLINE_DATA, &fi->flags); 2384 if (ri->i_inline & F2FS_INLINE_DENTRY) 2385 set_bit(FI_INLINE_DENTRY, &fi->flags); 2386 if (ri->i_inline & F2FS_DATA_EXIST) 2387 set_bit(FI_DATA_EXIST, &fi->flags); 2388 if (ri->i_inline & F2FS_INLINE_DOTS) 2389 set_bit(FI_INLINE_DOTS, &fi->flags); 2390 if (ri->i_inline & F2FS_EXTRA_ATTR) 2391 set_bit(FI_EXTRA_ATTR, &fi->flags); 2392 if (ri->i_inline & F2FS_PIN_FILE) 2393 set_bit(FI_PIN_FILE, &fi->flags); 2394 } 2395 2396 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2397 { 2398 ri->i_inline = 0; 2399 2400 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2401 ri->i_inline |= F2FS_INLINE_XATTR; 2402 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2403 ri->i_inline |= F2FS_INLINE_DATA; 2404 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2405 ri->i_inline |= F2FS_INLINE_DENTRY; 2406 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2407 ri->i_inline |= F2FS_DATA_EXIST; 2408 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2409 ri->i_inline |= F2FS_INLINE_DOTS; 2410 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2411 ri->i_inline |= F2FS_EXTRA_ATTR; 2412 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2413 ri->i_inline |= F2FS_PIN_FILE; 2414 } 2415 2416 static inline int f2fs_has_extra_attr(struct inode *inode) 2417 { 2418 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2419 } 2420 2421 static inline int f2fs_has_inline_xattr(struct inode *inode) 2422 { 2423 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2424 } 2425 2426 static inline unsigned int addrs_per_inode(struct inode *inode) 2427 { 2428 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode); 2429 } 2430 2431 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2432 { 2433 struct f2fs_inode *ri = F2FS_INODE(page); 2434 2435 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2436 get_inline_xattr_addrs(inode)]); 2437 } 2438 2439 static inline int inline_xattr_size(struct inode *inode) 2440 { 2441 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2442 } 2443 2444 static inline int f2fs_has_inline_data(struct inode *inode) 2445 { 2446 return is_inode_flag_set(inode, FI_INLINE_DATA); 2447 } 2448 2449 static inline int f2fs_exist_data(struct inode *inode) 2450 { 2451 return is_inode_flag_set(inode, FI_DATA_EXIST); 2452 } 2453 2454 static inline int f2fs_has_inline_dots(struct inode *inode) 2455 { 2456 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2457 } 2458 2459 static inline bool f2fs_is_pinned_file(struct inode *inode) 2460 { 2461 return is_inode_flag_set(inode, FI_PIN_FILE); 2462 } 2463 2464 static inline bool f2fs_is_atomic_file(struct inode *inode) 2465 { 2466 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2467 } 2468 2469 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2470 { 2471 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2472 } 2473 2474 static inline bool f2fs_is_volatile_file(struct inode *inode) 2475 { 2476 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2477 } 2478 2479 static inline bool f2fs_is_first_block_written(struct inode *inode) 2480 { 2481 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2482 } 2483 2484 static inline bool f2fs_is_drop_cache(struct inode *inode) 2485 { 2486 return is_inode_flag_set(inode, FI_DROP_CACHE); 2487 } 2488 2489 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2490 { 2491 struct f2fs_inode *ri = F2FS_INODE(page); 2492 int extra_size = get_extra_isize(inode); 2493 2494 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2495 } 2496 2497 static inline int f2fs_has_inline_dentry(struct inode *inode) 2498 { 2499 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2500 } 2501 2502 static inline int is_file(struct inode *inode, int type) 2503 { 2504 return F2FS_I(inode)->i_advise & type; 2505 } 2506 2507 static inline void set_file(struct inode *inode, int type) 2508 { 2509 F2FS_I(inode)->i_advise |= type; 2510 f2fs_mark_inode_dirty_sync(inode, true); 2511 } 2512 2513 static inline void clear_file(struct inode *inode, int type) 2514 { 2515 F2FS_I(inode)->i_advise &= ~type; 2516 f2fs_mark_inode_dirty_sync(inode, true); 2517 } 2518 2519 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2520 { 2521 struct timespec ts; 2522 bool ret; 2523 2524 if (dsync) { 2525 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2526 2527 spin_lock(&sbi->inode_lock[DIRTY_META]); 2528 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2529 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2530 return ret; 2531 } 2532 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2533 file_keep_isize(inode) || 2534 i_size_read(inode) & ~PAGE_MASK) 2535 return false; 2536 2537 ts = timespec64_to_timespec(inode->i_atime); 2538 if (!timespec_equal(F2FS_I(inode)->i_disk_time, &ts)) 2539 return false; 2540 ts = timespec64_to_timespec(inode->i_ctime); 2541 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 1, &ts)) 2542 return false; 2543 ts = timespec64_to_timespec(inode->i_mtime); 2544 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 2, &ts)) 2545 return false; 2546 if (!timespec_equal(F2FS_I(inode)->i_disk_time + 3, 2547 &F2FS_I(inode)->i_crtime)) 2548 return false; 2549 2550 down_read(&F2FS_I(inode)->i_sem); 2551 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2552 up_read(&F2FS_I(inode)->i_sem); 2553 2554 return ret; 2555 } 2556 2557 static inline bool f2fs_readonly(struct super_block *sb) 2558 { 2559 return sb_rdonly(sb); 2560 } 2561 2562 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2563 { 2564 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2565 } 2566 2567 static inline bool is_dot_dotdot(const struct qstr *str) 2568 { 2569 if (str->len == 1 && str->name[0] == '.') 2570 return true; 2571 2572 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2573 return true; 2574 2575 return false; 2576 } 2577 2578 static inline bool f2fs_may_extent_tree(struct inode *inode) 2579 { 2580 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2581 is_inode_flag_set(inode, FI_NO_EXTENT)) 2582 return false; 2583 2584 return S_ISREG(inode->i_mode); 2585 } 2586 2587 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2588 size_t size, gfp_t flags) 2589 { 2590 #ifdef CONFIG_F2FS_FAULT_INJECTION 2591 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2592 f2fs_show_injection_info(FAULT_KMALLOC); 2593 return NULL; 2594 } 2595 #endif 2596 return kmalloc(size, flags); 2597 } 2598 2599 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2600 size_t size, gfp_t flags) 2601 { 2602 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2603 } 2604 2605 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2606 size_t size, gfp_t flags) 2607 { 2608 #ifdef CONFIG_F2FS_FAULT_INJECTION 2609 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2610 f2fs_show_injection_info(FAULT_KVMALLOC); 2611 return NULL; 2612 } 2613 #endif 2614 return kvmalloc(size, flags); 2615 } 2616 2617 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2618 size_t size, gfp_t flags) 2619 { 2620 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2621 } 2622 2623 static inline int get_extra_isize(struct inode *inode) 2624 { 2625 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2626 } 2627 2628 static inline int get_inline_xattr_addrs(struct inode *inode) 2629 { 2630 return F2FS_I(inode)->i_inline_xattr_size; 2631 } 2632 2633 #define f2fs_get_inode_mode(i) \ 2634 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2635 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2636 2637 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2638 (offsetof(struct f2fs_inode, i_extra_end) - \ 2639 offsetof(struct f2fs_inode, i_extra_isize)) \ 2640 2641 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2642 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2643 ((offsetof(typeof(*f2fs_inode), field) + \ 2644 sizeof((f2fs_inode)->field)) \ 2645 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2646 2647 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2648 { 2649 int i; 2650 2651 spin_lock(&sbi->iostat_lock); 2652 for (i = 0; i < NR_IO_TYPE; i++) 2653 sbi->write_iostat[i] = 0; 2654 spin_unlock(&sbi->iostat_lock); 2655 } 2656 2657 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2658 enum iostat_type type, unsigned long long io_bytes) 2659 { 2660 if (!sbi->iostat_enable) 2661 return; 2662 spin_lock(&sbi->iostat_lock); 2663 sbi->write_iostat[type] += io_bytes; 2664 2665 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2666 sbi->write_iostat[APP_BUFFERED_IO] = 2667 sbi->write_iostat[APP_WRITE_IO] - 2668 sbi->write_iostat[APP_DIRECT_IO]; 2669 spin_unlock(&sbi->iostat_lock); 2670 } 2671 2672 static inline bool is_valid_blkaddr(block_t blkaddr) 2673 { 2674 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 2675 return false; 2676 return true; 2677 } 2678 2679 /* 2680 * file.c 2681 */ 2682 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2683 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 2684 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 2685 int f2fs_truncate(struct inode *inode); 2686 int f2fs_getattr(const struct path *path, struct kstat *stat, 2687 u32 request_mask, unsigned int flags); 2688 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2689 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2690 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2691 int f2fs_precache_extents(struct inode *inode); 2692 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2693 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2694 int f2fs_pin_file_control(struct inode *inode, bool inc); 2695 2696 /* 2697 * inode.c 2698 */ 2699 void f2fs_set_inode_flags(struct inode *inode); 2700 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2701 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2702 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2703 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2704 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2705 void f2fs_update_inode(struct inode *inode, struct page *node_page); 2706 void f2fs_update_inode_page(struct inode *inode); 2707 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2708 void f2fs_evict_inode(struct inode *inode); 2709 void f2fs_handle_failed_inode(struct inode *inode); 2710 2711 /* 2712 * namei.c 2713 */ 2714 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 2715 bool hot, bool set); 2716 struct dentry *f2fs_get_parent(struct dentry *child); 2717 2718 /* 2719 * dir.c 2720 */ 2721 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 2722 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname, 2723 f2fs_hash_t namehash, int *max_slots, 2724 struct f2fs_dentry_ptr *d); 2725 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2726 unsigned int start_pos, struct fscrypt_str *fstr); 2727 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 2728 struct f2fs_dentry_ptr *d); 2729 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 2730 const struct qstr *new_name, 2731 const struct qstr *orig_name, struct page *dpage); 2732 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 2733 unsigned int current_depth); 2734 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 2735 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2736 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2737 struct fscrypt_name *fname, struct page **res_page); 2738 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2739 const struct qstr *child, struct page **res_page); 2740 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2741 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2742 struct page **page); 2743 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2744 struct page *page, struct inode *inode); 2745 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2746 const struct qstr *name, f2fs_hash_t name_hash, 2747 unsigned int bit_pos); 2748 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2749 const struct qstr *orig_name, 2750 struct inode *inode, nid_t ino, umode_t mode); 2751 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname, 2752 struct inode *inode, nid_t ino, umode_t mode); 2753 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 2754 struct inode *inode, nid_t ino, umode_t mode); 2755 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2756 struct inode *dir, struct inode *inode); 2757 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2758 bool f2fs_empty_dir(struct inode *dir); 2759 2760 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2761 { 2762 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2763 inode, inode->i_ino, inode->i_mode); 2764 } 2765 2766 /* 2767 * super.c 2768 */ 2769 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2770 void f2fs_inode_synced(struct inode *inode); 2771 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2772 void f2fs_quota_off_umount(struct super_block *sb); 2773 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2774 int f2fs_sync_fs(struct super_block *sb, int sync); 2775 extern __printf(3, 4) 2776 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2777 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 2778 2779 /* 2780 * hash.c 2781 */ 2782 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2783 struct fscrypt_name *fname); 2784 2785 /* 2786 * node.c 2787 */ 2788 struct dnode_of_data; 2789 struct node_info; 2790 2791 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 2792 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 2793 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2794 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2795 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2796 void f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 2797 struct node_info *ni); 2798 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2799 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2800 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 2801 int f2fs_truncate_xattr_node(struct inode *inode); 2802 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2803 int f2fs_remove_inode_page(struct inode *inode); 2804 struct page *f2fs_new_inode_page(struct inode *inode); 2805 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2806 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2807 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2808 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 2809 void f2fs_move_node_page(struct page *node_page, int gc_type); 2810 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2811 struct writeback_control *wbc, bool atomic); 2812 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 2813 struct writeback_control *wbc, 2814 bool do_balance, enum iostat_type io_type); 2815 void f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2816 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2817 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2818 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2819 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2820 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 2821 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 2822 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2823 void f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2824 unsigned int segno, struct f2fs_summary_block *sum); 2825 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2826 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 2827 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 2828 int __init f2fs_create_node_manager_caches(void); 2829 void f2fs_destroy_node_manager_caches(void); 2830 2831 /* 2832 * segment.c 2833 */ 2834 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 2835 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 2836 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 2837 void f2fs_drop_inmem_pages(struct inode *inode); 2838 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 2839 int f2fs_commit_inmem_pages(struct inode *inode); 2840 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2841 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2842 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2843 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 2844 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2845 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2846 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2847 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2848 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 2849 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 2850 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2851 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2852 struct cp_control *cpc); 2853 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 2854 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2855 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 2856 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2857 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2858 struct cp_control *cpc); 2859 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2860 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 2861 block_t blk_addr); 2862 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2863 enum iostat_type io_type); 2864 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2865 void f2fs_outplace_write_data(struct dnode_of_data *dn, 2866 struct f2fs_io_info *fio); 2867 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 2868 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2869 block_t old_blkaddr, block_t new_blkaddr, 2870 bool recover_curseg, bool recover_newaddr); 2871 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2872 block_t old_addr, block_t new_addr, 2873 unsigned char version, bool recover_curseg, 2874 bool recover_newaddr); 2875 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2876 block_t old_blkaddr, block_t *new_blkaddr, 2877 struct f2fs_summary *sum, int type, 2878 struct f2fs_io_info *fio, bool add_list); 2879 void f2fs_wait_on_page_writeback(struct page *page, 2880 enum page_type type, bool ordered); 2881 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2882 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2883 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2884 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2885 unsigned int val, int alloc); 2886 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2887 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 2888 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 2889 int __init f2fs_create_segment_manager_caches(void); 2890 void f2fs_destroy_segment_manager_caches(void); 2891 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 2892 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2893 enum page_type type, enum temp_type temp); 2894 2895 /* 2896 * checkpoint.c 2897 */ 2898 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2899 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2900 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2901 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2902 bool f2fs_is_valid_meta_blkaddr(struct f2fs_sb_info *sbi, 2903 block_t blkaddr, int type); 2904 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2905 int type, bool sync); 2906 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2907 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2908 long nr_to_write, enum iostat_type io_type); 2909 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2910 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2911 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2912 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2913 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2914 unsigned int devidx, int type); 2915 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2916 unsigned int devidx, int type); 2917 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2918 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 2919 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 2920 void f2fs_add_orphan_inode(struct inode *inode); 2921 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2922 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 2923 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 2924 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 2925 void f2fs_remove_dirty_inode(struct inode *inode); 2926 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2927 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2928 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 2929 int __init f2fs_create_checkpoint_caches(void); 2930 void f2fs_destroy_checkpoint_caches(void); 2931 2932 /* 2933 * data.c 2934 */ 2935 int f2fs_init_post_read_processing(void); 2936 void f2fs_destroy_post_read_processing(void); 2937 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2938 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2939 struct inode *inode, nid_t ino, pgoff_t idx, 2940 enum page_type type); 2941 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2942 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2943 void f2fs_submit_page_write(struct f2fs_io_info *fio); 2944 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2945 block_t blk_addr, struct bio *bio); 2946 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2947 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 2948 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2949 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2950 int f2fs_reserve_new_block(struct dnode_of_data *dn); 2951 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2952 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2953 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2954 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 2955 int op_flags, bool for_write); 2956 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 2957 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 2958 bool for_write); 2959 struct page *f2fs_get_new_data_page(struct inode *inode, 2960 struct page *ipage, pgoff_t index, bool new_i_size); 2961 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 2962 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2963 int create, int flag); 2964 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2965 u64 start, u64 len); 2966 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 2967 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 2968 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2969 unsigned int length); 2970 int f2fs_release_page(struct page *page, gfp_t wait); 2971 #ifdef CONFIG_MIGRATION 2972 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2973 struct page *page, enum migrate_mode mode); 2974 #endif 2975 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 2976 void f2fs_clear_radix_tree_dirty_tag(struct page *page); 2977 2978 /* 2979 * gc.c 2980 */ 2981 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 2982 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 2983 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2984 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2985 unsigned int segno); 2986 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 2987 2988 /* 2989 * recovery.c 2990 */ 2991 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2992 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 2993 2994 /* 2995 * debug.c 2996 */ 2997 #ifdef CONFIG_F2FS_STAT_FS 2998 struct f2fs_stat_info { 2999 struct list_head stat_list; 3000 struct f2fs_sb_info *sbi; 3001 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3002 int main_area_segs, main_area_sections, main_area_zones; 3003 unsigned long long hit_largest, hit_cached, hit_rbtree; 3004 unsigned long long hit_total, total_ext; 3005 int ext_tree, zombie_tree, ext_node; 3006 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3007 int ndirty_data, ndirty_qdata; 3008 int inmem_pages; 3009 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3010 int nats, dirty_nats, sits, dirty_sits; 3011 int free_nids, avail_nids, alloc_nids; 3012 int total_count, utilization; 3013 int bg_gc, nr_wb_cp_data, nr_wb_data; 3014 int nr_flushing, nr_flushed, flush_list_empty; 3015 int nr_discarding, nr_discarded; 3016 int nr_discard_cmd; 3017 unsigned int undiscard_blks; 3018 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3019 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3020 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3021 unsigned int bimodal, avg_vblocks; 3022 int util_free, util_valid, util_invalid; 3023 int rsvd_segs, overp_segs; 3024 int dirty_count, node_pages, meta_pages; 3025 int prefree_count, call_count, cp_count, bg_cp_count; 3026 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3027 int bg_node_segs, bg_data_segs; 3028 int tot_blks, data_blks, node_blks; 3029 int bg_data_blks, bg_node_blks; 3030 unsigned long long skipped_atomic_files[2]; 3031 int curseg[NR_CURSEG_TYPE]; 3032 int cursec[NR_CURSEG_TYPE]; 3033 int curzone[NR_CURSEG_TYPE]; 3034 3035 unsigned int segment_count[2]; 3036 unsigned int block_count[2]; 3037 unsigned int inplace_count; 3038 unsigned long long base_mem, cache_mem, page_mem; 3039 }; 3040 3041 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3042 { 3043 return (struct f2fs_stat_info *)sbi->stat_info; 3044 } 3045 3046 #define stat_inc_cp_count(si) ((si)->cp_count++) 3047 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3048 #define stat_inc_call_count(si) ((si)->call_count++) 3049 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 3050 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3051 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3052 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3053 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3054 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3055 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3056 #define stat_inc_inline_xattr(inode) \ 3057 do { \ 3058 if (f2fs_has_inline_xattr(inode)) \ 3059 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3060 } while (0) 3061 #define stat_dec_inline_xattr(inode) \ 3062 do { \ 3063 if (f2fs_has_inline_xattr(inode)) \ 3064 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3065 } while (0) 3066 #define stat_inc_inline_inode(inode) \ 3067 do { \ 3068 if (f2fs_has_inline_data(inode)) \ 3069 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3070 } while (0) 3071 #define stat_dec_inline_inode(inode) \ 3072 do { \ 3073 if (f2fs_has_inline_data(inode)) \ 3074 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3075 } while (0) 3076 #define stat_inc_inline_dir(inode) \ 3077 do { \ 3078 if (f2fs_has_inline_dentry(inode)) \ 3079 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3080 } while (0) 3081 #define stat_dec_inline_dir(inode) \ 3082 do { \ 3083 if (f2fs_has_inline_dentry(inode)) \ 3084 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3085 } while (0) 3086 #define stat_inc_seg_type(sbi, curseg) \ 3087 ((sbi)->segment_count[(curseg)->alloc_type]++) 3088 #define stat_inc_block_count(sbi, curseg) \ 3089 ((sbi)->block_count[(curseg)->alloc_type]++) 3090 #define stat_inc_inplace_blocks(sbi) \ 3091 (atomic_inc(&(sbi)->inplace_count)) 3092 #define stat_inc_atomic_write(inode) \ 3093 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 3094 #define stat_dec_atomic_write(inode) \ 3095 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 3096 #define stat_update_max_atomic_write(inode) \ 3097 do { \ 3098 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 3099 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3100 if (cur > max) \ 3101 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3102 } while (0) 3103 #define stat_inc_volatile_write(inode) \ 3104 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3105 #define stat_dec_volatile_write(inode) \ 3106 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3107 #define stat_update_max_volatile_write(inode) \ 3108 do { \ 3109 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3110 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3111 if (cur > max) \ 3112 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3113 } while (0) 3114 #define stat_inc_seg_count(sbi, type, gc_type) \ 3115 do { \ 3116 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3117 si->tot_segs++; \ 3118 if ((type) == SUM_TYPE_DATA) { \ 3119 si->data_segs++; \ 3120 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3121 } else { \ 3122 si->node_segs++; \ 3123 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3124 } \ 3125 } while (0) 3126 3127 #define stat_inc_tot_blk_count(si, blks) \ 3128 ((si)->tot_blks += (blks)) 3129 3130 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3131 do { \ 3132 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3133 stat_inc_tot_blk_count(si, blks); \ 3134 si->data_blks += (blks); \ 3135 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3136 } while (0) 3137 3138 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3139 do { \ 3140 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3141 stat_inc_tot_blk_count(si, blks); \ 3142 si->node_blks += (blks); \ 3143 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3144 } while (0) 3145 3146 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3147 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3148 int __init f2fs_create_root_stats(void); 3149 void f2fs_destroy_root_stats(void); 3150 #else 3151 #define stat_inc_cp_count(si) do { } while (0) 3152 #define stat_inc_bg_cp_count(si) do { } while (0) 3153 #define stat_inc_call_count(si) do { } while (0) 3154 #define stat_inc_bggc_count(si) do { } while (0) 3155 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3156 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3157 #define stat_inc_total_hit(sb) do { } while (0) 3158 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3159 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3160 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3161 #define stat_inc_inline_xattr(inode) do { } while (0) 3162 #define stat_dec_inline_xattr(inode) do { } while (0) 3163 #define stat_inc_inline_inode(inode) do { } while (0) 3164 #define stat_dec_inline_inode(inode) do { } while (0) 3165 #define stat_inc_inline_dir(inode) do { } while (0) 3166 #define stat_dec_inline_dir(inode) do { } while (0) 3167 #define stat_inc_atomic_write(inode) do { } while (0) 3168 #define stat_dec_atomic_write(inode) do { } while (0) 3169 #define stat_update_max_atomic_write(inode) do { } while (0) 3170 #define stat_inc_volatile_write(inode) do { } while (0) 3171 #define stat_dec_volatile_write(inode) do { } while (0) 3172 #define stat_update_max_volatile_write(inode) do { } while (0) 3173 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3174 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3175 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3176 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3177 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3178 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3179 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3180 3181 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3182 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3183 static inline int __init f2fs_create_root_stats(void) { return 0; } 3184 static inline void f2fs_destroy_root_stats(void) { } 3185 #endif 3186 3187 extern const struct file_operations f2fs_dir_operations; 3188 extern const struct file_operations f2fs_file_operations; 3189 extern const struct inode_operations f2fs_file_inode_operations; 3190 extern const struct address_space_operations f2fs_dblock_aops; 3191 extern const struct address_space_operations f2fs_node_aops; 3192 extern const struct address_space_operations f2fs_meta_aops; 3193 extern const struct inode_operations f2fs_dir_inode_operations; 3194 extern const struct inode_operations f2fs_symlink_inode_operations; 3195 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3196 extern const struct inode_operations f2fs_special_inode_operations; 3197 extern struct kmem_cache *f2fs_inode_entry_slab; 3198 3199 /* 3200 * inline.c 3201 */ 3202 bool f2fs_may_inline_data(struct inode *inode); 3203 bool f2fs_may_inline_dentry(struct inode *inode); 3204 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3205 void f2fs_truncate_inline_inode(struct inode *inode, 3206 struct page *ipage, u64 from); 3207 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3208 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3209 int f2fs_convert_inline_inode(struct inode *inode); 3210 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3211 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3212 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3213 struct fscrypt_name *fname, struct page **res_page); 3214 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3215 struct page *ipage); 3216 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3217 const struct qstr *orig_name, 3218 struct inode *inode, nid_t ino, umode_t mode); 3219 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3220 struct page *page, struct inode *dir, 3221 struct inode *inode); 3222 bool f2fs_empty_inline_dir(struct inode *dir); 3223 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3224 struct fscrypt_str *fstr); 3225 int f2fs_inline_data_fiemap(struct inode *inode, 3226 struct fiemap_extent_info *fieinfo, 3227 __u64 start, __u64 len); 3228 3229 /* 3230 * shrinker.c 3231 */ 3232 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3233 struct shrink_control *sc); 3234 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3235 struct shrink_control *sc); 3236 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3237 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3238 3239 /* 3240 * extent_cache.c 3241 */ 3242 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root *root, 3243 struct rb_entry *cached_re, unsigned int ofs); 3244 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3245 struct rb_root *root, struct rb_node **parent, 3246 unsigned int ofs); 3247 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root *root, 3248 struct rb_entry *cached_re, unsigned int ofs, 3249 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3250 struct rb_node ***insert_p, struct rb_node **insert_parent, 3251 bool force); 3252 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3253 struct rb_root *root); 3254 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3255 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3256 void f2fs_drop_extent_tree(struct inode *inode); 3257 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3258 void f2fs_destroy_extent_tree(struct inode *inode); 3259 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3260 struct extent_info *ei); 3261 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3262 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3263 pgoff_t fofs, block_t blkaddr, unsigned int len); 3264 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3265 int __init f2fs_create_extent_cache(void); 3266 void f2fs_destroy_extent_cache(void); 3267 3268 /* 3269 * sysfs.c 3270 */ 3271 int __init f2fs_init_sysfs(void); 3272 void f2fs_exit_sysfs(void); 3273 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3274 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3275 3276 /* 3277 * crypto support 3278 */ 3279 static inline bool f2fs_encrypted_inode(struct inode *inode) 3280 { 3281 return file_is_encrypt(inode); 3282 } 3283 3284 static inline bool f2fs_encrypted_file(struct inode *inode) 3285 { 3286 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3287 } 3288 3289 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3290 { 3291 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3292 file_set_encrypt(inode); 3293 inode->i_flags |= S_ENCRYPTED; 3294 #endif 3295 } 3296 3297 /* 3298 * Returns true if the reads of the inode's data need to undergo some 3299 * postprocessing step, like decryption or authenticity verification. 3300 */ 3301 static inline bool f2fs_post_read_required(struct inode *inode) 3302 { 3303 return f2fs_encrypted_file(inode); 3304 } 3305 3306 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3307 static inline int f2fs_sb_has_##name(struct super_block *sb) \ 3308 { \ 3309 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \ 3310 } 3311 3312 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3313 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3314 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3315 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3316 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3317 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3318 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3319 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3320 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 3321 3322 #ifdef CONFIG_BLK_DEV_ZONED 3323 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3324 struct block_device *bdev, block_t blkaddr) 3325 { 3326 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3327 int i; 3328 3329 for (i = 0; i < sbi->s_ndevs; i++) 3330 if (FDEV(i).bdev == bdev) 3331 return FDEV(i).blkz_type[zno]; 3332 return -EINVAL; 3333 } 3334 #endif 3335 3336 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 3337 { 3338 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3339 3340 return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb); 3341 } 3342 3343 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3344 { 3345 clear_opt(sbi, ADAPTIVE); 3346 clear_opt(sbi, LFS); 3347 3348 switch (mt) { 3349 case F2FS_MOUNT_ADAPTIVE: 3350 set_opt(sbi, ADAPTIVE); 3351 break; 3352 case F2FS_MOUNT_LFS: 3353 set_opt(sbi, LFS); 3354 break; 3355 } 3356 } 3357 3358 static inline bool f2fs_may_encrypt(struct inode *inode) 3359 { 3360 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3361 umode_t mode = inode->i_mode; 3362 3363 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3364 #else 3365 return 0; 3366 #endif 3367 } 3368 3369 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw) 3370 { 3371 return (f2fs_post_read_required(inode) || 3372 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 3373 F2FS_I_SB(inode)->s_ndevs); 3374 } 3375 3376 #endif 3377