xref: /linux/fs/f2fs/f2fs.h (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #include <linux/fscrypt.h>
28 
29 #ifdef CONFIG_F2FS_CHECK_FS
30 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
31 #else
32 #define f2fs_bug_on(sbi, condition)					\
33 	do {								\
34 		if (unlikely(condition)) {				\
35 			WARN_ON(1);					\
36 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
37 		}							\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_MAX,
58 };
59 
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
62 
63 struct f2fs_fault_info {
64 	atomic_t inject_ops;
65 	unsigned int inject_rate;
66 	unsigned int inject_type;
67 };
68 
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72 
73 /*
74  * For mount options
75  */
76 #define F2FS_MOUNT_BG_GC		0x00000001
77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
78 #define F2FS_MOUNT_DISCARD		0x00000004
79 #define F2FS_MOUNT_NOHEAP		0x00000008
80 #define F2FS_MOUNT_XATTR_USER		0x00000010
81 #define F2FS_MOUNT_POSIX_ACL		0x00000020
82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
83 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
84 #define F2FS_MOUNT_INLINE_DATA		0x00000100
85 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
86 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
87 #define F2FS_MOUNT_NOBARRIER		0x00000800
88 #define F2FS_MOUNT_FASTBOOT		0x00001000
89 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
90 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
91 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
93 #define F2FS_MOUNT_ADAPTIVE		0x00020000
94 #define F2FS_MOUNT_LFS			0x00040000
95 #define F2FS_MOUNT_USRQUOTA		0x00080000
96 #define F2FS_MOUNT_GRPQUOTA		0x00100000
97 #define F2FS_MOUNT_PRJQUOTA		0x00200000
98 #define F2FS_MOUNT_QUOTA		0x00400000
99 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
100 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
101 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
102 
103 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107 
108 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109 		typecheck(unsigned long long, b) &&			\
110 		((long long)((a) - (b)) > 0))
111 
112 typedef u32 block_t;	/*
113 			 * should not change u32, since it is the on-disk block
114 			 * address format, __le32.
115 			 */
116 typedef u32 nid_t;
117 
118 struct f2fs_mount_info {
119 	unsigned int opt;
120 	int write_io_size_bits;		/* Write IO size bits */
121 	block_t root_reserved_blocks;	/* root reserved blocks */
122 	kuid_t s_resuid;		/* reserved blocks for uid */
123 	kgid_t s_resgid;		/* reserved blocks for gid */
124 	int active_logs;		/* # of active logs */
125 	int inline_xattr_size;		/* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 	struct f2fs_fault_info fault_info;	/* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 	/* Names of quota files with journalled quota */
131 	char *s_qf_names[MAXQUOTAS];
132 	int s_jquota_fmt;			/* Format of quota to use */
133 #endif
134 	/* For which write hints are passed down to block layer */
135 	int whint_mode;
136 	int alloc_mode;			/* segment allocation policy */
137 	int fsync_mode;			/* fsync policy */
138 	bool test_dummy_encryption;	/* test dummy encryption */
139 };
140 
141 #define F2FS_FEATURE_ENCRYPT		0x0001
142 #define F2FS_FEATURE_BLKZONED		0x0002
143 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
144 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
145 #define F2FS_FEATURE_PRJQUOTA		0x0010
146 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
147 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
148 #define F2FS_FEATURE_QUOTA_INO		0x0080
149 #define F2FS_FEATURE_INODE_CRTIME	0x0100
150 #define F2FS_FEATURE_LOST_FOUND		0x0200
151 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
152 #define F2FS_FEATURE_SB_CHKSUM		0x0800
153 
154 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
155 	((raw_super->feature & cpu_to_le32(mask)) != 0)
156 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
157 #define F2FS_SET_FEATURE(sbi, mask)					\
158 	(sbi->raw_super->feature |= cpu_to_le32(mask))
159 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
160 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
161 
162 /*
163  * Default values for user and/or group using reserved blocks
164  */
165 #define	F2FS_DEF_RESUID		0
166 #define	F2FS_DEF_RESGID		0
167 
168 /*
169  * For checkpoint manager
170  */
171 enum {
172 	NAT_BITMAP,
173 	SIT_BITMAP
174 };
175 
176 #define	CP_UMOUNT	0x00000001
177 #define	CP_FASTBOOT	0x00000002
178 #define	CP_SYNC		0x00000004
179 #define	CP_RECOVERY	0x00000008
180 #define	CP_DISCARD	0x00000010
181 #define CP_TRIMMED	0x00000020
182 #define CP_PAUSE	0x00000040
183 
184 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
185 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
186 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
187 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
188 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
189 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
190 #define DEF_CP_INTERVAL			60	/* 60 secs */
191 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
192 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
193 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
194 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
195 
196 struct cp_control {
197 	int reason;
198 	__u64 trim_start;
199 	__u64 trim_end;
200 	__u64 trim_minlen;
201 };
202 
203 /*
204  * indicate meta/data type
205  */
206 enum {
207 	META_CP,
208 	META_NAT,
209 	META_SIT,
210 	META_SSA,
211 	META_MAX,
212 	META_POR,
213 	DATA_GENERIC,		/* check range only */
214 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
215 	DATA_GENERIC_ENHANCE_READ,	/*
216 					 * strong check on range and segment
217 					 * bitmap but no warning due to race
218 					 * condition of read on truncated area
219 					 * by extent_cache
220 					 */
221 	META_GENERIC,
222 };
223 
224 /* for the list of ino */
225 enum {
226 	ORPHAN_INO,		/* for orphan ino list */
227 	APPEND_INO,		/* for append ino list */
228 	UPDATE_INO,		/* for update ino list */
229 	TRANS_DIR_INO,		/* for trasactions dir ino list */
230 	FLUSH_INO,		/* for multiple device flushing */
231 	MAX_INO_ENTRY,		/* max. list */
232 };
233 
234 struct ino_entry {
235 	struct list_head list;		/* list head */
236 	nid_t ino;			/* inode number */
237 	unsigned int dirty_device;	/* dirty device bitmap */
238 };
239 
240 /* for the list of inodes to be GCed */
241 struct inode_entry {
242 	struct list_head list;	/* list head */
243 	struct inode *inode;	/* vfs inode pointer */
244 };
245 
246 struct fsync_node_entry {
247 	struct list_head list;	/* list head */
248 	struct page *page;	/* warm node page pointer */
249 	unsigned int seq_id;	/* sequence id */
250 };
251 
252 /* for the bitmap indicate blocks to be discarded */
253 struct discard_entry {
254 	struct list_head list;	/* list head */
255 	block_t start_blkaddr;	/* start blockaddr of current segment */
256 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
257 };
258 
259 /* default discard granularity of inner discard thread, unit: block count */
260 #define DEFAULT_DISCARD_GRANULARITY		16
261 
262 /* max discard pend list number */
263 #define MAX_PLIST_NUM		512
264 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
265 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
266 
267 enum {
268 	D_PREP,			/* initial */
269 	D_PARTIAL,		/* partially submitted */
270 	D_SUBMIT,		/* all submitted */
271 	D_DONE,			/* finished */
272 };
273 
274 struct discard_info {
275 	block_t lstart;			/* logical start address */
276 	block_t len;			/* length */
277 	block_t start;			/* actual start address in dev */
278 };
279 
280 struct discard_cmd {
281 	struct rb_node rb_node;		/* rb node located in rb-tree */
282 	union {
283 		struct {
284 			block_t lstart;	/* logical start address */
285 			block_t len;	/* length */
286 			block_t start;	/* actual start address in dev */
287 		};
288 		struct discard_info di;	/* discard info */
289 
290 	};
291 	struct list_head list;		/* command list */
292 	struct completion wait;		/* compleation */
293 	struct block_device *bdev;	/* bdev */
294 	unsigned short ref;		/* reference count */
295 	unsigned char state;		/* state */
296 	unsigned char queued;		/* queued discard */
297 	int error;			/* bio error */
298 	spinlock_t lock;		/* for state/bio_ref updating */
299 	unsigned short bio_ref;		/* bio reference count */
300 };
301 
302 enum {
303 	DPOLICY_BG,
304 	DPOLICY_FORCE,
305 	DPOLICY_FSTRIM,
306 	DPOLICY_UMOUNT,
307 	MAX_DPOLICY,
308 };
309 
310 struct discard_policy {
311 	int type;			/* type of discard */
312 	unsigned int min_interval;	/* used for candidates exist */
313 	unsigned int mid_interval;	/* used for device busy */
314 	unsigned int max_interval;	/* used for candidates not exist */
315 	unsigned int max_requests;	/* # of discards issued per round */
316 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
317 	bool io_aware;			/* issue discard in idle time */
318 	bool sync;			/* submit discard with REQ_SYNC flag */
319 	bool ordered;			/* issue discard by lba order */
320 	unsigned int granularity;	/* discard granularity */
321 	int timeout;			/* discard timeout for put_super */
322 };
323 
324 struct discard_cmd_control {
325 	struct task_struct *f2fs_issue_discard;	/* discard thread */
326 	struct list_head entry_list;		/* 4KB discard entry list */
327 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
328 	struct list_head wait_list;		/* store on-flushing entries */
329 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
330 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
331 	unsigned int discard_wake;		/* to wake up discard thread */
332 	struct mutex cmd_lock;
333 	unsigned int nr_discards;		/* # of discards in the list */
334 	unsigned int max_discards;		/* max. discards to be issued */
335 	unsigned int discard_granularity;	/* discard granularity */
336 	unsigned int undiscard_blks;		/* # of undiscard blocks */
337 	unsigned int next_pos;			/* next discard position */
338 	atomic_t issued_discard;		/* # of issued discard */
339 	atomic_t queued_discard;		/* # of queued discard */
340 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
341 	struct rb_root_cached root;		/* root of discard rb-tree */
342 	bool rbtree_check;			/* config for consistence check */
343 };
344 
345 /* for the list of fsync inodes, used only during recovery */
346 struct fsync_inode_entry {
347 	struct list_head list;	/* list head */
348 	struct inode *inode;	/* vfs inode pointer */
349 	block_t blkaddr;	/* block address locating the last fsync */
350 	block_t last_dentry;	/* block address locating the last dentry */
351 };
352 
353 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
354 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
355 
356 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
357 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
358 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
359 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
360 
361 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
362 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
363 
364 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
365 {
366 	int before = nats_in_cursum(journal);
367 
368 	journal->n_nats = cpu_to_le16(before + i);
369 	return before;
370 }
371 
372 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
373 {
374 	int before = sits_in_cursum(journal);
375 
376 	journal->n_sits = cpu_to_le16(before + i);
377 	return before;
378 }
379 
380 static inline bool __has_cursum_space(struct f2fs_journal *journal,
381 							int size, int type)
382 {
383 	if (type == NAT_JOURNAL)
384 		return size <= MAX_NAT_JENTRIES(journal);
385 	return size <= MAX_SIT_JENTRIES(journal);
386 }
387 
388 /*
389  * ioctl commands
390  */
391 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
392 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
393 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
394 
395 #define F2FS_IOCTL_MAGIC		0xf5
396 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
397 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
398 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
399 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
400 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
401 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
402 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
403 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
404 						struct f2fs_defragment)
405 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
406 						struct f2fs_move_range)
407 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
408 						struct f2fs_flush_device)
409 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
410 						struct f2fs_gc_range)
411 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
412 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
413 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
414 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
415 
416 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
417 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
418 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
419 
420 /*
421  * should be same as XFS_IOC_GOINGDOWN.
422  * Flags for going down operation used by FS_IOC_GOINGDOWN
423  */
424 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
425 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
426 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
427 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
428 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
429 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
430 
431 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
432 /*
433  * ioctl commands in 32 bit emulation
434  */
435 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
436 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
437 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
438 #endif
439 
440 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
441 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
442 
443 struct f2fs_gc_range {
444 	u32 sync;
445 	u64 start;
446 	u64 len;
447 };
448 
449 struct f2fs_defragment {
450 	u64 start;
451 	u64 len;
452 };
453 
454 struct f2fs_move_range {
455 	u32 dst_fd;		/* destination fd */
456 	u64 pos_in;		/* start position in src_fd */
457 	u64 pos_out;		/* start position in dst_fd */
458 	u64 len;		/* size to move */
459 };
460 
461 struct f2fs_flush_device {
462 	u32 dev_num;		/* device number to flush */
463 	u32 segments;		/* # of segments to flush */
464 };
465 
466 /* for inline stuff */
467 #define DEF_INLINE_RESERVED_SIZE	1
468 static inline int get_extra_isize(struct inode *inode);
469 static inline int get_inline_xattr_addrs(struct inode *inode);
470 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
471 				(CUR_ADDRS_PER_INODE(inode) -		\
472 				get_inline_xattr_addrs(inode) -	\
473 				DEF_INLINE_RESERVED_SIZE))
474 
475 /* for inline dir */
476 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
477 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
478 				BITS_PER_BYTE + 1))
479 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
480 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
481 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
482 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
483 				NR_INLINE_DENTRY(inode) + \
484 				INLINE_DENTRY_BITMAP_SIZE(inode)))
485 
486 /*
487  * For INODE and NODE manager
488  */
489 /* for directory operations */
490 struct f2fs_dentry_ptr {
491 	struct inode *inode;
492 	void *bitmap;
493 	struct f2fs_dir_entry *dentry;
494 	__u8 (*filename)[F2FS_SLOT_LEN];
495 	int max;
496 	int nr_bitmap;
497 };
498 
499 static inline void make_dentry_ptr_block(struct inode *inode,
500 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
501 {
502 	d->inode = inode;
503 	d->max = NR_DENTRY_IN_BLOCK;
504 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
505 	d->bitmap = t->dentry_bitmap;
506 	d->dentry = t->dentry;
507 	d->filename = t->filename;
508 }
509 
510 static inline void make_dentry_ptr_inline(struct inode *inode,
511 					struct f2fs_dentry_ptr *d, void *t)
512 {
513 	int entry_cnt = NR_INLINE_DENTRY(inode);
514 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
515 	int reserved_size = INLINE_RESERVED_SIZE(inode);
516 
517 	d->inode = inode;
518 	d->max = entry_cnt;
519 	d->nr_bitmap = bitmap_size;
520 	d->bitmap = t;
521 	d->dentry = t + bitmap_size + reserved_size;
522 	d->filename = t + bitmap_size + reserved_size +
523 					SIZE_OF_DIR_ENTRY * entry_cnt;
524 }
525 
526 /*
527  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
528  * as its node offset to distinguish from index node blocks.
529  * But some bits are used to mark the node block.
530  */
531 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
532 				>> OFFSET_BIT_SHIFT)
533 enum {
534 	ALLOC_NODE,			/* allocate a new node page if needed */
535 	LOOKUP_NODE,			/* look up a node without readahead */
536 	LOOKUP_NODE_RA,			/*
537 					 * look up a node with readahead called
538 					 * by get_data_block.
539 					 */
540 };
541 
542 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
543 
544 /* maximum retry quota flush count */
545 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
546 
547 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
548 
549 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
550 
551 /* for in-memory extent cache entry */
552 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
553 
554 /* number of extent info in extent cache we try to shrink */
555 #define EXTENT_CACHE_SHRINK_NUMBER	128
556 
557 struct rb_entry {
558 	struct rb_node rb_node;		/* rb node located in rb-tree */
559 	unsigned int ofs;		/* start offset of the entry */
560 	unsigned int len;		/* length of the entry */
561 };
562 
563 struct extent_info {
564 	unsigned int fofs;		/* start offset in a file */
565 	unsigned int len;		/* length of the extent */
566 	u32 blk;			/* start block address of the extent */
567 };
568 
569 struct extent_node {
570 	struct rb_node rb_node;		/* rb node located in rb-tree */
571 	struct extent_info ei;		/* extent info */
572 	struct list_head list;		/* node in global extent list of sbi */
573 	struct extent_tree *et;		/* extent tree pointer */
574 };
575 
576 struct extent_tree {
577 	nid_t ino;			/* inode number */
578 	struct rb_root_cached root;	/* root of extent info rb-tree */
579 	struct extent_node *cached_en;	/* recently accessed extent node */
580 	struct extent_info largest;	/* largested extent info */
581 	struct list_head list;		/* to be used by sbi->zombie_list */
582 	rwlock_t lock;			/* protect extent info rb-tree */
583 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
584 	bool largest_updated;		/* largest extent updated */
585 };
586 
587 /*
588  * This structure is taken from ext4_map_blocks.
589  *
590  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
591  */
592 #define F2FS_MAP_NEW		(1 << BH_New)
593 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
594 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
595 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
596 				F2FS_MAP_UNWRITTEN)
597 
598 struct f2fs_map_blocks {
599 	block_t m_pblk;
600 	block_t m_lblk;
601 	unsigned int m_len;
602 	unsigned int m_flags;
603 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
604 	pgoff_t *m_next_extent;		/* point to next possible extent */
605 	int m_seg_type;
606 	bool m_may_create;		/* indicate it is from write path */
607 };
608 
609 /* for flag in get_data_block */
610 enum {
611 	F2FS_GET_BLOCK_DEFAULT,
612 	F2FS_GET_BLOCK_FIEMAP,
613 	F2FS_GET_BLOCK_BMAP,
614 	F2FS_GET_BLOCK_DIO,
615 	F2FS_GET_BLOCK_PRE_DIO,
616 	F2FS_GET_BLOCK_PRE_AIO,
617 	F2FS_GET_BLOCK_PRECACHE,
618 };
619 
620 /*
621  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
622  */
623 #define FADVISE_COLD_BIT	0x01
624 #define FADVISE_LOST_PINO_BIT	0x02
625 #define FADVISE_ENCRYPT_BIT	0x04
626 #define FADVISE_ENC_NAME_BIT	0x08
627 #define FADVISE_KEEP_SIZE_BIT	0x10
628 #define FADVISE_HOT_BIT		0x20
629 #define FADVISE_VERITY_BIT	0x40	/* reserved */
630 
631 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
632 
633 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
634 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
635 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
636 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
637 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
638 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
639 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
640 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
641 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
642 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
643 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
644 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
645 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
646 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
647 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
648 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
649 
650 #define DEF_DIR_LEVEL		0
651 
652 enum {
653 	GC_FAILURE_PIN,
654 	GC_FAILURE_ATOMIC,
655 	MAX_GC_FAILURE
656 };
657 
658 struct f2fs_inode_info {
659 	struct inode vfs_inode;		/* serve a vfs inode */
660 	unsigned long i_flags;		/* keep an inode flags for ioctl */
661 	unsigned char i_advise;		/* use to give file attribute hints */
662 	unsigned char i_dir_level;	/* use for dentry level for large dir */
663 	unsigned int i_current_depth;	/* only for directory depth */
664 	/* for gc failure statistic */
665 	unsigned int i_gc_failures[MAX_GC_FAILURE];
666 	unsigned int i_pino;		/* parent inode number */
667 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
668 
669 	/* Use below internally in f2fs*/
670 	unsigned long flags;		/* use to pass per-file flags */
671 	struct rw_semaphore i_sem;	/* protect fi info */
672 	atomic_t dirty_pages;		/* # of dirty pages */
673 	f2fs_hash_t chash;		/* hash value of given file name */
674 	unsigned int clevel;		/* maximum level of given file name */
675 	struct task_struct *task;	/* lookup and create consistency */
676 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
677 	nid_t i_xattr_nid;		/* node id that contains xattrs */
678 	loff_t	last_disk_size;		/* lastly written file size */
679 
680 #ifdef CONFIG_QUOTA
681 	struct dquot *i_dquot[MAXQUOTAS];
682 
683 	/* quota space reservation, managed internally by quota code */
684 	qsize_t i_reserved_quota;
685 #endif
686 	struct list_head dirty_list;	/* dirty list for dirs and files */
687 	struct list_head gdirty_list;	/* linked in global dirty list */
688 	struct list_head inmem_ilist;	/* list for inmem inodes */
689 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
690 	struct task_struct *inmem_task;	/* store inmemory task */
691 	struct mutex inmem_lock;	/* lock for inmemory pages */
692 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
693 
694 	/* avoid racing between foreground op and gc */
695 	struct rw_semaphore i_gc_rwsem[2];
696 	struct rw_semaphore i_mmap_sem;
697 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
698 
699 	int i_extra_isize;		/* size of extra space located in i_addr */
700 	kprojid_t i_projid;		/* id for project quota */
701 	int i_inline_xattr_size;	/* inline xattr size */
702 	struct timespec64 i_crtime;	/* inode creation time */
703 	struct timespec64 i_disk_time[4];/* inode disk times */
704 };
705 
706 static inline void get_extent_info(struct extent_info *ext,
707 					struct f2fs_extent *i_ext)
708 {
709 	ext->fofs = le32_to_cpu(i_ext->fofs);
710 	ext->blk = le32_to_cpu(i_ext->blk);
711 	ext->len = le32_to_cpu(i_ext->len);
712 }
713 
714 static inline void set_raw_extent(struct extent_info *ext,
715 					struct f2fs_extent *i_ext)
716 {
717 	i_ext->fofs = cpu_to_le32(ext->fofs);
718 	i_ext->blk = cpu_to_le32(ext->blk);
719 	i_ext->len = cpu_to_le32(ext->len);
720 }
721 
722 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
723 						u32 blk, unsigned int len)
724 {
725 	ei->fofs = fofs;
726 	ei->blk = blk;
727 	ei->len = len;
728 }
729 
730 static inline bool __is_discard_mergeable(struct discard_info *back,
731 			struct discard_info *front, unsigned int max_len)
732 {
733 	return (back->lstart + back->len == front->lstart) &&
734 		(back->len + front->len <= max_len);
735 }
736 
737 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
738 			struct discard_info *back, unsigned int max_len)
739 {
740 	return __is_discard_mergeable(back, cur, max_len);
741 }
742 
743 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
744 			struct discard_info *front, unsigned int max_len)
745 {
746 	return __is_discard_mergeable(cur, front, max_len);
747 }
748 
749 static inline bool __is_extent_mergeable(struct extent_info *back,
750 						struct extent_info *front)
751 {
752 	return (back->fofs + back->len == front->fofs &&
753 			back->blk + back->len == front->blk);
754 }
755 
756 static inline bool __is_back_mergeable(struct extent_info *cur,
757 						struct extent_info *back)
758 {
759 	return __is_extent_mergeable(back, cur);
760 }
761 
762 static inline bool __is_front_mergeable(struct extent_info *cur,
763 						struct extent_info *front)
764 {
765 	return __is_extent_mergeable(cur, front);
766 }
767 
768 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
769 static inline void __try_update_largest_extent(struct extent_tree *et,
770 						struct extent_node *en)
771 {
772 	if (en->ei.len > et->largest.len) {
773 		et->largest = en->ei;
774 		et->largest_updated = true;
775 	}
776 }
777 
778 /*
779  * For free nid management
780  */
781 enum nid_state {
782 	FREE_NID,		/* newly added to free nid list */
783 	PREALLOC_NID,		/* it is preallocated */
784 	MAX_NID_STATE,
785 };
786 
787 struct f2fs_nm_info {
788 	block_t nat_blkaddr;		/* base disk address of NAT */
789 	nid_t max_nid;			/* maximum possible node ids */
790 	nid_t available_nids;		/* # of available node ids */
791 	nid_t next_scan_nid;		/* the next nid to be scanned */
792 	unsigned int ram_thresh;	/* control the memory footprint */
793 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
794 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
795 
796 	/* NAT cache management */
797 	struct radix_tree_root nat_root;/* root of the nat entry cache */
798 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
799 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
800 	struct list_head nat_entries;	/* cached nat entry list (clean) */
801 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
802 	unsigned int nat_cnt;		/* the # of cached nat entries */
803 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
804 	unsigned int nat_blocks;	/* # of nat blocks */
805 
806 	/* free node ids management */
807 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
808 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
809 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
810 	spinlock_t nid_list_lock;	/* protect nid lists ops */
811 	struct mutex build_lock;	/* lock for build free nids */
812 	unsigned char **free_nid_bitmap;
813 	unsigned char *nat_block_bitmap;
814 	unsigned short *free_nid_count;	/* free nid count of NAT block */
815 
816 	/* for checkpoint */
817 	char *nat_bitmap;		/* NAT bitmap pointer */
818 
819 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
820 	unsigned char *nat_bits;	/* NAT bits blocks */
821 	unsigned char *full_nat_bits;	/* full NAT pages */
822 	unsigned char *empty_nat_bits;	/* empty NAT pages */
823 #ifdef CONFIG_F2FS_CHECK_FS
824 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
825 #endif
826 	int bitmap_size;		/* bitmap size */
827 };
828 
829 /*
830  * this structure is used as one of function parameters.
831  * all the information are dedicated to a given direct node block determined
832  * by the data offset in a file.
833  */
834 struct dnode_of_data {
835 	struct inode *inode;		/* vfs inode pointer */
836 	struct page *inode_page;	/* its inode page, NULL is possible */
837 	struct page *node_page;		/* cached direct node page */
838 	nid_t nid;			/* node id of the direct node block */
839 	unsigned int ofs_in_node;	/* data offset in the node page */
840 	bool inode_page_locked;		/* inode page is locked or not */
841 	bool node_changed;		/* is node block changed */
842 	char cur_level;			/* level of hole node page */
843 	char max_level;			/* level of current page located */
844 	block_t	data_blkaddr;		/* block address of the node block */
845 };
846 
847 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
848 		struct page *ipage, struct page *npage, nid_t nid)
849 {
850 	memset(dn, 0, sizeof(*dn));
851 	dn->inode = inode;
852 	dn->inode_page = ipage;
853 	dn->node_page = npage;
854 	dn->nid = nid;
855 }
856 
857 /*
858  * For SIT manager
859  *
860  * By default, there are 6 active log areas across the whole main area.
861  * When considering hot and cold data separation to reduce cleaning overhead,
862  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
863  * respectively.
864  * In the current design, you should not change the numbers intentionally.
865  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
866  * logs individually according to the underlying devices. (default: 6)
867  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
868  * data and 8 for node logs.
869  */
870 #define	NR_CURSEG_DATA_TYPE	(3)
871 #define NR_CURSEG_NODE_TYPE	(3)
872 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
873 
874 enum {
875 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
876 	CURSEG_WARM_DATA,	/* data blocks */
877 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
878 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
879 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
880 	CURSEG_COLD_NODE,	/* indirect node blocks */
881 	NO_CHECK_TYPE,
882 };
883 
884 struct flush_cmd {
885 	struct completion wait;
886 	struct llist_node llnode;
887 	nid_t ino;
888 	int ret;
889 };
890 
891 struct flush_cmd_control {
892 	struct task_struct *f2fs_issue_flush;	/* flush thread */
893 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
894 	atomic_t issued_flush;			/* # of issued flushes */
895 	atomic_t queued_flush;			/* # of queued flushes */
896 	struct llist_head issue_list;		/* list for command issue */
897 	struct llist_node *dispatch_list;	/* list for command dispatch */
898 };
899 
900 struct f2fs_sm_info {
901 	struct sit_info *sit_info;		/* whole segment information */
902 	struct free_segmap_info *free_info;	/* free segment information */
903 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
904 	struct curseg_info *curseg_array;	/* active segment information */
905 
906 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
907 
908 	block_t seg0_blkaddr;		/* block address of 0'th segment */
909 	block_t main_blkaddr;		/* start block address of main area */
910 	block_t ssa_blkaddr;		/* start block address of SSA area */
911 
912 	unsigned int segment_count;	/* total # of segments */
913 	unsigned int main_segments;	/* # of segments in main area */
914 	unsigned int reserved_segments;	/* # of reserved segments */
915 	unsigned int ovp_segments;	/* # of overprovision segments */
916 
917 	/* a threshold to reclaim prefree segments */
918 	unsigned int rec_prefree_segments;
919 
920 	/* for batched trimming */
921 	unsigned int trim_sections;		/* # of sections to trim */
922 
923 	struct list_head sit_entry_set;	/* sit entry set list */
924 
925 	unsigned int ipu_policy;	/* in-place-update policy */
926 	unsigned int min_ipu_util;	/* in-place-update threshold */
927 	unsigned int min_fsync_blocks;	/* threshold for fsync */
928 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
929 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
930 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
931 
932 	/* for flush command control */
933 	struct flush_cmd_control *fcc_info;
934 
935 	/* for discard command control */
936 	struct discard_cmd_control *dcc_info;
937 };
938 
939 /*
940  * For superblock
941  */
942 /*
943  * COUNT_TYPE for monitoring
944  *
945  * f2fs monitors the number of several block types such as on-writeback,
946  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
947  */
948 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
949 enum count_type {
950 	F2FS_DIRTY_DENTS,
951 	F2FS_DIRTY_DATA,
952 	F2FS_DIRTY_QDATA,
953 	F2FS_DIRTY_NODES,
954 	F2FS_DIRTY_META,
955 	F2FS_INMEM_PAGES,
956 	F2FS_DIRTY_IMETA,
957 	F2FS_WB_CP_DATA,
958 	F2FS_WB_DATA,
959 	F2FS_RD_DATA,
960 	F2FS_RD_NODE,
961 	F2FS_RD_META,
962 	F2FS_DIO_WRITE,
963 	F2FS_DIO_READ,
964 	NR_COUNT_TYPE,
965 };
966 
967 /*
968  * The below are the page types of bios used in submit_bio().
969  * The available types are:
970  * DATA			User data pages. It operates as async mode.
971  * NODE			Node pages. It operates as async mode.
972  * META			FS metadata pages such as SIT, NAT, CP.
973  * NR_PAGE_TYPE		The number of page types.
974  * META_FLUSH		Make sure the previous pages are written
975  *			with waiting the bio's completion
976  * ...			Only can be used with META.
977  */
978 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
979 enum page_type {
980 	DATA,
981 	NODE,
982 	META,
983 	NR_PAGE_TYPE,
984 	META_FLUSH,
985 	INMEM,		/* the below types are used by tracepoints only. */
986 	INMEM_DROP,
987 	INMEM_INVALIDATE,
988 	INMEM_REVOKE,
989 	IPU,
990 	OPU,
991 };
992 
993 enum temp_type {
994 	HOT = 0,	/* must be zero for meta bio */
995 	WARM,
996 	COLD,
997 	NR_TEMP_TYPE,
998 };
999 
1000 enum need_lock_type {
1001 	LOCK_REQ = 0,
1002 	LOCK_DONE,
1003 	LOCK_RETRY,
1004 };
1005 
1006 enum cp_reason_type {
1007 	CP_NO_NEEDED,
1008 	CP_NON_REGULAR,
1009 	CP_HARDLINK,
1010 	CP_SB_NEED_CP,
1011 	CP_WRONG_PINO,
1012 	CP_NO_SPC_ROLL,
1013 	CP_NODE_NEED_CP,
1014 	CP_FASTBOOT_MODE,
1015 	CP_SPEC_LOG_NUM,
1016 	CP_RECOVER_DIR,
1017 };
1018 
1019 enum iostat_type {
1020 	APP_DIRECT_IO,			/* app direct IOs */
1021 	APP_BUFFERED_IO,		/* app buffered IOs */
1022 	APP_WRITE_IO,			/* app write IOs */
1023 	APP_MAPPED_IO,			/* app mapped IOs */
1024 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1025 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1026 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1027 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1028 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1029 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1030 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1031 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1032 	FS_DISCARD,			/* discard */
1033 	NR_IO_TYPE,
1034 };
1035 
1036 struct f2fs_io_info {
1037 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1038 	nid_t ino;		/* inode number */
1039 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1040 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1041 	int op;			/* contains REQ_OP_ */
1042 	int op_flags;		/* req_flag_bits */
1043 	block_t new_blkaddr;	/* new block address to be written */
1044 	block_t old_blkaddr;	/* old block address before Cow */
1045 	struct page *page;	/* page to be written */
1046 	struct page *encrypted_page;	/* encrypted page */
1047 	struct list_head list;		/* serialize IOs */
1048 	bool submitted;		/* indicate IO submission */
1049 	int need_lock;		/* indicate we need to lock cp_rwsem */
1050 	bool in_list;		/* indicate fio is in io_list */
1051 	bool is_por;		/* indicate IO is from recovery or not */
1052 	bool retry;		/* need to reallocate block address */
1053 	enum iostat_type io_type;	/* io type */
1054 	struct writeback_control *io_wbc; /* writeback control */
1055 	unsigned char version;		/* version of the node */
1056 };
1057 
1058 #define is_read_io(rw) ((rw) == READ)
1059 struct f2fs_bio_info {
1060 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1061 	struct bio *bio;		/* bios to merge */
1062 	sector_t last_block_in_bio;	/* last block number */
1063 	struct f2fs_io_info fio;	/* store buffered io info. */
1064 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1065 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1066 	struct list_head io_list;	/* track fios */
1067 };
1068 
1069 #define FDEV(i)				(sbi->devs[i])
1070 #define RDEV(i)				(raw_super->devs[i])
1071 struct f2fs_dev_info {
1072 	struct block_device *bdev;
1073 	char path[MAX_PATH_LEN];
1074 	unsigned int total_segments;
1075 	block_t start_blk;
1076 	block_t end_blk;
1077 #ifdef CONFIG_BLK_DEV_ZONED
1078 	unsigned int nr_blkz;		/* Total number of zones */
1079 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1080 #endif
1081 };
1082 
1083 enum inode_type {
1084 	DIR_INODE,			/* for dirty dir inode */
1085 	FILE_INODE,			/* for dirty regular/symlink inode */
1086 	DIRTY_META,			/* for all dirtied inode metadata */
1087 	ATOMIC_FILE,			/* for all atomic files */
1088 	NR_INODE_TYPE,
1089 };
1090 
1091 /* for inner inode cache management */
1092 struct inode_management {
1093 	struct radix_tree_root ino_root;	/* ino entry array */
1094 	spinlock_t ino_lock;			/* for ino entry lock */
1095 	struct list_head ino_list;		/* inode list head */
1096 	unsigned long ino_num;			/* number of entries */
1097 };
1098 
1099 /* For s_flag in struct f2fs_sb_info */
1100 enum {
1101 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1102 	SBI_IS_CLOSE,				/* specify unmounting */
1103 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1104 	SBI_POR_DOING,				/* recovery is doing or not */
1105 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1106 	SBI_NEED_CP,				/* need to checkpoint */
1107 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1108 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1109 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1110 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1111 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1112 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1113 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1114 };
1115 
1116 enum {
1117 	CP_TIME,
1118 	REQ_TIME,
1119 	DISCARD_TIME,
1120 	GC_TIME,
1121 	DISABLE_TIME,
1122 	UMOUNT_DISCARD_TIMEOUT,
1123 	MAX_TIME,
1124 };
1125 
1126 enum {
1127 	GC_NORMAL,
1128 	GC_IDLE_CB,
1129 	GC_IDLE_GREEDY,
1130 	GC_URGENT,
1131 };
1132 
1133 enum {
1134 	WHINT_MODE_OFF,		/* not pass down write hints */
1135 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1136 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1137 };
1138 
1139 enum {
1140 	ALLOC_MODE_DEFAULT,	/* stay default */
1141 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1142 };
1143 
1144 enum fsync_mode {
1145 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1146 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1147 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1148 };
1149 
1150 #ifdef CONFIG_FS_ENCRYPTION
1151 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1152 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1153 #else
1154 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1155 #endif
1156 
1157 struct f2fs_sb_info {
1158 	struct super_block *sb;			/* pointer to VFS super block */
1159 	struct proc_dir_entry *s_proc;		/* proc entry */
1160 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1161 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1162 	int valid_super_block;			/* valid super block no */
1163 	unsigned long s_flag;				/* flags for sbi */
1164 	struct mutex writepages;		/* mutex for writepages() */
1165 
1166 #ifdef CONFIG_BLK_DEV_ZONED
1167 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1168 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1169 #endif
1170 
1171 	/* for node-related operations */
1172 	struct f2fs_nm_info *nm_info;		/* node manager */
1173 	struct inode *node_inode;		/* cache node blocks */
1174 
1175 	/* for segment-related operations */
1176 	struct f2fs_sm_info *sm_info;		/* segment manager */
1177 
1178 	/* for bio operations */
1179 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1180 	/* keep migration IO order for LFS mode */
1181 	struct rw_semaphore io_order_lock;
1182 	mempool_t *write_io_dummy;		/* Dummy pages */
1183 
1184 	/* for checkpoint */
1185 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1186 	int cur_cp_pack;			/* remain current cp pack */
1187 	spinlock_t cp_lock;			/* for flag in ckpt */
1188 	struct inode *meta_inode;		/* cache meta blocks */
1189 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1190 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1191 	struct rw_semaphore node_write;		/* locking node writes */
1192 	struct rw_semaphore node_change;	/* locking node change */
1193 	wait_queue_head_t cp_wait;
1194 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1195 	long interval_time[MAX_TIME];		/* to store thresholds */
1196 
1197 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1198 
1199 	spinlock_t fsync_node_lock;		/* for node entry lock */
1200 	struct list_head fsync_node_list;	/* node list head */
1201 	unsigned int fsync_seg_id;		/* sequence id */
1202 	unsigned int fsync_node_num;		/* number of node entries */
1203 
1204 	/* for orphan inode, use 0'th array */
1205 	unsigned int max_orphans;		/* max orphan inodes */
1206 
1207 	/* for inode management */
1208 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1209 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1210 
1211 	/* for extent tree cache */
1212 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1213 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1214 	struct list_head extent_list;		/* lru list for shrinker */
1215 	spinlock_t extent_lock;			/* locking extent lru list */
1216 	atomic_t total_ext_tree;		/* extent tree count */
1217 	struct list_head zombie_list;		/* extent zombie tree list */
1218 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1219 	atomic_t total_ext_node;		/* extent info count */
1220 
1221 	/* basic filesystem units */
1222 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1223 	unsigned int log_blocksize;		/* log2 block size */
1224 	unsigned int blocksize;			/* block size */
1225 	unsigned int root_ino_num;		/* root inode number*/
1226 	unsigned int node_ino_num;		/* node inode number*/
1227 	unsigned int meta_ino_num;		/* meta inode number*/
1228 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1229 	unsigned int blocks_per_seg;		/* blocks per segment */
1230 	unsigned int segs_per_sec;		/* segments per section */
1231 	unsigned int secs_per_zone;		/* sections per zone */
1232 	unsigned int total_sections;		/* total section count */
1233 	unsigned int total_node_count;		/* total node block count */
1234 	unsigned int total_valid_node_count;	/* valid node block count */
1235 	loff_t max_file_blocks;			/* max block index of file */
1236 	int dir_level;				/* directory level */
1237 	int readdir_ra;				/* readahead inode in readdir */
1238 
1239 	block_t user_block_count;		/* # of user blocks */
1240 	block_t total_valid_block_count;	/* # of valid blocks */
1241 	block_t discard_blks;			/* discard command candidats */
1242 	block_t last_valid_block_count;		/* for recovery */
1243 	block_t reserved_blocks;		/* configurable reserved blocks */
1244 	block_t current_reserved_blocks;	/* current reserved blocks */
1245 
1246 	/* Additional tracking for no checkpoint mode */
1247 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1248 
1249 	unsigned int nquota_files;		/* # of quota sysfile */
1250 
1251 	/* # of pages, see count_type */
1252 	atomic_t nr_pages[NR_COUNT_TYPE];
1253 	/* # of allocated blocks */
1254 	struct percpu_counter alloc_valid_block_count;
1255 
1256 	/* writeback control */
1257 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1258 
1259 	/* valid inode count */
1260 	struct percpu_counter total_valid_inode_count;
1261 
1262 	struct f2fs_mount_info mount_opt;	/* mount options */
1263 
1264 	/* for cleaning operations */
1265 	struct mutex gc_mutex;			/* mutex for GC */
1266 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1267 	unsigned int cur_victim_sec;		/* current victim section num */
1268 	unsigned int gc_mode;			/* current GC state */
1269 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1270 	/* for skip statistic */
1271 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1272 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1273 
1274 	/* threshold for gc trials on pinned files */
1275 	u64 gc_pin_file_threshold;
1276 
1277 	/* maximum # of trials to find a victim segment for SSR and GC */
1278 	unsigned int max_victim_search;
1279 	/* migration granularity of garbage collection, unit: segment */
1280 	unsigned int migration_granularity;
1281 
1282 	/*
1283 	 * for stat information.
1284 	 * one is for the LFS mode, and the other is for the SSR mode.
1285 	 */
1286 #ifdef CONFIG_F2FS_STAT_FS
1287 	struct f2fs_stat_info *stat_info;	/* FS status information */
1288 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1289 	unsigned int segment_count[2];		/* # of allocated segments */
1290 	unsigned int block_count[2];		/* # of allocated blocks */
1291 	atomic_t inplace_count;		/* # of inplace update */
1292 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1293 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1294 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1295 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1296 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1297 	atomic_t inline_inode;			/* # of inline_data inodes */
1298 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1299 	atomic_t aw_cnt;			/* # of atomic writes */
1300 	atomic_t vw_cnt;			/* # of volatile writes */
1301 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1302 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1303 	int bg_gc;				/* background gc calls */
1304 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1305 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1306 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1307 #endif
1308 	spinlock_t stat_lock;			/* lock for stat operations */
1309 
1310 	/* For app/fs IO statistics */
1311 	spinlock_t iostat_lock;
1312 	unsigned long long write_iostat[NR_IO_TYPE];
1313 	bool iostat_enable;
1314 
1315 	/* For sysfs suppport */
1316 	struct kobject s_kobj;
1317 	struct completion s_kobj_unregister;
1318 
1319 	/* For shrinker support */
1320 	struct list_head s_list;
1321 	int s_ndevs;				/* number of devices */
1322 	struct f2fs_dev_info *devs;		/* for device list */
1323 	unsigned int dirty_device;		/* for checkpoint data flush */
1324 	spinlock_t dev_lock;			/* protect dirty_device */
1325 	struct mutex umount_mutex;
1326 	unsigned int shrinker_run_no;
1327 
1328 	/* For write statistics */
1329 	u64 sectors_written_start;
1330 	u64 kbytes_written;
1331 
1332 	/* Reference to checksum algorithm driver via cryptoapi */
1333 	struct crypto_shash *s_chksum_driver;
1334 
1335 	/* Precomputed FS UUID checksum for seeding other checksums */
1336 	__u32 s_chksum_seed;
1337 };
1338 
1339 struct f2fs_private_dio {
1340 	struct inode *inode;
1341 	void *orig_private;
1342 	bio_end_io_t *orig_end_io;
1343 	bool write;
1344 };
1345 
1346 #ifdef CONFIG_F2FS_FAULT_INJECTION
1347 #define f2fs_show_injection_info(type)					\
1348 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pS\n",	\
1349 		KERN_INFO, f2fs_fault_name[type],			\
1350 		__func__, __builtin_return_address(0))
1351 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1352 {
1353 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1354 
1355 	if (!ffi->inject_rate)
1356 		return false;
1357 
1358 	if (!IS_FAULT_SET(ffi, type))
1359 		return false;
1360 
1361 	atomic_inc(&ffi->inject_ops);
1362 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1363 		atomic_set(&ffi->inject_ops, 0);
1364 		return true;
1365 	}
1366 	return false;
1367 }
1368 #else
1369 #define f2fs_show_injection_info(type) do { } while (0)
1370 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1371 {
1372 	return false;
1373 }
1374 #endif
1375 
1376 /*
1377  * Test if the mounted volume is a multi-device volume.
1378  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1379  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1380  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1381  */
1382 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1383 {
1384 	return sbi->s_ndevs > 1;
1385 }
1386 
1387 /* For write statistics. Suppose sector size is 512 bytes,
1388  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1389  */
1390 #define BD_PART_WRITTEN(s)						 \
1391 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1392 		(s)->sectors_written_start) >> 1)
1393 
1394 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1395 {
1396 	unsigned long now = jiffies;
1397 
1398 	sbi->last_time[type] = now;
1399 
1400 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1401 	if (type == REQ_TIME) {
1402 		sbi->last_time[DISCARD_TIME] = now;
1403 		sbi->last_time[GC_TIME] = now;
1404 	}
1405 }
1406 
1407 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1408 {
1409 	unsigned long interval = sbi->interval_time[type] * HZ;
1410 
1411 	return time_after(jiffies, sbi->last_time[type] + interval);
1412 }
1413 
1414 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1415 						int type)
1416 {
1417 	unsigned long interval = sbi->interval_time[type] * HZ;
1418 	unsigned int wait_ms = 0;
1419 	long delta;
1420 
1421 	delta = (sbi->last_time[type] + interval) - jiffies;
1422 	if (delta > 0)
1423 		wait_ms = jiffies_to_msecs(delta);
1424 
1425 	return wait_ms;
1426 }
1427 
1428 /*
1429  * Inline functions
1430  */
1431 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1432 			      const void *address, unsigned int length)
1433 {
1434 	struct {
1435 		struct shash_desc shash;
1436 		char ctx[4];
1437 	} desc;
1438 	int err;
1439 
1440 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1441 
1442 	desc.shash.tfm = sbi->s_chksum_driver;
1443 	*(u32 *)desc.ctx = crc;
1444 
1445 	err = crypto_shash_update(&desc.shash, address, length);
1446 	BUG_ON(err);
1447 
1448 	return *(u32 *)desc.ctx;
1449 }
1450 
1451 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1452 			   unsigned int length)
1453 {
1454 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1455 }
1456 
1457 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1458 				  void *buf, size_t buf_size)
1459 {
1460 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1461 }
1462 
1463 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1464 			      const void *address, unsigned int length)
1465 {
1466 	return __f2fs_crc32(sbi, crc, address, length);
1467 }
1468 
1469 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1470 {
1471 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1472 }
1473 
1474 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1475 {
1476 	return sb->s_fs_info;
1477 }
1478 
1479 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1480 {
1481 	return F2FS_SB(inode->i_sb);
1482 }
1483 
1484 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1485 {
1486 	return F2FS_I_SB(mapping->host);
1487 }
1488 
1489 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1490 {
1491 	return F2FS_M_SB(page->mapping);
1492 }
1493 
1494 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1495 {
1496 	return (struct f2fs_super_block *)(sbi->raw_super);
1497 }
1498 
1499 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1500 {
1501 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1502 }
1503 
1504 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1505 {
1506 	return (struct f2fs_node *)page_address(page);
1507 }
1508 
1509 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1510 {
1511 	return &((struct f2fs_node *)page_address(page))->i;
1512 }
1513 
1514 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1515 {
1516 	return (struct f2fs_nm_info *)(sbi->nm_info);
1517 }
1518 
1519 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1520 {
1521 	return (struct f2fs_sm_info *)(sbi->sm_info);
1522 }
1523 
1524 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1525 {
1526 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1527 }
1528 
1529 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1530 {
1531 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1532 }
1533 
1534 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1535 {
1536 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1537 }
1538 
1539 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1540 {
1541 	return sbi->meta_inode->i_mapping;
1542 }
1543 
1544 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1545 {
1546 	return sbi->node_inode->i_mapping;
1547 }
1548 
1549 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1550 {
1551 	return test_bit(type, &sbi->s_flag);
1552 }
1553 
1554 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1555 {
1556 	set_bit(type, &sbi->s_flag);
1557 }
1558 
1559 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1560 {
1561 	clear_bit(type, &sbi->s_flag);
1562 }
1563 
1564 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1565 {
1566 	return le64_to_cpu(cp->checkpoint_ver);
1567 }
1568 
1569 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1570 {
1571 	if (type < F2FS_MAX_QUOTAS)
1572 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1573 	return 0;
1574 }
1575 
1576 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1577 {
1578 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1579 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1580 }
1581 
1582 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1583 {
1584 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1585 
1586 	return ckpt_flags & f;
1587 }
1588 
1589 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1590 {
1591 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1592 }
1593 
1594 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1595 {
1596 	unsigned int ckpt_flags;
1597 
1598 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1599 	ckpt_flags |= f;
1600 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1601 }
1602 
1603 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1604 {
1605 	unsigned long flags;
1606 
1607 	spin_lock_irqsave(&sbi->cp_lock, flags);
1608 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1609 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1610 }
1611 
1612 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1613 {
1614 	unsigned int ckpt_flags;
1615 
1616 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1617 	ckpt_flags &= (~f);
1618 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1619 }
1620 
1621 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1622 {
1623 	unsigned long flags;
1624 
1625 	spin_lock_irqsave(&sbi->cp_lock, flags);
1626 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1627 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1628 }
1629 
1630 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1631 {
1632 	unsigned long flags;
1633 
1634 	/*
1635 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1636 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1637 	 * so let's rely on regular fsck or unclean shutdown.
1638 	 */
1639 
1640 	if (lock)
1641 		spin_lock_irqsave(&sbi->cp_lock, flags);
1642 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1643 	kvfree(NM_I(sbi)->nat_bits);
1644 	NM_I(sbi)->nat_bits = NULL;
1645 	if (lock)
1646 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1647 }
1648 
1649 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1650 					struct cp_control *cpc)
1651 {
1652 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1653 
1654 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1655 }
1656 
1657 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1658 {
1659 	down_read(&sbi->cp_rwsem);
1660 }
1661 
1662 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1663 {
1664 	return down_read_trylock(&sbi->cp_rwsem);
1665 }
1666 
1667 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1668 {
1669 	up_read(&sbi->cp_rwsem);
1670 }
1671 
1672 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1673 {
1674 	down_write(&sbi->cp_rwsem);
1675 }
1676 
1677 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1678 {
1679 	up_write(&sbi->cp_rwsem);
1680 }
1681 
1682 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1683 {
1684 	int reason = CP_SYNC;
1685 
1686 	if (test_opt(sbi, FASTBOOT))
1687 		reason = CP_FASTBOOT;
1688 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1689 		reason = CP_UMOUNT;
1690 	return reason;
1691 }
1692 
1693 static inline bool __remain_node_summaries(int reason)
1694 {
1695 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1696 }
1697 
1698 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1699 {
1700 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1701 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1702 }
1703 
1704 /*
1705  * Check whether the inode has blocks or not
1706  */
1707 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1708 {
1709 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1710 
1711 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1712 }
1713 
1714 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1715 {
1716 	return ofs == XATTR_NODE_OFFSET;
1717 }
1718 
1719 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1720 					struct inode *inode, bool cap)
1721 {
1722 	if (!inode)
1723 		return true;
1724 	if (!test_opt(sbi, RESERVE_ROOT))
1725 		return false;
1726 	if (IS_NOQUOTA(inode))
1727 		return true;
1728 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1729 		return true;
1730 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1731 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1732 		return true;
1733 	if (cap && capable(CAP_SYS_RESOURCE))
1734 		return true;
1735 	return false;
1736 }
1737 
1738 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1739 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1740 				 struct inode *inode, blkcnt_t *count)
1741 {
1742 	blkcnt_t diff = 0, release = 0;
1743 	block_t avail_user_block_count;
1744 	int ret;
1745 
1746 	ret = dquot_reserve_block(inode, *count);
1747 	if (ret)
1748 		return ret;
1749 
1750 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1751 		f2fs_show_injection_info(FAULT_BLOCK);
1752 		release = *count;
1753 		goto enospc;
1754 	}
1755 
1756 	/*
1757 	 * let's increase this in prior to actual block count change in order
1758 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1759 	 */
1760 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1761 
1762 	spin_lock(&sbi->stat_lock);
1763 	sbi->total_valid_block_count += (block_t)(*count);
1764 	avail_user_block_count = sbi->user_block_count -
1765 					sbi->current_reserved_blocks;
1766 
1767 	if (!__allow_reserved_blocks(sbi, inode, true))
1768 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1769 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1770 		avail_user_block_count -= sbi->unusable_block_count;
1771 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1772 		diff = sbi->total_valid_block_count - avail_user_block_count;
1773 		if (diff > *count)
1774 			diff = *count;
1775 		*count -= diff;
1776 		release = diff;
1777 		sbi->total_valid_block_count -= diff;
1778 		if (!*count) {
1779 			spin_unlock(&sbi->stat_lock);
1780 			goto enospc;
1781 		}
1782 	}
1783 	spin_unlock(&sbi->stat_lock);
1784 
1785 	if (unlikely(release)) {
1786 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1787 		dquot_release_reservation_block(inode, release);
1788 	}
1789 	f2fs_i_blocks_write(inode, *count, true, true);
1790 	return 0;
1791 
1792 enospc:
1793 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1794 	dquot_release_reservation_block(inode, release);
1795 	return -ENOSPC;
1796 }
1797 
1798 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
1799 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1800 						struct inode *inode,
1801 						block_t count)
1802 {
1803 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1804 
1805 	spin_lock(&sbi->stat_lock);
1806 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1807 	sbi->total_valid_block_count -= (block_t)count;
1808 	if (sbi->reserved_blocks &&
1809 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1810 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1811 					sbi->current_reserved_blocks + count);
1812 	spin_unlock(&sbi->stat_lock);
1813 	if (unlikely(inode->i_blocks < sectors)) {
1814 		f2fs_msg(sbi->sb, KERN_WARNING,
1815 			"Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1816 			inode->i_ino,
1817 			(unsigned long long)inode->i_blocks,
1818 			(unsigned long long)sectors);
1819 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1820 		return;
1821 	}
1822 	f2fs_i_blocks_write(inode, count, false, true);
1823 }
1824 
1825 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1826 {
1827 	atomic_inc(&sbi->nr_pages[count_type]);
1828 
1829 	if (count_type == F2FS_DIRTY_DENTS ||
1830 			count_type == F2FS_DIRTY_NODES ||
1831 			count_type == F2FS_DIRTY_META ||
1832 			count_type == F2FS_DIRTY_QDATA ||
1833 			count_type == F2FS_DIRTY_IMETA)
1834 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1835 }
1836 
1837 static inline void inode_inc_dirty_pages(struct inode *inode)
1838 {
1839 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1840 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1841 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1842 	if (IS_NOQUOTA(inode))
1843 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1844 }
1845 
1846 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1847 {
1848 	atomic_dec(&sbi->nr_pages[count_type]);
1849 }
1850 
1851 static inline void inode_dec_dirty_pages(struct inode *inode)
1852 {
1853 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1854 			!S_ISLNK(inode->i_mode))
1855 		return;
1856 
1857 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1858 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1859 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1860 	if (IS_NOQUOTA(inode))
1861 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1862 }
1863 
1864 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1865 {
1866 	return atomic_read(&sbi->nr_pages[count_type]);
1867 }
1868 
1869 static inline int get_dirty_pages(struct inode *inode)
1870 {
1871 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1872 }
1873 
1874 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1875 {
1876 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1877 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1878 						sbi->log_blocks_per_seg;
1879 
1880 	return segs / sbi->segs_per_sec;
1881 }
1882 
1883 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1884 {
1885 	return sbi->total_valid_block_count;
1886 }
1887 
1888 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1889 {
1890 	return sbi->discard_blks;
1891 }
1892 
1893 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1894 {
1895 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1896 
1897 	/* return NAT or SIT bitmap */
1898 	if (flag == NAT_BITMAP)
1899 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1900 	else if (flag == SIT_BITMAP)
1901 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1902 
1903 	return 0;
1904 }
1905 
1906 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1907 {
1908 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1909 }
1910 
1911 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1912 {
1913 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1914 	int offset;
1915 
1916 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1917 		offset = (flag == SIT_BITMAP) ?
1918 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1919 		/*
1920 		 * if large_nat_bitmap feature is enabled, leave checksum
1921 		 * protection for all nat/sit bitmaps.
1922 		 */
1923 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
1924 	}
1925 
1926 	if (__cp_payload(sbi) > 0) {
1927 		if (flag == NAT_BITMAP)
1928 			return &ckpt->sit_nat_version_bitmap;
1929 		else
1930 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1931 	} else {
1932 		offset = (flag == NAT_BITMAP) ?
1933 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1934 		return &ckpt->sit_nat_version_bitmap + offset;
1935 	}
1936 }
1937 
1938 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1939 {
1940 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1941 
1942 	if (sbi->cur_cp_pack == 2)
1943 		start_addr += sbi->blocks_per_seg;
1944 	return start_addr;
1945 }
1946 
1947 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1948 {
1949 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1950 
1951 	if (sbi->cur_cp_pack == 1)
1952 		start_addr += sbi->blocks_per_seg;
1953 	return start_addr;
1954 }
1955 
1956 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1957 {
1958 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1959 }
1960 
1961 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1962 {
1963 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1964 }
1965 
1966 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1967 					struct inode *inode, bool is_inode)
1968 {
1969 	block_t	valid_block_count;
1970 	unsigned int valid_node_count;
1971 	int err;
1972 
1973 	if (is_inode) {
1974 		if (inode) {
1975 			err = dquot_alloc_inode(inode);
1976 			if (err)
1977 				return err;
1978 		}
1979 	} else {
1980 		err = dquot_reserve_block(inode, 1);
1981 		if (err)
1982 			return err;
1983 	}
1984 
1985 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1986 		f2fs_show_injection_info(FAULT_BLOCK);
1987 		goto enospc;
1988 	}
1989 
1990 	spin_lock(&sbi->stat_lock);
1991 
1992 	valid_block_count = sbi->total_valid_block_count +
1993 					sbi->current_reserved_blocks + 1;
1994 
1995 	if (!__allow_reserved_blocks(sbi, inode, false))
1996 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1997 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1998 		valid_block_count += sbi->unusable_block_count;
1999 
2000 	if (unlikely(valid_block_count > sbi->user_block_count)) {
2001 		spin_unlock(&sbi->stat_lock);
2002 		goto enospc;
2003 	}
2004 
2005 	valid_node_count = sbi->total_valid_node_count + 1;
2006 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2007 		spin_unlock(&sbi->stat_lock);
2008 		goto enospc;
2009 	}
2010 
2011 	sbi->total_valid_node_count++;
2012 	sbi->total_valid_block_count++;
2013 	spin_unlock(&sbi->stat_lock);
2014 
2015 	if (inode) {
2016 		if (is_inode)
2017 			f2fs_mark_inode_dirty_sync(inode, true);
2018 		else
2019 			f2fs_i_blocks_write(inode, 1, true, true);
2020 	}
2021 
2022 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2023 	return 0;
2024 
2025 enospc:
2026 	if (is_inode) {
2027 		if (inode)
2028 			dquot_free_inode(inode);
2029 	} else {
2030 		dquot_release_reservation_block(inode, 1);
2031 	}
2032 	return -ENOSPC;
2033 }
2034 
2035 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2036 					struct inode *inode, bool is_inode)
2037 {
2038 	spin_lock(&sbi->stat_lock);
2039 
2040 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2041 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2042 
2043 	sbi->total_valid_node_count--;
2044 	sbi->total_valid_block_count--;
2045 	if (sbi->reserved_blocks &&
2046 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2047 		sbi->current_reserved_blocks++;
2048 
2049 	spin_unlock(&sbi->stat_lock);
2050 
2051 	if (is_inode) {
2052 		dquot_free_inode(inode);
2053 	} else {
2054 		if (unlikely(inode->i_blocks == 0)) {
2055 			f2fs_msg(sbi->sb, KERN_WARNING,
2056 				"Inconsistent i_blocks, ino:%lu, iblocks:%llu",
2057 				inode->i_ino,
2058 				(unsigned long long)inode->i_blocks);
2059 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2060 			return;
2061 		}
2062 		f2fs_i_blocks_write(inode, 1, false, true);
2063 	}
2064 }
2065 
2066 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2067 {
2068 	return sbi->total_valid_node_count;
2069 }
2070 
2071 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2072 {
2073 	percpu_counter_inc(&sbi->total_valid_inode_count);
2074 }
2075 
2076 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2077 {
2078 	percpu_counter_dec(&sbi->total_valid_inode_count);
2079 }
2080 
2081 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2082 {
2083 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2084 }
2085 
2086 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2087 						pgoff_t index, bool for_write)
2088 {
2089 	struct page *page;
2090 
2091 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2092 		if (!for_write)
2093 			page = find_get_page_flags(mapping, index,
2094 							FGP_LOCK | FGP_ACCESSED);
2095 		else
2096 			page = find_lock_page(mapping, index);
2097 		if (page)
2098 			return page;
2099 
2100 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2101 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2102 			return NULL;
2103 		}
2104 	}
2105 
2106 	if (!for_write)
2107 		return grab_cache_page(mapping, index);
2108 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2109 }
2110 
2111 static inline struct page *f2fs_pagecache_get_page(
2112 				struct address_space *mapping, pgoff_t index,
2113 				int fgp_flags, gfp_t gfp_mask)
2114 {
2115 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2116 		f2fs_show_injection_info(FAULT_PAGE_GET);
2117 		return NULL;
2118 	}
2119 
2120 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2121 }
2122 
2123 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2124 {
2125 	char *src_kaddr = kmap(src);
2126 	char *dst_kaddr = kmap(dst);
2127 
2128 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2129 	kunmap(dst);
2130 	kunmap(src);
2131 }
2132 
2133 static inline void f2fs_put_page(struct page *page, int unlock)
2134 {
2135 	if (!page)
2136 		return;
2137 
2138 	if (unlock) {
2139 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2140 		unlock_page(page);
2141 	}
2142 	put_page(page);
2143 }
2144 
2145 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2146 {
2147 	if (dn->node_page)
2148 		f2fs_put_page(dn->node_page, 1);
2149 	if (dn->inode_page && dn->node_page != dn->inode_page)
2150 		f2fs_put_page(dn->inode_page, 0);
2151 	dn->node_page = NULL;
2152 	dn->inode_page = NULL;
2153 }
2154 
2155 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2156 					size_t size)
2157 {
2158 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2159 }
2160 
2161 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2162 						gfp_t flags)
2163 {
2164 	void *entry;
2165 
2166 	entry = kmem_cache_alloc(cachep, flags);
2167 	if (!entry)
2168 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2169 	return entry;
2170 }
2171 
2172 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2173 						int npages, bool no_fail)
2174 {
2175 	struct bio *bio;
2176 
2177 	if (no_fail) {
2178 		/* No failure on bio allocation */
2179 		bio = bio_alloc(GFP_NOIO, npages);
2180 		if (!bio)
2181 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2182 		return bio;
2183 	}
2184 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2185 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2186 		return NULL;
2187 	}
2188 
2189 	return bio_alloc(GFP_KERNEL, npages);
2190 }
2191 
2192 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2193 {
2194 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2195 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2196 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2197 		get_pages(sbi, F2FS_DIO_READ) ||
2198 		get_pages(sbi, F2FS_DIO_WRITE))
2199 		return false;
2200 
2201 	if (SM_I(sbi) && SM_I(sbi)->dcc_info &&
2202 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2203 		return false;
2204 
2205 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2206 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2207 		return false;
2208 
2209 	return f2fs_time_over(sbi, type);
2210 }
2211 
2212 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2213 				unsigned long index, void *item)
2214 {
2215 	while (radix_tree_insert(root, index, item))
2216 		cond_resched();
2217 }
2218 
2219 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2220 
2221 static inline bool IS_INODE(struct page *page)
2222 {
2223 	struct f2fs_node *p = F2FS_NODE(page);
2224 
2225 	return RAW_IS_INODE(p);
2226 }
2227 
2228 static inline int offset_in_addr(struct f2fs_inode *i)
2229 {
2230 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2231 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2232 }
2233 
2234 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2235 {
2236 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2237 }
2238 
2239 static inline int f2fs_has_extra_attr(struct inode *inode);
2240 static inline block_t datablock_addr(struct inode *inode,
2241 			struct page *node_page, unsigned int offset)
2242 {
2243 	struct f2fs_node *raw_node;
2244 	__le32 *addr_array;
2245 	int base = 0;
2246 	bool is_inode = IS_INODE(node_page);
2247 
2248 	raw_node = F2FS_NODE(node_page);
2249 
2250 	/* from GC path only */
2251 	if (is_inode) {
2252 		if (!inode)
2253 			base = offset_in_addr(&raw_node->i);
2254 		else if (f2fs_has_extra_attr(inode))
2255 			base = get_extra_isize(inode);
2256 	}
2257 
2258 	addr_array = blkaddr_in_node(raw_node);
2259 	return le32_to_cpu(addr_array[base + offset]);
2260 }
2261 
2262 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2263 {
2264 	int mask;
2265 
2266 	addr += (nr >> 3);
2267 	mask = 1 << (7 - (nr & 0x07));
2268 	return mask & *addr;
2269 }
2270 
2271 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2272 {
2273 	int mask;
2274 
2275 	addr += (nr >> 3);
2276 	mask = 1 << (7 - (nr & 0x07));
2277 	*addr |= mask;
2278 }
2279 
2280 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2281 {
2282 	int mask;
2283 
2284 	addr += (nr >> 3);
2285 	mask = 1 << (7 - (nr & 0x07));
2286 	*addr &= ~mask;
2287 }
2288 
2289 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2290 {
2291 	int mask;
2292 	int ret;
2293 
2294 	addr += (nr >> 3);
2295 	mask = 1 << (7 - (nr & 0x07));
2296 	ret = mask & *addr;
2297 	*addr |= mask;
2298 	return ret;
2299 }
2300 
2301 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2302 {
2303 	int mask;
2304 	int ret;
2305 
2306 	addr += (nr >> 3);
2307 	mask = 1 << (7 - (nr & 0x07));
2308 	ret = mask & *addr;
2309 	*addr &= ~mask;
2310 	return ret;
2311 }
2312 
2313 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2314 {
2315 	int mask;
2316 
2317 	addr += (nr >> 3);
2318 	mask = 1 << (7 - (nr & 0x07));
2319 	*addr ^= mask;
2320 }
2321 
2322 /*
2323  * Inode flags
2324  */
2325 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2326 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2327 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2328 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2329 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2330 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2331 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2332 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2333 /* Reserved for compression usage... */
2334 #define F2FS_DIRTY_FL			0x00000100
2335 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2336 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2337 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2338 /* End compression flags --- maybe not all used */
2339 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2340 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2341 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2342 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2343 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2344 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2345 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2346 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2347 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2348 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2349 #define F2FS_NOCOW_FL			0x00800000 /* Do not cow file */
2350 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2351 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2352 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2353 
2354 #define F2FS_FL_USER_VISIBLE		0x30CBDFFF /* User visible flags */
2355 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2356 
2357 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2358 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2359 					 F2FS_IMMUTABLE_FL | \
2360 					 F2FS_APPEND_FL | \
2361 					 F2FS_NODUMP_FL | \
2362 					 F2FS_NOATIME_FL | \
2363 					 F2FS_PROJINHERIT_FL)
2364 
2365 /* Flags that should be inherited by new inodes from their parent. */
2366 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2367 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2368 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2369 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2370 			   F2FS_PROJINHERIT_FL)
2371 
2372 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2373 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2374 
2375 /* Flags that are appropriate for non-directories/regular files. */
2376 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2377 
2378 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2379 {
2380 	if (S_ISDIR(mode))
2381 		return flags;
2382 	else if (S_ISREG(mode))
2383 		return flags & F2FS_REG_FLMASK;
2384 	else
2385 		return flags & F2FS_OTHER_FLMASK;
2386 }
2387 
2388 /* used for f2fs_inode_info->flags */
2389 enum {
2390 	FI_NEW_INODE,		/* indicate newly allocated inode */
2391 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2392 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2393 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2394 	FI_INC_LINK,		/* need to increment i_nlink */
2395 	FI_ACL_MODE,		/* indicate acl mode */
2396 	FI_NO_ALLOC,		/* should not allocate any blocks */
2397 	FI_FREE_NID,		/* free allocated nide */
2398 	FI_NO_EXTENT,		/* not to use the extent cache */
2399 	FI_INLINE_XATTR,	/* used for inline xattr */
2400 	FI_INLINE_DATA,		/* used for inline data*/
2401 	FI_INLINE_DENTRY,	/* used for inline dentry */
2402 	FI_APPEND_WRITE,	/* inode has appended data */
2403 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2404 	FI_NEED_IPU,		/* used for ipu per file */
2405 	FI_ATOMIC_FILE,		/* indicate atomic file */
2406 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2407 	FI_VOLATILE_FILE,	/* indicate volatile file */
2408 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2409 	FI_DROP_CACHE,		/* drop dirty page cache */
2410 	FI_DATA_EXIST,		/* indicate data exists */
2411 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2412 	FI_DO_DEFRAG,		/* indicate defragment is running */
2413 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2414 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2415 	FI_HOT_DATA,		/* indicate file is hot */
2416 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2417 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2418 	FI_PIN_FILE,		/* indicate file should not be gced */
2419 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2420 };
2421 
2422 static inline void __mark_inode_dirty_flag(struct inode *inode,
2423 						int flag, bool set)
2424 {
2425 	switch (flag) {
2426 	case FI_INLINE_XATTR:
2427 	case FI_INLINE_DATA:
2428 	case FI_INLINE_DENTRY:
2429 	case FI_NEW_INODE:
2430 		if (set)
2431 			return;
2432 		/* fall through */
2433 	case FI_DATA_EXIST:
2434 	case FI_INLINE_DOTS:
2435 	case FI_PIN_FILE:
2436 		f2fs_mark_inode_dirty_sync(inode, true);
2437 	}
2438 }
2439 
2440 static inline void set_inode_flag(struct inode *inode, int flag)
2441 {
2442 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2443 		set_bit(flag, &F2FS_I(inode)->flags);
2444 	__mark_inode_dirty_flag(inode, flag, true);
2445 }
2446 
2447 static inline int is_inode_flag_set(struct inode *inode, int flag)
2448 {
2449 	return test_bit(flag, &F2FS_I(inode)->flags);
2450 }
2451 
2452 static inline void clear_inode_flag(struct inode *inode, int flag)
2453 {
2454 	if (test_bit(flag, &F2FS_I(inode)->flags))
2455 		clear_bit(flag, &F2FS_I(inode)->flags);
2456 	__mark_inode_dirty_flag(inode, flag, false);
2457 }
2458 
2459 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2460 {
2461 	F2FS_I(inode)->i_acl_mode = mode;
2462 	set_inode_flag(inode, FI_ACL_MODE);
2463 	f2fs_mark_inode_dirty_sync(inode, false);
2464 }
2465 
2466 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2467 {
2468 	if (inc)
2469 		inc_nlink(inode);
2470 	else
2471 		drop_nlink(inode);
2472 	f2fs_mark_inode_dirty_sync(inode, true);
2473 }
2474 
2475 static inline void f2fs_i_blocks_write(struct inode *inode,
2476 					block_t diff, bool add, bool claim)
2477 {
2478 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2479 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2480 
2481 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2482 	if (add) {
2483 		if (claim)
2484 			dquot_claim_block(inode, diff);
2485 		else
2486 			dquot_alloc_block_nofail(inode, diff);
2487 	} else {
2488 		dquot_free_block(inode, diff);
2489 	}
2490 
2491 	f2fs_mark_inode_dirty_sync(inode, true);
2492 	if (clean || recover)
2493 		set_inode_flag(inode, FI_AUTO_RECOVER);
2494 }
2495 
2496 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2497 {
2498 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2499 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2500 
2501 	if (i_size_read(inode) == i_size)
2502 		return;
2503 
2504 	i_size_write(inode, i_size);
2505 	f2fs_mark_inode_dirty_sync(inode, true);
2506 	if (clean || recover)
2507 		set_inode_flag(inode, FI_AUTO_RECOVER);
2508 }
2509 
2510 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2511 {
2512 	F2FS_I(inode)->i_current_depth = depth;
2513 	f2fs_mark_inode_dirty_sync(inode, true);
2514 }
2515 
2516 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2517 					unsigned int count)
2518 {
2519 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2520 	f2fs_mark_inode_dirty_sync(inode, true);
2521 }
2522 
2523 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2524 {
2525 	F2FS_I(inode)->i_xattr_nid = xnid;
2526 	f2fs_mark_inode_dirty_sync(inode, true);
2527 }
2528 
2529 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2530 {
2531 	F2FS_I(inode)->i_pino = pino;
2532 	f2fs_mark_inode_dirty_sync(inode, true);
2533 }
2534 
2535 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2536 {
2537 	struct f2fs_inode_info *fi = F2FS_I(inode);
2538 
2539 	if (ri->i_inline & F2FS_INLINE_XATTR)
2540 		set_bit(FI_INLINE_XATTR, &fi->flags);
2541 	if (ri->i_inline & F2FS_INLINE_DATA)
2542 		set_bit(FI_INLINE_DATA, &fi->flags);
2543 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2544 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2545 	if (ri->i_inline & F2FS_DATA_EXIST)
2546 		set_bit(FI_DATA_EXIST, &fi->flags);
2547 	if (ri->i_inline & F2FS_INLINE_DOTS)
2548 		set_bit(FI_INLINE_DOTS, &fi->flags);
2549 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2550 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2551 	if (ri->i_inline & F2FS_PIN_FILE)
2552 		set_bit(FI_PIN_FILE, &fi->flags);
2553 }
2554 
2555 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2556 {
2557 	ri->i_inline = 0;
2558 
2559 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2560 		ri->i_inline |= F2FS_INLINE_XATTR;
2561 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2562 		ri->i_inline |= F2FS_INLINE_DATA;
2563 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2564 		ri->i_inline |= F2FS_INLINE_DENTRY;
2565 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2566 		ri->i_inline |= F2FS_DATA_EXIST;
2567 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2568 		ri->i_inline |= F2FS_INLINE_DOTS;
2569 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2570 		ri->i_inline |= F2FS_EXTRA_ATTR;
2571 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2572 		ri->i_inline |= F2FS_PIN_FILE;
2573 }
2574 
2575 static inline int f2fs_has_extra_attr(struct inode *inode)
2576 {
2577 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2578 }
2579 
2580 static inline int f2fs_has_inline_xattr(struct inode *inode)
2581 {
2582 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2583 }
2584 
2585 static inline unsigned int addrs_per_inode(struct inode *inode)
2586 {
2587 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2588 				get_inline_xattr_addrs(inode);
2589 	return ALIGN_DOWN(addrs, 1);
2590 }
2591 
2592 static inline unsigned int addrs_per_block(struct inode *inode)
2593 {
2594 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1);
2595 }
2596 
2597 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2598 {
2599 	struct f2fs_inode *ri = F2FS_INODE(page);
2600 
2601 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2602 					get_inline_xattr_addrs(inode)]);
2603 }
2604 
2605 static inline int inline_xattr_size(struct inode *inode)
2606 {
2607 	if (f2fs_has_inline_xattr(inode))
2608 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2609 	return 0;
2610 }
2611 
2612 static inline int f2fs_has_inline_data(struct inode *inode)
2613 {
2614 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2615 }
2616 
2617 static inline int f2fs_exist_data(struct inode *inode)
2618 {
2619 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2620 }
2621 
2622 static inline int f2fs_has_inline_dots(struct inode *inode)
2623 {
2624 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2625 }
2626 
2627 static inline bool f2fs_is_pinned_file(struct inode *inode)
2628 {
2629 	return is_inode_flag_set(inode, FI_PIN_FILE);
2630 }
2631 
2632 static inline bool f2fs_is_atomic_file(struct inode *inode)
2633 {
2634 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2635 }
2636 
2637 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2638 {
2639 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2640 }
2641 
2642 static inline bool f2fs_is_volatile_file(struct inode *inode)
2643 {
2644 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2645 }
2646 
2647 static inline bool f2fs_is_first_block_written(struct inode *inode)
2648 {
2649 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2650 }
2651 
2652 static inline bool f2fs_is_drop_cache(struct inode *inode)
2653 {
2654 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2655 }
2656 
2657 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2658 {
2659 	struct f2fs_inode *ri = F2FS_INODE(page);
2660 	int extra_size = get_extra_isize(inode);
2661 
2662 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2663 }
2664 
2665 static inline int f2fs_has_inline_dentry(struct inode *inode)
2666 {
2667 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2668 }
2669 
2670 static inline int is_file(struct inode *inode, int type)
2671 {
2672 	return F2FS_I(inode)->i_advise & type;
2673 }
2674 
2675 static inline void set_file(struct inode *inode, int type)
2676 {
2677 	F2FS_I(inode)->i_advise |= type;
2678 	f2fs_mark_inode_dirty_sync(inode, true);
2679 }
2680 
2681 static inline void clear_file(struct inode *inode, int type)
2682 {
2683 	F2FS_I(inode)->i_advise &= ~type;
2684 	f2fs_mark_inode_dirty_sync(inode, true);
2685 }
2686 
2687 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2688 {
2689 	bool ret;
2690 
2691 	if (dsync) {
2692 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2693 
2694 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2695 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2696 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2697 		return ret;
2698 	}
2699 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2700 			file_keep_isize(inode) ||
2701 			i_size_read(inode) & ~PAGE_MASK)
2702 		return false;
2703 
2704 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2705 		return false;
2706 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2707 		return false;
2708 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2709 		return false;
2710 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2711 						&F2FS_I(inode)->i_crtime))
2712 		return false;
2713 
2714 	down_read(&F2FS_I(inode)->i_sem);
2715 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2716 	up_read(&F2FS_I(inode)->i_sem);
2717 
2718 	return ret;
2719 }
2720 
2721 static inline bool f2fs_readonly(struct super_block *sb)
2722 {
2723 	return sb_rdonly(sb);
2724 }
2725 
2726 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2727 {
2728 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2729 }
2730 
2731 static inline bool is_dot_dotdot(const struct qstr *str)
2732 {
2733 	if (str->len == 1 && str->name[0] == '.')
2734 		return true;
2735 
2736 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2737 		return true;
2738 
2739 	return false;
2740 }
2741 
2742 static inline bool f2fs_may_extent_tree(struct inode *inode)
2743 {
2744 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2745 
2746 	if (!test_opt(sbi, EXTENT_CACHE) ||
2747 			is_inode_flag_set(inode, FI_NO_EXTENT))
2748 		return false;
2749 
2750 	/*
2751 	 * for recovered files during mount do not create extents
2752 	 * if shrinker is not registered.
2753 	 */
2754 	if (list_empty(&sbi->s_list))
2755 		return false;
2756 
2757 	return S_ISREG(inode->i_mode);
2758 }
2759 
2760 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2761 					size_t size, gfp_t flags)
2762 {
2763 	void *ret;
2764 
2765 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2766 		f2fs_show_injection_info(FAULT_KMALLOC);
2767 		return NULL;
2768 	}
2769 
2770 	ret = kmalloc(size, flags);
2771 	if (ret)
2772 		return ret;
2773 
2774 	return kvmalloc(size, flags);
2775 }
2776 
2777 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2778 					size_t size, gfp_t flags)
2779 {
2780 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2781 }
2782 
2783 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2784 					size_t size, gfp_t flags)
2785 {
2786 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2787 		f2fs_show_injection_info(FAULT_KVMALLOC);
2788 		return NULL;
2789 	}
2790 
2791 	return kvmalloc(size, flags);
2792 }
2793 
2794 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2795 					size_t size, gfp_t flags)
2796 {
2797 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2798 }
2799 
2800 static inline int get_extra_isize(struct inode *inode)
2801 {
2802 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2803 }
2804 
2805 static inline int get_inline_xattr_addrs(struct inode *inode)
2806 {
2807 	return F2FS_I(inode)->i_inline_xattr_size;
2808 }
2809 
2810 #define f2fs_get_inode_mode(i) \
2811 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2812 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2813 
2814 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2815 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2816 	offsetof(struct f2fs_inode, i_extra_isize))	\
2817 
2818 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2819 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2820 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2821 		sizeof((f2fs_inode)->field))			\
2822 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2823 
2824 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2825 {
2826 	int i;
2827 
2828 	spin_lock(&sbi->iostat_lock);
2829 	for (i = 0; i < NR_IO_TYPE; i++)
2830 		sbi->write_iostat[i] = 0;
2831 	spin_unlock(&sbi->iostat_lock);
2832 }
2833 
2834 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2835 			enum iostat_type type, unsigned long long io_bytes)
2836 {
2837 	if (!sbi->iostat_enable)
2838 		return;
2839 	spin_lock(&sbi->iostat_lock);
2840 	sbi->write_iostat[type] += io_bytes;
2841 
2842 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2843 		sbi->write_iostat[APP_BUFFERED_IO] =
2844 			sbi->write_iostat[APP_WRITE_IO] -
2845 			sbi->write_iostat[APP_DIRECT_IO];
2846 	spin_unlock(&sbi->iostat_lock);
2847 }
2848 
2849 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2850 
2851 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
2852 
2853 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2854 					block_t blkaddr, int type);
2855 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2856 					block_t blkaddr, int type)
2857 {
2858 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2859 		f2fs_msg(sbi->sb, KERN_ERR,
2860 			"invalid blkaddr: %u, type: %d, run fsck to fix.",
2861 			blkaddr, type);
2862 		f2fs_bug_on(sbi, 1);
2863 	}
2864 }
2865 
2866 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2867 {
2868 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2869 		return false;
2870 	return true;
2871 }
2872 
2873 static inline void f2fs_set_page_private(struct page *page,
2874 						unsigned long data)
2875 {
2876 	if (PagePrivate(page))
2877 		return;
2878 
2879 	get_page(page);
2880 	SetPagePrivate(page);
2881 	set_page_private(page, data);
2882 }
2883 
2884 static inline void f2fs_clear_page_private(struct page *page)
2885 {
2886 	if (!PagePrivate(page))
2887 		return;
2888 
2889 	set_page_private(page, 0);
2890 	ClearPagePrivate(page);
2891 	f2fs_put_page(page, 0);
2892 }
2893 
2894 /*
2895  * file.c
2896  */
2897 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2898 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2899 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2900 int f2fs_truncate(struct inode *inode);
2901 int f2fs_getattr(const struct path *path, struct kstat *stat,
2902 			u32 request_mask, unsigned int flags);
2903 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2904 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2905 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2906 int f2fs_precache_extents(struct inode *inode);
2907 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2908 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2909 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2910 int f2fs_pin_file_control(struct inode *inode, bool inc);
2911 
2912 /*
2913  * inode.c
2914  */
2915 void f2fs_set_inode_flags(struct inode *inode);
2916 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2917 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2918 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2919 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2920 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2921 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2922 void f2fs_update_inode_page(struct inode *inode);
2923 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2924 void f2fs_evict_inode(struct inode *inode);
2925 void f2fs_handle_failed_inode(struct inode *inode);
2926 
2927 /*
2928  * namei.c
2929  */
2930 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2931 							bool hot, bool set);
2932 struct dentry *f2fs_get_parent(struct dentry *child);
2933 
2934 /*
2935  * dir.c
2936  */
2937 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2938 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2939 			f2fs_hash_t namehash, int *max_slots,
2940 			struct f2fs_dentry_ptr *d);
2941 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2942 			unsigned int start_pos, struct fscrypt_str *fstr);
2943 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2944 			struct f2fs_dentry_ptr *d);
2945 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2946 			const struct qstr *new_name,
2947 			const struct qstr *orig_name, struct page *dpage);
2948 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2949 			unsigned int current_depth);
2950 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2951 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2952 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2953 			struct fscrypt_name *fname, struct page **res_page);
2954 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2955 			const struct qstr *child, struct page **res_page);
2956 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2957 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2958 			struct page **page);
2959 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2960 			struct page *page, struct inode *inode);
2961 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2962 			const struct qstr *name, f2fs_hash_t name_hash,
2963 			unsigned int bit_pos);
2964 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2965 			const struct qstr *orig_name,
2966 			struct inode *inode, nid_t ino, umode_t mode);
2967 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2968 			struct inode *inode, nid_t ino, umode_t mode);
2969 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2970 			struct inode *inode, nid_t ino, umode_t mode);
2971 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2972 			struct inode *dir, struct inode *inode);
2973 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2974 bool f2fs_empty_dir(struct inode *dir);
2975 
2976 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2977 {
2978 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2979 				inode, inode->i_ino, inode->i_mode);
2980 }
2981 
2982 /*
2983  * super.c
2984  */
2985 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2986 void f2fs_inode_synced(struct inode *inode);
2987 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2988 int f2fs_quota_sync(struct super_block *sb, int type);
2989 void f2fs_quota_off_umount(struct super_block *sb);
2990 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2991 int f2fs_sync_fs(struct super_block *sb, int sync);
2992 extern __printf(3, 4)
2993 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2994 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2995 
2996 /*
2997  * hash.c
2998  */
2999 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
3000 				struct fscrypt_name *fname);
3001 
3002 /*
3003  * node.c
3004  */
3005 struct dnode_of_data;
3006 struct node_info;
3007 
3008 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3009 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3010 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3011 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3012 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3013 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3014 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3015 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3016 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3017 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3018 						struct node_info *ni);
3019 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3020 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3021 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3022 int f2fs_truncate_xattr_node(struct inode *inode);
3023 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3024 					unsigned int seq_id);
3025 int f2fs_remove_inode_page(struct inode *inode);
3026 struct page *f2fs_new_inode_page(struct inode *inode);
3027 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3028 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3029 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3030 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3031 int f2fs_move_node_page(struct page *node_page, int gc_type);
3032 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3033 			struct writeback_control *wbc, bool atomic,
3034 			unsigned int *seq_id);
3035 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3036 			struct writeback_control *wbc,
3037 			bool do_balance, enum iostat_type io_type);
3038 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3039 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3040 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3041 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3042 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3043 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3044 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3045 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3046 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3047 			unsigned int segno, struct f2fs_summary_block *sum);
3048 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3049 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3050 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3051 int __init f2fs_create_node_manager_caches(void);
3052 void f2fs_destroy_node_manager_caches(void);
3053 
3054 /*
3055  * segment.c
3056  */
3057 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3058 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3059 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3060 void f2fs_drop_inmem_pages(struct inode *inode);
3061 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3062 int f2fs_commit_inmem_pages(struct inode *inode);
3063 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3064 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3065 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3066 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3067 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3068 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3069 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3070 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3071 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3072 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3073 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3074 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3075 					struct cp_control *cpc);
3076 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3077 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
3078 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3079 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3080 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3081 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3082 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3083 					struct cp_control *cpc);
3084 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3085 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3086 					block_t blk_addr);
3087 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3088 						enum iostat_type io_type);
3089 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3090 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3091 			struct f2fs_io_info *fio);
3092 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3093 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3094 			block_t old_blkaddr, block_t new_blkaddr,
3095 			bool recover_curseg, bool recover_newaddr);
3096 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3097 			block_t old_addr, block_t new_addr,
3098 			unsigned char version, bool recover_curseg,
3099 			bool recover_newaddr);
3100 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3101 			block_t old_blkaddr, block_t *new_blkaddr,
3102 			struct f2fs_summary *sum, int type,
3103 			struct f2fs_io_info *fio, bool add_list);
3104 void f2fs_wait_on_page_writeback(struct page *page,
3105 			enum page_type type, bool ordered, bool locked);
3106 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3107 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3108 								block_t len);
3109 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3110 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3111 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3112 			unsigned int val, int alloc);
3113 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3114 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3115 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3116 int __init f2fs_create_segment_manager_caches(void);
3117 void f2fs_destroy_segment_manager_caches(void);
3118 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3119 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3120 			enum page_type type, enum temp_type temp);
3121 
3122 /*
3123  * checkpoint.c
3124  */
3125 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3126 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3127 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3128 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3129 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3130 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3131 					block_t blkaddr, int type);
3132 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3133 			int type, bool sync);
3134 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3135 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3136 			long nr_to_write, enum iostat_type io_type);
3137 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3138 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3139 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3140 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3141 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3142 					unsigned int devidx, int type);
3143 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3144 					unsigned int devidx, int type);
3145 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3146 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3147 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3148 void f2fs_add_orphan_inode(struct inode *inode);
3149 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3150 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3151 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3152 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3153 void f2fs_remove_dirty_inode(struct inode *inode);
3154 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3155 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3156 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3157 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3158 int __init f2fs_create_checkpoint_caches(void);
3159 void f2fs_destroy_checkpoint_caches(void);
3160 
3161 /*
3162  * data.c
3163  */
3164 int f2fs_init_post_read_processing(void);
3165 void f2fs_destroy_post_read_processing(void);
3166 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3167 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3168 				struct inode *inode, struct page *page,
3169 				nid_t ino, enum page_type type);
3170 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3171 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3172 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3173 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3174 			block_t blk_addr, struct bio *bio);
3175 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3176 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3177 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3178 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3179 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3180 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3181 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3182 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3183 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3184 			int op_flags, bool for_write);
3185 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3186 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3187 			bool for_write);
3188 struct page *f2fs_get_new_data_page(struct inode *inode,
3189 			struct page *ipage, pgoff_t index, bool new_i_size);
3190 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3191 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3192 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3193 			int create, int flag);
3194 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3195 			u64 start, u64 len);
3196 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3197 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3198 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3199 			unsigned int length);
3200 int f2fs_release_page(struct page *page, gfp_t wait);
3201 #ifdef CONFIG_MIGRATION
3202 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3203 			struct page *page, enum migrate_mode mode);
3204 #endif
3205 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3206 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3207 
3208 /*
3209  * gc.c
3210  */
3211 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3212 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3213 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3214 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3215 			unsigned int segno);
3216 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3217 
3218 /*
3219  * recovery.c
3220  */
3221 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3222 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3223 
3224 /*
3225  * debug.c
3226  */
3227 #ifdef CONFIG_F2FS_STAT_FS
3228 struct f2fs_stat_info {
3229 	struct list_head stat_list;
3230 	struct f2fs_sb_info *sbi;
3231 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3232 	int main_area_segs, main_area_sections, main_area_zones;
3233 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3234 	unsigned long long hit_total, total_ext;
3235 	int ext_tree, zombie_tree, ext_node;
3236 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3237 	int ndirty_data, ndirty_qdata;
3238 	int inmem_pages;
3239 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3240 	int nats, dirty_nats, sits, dirty_sits;
3241 	int free_nids, avail_nids, alloc_nids;
3242 	int total_count, utilization;
3243 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3244 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3245 	int nr_dio_read, nr_dio_write;
3246 	unsigned int io_skip_bggc, other_skip_bggc;
3247 	int nr_flushing, nr_flushed, flush_list_empty;
3248 	int nr_discarding, nr_discarded;
3249 	int nr_discard_cmd;
3250 	unsigned int undiscard_blks;
3251 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3252 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3253 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3254 	unsigned int bimodal, avg_vblocks;
3255 	int util_free, util_valid, util_invalid;
3256 	int rsvd_segs, overp_segs;
3257 	int dirty_count, node_pages, meta_pages;
3258 	int prefree_count, call_count, cp_count, bg_cp_count;
3259 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3260 	int bg_node_segs, bg_data_segs;
3261 	int tot_blks, data_blks, node_blks;
3262 	int bg_data_blks, bg_node_blks;
3263 	unsigned long long skipped_atomic_files[2];
3264 	int curseg[NR_CURSEG_TYPE];
3265 	int cursec[NR_CURSEG_TYPE];
3266 	int curzone[NR_CURSEG_TYPE];
3267 
3268 	unsigned int meta_count[META_MAX];
3269 	unsigned int segment_count[2];
3270 	unsigned int block_count[2];
3271 	unsigned int inplace_count;
3272 	unsigned long long base_mem, cache_mem, page_mem;
3273 };
3274 
3275 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3276 {
3277 	return (struct f2fs_stat_info *)sbi->stat_info;
3278 }
3279 
3280 #define stat_inc_cp_count(si)		((si)->cp_count++)
3281 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3282 #define stat_inc_call_count(si)		((si)->call_count++)
3283 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3284 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3285 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3286 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3287 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3288 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3289 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3290 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3291 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3292 #define stat_inc_inline_xattr(inode)					\
3293 	do {								\
3294 		if (f2fs_has_inline_xattr(inode))			\
3295 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3296 	} while (0)
3297 #define stat_dec_inline_xattr(inode)					\
3298 	do {								\
3299 		if (f2fs_has_inline_xattr(inode))			\
3300 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3301 	} while (0)
3302 #define stat_inc_inline_inode(inode)					\
3303 	do {								\
3304 		if (f2fs_has_inline_data(inode))			\
3305 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3306 	} while (0)
3307 #define stat_dec_inline_inode(inode)					\
3308 	do {								\
3309 		if (f2fs_has_inline_data(inode))			\
3310 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3311 	} while (0)
3312 #define stat_inc_inline_dir(inode)					\
3313 	do {								\
3314 		if (f2fs_has_inline_dentry(inode))			\
3315 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3316 	} while (0)
3317 #define stat_dec_inline_dir(inode)					\
3318 	do {								\
3319 		if (f2fs_has_inline_dentry(inode))			\
3320 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3321 	} while (0)
3322 #define stat_inc_meta_count(sbi, blkaddr)				\
3323 	do {								\
3324 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3325 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3326 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3327 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3328 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3329 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3330 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3331 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3332 	} while (0)
3333 #define stat_inc_seg_type(sbi, curseg)					\
3334 		((sbi)->segment_count[(curseg)->alloc_type]++)
3335 #define stat_inc_block_count(sbi, curseg)				\
3336 		((sbi)->block_count[(curseg)->alloc_type]++)
3337 #define stat_inc_inplace_blocks(sbi)					\
3338 		(atomic_inc(&(sbi)->inplace_count))
3339 #define stat_inc_atomic_write(inode)					\
3340 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3341 #define stat_dec_atomic_write(inode)					\
3342 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3343 #define stat_update_max_atomic_write(inode)				\
3344 	do {								\
3345 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3346 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3347 		if (cur > max)						\
3348 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3349 	} while (0)
3350 #define stat_inc_volatile_write(inode)					\
3351 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3352 #define stat_dec_volatile_write(inode)					\
3353 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3354 #define stat_update_max_volatile_write(inode)				\
3355 	do {								\
3356 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3357 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3358 		if (cur > max)						\
3359 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3360 	} while (0)
3361 #define stat_inc_seg_count(sbi, type, gc_type)				\
3362 	do {								\
3363 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3364 		si->tot_segs++;						\
3365 		if ((type) == SUM_TYPE_DATA) {				\
3366 			si->data_segs++;				\
3367 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3368 		} else {						\
3369 			si->node_segs++;				\
3370 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3371 		}							\
3372 	} while (0)
3373 
3374 #define stat_inc_tot_blk_count(si, blks)				\
3375 	((si)->tot_blks += (blks))
3376 
3377 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3378 	do {								\
3379 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3380 		stat_inc_tot_blk_count(si, blks);			\
3381 		si->data_blks += (blks);				\
3382 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3383 	} while (0)
3384 
3385 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3386 	do {								\
3387 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3388 		stat_inc_tot_blk_count(si, blks);			\
3389 		si->node_blks += (blks);				\
3390 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3391 	} while (0)
3392 
3393 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3394 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3395 void __init f2fs_create_root_stats(void);
3396 void f2fs_destroy_root_stats(void);
3397 #else
3398 #define stat_inc_cp_count(si)				do { } while (0)
3399 #define stat_inc_bg_cp_count(si)			do { } while (0)
3400 #define stat_inc_call_count(si)				do { } while (0)
3401 #define stat_inc_bggc_count(si)				do { } while (0)
3402 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3403 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3404 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3405 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3406 #define stat_inc_total_hit(sb)				do { } while (0)
3407 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3408 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3409 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3410 #define stat_inc_inline_xattr(inode)			do { } while (0)
3411 #define stat_dec_inline_xattr(inode)			do { } while (0)
3412 #define stat_inc_inline_inode(inode)			do { } while (0)
3413 #define stat_dec_inline_inode(inode)			do { } while (0)
3414 #define stat_inc_inline_dir(inode)			do { } while (0)
3415 #define stat_dec_inline_dir(inode)			do { } while (0)
3416 #define stat_inc_atomic_write(inode)			do { } while (0)
3417 #define stat_dec_atomic_write(inode)			do { } while (0)
3418 #define stat_update_max_atomic_write(inode)		do { } while (0)
3419 #define stat_inc_volatile_write(inode)			do { } while (0)
3420 #define stat_dec_volatile_write(inode)			do { } while (0)
3421 #define stat_update_max_volatile_write(inode)		do { } while (0)
3422 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3423 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3424 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3425 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3426 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3427 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3428 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3429 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3430 
3431 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3432 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3433 static inline void __init f2fs_create_root_stats(void) { }
3434 static inline void f2fs_destroy_root_stats(void) { }
3435 #endif
3436 
3437 extern const struct file_operations f2fs_dir_operations;
3438 extern const struct file_operations f2fs_file_operations;
3439 extern const struct inode_operations f2fs_file_inode_operations;
3440 extern const struct address_space_operations f2fs_dblock_aops;
3441 extern const struct address_space_operations f2fs_node_aops;
3442 extern const struct address_space_operations f2fs_meta_aops;
3443 extern const struct inode_operations f2fs_dir_inode_operations;
3444 extern const struct inode_operations f2fs_symlink_inode_operations;
3445 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3446 extern const struct inode_operations f2fs_special_inode_operations;
3447 extern struct kmem_cache *f2fs_inode_entry_slab;
3448 
3449 /*
3450  * inline.c
3451  */
3452 bool f2fs_may_inline_data(struct inode *inode);
3453 bool f2fs_may_inline_dentry(struct inode *inode);
3454 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3455 void f2fs_truncate_inline_inode(struct inode *inode,
3456 						struct page *ipage, u64 from);
3457 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3458 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3459 int f2fs_convert_inline_inode(struct inode *inode);
3460 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3461 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3462 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3463 			struct fscrypt_name *fname, struct page **res_page);
3464 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3465 			struct page *ipage);
3466 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3467 			const struct qstr *orig_name,
3468 			struct inode *inode, nid_t ino, umode_t mode);
3469 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3470 				struct page *page, struct inode *dir,
3471 				struct inode *inode);
3472 bool f2fs_empty_inline_dir(struct inode *dir);
3473 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3474 			struct fscrypt_str *fstr);
3475 int f2fs_inline_data_fiemap(struct inode *inode,
3476 			struct fiemap_extent_info *fieinfo,
3477 			__u64 start, __u64 len);
3478 
3479 /*
3480  * shrinker.c
3481  */
3482 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3483 			struct shrink_control *sc);
3484 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3485 			struct shrink_control *sc);
3486 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3487 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3488 
3489 /*
3490  * extent_cache.c
3491  */
3492 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3493 				struct rb_entry *cached_re, unsigned int ofs);
3494 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3495 				struct rb_root_cached *root,
3496 				struct rb_node **parent,
3497 				unsigned int ofs, bool *leftmost);
3498 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3499 		struct rb_entry *cached_re, unsigned int ofs,
3500 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3501 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3502 		bool force, bool *leftmost);
3503 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3504 						struct rb_root_cached *root);
3505 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3506 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3507 void f2fs_drop_extent_tree(struct inode *inode);
3508 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3509 void f2fs_destroy_extent_tree(struct inode *inode);
3510 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3511 			struct extent_info *ei);
3512 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3513 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3514 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3515 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3516 int __init f2fs_create_extent_cache(void);
3517 void f2fs_destroy_extent_cache(void);
3518 
3519 /*
3520  * sysfs.c
3521  */
3522 int __init f2fs_init_sysfs(void);
3523 void f2fs_exit_sysfs(void);
3524 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3525 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3526 
3527 /*
3528  * crypto support
3529  */
3530 static inline bool f2fs_encrypted_file(struct inode *inode)
3531 {
3532 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3533 }
3534 
3535 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3536 {
3537 #ifdef CONFIG_FS_ENCRYPTION
3538 	file_set_encrypt(inode);
3539 	f2fs_set_inode_flags(inode);
3540 #endif
3541 }
3542 
3543 /*
3544  * Returns true if the reads of the inode's data need to undergo some
3545  * postprocessing step, like decryption or authenticity verification.
3546  */
3547 static inline bool f2fs_post_read_required(struct inode *inode)
3548 {
3549 	return f2fs_encrypted_file(inode);
3550 }
3551 
3552 #define F2FS_FEATURE_FUNCS(name, flagname) \
3553 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3554 { \
3555 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3556 }
3557 
3558 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3559 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3560 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3561 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3562 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3563 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3564 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3565 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3566 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3567 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3568 
3569 #ifdef CONFIG_BLK_DEV_ZONED
3570 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3571 				    block_t blkaddr)
3572 {
3573 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3574 
3575 	return test_bit(zno, FDEV(devi).blkz_seq);
3576 }
3577 #endif
3578 
3579 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3580 {
3581 	return f2fs_sb_has_blkzoned(sbi);
3582 }
3583 
3584 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3585 {
3586 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3587 	       bdev_is_zoned(bdev);
3588 }
3589 
3590 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3591 {
3592 	int i;
3593 
3594 	if (!f2fs_is_multi_device(sbi))
3595 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3596 
3597 	for (i = 0; i < sbi->s_ndevs; i++)
3598 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3599 			return true;
3600 	return false;
3601 }
3602 
3603 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3604 {
3605 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3606 					f2fs_hw_should_discard(sbi);
3607 }
3608 
3609 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3610 {
3611 	int i;
3612 
3613 	if (!f2fs_is_multi_device(sbi))
3614 		return bdev_read_only(sbi->sb->s_bdev);
3615 
3616 	for (i = 0; i < sbi->s_ndevs; i++)
3617 		if (bdev_read_only(FDEV(i).bdev))
3618 			return true;
3619 	return false;
3620 }
3621 
3622 
3623 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3624 {
3625 	clear_opt(sbi, ADAPTIVE);
3626 	clear_opt(sbi, LFS);
3627 
3628 	switch (mt) {
3629 	case F2FS_MOUNT_ADAPTIVE:
3630 		set_opt(sbi, ADAPTIVE);
3631 		break;
3632 	case F2FS_MOUNT_LFS:
3633 		set_opt(sbi, LFS);
3634 		break;
3635 	}
3636 }
3637 
3638 static inline bool f2fs_may_encrypt(struct inode *inode)
3639 {
3640 #ifdef CONFIG_FS_ENCRYPTION
3641 	umode_t mode = inode->i_mode;
3642 
3643 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3644 #else
3645 	return false;
3646 #endif
3647 }
3648 
3649 static inline int block_unaligned_IO(struct inode *inode,
3650 				struct kiocb *iocb, struct iov_iter *iter)
3651 {
3652 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3653 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3654 	loff_t offset = iocb->ki_pos;
3655 	unsigned long align = offset | iov_iter_alignment(iter);
3656 
3657 	return align & blocksize_mask;
3658 }
3659 
3660 static inline int allow_outplace_dio(struct inode *inode,
3661 				struct kiocb *iocb, struct iov_iter *iter)
3662 {
3663 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3664 	int rw = iov_iter_rw(iter);
3665 
3666 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3667 				!block_unaligned_IO(inode, iocb, iter));
3668 }
3669 
3670 static inline bool f2fs_force_buffered_io(struct inode *inode,
3671 				struct kiocb *iocb, struct iov_iter *iter)
3672 {
3673 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3674 	int rw = iov_iter_rw(iter);
3675 
3676 	if (f2fs_post_read_required(inode))
3677 		return true;
3678 	if (f2fs_is_multi_device(sbi))
3679 		return true;
3680 	/*
3681 	 * for blkzoned device, fallback direct IO to buffered IO, so
3682 	 * all IOs can be serialized by log-structured write.
3683 	 */
3684 	if (f2fs_sb_has_blkzoned(sbi))
3685 		return true;
3686 	if (test_opt(sbi, LFS) && (rw == WRITE) &&
3687 				block_unaligned_IO(inode, iocb, iter))
3688 		return true;
3689 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3690 		return true;
3691 
3692 	return false;
3693 }
3694 
3695 #ifdef CONFIG_F2FS_FAULT_INJECTION
3696 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3697 							unsigned int type);
3698 #else
3699 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3700 #endif
3701 
3702 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3703 {
3704 #ifdef CONFIG_QUOTA
3705 	if (f2fs_sb_has_quota_ino(sbi))
3706 		return true;
3707 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3708 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3709 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3710 		return true;
3711 #endif
3712 	return false;
3713 }
3714 
3715 #endif /* _LINUX_F2FS_H */
3716