1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/slab.h> 15 #include <linux/crc32.h> 16 #include <linux/magic.h> 17 #include <linux/kobject.h> 18 #include <linux/sched.h> 19 #include <linux/cred.h> 20 #include <linux/sched/mm.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <linux/part_stat.h> 26 #include <linux/rw_hint.h> 27 28 #include <linux/fscrypt.h> 29 #include <linux/fsverity.h> 30 31 struct pagevec; 32 33 #ifdef CONFIG_F2FS_CHECK_FS 34 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 35 #else 36 #define f2fs_bug_on(sbi, condition) \ 37 do { \ 38 if (WARN_ON(condition)) \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } while (0) 41 #endif 42 43 enum { 44 FAULT_KMALLOC, 45 FAULT_KVMALLOC, 46 FAULT_PAGE_ALLOC, 47 FAULT_PAGE_GET, 48 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 49 FAULT_ALLOC_NID, 50 FAULT_ORPHAN, 51 FAULT_BLOCK, 52 FAULT_DIR_DEPTH, 53 FAULT_EVICT_INODE, 54 FAULT_TRUNCATE, 55 FAULT_READ_IO, 56 FAULT_CHECKPOINT, 57 FAULT_DISCARD, 58 FAULT_WRITE_IO, 59 FAULT_SLAB_ALLOC, 60 FAULT_DQUOT_INIT, 61 FAULT_LOCK_OP, 62 FAULT_BLKADDR_VALIDITY, 63 FAULT_BLKADDR_CONSISTENCE, 64 FAULT_NO_SEGMENT, 65 FAULT_MAX, 66 }; 67 68 #ifdef CONFIG_F2FS_FAULT_INJECTION 69 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0)) 70 71 struct f2fs_fault_info { 72 atomic_t inject_ops; 73 int inject_rate; 74 unsigned int inject_type; 75 }; 76 77 extern const char *f2fs_fault_name[FAULT_MAX]; 78 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type)) 79 80 /* maximum retry count for injected failure */ 81 #define DEFAULT_FAILURE_RETRY_COUNT 8 82 #else 83 #define DEFAULT_FAILURE_RETRY_COUNT 1 84 #endif 85 86 /* 87 * For mount options 88 */ 89 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001 90 #define F2FS_MOUNT_DISCARD 0x00000002 91 #define F2FS_MOUNT_NOHEAP 0x00000004 92 #define F2FS_MOUNT_XATTR_USER 0x00000008 93 #define F2FS_MOUNT_POSIX_ACL 0x00000010 94 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020 95 #define F2FS_MOUNT_INLINE_XATTR 0x00000040 96 #define F2FS_MOUNT_INLINE_DATA 0x00000080 97 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100 98 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200 99 #define F2FS_MOUNT_NOBARRIER 0x00000400 100 #define F2FS_MOUNT_FASTBOOT 0x00000800 101 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000 102 #define F2FS_MOUNT_DATA_FLUSH 0x00002000 103 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000 104 #define F2FS_MOUNT_USRQUOTA 0x00008000 105 #define F2FS_MOUNT_GRPQUOTA 0x00010000 106 #define F2FS_MOUNT_PRJQUOTA 0x00020000 107 #define F2FS_MOUNT_QUOTA 0x00040000 108 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000 109 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000 110 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000 111 #define F2FS_MOUNT_NORECOVERY 0x00400000 112 #define F2FS_MOUNT_ATGC 0x00800000 113 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000 114 #define F2FS_MOUNT_GC_MERGE 0x02000000 115 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000 116 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000 117 118 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 119 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 120 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 121 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 122 123 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 124 typecheck(unsigned long long, b) && \ 125 ((long long)((a) - (b)) > 0)) 126 127 typedef u32 block_t; /* 128 * should not change u32, since it is the on-disk block 129 * address format, __le32. 130 */ 131 typedef u32 nid_t; 132 133 #define COMPRESS_EXT_NUM 16 134 135 enum blkzone_allocation_policy { 136 BLKZONE_ALLOC_PRIOR_SEQ, /* Prioritize writing to sequential zones */ 137 BLKZONE_ALLOC_ONLY_SEQ, /* Only allow writing to sequential zones */ 138 BLKZONE_ALLOC_PRIOR_CONV, /* Prioritize writing to conventional zones */ 139 }; 140 141 /* 142 * An implementation of an rwsem that is explicitly unfair to readers. This 143 * prevents priority inversion when a low-priority reader acquires the read lock 144 * while sleeping on the write lock but the write lock is needed by 145 * higher-priority clients. 146 */ 147 148 struct f2fs_rwsem { 149 struct rw_semaphore internal_rwsem; 150 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 151 wait_queue_head_t read_waiters; 152 #endif 153 }; 154 155 struct f2fs_mount_info { 156 unsigned int opt; 157 block_t root_reserved_blocks; /* root reserved blocks */ 158 kuid_t s_resuid; /* reserved blocks for uid */ 159 kgid_t s_resgid; /* reserved blocks for gid */ 160 int active_logs; /* # of active logs */ 161 int inline_xattr_size; /* inline xattr size */ 162 #ifdef CONFIG_F2FS_FAULT_INJECTION 163 struct f2fs_fault_info fault_info; /* For fault injection */ 164 #endif 165 #ifdef CONFIG_QUOTA 166 /* Names of quota files with journalled quota */ 167 char *s_qf_names[MAXQUOTAS]; 168 int s_jquota_fmt; /* Format of quota to use */ 169 #endif 170 /* For which write hints are passed down to block layer */ 171 int alloc_mode; /* segment allocation policy */ 172 int fsync_mode; /* fsync policy */ 173 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 174 int bggc_mode; /* bggc mode: off, on or sync */ 175 int memory_mode; /* memory mode */ 176 int errors; /* errors parameter */ 177 int discard_unit; /* 178 * discard command's offset/size should 179 * be aligned to this unit: block, 180 * segment or section 181 */ 182 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 183 block_t unusable_cap_perc; /* percentage for cap */ 184 block_t unusable_cap; /* Amount of space allowed to be 185 * unusable when disabling checkpoint 186 */ 187 188 /* For compression */ 189 unsigned char compress_algorithm; /* algorithm type */ 190 unsigned char compress_log_size; /* cluster log size */ 191 unsigned char compress_level; /* compress level */ 192 bool compress_chksum; /* compressed data chksum */ 193 unsigned char compress_ext_cnt; /* extension count */ 194 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 195 int compress_mode; /* compression mode */ 196 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 197 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 198 }; 199 200 #define F2FS_FEATURE_ENCRYPT 0x00000001 201 #define F2FS_FEATURE_BLKZONED 0x00000002 202 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004 203 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008 204 #define F2FS_FEATURE_PRJQUOTA 0x00000010 205 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020 206 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040 207 #define F2FS_FEATURE_QUOTA_INO 0x00000080 208 #define F2FS_FEATURE_INODE_CRTIME 0x00000100 209 #define F2FS_FEATURE_LOST_FOUND 0x00000200 210 #define F2FS_FEATURE_VERITY 0x00000400 211 #define F2FS_FEATURE_SB_CHKSUM 0x00000800 212 #define F2FS_FEATURE_CASEFOLD 0x00001000 213 #define F2FS_FEATURE_COMPRESSION 0x00002000 214 #define F2FS_FEATURE_RO 0x00004000 215 #define F2FS_FEATURE_DEVICE_ALIAS 0x00008000 216 217 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 218 ((raw_super->feature & cpu_to_le32(mask)) != 0) 219 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 220 221 /* 222 * Default values for user and/or group using reserved blocks 223 */ 224 #define F2FS_DEF_RESUID 0 225 #define F2FS_DEF_RESGID 0 226 227 /* 228 * For checkpoint manager 229 */ 230 enum { 231 NAT_BITMAP, 232 SIT_BITMAP 233 }; 234 235 #define CP_UMOUNT 0x00000001 236 #define CP_FASTBOOT 0x00000002 237 #define CP_SYNC 0x00000004 238 #define CP_RECOVERY 0x00000008 239 #define CP_DISCARD 0x00000010 240 #define CP_TRIMMED 0x00000020 241 #define CP_PAUSE 0x00000040 242 #define CP_RESIZE 0x00000080 243 244 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 245 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 246 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 247 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 248 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 249 #define DEF_CP_INTERVAL 60 /* 60 secs */ 250 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 251 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 252 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 253 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 254 255 struct cp_control { 256 int reason; 257 __u64 trim_start; 258 __u64 trim_end; 259 __u64 trim_minlen; 260 }; 261 262 /* 263 * indicate meta/data type 264 */ 265 enum { 266 META_CP, 267 META_NAT, 268 META_SIT, 269 META_SSA, 270 META_MAX, 271 META_POR, 272 DATA_GENERIC, /* check range only */ 273 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 274 DATA_GENERIC_ENHANCE_READ, /* 275 * strong check on range and segment 276 * bitmap but no warning due to race 277 * condition of read on truncated area 278 * by extent_cache 279 */ 280 DATA_GENERIC_ENHANCE_UPDATE, /* 281 * strong check on range and segment 282 * bitmap for update case 283 */ 284 META_GENERIC, 285 }; 286 287 /* for the list of ino */ 288 enum { 289 ORPHAN_INO, /* for orphan ino list */ 290 APPEND_INO, /* for append ino list */ 291 UPDATE_INO, /* for update ino list */ 292 TRANS_DIR_INO, /* for transactions dir ino list */ 293 XATTR_DIR_INO, /* for xattr updated dir ino list */ 294 FLUSH_INO, /* for multiple device flushing */ 295 MAX_INO_ENTRY, /* max. list */ 296 }; 297 298 struct ino_entry { 299 struct list_head list; /* list head */ 300 nid_t ino; /* inode number */ 301 unsigned int dirty_device; /* dirty device bitmap */ 302 }; 303 304 /* for the list of inodes to be GCed */ 305 struct inode_entry { 306 struct list_head list; /* list head */ 307 struct inode *inode; /* vfs inode pointer */ 308 }; 309 310 struct fsync_node_entry { 311 struct list_head list; /* list head */ 312 struct page *page; /* warm node page pointer */ 313 unsigned int seq_id; /* sequence id */ 314 }; 315 316 struct ckpt_req { 317 struct completion wait; /* completion for checkpoint done */ 318 struct llist_node llnode; /* llist_node to be linked in wait queue */ 319 int ret; /* return code of checkpoint */ 320 ktime_t queue_time; /* request queued time */ 321 }; 322 323 struct ckpt_req_control { 324 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 325 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 326 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 327 atomic_t issued_ckpt; /* # of actually issued ckpts */ 328 atomic_t total_ckpt; /* # of total ckpts */ 329 atomic_t queued_ckpt; /* # of queued ckpts */ 330 struct llist_head issue_list; /* list for command issue */ 331 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 332 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 333 unsigned int peak_time; /* peak wait time in msec until now */ 334 }; 335 336 /* for the bitmap indicate blocks to be discarded */ 337 struct discard_entry { 338 struct list_head list; /* list head */ 339 block_t start_blkaddr; /* start blockaddr of current segment */ 340 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 341 }; 342 343 /* minimum discard granularity, unit: block count */ 344 #define MIN_DISCARD_GRANULARITY 1 345 /* default discard granularity of inner discard thread, unit: block count */ 346 #define DEFAULT_DISCARD_GRANULARITY 16 347 /* default maximum discard granularity of ordered discard, unit: block count */ 348 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 349 350 /* max discard pend list number */ 351 #define MAX_PLIST_NUM 512 352 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 353 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 354 355 enum { 356 D_PREP, /* initial */ 357 D_PARTIAL, /* partially submitted */ 358 D_SUBMIT, /* all submitted */ 359 D_DONE, /* finished */ 360 }; 361 362 struct discard_info { 363 block_t lstart; /* logical start address */ 364 block_t len; /* length */ 365 block_t start; /* actual start address in dev */ 366 }; 367 368 struct discard_cmd { 369 struct rb_node rb_node; /* rb node located in rb-tree */ 370 struct discard_info di; /* discard info */ 371 struct list_head list; /* command list */ 372 struct completion wait; /* compleation */ 373 struct block_device *bdev; /* bdev */ 374 unsigned short ref; /* reference count */ 375 unsigned char state; /* state */ 376 unsigned char queued; /* queued discard */ 377 int error; /* bio error */ 378 spinlock_t lock; /* for state/bio_ref updating */ 379 unsigned short bio_ref; /* bio reference count */ 380 }; 381 382 enum { 383 DPOLICY_BG, 384 DPOLICY_FORCE, 385 DPOLICY_FSTRIM, 386 DPOLICY_UMOUNT, 387 MAX_DPOLICY, 388 }; 389 390 enum { 391 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */ 392 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */ 393 DPOLICY_IO_AWARE_MAX, 394 }; 395 396 struct discard_policy { 397 int type; /* type of discard */ 398 unsigned int min_interval; /* used for candidates exist */ 399 unsigned int mid_interval; /* used for device busy */ 400 unsigned int max_interval; /* used for candidates not exist */ 401 unsigned int max_requests; /* # of discards issued per round */ 402 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 403 bool io_aware; /* issue discard in idle time */ 404 bool sync; /* submit discard with REQ_SYNC flag */ 405 bool ordered; /* issue discard by lba order */ 406 bool timeout; /* discard timeout for put_super */ 407 unsigned int granularity; /* discard granularity */ 408 }; 409 410 struct discard_cmd_control { 411 struct task_struct *f2fs_issue_discard; /* discard thread */ 412 struct list_head entry_list; /* 4KB discard entry list */ 413 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 414 struct list_head wait_list; /* store on-flushing entries */ 415 struct list_head fstrim_list; /* in-flight discard from fstrim */ 416 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 417 struct mutex cmd_lock; 418 unsigned int nr_discards; /* # of discards in the list */ 419 unsigned int max_discards; /* max. discards to be issued */ 420 unsigned int max_discard_request; /* max. discard request per round */ 421 unsigned int min_discard_issue_time; /* min. interval between discard issue */ 422 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ 423 unsigned int max_discard_issue_time; /* max. interval between discard issue */ 424 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */ 425 unsigned int discard_urgent_util; /* utilization which issue discard proactively */ 426 unsigned int discard_granularity; /* discard granularity */ 427 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ 428 unsigned int discard_io_aware; /* io_aware policy */ 429 unsigned int undiscard_blks; /* # of undiscard blocks */ 430 unsigned int next_pos; /* next discard position */ 431 atomic_t issued_discard; /* # of issued discard */ 432 atomic_t queued_discard; /* # of queued discard */ 433 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 434 struct rb_root_cached root; /* root of discard rb-tree */ 435 bool rbtree_check; /* config for consistence check */ 436 bool discard_wake; /* to wake up discard thread */ 437 }; 438 439 /* for the list of fsync inodes, used only during recovery */ 440 struct fsync_inode_entry { 441 struct list_head list; /* list head */ 442 struct inode *inode; /* vfs inode pointer */ 443 block_t blkaddr; /* block address locating the last fsync */ 444 block_t last_dentry; /* block address locating the last dentry */ 445 }; 446 447 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 448 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 449 450 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 451 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 452 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 453 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 454 455 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 456 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 457 458 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 459 { 460 int before = nats_in_cursum(journal); 461 462 journal->n_nats = cpu_to_le16(before + i); 463 return before; 464 } 465 466 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 467 { 468 int before = sits_in_cursum(journal); 469 470 journal->n_sits = cpu_to_le16(before + i); 471 return before; 472 } 473 474 static inline bool __has_cursum_space(struct f2fs_journal *journal, 475 int size, int type) 476 { 477 if (type == NAT_JOURNAL) 478 return size <= MAX_NAT_JENTRIES(journal); 479 return size <= MAX_SIT_JENTRIES(journal); 480 } 481 482 /* for inline stuff */ 483 #define DEF_INLINE_RESERVED_SIZE 1 484 static inline int get_extra_isize(struct inode *inode); 485 static inline int get_inline_xattr_addrs(struct inode *inode); 486 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 487 (CUR_ADDRS_PER_INODE(inode) - \ 488 get_inline_xattr_addrs(inode) - \ 489 DEF_INLINE_RESERVED_SIZE)) 490 491 /* for inline dir */ 492 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 493 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 494 BITS_PER_BYTE + 1)) 495 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 496 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 497 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 498 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 499 NR_INLINE_DENTRY(inode) + \ 500 INLINE_DENTRY_BITMAP_SIZE(inode))) 501 502 /* 503 * For INODE and NODE manager 504 */ 505 /* for directory operations */ 506 507 struct f2fs_filename { 508 /* 509 * The filename the user specified. This is NULL for some 510 * filesystem-internal operations, e.g. converting an inline directory 511 * to a non-inline one, or roll-forward recovering an encrypted dentry. 512 */ 513 const struct qstr *usr_fname; 514 515 /* 516 * The on-disk filename. For encrypted directories, this is encrypted. 517 * This may be NULL for lookups in an encrypted dir without the key. 518 */ 519 struct fscrypt_str disk_name; 520 521 /* The dirhash of this filename */ 522 f2fs_hash_t hash; 523 524 #ifdef CONFIG_FS_ENCRYPTION 525 /* 526 * For lookups in encrypted directories: either the buffer backing 527 * disk_name, or a buffer that holds the decoded no-key name. 528 */ 529 struct fscrypt_str crypto_buf; 530 #endif 531 #if IS_ENABLED(CONFIG_UNICODE) 532 /* 533 * For casefolded directories: the casefolded name, but it's left NULL 534 * if the original name is not valid Unicode, if the original name is 535 * "." or "..", if the directory is both casefolded and encrypted and 536 * its encryption key is unavailable, or if the filesystem is doing an 537 * internal operation where usr_fname is also NULL. In all these cases 538 * we fall back to treating the name as an opaque byte sequence. 539 */ 540 struct qstr cf_name; 541 #endif 542 }; 543 544 struct f2fs_dentry_ptr { 545 struct inode *inode; 546 void *bitmap; 547 struct f2fs_dir_entry *dentry; 548 __u8 (*filename)[F2FS_SLOT_LEN]; 549 int max; 550 int nr_bitmap; 551 }; 552 553 static inline void make_dentry_ptr_block(struct inode *inode, 554 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 555 { 556 d->inode = inode; 557 d->max = NR_DENTRY_IN_BLOCK; 558 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 559 d->bitmap = t->dentry_bitmap; 560 d->dentry = t->dentry; 561 d->filename = t->filename; 562 } 563 564 static inline void make_dentry_ptr_inline(struct inode *inode, 565 struct f2fs_dentry_ptr *d, void *t) 566 { 567 int entry_cnt = NR_INLINE_DENTRY(inode); 568 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 569 int reserved_size = INLINE_RESERVED_SIZE(inode); 570 571 d->inode = inode; 572 d->max = entry_cnt; 573 d->nr_bitmap = bitmap_size; 574 d->bitmap = t; 575 d->dentry = t + bitmap_size + reserved_size; 576 d->filename = t + bitmap_size + reserved_size + 577 SIZE_OF_DIR_ENTRY * entry_cnt; 578 } 579 580 /* 581 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 582 * as its node offset to distinguish from index node blocks. 583 * But some bits are used to mark the node block. 584 */ 585 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 586 >> OFFSET_BIT_SHIFT) 587 enum { 588 ALLOC_NODE, /* allocate a new node page if needed */ 589 LOOKUP_NODE, /* look up a node without readahead */ 590 LOOKUP_NODE_RA, /* 591 * look up a node with readahead called 592 * by get_data_block. 593 */ 594 }; 595 596 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 597 598 /* congestion wait timeout value, default: 20ms */ 599 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 600 601 /* maximum retry quota flush count */ 602 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 603 604 /* maximum retry of EIO'ed page */ 605 #define MAX_RETRY_PAGE_EIO 100 606 607 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 608 609 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 610 611 /* dirty segments threshold for triggering CP */ 612 #define DEFAULT_DIRTY_THRESHOLD 4 613 614 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS 615 #define RECOVERY_MIN_RA_BLOCKS 1 616 617 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ 618 619 /* for in-memory extent cache entry */ 620 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 621 622 /* number of extent info in extent cache we try to shrink */ 623 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 624 625 /* number of age extent info in extent cache we try to shrink */ 626 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 627 #define LAST_AGE_WEIGHT 30 628 #define SAME_AGE_REGION 1024 629 630 /* 631 * Define data block with age less than 1GB as hot data 632 * define data block with age less than 10GB but more than 1GB as warm data 633 */ 634 #define DEF_HOT_DATA_AGE_THRESHOLD 262144 635 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 636 637 /* default max read extent count per inode */ 638 #define DEF_MAX_READ_EXTENT_COUNT 10240 639 640 /* extent cache type */ 641 enum extent_type { 642 EX_READ, 643 EX_BLOCK_AGE, 644 NR_EXTENT_CACHES, 645 }; 646 647 struct extent_info { 648 unsigned int fofs; /* start offset in a file */ 649 unsigned int len; /* length of the extent */ 650 union { 651 /* read extent_cache */ 652 struct { 653 /* start block address of the extent */ 654 block_t blk; 655 #ifdef CONFIG_F2FS_FS_COMPRESSION 656 /* physical extent length of compressed blocks */ 657 unsigned int c_len; 658 #endif 659 }; 660 /* block age extent_cache */ 661 struct { 662 /* block age of the extent */ 663 unsigned long long age; 664 /* last total blocks allocated */ 665 unsigned long long last_blocks; 666 }; 667 }; 668 }; 669 670 struct extent_node { 671 struct rb_node rb_node; /* rb node located in rb-tree */ 672 struct extent_info ei; /* extent info */ 673 struct list_head list; /* node in global extent list of sbi */ 674 struct extent_tree *et; /* extent tree pointer */ 675 }; 676 677 struct extent_tree { 678 nid_t ino; /* inode number */ 679 enum extent_type type; /* keep the extent tree type */ 680 struct rb_root_cached root; /* root of extent info rb-tree */ 681 struct extent_node *cached_en; /* recently accessed extent node */ 682 struct list_head list; /* to be used by sbi->zombie_list */ 683 rwlock_t lock; /* protect extent info rb-tree */ 684 atomic_t node_cnt; /* # of extent node in rb-tree*/ 685 bool largest_updated; /* largest extent updated */ 686 struct extent_info largest; /* largest cached extent for EX_READ */ 687 }; 688 689 struct extent_tree_info { 690 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 691 struct mutex extent_tree_lock; /* locking extent radix tree */ 692 struct list_head extent_list; /* lru list for shrinker */ 693 spinlock_t extent_lock; /* locking extent lru list */ 694 atomic_t total_ext_tree; /* extent tree count */ 695 struct list_head zombie_list; /* extent zombie tree list */ 696 atomic_t total_zombie_tree; /* extent zombie tree count */ 697 atomic_t total_ext_node; /* extent info count */ 698 }; 699 700 /* 701 * State of block returned by f2fs_map_blocks. 702 */ 703 #define F2FS_MAP_NEW (1U << 0) 704 #define F2FS_MAP_MAPPED (1U << 1) 705 #define F2FS_MAP_DELALLOC (1U << 2) 706 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 707 F2FS_MAP_DELALLOC) 708 709 struct f2fs_map_blocks { 710 struct block_device *m_bdev; /* for multi-device dio */ 711 block_t m_pblk; 712 block_t m_lblk; 713 unsigned int m_len; 714 unsigned int m_flags; 715 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 716 pgoff_t *m_next_extent; /* point to next possible extent */ 717 int m_seg_type; 718 bool m_may_create; /* indicate it is from write path */ 719 bool m_multidev_dio; /* indicate it allows multi-device dio */ 720 }; 721 722 /* for flag in get_data_block */ 723 enum { 724 F2FS_GET_BLOCK_DEFAULT, 725 F2FS_GET_BLOCK_FIEMAP, 726 F2FS_GET_BLOCK_BMAP, 727 F2FS_GET_BLOCK_DIO, 728 F2FS_GET_BLOCK_PRE_DIO, 729 F2FS_GET_BLOCK_PRE_AIO, 730 F2FS_GET_BLOCK_PRECACHE, 731 }; 732 733 /* 734 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 735 */ 736 #define FADVISE_COLD_BIT 0x01 737 #define FADVISE_LOST_PINO_BIT 0x02 738 #define FADVISE_ENCRYPT_BIT 0x04 739 #define FADVISE_ENC_NAME_BIT 0x08 740 #define FADVISE_KEEP_SIZE_BIT 0x10 741 #define FADVISE_HOT_BIT 0x20 742 #define FADVISE_VERITY_BIT 0x40 743 #define FADVISE_TRUNC_BIT 0x80 744 745 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 746 747 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 748 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 749 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 750 751 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 752 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 753 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 754 755 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 756 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 757 758 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 759 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 760 761 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 762 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 763 764 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 765 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 766 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 767 768 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 769 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 770 771 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) 772 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) 773 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) 774 775 #define DEF_DIR_LEVEL 0 776 777 /* used for f2fs_inode_info->flags */ 778 enum { 779 FI_NEW_INODE, /* indicate newly allocated inode */ 780 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 781 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 782 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 783 FI_INC_LINK, /* need to increment i_nlink */ 784 FI_ACL_MODE, /* indicate acl mode */ 785 FI_NO_ALLOC, /* should not allocate any blocks */ 786 FI_FREE_NID, /* free allocated nide */ 787 FI_NO_EXTENT, /* not to use the extent cache */ 788 FI_INLINE_XATTR, /* used for inline xattr */ 789 FI_INLINE_DATA, /* used for inline data*/ 790 FI_INLINE_DENTRY, /* used for inline dentry */ 791 FI_APPEND_WRITE, /* inode has appended data */ 792 FI_UPDATE_WRITE, /* inode has in-place-update data */ 793 FI_NEED_IPU, /* used for ipu per file */ 794 FI_ATOMIC_FILE, /* indicate atomic file */ 795 FI_DATA_EXIST, /* indicate data exists */ 796 FI_SKIP_WRITES, /* should skip data page writeback */ 797 FI_OPU_WRITE, /* used for opu per file */ 798 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 799 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ 800 FI_HOT_DATA, /* indicate file is hot */ 801 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 802 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 803 FI_PIN_FILE, /* indicate file should not be gced */ 804 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 805 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 806 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 807 FI_MMAP_FILE, /* indicate file was mmapped */ 808 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 809 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 810 FI_ALIGNED_WRITE, /* enable aligned write */ 811 FI_COW_FILE, /* indicate COW file */ 812 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ 813 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */ 814 FI_ATOMIC_REPLACE, /* indicate atomic replace */ 815 FI_OPENED_FILE, /* indicate file has been opened */ 816 FI_MAX, /* max flag, never be used */ 817 }; 818 819 struct f2fs_inode_info { 820 struct inode vfs_inode; /* serve a vfs inode */ 821 unsigned long i_flags; /* keep an inode flags for ioctl */ 822 unsigned char i_advise; /* use to give file attribute hints */ 823 unsigned char i_dir_level; /* use for dentry level for large dir */ 824 union { 825 unsigned int i_current_depth; /* only for directory depth */ 826 unsigned short i_gc_failures; /* for gc failure statistic */ 827 }; 828 unsigned int i_pino; /* parent inode number */ 829 umode_t i_acl_mode; /* keep file acl mode temporarily */ 830 831 /* Use below internally in f2fs*/ 832 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 833 struct f2fs_rwsem i_sem; /* protect fi info */ 834 atomic_t dirty_pages; /* # of dirty pages */ 835 f2fs_hash_t chash; /* hash value of given file name */ 836 unsigned int clevel; /* maximum level of given file name */ 837 struct task_struct *task; /* lookup and create consistency */ 838 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 839 struct task_struct *wb_task; /* indicate inode is in context of writeback */ 840 nid_t i_xattr_nid; /* node id that contains xattrs */ 841 loff_t last_disk_size; /* lastly written file size */ 842 spinlock_t i_size_lock; /* protect last_disk_size */ 843 844 #ifdef CONFIG_QUOTA 845 struct dquot __rcu *i_dquot[MAXQUOTAS]; 846 847 /* quota space reservation, managed internally by quota code */ 848 qsize_t i_reserved_quota; 849 #endif 850 struct list_head dirty_list; /* dirty list for dirs and files */ 851 struct list_head gdirty_list; /* linked in global dirty list */ 852 struct task_struct *atomic_write_task; /* store atomic write task */ 853 struct extent_tree *extent_tree[NR_EXTENT_CACHES]; 854 /* cached extent_tree entry */ 855 union { 856 struct inode *cow_inode; /* copy-on-write inode for atomic write */ 857 struct inode *atomic_inode; 858 /* point to atomic_inode, available only for cow_inode */ 859 }; 860 861 /* avoid racing between foreground op and gc */ 862 struct f2fs_rwsem i_gc_rwsem[2]; 863 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ 864 865 int i_extra_isize; /* size of extra space located in i_addr */ 866 kprojid_t i_projid; /* id for project quota */ 867 int i_inline_xattr_size; /* inline xattr size */ 868 struct timespec64 i_crtime; /* inode creation time */ 869 struct timespec64 i_disk_time[3];/* inode disk times */ 870 871 /* for file compress */ 872 atomic_t i_compr_blocks; /* # of compressed blocks */ 873 unsigned char i_compress_algorithm; /* algorithm type */ 874 unsigned char i_log_cluster_size; /* log of cluster size */ 875 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 876 unsigned char i_compress_flag; /* compress flag */ 877 unsigned int i_cluster_size; /* cluster size */ 878 879 unsigned int atomic_write_cnt; 880 loff_t original_i_size; /* original i_size before atomic write */ 881 }; 882 883 static inline void get_read_extent_info(struct extent_info *ext, 884 struct f2fs_extent *i_ext) 885 { 886 ext->fofs = le32_to_cpu(i_ext->fofs); 887 ext->blk = le32_to_cpu(i_ext->blk); 888 ext->len = le32_to_cpu(i_ext->len); 889 } 890 891 static inline void set_raw_read_extent(struct extent_info *ext, 892 struct f2fs_extent *i_ext) 893 { 894 i_ext->fofs = cpu_to_le32(ext->fofs); 895 i_ext->blk = cpu_to_le32(ext->blk); 896 i_ext->len = cpu_to_le32(ext->len); 897 } 898 899 static inline bool __is_discard_mergeable(struct discard_info *back, 900 struct discard_info *front, unsigned int max_len) 901 { 902 return (back->lstart + back->len == front->lstart) && 903 (back->len + front->len <= max_len); 904 } 905 906 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 907 struct discard_info *back, unsigned int max_len) 908 { 909 return __is_discard_mergeable(back, cur, max_len); 910 } 911 912 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 913 struct discard_info *front, unsigned int max_len) 914 { 915 return __is_discard_mergeable(cur, front, max_len); 916 } 917 918 /* 919 * For free nid management 920 */ 921 enum nid_state { 922 FREE_NID, /* newly added to free nid list */ 923 PREALLOC_NID, /* it is preallocated */ 924 MAX_NID_STATE, 925 }; 926 927 enum nat_state { 928 TOTAL_NAT, 929 DIRTY_NAT, 930 RECLAIMABLE_NAT, 931 MAX_NAT_STATE, 932 }; 933 934 struct f2fs_nm_info { 935 block_t nat_blkaddr; /* base disk address of NAT */ 936 nid_t max_nid; /* maximum possible node ids */ 937 nid_t available_nids; /* # of available node ids */ 938 nid_t next_scan_nid; /* the next nid to be scanned */ 939 nid_t max_rf_node_blocks; /* max # of nodes for recovery */ 940 unsigned int ram_thresh; /* control the memory footprint */ 941 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 942 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 943 944 /* NAT cache management */ 945 struct radix_tree_root nat_root;/* root of the nat entry cache */ 946 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 947 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ 948 struct list_head nat_entries; /* cached nat entry list (clean) */ 949 spinlock_t nat_list_lock; /* protect clean nat entry list */ 950 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 951 unsigned int nat_blocks; /* # of nat blocks */ 952 953 /* free node ids management */ 954 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 955 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 956 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 957 spinlock_t nid_list_lock; /* protect nid lists ops */ 958 struct mutex build_lock; /* lock for build free nids */ 959 unsigned char **free_nid_bitmap; 960 unsigned char *nat_block_bitmap; 961 unsigned short *free_nid_count; /* free nid count of NAT block */ 962 963 /* for checkpoint */ 964 char *nat_bitmap; /* NAT bitmap pointer */ 965 966 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 967 unsigned char *nat_bits; /* NAT bits blocks */ 968 unsigned char *full_nat_bits; /* full NAT pages */ 969 unsigned char *empty_nat_bits; /* empty NAT pages */ 970 #ifdef CONFIG_F2FS_CHECK_FS 971 char *nat_bitmap_mir; /* NAT bitmap mirror */ 972 #endif 973 int bitmap_size; /* bitmap size */ 974 }; 975 976 /* 977 * this structure is used as one of function parameters. 978 * all the information are dedicated to a given direct node block determined 979 * by the data offset in a file. 980 */ 981 struct dnode_of_data { 982 struct inode *inode; /* vfs inode pointer */ 983 struct page *inode_page; /* its inode page, NULL is possible */ 984 struct page *node_page; /* cached direct node page */ 985 nid_t nid; /* node id of the direct node block */ 986 unsigned int ofs_in_node; /* data offset in the node page */ 987 bool inode_page_locked; /* inode page is locked or not */ 988 bool node_changed; /* is node block changed */ 989 char cur_level; /* level of hole node page */ 990 char max_level; /* level of current page located */ 991 block_t data_blkaddr; /* block address of the node block */ 992 }; 993 994 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 995 struct page *ipage, struct page *npage, nid_t nid) 996 { 997 memset(dn, 0, sizeof(*dn)); 998 dn->inode = inode; 999 dn->inode_page = ipage; 1000 dn->node_page = npage; 1001 dn->nid = nid; 1002 } 1003 1004 /* 1005 * For SIT manager 1006 * 1007 * By default, there are 6 active log areas across the whole main area. 1008 * When considering hot and cold data separation to reduce cleaning overhead, 1009 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 1010 * respectively. 1011 * In the current design, you should not change the numbers intentionally. 1012 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 1013 * logs individually according to the underlying devices. (default: 6) 1014 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 1015 * data and 8 for node logs. 1016 */ 1017 #define NR_CURSEG_DATA_TYPE (3) 1018 #define NR_CURSEG_NODE_TYPE (3) 1019 #define NR_CURSEG_INMEM_TYPE (2) 1020 #define NR_CURSEG_RO_TYPE (2) 1021 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 1022 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 1023 1024 enum log_type { 1025 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 1026 CURSEG_WARM_DATA, /* data blocks */ 1027 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 1028 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 1029 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 1030 CURSEG_COLD_NODE, /* indirect node blocks */ 1031 NR_PERSISTENT_LOG, /* number of persistent log */ 1032 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 1033 /* pinned file that needs consecutive block address */ 1034 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 1035 NO_CHECK_TYPE, /* number of persistent & inmem log */ 1036 }; 1037 1038 struct flush_cmd { 1039 struct completion wait; 1040 struct llist_node llnode; 1041 nid_t ino; 1042 int ret; 1043 }; 1044 1045 struct flush_cmd_control { 1046 struct task_struct *f2fs_issue_flush; /* flush thread */ 1047 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 1048 atomic_t issued_flush; /* # of issued flushes */ 1049 atomic_t queued_flush; /* # of queued flushes */ 1050 struct llist_head issue_list; /* list for command issue */ 1051 struct llist_node *dispatch_list; /* list for command dispatch */ 1052 }; 1053 1054 struct f2fs_sm_info { 1055 struct sit_info *sit_info; /* whole segment information */ 1056 struct free_segmap_info *free_info; /* free segment information */ 1057 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1058 struct curseg_info *curseg_array; /* active segment information */ 1059 1060 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ 1061 1062 block_t seg0_blkaddr; /* block address of 0'th segment */ 1063 block_t main_blkaddr; /* start block address of main area */ 1064 block_t ssa_blkaddr; /* start block address of SSA area */ 1065 1066 unsigned int segment_count; /* total # of segments */ 1067 unsigned int main_segments; /* # of segments in main area */ 1068 unsigned int reserved_segments; /* # of reserved segments */ 1069 unsigned int ovp_segments; /* # of overprovision segments */ 1070 1071 /* a threshold to reclaim prefree segments */ 1072 unsigned int rec_prefree_segments; 1073 1074 struct list_head sit_entry_set; /* sit entry set list */ 1075 1076 unsigned int ipu_policy; /* in-place-update policy */ 1077 unsigned int min_ipu_util; /* in-place-update threshold */ 1078 unsigned int min_fsync_blocks; /* threshold for fsync */ 1079 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1080 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1081 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1082 1083 /* for flush command control */ 1084 struct flush_cmd_control *fcc_info; 1085 1086 /* for discard command control */ 1087 struct discard_cmd_control *dcc_info; 1088 }; 1089 1090 /* 1091 * For superblock 1092 */ 1093 /* 1094 * COUNT_TYPE for monitoring 1095 * 1096 * f2fs monitors the number of several block types such as on-writeback, 1097 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1098 */ 1099 #define WB_DATA_TYPE(p, f) \ 1100 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1101 enum count_type { 1102 F2FS_DIRTY_DENTS, 1103 F2FS_DIRTY_DATA, 1104 F2FS_DIRTY_QDATA, 1105 F2FS_DIRTY_NODES, 1106 F2FS_DIRTY_META, 1107 F2FS_DIRTY_IMETA, 1108 F2FS_WB_CP_DATA, 1109 F2FS_WB_DATA, 1110 F2FS_RD_DATA, 1111 F2FS_RD_NODE, 1112 F2FS_RD_META, 1113 F2FS_DIO_WRITE, 1114 F2FS_DIO_READ, 1115 NR_COUNT_TYPE, 1116 }; 1117 1118 /* 1119 * The below are the page types of bios used in submit_bio(). 1120 * The available types are: 1121 * DATA User data pages. It operates as async mode. 1122 * NODE Node pages. It operates as async mode. 1123 * META FS metadata pages such as SIT, NAT, CP. 1124 * NR_PAGE_TYPE The number of page types. 1125 * META_FLUSH Make sure the previous pages are written 1126 * with waiting the bio's completion 1127 * ... Only can be used with META. 1128 */ 1129 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1130 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE) 1131 enum page_type { 1132 DATA = 0, 1133 NODE = 1, /* should not change this */ 1134 META, 1135 NR_PAGE_TYPE, 1136 META_FLUSH, 1137 IPU, /* the below types are used by tracepoints only. */ 1138 OPU, 1139 }; 1140 1141 enum temp_type { 1142 HOT = 0, /* must be zero for meta bio */ 1143 WARM, 1144 COLD, 1145 NR_TEMP_TYPE, 1146 }; 1147 1148 enum need_lock_type { 1149 LOCK_REQ = 0, 1150 LOCK_DONE, 1151 LOCK_RETRY, 1152 }; 1153 1154 enum cp_reason_type { 1155 CP_NO_NEEDED, 1156 CP_NON_REGULAR, 1157 CP_COMPRESSED, 1158 CP_HARDLINK, 1159 CP_SB_NEED_CP, 1160 CP_WRONG_PINO, 1161 CP_NO_SPC_ROLL, 1162 CP_NODE_NEED_CP, 1163 CP_FASTBOOT_MODE, 1164 CP_SPEC_LOG_NUM, 1165 CP_RECOVER_DIR, 1166 CP_XATTR_DIR, 1167 }; 1168 1169 enum iostat_type { 1170 /* WRITE IO */ 1171 APP_DIRECT_IO, /* app direct write IOs */ 1172 APP_BUFFERED_IO, /* app buffered write IOs */ 1173 APP_WRITE_IO, /* app write IOs */ 1174 APP_MAPPED_IO, /* app mapped IOs */ 1175 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ 1176 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ 1177 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1178 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ 1179 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1180 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1181 FS_GC_DATA_IO, /* data IOs from forground gc */ 1182 FS_GC_NODE_IO, /* node IOs from forground gc */ 1183 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1184 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1185 FS_CP_META_IO, /* meta IOs from checkpoint */ 1186 1187 /* READ IO */ 1188 APP_DIRECT_READ_IO, /* app direct read IOs */ 1189 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1190 APP_READ_IO, /* app read IOs */ 1191 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1192 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ 1193 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ 1194 FS_DATA_READ_IO, /* data read IOs */ 1195 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1196 FS_CDATA_READ_IO, /* compressed data read IOs */ 1197 FS_NODE_READ_IO, /* node read IOs */ 1198 FS_META_READ_IO, /* meta read IOs */ 1199 1200 /* other */ 1201 FS_DISCARD_IO, /* discard */ 1202 FS_FLUSH_IO, /* flush */ 1203 FS_ZONE_RESET_IO, /* zone reset */ 1204 NR_IO_TYPE, 1205 }; 1206 1207 struct f2fs_io_info { 1208 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1209 nid_t ino; /* inode number */ 1210 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1211 enum temp_type temp; /* contains HOT/WARM/COLD */ 1212 enum req_op op; /* contains REQ_OP_ */ 1213 blk_opf_t op_flags; /* req_flag_bits */ 1214 block_t new_blkaddr; /* new block address to be written */ 1215 block_t old_blkaddr; /* old block address before Cow */ 1216 struct page *page; /* page to be written */ 1217 struct page *encrypted_page; /* encrypted page */ 1218 struct page *compressed_page; /* compressed page */ 1219 struct list_head list; /* serialize IOs */ 1220 unsigned int compr_blocks; /* # of compressed block addresses */ 1221 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */ 1222 unsigned int version:8; /* version of the node */ 1223 unsigned int submitted:1; /* indicate IO submission */ 1224 unsigned int in_list:1; /* indicate fio is in io_list */ 1225 unsigned int is_por:1; /* indicate IO is from recovery or not */ 1226 unsigned int encrypted:1; /* indicate file is encrypted */ 1227 unsigned int meta_gc:1; /* require meta inode GC */ 1228 enum iostat_type io_type; /* io type */ 1229 struct writeback_control *io_wbc; /* writeback control */ 1230 struct bio **bio; /* bio for ipu */ 1231 sector_t *last_block; /* last block number in bio */ 1232 }; 1233 1234 struct bio_entry { 1235 struct bio *bio; 1236 struct list_head list; 1237 }; 1238 1239 #define is_read_io(rw) ((rw) == READ) 1240 struct f2fs_bio_info { 1241 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1242 struct bio *bio; /* bios to merge */ 1243 sector_t last_block_in_bio; /* last block number */ 1244 struct f2fs_io_info fio; /* store buffered io info. */ 1245 #ifdef CONFIG_BLK_DEV_ZONED 1246 struct completion zone_wait; /* condition value for the previous open zone to close */ 1247 struct bio *zone_pending_bio; /* pending bio for the previous zone */ 1248 void *bi_private; /* previous bi_private for pending bio */ 1249 #endif 1250 struct f2fs_rwsem io_rwsem; /* blocking op for bio */ 1251 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1252 struct list_head io_list; /* track fios */ 1253 struct list_head bio_list; /* bio entry list head */ 1254 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ 1255 }; 1256 1257 #define FDEV(i) (sbi->devs[i]) 1258 #define RDEV(i) (raw_super->devs[i]) 1259 struct f2fs_dev_info { 1260 struct file *bdev_file; 1261 struct block_device *bdev; 1262 char path[MAX_PATH_LEN]; 1263 unsigned int total_segments; 1264 block_t start_blk; 1265 block_t end_blk; 1266 #ifdef CONFIG_BLK_DEV_ZONED 1267 unsigned int nr_blkz; /* Total number of zones */ 1268 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1269 #endif 1270 }; 1271 1272 enum inode_type { 1273 DIR_INODE, /* for dirty dir inode */ 1274 FILE_INODE, /* for dirty regular/symlink inode */ 1275 DIRTY_META, /* for all dirtied inode metadata */ 1276 NR_INODE_TYPE, 1277 }; 1278 1279 /* for inner inode cache management */ 1280 struct inode_management { 1281 struct radix_tree_root ino_root; /* ino entry array */ 1282 spinlock_t ino_lock; /* for ino entry lock */ 1283 struct list_head ino_list; /* inode list head */ 1284 unsigned long ino_num; /* number of entries */ 1285 }; 1286 1287 /* for GC_AT */ 1288 struct atgc_management { 1289 bool atgc_enabled; /* ATGC is enabled or not */ 1290 struct rb_root_cached root; /* root of victim rb-tree */ 1291 struct list_head victim_list; /* linked with all victim entries */ 1292 unsigned int victim_count; /* victim count in rb-tree */ 1293 unsigned int candidate_ratio; /* candidate ratio */ 1294 unsigned int max_candidate_count; /* max candidate count */ 1295 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1296 unsigned long long age_threshold; /* age threshold */ 1297 }; 1298 1299 struct f2fs_gc_control { 1300 unsigned int victim_segno; /* target victim segment number */ 1301 int init_gc_type; /* FG_GC or BG_GC */ 1302 bool no_bg_gc; /* check the space and stop bg_gc */ 1303 bool should_migrate_blocks; /* should migrate blocks */ 1304 bool err_gc_skipped; /* return EAGAIN if GC skipped */ 1305 bool one_time; /* require one time GC in one migration unit */ 1306 unsigned int nr_free_secs; /* # of free sections to do GC */ 1307 }; 1308 1309 /* 1310 * For s_flag in struct f2fs_sb_info 1311 * Modification on enum should be synchronized with s_flag array 1312 */ 1313 enum { 1314 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1315 SBI_IS_CLOSE, /* specify unmounting */ 1316 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1317 SBI_POR_DOING, /* recovery is doing or not */ 1318 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1319 SBI_NEED_CP, /* need to checkpoint */ 1320 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1321 SBI_IS_RECOVERED, /* recovered orphan/data */ 1322 SBI_CP_DISABLED, /* CP was disabled last mount */ 1323 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1324 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1325 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1326 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1327 SBI_IS_RESIZEFS, /* resizefs is in process */ 1328 SBI_IS_FREEZING, /* freezefs is in process */ 1329 SBI_IS_WRITABLE, /* remove ro mountoption transiently */ 1330 MAX_SBI_FLAG, 1331 }; 1332 1333 enum { 1334 CP_TIME, 1335 REQ_TIME, 1336 DISCARD_TIME, 1337 GC_TIME, 1338 DISABLE_TIME, 1339 UMOUNT_DISCARD_TIMEOUT, 1340 MAX_TIME, 1341 }; 1342 1343 /* Note that you need to keep synchronization with this gc_mode_names array */ 1344 enum { 1345 GC_NORMAL, 1346 GC_IDLE_CB, 1347 GC_IDLE_GREEDY, 1348 GC_IDLE_AT, 1349 GC_URGENT_HIGH, 1350 GC_URGENT_LOW, 1351 GC_URGENT_MID, 1352 MAX_GC_MODE, 1353 }; 1354 1355 enum { 1356 BGGC_MODE_ON, /* background gc is on */ 1357 BGGC_MODE_OFF, /* background gc is off */ 1358 BGGC_MODE_SYNC, /* 1359 * background gc is on, migrating blocks 1360 * like foreground gc 1361 */ 1362 }; 1363 1364 enum { 1365 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1366 FS_MODE_LFS, /* use lfs allocation only */ 1367 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1368 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1369 }; 1370 1371 enum { 1372 ALLOC_MODE_DEFAULT, /* stay default */ 1373 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1374 }; 1375 1376 enum fsync_mode { 1377 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1378 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1379 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1380 }; 1381 1382 enum { 1383 COMPR_MODE_FS, /* 1384 * automatically compress compression 1385 * enabled files 1386 */ 1387 COMPR_MODE_USER, /* 1388 * automatical compression is disabled. 1389 * user can control the file compression 1390 * using ioctls 1391 */ 1392 }; 1393 1394 enum { 1395 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1396 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1397 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1398 }; 1399 1400 enum { 1401 MEMORY_MODE_NORMAL, /* memory mode for normal devices */ 1402 MEMORY_MODE_LOW, /* memory mode for low memry devices */ 1403 }; 1404 1405 enum errors_option { 1406 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */ 1407 MOUNT_ERRORS_CONTINUE, /* continue on errors */ 1408 MOUNT_ERRORS_PANIC, /* panic on errors */ 1409 }; 1410 1411 enum { 1412 BACKGROUND, 1413 FOREGROUND, 1414 MAX_CALL_TYPE, 1415 TOTAL_CALL = FOREGROUND, 1416 }; 1417 1418 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1419 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1420 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1421 1422 /* 1423 * Layout of f2fs page.private: 1424 * 1425 * Layout A: lowest bit should be 1 1426 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1427 * bit 0 PAGE_PRIVATE_NOT_POINTER 1428 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION 1429 * bit 2 PAGE_PRIVATE_INLINE_INODE 1430 * bit 3 PAGE_PRIVATE_REF_RESOURCE 1431 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE 1432 * bit 5- f2fs private data 1433 * 1434 * Layout B: lowest bit should be 0 1435 * page.private is a wrapped pointer. 1436 */ 1437 enum { 1438 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1439 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1440 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1441 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1442 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */ 1443 PAGE_PRIVATE_MAX 1444 }; 1445 1446 /* For compression */ 1447 enum compress_algorithm_type { 1448 COMPRESS_LZO, 1449 COMPRESS_LZ4, 1450 COMPRESS_ZSTD, 1451 COMPRESS_LZORLE, 1452 COMPRESS_MAX, 1453 }; 1454 1455 enum compress_flag { 1456 COMPRESS_CHKSUM, 1457 COMPRESS_MAX_FLAG, 1458 }; 1459 1460 #define COMPRESS_WATERMARK 20 1461 #define COMPRESS_PERCENT 20 1462 1463 #define COMPRESS_DATA_RESERVED_SIZE 4 1464 struct compress_data { 1465 __le32 clen; /* compressed data size */ 1466 __le32 chksum; /* compressed data chksum */ 1467 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1468 u8 cdata[]; /* compressed data */ 1469 }; 1470 1471 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1472 1473 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1474 1475 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 1476 1477 #define COMPRESS_LEVEL_OFFSET 8 1478 1479 /* compress context */ 1480 struct compress_ctx { 1481 struct inode *inode; /* inode the context belong to */ 1482 pgoff_t cluster_idx; /* cluster index number */ 1483 unsigned int cluster_size; /* page count in cluster */ 1484 unsigned int log_cluster_size; /* log of cluster size */ 1485 struct page **rpages; /* pages store raw data in cluster */ 1486 unsigned int nr_rpages; /* total page number in rpages */ 1487 struct page **cpages; /* pages store compressed data in cluster */ 1488 unsigned int nr_cpages; /* total page number in cpages */ 1489 unsigned int valid_nr_cpages; /* valid page number in cpages */ 1490 void *rbuf; /* virtual mapped address on rpages */ 1491 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1492 size_t rlen; /* valid data length in rbuf */ 1493 size_t clen; /* valid data length in cbuf */ 1494 void *private; /* payload buffer for specified compression algorithm */ 1495 void *private2; /* extra payload buffer */ 1496 }; 1497 1498 /* compress context for write IO path */ 1499 struct compress_io_ctx { 1500 u32 magic; /* magic number to indicate page is compressed */ 1501 struct inode *inode; /* inode the context belong to */ 1502 struct page **rpages; /* pages store raw data in cluster */ 1503 unsigned int nr_rpages; /* total page number in rpages */ 1504 atomic_t pending_pages; /* in-flight compressed page count */ 1505 }; 1506 1507 /* Context for decompressing one cluster on the read IO path */ 1508 struct decompress_io_ctx { 1509 u32 magic; /* magic number to indicate page is compressed */ 1510 struct inode *inode; /* inode the context belong to */ 1511 pgoff_t cluster_idx; /* cluster index number */ 1512 unsigned int cluster_size; /* page count in cluster */ 1513 unsigned int log_cluster_size; /* log of cluster size */ 1514 struct page **rpages; /* pages store raw data in cluster */ 1515 unsigned int nr_rpages; /* total page number in rpages */ 1516 struct page **cpages; /* pages store compressed data in cluster */ 1517 unsigned int nr_cpages; /* total page number in cpages */ 1518 struct page **tpages; /* temp pages to pad holes in cluster */ 1519 void *rbuf; /* virtual mapped address on rpages */ 1520 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1521 size_t rlen; /* valid data length in rbuf */ 1522 size_t clen; /* valid data length in cbuf */ 1523 1524 /* 1525 * The number of compressed pages remaining to be read in this cluster. 1526 * This is initially nr_cpages. It is decremented by 1 each time a page 1527 * has been read (or failed to be read). When it reaches 0, the cluster 1528 * is decompressed (or an error is reported). 1529 * 1530 * If an error occurs before all the pages have been submitted for I/O, 1531 * then this will never reach 0. In this case the I/O submitter is 1532 * responsible for calling f2fs_decompress_end_io() instead. 1533 */ 1534 atomic_t remaining_pages; 1535 1536 /* 1537 * Number of references to this decompress_io_ctx. 1538 * 1539 * One reference is held for I/O completion. This reference is dropped 1540 * after the pagecache pages are updated and unlocked -- either after 1541 * decompression (and verity if enabled), or after an error. 1542 * 1543 * In addition, each compressed page holds a reference while it is in a 1544 * bio. These references are necessary prevent compressed pages from 1545 * being freed while they are still in a bio. 1546 */ 1547 refcount_t refcnt; 1548 1549 bool failed; /* IO error occurred before decompression? */ 1550 bool need_verity; /* need fs-verity verification after decompression? */ 1551 void *private; /* payload buffer for specified decompression algorithm */ 1552 void *private2; /* extra payload buffer */ 1553 struct work_struct verity_work; /* work to verify the decompressed pages */ 1554 struct work_struct free_work; /* work for late free this structure itself */ 1555 }; 1556 1557 #define NULL_CLUSTER ((unsigned int)(~0)) 1558 #define MIN_COMPRESS_LOG_SIZE 2 1559 #define MAX_COMPRESS_LOG_SIZE 8 1560 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1561 1562 struct f2fs_sb_info { 1563 struct super_block *sb; /* pointer to VFS super block */ 1564 struct proc_dir_entry *s_proc; /* proc entry */ 1565 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1566 struct f2fs_rwsem sb_lock; /* lock for raw super block */ 1567 int valid_super_block; /* valid super block no */ 1568 unsigned long s_flag; /* flags for sbi */ 1569 struct mutex writepages; /* mutex for writepages() */ 1570 1571 #ifdef CONFIG_BLK_DEV_ZONED 1572 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1573 unsigned int max_open_zones; /* max open zone resources of the zoned device */ 1574 /* For adjust the priority writing position of data in zone UFS */ 1575 unsigned int blkzone_alloc_policy; 1576 #endif 1577 1578 /* for node-related operations */ 1579 struct f2fs_nm_info *nm_info; /* node manager */ 1580 struct inode *node_inode; /* cache node blocks */ 1581 1582 /* for segment-related operations */ 1583 struct f2fs_sm_info *sm_info; /* segment manager */ 1584 1585 /* for bio operations */ 1586 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1587 /* keep migration IO order for LFS mode */ 1588 struct f2fs_rwsem io_order_lock; 1589 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ 1590 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ 1591 1592 /* for checkpoint */ 1593 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1594 int cur_cp_pack; /* remain current cp pack */ 1595 spinlock_t cp_lock; /* for flag in ckpt */ 1596 struct inode *meta_inode; /* cache meta blocks */ 1597 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ 1598 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ 1599 struct f2fs_rwsem node_write; /* locking node writes */ 1600 struct f2fs_rwsem node_change; /* locking node change */ 1601 wait_queue_head_t cp_wait; 1602 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1603 long interval_time[MAX_TIME]; /* to store thresholds */ 1604 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1605 1606 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1607 1608 spinlock_t fsync_node_lock; /* for node entry lock */ 1609 struct list_head fsync_node_list; /* node list head */ 1610 unsigned int fsync_seg_id; /* sequence id */ 1611 unsigned int fsync_node_num; /* number of node entries */ 1612 1613 /* for orphan inode, use 0'th array */ 1614 unsigned int max_orphans; /* max orphan inodes */ 1615 1616 /* for inode management */ 1617 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1618 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1619 struct mutex flush_lock; /* for flush exclusion */ 1620 1621 /* for extent tree cache */ 1622 struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; 1623 atomic64_t allocated_data_blocks; /* for block age extent_cache */ 1624 unsigned int max_read_extent_count; /* max read extent count per inode */ 1625 1626 /* The threshold used for hot and warm data seperation*/ 1627 unsigned int hot_data_age_threshold; 1628 unsigned int warm_data_age_threshold; 1629 unsigned int last_age_weight; 1630 1631 /* basic filesystem units */ 1632 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1633 unsigned int log_blocksize; /* log2 block size */ 1634 unsigned int blocksize; /* block size */ 1635 unsigned int root_ino_num; /* root inode number*/ 1636 unsigned int node_ino_num; /* node inode number*/ 1637 unsigned int meta_ino_num; /* meta inode number*/ 1638 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1639 unsigned int blocks_per_seg; /* blocks per segment */ 1640 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ 1641 unsigned int segs_per_sec; /* segments per section */ 1642 unsigned int secs_per_zone; /* sections per zone */ 1643 unsigned int total_sections; /* total section count */ 1644 unsigned int total_node_count; /* total node block count */ 1645 unsigned int total_valid_node_count; /* valid node block count */ 1646 int dir_level; /* directory level */ 1647 bool readdir_ra; /* readahead inode in readdir */ 1648 u64 max_io_bytes; /* max io bytes to merge IOs */ 1649 1650 block_t user_block_count; /* # of user blocks */ 1651 block_t total_valid_block_count; /* # of valid blocks */ 1652 block_t discard_blks; /* discard command candidats */ 1653 block_t last_valid_block_count; /* for recovery */ 1654 block_t reserved_blocks; /* configurable reserved blocks */ 1655 block_t current_reserved_blocks; /* current reserved blocks */ 1656 1657 /* Additional tracking for no checkpoint mode */ 1658 block_t unusable_block_count; /* # of blocks saved by last cp */ 1659 1660 unsigned int nquota_files; /* # of quota sysfile */ 1661 struct f2fs_rwsem quota_sem; /* blocking cp for flags */ 1662 1663 /* # of pages, see count_type */ 1664 atomic_t nr_pages[NR_COUNT_TYPE]; 1665 /* # of allocated blocks */ 1666 struct percpu_counter alloc_valid_block_count; 1667 /* # of node block writes as roll forward recovery */ 1668 struct percpu_counter rf_node_block_count; 1669 1670 /* writeback control */ 1671 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1672 1673 /* valid inode count */ 1674 struct percpu_counter total_valid_inode_count; 1675 1676 struct f2fs_mount_info mount_opt; /* mount options */ 1677 1678 /* for cleaning operations */ 1679 struct f2fs_rwsem gc_lock; /* 1680 * semaphore for GC, avoid 1681 * race between GC and GC or CP 1682 */ 1683 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1684 struct atgc_management am; /* atgc management */ 1685 unsigned int cur_victim_sec; /* current victim section num */ 1686 unsigned int gc_mode; /* current GC state */ 1687 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1688 spinlock_t gc_remaining_trials_lock; 1689 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ 1690 unsigned int gc_remaining_trials; 1691 1692 /* for skip statistic */ 1693 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1694 1695 /* threshold for gc trials on pinned files */ 1696 unsigned short gc_pin_file_threshold; 1697 struct f2fs_rwsem pin_sem; 1698 1699 /* maximum # of trials to find a victim segment for SSR and GC */ 1700 unsigned int max_victim_search; 1701 /* migration granularity of garbage collection, unit: segment */ 1702 unsigned int migration_granularity; 1703 /* migration window granularity of garbage collection, unit: segment */ 1704 unsigned int migration_window_granularity; 1705 1706 /* 1707 * for stat information. 1708 * one is for the LFS mode, and the other is for the SSR mode. 1709 */ 1710 #ifdef CONFIG_F2FS_STAT_FS 1711 struct f2fs_stat_info *stat_info; /* FS status information */ 1712 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1713 unsigned int segment_count[2]; /* # of allocated segments */ 1714 unsigned int block_count[2]; /* # of allocated blocks */ 1715 atomic_t inplace_count; /* # of inplace update */ 1716 /* # of lookup extent cache */ 1717 atomic64_t total_hit_ext[NR_EXTENT_CACHES]; 1718 /* # of hit rbtree extent node */ 1719 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; 1720 /* # of hit cached extent node */ 1721 atomic64_t read_hit_cached[NR_EXTENT_CACHES]; 1722 /* # of hit largest extent node in read extent cache */ 1723 atomic64_t read_hit_largest; 1724 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1725 atomic_t inline_inode; /* # of inline_data inodes */ 1726 atomic_t inline_dir; /* # of inline_dentry inodes */ 1727 atomic_t compr_inode; /* # of compressed inodes */ 1728 atomic64_t compr_blocks; /* # of compressed blocks */ 1729 atomic_t swapfile_inode; /* # of swapfile inodes */ 1730 atomic_t atomic_files; /* # of opened atomic file */ 1731 atomic_t max_aw_cnt; /* max # of atomic writes */ 1732 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1733 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1734 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1735 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */ 1736 #endif 1737 spinlock_t stat_lock; /* lock for stat operations */ 1738 1739 /* to attach REQ_META|REQ_FUA flags */ 1740 unsigned int data_io_flag; 1741 unsigned int node_io_flag; 1742 1743 /* For sysfs support */ 1744 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1745 struct completion s_kobj_unregister; 1746 1747 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1748 struct completion s_stat_kobj_unregister; 1749 1750 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1751 struct completion s_feature_list_kobj_unregister; 1752 1753 /* For shrinker support */ 1754 struct list_head s_list; 1755 struct mutex umount_mutex; 1756 unsigned int shrinker_run_no; 1757 1758 /* For multi devices */ 1759 int s_ndevs; /* number of devices */ 1760 struct f2fs_dev_info *devs; /* for device list */ 1761 unsigned int dirty_device; /* for checkpoint data flush */ 1762 spinlock_t dev_lock; /* protect dirty_device */ 1763 bool aligned_blksize; /* all devices has the same logical blksize */ 1764 unsigned int first_zoned_segno; /* first zoned segno */ 1765 1766 /* For write statistics */ 1767 u64 sectors_written_start; 1768 u64 kbytes_written; 1769 1770 /* Precomputed FS UUID checksum for seeding other checksums */ 1771 __u32 s_chksum_seed; 1772 1773 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1774 1775 /* 1776 * If we are in irq context, let's update error information into 1777 * on-disk superblock in the work. 1778 */ 1779 struct work_struct s_error_work; 1780 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ 1781 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */ 1782 spinlock_t error_lock; /* protect errors/stop_reason array */ 1783 bool error_dirty; /* errors of sb is dirty */ 1784 1785 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1786 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1787 1788 /* For reclaimed segs statistics per each GC mode */ 1789 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1790 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1791 1792 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1793 1794 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1795 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1796 1797 /* For atomic write statistics */ 1798 atomic64_t current_atomic_write; 1799 s64 peak_atomic_write; 1800 u64 committed_atomic_block; 1801 u64 revoked_atomic_block; 1802 1803 #ifdef CONFIG_F2FS_FS_COMPRESSION 1804 struct kmem_cache *page_array_slab; /* page array entry */ 1805 unsigned int page_array_slab_size; /* default page array slab size */ 1806 1807 /* For runtime compression statistics */ 1808 u64 compr_written_block; 1809 u64 compr_saved_block; 1810 u32 compr_new_inode; 1811 1812 /* For compressed block cache */ 1813 struct inode *compress_inode; /* cache compressed blocks */ 1814 unsigned int compress_percent; /* cache page percentage */ 1815 unsigned int compress_watermark; /* cache page watermark */ 1816 atomic_t compress_page_hit; /* cache hit count */ 1817 #endif 1818 1819 #ifdef CONFIG_F2FS_IOSTAT 1820 /* For app/fs IO statistics */ 1821 spinlock_t iostat_lock; 1822 unsigned long long iostat_count[NR_IO_TYPE]; 1823 unsigned long long iostat_bytes[NR_IO_TYPE]; 1824 unsigned long long prev_iostat_bytes[NR_IO_TYPE]; 1825 bool iostat_enable; 1826 unsigned long iostat_next_period; 1827 unsigned int iostat_period_ms; 1828 1829 /* For io latency related statistics info in one iostat period */ 1830 spinlock_t iostat_lat_lock; 1831 struct iostat_lat_info *iostat_io_lat; 1832 #endif 1833 }; 1834 1835 /* Definitions to access f2fs_sb_info */ 1836 #define SEGS_TO_BLKS(sbi, segs) \ 1837 ((segs) << (sbi)->log_blocks_per_seg) 1838 #define BLKS_TO_SEGS(sbi, blks) \ 1839 ((blks) >> (sbi)->log_blocks_per_seg) 1840 1841 #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg) 1842 #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec)) 1843 #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec) 1844 1845 __printf(3, 4) 1846 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...); 1847 1848 #define f2fs_err(sbi, fmt, ...) \ 1849 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__) 1850 #define f2fs_warn(sbi, fmt, ...) \ 1851 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__) 1852 #define f2fs_notice(sbi, fmt, ...) \ 1853 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__) 1854 #define f2fs_info(sbi, fmt, ...) \ 1855 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__) 1856 #define f2fs_debug(sbi, fmt, ...) \ 1857 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__) 1858 1859 #define f2fs_err_ratelimited(sbi, fmt, ...) \ 1860 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__) 1861 #define f2fs_warn_ratelimited(sbi, fmt, ...) \ 1862 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__) 1863 #define f2fs_info_ratelimited(sbi, fmt, ...) \ 1864 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__) 1865 1866 #ifdef CONFIG_F2FS_FAULT_INJECTION 1867 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \ 1868 __builtin_return_address(0)) 1869 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type, 1870 const char *func, const char *parent_func) 1871 { 1872 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1873 1874 if (!ffi->inject_rate) 1875 return false; 1876 1877 if (!IS_FAULT_SET(ffi, type)) 1878 return false; 1879 1880 atomic_inc(&ffi->inject_ops); 1881 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1882 atomic_set(&ffi->inject_ops, 0); 1883 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS", 1884 f2fs_fault_name[type], func, parent_func); 1885 return true; 1886 } 1887 return false; 1888 } 1889 #else 1890 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1891 { 1892 return false; 1893 } 1894 #endif 1895 1896 /* 1897 * Test if the mounted volume is a multi-device volume. 1898 * - For a single regular disk volume, sbi->s_ndevs is 0. 1899 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1900 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1901 */ 1902 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1903 { 1904 return sbi->s_ndevs > 1; 1905 } 1906 1907 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1908 { 1909 unsigned long now = jiffies; 1910 1911 sbi->last_time[type] = now; 1912 1913 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1914 if (type == REQ_TIME) { 1915 sbi->last_time[DISCARD_TIME] = now; 1916 sbi->last_time[GC_TIME] = now; 1917 } 1918 } 1919 1920 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1921 { 1922 unsigned long interval = sbi->interval_time[type] * HZ; 1923 1924 return time_after(jiffies, sbi->last_time[type] + interval); 1925 } 1926 1927 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1928 int type) 1929 { 1930 unsigned long interval = sbi->interval_time[type] * HZ; 1931 unsigned int wait_ms = 0; 1932 long delta; 1933 1934 delta = (sbi->last_time[type] + interval) - jiffies; 1935 if (delta > 0) 1936 wait_ms = jiffies_to_msecs(delta); 1937 1938 return wait_ms; 1939 } 1940 1941 /* 1942 * Inline functions 1943 */ 1944 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1945 const void *address, unsigned int length) 1946 { 1947 return crc32(crc, address, length); 1948 } 1949 1950 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1951 unsigned int length) 1952 { 1953 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1954 } 1955 1956 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1957 void *buf, size_t buf_size) 1958 { 1959 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1960 } 1961 1962 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1963 const void *address, unsigned int length) 1964 { 1965 return __f2fs_crc32(sbi, crc, address, length); 1966 } 1967 1968 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1969 { 1970 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1971 } 1972 1973 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1974 { 1975 return sb->s_fs_info; 1976 } 1977 1978 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1979 { 1980 return F2FS_SB(inode->i_sb); 1981 } 1982 1983 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1984 { 1985 return F2FS_I_SB(mapping->host); 1986 } 1987 1988 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1989 { 1990 return F2FS_M_SB(page_file_mapping(page)); 1991 } 1992 1993 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1994 { 1995 return (struct f2fs_super_block *)(sbi->raw_super); 1996 } 1997 1998 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio, 1999 pgoff_t index) 2000 { 2001 pgoff_t idx_in_folio = index % (1 << folio_order(folio)); 2002 2003 return (struct f2fs_super_block *) 2004 (page_address(folio_page(folio, idx_in_folio)) + 2005 F2FS_SUPER_OFFSET); 2006 } 2007 2008 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 2009 { 2010 return (struct f2fs_checkpoint *)(sbi->ckpt); 2011 } 2012 2013 static inline struct f2fs_node *F2FS_NODE(struct page *page) 2014 { 2015 return (struct f2fs_node *)page_address(page); 2016 } 2017 2018 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 2019 { 2020 return &((struct f2fs_node *)page_address(page))->i; 2021 } 2022 2023 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 2024 { 2025 return (struct f2fs_nm_info *)(sbi->nm_info); 2026 } 2027 2028 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 2029 { 2030 return (struct f2fs_sm_info *)(sbi->sm_info); 2031 } 2032 2033 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 2034 { 2035 return (struct sit_info *)(SM_I(sbi)->sit_info); 2036 } 2037 2038 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 2039 { 2040 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 2041 } 2042 2043 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 2044 { 2045 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 2046 } 2047 2048 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 2049 { 2050 return sbi->meta_inode->i_mapping; 2051 } 2052 2053 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 2054 { 2055 return sbi->node_inode->i_mapping; 2056 } 2057 2058 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 2059 { 2060 return test_bit(type, &sbi->s_flag); 2061 } 2062 2063 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2064 { 2065 set_bit(type, &sbi->s_flag); 2066 } 2067 2068 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2069 { 2070 clear_bit(type, &sbi->s_flag); 2071 } 2072 2073 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2074 { 2075 return le64_to_cpu(cp->checkpoint_ver); 2076 } 2077 2078 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2079 { 2080 if (type < F2FS_MAX_QUOTAS) 2081 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2082 return 0; 2083 } 2084 2085 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2086 { 2087 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2088 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2089 } 2090 2091 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2092 { 2093 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2094 2095 return ckpt_flags & f; 2096 } 2097 2098 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2099 { 2100 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2101 } 2102 2103 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2104 { 2105 unsigned int ckpt_flags; 2106 2107 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2108 ckpt_flags |= f; 2109 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2110 } 2111 2112 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2113 { 2114 unsigned long flags; 2115 2116 spin_lock_irqsave(&sbi->cp_lock, flags); 2117 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2118 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2119 } 2120 2121 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2122 { 2123 unsigned int ckpt_flags; 2124 2125 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2126 ckpt_flags &= (~f); 2127 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2128 } 2129 2130 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2131 { 2132 unsigned long flags; 2133 2134 spin_lock_irqsave(&sbi->cp_lock, flags); 2135 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2136 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2137 } 2138 2139 #define init_f2fs_rwsem(sem) \ 2140 do { \ 2141 static struct lock_class_key __key; \ 2142 \ 2143 __init_f2fs_rwsem((sem), #sem, &__key); \ 2144 } while (0) 2145 2146 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, 2147 const char *sem_name, struct lock_class_key *key) 2148 { 2149 __init_rwsem(&sem->internal_rwsem, sem_name, key); 2150 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2151 init_waitqueue_head(&sem->read_waiters); 2152 #endif 2153 } 2154 2155 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) 2156 { 2157 return rwsem_is_locked(&sem->internal_rwsem); 2158 } 2159 2160 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) 2161 { 2162 return rwsem_is_contended(&sem->internal_rwsem); 2163 } 2164 2165 static inline void f2fs_down_read(struct f2fs_rwsem *sem) 2166 { 2167 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2168 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); 2169 #else 2170 down_read(&sem->internal_rwsem); 2171 #endif 2172 } 2173 2174 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) 2175 { 2176 return down_read_trylock(&sem->internal_rwsem); 2177 } 2178 2179 static inline void f2fs_up_read(struct f2fs_rwsem *sem) 2180 { 2181 up_read(&sem->internal_rwsem); 2182 } 2183 2184 static inline void f2fs_down_write(struct f2fs_rwsem *sem) 2185 { 2186 down_write(&sem->internal_rwsem); 2187 } 2188 2189 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2190 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) 2191 { 2192 down_read_nested(&sem->internal_rwsem, subclass); 2193 } 2194 2195 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass) 2196 { 2197 down_write_nested(&sem->internal_rwsem, subclass); 2198 } 2199 #else 2200 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) 2201 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem) 2202 #endif 2203 2204 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) 2205 { 2206 return down_write_trylock(&sem->internal_rwsem); 2207 } 2208 2209 static inline void f2fs_up_write(struct f2fs_rwsem *sem) 2210 { 2211 up_write(&sem->internal_rwsem); 2212 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2213 wake_up_all(&sem->read_waiters); 2214 #endif 2215 } 2216 2217 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2218 { 2219 f2fs_down_read(&sbi->cp_rwsem); 2220 } 2221 2222 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2223 { 2224 if (time_to_inject(sbi, FAULT_LOCK_OP)) 2225 return 0; 2226 return f2fs_down_read_trylock(&sbi->cp_rwsem); 2227 } 2228 2229 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2230 { 2231 f2fs_up_read(&sbi->cp_rwsem); 2232 } 2233 2234 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2235 { 2236 f2fs_down_write(&sbi->cp_rwsem); 2237 } 2238 2239 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2240 { 2241 f2fs_up_write(&sbi->cp_rwsem); 2242 } 2243 2244 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2245 { 2246 int reason = CP_SYNC; 2247 2248 if (test_opt(sbi, FASTBOOT)) 2249 reason = CP_FASTBOOT; 2250 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2251 reason = CP_UMOUNT; 2252 return reason; 2253 } 2254 2255 static inline bool __remain_node_summaries(int reason) 2256 { 2257 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2258 } 2259 2260 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2261 { 2262 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2263 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2264 } 2265 2266 /* 2267 * Check whether the inode has blocks or not 2268 */ 2269 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2270 { 2271 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2272 2273 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2274 } 2275 2276 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2277 { 2278 return ofs == XATTR_NODE_OFFSET; 2279 } 2280 2281 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2282 struct inode *inode, bool cap) 2283 { 2284 if (!inode) 2285 return true; 2286 if (!test_opt(sbi, RESERVE_ROOT)) 2287 return false; 2288 if (IS_NOQUOTA(inode)) 2289 return true; 2290 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2291 return true; 2292 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2293 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2294 return true; 2295 if (cap && capable(CAP_SYS_RESOURCE)) 2296 return true; 2297 return false; 2298 } 2299 2300 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi, 2301 struct inode *inode, bool cap) 2302 { 2303 block_t avail_user_block_count; 2304 2305 avail_user_block_count = sbi->user_block_count - 2306 sbi->current_reserved_blocks; 2307 2308 if (!__allow_reserved_blocks(sbi, inode, cap)) 2309 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2310 2311 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2312 if (avail_user_block_count > sbi->unusable_block_count) 2313 avail_user_block_count -= sbi->unusable_block_count; 2314 else 2315 avail_user_block_count = 0; 2316 } 2317 2318 return avail_user_block_count; 2319 } 2320 2321 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2322 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2323 struct inode *inode, blkcnt_t *count, bool partial) 2324 { 2325 long long diff = 0, release = 0; 2326 block_t avail_user_block_count; 2327 int ret; 2328 2329 ret = dquot_reserve_block(inode, *count); 2330 if (ret) 2331 return ret; 2332 2333 if (time_to_inject(sbi, FAULT_BLOCK)) { 2334 release = *count; 2335 goto release_quota; 2336 } 2337 2338 /* 2339 * let's increase this in prior to actual block count change in order 2340 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2341 */ 2342 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2343 2344 spin_lock(&sbi->stat_lock); 2345 2346 avail_user_block_count = get_available_block_count(sbi, inode, true); 2347 diff = (long long)sbi->total_valid_block_count + *count - 2348 avail_user_block_count; 2349 if (unlikely(diff > 0)) { 2350 if (!partial) { 2351 spin_unlock(&sbi->stat_lock); 2352 release = *count; 2353 goto enospc; 2354 } 2355 if (diff > *count) 2356 diff = *count; 2357 *count -= diff; 2358 release = diff; 2359 if (!*count) { 2360 spin_unlock(&sbi->stat_lock); 2361 goto enospc; 2362 } 2363 } 2364 sbi->total_valid_block_count += (block_t)(*count); 2365 2366 spin_unlock(&sbi->stat_lock); 2367 2368 if (unlikely(release)) { 2369 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2370 dquot_release_reservation_block(inode, release); 2371 } 2372 f2fs_i_blocks_write(inode, *count, true, true); 2373 return 0; 2374 2375 enospc: 2376 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2377 release_quota: 2378 dquot_release_reservation_block(inode, release); 2379 return -ENOSPC; 2380 } 2381 2382 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 2383 static inline bool page_private_##name(struct page *page) \ 2384 { \ 2385 return PagePrivate(page) && \ 2386 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 2387 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2388 } 2389 2390 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 2391 static inline void set_page_private_##name(struct page *page) \ 2392 { \ 2393 if (!PagePrivate(page)) \ 2394 attach_page_private(page, (void *)0); \ 2395 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 2396 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2397 } 2398 2399 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 2400 static inline void clear_page_private_##name(struct page *page) \ 2401 { \ 2402 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2403 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \ 2404 detach_page_private(page); \ 2405 } 2406 2407 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 2408 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 2409 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 2410 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE); 2411 2412 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 2413 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 2414 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 2415 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE); 2416 2417 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 2418 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 2419 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 2420 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE); 2421 2422 static inline unsigned long get_page_private_data(struct page *page) 2423 { 2424 unsigned long data = page_private(page); 2425 2426 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 2427 return 0; 2428 return data >> PAGE_PRIVATE_MAX; 2429 } 2430 2431 static inline void set_page_private_data(struct page *page, unsigned long data) 2432 { 2433 if (!PagePrivate(page)) 2434 attach_page_private(page, (void *)0); 2435 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 2436 page_private(page) |= data << PAGE_PRIVATE_MAX; 2437 } 2438 2439 static inline void clear_page_private_data(struct page *page) 2440 { 2441 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0); 2442 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) 2443 detach_page_private(page); 2444 } 2445 2446 static inline void clear_page_private_all(struct page *page) 2447 { 2448 clear_page_private_data(page); 2449 clear_page_private_reference(page); 2450 clear_page_private_gcing(page); 2451 clear_page_private_inline(page); 2452 clear_page_private_atomic(page); 2453 2454 f2fs_bug_on(F2FS_P_SB(page), page_private(page)); 2455 } 2456 2457 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2458 struct inode *inode, 2459 block_t count) 2460 { 2461 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2462 2463 spin_lock(&sbi->stat_lock); 2464 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2465 sbi->total_valid_block_count -= (block_t)count; 2466 if (sbi->reserved_blocks && 2467 sbi->current_reserved_blocks < sbi->reserved_blocks) 2468 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2469 sbi->current_reserved_blocks + count); 2470 spin_unlock(&sbi->stat_lock); 2471 if (unlikely(inode->i_blocks < sectors)) { 2472 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2473 inode->i_ino, 2474 (unsigned long long)inode->i_blocks, 2475 (unsigned long long)sectors); 2476 set_sbi_flag(sbi, SBI_NEED_FSCK); 2477 return; 2478 } 2479 f2fs_i_blocks_write(inode, count, false, true); 2480 } 2481 2482 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2483 { 2484 atomic_inc(&sbi->nr_pages[count_type]); 2485 2486 if (count_type == F2FS_DIRTY_DENTS || 2487 count_type == F2FS_DIRTY_NODES || 2488 count_type == F2FS_DIRTY_META || 2489 count_type == F2FS_DIRTY_QDATA || 2490 count_type == F2FS_DIRTY_IMETA) 2491 set_sbi_flag(sbi, SBI_IS_DIRTY); 2492 } 2493 2494 static inline void inode_inc_dirty_pages(struct inode *inode) 2495 { 2496 atomic_inc(&F2FS_I(inode)->dirty_pages); 2497 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2498 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2499 if (IS_NOQUOTA(inode)) 2500 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2501 } 2502 2503 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2504 { 2505 atomic_dec(&sbi->nr_pages[count_type]); 2506 } 2507 2508 static inline void inode_dec_dirty_pages(struct inode *inode) 2509 { 2510 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2511 !S_ISLNK(inode->i_mode)) 2512 return; 2513 2514 atomic_dec(&F2FS_I(inode)->dirty_pages); 2515 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2516 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2517 if (IS_NOQUOTA(inode)) 2518 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2519 } 2520 2521 static inline void inc_atomic_write_cnt(struct inode *inode) 2522 { 2523 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2524 struct f2fs_inode_info *fi = F2FS_I(inode); 2525 u64 current_write; 2526 2527 fi->atomic_write_cnt++; 2528 atomic64_inc(&sbi->current_atomic_write); 2529 current_write = atomic64_read(&sbi->current_atomic_write); 2530 if (current_write > sbi->peak_atomic_write) 2531 sbi->peak_atomic_write = current_write; 2532 } 2533 2534 static inline void release_atomic_write_cnt(struct inode *inode) 2535 { 2536 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2537 struct f2fs_inode_info *fi = F2FS_I(inode); 2538 2539 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); 2540 fi->atomic_write_cnt = 0; 2541 } 2542 2543 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2544 { 2545 return atomic_read(&sbi->nr_pages[count_type]); 2546 } 2547 2548 static inline int get_dirty_pages(struct inode *inode) 2549 { 2550 return atomic_read(&F2FS_I(inode)->dirty_pages); 2551 } 2552 2553 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2554 { 2555 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1, 2556 BLKS_PER_SEC(sbi)); 2557 } 2558 2559 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2560 { 2561 return sbi->total_valid_block_count; 2562 } 2563 2564 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2565 { 2566 return sbi->discard_blks; 2567 } 2568 2569 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2570 { 2571 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2572 2573 /* return NAT or SIT bitmap */ 2574 if (flag == NAT_BITMAP) 2575 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2576 else if (flag == SIT_BITMAP) 2577 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2578 2579 return 0; 2580 } 2581 2582 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2583 { 2584 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2585 } 2586 2587 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2588 { 2589 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2590 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2591 int offset; 2592 2593 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2594 offset = (flag == SIT_BITMAP) ? 2595 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2596 /* 2597 * if large_nat_bitmap feature is enabled, leave checksum 2598 * protection for all nat/sit bitmaps. 2599 */ 2600 return tmp_ptr + offset + sizeof(__le32); 2601 } 2602 2603 if (__cp_payload(sbi) > 0) { 2604 if (flag == NAT_BITMAP) 2605 return tmp_ptr; 2606 else 2607 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2608 } else { 2609 offset = (flag == NAT_BITMAP) ? 2610 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2611 return tmp_ptr + offset; 2612 } 2613 } 2614 2615 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2616 { 2617 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2618 2619 if (sbi->cur_cp_pack == 2) 2620 start_addr += BLKS_PER_SEG(sbi); 2621 return start_addr; 2622 } 2623 2624 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2625 { 2626 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2627 2628 if (sbi->cur_cp_pack == 1) 2629 start_addr += BLKS_PER_SEG(sbi); 2630 return start_addr; 2631 } 2632 2633 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2634 { 2635 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2636 } 2637 2638 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2639 { 2640 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2641 } 2642 2643 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 2644 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2645 struct inode *inode, bool is_inode) 2646 { 2647 block_t valid_block_count; 2648 unsigned int valid_node_count; 2649 unsigned int avail_user_block_count; 2650 int err; 2651 2652 if (is_inode) { 2653 if (inode) { 2654 err = dquot_alloc_inode(inode); 2655 if (err) 2656 return err; 2657 } 2658 } else { 2659 err = dquot_reserve_block(inode, 1); 2660 if (err) 2661 return err; 2662 } 2663 2664 if (time_to_inject(sbi, FAULT_BLOCK)) 2665 goto enospc; 2666 2667 spin_lock(&sbi->stat_lock); 2668 2669 valid_block_count = sbi->total_valid_block_count + 1; 2670 avail_user_block_count = get_available_block_count(sbi, inode, false); 2671 2672 if (unlikely(valid_block_count > avail_user_block_count)) { 2673 spin_unlock(&sbi->stat_lock); 2674 goto enospc; 2675 } 2676 2677 valid_node_count = sbi->total_valid_node_count + 1; 2678 if (unlikely(valid_node_count > sbi->total_node_count)) { 2679 spin_unlock(&sbi->stat_lock); 2680 goto enospc; 2681 } 2682 2683 sbi->total_valid_node_count++; 2684 sbi->total_valid_block_count++; 2685 spin_unlock(&sbi->stat_lock); 2686 2687 if (inode) { 2688 if (is_inode) 2689 f2fs_mark_inode_dirty_sync(inode, true); 2690 else 2691 f2fs_i_blocks_write(inode, 1, true, true); 2692 } 2693 2694 percpu_counter_inc(&sbi->alloc_valid_block_count); 2695 return 0; 2696 2697 enospc: 2698 if (is_inode) { 2699 if (inode) 2700 dquot_free_inode(inode); 2701 } else { 2702 dquot_release_reservation_block(inode, 1); 2703 } 2704 return -ENOSPC; 2705 } 2706 2707 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2708 struct inode *inode, bool is_inode) 2709 { 2710 spin_lock(&sbi->stat_lock); 2711 2712 if (unlikely(!sbi->total_valid_block_count || 2713 !sbi->total_valid_node_count)) { 2714 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", 2715 sbi->total_valid_block_count, 2716 sbi->total_valid_node_count); 2717 set_sbi_flag(sbi, SBI_NEED_FSCK); 2718 } else { 2719 sbi->total_valid_block_count--; 2720 sbi->total_valid_node_count--; 2721 } 2722 2723 if (sbi->reserved_blocks && 2724 sbi->current_reserved_blocks < sbi->reserved_blocks) 2725 sbi->current_reserved_blocks++; 2726 2727 spin_unlock(&sbi->stat_lock); 2728 2729 if (is_inode) { 2730 dquot_free_inode(inode); 2731 } else { 2732 if (unlikely(inode->i_blocks == 0)) { 2733 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2734 inode->i_ino, 2735 (unsigned long long)inode->i_blocks); 2736 set_sbi_flag(sbi, SBI_NEED_FSCK); 2737 return; 2738 } 2739 f2fs_i_blocks_write(inode, 1, false, true); 2740 } 2741 } 2742 2743 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2744 { 2745 return sbi->total_valid_node_count; 2746 } 2747 2748 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2749 { 2750 percpu_counter_inc(&sbi->total_valid_inode_count); 2751 } 2752 2753 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2754 { 2755 percpu_counter_dec(&sbi->total_valid_inode_count); 2756 } 2757 2758 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2759 { 2760 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2761 } 2762 2763 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2764 pgoff_t index, bool for_write) 2765 { 2766 struct page *page; 2767 unsigned int flags; 2768 2769 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2770 if (!for_write) 2771 page = find_get_page_flags(mapping, index, 2772 FGP_LOCK | FGP_ACCESSED); 2773 else 2774 page = find_lock_page(mapping, index); 2775 if (page) 2776 return page; 2777 2778 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 2779 return NULL; 2780 } 2781 2782 if (!for_write) 2783 return grab_cache_page(mapping, index); 2784 2785 flags = memalloc_nofs_save(); 2786 page = grab_cache_page_write_begin(mapping, index); 2787 memalloc_nofs_restore(flags); 2788 2789 return page; 2790 } 2791 2792 static inline struct page *f2fs_pagecache_get_page( 2793 struct address_space *mapping, pgoff_t index, 2794 fgf_t fgp_flags, gfp_t gfp_mask) 2795 { 2796 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) 2797 return NULL; 2798 2799 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2800 } 2801 2802 static inline void f2fs_put_page(struct page *page, int unlock) 2803 { 2804 if (!page) 2805 return; 2806 2807 if (unlock) { 2808 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2809 unlock_page(page); 2810 } 2811 put_page(page); 2812 } 2813 2814 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2815 { 2816 if (dn->node_page) 2817 f2fs_put_page(dn->node_page, 1); 2818 if (dn->inode_page && dn->node_page != dn->inode_page) 2819 f2fs_put_page(dn->inode_page, 0); 2820 dn->node_page = NULL; 2821 dn->inode_page = NULL; 2822 } 2823 2824 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2825 size_t size) 2826 { 2827 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2828 } 2829 2830 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2831 gfp_t flags) 2832 { 2833 void *entry; 2834 2835 entry = kmem_cache_alloc(cachep, flags); 2836 if (!entry) 2837 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2838 return entry; 2839 } 2840 2841 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2842 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2843 { 2844 if (nofail) 2845 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2846 2847 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) 2848 return NULL; 2849 2850 return kmem_cache_alloc(cachep, flags); 2851 } 2852 2853 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2854 { 2855 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2856 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2857 get_pages(sbi, F2FS_WB_CP_DATA) || 2858 get_pages(sbi, F2FS_DIO_READ) || 2859 get_pages(sbi, F2FS_DIO_WRITE)) 2860 return true; 2861 2862 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2863 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2864 return true; 2865 2866 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2867 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2868 return true; 2869 return false; 2870 } 2871 2872 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi) 2873 { 2874 return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ); 2875 } 2876 2877 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2878 { 2879 bool zoned_gc = (type == GC_TIME && 2880 F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED)); 2881 2882 if (sbi->gc_mode == GC_URGENT_HIGH) 2883 return true; 2884 2885 if (zoned_gc) { 2886 if (is_inflight_read_io(sbi)) 2887 return false; 2888 } else { 2889 if (is_inflight_io(sbi, type)) 2890 return false; 2891 } 2892 2893 if (sbi->gc_mode == GC_URGENT_MID) 2894 return true; 2895 2896 if (sbi->gc_mode == GC_URGENT_LOW && 2897 (type == DISCARD_TIME || type == GC_TIME)) 2898 return true; 2899 2900 if (zoned_gc) 2901 return true; 2902 2903 return f2fs_time_over(sbi, type); 2904 } 2905 2906 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2907 unsigned long index, void *item) 2908 { 2909 while (radix_tree_insert(root, index, item)) 2910 cond_resched(); 2911 } 2912 2913 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2914 2915 static inline bool IS_INODE(struct page *page) 2916 { 2917 struct f2fs_node *p = F2FS_NODE(page); 2918 2919 return RAW_IS_INODE(p); 2920 } 2921 2922 static inline int offset_in_addr(struct f2fs_inode *i) 2923 { 2924 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2925 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2926 } 2927 2928 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2929 { 2930 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2931 } 2932 2933 static inline int f2fs_has_extra_attr(struct inode *inode); 2934 static inline unsigned int get_dnode_base(struct inode *inode, 2935 struct page *node_page) 2936 { 2937 if (!IS_INODE(node_page)) 2938 return 0; 2939 2940 return inode ? get_extra_isize(inode) : 2941 offset_in_addr(&F2FS_NODE(node_page)->i); 2942 } 2943 2944 static inline __le32 *get_dnode_addr(struct inode *inode, 2945 struct page *node_page) 2946 { 2947 return blkaddr_in_node(F2FS_NODE(node_page)) + 2948 get_dnode_base(inode, node_page); 2949 } 2950 2951 static inline block_t data_blkaddr(struct inode *inode, 2952 struct page *node_page, unsigned int offset) 2953 { 2954 return le32_to_cpu(*(get_dnode_addr(inode, node_page) + offset)); 2955 } 2956 2957 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2958 { 2959 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2960 } 2961 2962 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2963 { 2964 int mask; 2965 2966 addr += (nr >> 3); 2967 mask = BIT(7 - (nr & 0x07)); 2968 return mask & *addr; 2969 } 2970 2971 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2972 { 2973 int mask; 2974 2975 addr += (nr >> 3); 2976 mask = BIT(7 - (nr & 0x07)); 2977 *addr |= mask; 2978 } 2979 2980 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2981 { 2982 int mask; 2983 2984 addr += (nr >> 3); 2985 mask = BIT(7 - (nr & 0x07)); 2986 *addr &= ~mask; 2987 } 2988 2989 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2990 { 2991 int mask; 2992 int ret; 2993 2994 addr += (nr >> 3); 2995 mask = BIT(7 - (nr & 0x07)); 2996 ret = mask & *addr; 2997 *addr |= mask; 2998 return ret; 2999 } 3000 3001 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 3002 { 3003 int mask; 3004 int ret; 3005 3006 addr += (nr >> 3); 3007 mask = BIT(7 - (nr & 0x07)); 3008 ret = mask & *addr; 3009 *addr &= ~mask; 3010 return ret; 3011 } 3012 3013 static inline void f2fs_change_bit(unsigned int nr, char *addr) 3014 { 3015 int mask; 3016 3017 addr += (nr >> 3); 3018 mask = BIT(7 - (nr & 0x07)); 3019 *addr ^= mask; 3020 } 3021 3022 /* 3023 * On-disk inode flags (f2fs_inode::i_flags) 3024 */ 3025 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 3026 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 3027 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 3028 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 3029 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 3030 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 3031 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 3032 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 3033 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 3034 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 3035 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 3036 #define F2FS_DEVICE_ALIAS_FL 0x80000000 /* File for aliasing a device */ 3037 3038 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL) 3039 3040 /* Flags that should be inherited by new inodes from their parent. */ 3041 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 3042 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 3043 F2FS_CASEFOLD_FL) 3044 3045 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 3046 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 3047 F2FS_CASEFOLD_FL)) 3048 3049 /* Flags that are appropriate for non-directories/regular files. */ 3050 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 3051 3052 #define IS_DEVICE_ALIASING(inode) (F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL) 3053 3054 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 3055 { 3056 if (S_ISDIR(mode)) 3057 return flags; 3058 else if (S_ISREG(mode)) 3059 return flags & F2FS_REG_FLMASK; 3060 else 3061 return flags & F2FS_OTHER_FLMASK; 3062 } 3063 3064 static inline void __mark_inode_dirty_flag(struct inode *inode, 3065 int flag, bool set) 3066 { 3067 switch (flag) { 3068 case FI_INLINE_XATTR: 3069 case FI_INLINE_DATA: 3070 case FI_INLINE_DENTRY: 3071 case FI_NEW_INODE: 3072 if (set) 3073 return; 3074 fallthrough; 3075 case FI_DATA_EXIST: 3076 case FI_PIN_FILE: 3077 case FI_COMPRESS_RELEASED: 3078 f2fs_mark_inode_dirty_sync(inode, true); 3079 } 3080 } 3081 3082 static inline void set_inode_flag(struct inode *inode, int flag) 3083 { 3084 set_bit(flag, F2FS_I(inode)->flags); 3085 __mark_inode_dirty_flag(inode, flag, true); 3086 } 3087 3088 static inline int is_inode_flag_set(struct inode *inode, int flag) 3089 { 3090 return test_bit(flag, F2FS_I(inode)->flags); 3091 } 3092 3093 static inline void clear_inode_flag(struct inode *inode, int flag) 3094 { 3095 clear_bit(flag, F2FS_I(inode)->flags); 3096 __mark_inode_dirty_flag(inode, flag, false); 3097 } 3098 3099 static inline bool f2fs_verity_in_progress(struct inode *inode) 3100 { 3101 return IS_ENABLED(CONFIG_FS_VERITY) && 3102 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 3103 } 3104 3105 static inline void set_acl_inode(struct inode *inode, umode_t mode) 3106 { 3107 F2FS_I(inode)->i_acl_mode = mode; 3108 set_inode_flag(inode, FI_ACL_MODE); 3109 f2fs_mark_inode_dirty_sync(inode, false); 3110 } 3111 3112 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 3113 { 3114 if (inc) 3115 inc_nlink(inode); 3116 else 3117 drop_nlink(inode); 3118 f2fs_mark_inode_dirty_sync(inode, true); 3119 } 3120 3121 static inline void f2fs_i_blocks_write(struct inode *inode, 3122 block_t diff, bool add, bool claim) 3123 { 3124 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3125 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3126 3127 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 3128 if (add) { 3129 if (claim) 3130 dquot_claim_block(inode, diff); 3131 else 3132 dquot_alloc_block_nofail(inode, diff); 3133 } else { 3134 dquot_free_block(inode, diff); 3135 } 3136 3137 f2fs_mark_inode_dirty_sync(inode, true); 3138 if (clean || recover) 3139 set_inode_flag(inode, FI_AUTO_RECOVER); 3140 } 3141 3142 static inline bool f2fs_is_atomic_file(struct inode *inode); 3143 3144 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 3145 { 3146 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3147 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3148 3149 if (i_size_read(inode) == i_size) 3150 return; 3151 3152 i_size_write(inode, i_size); 3153 3154 if (f2fs_is_atomic_file(inode)) 3155 return; 3156 3157 f2fs_mark_inode_dirty_sync(inode, true); 3158 if (clean || recover) 3159 set_inode_flag(inode, FI_AUTO_RECOVER); 3160 } 3161 3162 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 3163 { 3164 F2FS_I(inode)->i_current_depth = depth; 3165 f2fs_mark_inode_dirty_sync(inode, true); 3166 } 3167 3168 static inline void f2fs_i_gc_failures_write(struct inode *inode, 3169 unsigned int count) 3170 { 3171 F2FS_I(inode)->i_gc_failures = count; 3172 f2fs_mark_inode_dirty_sync(inode, true); 3173 } 3174 3175 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 3176 { 3177 F2FS_I(inode)->i_xattr_nid = xnid; 3178 f2fs_mark_inode_dirty_sync(inode, true); 3179 } 3180 3181 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 3182 { 3183 F2FS_I(inode)->i_pino = pino; 3184 f2fs_mark_inode_dirty_sync(inode, true); 3185 } 3186 3187 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 3188 { 3189 struct f2fs_inode_info *fi = F2FS_I(inode); 3190 3191 if (ri->i_inline & F2FS_INLINE_XATTR) 3192 set_bit(FI_INLINE_XATTR, fi->flags); 3193 if (ri->i_inline & F2FS_INLINE_DATA) 3194 set_bit(FI_INLINE_DATA, fi->flags); 3195 if (ri->i_inline & F2FS_INLINE_DENTRY) 3196 set_bit(FI_INLINE_DENTRY, fi->flags); 3197 if (ri->i_inline & F2FS_DATA_EXIST) 3198 set_bit(FI_DATA_EXIST, fi->flags); 3199 if (ri->i_inline & F2FS_EXTRA_ATTR) 3200 set_bit(FI_EXTRA_ATTR, fi->flags); 3201 if (ri->i_inline & F2FS_PIN_FILE) 3202 set_bit(FI_PIN_FILE, fi->flags); 3203 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 3204 set_bit(FI_COMPRESS_RELEASED, fi->flags); 3205 } 3206 3207 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 3208 { 3209 ri->i_inline = 0; 3210 3211 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 3212 ri->i_inline |= F2FS_INLINE_XATTR; 3213 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 3214 ri->i_inline |= F2FS_INLINE_DATA; 3215 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 3216 ri->i_inline |= F2FS_INLINE_DENTRY; 3217 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 3218 ri->i_inline |= F2FS_DATA_EXIST; 3219 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 3220 ri->i_inline |= F2FS_EXTRA_ATTR; 3221 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3222 ri->i_inline |= F2FS_PIN_FILE; 3223 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 3224 ri->i_inline |= F2FS_COMPRESS_RELEASED; 3225 } 3226 3227 static inline int f2fs_has_extra_attr(struct inode *inode) 3228 { 3229 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 3230 } 3231 3232 static inline int f2fs_has_inline_xattr(struct inode *inode) 3233 { 3234 return is_inode_flag_set(inode, FI_INLINE_XATTR); 3235 } 3236 3237 static inline int f2fs_compressed_file(struct inode *inode) 3238 { 3239 return S_ISREG(inode->i_mode) && 3240 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 3241 } 3242 3243 static inline bool f2fs_need_compress_data(struct inode *inode) 3244 { 3245 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3246 3247 if (!f2fs_compressed_file(inode)) 3248 return false; 3249 3250 if (compress_mode == COMPR_MODE_FS) 3251 return true; 3252 else if (compress_mode == COMPR_MODE_USER && 3253 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3254 return true; 3255 3256 return false; 3257 } 3258 3259 static inline unsigned int addrs_per_page(struct inode *inode, 3260 bool is_inode) 3261 { 3262 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) - 3263 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK; 3264 3265 if (f2fs_compressed_file(inode)) 3266 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3267 return addrs; 3268 } 3269 3270 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3271 { 3272 struct f2fs_inode *ri = F2FS_INODE(page); 3273 3274 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3275 get_inline_xattr_addrs(inode)]); 3276 } 3277 3278 static inline int inline_xattr_size(struct inode *inode) 3279 { 3280 if (f2fs_has_inline_xattr(inode)) 3281 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3282 return 0; 3283 } 3284 3285 /* 3286 * Notice: check inline_data flag without inode page lock is unsafe. 3287 * It could change at any time by f2fs_convert_inline_page(). 3288 */ 3289 static inline int f2fs_has_inline_data(struct inode *inode) 3290 { 3291 return is_inode_flag_set(inode, FI_INLINE_DATA); 3292 } 3293 3294 static inline int f2fs_exist_data(struct inode *inode) 3295 { 3296 return is_inode_flag_set(inode, FI_DATA_EXIST); 3297 } 3298 3299 static inline int f2fs_is_mmap_file(struct inode *inode) 3300 { 3301 return is_inode_flag_set(inode, FI_MMAP_FILE); 3302 } 3303 3304 static inline bool f2fs_is_pinned_file(struct inode *inode) 3305 { 3306 return is_inode_flag_set(inode, FI_PIN_FILE); 3307 } 3308 3309 static inline bool f2fs_is_atomic_file(struct inode *inode) 3310 { 3311 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3312 } 3313 3314 static inline bool f2fs_is_cow_file(struct inode *inode) 3315 { 3316 return is_inode_flag_set(inode, FI_COW_FILE); 3317 } 3318 3319 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3320 { 3321 __le32 *addr = get_dnode_addr(inode, page); 3322 3323 return (void *)(addr + DEF_INLINE_RESERVED_SIZE); 3324 } 3325 3326 static inline int f2fs_has_inline_dentry(struct inode *inode) 3327 { 3328 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3329 } 3330 3331 static inline int is_file(struct inode *inode, int type) 3332 { 3333 return F2FS_I(inode)->i_advise & type; 3334 } 3335 3336 static inline void set_file(struct inode *inode, int type) 3337 { 3338 if (is_file(inode, type)) 3339 return; 3340 F2FS_I(inode)->i_advise |= type; 3341 f2fs_mark_inode_dirty_sync(inode, true); 3342 } 3343 3344 static inline void clear_file(struct inode *inode, int type) 3345 { 3346 if (!is_file(inode, type)) 3347 return; 3348 F2FS_I(inode)->i_advise &= ~type; 3349 f2fs_mark_inode_dirty_sync(inode, true); 3350 } 3351 3352 static inline bool f2fs_is_time_consistent(struct inode *inode) 3353 { 3354 struct timespec64 ts = inode_get_atime(inode); 3355 3356 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts)) 3357 return false; 3358 ts = inode_get_ctime(inode); 3359 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts)) 3360 return false; 3361 ts = inode_get_mtime(inode); 3362 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts)) 3363 return false; 3364 return true; 3365 } 3366 3367 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3368 { 3369 bool ret; 3370 3371 if (dsync) { 3372 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3373 3374 spin_lock(&sbi->inode_lock[DIRTY_META]); 3375 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3376 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3377 return ret; 3378 } 3379 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3380 file_keep_isize(inode) || 3381 i_size_read(inode) & ~PAGE_MASK) 3382 return false; 3383 3384 if (!f2fs_is_time_consistent(inode)) 3385 return false; 3386 3387 spin_lock(&F2FS_I(inode)->i_size_lock); 3388 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3389 spin_unlock(&F2FS_I(inode)->i_size_lock); 3390 3391 return ret; 3392 } 3393 3394 static inline bool f2fs_readonly(struct super_block *sb) 3395 { 3396 return sb_rdonly(sb); 3397 } 3398 3399 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3400 { 3401 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3402 } 3403 3404 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3405 size_t size, gfp_t flags) 3406 { 3407 if (time_to_inject(sbi, FAULT_KMALLOC)) 3408 return NULL; 3409 3410 return kmalloc(size, flags); 3411 } 3412 3413 static inline void *f2fs_getname(struct f2fs_sb_info *sbi) 3414 { 3415 if (time_to_inject(sbi, FAULT_KMALLOC)) 3416 return NULL; 3417 3418 return __getname(); 3419 } 3420 3421 static inline void f2fs_putname(char *buf) 3422 { 3423 __putname(buf); 3424 } 3425 3426 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3427 size_t size, gfp_t flags) 3428 { 3429 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3430 } 3431 3432 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3433 size_t size, gfp_t flags) 3434 { 3435 if (time_to_inject(sbi, FAULT_KVMALLOC)) 3436 return NULL; 3437 3438 return kvmalloc(size, flags); 3439 } 3440 3441 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3442 size_t size, gfp_t flags) 3443 { 3444 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3445 } 3446 3447 static inline int get_extra_isize(struct inode *inode) 3448 { 3449 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3450 } 3451 3452 static inline int get_inline_xattr_addrs(struct inode *inode) 3453 { 3454 return F2FS_I(inode)->i_inline_xattr_size; 3455 } 3456 3457 #define f2fs_get_inode_mode(i) \ 3458 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3459 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3460 3461 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32)) 3462 3463 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3464 (offsetof(struct f2fs_inode, i_extra_end) - \ 3465 offsetof(struct f2fs_inode, i_extra_isize)) \ 3466 3467 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3468 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3469 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3470 sizeof((f2fs_inode)->field)) \ 3471 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3472 3473 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1) 3474 3475 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3476 3477 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3478 block_t blkaddr, int type); 3479 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3480 block_t blkaddr, int type) 3481 { 3482 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) 3483 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3484 blkaddr, type); 3485 } 3486 3487 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3488 { 3489 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3490 blkaddr == COMPRESS_ADDR) 3491 return false; 3492 return true; 3493 } 3494 3495 /* 3496 * file.c 3497 */ 3498 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3499 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3500 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3501 int f2fs_truncate(struct inode *inode); 3502 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 3503 struct kstat *stat, u32 request_mask, unsigned int flags); 3504 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3505 struct iattr *attr); 3506 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3507 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3508 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag, 3509 bool readonly, bool need_lock); 3510 int f2fs_precache_extents(struct inode *inode); 3511 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3512 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3513 struct dentry *dentry, struct fileattr *fa); 3514 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3515 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3516 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3517 int f2fs_pin_file_control(struct inode *inode, bool inc); 3518 3519 /* 3520 * inode.c 3521 */ 3522 void f2fs_set_inode_flags(struct inode *inode); 3523 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3524 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3525 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3526 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3527 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3528 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3529 void f2fs_update_inode_page(struct inode *inode); 3530 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3531 void f2fs_evict_inode(struct inode *inode); 3532 void f2fs_handle_failed_inode(struct inode *inode); 3533 3534 /* 3535 * namei.c 3536 */ 3537 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3538 bool hot, bool set); 3539 struct dentry *f2fs_get_parent(struct dentry *child); 3540 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3541 struct inode **new_inode); 3542 3543 /* 3544 * dir.c 3545 */ 3546 #if IS_ENABLED(CONFIG_UNICODE) 3547 int f2fs_init_casefolded_name(const struct inode *dir, 3548 struct f2fs_filename *fname); 3549 void f2fs_free_casefolded_name(struct f2fs_filename *fname); 3550 #else 3551 static inline int f2fs_init_casefolded_name(const struct inode *dir, 3552 struct f2fs_filename *fname) 3553 { 3554 return 0; 3555 } 3556 3557 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname) 3558 { 3559 } 3560 #endif /* CONFIG_UNICODE */ 3561 3562 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3563 int lookup, struct f2fs_filename *fname); 3564 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3565 struct f2fs_filename *fname); 3566 void f2fs_free_filename(struct f2fs_filename *fname); 3567 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3568 const struct f2fs_filename *fname, int *max_slots); 3569 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3570 unsigned int start_pos, struct fscrypt_str *fstr); 3571 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3572 struct f2fs_dentry_ptr *d); 3573 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3574 const struct f2fs_filename *fname, struct page *dpage); 3575 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3576 unsigned int current_depth); 3577 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3578 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3579 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3580 const struct f2fs_filename *fname, 3581 struct page **res_page); 3582 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3583 const struct qstr *child, struct page **res_page); 3584 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3585 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3586 struct page **page); 3587 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3588 struct page *page, struct inode *inode); 3589 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3590 const struct f2fs_filename *fname); 3591 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3592 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3593 unsigned int bit_pos); 3594 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3595 struct inode *inode, nid_t ino, umode_t mode); 3596 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3597 struct inode *inode, nid_t ino, umode_t mode); 3598 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3599 struct inode *inode, nid_t ino, umode_t mode); 3600 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3601 struct inode *dir, struct inode *inode); 3602 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir, 3603 struct f2fs_filename *fname); 3604 bool f2fs_empty_dir(struct inode *dir); 3605 3606 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3607 { 3608 if (fscrypt_is_nokey_name(dentry)) 3609 return -ENOKEY; 3610 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3611 inode, inode->i_ino, inode->i_mode); 3612 } 3613 3614 /* 3615 * super.c 3616 */ 3617 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3618 void f2fs_inode_synced(struct inode *inode); 3619 int f2fs_dquot_initialize(struct inode *inode); 3620 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3621 int f2fs_quota_sync(struct super_block *sb, int type); 3622 loff_t max_file_blocks(struct inode *inode); 3623 void f2fs_quota_off_umount(struct super_block *sb); 3624 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag); 3625 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason); 3626 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); 3627 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error); 3628 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3629 int f2fs_sync_fs(struct super_block *sb, int sync); 3630 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3631 3632 /* 3633 * hash.c 3634 */ 3635 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3636 3637 /* 3638 * node.c 3639 */ 3640 struct node_info; 3641 3642 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3643 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3644 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3645 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3646 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3647 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3648 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3649 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3650 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3651 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3652 struct node_info *ni, bool checkpoint_context); 3653 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3654 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3655 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3656 int f2fs_truncate_xattr_node(struct inode *inode); 3657 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3658 unsigned int seq_id); 3659 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3660 int f2fs_remove_inode_page(struct inode *inode); 3661 struct page *f2fs_new_inode_page(struct inode *inode); 3662 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3663 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3664 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3665 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3666 int f2fs_move_node_page(struct page *node_page, int gc_type); 3667 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3668 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3669 struct writeback_control *wbc, bool atomic, 3670 unsigned int *seq_id); 3671 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3672 struct writeback_control *wbc, 3673 bool do_balance, enum iostat_type io_type); 3674 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3675 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3676 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3677 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3678 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3679 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3680 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3681 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3682 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3683 unsigned int segno, struct f2fs_summary_block *sum); 3684 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3685 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3686 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3687 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3688 int __init f2fs_create_node_manager_caches(void); 3689 void f2fs_destroy_node_manager_caches(void); 3690 3691 /* 3692 * segment.c 3693 */ 3694 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3695 int f2fs_commit_atomic_write(struct inode *inode); 3696 void f2fs_abort_atomic_write(struct inode *inode, bool clean); 3697 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3698 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3699 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3700 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3701 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3702 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3703 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3704 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3705 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3706 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3707 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3708 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3709 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3710 struct cp_control *cpc); 3711 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3712 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3713 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3714 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3715 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3716 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3717 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3718 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi); 3719 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3720 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3721 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3722 unsigned int start, unsigned int end); 3723 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3724 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi); 3725 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3726 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3727 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3728 struct cp_control *cpc); 3729 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3730 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3731 block_t blk_addr); 3732 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio, 3733 enum iostat_type io_type); 3734 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3735 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3736 struct f2fs_io_info *fio); 3737 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3738 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3739 block_t old_blkaddr, block_t new_blkaddr, 3740 bool recover_curseg, bool recover_newaddr, 3741 bool from_gc); 3742 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3743 block_t old_addr, block_t new_addr, 3744 unsigned char version, bool recover_curseg, 3745 bool recover_newaddr); 3746 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi, 3747 enum log_type seg_type); 3748 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3749 block_t old_blkaddr, block_t *new_blkaddr, 3750 struct f2fs_summary *sum, int type, 3751 struct f2fs_io_info *fio); 3752 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3753 block_t blkaddr, unsigned int blkcnt); 3754 void f2fs_wait_on_page_writeback(struct page *page, 3755 enum page_type type, bool ordered, bool locked); 3756 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3757 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3758 block_t len); 3759 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3760 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3761 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3762 unsigned int val, int alloc); 3763 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3764 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi); 3765 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3766 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3767 int __init f2fs_create_segment_manager_caches(void); 3768 void f2fs_destroy_segment_manager_caches(void); 3769 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint); 3770 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3771 enum page_type type, enum temp_type temp); 3772 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi); 3773 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3774 unsigned int segno); 3775 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi, 3776 unsigned int segno); 3777 3778 #define DEF_FRAGMENT_SIZE 4 3779 #define MIN_FRAGMENT_SIZE 1 3780 #define MAX_FRAGMENT_SIZE 512 3781 3782 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3783 { 3784 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3785 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3786 } 3787 3788 /* 3789 * checkpoint.c 3790 */ 3791 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 3792 unsigned char reason); 3793 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); 3794 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3795 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3796 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3797 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3798 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3799 block_t blkaddr, int type); 3800 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi, 3801 block_t blkaddr, int type); 3802 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3803 int type, bool sync); 3804 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 3805 unsigned int ra_blocks); 3806 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3807 long nr_to_write, enum iostat_type io_type); 3808 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3809 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3810 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3811 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3812 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3813 unsigned int devidx, int type); 3814 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3815 unsigned int devidx, int type); 3816 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3817 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3818 void f2fs_add_orphan_inode(struct inode *inode); 3819 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3820 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3821 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3822 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); 3823 void f2fs_remove_dirty_inode(struct inode *inode); 3824 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 3825 bool from_cp); 3826 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3827 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3828 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3829 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3830 int __init f2fs_create_checkpoint_caches(void); 3831 void f2fs_destroy_checkpoint_caches(void); 3832 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3833 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3834 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3835 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3836 3837 /* 3838 * data.c 3839 */ 3840 int __init f2fs_init_bioset(void); 3841 void f2fs_destroy_bioset(void); 3842 bool f2fs_is_cp_guaranteed(struct page *page); 3843 int f2fs_init_bio_entry_cache(void); 3844 void f2fs_destroy_bio_entry_cache(void); 3845 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 3846 enum page_type type); 3847 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); 3848 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3849 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3850 struct inode *inode, struct page *page, 3851 nid_t ino, enum page_type type); 3852 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3853 struct bio **bio, struct page *page); 3854 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3855 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3856 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3857 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3858 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3859 block_t blk_addr, sector_t *sector); 3860 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3861 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3862 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3863 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3864 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3865 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index); 3866 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3867 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3868 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); 3869 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 3870 pgoff_t *next_pgofs); 3871 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3872 bool for_write); 3873 struct page *f2fs_get_new_data_page(struct inode *inode, 3874 struct page *ipage, pgoff_t index, bool new_i_size); 3875 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3876 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag); 3877 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3878 u64 start, u64 len); 3879 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3880 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3881 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3882 int f2fs_write_single_data_page(struct folio *folio, int *submitted, 3883 struct bio **bio, sector_t *last_block, 3884 struct writeback_control *wbc, 3885 enum iostat_type io_type, 3886 int compr_blocks, bool allow_balance); 3887 void f2fs_write_failed(struct inode *inode, loff_t to); 3888 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); 3889 bool f2fs_release_folio(struct folio *folio, gfp_t wait); 3890 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3891 void f2fs_clear_page_cache_dirty_tag(struct folio *folio); 3892 int f2fs_init_post_read_processing(void); 3893 void f2fs_destroy_post_read_processing(void); 3894 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3895 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3896 extern const struct iomap_ops f2fs_iomap_ops; 3897 3898 /* 3899 * gc.c 3900 */ 3901 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3902 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3903 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3904 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); 3905 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3906 int f2fs_gc_range(struct f2fs_sb_info *sbi, 3907 unsigned int start_seg, unsigned int end_seg, 3908 bool dry_run, unsigned int dry_run_sections); 3909 int f2fs_resize_fs(struct file *filp, __u64 block_count); 3910 int __init f2fs_create_garbage_collection_cache(void); 3911 void f2fs_destroy_garbage_collection_cache(void); 3912 /* victim selection function for cleaning and SSR */ 3913 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 3914 int gc_type, int type, char alloc_mode, 3915 unsigned long long age, bool one_time); 3916 3917 /* 3918 * recovery.c 3919 */ 3920 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3921 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3922 int __init f2fs_create_recovery_cache(void); 3923 void f2fs_destroy_recovery_cache(void); 3924 3925 /* 3926 * debug.c 3927 */ 3928 #ifdef CONFIG_F2FS_STAT_FS 3929 enum { 3930 DEVSTAT_INUSE, 3931 DEVSTAT_DIRTY, 3932 DEVSTAT_FULL, 3933 DEVSTAT_FREE, 3934 DEVSTAT_PREFREE, 3935 DEVSTAT_MAX, 3936 }; 3937 3938 struct f2fs_dev_stats { 3939 unsigned int devstats[2][DEVSTAT_MAX]; /* 0: segs, 1: secs */ 3940 }; 3941 3942 struct f2fs_stat_info { 3943 struct list_head stat_list; 3944 struct f2fs_sb_info *sbi; 3945 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3946 int main_area_segs, main_area_sections, main_area_zones; 3947 unsigned long long hit_cached[NR_EXTENT_CACHES]; 3948 unsigned long long hit_rbtree[NR_EXTENT_CACHES]; 3949 unsigned long long total_ext[NR_EXTENT_CACHES]; 3950 unsigned long long hit_total[NR_EXTENT_CACHES]; 3951 int ext_tree[NR_EXTENT_CACHES]; 3952 int zombie_tree[NR_EXTENT_CACHES]; 3953 int ext_node[NR_EXTENT_CACHES]; 3954 /* to count memory footprint */ 3955 unsigned long long ext_mem[NR_EXTENT_CACHES]; 3956 /* for read extent cache */ 3957 unsigned long long hit_largest; 3958 /* for block age extent cache */ 3959 unsigned long long allocated_data_blocks; 3960 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3961 int ndirty_data, ndirty_qdata; 3962 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3963 int nats, dirty_nats, sits, dirty_sits; 3964 int free_nids, avail_nids, alloc_nids; 3965 int total_count, utilization; 3966 int nr_wb_cp_data, nr_wb_data; 3967 int nr_rd_data, nr_rd_node, nr_rd_meta; 3968 int nr_dio_read, nr_dio_write; 3969 unsigned int io_skip_bggc, other_skip_bggc; 3970 int nr_flushing, nr_flushed, flush_list_empty; 3971 int nr_discarding, nr_discarded; 3972 int nr_discard_cmd; 3973 unsigned int undiscard_blks; 3974 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3975 unsigned int cur_ckpt_time, peak_ckpt_time; 3976 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3977 int compr_inode, swapfile_inode; 3978 unsigned long long compr_blocks; 3979 int aw_cnt, max_aw_cnt; 3980 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3981 unsigned int bimodal, avg_vblocks; 3982 int util_free, util_valid, util_invalid; 3983 int rsvd_segs, overp_segs; 3984 int dirty_count, node_pages, meta_pages, compress_pages; 3985 int compress_page_hit; 3986 int prefree_count, free_segs, free_secs; 3987 int cp_call_count[MAX_CALL_TYPE], cp_count; 3988 int gc_call_count[MAX_CALL_TYPE]; 3989 int gc_segs[2][2]; 3990 int gc_secs[2][2]; 3991 int tot_blks, data_blks, node_blks; 3992 int bg_data_blks, bg_node_blks; 3993 int curseg[NR_CURSEG_TYPE]; 3994 int cursec[NR_CURSEG_TYPE]; 3995 int curzone[NR_CURSEG_TYPE]; 3996 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3997 unsigned int full_seg[NR_CURSEG_TYPE]; 3998 unsigned int valid_blks[NR_CURSEG_TYPE]; 3999 4000 unsigned int meta_count[META_MAX]; 4001 unsigned int segment_count[2]; 4002 unsigned int block_count[2]; 4003 unsigned int inplace_count; 4004 unsigned long long base_mem, cache_mem, page_mem; 4005 struct f2fs_dev_stats *dev_stats; 4006 }; 4007 4008 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 4009 { 4010 return (struct f2fs_stat_info *)sbi->stat_info; 4011 } 4012 4013 #define stat_inc_cp_call_count(sbi, foreground) \ 4014 atomic_inc(&sbi->cp_call_count[(foreground)]) 4015 #define stat_inc_cp_count(sbi) (F2FS_STAT(sbi)->cp_count++) 4016 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 4017 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 4018 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 4019 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 4020 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) 4021 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) 4022 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 4023 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) 4024 #define stat_inc_inline_xattr(inode) \ 4025 do { \ 4026 if (f2fs_has_inline_xattr(inode)) \ 4027 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 4028 } while (0) 4029 #define stat_dec_inline_xattr(inode) \ 4030 do { \ 4031 if (f2fs_has_inline_xattr(inode)) \ 4032 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 4033 } while (0) 4034 #define stat_inc_inline_inode(inode) \ 4035 do { \ 4036 if (f2fs_has_inline_data(inode)) \ 4037 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 4038 } while (0) 4039 #define stat_dec_inline_inode(inode) \ 4040 do { \ 4041 if (f2fs_has_inline_data(inode)) \ 4042 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 4043 } while (0) 4044 #define stat_inc_inline_dir(inode) \ 4045 do { \ 4046 if (f2fs_has_inline_dentry(inode)) \ 4047 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 4048 } while (0) 4049 #define stat_dec_inline_dir(inode) \ 4050 do { \ 4051 if (f2fs_has_inline_dentry(inode)) \ 4052 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 4053 } while (0) 4054 #define stat_inc_compr_inode(inode) \ 4055 do { \ 4056 if (f2fs_compressed_file(inode)) \ 4057 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 4058 } while (0) 4059 #define stat_dec_compr_inode(inode) \ 4060 do { \ 4061 if (f2fs_compressed_file(inode)) \ 4062 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 4063 } while (0) 4064 #define stat_add_compr_blocks(inode, blocks) \ 4065 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4066 #define stat_sub_compr_blocks(inode, blocks) \ 4067 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4068 #define stat_inc_swapfile_inode(inode) \ 4069 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) 4070 #define stat_dec_swapfile_inode(inode) \ 4071 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) 4072 #define stat_inc_atomic_inode(inode) \ 4073 (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) 4074 #define stat_dec_atomic_inode(inode) \ 4075 (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) 4076 #define stat_inc_meta_count(sbi, blkaddr) \ 4077 do { \ 4078 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 4079 atomic_inc(&(sbi)->meta_count[META_CP]); \ 4080 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 4081 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 4082 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 4083 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 4084 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 4085 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 4086 } while (0) 4087 #define stat_inc_seg_type(sbi, curseg) \ 4088 ((sbi)->segment_count[(curseg)->alloc_type]++) 4089 #define stat_inc_block_count(sbi, curseg) \ 4090 ((sbi)->block_count[(curseg)->alloc_type]++) 4091 #define stat_inc_inplace_blocks(sbi) \ 4092 (atomic_inc(&(sbi)->inplace_count)) 4093 #define stat_update_max_atomic_write(inode) \ 4094 do { \ 4095 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ 4096 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 4097 if (cur > max) \ 4098 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 4099 } while (0) 4100 #define stat_inc_gc_call_count(sbi, foreground) \ 4101 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++) 4102 #define stat_inc_gc_sec_count(sbi, type, gc_type) \ 4103 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++) 4104 #define stat_inc_gc_seg_count(sbi, type, gc_type) \ 4105 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++) 4106 4107 #define stat_inc_tot_blk_count(si, blks) \ 4108 ((si)->tot_blks += (blks)) 4109 4110 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 4111 do { \ 4112 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4113 stat_inc_tot_blk_count(si, blks); \ 4114 si->data_blks += (blks); \ 4115 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4116 } while (0) 4117 4118 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 4119 do { \ 4120 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4121 stat_inc_tot_blk_count(si, blks); \ 4122 si->node_blks += (blks); \ 4123 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4124 } while (0) 4125 4126 int f2fs_build_stats(struct f2fs_sb_info *sbi); 4127 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 4128 void __init f2fs_create_root_stats(void); 4129 void f2fs_destroy_root_stats(void); 4130 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 4131 #else 4132 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0) 4133 #define stat_inc_cp_count(sbi) do { } while (0) 4134 #define stat_io_skip_bggc_count(sbi) do { } while (0) 4135 #define stat_other_skip_bggc_count(sbi) do { } while (0) 4136 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 4137 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 4138 #define stat_inc_total_hit(sbi, type) do { } while (0) 4139 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) 4140 #define stat_inc_largest_node_hit(sbi) do { } while (0) 4141 #define stat_inc_cached_node_hit(sbi, type) do { } while (0) 4142 #define stat_inc_inline_xattr(inode) do { } while (0) 4143 #define stat_dec_inline_xattr(inode) do { } while (0) 4144 #define stat_inc_inline_inode(inode) do { } while (0) 4145 #define stat_dec_inline_inode(inode) do { } while (0) 4146 #define stat_inc_inline_dir(inode) do { } while (0) 4147 #define stat_dec_inline_dir(inode) do { } while (0) 4148 #define stat_inc_compr_inode(inode) do { } while (0) 4149 #define stat_dec_compr_inode(inode) do { } while (0) 4150 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 4151 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 4152 #define stat_inc_swapfile_inode(inode) do { } while (0) 4153 #define stat_dec_swapfile_inode(inode) do { } while (0) 4154 #define stat_inc_atomic_inode(inode) do { } while (0) 4155 #define stat_dec_atomic_inode(inode) do { } while (0) 4156 #define stat_update_max_atomic_write(inode) do { } while (0) 4157 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 4158 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 4159 #define stat_inc_block_count(sbi, curseg) do { } while (0) 4160 #define stat_inc_inplace_blocks(sbi) do { } while (0) 4161 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0) 4162 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0) 4163 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0) 4164 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 4165 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 4166 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 4167 4168 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 4169 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 4170 static inline void __init f2fs_create_root_stats(void) { } 4171 static inline void f2fs_destroy_root_stats(void) { } 4172 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 4173 #endif 4174 4175 extern const struct file_operations f2fs_dir_operations; 4176 extern const struct file_operations f2fs_file_operations; 4177 extern const struct inode_operations f2fs_file_inode_operations; 4178 extern const struct address_space_operations f2fs_dblock_aops; 4179 extern const struct address_space_operations f2fs_node_aops; 4180 extern const struct address_space_operations f2fs_meta_aops; 4181 extern const struct inode_operations f2fs_dir_inode_operations; 4182 extern const struct inode_operations f2fs_symlink_inode_operations; 4183 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 4184 extern const struct inode_operations f2fs_special_inode_operations; 4185 extern struct kmem_cache *f2fs_inode_entry_slab; 4186 4187 /* 4188 * inline.c 4189 */ 4190 bool f2fs_may_inline_data(struct inode *inode); 4191 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage); 4192 bool f2fs_may_inline_dentry(struct inode *inode); 4193 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage); 4194 void f2fs_truncate_inline_inode(struct inode *inode, 4195 struct page *ipage, u64 from); 4196 int f2fs_read_inline_data(struct inode *inode, struct folio *folio); 4197 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 4198 int f2fs_convert_inline_inode(struct inode *inode); 4199 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 4200 int f2fs_write_inline_data(struct inode *inode, struct folio *folio); 4201 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 4202 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 4203 const struct f2fs_filename *fname, 4204 struct page **res_page); 4205 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 4206 struct page *ipage); 4207 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 4208 struct inode *inode, nid_t ino, umode_t mode); 4209 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 4210 struct page *page, struct inode *dir, 4211 struct inode *inode); 4212 bool f2fs_empty_inline_dir(struct inode *dir); 4213 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 4214 struct fscrypt_str *fstr); 4215 int f2fs_inline_data_fiemap(struct inode *inode, 4216 struct fiemap_extent_info *fieinfo, 4217 __u64 start, __u64 len); 4218 4219 /* 4220 * shrinker.c 4221 */ 4222 unsigned long f2fs_shrink_count(struct shrinker *shrink, 4223 struct shrink_control *sc); 4224 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 4225 struct shrink_control *sc); 4226 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 4227 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 4228 4229 /* 4230 * extent_cache.c 4231 */ 4232 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage); 4233 void f2fs_init_extent_tree(struct inode *inode); 4234 void f2fs_drop_extent_tree(struct inode *inode); 4235 void f2fs_destroy_extent_node(struct inode *inode); 4236 void f2fs_destroy_extent_tree(struct inode *inode); 4237 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 4238 int __init f2fs_create_extent_cache(void); 4239 void f2fs_destroy_extent_cache(void); 4240 4241 /* read extent cache ops */ 4242 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); 4243 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 4244 struct extent_info *ei); 4245 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, 4246 block_t *blkaddr); 4247 void f2fs_update_read_extent_cache(struct dnode_of_data *dn); 4248 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 4249 pgoff_t fofs, block_t blkaddr, unsigned int len); 4250 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, 4251 int nr_shrink); 4252 4253 /* block age extent cache ops */ 4254 void f2fs_init_age_extent_tree(struct inode *inode); 4255 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 4256 struct extent_info *ei); 4257 void f2fs_update_age_extent_cache(struct dnode_of_data *dn); 4258 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 4259 pgoff_t fofs, unsigned int len); 4260 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, 4261 int nr_shrink); 4262 4263 /* 4264 * sysfs.c 4265 */ 4266 #define MIN_RA_MUL 2 4267 #define MAX_RA_MUL 256 4268 4269 int __init f2fs_init_sysfs(void); 4270 void f2fs_exit_sysfs(void); 4271 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4272 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4273 4274 /* verity.c */ 4275 extern const struct fsverity_operations f2fs_verityops; 4276 4277 /* 4278 * crypto support 4279 */ 4280 static inline bool f2fs_encrypted_file(struct inode *inode) 4281 { 4282 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4283 } 4284 4285 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4286 { 4287 #ifdef CONFIG_FS_ENCRYPTION 4288 file_set_encrypt(inode); 4289 f2fs_set_inode_flags(inode); 4290 #endif 4291 } 4292 4293 /* 4294 * Returns true if the reads of the inode's data need to undergo some 4295 * postprocessing step, like decryption or authenticity verification. 4296 */ 4297 static inline bool f2fs_post_read_required(struct inode *inode) 4298 { 4299 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4300 f2fs_compressed_file(inode); 4301 } 4302 4303 static inline bool f2fs_used_in_atomic_write(struct inode *inode) 4304 { 4305 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode); 4306 } 4307 4308 static inline bool f2fs_meta_inode_gc_required(struct inode *inode) 4309 { 4310 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode); 4311 } 4312 4313 /* 4314 * compress.c 4315 */ 4316 #ifdef CONFIG_F2FS_FS_COMPRESSION 4317 enum cluster_check_type { 4318 CLUSTER_IS_COMPR, /* check only if compressed cluster */ 4319 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */ 4320 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */ 4321 }; 4322 bool f2fs_is_compressed_page(struct page *page); 4323 struct page *f2fs_compress_control_page(struct page *page); 4324 int f2fs_prepare_compress_overwrite(struct inode *inode, 4325 struct page **pagep, pgoff_t index, void **fsdata); 4326 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4327 pgoff_t index, unsigned copied); 4328 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4329 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4330 bool f2fs_is_compress_backend_ready(struct inode *inode); 4331 bool f2fs_is_compress_level_valid(int alg, int lvl); 4332 int __init f2fs_init_compress_mempool(void); 4333 void f2fs_destroy_compress_mempool(void); 4334 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); 4335 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4336 block_t blkaddr, bool in_task); 4337 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4338 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4339 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 4340 int index, int nr_pages, bool uptodate); 4341 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4342 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio); 4343 int f2fs_write_multi_pages(struct compress_ctx *cc, 4344 int *submitted, 4345 struct writeback_control *wbc, 4346 enum iostat_type io_type); 4347 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4348 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index); 4349 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 4350 pgoff_t fofs, block_t blkaddr, 4351 unsigned int llen, unsigned int c_len); 4352 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4353 unsigned nr_pages, sector_t *last_block_in_bio, 4354 struct readahead_control *rac, bool for_write); 4355 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4356 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 4357 bool in_task); 4358 void f2fs_put_page_dic(struct page *page, bool in_task); 4359 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn, 4360 unsigned int ofs_in_node); 4361 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4362 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4363 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4364 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4365 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4366 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4367 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4368 int __init f2fs_init_compress_cache(void); 4369 void f2fs_destroy_compress_cache(void); 4370 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4371 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4372 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4373 nid_t ino, block_t blkaddr); 4374 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4375 block_t blkaddr); 4376 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4377 #define inc_compr_inode_stat(inode) \ 4378 do { \ 4379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4380 sbi->compr_new_inode++; \ 4381 } while (0) 4382 #define add_compr_block_stat(inode, blocks) \ 4383 do { \ 4384 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4385 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4386 sbi->compr_written_block += blocks; \ 4387 sbi->compr_saved_block += diff; \ 4388 } while (0) 4389 #else 4390 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4391 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4392 { 4393 if (!f2fs_compressed_file(inode)) 4394 return true; 4395 /* not support compression */ 4396 return false; 4397 } 4398 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; } 4399 static inline struct page *f2fs_compress_control_page(struct page *page) 4400 { 4401 WARN_ON_ONCE(1); 4402 return ERR_PTR(-EINVAL); 4403 } 4404 static inline int __init f2fs_init_compress_mempool(void) { return 0; } 4405 static inline void f2fs_destroy_compress_mempool(void) { } 4406 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, 4407 bool in_task) { } 4408 static inline void f2fs_end_read_compressed_page(struct page *page, 4409 bool failed, block_t blkaddr, bool in_task) 4410 { 4411 WARN_ON_ONCE(1); 4412 } 4413 static inline void f2fs_put_page_dic(struct page *page, bool in_task) 4414 { 4415 WARN_ON_ONCE(1); 4416 } 4417 static inline unsigned int f2fs_cluster_blocks_are_contiguous( 4418 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; } 4419 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4420 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4421 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4422 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4423 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4424 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4425 static inline void f2fs_destroy_compress_cache(void) { } 4426 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4427 block_t blkaddr) { } 4428 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4429 struct page *page, nid_t ino, block_t blkaddr) { } 4430 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4431 struct page *page, block_t blkaddr) { return false; } 4432 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4433 nid_t ino) { } 4434 #define inc_compr_inode_stat(inode) do { } while (0) 4435 static inline int f2fs_is_compressed_cluster( 4436 struct inode *inode, 4437 pgoff_t index) { return 0; } 4438 static inline bool f2fs_is_sparse_cluster( 4439 struct inode *inode, 4440 pgoff_t index) { return true; } 4441 static inline void f2fs_update_read_extent_tree_range_compressed( 4442 struct inode *inode, 4443 pgoff_t fofs, block_t blkaddr, 4444 unsigned int llen, unsigned int c_len) { } 4445 #endif 4446 4447 static inline int set_compress_context(struct inode *inode) 4448 { 4449 #ifdef CONFIG_F2FS_FS_COMPRESSION 4450 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4451 struct f2fs_inode_info *fi = F2FS_I(inode); 4452 4453 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm; 4454 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size; 4455 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ? 4456 BIT(COMPRESS_CHKSUM) : 0; 4457 fi->i_cluster_size = BIT(fi->i_log_cluster_size); 4458 if ((fi->i_compress_algorithm == COMPRESS_LZ4 || 4459 fi->i_compress_algorithm == COMPRESS_ZSTD) && 4460 F2FS_OPTION(sbi).compress_level) 4461 fi->i_compress_level = F2FS_OPTION(sbi).compress_level; 4462 fi->i_flags |= F2FS_COMPR_FL; 4463 set_inode_flag(inode, FI_COMPRESSED_FILE); 4464 stat_inc_compr_inode(inode); 4465 inc_compr_inode_stat(inode); 4466 f2fs_mark_inode_dirty_sync(inode, true); 4467 return 0; 4468 #else 4469 return -EOPNOTSUPP; 4470 #endif 4471 } 4472 4473 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4474 { 4475 struct f2fs_inode_info *fi = F2FS_I(inode); 4476 4477 f2fs_down_write(&fi->i_sem); 4478 4479 if (!f2fs_compressed_file(inode)) { 4480 f2fs_up_write(&fi->i_sem); 4481 return true; 4482 } 4483 if (f2fs_is_mmap_file(inode) || 4484 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) { 4485 f2fs_up_write(&fi->i_sem); 4486 return false; 4487 } 4488 4489 fi->i_flags &= ~F2FS_COMPR_FL; 4490 stat_dec_compr_inode(inode); 4491 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4492 f2fs_mark_inode_dirty_sync(inode, true); 4493 4494 f2fs_up_write(&fi->i_sem); 4495 return true; 4496 } 4497 4498 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4499 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4500 { \ 4501 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4502 } 4503 4504 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4505 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4506 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4507 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4508 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4509 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4510 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4511 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4512 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4513 F2FS_FEATURE_FUNCS(verity, VERITY); 4514 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4515 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4516 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4517 F2FS_FEATURE_FUNCS(readonly, RO); 4518 F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS); 4519 4520 #ifdef CONFIG_BLK_DEV_ZONED 4521 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4522 block_t blkaddr) 4523 { 4524 unsigned int zno = blkaddr / sbi->blocks_per_blkz; 4525 4526 return test_bit(zno, FDEV(devi).blkz_seq); 4527 } 4528 #endif 4529 4530 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi, 4531 struct block_device *bdev) 4532 { 4533 int i; 4534 4535 if (!f2fs_is_multi_device(sbi)) 4536 return 0; 4537 4538 for (i = 0; i < sbi->s_ndevs; i++) 4539 if (FDEV(i).bdev == bdev) 4540 return i; 4541 4542 WARN_ON(1); 4543 return -1; 4544 } 4545 4546 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4547 { 4548 return f2fs_sb_has_blkzoned(sbi); 4549 } 4550 4551 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4552 { 4553 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); 4554 } 4555 4556 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4557 { 4558 int i; 4559 4560 if (!f2fs_is_multi_device(sbi)) 4561 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4562 4563 for (i = 0; i < sbi->s_ndevs; i++) 4564 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4565 return true; 4566 return false; 4567 } 4568 4569 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4570 { 4571 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4572 f2fs_hw_should_discard(sbi); 4573 } 4574 4575 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4576 { 4577 int i; 4578 4579 if (!f2fs_is_multi_device(sbi)) 4580 return bdev_read_only(sbi->sb->s_bdev); 4581 4582 for (i = 0; i < sbi->s_ndevs; i++) 4583 if (bdev_read_only(FDEV(i).bdev)) 4584 return true; 4585 return false; 4586 } 4587 4588 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi) 4589 { 4590 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi); 4591 } 4592 4593 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4594 { 4595 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4596 } 4597 4598 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi, 4599 block_t blkaddr) 4600 { 4601 if (f2fs_sb_has_blkzoned(sbi)) { 4602 int devi = f2fs_target_device_index(sbi, blkaddr); 4603 4604 return !bdev_is_zoned(FDEV(devi).bdev); 4605 } 4606 return true; 4607 } 4608 4609 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) 4610 { 4611 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; 4612 } 4613 4614 static inline bool f2fs_may_compress(struct inode *inode) 4615 { 4616 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4617 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) || 4618 f2fs_is_mmap_file(inode)) 4619 return false; 4620 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4621 } 4622 4623 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4624 u64 blocks, bool add) 4625 { 4626 struct f2fs_inode_info *fi = F2FS_I(inode); 4627 int diff = fi->i_cluster_size - blocks; 4628 4629 /* don't update i_compr_blocks if saved blocks were released */ 4630 if (!add && !atomic_read(&fi->i_compr_blocks)) 4631 return; 4632 4633 if (add) { 4634 atomic_add(diff, &fi->i_compr_blocks); 4635 stat_add_compr_blocks(inode, diff); 4636 } else { 4637 atomic_sub(diff, &fi->i_compr_blocks); 4638 stat_sub_compr_blocks(inode, diff); 4639 } 4640 f2fs_mark_inode_dirty_sync(inode, true); 4641 } 4642 4643 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4644 int flag) 4645 { 4646 if (!f2fs_is_multi_device(sbi)) 4647 return false; 4648 if (flag != F2FS_GET_BLOCK_DIO) 4649 return false; 4650 return sbi->aligned_blksize; 4651 } 4652 4653 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4654 { 4655 return fsverity_active(inode) && 4656 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4657 } 4658 4659 #ifdef CONFIG_F2FS_FAULT_INJECTION 4660 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 4661 unsigned long type); 4662 #else 4663 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 4664 unsigned long rate, unsigned long type) 4665 { 4666 return 0; 4667 } 4668 #endif 4669 4670 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4671 { 4672 #ifdef CONFIG_QUOTA 4673 if (f2fs_sb_has_quota_ino(sbi)) 4674 return true; 4675 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4676 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4677 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4678 return true; 4679 #endif 4680 return false; 4681 } 4682 4683 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4684 { 4685 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4686 } 4687 4688 static inline void f2fs_io_schedule_timeout(long timeout) 4689 { 4690 set_current_state(TASK_UNINTERRUPTIBLE); 4691 io_schedule_timeout(timeout); 4692 } 4693 4694 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, 4695 struct folio *folio, enum page_type type) 4696 { 4697 pgoff_t ofs = folio->index; 4698 4699 if (unlikely(f2fs_cp_error(sbi))) 4700 return; 4701 4702 if (ofs == sbi->page_eio_ofs[type]) { 4703 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) 4704 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4705 } else { 4706 sbi->page_eio_ofs[type] = ofs; 4707 sbi->page_eio_cnt[type] = 0; 4708 } 4709 } 4710 4711 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) 4712 { 4713 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); 4714 } 4715 4716 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi, 4717 block_t blkaddr, unsigned int cnt) 4718 { 4719 bool need_submit = false; 4720 int i = 0; 4721 4722 do { 4723 struct page *page; 4724 4725 page = find_get_page(META_MAPPING(sbi), blkaddr + i); 4726 if (page) { 4727 if (folio_test_writeback(page_folio(page))) 4728 need_submit = true; 4729 f2fs_put_page(page, 0); 4730 } 4731 } while (++i < cnt && !need_submit); 4732 4733 if (need_submit) 4734 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode, 4735 NULL, 0, DATA); 4736 4737 truncate_inode_pages_range(META_MAPPING(sbi), 4738 F2FS_BLK_TO_BYTES((loff_t)blkaddr), 4739 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1))); 4740 } 4741 4742 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi, 4743 block_t blkaddr) 4744 { 4745 f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1); 4746 f2fs_invalidate_compress_page(sbi, blkaddr); 4747 } 4748 4749 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4750 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4751 4752 #endif /* _LINUX_F2FS_H */ 4753