1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/cred.h> 23 #include <linux/vmalloc.h> 24 #include <linux/bio.h> 25 #include <linux/blkdev.h> 26 #include <linux/quotaops.h> 27 #include <crypto/hash.h> 28 29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 30 #include <linux/fscrypt.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 enum { 45 FAULT_KMALLOC, 46 FAULT_KVMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_PAGE_GET, 49 FAULT_ALLOC_BIO, 50 FAULT_ALLOC_NID, 51 FAULT_ORPHAN, 52 FAULT_BLOCK, 53 FAULT_DIR_DEPTH, 54 FAULT_EVICT_INODE, 55 FAULT_TRUNCATE, 56 FAULT_IO, 57 FAULT_CHECKPOINT, 58 FAULT_DISCARD, 59 FAULT_MAX, 60 }; 61 62 #ifdef CONFIG_F2FS_FAULT_INJECTION 63 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 64 65 struct f2fs_fault_info { 66 atomic_t inject_ops; 67 unsigned int inject_rate; 68 unsigned int inject_type; 69 }; 70 71 extern char *f2fs_fault_name[FAULT_MAX]; 72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 73 #endif 74 75 /* 76 * For mount options 77 */ 78 #define F2FS_MOUNT_BG_GC 0x00000001 79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 80 #define F2FS_MOUNT_DISCARD 0x00000004 81 #define F2FS_MOUNT_NOHEAP 0x00000008 82 #define F2FS_MOUNT_XATTR_USER 0x00000010 83 #define F2FS_MOUNT_POSIX_ACL 0x00000020 84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 85 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 86 #define F2FS_MOUNT_INLINE_DATA 0x00000100 87 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 88 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 89 #define F2FS_MOUNT_NOBARRIER 0x00000800 90 #define F2FS_MOUNT_FASTBOOT 0x00001000 91 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 92 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 93 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 94 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 95 #define F2FS_MOUNT_ADAPTIVE 0x00020000 96 #define F2FS_MOUNT_LFS 0x00040000 97 #define F2FS_MOUNT_USRQUOTA 0x00080000 98 #define F2FS_MOUNT_GRPQUOTA 0x00100000 99 #define F2FS_MOUNT_PRJQUOTA 0x00200000 100 #define F2FS_MOUNT_QUOTA 0x00400000 101 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 102 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 103 104 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 105 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 106 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 107 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 108 109 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 110 typecheck(unsigned long long, b) && \ 111 ((long long)((a) - (b)) > 0)) 112 113 typedef u32 block_t; /* 114 * should not change u32, since it is the on-disk block 115 * address format, __le32. 116 */ 117 typedef u32 nid_t; 118 119 struct f2fs_mount_info { 120 unsigned int opt; 121 int write_io_size_bits; /* Write IO size bits */ 122 block_t root_reserved_blocks; /* root reserved blocks */ 123 kuid_t s_resuid; /* reserved blocks for uid */ 124 kgid_t s_resgid; /* reserved blocks for gid */ 125 int active_logs; /* # of active logs */ 126 int inline_xattr_size; /* inline xattr size */ 127 #ifdef CONFIG_F2FS_FAULT_INJECTION 128 struct f2fs_fault_info fault_info; /* For fault injection */ 129 #endif 130 #ifdef CONFIG_QUOTA 131 /* Names of quota files with journalled quota */ 132 char *s_qf_names[MAXQUOTAS]; 133 int s_jquota_fmt; /* Format of quota to use */ 134 #endif 135 /* For which write hints are passed down to block layer */ 136 int whint_mode; 137 int alloc_mode; /* segment allocation policy */ 138 int fsync_mode; /* fsync policy */ 139 bool test_dummy_encryption; /* test dummy encryption */ 140 }; 141 142 #define F2FS_FEATURE_ENCRYPT 0x0001 143 #define F2FS_FEATURE_BLKZONED 0x0002 144 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 145 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 146 #define F2FS_FEATURE_PRJQUOTA 0x0010 147 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 148 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 149 #define F2FS_FEATURE_QUOTA_INO 0x0080 150 #define F2FS_FEATURE_INODE_CRTIME 0x0100 151 #define F2FS_FEATURE_LOST_FOUND 0x0200 152 #define F2FS_FEATURE_VERITY 0x0400 /* reserved */ 153 154 #define F2FS_HAS_FEATURE(sb, mask) \ 155 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 156 #define F2FS_SET_FEATURE(sb, mask) \ 157 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 158 #define F2FS_CLEAR_FEATURE(sb, mask) \ 159 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 160 161 /* 162 * Default values for user and/or group using reserved blocks 163 */ 164 #define F2FS_DEF_RESUID 0 165 #define F2FS_DEF_RESGID 0 166 167 /* 168 * For checkpoint manager 169 */ 170 enum { 171 NAT_BITMAP, 172 SIT_BITMAP 173 }; 174 175 #define CP_UMOUNT 0x00000001 176 #define CP_FASTBOOT 0x00000002 177 #define CP_SYNC 0x00000004 178 #define CP_RECOVERY 0x00000008 179 #define CP_DISCARD 0x00000010 180 #define CP_TRIMMED 0x00000020 181 182 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 183 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 184 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 185 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 186 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 187 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 188 #define DEF_CP_INTERVAL 60 /* 60 secs */ 189 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 190 191 struct cp_control { 192 int reason; 193 __u64 trim_start; 194 __u64 trim_end; 195 __u64 trim_minlen; 196 }; 197 198 /* 199 * indicate meta/data type 200 */ 201 enum { 202 META_CP, 203 META_NAT, 204 META_SIT, 205 META_SSA, 206 META_POR, 207 DATA_GENERIC, 208 META_GENERIC, 209 }; 210 211 /* for the list of ino */ 212 enum { 213 ORPHAN_INO, /* for orphan ino list */ 214 APPEND_INO, /* for append ino list */ 215 UPDATE_INO, /* for update ino list */ 216 TRANS_DIR_INO, /* for trasactions dir ino list */ 217 FLUSH_INO, /* for multiple device flushing */ 218 MAX_INO_ENTRY, /* max. list */ 219 }; 220 221 struct ino_entry { 222 struct list_head list; /* list head */ 223 nid_t ino; /* inode number */ 224 unsigned int dirty_device; /* dirty device bitmap */ 225 }; 226 227 /* for the list of inodes to be GCed */ 228 struct inode_entry { 229 struct list_head list; /* list head */ 230 struct inode *inode; /* vfs inode pointer */ 231 }; 232 233 struct fsync_node_entry { 234 struct list_head list; /* list head */ 235 struct page *page; /* warm node page pointer */ 236 unsigned int seq_id; /* sequence id */ 237 }; 238 239 /* for the bitmap indicate blocks to be discarded */ 240 struct discard_entry { 241 struct list_head list; /* list head */ 242 block_t start_blkaddr; /* start blockaddr of current segment */ 243 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 244 }; 245 246 /* default discard granularity of inner discard thread, unit: block count */ 247 #define DEFAULT_DISCARD_GRANULARITY 16 248 249 /* max discard pend list number */ 250 #define MAX_PLIST_NUM 512 251 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 252 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 253 254 enum { 255 D_PREP, /* initial */ 256 D_PARTIAL, /* partially submitted */ 257 D_SUBMIT, /* all submitted */ 258 D_DONE, /* finished */ 259 }; 260 261 struct discard_info { 262 block_t lstart; /* logical start address */ 263 block_t len; /* length */ 264 block_t start; /* actual start address in dev */ 265 }; 266 267 struct discard_cmd { 268 struct rb_node rb_node; /* rb node located in rb-tree */ 269 union { 270 struct { 271 block_t lstart; /* logical start address */ 272 block_t len; /* length */ 273 block_t start; /* actual start address in dev */ 274 }; 275 struct discard_info di; /* discard info */ 276 277 }; 278 struct list_head list; /* command list */ 279 struct completion wait; /* compleation */ 280 struct block_device *bdev; /* bdev */ 281 unsigned short ref; /* reference count */ 282 unsigned char state; /* state */ 283 unsigned char issuing; /* issuing discard */ 284 int error; /* bio error */ 285 spinlock_t lock; /* for state/bio_ref updating */ 286 unsigned short bio_ref; /* bio reference count */ 287 }; 288 289 enum { 290 DPOLICY_BG, 291 DPOLICY_FORCE, 292 DPOLICY_FSTRIM, 293 DPOLICY_UMOUNT, 294 MAX_DPOLICY, 295 }; 296 297 struct discard_policy { 298 int type; /* type of discard */ 299 unsigned int min_interval; /* used for candidates exist */ 300 unsigned int mid_interval; /* used for device busy */ 301 unsigned int max_interval; /* used for candidates not exist */ 302 unsigned int max_requests; /* # of discards issued per round */ 303 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 304 bool io_aware; /* issue discard in idle time */ 305 bool sync; /* submit discard with REQ_SYNC flag */ 306 bool ordered; /* issue discard by lba order */ 307 unsigned int granularity; /* discard granularity */ 308 }; 309 310 struct discard_cmd_control { 311 struct task_struct *f2fs_issue_discard; /* discard thread */ 312 struct list_head entry_list; /* 4KB discard entry list */ 313 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 314 struct list_head wait_list; /* store on-flushing entries */ 315 struct list_head fstrim_list; /* in-flight discard from fstrim */ 316 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 317 unsigned int discard_wake; /* to wake up discard thread */ 318 struct mutex cmd_lock; 319 unsigned int nr_discards; /* # of discards in the list */ 320 unsigned int max_discards; /* max. discards to be issued */ 321 unsigned int discard_granularity; /* discard granularity */ 322 unsigned int undiscard_blks; /* # of undiscard blocks */ 323 unsigned int next_pos; /* next discard position */ 324 atomic_t issued_discard; /* # of issued discard */ 325 atomic_t issing_discard; /* # of issing discard */ 326 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 327 struct rb_root root; /* root of discard rb-tree */ 328 bool rbtree_check; /* config for consistence check */ 329 }; 330 331 /* for the list of fsync inodes, used only during recovery */ 332 struct fsync_inode_entry { 333 struct list_head list; /* list head */ 334 struct inode *inode; /* vfs inode pointer */ 335 block_t blkaddr; /* block address locating the last fsync */ 336 block_t last_dentry; /* block address locating the last dentry */ 337 }; 338 339 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 340 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 341 342 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 343 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 344 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 345 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 346 347 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 348 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 349 350 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 351 { 352 int before = nats_in_cursum(journal); 353 354 journal->n_nats = cpu_to_le16(before + i); 355 return before; 356 } 357 358 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 359 { 360 int before = sits_in_cursum(journal); 361 362 journal->n_sits = cpu_to_le16(before + i); 363 return before; 364 } 365 366 static inline bool __has_cursum_space(struct f2fs_journal *journal, 367 int size, int type) 368 { 369 if (type == NAT_JOURNAL) 370 return size <= MAX_NAT_JENTRIES(journal); 371 return size <= MAX_SIT_JENTRIES(journal); 372 } 373 374 /* 375 * ioctl commands 376 */ 377 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 378 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 379 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 380 381 #define F2FS_IOCTL_MAGIC 0xf5 382 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 383 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 384 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 385 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 386 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 387 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 388 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 389 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 390 struct f2fs_defragment) 391 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 392 struct f2fs_move_range) 393 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 394 struct f2fs_flush_device) 395 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 396 struct f2fs_gc_range) 397 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 398 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 399 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 400 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 401 402 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 403 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 404 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 405 406 /* 407 * should be same as XFS_IOC_GOINGDOWN. 408 * Flags for going down operation used by FS_IOC_GOINGDOWN 409 */ 410 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 411 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 412 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 413 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 414 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 415 416 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 417 /* 418 * ioctl commands in 32 bit emulation 419 */ 420 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 421 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 422 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 423 #endif 424 425 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 426 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 427 428 struct f2fs_gc_range { 429 u32 sync; 430 u64 start; 431 u64 len; 432 }; 433 434 struct f2fs_defragment { 435 u64 start; 436 u64 len; 437 }; 438 439 struct f2fs_move_range { 440 u32 dst_fd; /* destination fd */ 441 u64 pos_in; /* start position in src_fd */ 442 u64 pos_out; /* start position in dst_fd */ 443 u64 len; /* size to move */ 444 }; 445 446 struct f2fs_flush_device { 447 u32 dev_num; /* device number to flush */ 448 u32 segments; /* # of segments to flush */ 449 }; 450 451 /* for inline stuff */ 452 #define DEF_INLINE_RESERVED_SIZE 1 453 #define DEF_MIN_INLINE_SIZE 1 454 static inline int get_extra_isize(struct inode *inode); 455 static inline int get_inline_xattr_addrs(struct inode *inode); 456 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 457 (CUR_ADDRS_PER_INODE(inode) - \ 458 get_inline_xattr_addrs(inode) - \ 459 DEF_INLINE_RESERVED_SIZE)) 460 461 /* for inline dir */ 462 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 463 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 464 BITS_PER_BYTE + 1)) 465 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 466 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 467 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 468 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 469 NR_INLINE_DENTRY(inode) + \ 470 INLINE_DENTRY_BITMAP_SIZE(inode))) 471 472 /* 473 * For INODE and NODE manager 474 */ 475 /* for directory operations */ 476 struct f2fs_dentry_ptr { 477 struct inode *inode; 478 void *bitmap; 479 struct f2fs_dir_entry *dentry; 480 __u8 (*filename)[F2FS_SLOT_LEN]; 481 int max; 482 int nr_bitmap; 483 }; 484 485 static inline void make_dentry_ptr_block(struct inode *inode, 486 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 487 { 488 d->inode = inode; 489 d->max = NR_DENTRY_IN_BLOCK; 490 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 491 d->bitmap = t->dentry_bitmap; 492 d->dentry = t->dentry; 493 d->filename = t->filename; 494 } 495 496 static inline void make_dentry_ptr_inline(struct inode *inode, 497 struct f2fs_dentry_ptr *d, void *t) 498 { 499 int entry_cnt = NR_INLINE_DENTRY(inode); 500 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 501 int reserved_size = INLINE_RESERVED_SIZE(inode); 502 503 d->inode = inode; 504 d->max = entry_cnt; 505 d->nr_bitmap = bitmap_size; 506 d->bitmap = t; 507 d->dentry = t + bitmap_size + reserved_size; 508 d->filename = t + bitmap_size + reserved_size + 509 SIZE_OF_DIR_ENTRY * entry_cnt; 510 } 511 512 /* 513 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 514 * as its node offset to distinguish from index node blocks. 515 * But some bits are used to mark the node block. 516 */ 517 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 518 >> OFFSET_BIT_SHIFT) 519 enum { 520 ALLOC_NODE, /* allocate a new node page if needed */ 521 LOOKUP_NODE, /* look up a node without readahead */ 522 LOOKUP_NODE_RA, /* 523 * look up a node with readahead called 524 * by get_data_block. 525 */ 526 }; 527 528 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */ 529 530 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 531 532 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 533 534 /* for in-memory extent cache entry */ 535 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 536 537 /* number of extent info in extent cache we try to shrink */ 538 #define EXTENT_CACHE_SHRINK_NUMBER 128 539 540 struct rb_entry { 541 struct rb_node rb_node; /* rb node located in rb-tree */ 542 unsigned int ofs; /* start offset of the entry */ 543 unsigned int len; /* length of the entry */ 544 }; 545 546 struct extent_info { 547 unsigned int fofs; /* start offset in a file */ 548 unsigned int len; /* length of the extent */ 549 u32 blk; /* start block address of the extent */ 550 }; 551 552 struct extent_node { 553 struct rb_node rb_node; 554 union { 555 struct { 556 unsigned int fofs; 557 unsigned int len; 558 u32 blk; 559 }; 560 struct extent_info ei; /* extent info */ 561 562 }; 563 struct list_head list; /* node in global extent list of sbi */ 564 struct extent_tree *et; /* extent tree pointer */ 565 }; 566 567 struct extent_tree { 568 nid_t ino; /* inode number */ 569 struct rb_root root; /* root of extent info rb-tree */ 570 struct extent_node *cached_en; /* recently accessed extent node */ 571 struct extent_info largest; /* largested extent info */ 572 struct list_head list; /* to be used by sbi->zombie_list */ 573 rwlock_t lock; /* protect extent info rb-tree */ 574 atomic_t node_cnt; /* # of extent node in rb-tree*/ 575 }; 576 577 /* 578 * This structure is taken from ext4_map_blocks. 579 * 580 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 581 */ 582 #define F2FS_MAP_NEW (1 << BH_New) 583 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 584 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 585 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 586 F2FS_MAP_UNWRITTEN) 587 588 struct f2fs_map_blocks { 589 block_t m_pblk; 590 block_t m_lblk; 591 unsigned int m_len; 592 unsigned int m_flags; 593 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 594 pgoff_t *m_next_extent; /* point to next possible extent */ 595 int m_seg_type; 596 }; 597 598 /* for flag in get_data_block */ 599 enum { 600 F2FS_GET_BLOCK_DEFAULT, 601 F2FS_GET_BLOCK_FIEMAP, 602 F2FS_GET_BLOCK_BMAP, 603 F2FS_GET_BLOCK_PRE_DIO, 604 F2FS_GET_BLOCK_PRE_AIO, 605 F2FS_GET_BLOCK_PRECACHE, 606 }; 607 608 /* 609 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 610 */ 611 #define FADVISE_COLD_BIT 0x01 612 #define FADVISE_LOST_PINO_BIT 0x02 613 #define FADVISE_ENCRYPT_BIT 0x04 614 #define FADVISE_ENC_NAME_BIT 0x08 615 #define FADVISE_KEEP_SIZE_BIT 0x10 616 #define FADVISE_HOT_BIT 0x20 617 #define FADVISE_VERITY_BIT 0x40 /* reserved */ 618 619 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 620 621 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 622 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 623 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 624 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 625 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 626 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 627 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 628 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 629 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 630 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 631 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 632 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 633 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 634 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 635 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 636 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 637 638 #define DEF_DIR_LEVEL 0 639 640 enum { 641 GC_FAILURE_PIN, 642 GC_FAILURE_ATOMIC, 643 MAX_GC_FAILURE 644 }; 645 646 struct f2fs_inode_info { 647 struct inode vfs_inode; /* serve a vfs inode */ 648 unsigned long i_flags; /* keep an inode flags for ioctl */ 649 unsigned char i_advise; /* use to give file attribute hints */ 650 unsigned char i_dir_level; /* use for dentry level for large dir */ 651 unsigned int i_current_depth; /* only for directory depth */ 652 /* for gc failure statistic */ 653 unsigned int i_gc_failures[MAX_GC_FAILURE]; 654 unsigned int i_pino; /* parent inode number */ 655 umode_t i_acl_mode; /* keep file acl mode temporarily */ 656 657 /* Use below internally in f2fs*/ 658 unsigned long flags; /* use to pass per-file flags */ 659 struct rw_semaphore i_sem; /* protect fi info */ 660 atomic_t dirty_pages; /* # of dirty pages */ 661 f2fs_hash_t chash; /* hash value of given file name */ 662 unsigned int clevel; /* maximum level of given file name */ 663 struct task_struct *task; /* lookup and create consistency */ 664 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 665 nid_t i_xattr_nid; /* node id that contains xattrs */ 666 loff_t last_disk_size; /* lastly written file size */ 667 668 #ifdef CONFIG_QUOTA 669 struct dquot *i_dquot[MAXQUOTAS]; 670 671 /* quota space reservation, managed internally by quota code */ 672 qsize_t i_reserved_quota; 673 #endif 674 struct list_head dirty_list; /* dirty list for dirs and files */ 675 struct list_head gdirty_list; /* linked in global dirty list */ 676 struct list_head inmem_ilist; /* list for inmem inodes */ 677 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 678 struct task_struct *inmem_task; /* store inmemory task */ 679 struct mutex inmem_lock; /* lock for inmemory pages */ 680 struct extent_tree *extent_tree; /* cached extent_tree entry */ 681 682 /* avoid racing between foreground op and gc */ 683 struct rw_semaphore i_gc_rwsem[2]; 684 struct rw_semaphore i_mmap_sem; 685 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 686 687 int i_extra_isize; /* size of extra space located in i_addr */ 688 kprojid_t i_projid; /* id for project quota */ 689 int i_inline_xattr_size; /* inline xattr size */ 690 struct timespec64 i_crtime; /* inode creation time */ 691 struct timespec64 i_disk_time[4];/* inode disk times */ 692 }; 693 694 static inline void get_extent_info(struct extent_info *ext, 695 struct f2fs_extent *i_ext) 696 { 697 ext->fofs = le32_to_cpu(i_ext->fofs); 698 ext->blk = le32_to_cpu(i_ext->blk); 699 ext->len = le32_to_cpu(i_ext->len); 700 } 701 702 static inline void set_raw_extent(struct extent_info *ext, 703 struct f2fs_extent *i_ext) 704 { 705 i_ext->fofs = cpu_to_le32(ext->fofs); 706 i_ext->blk = cpu_to_le32(ext->blk); 707 i_ext->len = cpu_to_le32(ext->len); 708 } 709 710 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 711 u32 blk, unsigned int len) 712 { 713 ei->fofs = fofs; 714 ei->blk = blk; 715 ei->len = len; 716 } 717 718 static inline bool __is_discard_mergeable(struct discard_info *back, 719 struct discard_info *front, unsigned int max_len) 720 { 721 return (back->lstart + back->len == front->lstart) && 722 (back->len + front->len <= max_len); 723 } 724 725 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 726 struct discard_info *back, unsigned int max_len) 727 { 728 return __is_discard_mergeable(back, cur, max_len); 729 } 730 731 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 732 struct discard_info *front, unsigned int max_len) 733 { 734 return __is_discard_mergeable(cur, front, max_len); 735 } 736 737 static inline bool __is_extent_mergeable(struct extent_info *back, 738 struct extent_info *front) 739 { 740 return (back->fofs + back->len == front->fofs && 741 back->blk + back->len == front->blk); 742 } 743 744 static inline bool __is_back_mergeable(struct extent_info *cur, 745 struct extent_info *back) 746 { 747 return __is_extent_mergeable(back, cur); 748 } 749 750 static inline bool __is_front_mergeable(struct extent_info *cur, 751 struct extent_info *front) 752 { 753 return __is_extent_mergeable(cur, front); 754 } 755 756 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 757 static inline void __try_update_largest_extent(struct inode *inode, 758 struct extent_tree *et, struct extent_node *en) 759 { 760 if (en->ei.len > et->largest.len) { 761 et->largest = en->ei; 762 f2fs_mark_inode_dirty_sync(inode, true); 763 } 764 } 765 766 /* 767 * For free nid management 768 */ 769 enum nid_state { 770 FREE_NID, /* newly added to free nid list */ 771 PREALLOC_NID, /* it is preallocated */ 772 MAX_NID_STATE, 773 }; 774 775 struct f2fs_nm_info { 776 block_t nat_blkaddr; /* base disk address of NAT */ 777 nid_t max_nid; /* maximum possible node ids */ 778 nid_t available_nids; /* # of available node ids */ 779 nid_t next_scan_nid; /* the next nid to be scanned */ 780 unsigned int ram_thresh; /* control the memory footprint */ 781 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 782 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 783 784 /* NAT cache management */ 785 struct radix_tree_root nat_root;/* root of the nat entry cache */ 786 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 787 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 788 struct list_head nat_entries; /* cached nat entry list (clean) */ 789 spinlock_t nat_list_lock; /* protect clean nat entry list */ 790 unsigned int nat_cnt; /* the # of cached nat entries */ 791 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 792 unsigned int nat_blocks; /* # of nat blocks */ 793 794 /* free node ids management */ 795 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 796 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 797 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 798 spinlock_t nid_list_lock; /* protect nid lists ops */ 799 struct mutex build_lock; /* lock for build free nids */ 800 unsigned char **free_nid_bitmap; 801 unsigned char *nat_block_bitmap; 802 unsigned short *free_nid_count; /* free nid count of NAT block */ 803 804 /* for checkpoint */ 805 char *nat_bitmap; /* NAT bitmap pointer */ 806 807 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 808 unsigned char *nat_bits; /* NAT bits blocks */ 809 unsigned char *full_nat_bits; /* full NAT pages */ 810 unsigned char *empty_nat_bits; /* empty NAT pages */ 811 #ifdef CONFIG_F2FS_CHECK_FS 812 char *nat_bitmap_mir; /* NAT bitmap mirror */ 813 #endif 814 int bitmap_size; /* bitmap size */ 815 }; 816 817 /* 818 * this structure is used as one of function parameters. 819 * all the information are dedicated to a given direct node block determined 820 * by the data offset in a file. 821 */ 822 struct dnode_of_data { 823 struct inode *inode; /* vfs inode pointer */ 824 struct page *inode_page; /* its inode page, NULL is possible */ 825 struct page *node_page; /* cached direct node page */ 826 nid_t nid; /* node id of the direct node block */ 827 unsigned int ofs_in_node; /* data offset in the node page */ 828 bool inode_page_locked; /* inode page is locked or not */ 829 bool node_changed; /* is node block changed */ 830 char cur_level; /* level of hole node page */ 831 char max_level; /* level of current page located */ 832 block_t data_blkaddr; /* block address of the node block */ 833 }; 834 835 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 836 struct page *ipage, struct page *npage, nid_t nid) 837 { 838 memset(dn, 0, sizeof(*dn)); 839 dn->inode = inode; 840 dn->inode_page = ipage; 841 dn->node_page = npage; 842 dn->nid = nid; 843 } 844 845 /* 846 * For SIT manager 847 * 848 * By default, there are 6 active log areas across the whole main area. 849 * When considering hot and cold data separation to reduce cleaning overhead, 850 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 851 * respectively. 852 * In the current design, you should not change the numbers intentionally. 853 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 854 * logs individually according to the underlying devices. (default: 6) 855 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 856 * data and 8 for node logs. 857 */ 858 #define NR_CURSEG_DATA_TYPE (3) 859 #define NR_CURSEG_NODE_TYPE (3) 860 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 861 862 enum { 863 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 864 CURSEG_WARM_DATA, /* data blocks */ 865 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 866 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 867 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 868 CURSEG_COLD_NODE, /* indirect node blocks */ 869 NO_CHECK_TYPE, 870 }; 871 872 struct flush_cmd { 873 struct completion wait; 874 struct llist_node llnode; 875 nid_t ino; 876 int ret; 877 }; 878 879 struct flush_cmd_control { 880 struct task_struct *f2fs_issue_flush; /* flush thread */ 881 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 882 atomic_t issued_flush; /* # of issued flushes */ 883 atomic_t issing_flush; /* # of issing flushes */ 884 struct llist_head issue_list; /* list for command issue */ 885 struct llist_node *dispatch_list; /* list for command dispatch */ 886 }; 887 888 struct f2fs_sm_info { 889 struct sit_info *sit_info; /* whole segment information */ 890 struct free_segmap_info *free_info; /* free segment information */ 891 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 892 struct curseg_info *curseg_array; /* active segment information */ 893 894 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 895 896 block_t seg0_blkaddr; /* block address of 0'th segment */ 897 block_t main_blkaddr; /* start block address of main area */ 898 block_t ssa_blkaddr; /* start block address of SSA area */ 899 900 unsigned int segment_count; /* total # of segments */ 901 unsigned int main_segments; /* # of segments in main area */ 902 unsigned int reserved_segments; /* # of reserved segments */ 903 unsigned int ovp_segments; /* # of overprovision segments */ 904 905 /* a threshold to reclaim prefree segments */ 906 unsigned int rec_prefree_segments; 907 908 /* for batched trimming */ 909 unsigned int trim_sections; /* # of sections to trim */ 910 911 struct list_head sit_entry_set; /* sit entry set list */ 912 913 unsigned int ipu_policy; /* in-place-update policy */ 914 unsigned int min_ipu_util; /* in-place-update threshold */ 915 unsigned int min_fsync_blocks; /* threshold for fsync */ 916 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 917 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 918 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 919 920 /* for flush command control */ 921 struct flush_cmd_control *fcc_info; 922 923 /* for discard command control */ 924 struct discard_cmd_control *dcc_info; 925 }; 926 927 /* 928 * For superblock 929 */ 930 /* 931 * COUNT_TYPE for monitoring 932 * 933 * f2fs monitors the number of several block types such as on-writeback, 934 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 935 */ 936 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 937 enum count_type { 938 F2FS_DIRTY_DENTS, 939 F2FS_DIRTY_DATA, 940 F2FS_DIRTY_QDATA, 941 F2FS_DIRTY_NODES, 942 F2FS_DIRTY_META, 943 F2FS_INMEM_PAGES, 944 F2FS_DIRTY_IMETA, 945 F2FS_WB_CP_DATA, 946 F2FS_WB_DATA, 947 NR_COUNT_TYPE, 948 }; 949 950 /* 951 * The below are the page types of bios used in submit_bio(). 952 * The available types are: 953 * DATA User data pages. It operates as async mode. 954 * NODE Node pages. It operates as async mode. 955 * META FS metadata pages such as SIT, NAT, CP. 956 * NR_PAGE_TYPE The number of page types. 957 * META_FLUSH Make sure the previous pages are written 958 * with waiting the bio's completion 959 * ... Only can be used with META. 960 */ 961 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 962 enum page_type { 963 DATA, 964 NODE, 965 META, 966 NR_PAGE_TYPE, 967 META_FLUSH, 968 INMEM, /* the below types are used by tracepoints only. */ 969 INMEM_DROP, 970 INMEM_INVALIDATE, 971 INMEM_REVOKE, 972 IPU, 973 OPU, 974 }; 975 976 enum temp_type { 977 HOT = 0, /* must be zero for meta bio */ 978 WARM, 979 COLD, 980 NR_TEMP_TYPE, 981 }; 982 983 enum need_lock_type { 984 LOCK_REQ = 0, 985 LOCK_DONE, 986 LOCK_RETRY, 987 }; 988 989 enum cp_reason_type { 990 CP_NO_NEEDED, 991 CP_NON_REGULAR, 992 CP_HARDLINK, 993 CP_SB_NEED_CP, 994 CP_WRONG_PINO, 995 CP_NO_SPC_ROLL, 996 CP_NODE_NEED_CP, 997 CP_FASTBOOT_MODE, 998 CP_SPEC_LOG_NUM, 999 CP_RECOVER_DIR, 1000 }; 1001 1002 enum iostat_type { 1003 APP_DIRECT_IO, /* app direct IOs */ 1004 APP_BUFFERED_IO, /* app buffered IOs */ 1005 APP_WRITE_IO, /* app write IOs */ 1006 APP_MAPPED_IO, /* app mapped IOs */ 1007 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1008 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1009 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1010 FS_GC_DATA_IO, /* data IOs from forground gc */ 1011 FS_GC_NODE_IO, /* node IOs from forground gc */ 1012 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1013 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1014 FS_CP_META_IO, /* meta IOs from checkpoint */ 1015 FS_DISCARD, /* discard */ 1016 NR_IO_TYPE, 1017 }; 1018 1019 struct f2fs_io_info { 1020 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1021 nid_t ino; /* inode number */ 1022 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1023 enum temp_type temp; /* contains HOT/WARM/COLD */ 1024 int op; /* contains REQ_OP_ */ 1025 int op_flags; /* req_flag_bits */ 1026 block_t new_blkaddr; /* new block address to be written */ 1027 block_t old_blkaddr; /* old block address before Cow */ 1028 struct page *page; /* page to be written */ 1029 struct page *encrypted_page; /* encrypted page */ 1030 struct list_head list; /* serialize IOs */ 1031 bool submitted; /* indicate IO submission */ 1032 int need_lock; /* indicate we need to lock cp_rwsem */ 1033 bool in_list; /* indicate fio is in io_list */ 1034 bool is_meta; /* indicate borrow meta inode mapping or not */ 1035 bool retry; /* need to reallocate block address */ 1036 enum iostat_type io_type; /* io type */ 1037 struct writeback_control *io_wbc; /* writeback control */ 1038 unsigned char version; /* version of the node */ 1039 }; 1040 1041 #define is_read_io(rw) ((rw) == READ) 1042 struct f2fs_bio_info { 1043 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1044 struct bio *bio; /* bios to merge */ 1045 sector_t last_block_in_bio; /* last block number */ 1046 struct f2fs_io_info fio; /* store buffered io info. */ 1047 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1048 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1049 struct list_head io_list; /* track fios */ 1050 }; 1051 1052 #define FDEV(i) (sbi->devs[i]) 1053 #define RDEV(i) (raw_super->devs[i]) 1054 struct f2fs_dev_info { 1055 struct block_device *bdev; 1056 char path[MAX_PATH_LEN]; 1057 unsigned int total_segments; 1058 block_t start_blk; 1059 block_t end_blk; 1060 #ifdef CONFIG_BLK_DEV_ZONED 1061 unsigned int nr_blkz; /* Total number of zones */ 1062 u8 *blkz_type; /* Array of zones type */ 1063 #endif 1064 }; 1065 1066 enum inode_type { 1067 DIR_INODE, /* for dirty dir inode */ 1068 FILE_INODE, /* for dirty regular/symlink inode */ 1069 DIRTY_META, /* for all dirtied inode metadata */ 1070 ATOMIC_FILE, /* for all atomic files */ 1071 NR_INODE_TYPE, 1072 }; 1073 1074 /* for inner inode cache management */ 1075 struct inode_management { 1076 struct radix_tree_root ino_root; /* ino entry array */ 1077 spinlock_t ino_lock; /* for ino entry lock */ 1078 struct list_head ino_list; /* inode list head */ 1079 unsigned long ino_num; /* number of entries */ 1080 }; 1081 1082 /* For s_flag in struct f2fs_sb_info */ 1083 enum { 1084 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1085 SBI_IS_CLOSE, /* specify unmounting */ 1086 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1087 SBI_POR_DOING, /* recovery is doing or not */ 1088 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1089 SBI_NEED_CP, /* need to checkpoint */ 1090 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1091 }; 1092 1093 enum { 1094 CP_TIME, 1095 REQ_TIME, 1096 MAX_TIME, 1097 }; 1098 1099 enum { 1100 GC_NORMAL, 1101 GC_IDLE_CB, 1102 GC_IDLE_GREEDY, 1103 GC_URGENT, 1104 }; 1105 1106 enum { 1107 WHINT_MODE_OFF, /* not pass down write hints */ 1108 WHINT_MODE_USER, /* try to pass down hints given by users */ 1109 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1110 }; 1111 1112 enum { 1113 ALLOC_MODE_DEFAULT, /* stay default */ 1114 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1115 }; 1116 1117 enum fsync_mode { 1118 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1119 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1120 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1121 }; 1122 1123 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1124 #define DUMMY_ENCRYPTION_ENABLED(sbi) \ 1125 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption)) 1126 #else 1127 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0) 1128 #endif 1129 1130 struct f2fs_sb_info { 1131 struct super_block *sb; /* pointer to VFS super block */ 1132 struct proc_dir_entry *s_proc; /* proc entry */ 1133 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1134 struct rw_semaphore sb_lock; /* lock for raw super block */ 1135 int valid_super_block; /* valid super block no */ 1136 unsigned long s_flag; /* flags for sbi */ 1137 struct mutex writepages; /* mutex for writepages() */ 1138 1139 #ifdef CONFIG_BLK_DEV_ZONED 1140 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1141 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1142 #endif 1143 1144 /* for node-related operations */ 1145 struct f2fs_nm_info *nm_info; /* node manager */ 1146 struct inode *node_inode; /* cache node blocks */ 1147 1148 /* for segment-related operations */ 1149 struct f2fs_sm_info *sm_info; /* segment manager */ 1150 1151 /* for bio operations */ 1152 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1153 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1154 /* bio ordering for NODE/DATA */ 1155 /* keep migration IO order for LFS mode */ 1156 struct rw_semaphore io_order_lock; 1157 mempool_t *write_io_dummy; /* Dummy pages */ 1158 1159 /* for checkpoint */ 1160 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1161 int cur_cp_pack; /* remain current cp pack */ 1162 spinlock_t cp_lock; /* for flag in ckpt */ 1163 struct inode *meta_inode; /* cache meta blocks */ 1164 struct mutex cp_mutex; /* checkpoint procedure lock */ 1165 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1166 struct rw_semaphore node_write; /* locking node writes */ 1167 struct rw_semaphore node_change; /* locking node change */ 1168 wait_queue_head_t cp_wait; 1169 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1170 long interval_time[MAX_TIME]; /* to store thresholds */ 1171 1172 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1173 1174 spinlock_t fsync_node_lock; /* for node entry lock */ 1175 struct list_head fsync_node_list; /* node list head */ 1176 unsigned int fsync_seg_id; /* sequence id */ 1177 unsigned int fsync_node_num; /* number of node entries */ 1178 1179 /* for orphan inode, use 0'th array */ 1180 unsigned int max_orphans; /* max orphan inodes */ 1181 1182 /* for inode management */ 1183 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1184 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1185 1186 /* for extent tree cache */ 1187 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1188 struct mutex extent_tree_lock; /* locking extent radix tree */ 1189 struct list_head extent_list; /* lru list for shrinker */ 1190 spinlock_t extent_lock; /* locking extent lru list */ 1191 atomic_t total_ext_tree; /* extent tree count */ 1192 struct list_head zombie_list; /* extent zombie tree list */ 1193 atomic_t total_zombie_tree; /* extent zombie tree count */ 1194 atomic_t total_ext_node; /* extent info count */ 1195 1196 /* basic filesystem units */ 1197 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1198 unsigned int log_blocksize; /* log2 block size */ 1199 unsigned int blocksize; /* block size */ 1200 unsigned int root_ino_num; /* root inode number*/ 1201 unsigned int node_ino_num; /* node inode number*/ 1202 unsigned int meta_ino_num; /* meta inode number*/ 1203 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1204 unsigned int blocks_per_seg; /* blocks per segment */ 1205 unsigned int segs_per_sec; /* segments per section */ 1206 unsigned int secs_per_zone; /* sections per zone */ 1207 unsigned int total_sections; /* total section count */ 1208 unsigned int total_node_count; /* total node block count */ 1209 unsigned int total_valid_node_count; /* valid node block count */ 1210 loff_t max_file_blocks; /* max block index of file */ 1211 int dir_level; /* directory level */ 1212 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */ 1213 int readdir_ra; /* readahead inode in readdir */ 1214 1215 block_t user_block_count; /* # of user blocks */ 1216 block_t total_valid_block_count; /* # of valid blocks */ 1217 block_t discard_blks; /* discard command candidats */ 1218 block_t last_valid_block_count; /* for recovery */ 1219 block_t reserved_blocks; /* configurable reserved blocks */ 1220 block_t current_reserved_blocks; /* current reserved blocks */ 1221 1222 unsigned int nquota_files; /* # of quota sysfile */ 1223 1224 u32 s_next_generation; /* for NFS support */ 1225 1226 /* # of pages, see count_type */ 1227 atomic_t nr_pages[NR_COUNT_TYPE]; 1228 /* # of allocated blocks */ 1229 struct percpu_counter alloc_valid_block_count; 1230 1231 /* writeback control */ 1232 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1233 1234 /* valid inode count */ 1235 struct percpu_counter total_valid_inode_count; 1236 1237 struct f2fs_mount_info mount_opt; /* mount options */ 1238 1239 /* for cleaning operations */ 1240 struct mutex gc_mutex; /* mutex for GC */ 1241 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1242 unsigned int cur_victim_sec; /* current victim section num */ 1243 unsigned int gc_mode; /* current GC state */ 1244 /* for skip statistic */ 1245 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1246 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1247 1248 /* threshold for gc trials on pinned files */ 1249 u64 gc_pin_file_threshold; 1250 1251 /* maximum # of trials to find a victim segment for SSR and GC */ 1252 unsigned int max_victim_search; 1253 1254 /* 1255 * for stat information. 1256 * one is for the LFS mode, and the other is for the SSR mode. 1257 */ 1258 #ifdef CONFIG_F2FS_STAT_FS 1259 struct f2fs_stat_info *stat_info; /* FS status information */ 1260 unsigned int segment_count[2]; /* # of allocated segments */ 1261 unsigned int block_count[2]; /* # of allocated blocks */ 1262 atomic_t inplace_count; /* # of inplace update */ 1263 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1264 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1265 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1266 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1267 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1268 atomic_t inline_inode; /* # of inline_data inodes */ 1269 atomic_t inline_dir; /* # of inline_dentry inodes */ 1270 atomic_t aw_cnt; /* # of atomic writes */ 1271 atomic_t vw_cnt; /* # of volatile writes */ 1272 atomic_t max_aw_cnt; /* max # of atomic writes */ 1273 atomic_t max_vw_cnt; /* max # of volatile writes */ 1274 int bg_gc; /* background gc calls */ 1275 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1276 #endif 1277 spinlock_t stat_lock; /* lock for stat operations */ 1278 1279 /* For app/fs IO statistics */ 1280 spinlock_t iostat_lock; 1281 unsigned long long write_iostat[NR_IO_TYPE]; 1282 bool iostat_enable; 1283 1284 /* For sysfs suppport */ 1285 struct kobject s_kobj; 1286 struct completion s_kobj_unregister; 1287 1288 /* For shrinker support */ 1289 struct list_head s_list; 1290 int s_ndevs; /* number of devices */ 1291 struct f2fs_dev_info *devs; /* for device list */ 1292 unsigned int dirty_device; /* for checkpoint data flush */ 1293 spinlock_t dev_lock; /* protect dirty_device */ 1294 struct mutex umount_mutex; 1295 unsigned int shrinker_run_no; 1296 1297 /* For write statistics */ 1298 u64 sectors_written_start; 1299 u64 kbytes_written; 1300 1301 /* Reference to checksum algorithm driver via cryptoapi */ 1302 struct crypto_shash *s_chksum_driver; 1303 1304 /* Precomputed FS UUID checksum for seeding other checksums */ 1305 __u32 s_chksum_seed; 1306 }; 1307 1308 #ifdef CONFIG_F2FS_FAULT_INJECTION 1309 #define f2fs_show_injection_info(type) \ 1310 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1311 KERN_INFO, f2fs_fault_name[type], \ 1312 __func__, __builtin_return_address(0)) 1313 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1314 { 1315 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1316 1317 if (!ffi->inject_rate) 1318 return false; 1319 1320 if (!IS_FAULT_SET(ffi, type)) 1321 return false; 1322 1323 atomic_inc(&ffi->inject_ops); 1324 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1325 atomic_set(&ffi->inject_ops, 0); 1326 return true; 1327 } 1328 return false; 1329 } 1330 #else 1331 #define f2fs_show_injection_info(type) do { } while (0) 1332 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1333 { 1334 return false; 1335 } 1336 #endif 1337 1338 /* For write statistics. Suppose sector size is 512 bytes, 1339 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1340 */ 1341 #define BD_PART_WRITTEN(s) \ 1342 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \ 1343 (s)->sectors_written_start) >> 1) 1344 1345 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1346 { 1347 sbi->last_time[type] = jiffies; 1348 } 1349 1350 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1351 { 1352 unsigned long interval = sbi->interval_time[type] * HZ; 1353 1354 return time_after(jiffies, sbi->last_time[type] + interval); 1355 } 1356 1357 static inline bool is_idle(struct f2fs_sb_info *sbi) 1358 { 1359 struct block_device *bdev = sbi->sb->s_bdev; 1360 struct request_queue *q = bdev_get_queue(bdev); 1361 struct request_list *rl = &q->root_rl; 1362 1363 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1364 return false; 1365 1366 return f2fs_time_over(sbi, REQ_TIME); 1367 } 1368 1369 /* 1370 * Inline functions 1371 */ 1372 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1373 const void *address, unsigned int length) 1374 { 1375 struct { 1376 struct shash_desc shash; 1377 char ctx[4]; 1378 } desc; 1379 int err; 1380 1381 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1382 1383 desc.shash.tfm = sbi->s_chksum_driver; 1384 desc.shash.flags = 0; 1385 *(u32 *)desc.ctx = crc; 1386 1387 err = crypto_shash_update(&desc.shash, address, length); 1388 BUG_ON(err); 1389 1390 return *(u32 *)desc.ctx; 1391 } 1392 1393 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1394 unsigned int length) 1395 { 1396 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1397 } 1398 1399 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1400 void *buf, size_t buf_size) 1401 { 1402 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1403 } 1404 1405 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1406 const void *address, unsigned int length) 1407 { 1408 return __f2fs_crc32(sbi, crc, address, length); 1409 } 1410 1411 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1412 { 1413 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1414 } 1415 1416 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1417 { 1418 return sb->s_fs_info; 1419 } 1420 1421 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1422 { 1423 return F2FS_SB(inode->i_sb); 1424 } 1425 1426 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1427 { 1428 return F2FS_I_SB(mapping->host); 1429 } 1430 1431 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1432 { 1433 return F2FS_M_SB(page->mapping); 1434 } 1435 1436 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1437 { 1438 return (struct f2fs_super_block *)(sbi->raw_super); 1439 } 1440 1441 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1442 { 1443 return (struct f2fs_checkpoint *)(sbi->ckpt); 1444 } 1445 1446 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1447 { 1448 return (struct f2fs_node *)page_address(page); 1449 } 1450 1451 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1452 { 1453 return &((struct f2fs_node *)page_address(page))->i; 1454 } 1455 1456 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1457 { 1458 return (struct f2fs_nm_info *)(sbi->nm_info); 1459 } 1460 1461 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1462 { 1463 return (struct f2fs_sm_info *)(sbi->sm_info); 1464 } 1465 1466 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1467 { 1468 return (struct sit_info *)(SM_I(sbi)->sit_info); 1469 } 1470 1471 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1472 { 1473 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1474 } 1475 1476 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1477 { 1478 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1479 } 1480 1481 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1482 { 1483 return sbi->meta_inode->i_mapping; 1484 } 1485 1486 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1487 { 1488 return sbi->node_inode->i_mapping; 1489 } 1490 1491 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1492 { 1493 return test_bit(type, &sbi->s_flag); 1494 } 1495 1496 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1497 { 1498 set_bit(type, &sbi->s_flag); 1499 } 1500 1501 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1502 { 1503 clear_bit(type, &sbi->s_flag); 1504 } 1505 1506 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1507 { 1508 return le64_to_cpu(cp->checkpoint_ver); 1509 } 1510 1511 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1512 { 1513 if (type < F2FS_MAX_QUOTAS) 1514 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1515 return 0; 1516 } 1517 1518 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1519 { 1520 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1521 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1522 } 1523 1524 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1525 { 1526 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1527 1528 return ckpt_flags & f; 1529 } 1530 1531 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1532 { 1533 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1534 } 1535 1536 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1537 { 1538 unsigned int ckpt_flags; 1539 1540 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1541 ckpt_flags |= f; 1542 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1543 } 1544 1545 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1546 { 1547 unsigned long flags; 1548 1549 spin_lock_irqsave(&sbi->cp_lock, flags); 1550 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1551 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1552 } 1553 1554 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1555 { 1556 unsigned int ckpt_flags; 1557 1558 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1559 ckpt_flags &= (~f); 1560 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1561 } 1562 1563 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1564 { 1565 unsigned long flags; 1566 1567 spin_lock_irqsave(&sbi->cp_lock, flags); 1568 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1569 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1570 } 1571 1572 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1573 { 1574 unsigned long flags; 1575 1576 set_sbi_flag(sbi, SBI_NEED_FSCK); 1577 1578 if (lock) 1579 spin_lock_irqsave(&sbi->cp_lock, flags); 1580 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1581 kfree(NM_I(sbi)->nat_bits); 1582 NM_I(sbi)->nat_bits = NULL; 1583 if (lock) 1584 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1585 } 1586 1587 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1588 struct cp_control *cpc) 1589 { 1590 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1591 1592 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1593 } 1594 1595 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1596 { 1597 down_read(&sbi->cp_rwsem); 1598 } 1599 1600 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1601 { 1602 return down_read_trylock(&sbi->cp_rwsem); 1603 } 1604 1605 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1606 { 1607 up_read(&sbi->cp_rwsem); 1608 } 1609 1610 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1611 { 1612 down_write(&sbi->cp_rwsem); 1613 } 1614 1615 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1616 { 1617 up_write(&sbi->cp_rwsem); 1618 } 1619 1620 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1621 { 1622 int reason = CP_SYNC; 1623 1624 if (test_opt(sbi, FASTBOOT)) 1625 reason = CP_FASTBOOT; 1626 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1627 reason = CP_UMOUNT; 1628 return reason; 1629 } 1630 1631 static inline bool __remain_node_summaries(int reason) 1632 { 1633 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1634 } 1635 1636 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1637 { 1638 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1639 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1640 } 1641 1642 /* 1643 * Check whether the inode has blocks or not 1644 */ 1645 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1646 { 1647 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1648 1649 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1650 } 1651 1652 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1653 { 1654 return ofs == XATTR_NODE_OFFSET; 1655 } 1656 1657 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1658 struct inode *inode, bool cap) 1659 { 1660 if (!inode) 1661 return true; 1662 if (!test_opt(sbi, RESERVE_ROOT)) 1663 return false; 1664 if (IS_NOQUOTA(inode)) 1665 return true; 1666 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1667 return true; 1668 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1669 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1670 return true; 1671 if (cap && capable(CAP_SYS_RESOURCE)) 1672 return true; 1673 return false; 1674 } 1675 1676 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1677 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1678 struct inode *inode, blkcnt_t *count) 1679 { 1680 blkcnt_t diff = 0, release = 0; 1681 block_t avail_user_block_count; 1682 int ret; 1683 1684 ret = dquot_reserve_block(inode, *count); 1685 if (ret) 1686 return ret; 1687 1688 if (time_to_inject(sbi, FAULT_BLOCK)) { 1689 f2fs_show_injection_info(FAULT_BLOCK); 1690 release = *count; 1691 goto enospc; 1692 } 1693 1694 /* 1695 * let's increase this in prior to actual block count change in order 1696 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1697 */ 1698 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1699 1700 spin_lock(&sbi->stat_lock); 1701 sbi->total_valid_block_count += (block_t)(*count); 1702 avail_user_block_count = sbi->user_block_count - 1703 sbi->current_reserved_blocks; 1704 1705 if (!__allow_reserved_blocks(sbi, inode, true)) 1706 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1707 1708 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1709 diff = sbi->total_valid_block_count - avail_user_block_count; 1710 if (diff > *count) 1711 diff = *count; 1712 *count -= diff; 1713 release = diff; 1714 sbi->total_valid_block_count -= diff; 1715 if (!*count) { 1716 spin_unlock(&sbi->stat_lock); 1717 goto enospc; 1718 } 1719 } 1720 spin_unlock(&sbi->stat_lock); 1721 1722 if (unlikely(release)) { 1723 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1724 dquot_release_reservation_block(inode, release); 1725 } 1726 f2fs_i_blocks_write(inode, *count, true, true); 1727 return 0; 1728 1729 enospc: 1730 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1731 dquot_release_reservation_block(inode, release); 1732 return -ENOSPC; 1733 } 1734 1735 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1736 struct inode *inode, 1737 block_t count) 1738 { 1739 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1740 1741 spin_lock(&sbi->stat_lock); 1742 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1743 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1744 sbi->total_valid_block_count -= (block_t)count; 1745 if (sbi->reserved_blocks && 1746 sbi->current_reserved_blocks < sbi->reserved_blocks) 1747 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1748 sbi->current_reserved_blocks + count); 1749 spin_unlock(&sbi->stat_lock); 1750 f2fs_i_blocks_write(inode, count, false, true); 1751 } 1752 1753 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1754 { 1755 atomic_inc(&sbi->nr_pages[count_type]); 1756 1757 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1758 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1759 return; 1760 1761 set_sbi_flag(sbi, SBI_IS_DIRTY); 1762 } 1763 1764 static inline void inode_inc_dirty_pages(struct inode *inode) 1765 { 1766 atomic_inc(&F2FS_I(inode)->dirty_pages); 1767 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1768 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1769 if (IS_NOQUOTA(inode)) 1770 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1771 } 1772 1773 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1774 { 1775 atomic_dec(&sbi->nr_pages[count_type]); 1776 } 1777 1778 static inline void inode_dec_dirty_pages(struct inode *inode) 1779 { 1780 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1781 !S_ISLNK(inode->i_mode)) 1782 return; 1783 1784 atomic_dec(&F2FS_I(inode)->dirty_pages); 1785 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1786 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1787 if (IS_NOQUOTA(inode)) 1788 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1789 } 1790 1791 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1792 { 1793 return atomic_read(&sbi->nr_pages[count_type]); 1794 } 1795 1796 static inline int get_dirty_pages(struct inode *inode) 1797 { 1798 return atomic_read(&F2FS_I(inode)->dirty_pages); 1799 } 1800 1801 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1802 { 1803 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1804 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1805 sbi->log_blocks_per_seg; 1806 1807 return segs / sbi->segs_per_sec; 1808 } 1809 1810 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1811 { 1812 return sbi->total_valid_block_count; 1813 } 1814 1815 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1816 { 1817 return sbi->discard_blks; 1818 } 1819 1820 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1821 { 1822 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1823 1824 /* return NAT or SIT bitmap */ 1825 if (flag == NAT_BITMAP) 1826 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1827 else if (flag == SIT_BITMAP) 1828 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1829 1830 return 0; 1831 } 1832 1833 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1834 { 1835 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1836 } 1837 1838 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1839 { 1840 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1841 int offset; 1842 1843 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 1844 offset = (flag == SIT_BITMAP) ? 1845 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 1846 return &ckpt->sit_nat_version_bitmap + offset; 1847 } 1848 1849 if (__cp_payload(sbi) > 0) { 1850 if (flag == NAT_BITMAP) 1851 return &ckpt->sit_nat_version_bitmap; 1852 else 1853 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1854 } else { 1855 offset = (flag == NAT_BITMAP) ? 1856 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1857 return &ckpt->sit_nat_version_bitmap + offset; 1858 } 1859 } 1860 1861 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1862 { 1863 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1864 1865 if (sbi->cur_cp_pack == 2) 1866 start_addr += sbi->blocks_per_seg; 1867 return start_addr; 1868 } 1869 1870 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1871 { 1872 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1873 1874 if (sbi->cur_cp_pack == 1) 1875 start_addr += sbi->blocks_per_seg; 1876 return start_addr; 1877 } 1878 1879 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1880 { 1881 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1882 } 1883 1884 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1885 { 1886 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1887 } 1888 1889 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1890 struct inode *inode, bool is_inode) 1891 { 1892 block_t valid_block_count; 1893 unsigned int valid_node_count; 1894 bool quota = inode && !is_inode; 1895 1896 if (quota) { 1897 int ret = dquot_reserve_block(inode, 1); 1898 if (ret) 1899 return ret; 1900 } 1901 1902 if (time_to_inject(sbi, FAULT_BLOCK)) { 1903 f2fs_show_injection_info(FAULT_BLOCK); 1904 goto enospc; 1905 } 1906 1907 spin_lock(&sbi->stat_lock); 1908 1909 valid_block_count = sbi->total_valid_block_count + 1910 sbi->current_reserved_blocks + 1; 1911 1912 if (!__allow_reserved_blocks(sbi, inode, false)) 1913 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 1914 1915 if (unlikely(valid_block_count > sbi->user_block_count)) { 1916 spin_unlock(&sbi->stat_lock); 1917 goto enospc; 1918 } 1919 1920 valid_node_count = sbi->total_valid_node_count + 1; 1921 if (unlikely(valid_node_count > sbi->total_node_count)) { 1922 spin_unlock(&sbi->stat_lock); 1923 goto enospc; 1924 } 1925 1926 sbi->total_valid_node_count++; 1927 sbi->total_valid_block_count++; 1928 spin_unlock(&sbi->stat_lock); 1929 1930 if (inode) { 1931 if (is_inode) 1932 f2fs_mark_inode_dirty_sync(inode, true); 1933 else 1934 f2fs_i_blocks_write(inode, 1, true, true); 1935 } 1936 1937 percpu_counter_inc(&sbi->alloc_valid_block_count); 1938 return 0; 1939 1940 enospc: 1941 if (quota) 1942 dquot_release_reservation_block(inode, 1); 1943 return -ENOSPC; 1944 } 1945 1946 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1947 struct inode *inode, bool is_inode) 1948 { 1949 spin_lock(&sbi->stat_lock); 1950 1951 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1952 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1953 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1954 1955 sbi->total_valid_node_count--; 1956 sbi->total_valid_block_count--; 1957 if (sbi->reserved_blocks && 1958 sbi->current_reserved_blocks < sbi->reserved_blocks) 1959 sbi->current_reserved_blocks++; 1960 1961 spin_unlock(&sbi->stat_lock); 1962 1963 if (!is_inode) 1964 f2fs_i_blocks_write(inode, 1, false, true); 1965 } 1966 1967 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1968 { 1969 return sbi->total_valid_node_count; 1970 } 1971 1972 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1973 { 1974 percpu_counter_inc(&sbi->total_valid_inode_count); 1975 } 1976 1977 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1978 { 1979 percpu_counter_dec(&sbi->total_valid_inode_count); 1980 } 1981 1982 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1983 { 1984 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1985 } 1986 1987 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1988 pgoff_t index, bool for_write) 1989 { 1990 struct page *page; 1991 1992 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 1993 if (!for_write) 1994 page = find_get_page_flags(mapping, index, 1995 FGP_LOCK | FGP_ACCESSED); 1996 else 1997 page = find_lock_page(mapping, index); 1998 if (page) 1999 return page; 2000 2001 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2002 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 2003 return NULL; 2004 } 2005 } 2006 2007 if (!for_write) 2008 return grab_cache_page(mapping, index); 2009 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 2010 } 2011 2012 static inline struct page *f2fs_pagecache_get_page( 2013 struct address_space *mapping, pgoff_t index, 2014 int fgp_flags, gfp_t gfp_mask) 2015 { 2016 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2017 f2fs_show_injection_info(FAULT_PAGE_GET); 2018 return NULL; 2019 } 2020 2021 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2022 } 2023 2024 static inline void f2fs_copy_page(struct page *src, struct page *dst) 2025 { 2026 char *src_kaddr = kmap(src); 2027 char *dst_kaddr = kmap(dst); 2028 2029 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 2030 kunmap(dst); 2031 kunmap(src); 2032 } 2033 2034 static inline void f2fs_put_page(struct page *page, int unlock) 2035 { 2036 if (!page) 2037 return; 2038 2039 if (unlock) { 2040 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2041 unlock_page(page); 2042 } 2043 put_page(page); 2044 } 2045 2046 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2047 { 2048 if (dn->node_page) 2049 f2fs_put_page(dn->node_page, 1); 2050 if (dn->inode_page && dn->node_page != dn->inode_page) 2051 f2fs_put_page(dn->inode_page, 0); 2052 dn->node_page = NULL; 2053 dn->inode_page = NULL; 2054 } 2055 2056 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2057 size_t size) 2058 { 2059 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2060 } 2061 2062 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2063 gfp_t flags) 2064 { 2065 void *entry; 2066 2067 entry = kmem_cache_alloc(cachep, flags); 2068 if (!entry) 2069 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2070 return entry; 2071 } 2072 2073 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 2074 int npages, bool no_fail) 2075 { 2076 struct bio *bio; 2077 2078 if (no_fail) { 2079 /* No failure on bio allocation */ 2080 bio = bio_alloc(GFP_NOIO, npages); 2081 if (!bio) 2082 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 2083 return bio; 2084 } 2085 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2086 f2fs_show_injection_info(FAULT_ALLOC_BIO); 2087 return NULL; 2088 } 2089 2090 return bio_alloc(GFP_KERNEL, npages); 2091 } 2092 2093 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2094 unsigned long index, void *item) 2095 { 2096 while (radix_tree_insert(root, index, item)) 2097 cond_resched(); 2098 } 2099 2100 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2101 2102 static inline bool IS_INODE(struct page *page) 2103 { 2104 struct f2fs_node *p = F2FS_NODE(page); 2105 2106 return RAW_IS_INODE(p); 2107 } 2108 2109 static inline int offset_in_addr(struct f2fs_inode *i) 2110 { 2111 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2112 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2113 } 2114 2115 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2116 { 2117 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2118 } 2119 2120 static inline int f2fs_has_extra_attr(struct inode *inode); 2121 static inline block_t datablock_addr(struct inode *inode, 2122 struct page *node_page, unsigned int offset) 2123 { 2124 struct f2fs_node *raw_node; 2125 __le32 *addr_array; 2126 int base = 0; 2127 bool is_inode = IS_INODE(node_page); 2128 2129 raw_node = F2FS_NODE(node_page); 2130 2131 /* from GC path only */ 2132 if (is_inode) { 2133 if (!inode) 2134 base = offset_in_addr(&raw_node->i); 2135 else if (f2fs_has_extra_attr(inode)) 2136 base = get_extra_isize(inode); 2137 } 2138 2139 addr_array = blkaddr_in_node(raw_node); 2140 return le32_to_cpu(addr_array[base + offset]); 2141 } 2142 2143 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2144 { 2145 int mask; 2146 2147 addr += (nr >> 3); 2148 mask = 1 << (7 - (nr & 0x07)); 2149 return mask & *addr; 2150 } 2151 2152 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2153 { 2154 int mask; 2155 2156 addr += (nr >> 3); 2157 mask = 1 << (7 - (nr & 0x07)); 2158 *addr |= mask; 2159 } 2160 2161 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2162 { 2163 int mask; 2164 2165 addr += (nr >> 3); 2166 mask = 1 << (7 - (nr & 0x07)); 2167 *addr &= ~mask; 2168 } 2169 2170 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2171 { 2172 int mask; 2173 int ret; 2174 2175 addr += (nr >> 3); 2176 mask = 1 << (7 - (nr & 0x07)); 2177 ret = mask & *addr; 2178 *addr |= mask; 2179 return ret; 2180 } 2181 2182 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2183 { 2184 int mask; 2185 int ret; 2186 2187 addr += (nr >> 3); 2188 mask = 1 << (7 - (nr & 0x07)); 2189 ret = mask & *addr; 2190 *addr &= ~mask; 2191 return ret; 2192 } 2193 2194 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2195 { 2196 int mask; 2197 2198 addr += (nr >> 3); 2199 mask = 1 << (7 - (nr & 0x07)); 2200 *addr ^= mask; 2201 } 2202 2203 /* 2204 * Inode flags 2205 */ 2206 #define F2FS_SECRM_FL 0x00000001 /* Secure deletion */ 2207 #define F2FS_UNRM_FL 0x00000002 /* Undelete */ 2208 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2209 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2210 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2211 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2212 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2213 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2214 /* Reserved for compression usage... */ 2215 #define F2FS_DIRTY_FL 0x00000100 2216 #define F2FS_COMPRBLK_FL 0x00000200 /* One or more compressed clusters */ 2217 #define F2FS_NOCOMPR_FL 0x00000400 /* Don't compress */ 2218 #define F2FS_ENCRYPT_FL 0x00000800 /* encrypted file */ 2219 /* End compression flags --- maybe not all used */ 2220 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2221 #define F2FS_IMAGIC_FL 0x00002000 /* AFS directory */ 2222 #define F2FS_JOURNAL_DATA_FL 0x00004000 /* file data should be journaled */ 2223 #define F2FS_NOTAIL_FL 0x00008000 /* file tail should not be merged */ 2224 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2225 #define F2FS_TOPDIR_FL 0x00020000 /* Top of directory hierarchies*/ 2226 #define F2FS_HUGE_FILE_FL 0x00040000 /* Set to each huge file */ 2227 #define F2FS_EXTENTS_FL 0x00080000 /* Inode uses extents */ 2228 #define F2FS_EA_INODE_FL 0x00200000 /* Inode used for large EA */ 2229 #define F2FS_EOFBLOCKS_FL 0x00400000 /* Blocks allocated beyond EOF */ 2230 #define F2FS_INLINE_DATA_FL 0x10000000 /* Inode has inline data. */ 2231 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2232 #define F2FS_RESERVED_FL 0x80000000 /* reserved for ext4 lib */ 2233 2234 #define F2FS_FL_USER_VISIBLE 0x304BDFFF /* User visible flags */ 2235 #define F2FS_FL_USER_MODIFIABLE 0x204BC0FF /* User modifiable flags */ 2236 2237 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */ 2238 #define F2FS_FL_XFLAG_VISIBLE (F2FS_SYNC_FL | \ 2239 F2FS_IMMUTABLE_FL | \ 2240 F2FS_APPEND_FL | \ 2241 F2FS_NODUMP_FL | \ 2242 F2FS_NOATIME_FL | \ 2243 F2FS_PROJINHERIT_FL) 2244 2245 /* Flags that should be inherited by new inodes from their parent. */ 2246 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\ 2247 F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\ 2248 F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\ 2249 F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\ 2250 F2FS_PROJINHERIT_FL) 2251 2252 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2253 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL)) 2254 2255 /* Flags that are appropriate for non-directories/regular files. */ 2256 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2257 2258 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2259 { 2260 if (S_ISDIR(mode)) 2261 return flags; 2262 else if (S_ISREG(mode)) 2263 return flags & F2FS_REG_FLMASK; 2264 else 2265 return flags & F2FS_OTHER_FLMASK; 2266 } 2267 2268 /* used for f2fs_inode_info->flags */ 2269 enum { 2270 FI_NEW_INODE, /* indicate newly allocated inode */ 2271 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2272 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2273 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2274 FI_INC_LINK, /* need to increment i_nlink */ 2275 FI_ACL_MODE, /* indicate acl mode */ 2276 FI_NO_ALLOC, /* should not allocate any blocks */ 2277 FI_FREE_NID, /* free allocated nide */ 2278 FI_NO_EXTENT, /* not to use the extent cache */ 2279 FI_INLINE_XATTR, /* used for inline xattr */ 2280 FI_INLINE_DATA, /* used for inline data*/ 2281 FI_INLINE_DENTRY, /* used for inline dentry */ 2282 FI_APPEND_WRITE, /* inode has appended data */ 2283 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2284 FI_NEED_IPU, /* used for ipu per file */ 2285 FI_ATOMIC_FILE, /* indicate atomic file */ 2286 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2287 FI_VOLATILE_FILE, /* indicate volatile file */ 2288 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2289 FI_DROP_CACHE, /* drop dirty page cache */ 2290 FI_DATA_EXIST, /* indicate data exists */ 2291 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2292 FI_DO_DEFRAG, /* indicate defragment is running */ 2293 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2294 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2295 FI_HOT_DATA, /* indicate file is hot */ 2296 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2297 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2298 FI_PIN_FILE, /* indicate file should not be gced */ 2299 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 2300 }; 2301 2302 static inline void __mark_inode_dirty_flag(struct inode *inode, 2303 int flag, bool set) 2304 { 2305 switch (flag) { 2306 case FI_INLINE_XATTR: 2307 case FI_INLINE_DATA: 2308 case FI_INLINE_DENTRY: 2309 case FI_NEW_INODE: 2310 if (set) 2311 return; 2312 case FI_DATA_EXIST: 2313 case FI_INLINE_DOTS: 2314 case FI_PIN_FILE: 2315 f2fs_mark_inode_dirty_sync(inode, true); 2316 } 2317 } 2318 2319 static inline void set_inode_flag(struct inode *inode, int flag) 2320 { 2321 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2322 set_bit(flag, &F2FS_I(inode)->flags); 2323 __mark_inode_dirty_flag(inode, flag, true); 2324 } 2325 2326 static inline int is_inode_flag_set(struct inode *inode, int flag) 2327 { 2328 return test_bit(flag, &F2FS_I(inode)->flags); 2329 } 2330 2331 static inline void clear_inode_flag(struct inode *inode, int flag) 2332 { 2333 if (test_bit(flag, &F2FS_I(inode)->flags)) 2334 clear_bit(flag, &F2FS_I(inode)->flags); 2335 __mark_inode_dirty_flag(inode, flag, false); 2336 } 2337 2338 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2339 { 2340 F2FS_I(inode)->i_acl_mode = mode; 2341 set_inode_flag(inode, FI_ACL_MODE); 2342 f2fs_mark_inode_dirty_sync(inode, false); 2343 } 2344 2345 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2346 { 2347 if (inc) 2348 inc_nlink(inode); 2349 else 2350 drop_nlink(inode); 2351 f2fs_mark_inode_dirty_sync(inode, true); 2352 } 2353 2354 static inline void f2fs_i_blocks_write(struct inode *inode, 2355 block_t diff, bool add, bool claim) 2356 { 2357 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2358 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2359 2360 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2361 if (add) { 2362 if (claim) 2363 dquot_claim_block(inode, diff); 2364 else 2365 dquot_alloc_block_nofail(inode, diff); 2366 } else { 2367 dquot_free_block(inode, diff); 2368 } 2369 2370 f2fs_mark_inode_dirty_sync(inode, true); 2371 if (clean || recover) 2372 set_inode_flag(inode, FI_AUTO_RECOVER); 2373 } 2374 2375 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2376 { 2377 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2378 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2379 2380 if (i_size_read(inode) == i_size) 2381 return; 2382 2383 i_size_write(inode, i_size); 2384 f2fs_mark_inode_dirty_sync(inode, true); 2385 if (clean || recover) 2386 set_inode_flag(inode, FI_AUTO_RECOVER); 2387 } 2388 2389 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2390 { 2391 F2FS_I(inode)->i_current_depth = depth; 2392 f2fs_mark_inode_dirty_sync(inode, true); 2393 } 2394 2395 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2396 unsigned int count) 2397 { 2398 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2399 f2fs_mark_inode_dirty_sync(inode, true); 2400 } 2401 2402 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2403 { 2404 F2FS_I(inode)->i_xattr_nid = xnid; 2405 f2fs_mark_inode_dirty_sync(inode, true); 2406 } 2407 2408 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2409 { 2410 F2FS_I(inode)->i_pino = pino; 2411 f2fs_mark_inode_dirty_sync(inode, true); 2412 } 2413 2414 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2415 { 2416 struct f2fs_inode_info *fi = F2FS_I(inode); 2417 2418 if (ri->i_inline & F2FS_INLINE_XATTR) 2419 set_bit(FI_INLINE_XATTR, &fi->flags); 2420 if (ri->i_inline & F2FS_INLINE_DATA) 2421 set_bit(FI_INLINE_DATA, &fi->flags); 2422 if (ri->i_inline & F2FS_INLINE_DENTRY) 2423 set_bit(FI_INLINE_DENTRY, &fi->flags); 2424 if (ri->i_inline & F2FS_DATA_EXIST) 2425 set_bit(FI_DATA_EXIST, &fi->flags); 2426 if (ri->i_inline & F2FS_INLINE_DOTS) 2427 set_bit(FI_INLINE_DOTS, &fi->flags); 2428 if (ri->i_inline & F2FS_EXTRA_ATTR) 2429 set_bit(FI_EXTRA_ATTR, &fi->flags); 2430 if (ri->i_inline & F2FS_PIN_FILE) 2431 set_bit(FI_PIN_FILE, &fi->flags); 2432 } 2433 2434 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2435 { 2436 ri->i_inline = 0; 2437 2438 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2439 ri->i_inline |= F2FS_INLINE_XATTR; 2440 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2441 ri->i_inline |= F2FS_INLINE_DATA; 2442 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2443 ri->i_inline |= F2FS_INLINE_DENTRY; 2444 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2445 ri->i_inline |= F2FS_DATA_EXIST; 2446 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2447 ri->i_inline |= F2FS_INLINE_DOTS; 2448 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2449 ri->i_inline |= F2FS_EXTRA_ATTR; 2450 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2451 ri->i_inline |= F2FS_PIN_FILE; 2452 } 2453 2454 static inline int f2fs_has_extra_attr(struct inode *inode) 2455 { 2456 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2457 } 2458 2459 static inline int f2fs_has_inline_xattr(struct inode *inode) 2460 { 2461 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2462 } 2463 2464 static inline unsigned int addrs_per_inode(struct inode *inode) 2465 { 2466 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode); 2467 } 2468 2469 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2470 { 2471 struct f2fs_inode *ri = F2FS_INODE(page); 2472 2473 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2474 get_inline_xattr_addrs(inode)]); 2475 } 2476 2477 static inline int inline_xattr_size(struct inode *inode) 2478 { 2479 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2480 } 2481 2482 static inline int f2fs_has_inline_data(struct inode *inode) 2483 { 2484 return is_inode_flag_set(inode, FI_INLINE_DATA); 2485 } 2486 2487 static inline int f2fs_exist_data(struct inode *inode) 2488 { 2489 return is_inode_flag_set(inode, FI_DATA_EXIST); 2490 } 2491 2492 static inline int f2fs_has_inline_dots(struct inode *inode) 2493 { 2494 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2495 } 2496 2497 static inline bool f2fs_is_pinned_file(struct inode *inode) 2498 { 2499 return is_inode_flag_set(inode, FI_PIN_FILE); 2500 } 2501 2502 static inline bool f2fs_is_atomic_file(struct inode *inode) 2503 { 2504 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2505 } 2506 2507 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2508 { 2509 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2510 } 2511 2512 static inline bool f2fs_is_volatile_file(struct inode *inode) 2513 { 2514 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2515 } 2516 2517 static inline bool f2fs_is_first_block_written(struct inode *inode) 2518 { 2519 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2520 } 2521 2522 static inline bool f2fs_is_drop_cache(struct inode *inode) 2523 { 2524 return is_inode_flag_set(inode, FI_DROP_CACHE); 2525 } 2526 2527 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2528 { 2529 struct f2fs_inode *ri = F2FS_INODE(page); 2530 int extra_size = get_extra_isize(inode); 2531 2532 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2533 } 2534 2535 static inline int f2fs_has_inline_dentry(struct inode *inode) 2536 { 2537 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2538 } 2539 2540 static inline int is_file(struct inode *inode, int type) 2541 { 2542 return F2FS_I(inode)->i_advise & type; 2543 } 2544 2545 static inline void set_file(struct inode *inode, int type) 2546 { 2547 F2FS_I(inode)->i_advise |= type; 2548 f2fs_mark_inode_dirty_sync(inode, true); 2549 } 2550 2551 static inline void clear_file(struct inode *inode, int type) 2552 { 2553 F2FS_I(inode)->i_advise &= ~type; 2554 f2fs_mark_inode_dirty_sync(inode, true); 2555 } 2556 2557 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2558 { 2559 bool ret; 2560 2561 if (dsync) { 2562 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2563 2564 spin_lock(&sbi->inode_lock[DIRTY_META]); 2565 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2566 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2567 return ret; 2568 } 2569 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2570 file_keep_isize(inode) || 2571 i_size_read(inode) & ~PAGE_MASK) 2572 return false; 2573 2574 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 2575 return false; 2576 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 2577 return false; 2578 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 2579 return false; 2580 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 2581 &F2FS_I(inode)->i_crtime)) 2582 return false; 2583 2584 down_read(&F2FS_I(inode)->i_sem); 2585 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2586 up_read(&F2FS_I(inode)->i_sem); 2587 2588 return ret; 2589 } 2590 2591 static inline bool f2fs_readonly(struct super_block *sb) 2592 { 2593 return sb_rdonly(sb); 2594 } 2595 2596 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2597 { 2598 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2599 } 2600 2601 static inline bool is_dot_dotdot(const struct qstr *str) 2602 { 2603 if (str->len == 1 && str->name[0] == '.') 2604 return true; 2605 2606 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2607 return true; 2608 2609 return false; 2610 } 2611 2612 static inline bool f2fs_may_extent_tree(struct inode *inode) 2613 { 2614 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2615 is_inode_flag_set(inode, FI_NO_EXTENT)) 2616 return false; 2617 2618 return S_ISREG(inode->i_mode); 2619 } 2620 2621 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2622 size_t size, gfp_t flags) 2623 { 2624 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2625 f2fs_show_injection_info(FAULT_KMALLOC); 2626 return NULL; 2627 } 2628 2629 return kmalloc(size, flags); 2630 } 2631 2632 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2633 size_t size, gfp_t flags) 2634 { 2635 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2636 } 2637 2638 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2639 size_t size, gfp_t flags) 2640 { 2641 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2642 f2fs_show_injection_info(FAULT_KVMALLOC); 2643 return NULL; 2644 } 2645 2646 return kvmalloc(size, flags); 2647 } 2648 2649 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2650 size_t size, gfp_t flags) 2651 { 2652 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2653 } 2654 2655 static inline int get_extra_isize(struct inode *inode) 2656 { 2657 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2658 } 2659 2660 static inline int get_inline_xattr_addrs(struct inode *inode) 2661 { 2662 return F2FS_I(inode)->i_inline_xattr_size; 2663 } 2664 2665 #define f2fs_get_inode_mode(i) \ 2666 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2667 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2668 2669 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2670 (offsetof(struct f2fs_inode, i_extra_end) - \ 2671 offsetof(struct f2fs_inode, i_extra_isize)) \ 2672 2673 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2674 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2675 ((offsetof(typeof(*f2fs_inode), field) + \ 2676 sizeof((f2fs_inode)->field)) \ 2677 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2678 2679 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2680 { 2681 int i; 2682 2683 spin_lock(&sbi->iostat_lock); 2684 for (i = 0; i < NR_IO_TYPE; i++) 2685 sbi->write_iostat[i] = 0; 2686 spin_unlock(&sbi->iostat_lock); 2687 } 2688 2689 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2690 enum iostat_type type, unsigned long long io_bytes) 2691 { 2692 if (!sbi->iostat_enable) 2693 return; 2694 spin_lock(&sbi->iostat_lock); 2695 sbi->write_iostat[type] += io_bytes; 2696 2697 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2698 sbi->write_iostat[APP_BUFFERED_IO] = 2699 sbi->write_iostat[APP_WRITE_IO] - 2700 sbi->write_iostat[APP_DIRECT_IO]; 2701 spin_unlock(&sbi->iostat_lock); 2702 } 2703 2704 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO(fio->type) == META && \ 2705 (!is_read_io(fio->op) || fio->is_meta)) 2706 2707 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 2708 block_t blkaddr, int type); 2709 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2710 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 2711 block_t blkaddr, int type) 2712 { 2713 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 2714 f2fs_msg(sbi->sb, KERN_ERR, 2715 "invalid blkaddr: %u, type: %d, run fsck to fix.", 2716 blkaddr, type); 2717 f2fs_bug_on(sbi, 1); 2718 } 2719 } 2720 2721 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 2722 { 2723 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 2724 return false; 2725 return true; 2726 } 2727 2728 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi, 2729 block_t blkaddr) 2730 { 2731 if (!__is_valid_data_blkaddr(blkaddr)) 2732 return false; 2733 verify_blkaddr(sbi, blkaddr, DATA_GENERIC); 2734 return true; 2735 } 2736 2737 /* 2738 * file.c 2739 */ 2740 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2741 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 2742 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 2743 int f2fs_truncate(struct inode *inode); 2744 int f2fs_getattr(const struct path *path, struct kstat *stat, 2745 u32 request_mask, unsigned int flags); 2746 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2747 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2748 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2749 int f2fs_precache_extents(struct inode *inode); 2750 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2751 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2752 int f2fs_pin_file_control(struct inode *inode, bool inc); 2753 2754 /* 2755 * inode.c 2756 */ 2757 void f2fs_set_inode_flags(struct inode *inode); 2758 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2759 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2760 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2761 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2762 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2763 void f2fs_update_inode(struct inode *inode, struct page *node_page); 2764 void f2fs_update_inode_page(struct inode *inode); 2765 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2766 void f2fs_evict_inode(struct inode *inode); 2767 void f2fs_handle_failed_inode(struct inode *inode); 2768 2769 /* 2770 * namei.c 2771 */ 2772 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 2773 bool hot, bool set); 2774 struct dentry *f2fs_get_parent(struct dentry *child); 2775 2776 /* 2777 * dir.c 2778 */ 2779 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 2780 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname, 2781 f2fs_hash_t namehash, int *max_slots, 2782 struct f2fs_dentry_ptr *d); 2783 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2784 unsigned int start_pos, struct fscrypt_str *fstr); 2785 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 2786 struct f2fs_dentry_ptr *d); 2787 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 2788 const struct qstr *new_name, 2789 const struct qstr *orig_name, struct page *dpage); 2790 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 2791 unsigned int current_depth); 2792 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 2793 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2794 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2795 struct fscrypt_name *fname, struct page **res_page); 2796 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2797 const struct qstr *child, struct page **res_page); 2798 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2799 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2800 struct page **page); 2801 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2802 struct page *page, struct inode *inode); 2803 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2804 const struct qstr *name, f2fs_hash_t name_hash, 2805 unsigned int bit_pos); 2806 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2807 const struct qstr *orig_name, 2808 struct inode *inode, nid_t ino, umode_t mode); 2809 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname, 2810 struct inode *inode, nid_t ino, umode_t mode); 2811 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 2812 struct inode *inode, nid_t ino, umode_t mode); 2813 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2814 struct inode *dir, struct inode *inode); 2815 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2816 bool f2fs_empty_dir(struct inode *dir); 2817 2818 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2819 { 2820 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2821 inode, inode->i_ino, inode->i_mode); 2822 } 2823 2824 /* 2825 * super.c 2826 */ 2827 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2828 void f2fs_inode_synced(struct inode *inode); 2829 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2830 void f2fs_quota_off_umount(struct super_block *sb); 2831 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2832 int f2fs_sync_fs(struct super_block *sb, int sync); 2833 extern __printf(3, 4) 2834 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2835 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 2836 2837 /* 2838 * hash.c 2839 */ 2840 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2841 struct fscrypt_name *fname); 2842 2843 /* 2844 * node.c 2845 */ 2846 struct dnode_of_data; 2847 struct node_info; 2848 2849 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 2850 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 2851 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 2852 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 2853 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 2854 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 2855 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2856 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2857 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2858 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 2859 struct node_info *ni); 2860 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2861 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2862 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 2863 int f2fs_truncate_xattr_node(struct inode *inode); 2864 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 2865 unsigned int seq_id); 2866 int f2fs_remove_inode_page(struct inode *inode); 2867 struct page *f2fs_new_inode_page(struct inode *inode); 2868 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2869 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2870 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2871 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 2872 void f2fs_move_node_page(struct page *node_page, int gc_type); 2873 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2874 struct writeback_control *wbc, bool atomic, 2875 unsigned int *seq_id); 2876 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 2877 struct writeback_control *wbc, 2878 bool do_balance, enum iostat_type io_type); 2879 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2880 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2881 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2882 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2883 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2884 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 2885 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 2886 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2887 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 2888 unsigned int segno, struct f2fs_summary_block *sum); 2889 void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2890 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 2891 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 2892 int __init f2fs_create_node_manager_caches(void); 2893 void f2fs_destroy_node_manager_caches(void); 2894 2895 /* 2896 * segment.c 2897 */ 2898 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 2899 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 2900 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 2901 void f2fs_drop_inmem_pages(struct inode *inode); 2902 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 2903 int f2fs_commit_inmem_pages(struct inode *inode); 2904 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2905 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2906 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2907 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 2908 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2909 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2910 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2911 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2912 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 2913 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 2914 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2915 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2916 struct cp_control *cpc); 2917 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 2918 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2919 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 2920 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2921 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2922 struct cp_control *cpc); 2923 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2924 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 2925 block_t blk_addr); 2926 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2927 enum iostat_type io_type); 2928 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2929 void f2fs_outplace_write_data(struct dnode_of_data *dn, 2930 struct f2fs_io_info *fio); 2931 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 2932 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2933 block_t old_blkaddr, block_t new_blkaddr, 2934 bool recover_curseg, bool recover_newaddr); 2935 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2936 block_t old_addr, block_t new_addr, 2937 unsigned char version, bool recover_curseg, 2938 bool recover_newaddr); 2939 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2940 block_t old_blkaddr, block_t *new_blkaddr, 2941 struct f2fs_summary *sum, int type, 2942 struct f2fs_io_info *fio, bool add_list); 2943 void f2fs_wait_on_page_writeback(struct page *page, 2944 enum page_type type, bool ordered); 2945 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2946 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2947 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2948 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2949 unsigned int val, int alloc); 2950 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2951 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 2952 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 2953 int __init f2fs_create_segment_manager_caches(void); 2954 void f2fs_destroy_segment_manager_caches(void); 2955 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 2956 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2957 enum page_type type, enum temp_type temp); 2958 2959 /* 2960 * checkpoint.c 2961 */ 2962 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2963 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2964 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2965 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index); 2966 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2967 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 2968 block_t blkaddr, int type); 2969 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2970 int type, bool sync); 2971 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2972 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2973 long nr_to_write, enum iostat_type io_type); 2974 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2975 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2976 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2977 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2978 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2979 unsigned int devidx, int type); 2980 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2981 unsigned int devidx, int type); 2982 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2983 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 2984 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 2985 void f2fs_add_orphan_inode(struct inode *inode); 2986 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2987 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 2988 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 2989 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 2990 void f2fs_remove_dirty_inode(struct inode *inode); 2991 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2992 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi); 2993 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2994 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 2995 int __init f2fs_create_checkpoint_caches(void); 2996 void f2fs_destroy_checkpoint_caches(void); 2997 2998 /* 2999 * data.c 3000 */ 3001 int f2fs_init_post_read_processing(void); 3002 void f2fs_destroy_post_read_processing(void); 3003 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3004 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3005 struct inode *inode, nid_t ino, pgoff_t idx, 3006 enum page_type type); 3007 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3008 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3009 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3010 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3011 block_t blk_addr, struct bio *bio); 3012 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3013 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3014 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3015 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3016 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3017 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3018 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 3019 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3020 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3021 int op_flags, bool for_write); 3022 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 3023 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3024 bool for_write); 3025 struct page *f2fs_get_new_data_page(struct inode *inode, 3026 struct page *ipage, pgoff_t index, bool new_i_size); 3027 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3028 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3029 int create, int flag); 3030 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3031 u64 start, u64 len); 3032 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3033 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3034 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3035 unsigned int length); 3036 int f2fs_release_page(struct page *page, gfp_t wait); 3037 #ifdef CONFIG_MIGRATION 3038 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 3039 struct page *page, enum migrate_mode mode); 3040 #endif 3041 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3042 void f2fs_clear_radix_tree_dirty_tag(struct page *page); 3043 3044 /* 3045 * gc.c 3046 */ 3047 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3048 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3049 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3050 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 3051 unsigned int segno); 3052 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3053 3054 /* 3055 * recovery.c 3056 */ 3057 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3058 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3059 3060 /* 3061 * debug.c 3062 */ 3063 #ifdef CONFIG_F2FS_STAT_FS 3064 struct f2fs_stat_info { 3065 struct list_head stat_list; 3066 struct f2fs_sb_info *sbi; 3067 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3068 int main_area_segs, main_area_sections, main_area_zones; 3069 unsigned long long hit_largest, hit_cached, hit_rbtree; 3070 unsigned long long hit_total, total_ext; 3071 int ext_tree, zombie_tree, ext_node; 3072 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3073 int ndirty_data, ndirty_qdata; 3074 int inmem_pages; 3075 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3076 int nats, dirty_nats, sits, dirty_sits; 3077 int free_nids, avail_nids, alloc_nids; 3078 int total_count, utilization; 3079 int bg_gc, nr_wb_cp_data, nr_wb_data; 3080 int nr_flushing, nr_flushed, flush_list_empty; 3081 int nr_discarding, nr_discarded; 3082 int nr_discard_cmd; 3083 unsigned int undiscard_blks; 3084 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3085 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3086 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3087 unsigned int bimodal, avg_vblocks; 3088 int util_free, util_valid, util_invalid; 3089 int rsvd_segs, overp_segs; 3090 int dirty_count, node_pages, meta_pages; 3091 int prefree_count, call_count, cp_count, bg_cp_count; 3092 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3093 int bg_node_segs, bg_data_segs; 3094 int tot_blks, data_blks, node_blks; 3095 int bg_data_blks, bg_node_blks; 3096 unsigned long long skipped_atomic_files[2]; 3097 int curseg[NR_CURSEG_TYPE]; 3098 int cursec[NR_CURSEG_TYPE]; 3099 int curzone[NR_CURSEG_TYPE]; 3100 3101 unsigned int segment_count[2]; 3102 unsigned int block_count[2]; 3103 unsigned int inplace_count; 3104 unsigned long long base_mem, cache_mem, page_mem; 3105 }; 3106 3107 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3108 { 3109 return (struct f2fs_stat_info *)sbi->stat_info; 3110 } 3111 3112 #define stat_inc_cp_count(si) ((si)->cp_count++) 3113 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3114 #define stat_inc_call_count(si) ((si)->call_count++) 3115 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 3116 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3117 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3118 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3119 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3120 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3121 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3122 #define stat_inc_inline_xattr(inode) \ 3123 do { \ 3124 if (f2fs_has_inline_xattr(inode)) \ 3125 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3126 } while (0) 3127 #define stat_dec_inline_xattr(inode) \ 3128 do { \ 3129 if (f2fs_has_inline_xattr(inode)) \ 3130 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3131 } while (0) 3132 #define stat_inc_inline_inode(inode) \ 3133 do { \ 3134 if (f2fs_has_inline_data(inode)) \ 3135 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3136 } while (0) 3137 #define stat_dec_inline_inode(inode) \ 3138 do { \ 3139 if (f2fs_has_inline_data(inode)) \ 3140 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3141 } while (0) 3142 #define stat_inc_inline_dir(inode) \ 3143 do { \ 3144 if (f2fs_has_inline_dentry(inode)) \ 3145 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3146 } while (0) 3147 #define stat_dec_inline_dir(inode) \ 3148 do { \ 3149 if (f2fs_has_inline_dentry(inode)) \ 3150 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3151 } while (0) 3152 #define stat_inc_seg_type(sbi, curseg) \ 3153 ((sbi)->segment_count[(curseg)->alloc_type]++) 3154 #define stat_inc_block_count(sbi, curseg) \ 3155 ((sbi)->block_count[(curseg)->alloc_type]++) 3156 #define stat_inc_inplace_blocks(sbi) \ 3157 (atomic_inc(&(sbi)->inplace_count)) 3158 #define stat_inc_atomic_write(inode) \ 3159 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 3160 #define stat_dec_atomic_write(inode) \ 3161 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 3162 #define stat_update_max_atomic_write(inode) \ 3163 do { \ 3164 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 3165 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3166 if (cur > max) \ 3167 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3168 } while (0) 3169 #define stat_inc_volatile_write(inode) \ 3170 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3171 #define stat_dec_volatile_write(inode) \ 3172 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3173 #define stat_update_max_volatile_write(inode) \ 3174 do { \ 3175 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3176 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3177 if (cur > max) \ 3178 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3179 } while (0) 3180 #define stat_inc_seg_count(sbi, type, gc_type) \ 3181 do { \ 3182 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3183 si->tot_segs++; \ 3184 if ((type) == SUM_TYPE_DATA) { \ 3185 si->data_segs++; \ 3186 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3187 } else { \ 3188 si->node_segs++; \ 3189 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3190 } \ 3191 } while (0) 3192 3193 #define stat_inc_tot_blk_count(si, blks) \ 3194 ((si)->tot_blks += (blks)) 3195 3196 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3197 do { \ 3198 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3199 stat_inc_tot_blk_count(si, blks); \ 3200 si->data_blks += (blks); \ 3201 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3202 } while (0) 3203 3204 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3205 do { \ 3206 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3207 stat_inc_tot_blk_count(si, blks); \ 3208 si->node_blks += (blks); \ 3209 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3210 } while (0) 3211 3212 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3213 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3214 int __init f2fs_create_root_stats(void); 3215 void f2fs_destroy_root_stats(void); 3216 #else 3217 #define stat_inc_cp_count(si) do { } while (0) 3218 #define stat_inc_bg_cp_count(si) do { } while (0) 3219 #define stat_inc_call_count(si) do { } while (0) 3220 #define stat_inc_bggc_count(si) do { } while (0) 3221 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3222 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3223 #define stat_inc_total_hit(sb) do { } while (0) 3224 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3225 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3226 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3227 #define stat_inc_inline_xattr(inode) do { } while (0) 3228 #define stat_dec_inline_xattr(inode) do { } while (0) 3229 #define stat_inc_inline_inode(inode) do { } while (0) 3230 #define stat_dec_inline_inode(inode) do { } while (0) 3231 #define stat_inc_inline_dir(inode) do { } while (0) 3232 #define stat_dec_inline_dir(inode) do { } while (0) 3233 #define stat_inc_atomic_write(inode) do { } while (0) 3234 #define stat_dec_atomic_write(inode) do { } while (0) 3235 #define stat_update_max_atomic_write(inode) do { } while (0) 3236 #define stat_inc_volatile_write(inode) do { } while (0) 3237 #define stat_dec_volatile_write(inode) do { } while (0) 3238 #define stat_update_max_volatile_write(inode) do { } while (0) 3239 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3240 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3241 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3242 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3243 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3244 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3245 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3246 3247 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3248 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3249 static inline int __init f2fs_create_root_stats(void) { return 0; } 3250 static inline void f2fs_destroy_root_stats(void) { } 3251 #endif 3252 3253 extern const struct file_operations f2fs_dir_operations; 3254 extern const struct file_operations f2fs_file_operations; 3255 extern const struct inode_operations f2fs_file_inode_operations; 3256 extern const struct address_space_operations f2fs_dblock_aops; 3257 extern const struct address_space_operations f2fs_node_aops; 3258 extern const struct address_space_operations f2fs_meta_aops; 3259 extern const struct inode_operations f2fs_dir_inode_operations; 3260 extern const struct inode_operations f2fs_symlink_inode_operations; 3261 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3262 extern const struct inode_operations f2fs_special_inode_operations; 3263 extern struct kmem_cache *f2fs_inode_entry_slab; 3264 3265 /* 3266 * inline.c 3267 */ 3268 bool f2fs_may_inline_data(struct inode *inode); 3269 bool f2fs_may_inline_dentry(struct inode *inode); 3270 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3271 void f2fs_truncate_inline_inode(struct inode *inode, 3272 struct page *ipage, u64 from); 3273 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3274 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3275 int f2fs_convert_inline_inode(struct inode *inode); 3276 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3277 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3278 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3279 struct fscrypt_name *fname, struct page **res_page); 3280 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3281 struct page *ipage); 3282 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3283 const struct qstr *orig_name, 3284 struct inode *inode, nid_t ino, umode_t mode); 3285 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3286 struct page *page, struct inode *dir, 3287 struct inode *inode); 3288 bool f2fs_empty_inline_dir(struct inode *dir); 3289 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3290 struct fscrypt_str *fstr); 3291 int f2fs_inline_data_fiemap(struct inode *inode, 3292 struct fiemap_extent_info *fieinfo, 3293 __u64 start, __u64 len); 3294 3295 /* 3296 * shrinker.c 3297 */ 3298 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3299 struct shrink_control *sc); 3300 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3301 struct shrink_control *sc); 3302 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3303 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3304 3305 /* 3306 * extent_cache.c 3307 */ 3308 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root *root, 3309 struct rb_entry *cached_re, unsigned int ofs); 3310 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3311 struct rb_root *root, struct rb_node **parent, 3312 unsigned int ofs); 3313 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root *root, 3314 struct rb_entry *cached_re, unsigned int ofs, 3315 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3316 struct rb_node ***insert_p, struct rb_node **insert_parent, 3317 bool force); 3318 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3319 struct rb_root *root); 3320 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3321 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3322 void f2fs_drop_extent_tree(struct inode *inode); 3323 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3324 void f2fs_destroy_extent_tree(struct inode *inode); 3325 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3326 struct extent_info *ei); 3327 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3328 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3329 pgoff_t fofs, block_t blkaddr, unsigned int len); 3330 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3331 int __init f2fs_create_extent_cache(void); 3332 void f2fs_destroy_extent_cache(void); 3333 3334 /* 3335 * sysfs.c 3336 */ 3337 int __init f2fs_init_sysfs(void); 3338 void f2fs_exit_sysfs(void); 3339 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3340 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3341 3342 /* 3343 * crypto support 3344 */ 3345 static inline bool f2fs_encrypted_inode(struct inode *inode) 3346 { 3347 return file_is_encrypt(inode); 3348 } 3349 3350 static inline bool f2fs_encrypted_file(struct inode *inode) 3351 { 3352 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3353 } 3354 3355 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3356 { 3357 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3358 file_set_encrypt(inode); 3359 inode->i_flags |= S_ENCRYPTED; 3360 #endif 3361 } 3362 3363 /* 3364 * Returns true if the reads of the inode's data need to undergo some 3365 * postprocessing step, like decryption or authenticity verification. 3366 */ 3367 static inline bool f2fs_post_read_required(struct inode *inode) 3368 { 3369 return f2fs_encrypted_file(inode); 3370 } 3371 3372 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3373 static inline int f2fs_sb_has_##name(struct super_block *sb) \ 3374 { \ 3375 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_##flagname); \ 3376 } 3377 3378 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3379 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3380 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3381 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3382 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3383 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3384 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3385 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3386 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 3387 3388 #ifdef CONFIG_BLK_DEV_ZONED 3389 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3390 struct block_device *bdev, block_t blkaddr) 3391 { 3392 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3393 int i; 3394 3395 for (i = 0; i < sbi->s_ndevs; i++) 3396 if (FDEV(i).bdev == bdev) 3397 return FDEV(i).blkz_type[zno]; 3398 return -EINVAL; 3399 } 3400 #endif 3401 3402 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 3403 { 3404 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3405 3406 return blk_queue_discard(q) || f2fs_sb_has_blkzoned(sbi->sb); 3407 } 3408 3409 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3410 { 3411 clear_opt(sbi, ADAPTIVE); 3412 clear_opt(sbi, LFS); 3413 3414 switch (mt) { 3415 case F2FS_MOUNT_ADAPTIVE: 3416 set_opt(sbi, ADAPTIVE); 3417 break; 3418 case F2FS_MOUNT_LFS: 3419 set_opt(sbi, LFS); 3420 break; 3421 } 3422 } 3423 3424 static inline bool f2fs_may_encrypt(struct inode *inode) 3425 { 3426 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3427 umode_t mode = inode->i_mode; 3428 3429 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3430 #else 3431 return false; 3432 #endif 3433 } 3434 3435 static inline bool f2fs_force_buffered_io(struct inode *inode, int rw) 3436 { 3437 return (f2fs_post_read_required(inode) || 3438 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) || 3439 F2FS_I_SB(inode)->s_ndevs); 3440 } 3441 3442 #ifdef CONFIG_F2FS_FAULT_INJECTION 3443 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 3444 unsigned int type); 3445 #else 3446 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 3447 #endif 3448 3449 #endif 3450