1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/part_stat.h> 27 #include <linux/rw_hint.h> 28 #include <crypto/hash.h> 29 30 #include <linux/fscrypt.h> 31 #include <linux/fsverity.h> 32 33 struct pagevec; 34 35 #ifdef CONFIG_F2FS_CHECK_FS 36 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 37 #else 38 #define f2fs_bug_on(sbi, condition) \ 39 do { \ 40 if (WARN_ON(condition)) \ 41 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 42 } while (0) 43 #endif 44 45 enum { 46 FAULT_KMALLOC, 47 FAULT_KVMALLOC, 48 FAULT_PAGE_ALLOC, 49 FAULT_PAGE_GET, 50 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 51 FAULT_ALLOC_NID, 52 FAULT_ORPHAN, 53 FAULT_BLOCK, 54 FAULT_DIR_DEPTH, 55 FAULT_EVICT_INODE, 56 FAULT_TRUNCATE, 57 FAULT_READ_IO, 58 FAULT_CHECKPOINT, 59 FAULT_DISCARD, 60 FAULT_WRITE_IO, 61 FAULT_SLAB_ALLOC, 62 FAULT_DQUOT_INIT, 63 FAULT_LOCK_OP, 64 FAULT_BLKADDR, 65 FAULT_MAX, 66 }; 67 68 #ifdef CONFIG_F2FS_FAULT_INJECTION 69 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0)) 70 71 struct f2fs_fault_info { 72 atomic_t inject_ops; 73 unsigned int inject_rate; 74 unsigned int inject_type; 75 }; 76 77 extern const char *f2fs_fault_name[FAULT_MAX]; 78 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type)) 79 #endif 80 81 /* 82 * For mount options 83 */ 84 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001 85 #define F2FS_MOUNT_DISCARD 0x00000002 86 #define F2FS_MOUNT_NOHEAP 0x00000004 87 #define F2FS_MOUNT_XATTR_USER 0x00000008 88 #define F2FS_MOUNT_POSIX_ACL 0x00000010 89 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020 90 #define F2FS_MOUNT_INLINE_XATTR 0x00000040 91 #define F2FS_MOUNT_INLINE_DATA 0x00000080 92 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100 93 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200 94 #define F2FS_MOUNT_NOBARRIER 0x00000400 95 #define F2FS_MOUNT_FASTBOOT 0x00000800 96 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000 97 #define F2FS_MOUNT_DATA_FLUSH 0x00002000 98 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000 99 #define F2FS_MOUNT_USRQUOTA 0x00008000 100 #define F2FS_MOUNT_GRPQUOTA 0x00010000 101 #define F2FS_MOUNT_PRJQUOTA 0x00020000 102 #define F2FS_MOUNT_QUOTA 0x00040000 103 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000 104 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000 105 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000 106 #define F2FS_MOUNT_NORECOVERY 0x00400000 107 #define F2FS_MOUNT_ATGC 0x00800000 108 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000 109 #define F2FS_MOUNT_GC_MERGE 0x02000000 110 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000 111 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000 112 113 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 114 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 115 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 116 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 117 118 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 119 typecheck(unsigned long long, b) && \ 120 ((long long)((a) - (b)) > 0)) 121 122 typedef u32 block_t; /* 123 * should not change u32, since it is the on-disk block 124 * address format, __le32. 125 */ 126 typedef u32 nid_t; 127 128 #define COMPRESS_EXT_NUM 16 129 130 /* 131 * An implementation of an rwsem that is explicitly unfair to readers. This 132 * prevents priority inversion when a low-priority reader acquires the read lock 133 * while sleeping on the write lock but the write lock is needed by 134 * higher-priority clients. 135 */ 136 137 struct f2fs_rwsem { 138 struct rw_semaphore internal_rwsem; 139 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 140 wait_queue_head_t read_waiters; 141 #endif 142 }; 143 144 struct f2fs_mount_info { 145 unsigned int opt; 146 int write_io_size_bits; /* Write IO size bits */ 147 block_t root_reserved_blocks; /* root reserved blocks */ 148 kuid_t s_resuid; /* reserved blocks for uid */ 149 kgid_t s_resgid; /* reserved blocks for gid */ 150 int active_logs; /* # of active logs */ 151 int inline_xattr_size; /* inline xattr size */ 152 #ifdef CONFIG_F2FS_FAULT_INJECTION 153 struct f2fs_fault_info fault_info; /* For fault injection */ 154 #endif 155 #ifdef CONFIG_QUOTA 156 /* Names of quota files with journalled quota */ 157 char *s_qf_names[MAXQUOTAS]; 158 int s_jquota_fmt; /* Format of quota to use */ 159 #endif 160 /* For which write hints are passed down to block layer */ 161 int alloc_mode; /* segment allocation policy */ 162 int fsync_mode; /* fsync policy */ 163 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 164 int bggc_mode; /* bggc mode: off, on or sync */ 165 int memory_mode; /* memory mode */ 166 int errors; /* errors parameter */ 167 int discard_unit; /* 168 * discard command's offset/size should 169 * be aligned to this unit: block, 170 * segment or section 171 */ 172 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 173 block_t unusable_cap_perc; /* percentage for cap */ 174 block_t unusable_cap; /* Amount of space allowed to be 175 * unusable when disabling checkpoint 176 */ 177 178 /* For compression */ 179 unsigned char compress_algorithm; /* algorithm type */ 180 unsigned char compress_log_size; /* cluster log size */ 181 unsigned char compress_level; /* compress level */ 182 bool compress_chksum; /* compressed data chksum */ 183 unsigned char compress_ext_cnt; /* extension count */ 184 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 185 int compress_mode; /* compression mode */ 186 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 187 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 188 }; 189 190 #define F2FS_FEATURE_ENCRYPT 0x00000001 191 #define F2FS_FEATURE_BLKZONED 0x00000002 192 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004 193 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008 194 #define F2FS_FEATURE_PRJQUOTA 0x00000010 195 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020 196 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040 197 #define F2FS_FEATURE_QUOTA_INO 0x00000080 198 #define F2FS_FEATURE_INODE_CRTIME 0x00000100 199 #define F2FS_FEATURE_LOST_FOUND 0x00000200 200 #define F2FS_FEATURE_VERITY 0x00000400 201 #define F2FS_FEATURE_SB_CHKSUM 0x00000800 202 #define F2FS_FEATURE_CASEFOLD 0x00001000 203 #define F2FS_FEATURE_COMPRESSION 0x00002000 204 #define F2FS_FEATURE_RO 0x00004000 205 206 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 207 ((raw_super->feature & cpu_to_le32(mask)) != 0) 208 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 209 210 /* 211 * Default values for user and/or group using reserved blocks 212 */ 213 #define F2FS_DEF_RESUID 0 214 #define F2FS_DEF_RESGID 0 215 216 /* 217 * For checkpoint manager 218 */ 219 enum { 220 NAT_BITMAP, 221 SIT_BITMAP 222 }; 223 224 #define CP_UMOUNT 0x00000001 225 #define CP_FASTBOOT 0x00000002 226 #define CP_SYNC 0x00000004 227 #define CP_RECOVERY 0x00000008 228 #define CP_DISCARD 0x00000010 229 #define CP_TRIMMED 0x00000020 230 #define CP_PAUSE 0x00000040 231 #define CP_RESIZE 0x00000080 232 233 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 234 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 235 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 236 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 237 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 238 #define DEF_CP_INTERVAL 60 /* 60 secs */ 239 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 240 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 241 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 242 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 243 244 struct cp_control { 245 int reason; 246 __u64 trim_start; 247 __u64 trim_end; 248 __u64 trim_minlen; 249 }; 250 251 /* 252 * indicate meta/data type 253 */ 254 enum { 255 META_CP, 256 META_NAT, 257 META_SIT, 258 META_SSA, 259 META_MAX, 260 META_POR, 261 DATA_GENERIC, /* check range only */ 262 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 263 DATA_GENERIC_ENHANCE_READ, /* 264 * strong check on range and segment 265 * bitmap but no warning due to race 266 * condition of read on truncated area 267 * by extent_cache 268 */ 269 DATA_GENERIC_ENHANCE_UPDATE, /* 270 * strong check on range and segment 271 * bitmap for update case 272 */ 273 META_GENERIC, 274 }; 275 276 /* for the list of ino */ 277 enum { 278 ORPHAN_INO, /* for orphan ino list */ 279 APPEND_INO, /* for append ino list */ 280 UPDATE_INO, /* for update ino list */ 281 TRANS_DIR_INO, /* for transactions dir ino list */ 282 FLUSH_INO, /* for multiple device flushing */ 283 MAX_INO_ENTRY, /* max. list */ 284 }; 285 286 struct ino_entry { 287 struct list_head list; /* list head */ 288 nid_t ino; /* inode number */ 289 unsigned int dirty_device; /* dirty device bitmap */ 290 }; 291 292 /* for the list of inodes to be GCed */ 293 struct inode_entry { 294 struct list_head list; /* list head */ 295 struct inode *inode; /* vfs inode pointer */ 296 }; 297 298 struct fsync_node_entry { 299 struct list_head list; /* list head */ 300 struct page *page; /* warm node page pointer */ 301 unsigned int seq_id; /* sequence id */ 302 }; 303 304 struct ckpt_req { 305 struct completion wait; /* completion for checkpoint done */ 306 struct llist_node llnode; /* llist_node to be linked in wait queue */ 307 int ret; /* return code of checkpoint */ 308 ktime_t queue_time; /* request queued time */ 309 }; 310 311 struct ckpt_req_control { 312 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 313 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 314 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 315 atomic_t issued_ckpt; /* # of actually issued ckpts */ 316 atomic_t total_ckpt; /* # of total ckpts */ 317 atomic_t queued_ckpt; /* # of queued ckpts */ 318 struct llist_head issue_list; /* list for command issue */ 319 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 320 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 321 unsigned int peak_time; /* peak wait time in msec until now */ 322 }; 323 324 /* for the bitmap indicate blocks to be discarded */ 325 struct discard_entry { 326 struct list_head list; /* list head */ 327 block_t start_blkaddr; /* start blockaddr of current segment */ 328 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 329 }; 330 331 /* minimum discard granularity, unit: block count */ 332 #define MIN_DISCARD_GRANULARITY 1 333 /* default discard granularity of inner discard thread, unit: block count */ 334 #define DEFAULT_DISCARD_GRANULARITY 16 335 /* default maximum discard granularity of ordered discard, unit: block count */ 336 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 337 338 /* max discard pend list number */ 339 #define MAX_PLIST_NUM 512 340 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 341 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 342 343 enum { 344 D_PREP, /* initial */ 345 D_PARTIAL, /* partially submitted */ 346 D_SUBMIT, /* all submitted */ 347 D_DONE, /* finished */ 348 }; 349 350 struct discard_info { 351 block_t lstart; /* logical start address */ 352 block_t len; /* length */ 353 block_t start; /* actual start address in dev */ 354 }; 355 356 struct discard_cmd { 357 struct rb_node rb_node; /* rb node located in rb-tree */ 358 struct discard_info di; /* discard info */ 359 struct list_head list; /* command list */ 360 struct completion wait; /* compleation */ 361 struct block_device *bdev; /* bdev */ 362 unsigned short ref; /* reference count */ 363 unsigned char state; /* state */ 364 unsigned char queued; /* queued discard */ 365 int error; /* bio error */ 366 spinlock_t lock; /* for state/bio_ref updating */ 367 unsigned short bio_ref; /* bio reference count */ 368 }; 369 370 enum { 371 DPOLICY_BG, 372 DPOLICY_FORCE, 373 DPOLICY_FSTRIM, 374 DPOLICY_UMOUNT, 375 MAX_DPOLICY, 376 }; 377 378 enum { 379 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */ 380 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */ 381 DPOLICY_IO_AWARE_MAX, 382 }; 383 384 struct discard_policy { 385 int type; /* type of discard */ 386 unsigned int min_interval; /* used for candidates exist */ 387 unsigned int mid_interval; /* used for device busy */ 388 unsigned int max_interval; /* used for candidates not exist */ 389 unsigned int max_requests; /* # of discards issued per round */ 390 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 391 bool io_aware; /* issue discard in idle time */ 392 bool sync; /* submit discard with REQ_SYNC flag */ 393 bool ordered; /* issue discard by lba order */ 394 bool timeout; /* discard timeout for put_super */ 395 unsigned int granularity; /* discard granularity */ 396 }; 397 398 struct discard_cmd_control { 399 struct task_struct *f2fs_issue_discard; /* discard thread */ 400 struct list_head entry_list; /* 4KB discard entry list */ 401 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 402 struct list_head wait_list; /* store on-flushing entries */ 403 struct list_head fstrim_list; /* in-flight discard from fstrim */ 404 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 405 struct mutex cmd_lock; 406 unsigned int nr_discards; /* # of discards in the list */ 407 unsigned int max_discards; /* max. discards to be issued */ 408 unsigned int max_discard_request; /* max. discard request per round */ 409 unsigned int min_discard_issue_time; /* min. interval between discard issue */ 410 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ 411 unsigned int max_discard_issue_time; /* max. interval between discard issue */ 412 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */ 413 unsigned int discard_urgent_util; /* utilization which issue discard proactively */ 414 unsigned int discard_granularity; /* discard granularity */ 415 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ 416 unsigned int discard_io_aware; /* io_aware policy */ 417 unsigned int undiscard_blks; /* # of undiscard blocks */ 418 unsigned int next_pos; /* next discard position */ 419 atomic_t issued_discard; /* # of issued discard */ 420 atomic_t queued_discard; /* # of queued discard */ 421 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 422 struct rb_root_cached root; /* root of discard rb-tree */ 423 bool rbtree_check; /* config for consistence check */ 424 bool discard_wake; /* to wake up discard thread */ 425 }; 426 427 /* for the list of fsync inodes, used only during recovery */ 428 struct fsync_inode_entry { 429 struct list_head list; /* list head */ 430 struct inode *inode; /* vfs inode pointer */ 431 block_t blkaddr; /* block address locating the last fsync */ 432 block_t last_dentry; /* block address locating the last dentry */ 433 }; 434 435 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 436 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 437 438 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 439 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 440 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 441 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 442 443 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 444 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 445 446 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 447 { 448 int before = nats_in_cursum(journal); 449 450 journal->n_nats = cpu_to_le16(before + i); 451 return before; 452 } 453 454 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 455 { 456 int before = sits_in_cursum(journal); 457 458 journal->n_sits = cpu_to_le16(before + i); 459 return before; 460 } 461 462 static inline bool __has_cursum_space(struct f2fs_journal *journal, 463 int size, int type) 464 { 465 if (type == NAT_JOURNAL) 466 return size <= MAX_NAT_JENTRIES(journal); 467 return size <= MAX_SIT_JENTRIES(journal); 468 } 469 470 /* for inline stuff */ 471 #define DEF_INLINE_RESERVED_SIZE 1 472 static inline int get_extra_isize(struct inode *inode); 473 static inline int get_inline_xattr_addrs(struct inode *inode); 474 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 475 (CUR_ADDRS_PER_INODE(inode) - \ 476 get_inline_xattr_addrs(inode) - \ 477 DEF_INLINE_RESERVED_SIZE)) 478 479 /* for inline dir */ 480 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 481 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 482 BITS_PER_BYTE + 1)) 483 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 484 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 485 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 486 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 487 NR_INLINE_DENTRY(inode) + \ 488 INLINE_DENTRY_BITMAP_SIZE(inode))) 489 490 /* 491 * For INODE and NODE manager 492 */ 493 /* for directory operations */ 494 495 struct f2fs_filename { 496 /* 497 * The filename the user specified. This is NULL for some 498 * filesystem-internal operations, e.g. converting an inline directory 499 * to a non-inline one, or roll-forward recovering an encrypted dentry. 500 */ 501 const struct qstr *usr_fname; 502 503 /* 504 * The on-disk filename. For encrypted directories, this is encrypted. 505 * This may be NULL for lookups in an encrypted dir without the key. 506 */ 507 struct fscrypt_str disk_name; 508 509 /* The dirhash of this filename */ 510 f2fs_hash_t hash; 511 512 #ifdef CONFIG_FS_ENCRYPTION 513 /* 514 * For lookups in encrypted directories: either the buffer backing 515 * disk_name, or a buffer that holds the decoded no-key name. 516 */ 517 struct fscrypt_str crypto_buf; 518 #endif 519 #if IS_ENABLED(CONFIG_UNICODE) 520 /* 521 * For casefolded directories: the casefolded name, but it's left NULL 522 * if the original name is not valid Unicode, if the original name is 523 * "." or "..", if the directory is both casefolded and encrypted and 524 * its encryption key is unavailable, or if the filesystem is doing an 525 * internal operation where usr_fname is also NULL. In all these cases 526 * we fall back to treating the name as an opaque byte sequence. 527 */ 528 struct fscrypt_str cf_name; 529 #endif 530 }; 531 532 struct f2fs_dentry_ptr { 533 struct inode *inode; 534 void *bitmap; 535 struct f2fs_dir_entry *dentry; 536 __u8 (*filename)[F2FS_SLOT_LEN]; 537 int max; 538 int nr_bitmap; 539 }; 540 541 static inline void make_dentry_ptr_block(struct inode *inode, 542 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 543 { 544 d->inode = inode; 545 d->max = NR_DENTRY_IN_BLOCK; 546 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 547 d->bitmap = t->dentry_bitmap; 548 d->dentry = t->dentry; 549 d->filename = t->filename; 550 } 551 552 static inline void make_dentry_ptr_inline(struct inode *inode, 553 struct f2fs_dentry_ptr *d, void *t) 554 { 555 int entry_cnt = NR_INLINE_DENTRY(inode); 556 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 557 int reserved_size = INLINE_RESERVED_SIZE(inode); 558 559 d->inode = inode; 560 d->max = entry_cnt; 561 d->nr_bitmap = bitmap_size; 562 d->bitmap = t; 563 d->dentry = t + bitmap_size + reserved_size; 564 d->filename = t + bitmap_size + reserved_size + 565 SIZE_OF_DIR_ENTRY * entry_cnt; 566 } 567 568 /* 569 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 570 * as its node offset to distinguish from index node blocks. 571 * But some bits are used to mark the node block. 572 */ 573 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 574 >> OFFSET_BIT_SHIFT) 575 enum { 576 ALLOC_NODE, /* allocate a new node page if needed */ 577 LOOKUP_NODE, /* look up a node without readahead */ 578 LOOKUP_NODE_RA, /* 579 * look up a node with readahead called 580 * by get_data_block. 581 */ 582 }; 583 584 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 585 586 /* congestion wait timeout value, default: 20ms */ 587 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 588 589 /* maximum retry quota flush count */ 590 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 591 592 /* maximum retry of EIO'ed page */ 593 #define MAX_RETRY_PAGE_EIO 100 594 595 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 596 597 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 598 599 /* dirty segments threshold for triggering CP */ 600 #define DEFAULT_DIRTY_THRESHOLD 4 601 602 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS 603 #define RECOVERY_MIN_RA_BLOCKS 1 604 605 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ 606 607 /* for in-memory extent cache entry */ 608 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 609 610 /* number of extent info in extent cache we try to shrink */ 611 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 612 613 /* number of age extent info in extent cache we try to shrink */ 614 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 615 #define LAST_AGE_WEIGHT 30 616 #define SAME_AGE_REGION 1024 617 618 /* 619 * Define data block with age less than 1GB as hot data 620 * define data block with age less than 10GB but more than 1GB as warm data 621 */ 622 #define DEF_HOT_DATA_AGE_THRESHOLD 262144 623 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 624 625 /* extent cache type */ 626 enum extent_type { 627 EX_READ, 628 EX_BLOCK_AGE, 629 NR_EXTENT_CACHES, 630 }; 631 632 struct extent_info { 633 unsigned int fofs; /* start offset in a file */ 634 unsigned int len; /* length of the extent */ 635 union { 636 /* read extent_cache */ 637 struct { 638 /* start block address of the extent */ 639 block_t blk; 640 #ifdef CONFIG_F2FS_FS_COMPRESSION 641 /* physical extent length of compressed blocks */ 642 unsigned int c_len; 643 #endif 644 }; 645 /* block age extent_cache */ 646 struct { 647 /* block age of the extent */ 648 unsigned long long age; 649 /* last total blocks allocated */ 650 unsigned long long last_blocks; 651 }; 652 }; 653 }; 654 655 struct extent_node { 656 struct rb_node rb_node; /* rb node located in rb-tree */ 657 struct extent_info ei; /* extent info */ 658 struct list_head list; /* node in global extent list of sbi */ 659 struct extent_tree *et; /* extent tree pointer */ 660 }; 661 662 struct extent_tree { 663 nid_t ino; /* inode number */ 664 enum extent_type type; /* keep the extent tree type */ 665 struct rb_root_cached root; /* root of extent info rb-tree */ 666 struct extent_node *cached_en; /* recently accessed extent node */ 667 struct list_head list; /* to be used by sbi->zombie_list */ 668 rwlock_t lock; /* protect extent info rb-tree */ 669 atomic_t node_cnt; /* # of extent node in rb-tree*/ 670 bool largest_updated; /* largest extent updated */ 671 struct extent_info largest; /* largest cached extent for EX_READ */ 672 }; 673 674 struct extent_tree_info { 675 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 676 struct mutex extent_tree_lock; /* locking extent radix tree */ 677 struct list_head extent_list; /* lru list for shrinker */ 678 spinlock_t extent_lock; /* locking extent lru list */ 679 atomic_t total_ext_tree; /* extent tree count */ 680 struct list_head zombie_list; /* extent zombie tree list */ 681 atomic_t total_zombie_tree; /* extent zombie tree count */ 682 atomic_t total_ext_node; /* extent info count */ 683 }; 684 685 /* 686 * State of block returned by f2fs_map_blocks. 687 */ 688 #define F2FS_MAP_NEW (1U << 0) 689 #define F2FS_MAP_MAPPED (1U << 1) 690 #define F2FS_MAP_DELALLOC (1U << 2) 691 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 692 F2FS_MAP_DELALLOC) 693 694 struct f2fs_map_blocks { 695 struct block_device *m_bdev; /* for multi-device dio */ 696 block_t m_pblk; 697 block_t m_lblk; 698 unsigned int m_len; 699 unsigned int m_flags; 700 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 701 pgoff_t *m_next_extent; /* point to next possible extent */ 702 int m_seg_type; 703 bool m_may_create; /* indicate it is from write path */ 704 bool m_multidev_dio; /* indicate it allows multi-device dio */ 705 }; 706 707 /* for flag in get_data_block */ 708 enum { 709 F2FS_GET_BLOCK_DEFAULT, 710 F2FS_GET_BLOCK_FIEMAP, 711 F2FS_GET_BLOCK_BMAP, 712 F2FS_GET_BLOCK_DIO, 713 F2FS_GET_BLOCK_PRE_DIO, 714 F2FS_GET_BLOCK_PRE_AIO, 715 F2FS_GET_BLOCK_PRECACHE, 716 }; 717 718 /* 719 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 720 */ 721 #define FADVISE_COLD_BIT 0x01 722 #define FADVISE_LOST_PINO_BIT 0x02 723 #define FADVISE_ENCRYPT_BIT 0x04 724 #define FADVISE_ENC_NAME_BIT 0x08 725 #define FADVISE_KEEP_SIZE_BIT 0x10 726 #define FADVISE_HOT_BIT 0x20 727 #define FADVISE_VERITY_BIT 0x40 728 #define FADVISE_TRUNC_BIT 0x80 729 730 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 731 732 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 733 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 734 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 735 736 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 737 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 738 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 739 740 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 741 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 742 743 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 744 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 745 746 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 747 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 748 749 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 750 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 751 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 752 753 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 754 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 755 756 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) 757 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) 758 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) 759 760 #define DEF_DIR_LEVEL 0 761 762 enum { 763 GC_FAILURE_PIN, 764 MAX_GC_FAILURE 765 }; 766 767 /* used for f2fs_inode_info->flags */ 768 enum { 769 FI_NEW_INODE, /* indicate newly allocated inode */ 770 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 771 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 772 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 773 FI_INC_LINK, /* need to increment i_nlink */ 774 FI_ACL_MODE, /* indicate acl mode */ 775 FI_NO_ALLOC, /* should not allocate any blocks */ 776 FI_FREE_NID, /* free allocated nide */ 777 FI_NO_EXTENT, /* not to use the extent cache */ 778 FI_INLINE_XATTR, /* used for inline xattr */ 779 FI_INLINE_DATA, /* used for inline data*/ 780 FI_INLINE_DENTRY, /* used for inline dentry */ 781 FI_APPEND_WRITE, /* inode has appended data */ 782 FI_UPDATE_WRITE, /* inode has in-place-update data */ 783 FI_NEED_IPU, /* used for ipu per file */ 784 FI_ATOMIC_FILE, /* indicate atomic file */ 785 FI_DATA_EXIST, /* indicate data exists */ 786 FI_INLINE_DOTS, /* indicate inline dot dentries */ 787 FI_SKIP_WRITES, /* should skip data page writeback */ 788 FI_OPU_WRITE, /* used for opu per file */ 789 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 790 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ 791 FI_HOT_DATA, /* indicate file is hot */ 792 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 793 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 794 FI_PIN_FILE, /* indicate file should not be gced */ 795 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 796 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 797 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 798 FI_MMAP_FILE, /* indicate file was mmapped */ 799 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 800 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 801 FI_ALIGNED_WRITE, /* enable aligned write */ 802 FI_COW_FILE, /* indicate COW file */ 803 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ 804 FI_ATOMIC_REPLACE, /* indicate atomic replace */ 805 FI_MAX, /* max flag, never be used */ 806 }; 807 808 struct f2fs_inode_info { 809 struct inode vfs_inode; /* serve a vfs inode */ 810 unsigned long i_flags; /* keep an inode flags for ioctl */ 811 unsigned char i_advise; /* use to give file attribute hints */ 812 unsigned char i_dir_level; /* use for dentry level for large dir */ 813 unsigned int i_current_depth; /* only for directory depth */ 814 /* for gc failure statistic */ 815 unsigned int i_gc_failures[MAX_GC_FAILURE]; 816 unsigned int i_pino; /* parent inode number */ 817 umode_t i_acl_mode; /* keep file acl mode temporarily */ 818 819 /* Use below internally in f2fs*/ 820 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 821 struct f2fs_rwsem i_sem; /* protect fi info */ 822 atomic_t dirty_pages; /* # of dirty pages */ 823 f2fs_hash_t chash; /* hash value of given file name */ 824 unsigned int clevel; /* maximum level of given file name */ 825 struct task_struct *task; /* lookup and create consistency */ 826 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 827 struct task_struct *wb_task; /* indicate inode is in context of writeback */ 828 nid_t i_xattr_nid; /* node id that contains xattrs */ 829 loff_t last_disk_size; /* lastly written file size */ 830 spinlock_t i_size_lock; /* protect last_disk_size */ 831 832 #ifdef CONFIG_QUOTA 833 struct dquot __rcu *i_dquot[MAXQUOTAS]; 834 835 /* quota space reservation, managed internally by quota code */ 836 qsize_t i_reserved_quota; 837 #endif 838 struct list_head dirty_list; /* dirty list for dirs and files */ 839 struct list_head gdirty_list; /* linked in global dirty list */ 840 struct task_struct *atomic_write_task; /* store atomic write task */ 841 struct extent_tree *extent_tree[NR_EXTENT_CACHES]; 842 /* cached extent_tree entry */ 843 struct inode *cow_inode; /* copy-on-write inode for atomic write */ 844 845 /* avoid racing between foreground op and gc */ 846 struct f2fs_rwsem i_gc_rwsem[2]; 847 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ 848 849 int i_extra_isize; /* size of extra space located in i_addr */ 850 kprojid_t i_projid; /* id for project quota */ 851 int i_inline_xattr_size; /* inline xattr size */ 852 struct timespec64 i_crtime; /* inode creation time */ 853 struct timespec64 i_disk_time[3];/* inode disk times */ 854 855 /* for file compress */ 856 atomic_t i_compr_blocks; /* # of compressed blocks */ 857 unsigned char i_compress_algorithm; /* algorithm type */ 858 unsigned char i_log_cluster_size; /* log of cluster size */ 859 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 860 unsigned char i_compress_flag; /* compress flag */ 861 unsigned int i_cluster_size; /* cluster size */ 862 863 unsigned int atomic_write_cnt; 864 loff_t original_i_size; /* original i_size before atomic write */ 865 }; 866 867 static inline void get_read_extent_info(struct extent_info *ext, 868 struct f2fs_extent *i_ext) 869 { 870 ext->fofs = le32_to_cpu(i_ext->fofs); 871 ext->blk = le32_to_cpu(i_ext->blk); 872 ext->len = le32_to_cpu(i_ext->len); 873 } 874 875 static inline void set_raw_read_extent(struct extent_info *ext, 876 struct f2fs_extent *i_ext) 877 { 878 i_ext->fofs = cpu_to_le32(ext->fofs); 879 i_ext->blk = cpu_to_le32(ext->blk); 880 i_ext->len = cpu_to_le32(ext->len); 881 } 882 883 static inline bool __is_discard_mergeable(struct discard_info *back, 884 struct discard_info *front, unsigned int max_len) 885 { 886 return (back->lstart + back->len == front->lstart) && 887 (back->len + front->len <= max_len); 888 } 889 890 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 891 struct discard_info *back, unsigned int max_len) 892 { 893 return __is_discard_mergeable(back, cur, max_len); 894 } 895 896 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 897 struct discard_info *front, unsigned int max_len) 898 { 899 return __is_discard_mergeable(cur, front, max_len); 900 } 901 902 /* 903 * For free nid management 904 */ 905 enum nid_state { 906 FREE_NID, /* newly added to free nid list */ 907 PREALLOC_NID, /* it is preallocated */ 908 MAX_NID_STATE, 909 }; 910 911 enum nat_state { 912 TOTAL_NAT, 913 DIRTY_NAT, 914 RECLAIMABLE_NAT, 915 MAX_NAT_STATE, 916 }; 917 918 struct f2fs_nm_info { 919 block_t nat_blkaddr; /* base disk address of NAT */ 920 nid_t max_nid; /* maximum possible node ids */ 921 nid_t available_nids; /* # of available node ids */ 922 nid_t next_scan_nid; /* the next nid to be scanned */ 923 nid_t max_rf_node_blocks; /* max # of nodes for recovery */ 924 unsigned int ram_thresh; /* control the memory footprint */ 925 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 926 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 927 928 /* NAT cache management */ 929 struct radix_tree_root nat_root;/* root of the nat entry cache */ 930 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 931 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ 932 struct list_head nat_entries; /* cached nat entry list (clean) */ 933 spinlock_t nat_list_lock; /* protect clean nat entry list */ 934 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 935 unsigned int nat_blocks; /* # of nat blocks */ 936 937 /* free node ids management */ 938 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 939 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 940 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 941 spinlock_t nid_list_lock; /* protect nid lists ops */ 942 struct mutex build_lock; /* lock for build free nids */ 943 unsigned char **free_nid_bitmap; 944 unsigned char *nat_block_bitmap; 945 unsigned short *free_nid_count; /* free nid count of NAT block */ 946 947 /* for checkpoint */ 948 char *nat_bitmap; /* NAT bitmap pointer */ 949 950 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 951 unsigned char *nat_bits; /* NAT bits blocks */ 952 unsigned char *full_nat_bits; /* full NAT pages */ 953 unsigned char *empty_nat_bits; /* empty NAT pages */ 954 #ifdef CONFIG_F2FS_CHECK_FS 955 char *nat_bitmap_mir; /* NAT bitmap mirror */ 956 #endif 957 int bitmap_size; /* bitmap size */ 958 }; 959 960 /* 961 * this structure is used as one of function parameters. 962 * all the information are dedicated to a given direct node block determined 963 * by the data offset in a file. 964 */ 965 struct dnode_of_data { 966 struct inode *inode; /* vfs inode pointer */ 967 struct page *inode_page; /* its inode page, NULL is possible */ 968 struct page *node_page; /* cached direct node page */ 969 nid_t nid; /* node id of the direct node block */ 970 unsigned int ofs_in_node; /* data offset in the node page */ 971 bool inode_page_locked; /* inode page is locked or not */ 972 bool node_changed; /* is node block changed */ 973 char cur_level; /* level of hole node page */ 974 char max_level; /* level of current page located */ 975 block_t data_blkaddr; /* block address of the node block */ 976 }; 977 978 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 979 struct page *ipage, struct page *npage, nid_t nid) 980 { 981 memset(dn, 0, sizeof(*dn)); 982 dn->inode = inode; 983 dn->inode_page = ipage; 984 dn->node_page = npage; 985 dn->nid = nid; 986 } 987 988 /* 989 * For SIT manager 990 * 991 * By default, there are 6 active log areas across the whole main area. 992 * When considering hot and cold data separation to reduce cleaning overhead, 993 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 994 * respectively. 995 * In the current design, you should not change the numbers intentionally. 996 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 997 * logs individually according to the underlying devices. (default: 6) 998 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 999 * data and 8 for node logs. 1000 */ 1001 #define NR_CURSEG_DATA_TYPE (3) 1002 #define NR_CURSEG_NODE_TYPE (3) 1003 #define NR_CURSEG_INMEM_TYPE (2) 1004 #define NR_CURSEG_RO_TYPE (2) 1005 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 1006 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 1007 1008 enum { 1009 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 1010 CURSEG_WARM_DATA, /* data blocks */ 1011 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 1012 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 1013 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 1014 CURSEG_COLD_NODE, /* indirect node blocks */ 1015 NR_PERSISTENT_LOG, /* number of persistent log */ 1016 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 1017 /* pinned file that needs consecutive block address */ 1018 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 1019 NO_CHECK_TYPE, /* number of persistent & inmem log */ 1020 }; 1021 1022 struct flush_cmd { 1023 struct completion wait; 1024 struct llist_node llnode; 1025 nid_t ino; 1026 int ret; 1027 }; 1028 1029 struct flush_cmd_control { 1030 struct task_struct *f2fs_issue_flush; /* flush thread */ 1031 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 1032 atomic_t issued_flush; /* # of issued flushes */ 1033 atomic_t queued_flush; /* # of queued flushes */ 1034 struct llist_head issue_list; /* list for command issue */ 1035 struct llist_node *dispatch_list; /* list for command dispatch */ 1036 }; 1037 1038 struct f2fs_sm_info { 1039 struct sit_info *sit_info; /* whole segment information */ 1040 struct free_segmap_info *free_info; /* free segment information */ 1041 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1042 struct curseg_info *curseg_array; /* active segment information */ 1043 1044 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ 1045 1046 block_t seg0_blkaddr; /* block address of 0'th segment */ 1047 block_t main_blkaddr; /* start block address of main area */ 1048 block_t ssa_blkaddr; /* start block address of SSA area */ 1049 1050 unsigned int segment_count; /* total # of segments */ 1051 unsigned int main_segments; /* # of segments in main area */ 1052 unsigned int reserved_segments; /* # of reserved segments */ 1053 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */ 1054 unsigned int ovp_segments; /* # of overprovision segments */ 1055 1056 /* a threshold to reclaim prefree segments */ 1057 unsigned int rec_prefree_segments; 1058 1059 struct list_head sit_entry_set; /* sit entry set list */ 1060 1061 unsigned int ipu_policy; /* in-place-update policy */ 1062 unsigned int min_ipu_util; /* in-place-update threshold */ 1063 unsigned int min_fsync_blocks; /* threshold for fsync */ 1064 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1065 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1066 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1067 1068 /* for flush command control */ 1069 struct flush_cmd_control *fcc_info; 1070 1071 /* for discard command control */ 1072 struct discard_cmd_control *dcc_info; 1073 }; 1074 1075 /* 1076 * For superblock 1077 */ 1078 /* 1079 * COUNT_TYPE for monitoring 1080 * 1081 * f2fs monitors the number of several block types such as on-writeback, 1082 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1083 */ 1084 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1085 enum count_type { 1086 F2FS_DIRTY_DENTS, 1087 F2FS_DIRTY_DATA, 1088 F2FS_DIRTY_QDATA, 1089 F2FS_DIRTY_NODES, 1090 F2FS_DIRTY_META, 1091 F2FS_DIRTY_IMETA, 1092 F2FS_WB_CP_DATA, 1093 F2FS_WB_DATA, 1094 F2FS_RD_DATA, 1095 F2FS_RD_NODE, 1096 F2FS_RD_META, 1097 F2FS_DIO_WRITE, 1098 F2FS_DIO_READ, 1099 NR_COUNT_TYPE, 1100 }; 1101 1102 /* 1103 * The below are the page types of bios used in submit_bio(). 1104 * The available types are: 1105 * DATA User data pages. It operates as async mode. 1106 * NODE Node pages. It operates as async mode. 1107 * META FS metadata pages such as SIT, NAT, CP. 1108 * NR_PAGE_TYPE The number of page types. 1109 * META_FLUSH Make sure the previous pages are written 1110 * with waiting the bio's completion 1111 * ... Only can be used with META. 1112 */ 1113 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1114 enum page_type { 1115 DATA = 0, 1116 NODE = 1, /* should not change this */ 1117 META, 1118 NR_PAGE_TYPE, 1119 META_FLUSH, 1120 IPU, /* the below types are used by tracepoints only. */ 1121 OPU, 1122 }; 1123 1124 enum temp_type { 1125 HOT = 0, /* must be zero for meta bio */ 1126 WARM, 1127 COLD, 1128 NR_TEMP_TYPE, 1129 }; 1130 1131 enum need_lock_type { 1132 LOCK_REQ = 0, 1133 LOCK_DONE, 1134 LOCK_RETRY, 1135 }; 1136 1137 enum cp_reason_type { 1138 CP_NO_NEEDED, 1139 CP_NON_REGULAR, 1140 CP_COMPRESSED, 1141 CP_HARDLINK, 1142 CP_SB_NEED_CP, 1143 CP_WRONG_PINO, 1144 CP_NO_SPC_ROLL, 1145 CP_NODE_NEED_CP, 1146 CP_FASTBOOT_MODE, 1147 CP_SPEC_LOG_NUM, 1148 CP_RECOVER_DIR, 1149 }; 1150 1151 enum iostat_type { 1152 /* WRITE IO */ 1153 APP_DIRECT_IO, /* app direct write IOs */ 1154 APP_BUFFERED_IO, /* app buffered write IOs */ 1155 APP_WRITE_IO, /* app write IOs */ 1156 APP_MAPPED_IO, /* app mapped IOs */ 1157 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ 1158 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ 1159 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1160 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ 1161 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1162 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1163 FS_GC_DATA_IO, /* data IOs from forground gc */ 1164 FS_GC_NODE_IO, /* node IOs from forground gc */ 1165 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1166 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1167 FS_CP_META_IO, /* meta IOs from checkpoint */ 1168 1169 /* READ IO */ 1170 APP_DIRECT_READ_IO, /* app direct read IOs */ 1171 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1172 APP_READ_IO, /* app read IOs */ 1173 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1174 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ 1175 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ 1176 FS_DATA_READ_IO, /* data read IOs */ 1177 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1178 FS_CDATA_READ_IO, /* compressed data read IOs */ 1179 FS_NODE_READ_IO, /* node read IOs */ 1180 FS_META_READ_IO, /* meta read IOs */ 1181 1182 /* other */ 1183 FS_DISCARD_IO, /* discard */ 1184 FS_FLUSH_IO, /* flush */ 1185 FS_ZONE_RESET_IO, /* zone reset */ 1186 NR_IO_TYPE, 1187 }; 1188 1189 struct f2fs_io_info { 1190 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1191 nid_t ino; /* inode number */ 1192 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1193 enum temp_type temp; /* contains HOT/WARM/COLD */ 1194 enum req_op op; /* contains REQ_OP_ */ 1195 blk_opf_t op_flags; /* req_flag_bits */ 1196 block_t new_blkaddr; /* new block address to be written */ 1197 block_t old_blkaddr; /* old block address before Cow */ 1198 struct page *page; /* page to be written */ 1199 struct page *encrypted_page; /* encrypted page */ 1200 struct page *compressed_page; /* compressed page */ 1201 struct list_head list; /* serialize IOs */ 1202 unsigned int compr_blocks; /* # of compressed block addresses */ 1203 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */ 1204 unsigned int version:8; /* version of the node */ 1205 unsigned int submitted:1; /* indicate IO submission */ 1206 unsigned int in_list:1; /* indicate fio is in io_list */ 1207 unsigned int is_por:1; /* indicate IO is from recovery or not */ 1208 unsigned int retry:1; /* need to reallocate block address */ 1209 unsigned int encrypted:1; /* indicate file is encrypted */ 1210 unsigned int post_read:1; /* require post read */ 1211 enum iostat_type io_type; /* io type */ 1212 struct writeback_control *io_wbc; /* writeback control */ 1213 struct bio **bio; /* bio for ipu */ 1214 sector_t *last_block; /* last block number in bio */ 1215 }; 1216 1217 struct bio_entry { 1218 struct bio *bio; 1219 struct list_head list; 1220 }; 1221 1222 #define is_read_io(rw) ((rw) == READ) 1223 struct f2fs_bio_info { 1224 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1225 struct bio *bio; /* bios to merge */ 1226 sector_t last_block_in_bio; /* last block number */ 1227 struct f2fs_io_info fio; /* store buffered io info. */ 1228 #ifdef CONFIG_BLK_DEV_ZONED 1229 struct completion zone_wait; /* condition value for the previous open zone to close */ 1230 struct bio *zone_pending_bio; /* pending bio for the previous zone */ 1231 void *bi_private; /* previous bi_private for pending bio */ 1232 #endif 1233 struct f2fs_rwsem io_rwsem; /* blocking op for bio */ 1234 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1235 struct list_head io_list; /* track fios */ 1236 struct list_head bio_list; /* bio entry list head */ 1237 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ 1238 }; 1239 1240 #define FDEV(i) (sbi->devs[i]) 1241 #define RDEV(i) (raw_super->devs[i]) 1242 struct f2fs_dev_info { 1243 struct file *bdev_file; 1244 struct block_device *bdev; 1245 char path[MAX_PATH_LEN]; 1246 unsigned int total_segments; 1247 block_t start_blk; 1248 block_t end_blk; 1249 #ifdef CONFIG_BLK_DEV_ZONED 1250 unsigned int nr_blkz; /* Total number of zones */ 1251 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1252 #endif 1253 }; 1254 1255 enum inode_type { 1256 DIR_INODE, /* for dirty dir inode */ 1257 FILE_INODE, /* for dirty regular/symlink inode */ 1258 DIRTY_META, /* for all dirtied inode metadata */ 1259 NR_INODE_TYPE, 1260 }; 1261 1262 /* for inner inode cache management */ 1263 struct inode_management { 1264 struct radix_tree_root ino_root; /* ino entry array */ 1265 spinlock_t ino_lock; /* for ino entry lock */ 1266 struct list_head ino_list; /* inode list head */ 1267 unsigned long ino_num; /* number of entries */ 1268 }; 1269 1270 /* for GC_AT */ 1271 struct atgc_management { 1272 bool atgc_enabled; /* ATGC is enabled or not */ 1273 struct rb_root_cached root; /* root of victim rb-tree */ 1274 struct list_head victim_list; /* linked with all victim entries */ 1275 unsigned int victim_count; /* victim count in rb-tree */ 1276 unsigned int candidate_ratio; /* candidate ratio */ 1277 unsigned int max_candidate_count; /* max candidate count */ 1278 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1279 unsigned long long age_threshold; /* age threshold */ 1280 }; 1281 1282 struct f2fs_gc_control { 1283 unsigned int victim_segno; /* target victim segment number */ 1284 int init_gc_type; /* FG_GC or BG_GC */ 1285 bool no_bg_gc; /* check the space and stop bg_gc */ 1286 bool should_migrate_blocks; /* should migrate blocks */ 1287 bool err_gc_skipped; /* return EAGAIN if GC skipped */ 1288 unsigned int nr_free_secs; /* # of free sections to do GC */ 1289 }; 1290 1291 /* 1292 * For s_flag in struct f2fs_sb_info 1293 * Modification on enum should be synchronized with s_flag array 1294 */ 1295 enum { 1296 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1297 SBI_IS_CLOSE, /* specify unmounting */ 1298 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1299 SBI_POR_DOING, /* recovery is doing or not */ 1300 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1301 SBI_NEED_CP, /* need to checkpoint */ 1302 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1303 SBI_IS_RECOVERED, /* recovered orphan/data */ 1304 SBI_CP_DISABLED, /* CP was disabled last mount */ 1305 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1306 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1307 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1308 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1309 SBI_IS_RESIZEFS, /* resizefs is in process */ 1310 SBI_IS_FREEZING, /* freezefs is in process */ 1311 SBI_IS_WRITABLE, /* remove ro mountoption transiently */ 1312 MAX_SBI_FLAG, 1313 }; 1314 1315 enum { 1316 CP_TIME, 1317 REQ_TIME, 1318 DISCARD_TIME, 1319 GC_TIME, 1320 DISABLE_TIME, 1321 UMOUNT_DISCARD_TIMEOUT, 1322 MAX_TIME, 1323 }; 1324 1325 /* Note that you need to keep synchronization with this gc_mode_names array */ 1326 enum { 1327 GC_NORMAL, 1328 GC_IDLE_CB, 1329 GC_IDLE_GREEDY, 1330 GC_IDLE_AT, 1331 GC_URGENT_HIGH, 1332 GC_URGENT_LOW, 1333 GC_URGENT_MID, 1334 MAX_GC_MODE, 1335 }; 1336 1337 enum { 1338 BGGC_MODE_ON, /* background gc is on */ 1339 BGGC_MODE_OFF, /* background gc is off */ 1340 BGGC_MODE_SYNC, /* 1341 * background gc is on, migrating blocks 1342 * like foreground gc 1343 */ 1344 }; 1345 1346 enum { 1347 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1348 FS_MODE_LFS, /* use lfs allocation only */ 1349 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1350 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1351 }; 1352 1353 enum { 1354 ALLOC_MODE_DEFAULT, /* stay default */ 1355 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1356 }; 1357 1358 enum fsync_mode { 1359 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1360 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1361 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1362 }; 1363 1364 enum { 1365 COMPR_MODE_FS, /* 1366 * automatically compress compression 1367 * enabled files 1368 */ 1369 COMPR_MODE_USER, /* 1370 * automatical compression is disabled. 1371 * user can control the file compression 1372 * using ioctls 1373 */ 1374 }; 1375 1376 enum { 1377 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1378 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1379 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1380 }; 1381 1382 enum { 1383 MEMORY_MODE_NORMAL, /* memory mode for normal devices */ 1384 MEMORY_MODE_LOW, /* memory mode for low memry devices */ 1385 }; 1386 1387 enum errors_option { 1388 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */ 1389 MOUNT_ERRORS_CONTINUE, /* continue on errors */ 1390 MOUNT_ERRORS_PANIC, /* panic on errors */ 1391 }; 1392 1393 enum { 1394 BACKGROUND, 1395 FOREGROUND, 1396 MAX_CALL_TYPE, 1397 TOTAL_CALL = FOREGROUND, 1398 }; 1399 1400 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1401 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1402 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1403 1404 /* 1405 * Layout of f2fs page.private: 1406 * 1407 * Layout A: lowest bit should be 1 1408 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1409 * bit 0 PAGE_PRIVATE_NOT_POINTER 1410 * bit 1 PAGE_PRIVATE_DUMMY_WRITE 1411 * bit 2 PAGE_PRIVATE_ONGOING_MIGRATION 1412 * bit 3 PAGE_PRIVATE_INLINE_INODE 1413 * bit 4 PAGE_PRIVATE_REF_RESOURCE 1414 * bit 5- f2fs private data 1415 * 1416 * Layout B: lowest bit should be 0 1417 * page.private is a wrapped pointer. 1418 */ 1419 enum { 1420 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1421 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */ 1422 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1423 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1424 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1425 PAGE_PRIVATE_MAX 1426 }; 1427 1428 /* For compression */ 1429 enum compress_algorithm_type { 1430 COMPRESS_LZO, 1431 COMPRESS_LZ4, 1432 COMPRESS_ZSTD, 1433 COMPRESS_LZORLE, 1434 COMPRESS_MAX, 1435 }; 1436 1437 enum compress_flag { 1438 COMPRESS_CHKSUM, 1439 COMPRESS_MAX_FLAG, 1440 }; 1441 1442 #define COMPRESS_WATERMARK 20 1443 #define COMPRESS_PERCENT 20 1444 1445 #define COMPRESS_DATA_RESERVED_SIZE 4 1446 struct compress_data { 1447 __le32 clen; /* compressed data size */ 1448 __le32 chksum; /* compressed data chksum */ 1449 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1450 u8 cdata[]; /* compressed data */ 1451 }; 1452 1453 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1454 1455 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1456 1457 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 1458 1459 #define COMPRESS_LEVEL_OFFSET 8 1460 1461 /* compress context */ 1462 struct compress_ctx { 1463 struct inode *inode; /* inode the context belong to */ 1464 pgoff_t cluster_idx; /* cluster index number */ 1465 unsigned int cluster_size; /* page count in cluster */ 1466 unsigned int log_cluster_size; /* log of cluster size */ 1467 struct page **rpages; /* pages store raw data in cluster */ 1468 unsigned int nr_rpages; /* total page number in rpages */ 1469 struct page **cpages; /* pages store compressed data in cluster */ 1470 unsigned int nr_cpages; /* total page number in cpages */ 1471 unsigned int valid_nr_cpages; /* valid page number in cpages */ 1472 void *rbuf; /* virtual mapped address on rpages */ 1473 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1474 size_t rlen; /* valid data length in rbuf */ 1475 size_t clen; /* valid data length in cbuf */ 1476 void *private; /* payload buffer for specified compression algorithm */ 1477 void *private2; /* extra payload buffer */ 1478 }; 1479 1480 /* compress context for write IO path */ 1481 struct compress_io_ctx { 1482 u32 magic; /* magic number to indicate page is compressed */ 1483 struct inode *inode; /* inode the context belong to */ 1484 struct page **rpages; /* pages store raw data in cluster */ 1485 unsigned int nr_rpages; /* total page number in rpages */ 1486 atomic_t pending_pages; /* in-flight compressed page count */ 1487 }; 1488 1489 /* Context for decompressing one cluster on the read IO path */ 1490 struct decompress_io_ctx { 1491 u32 magic; /* magic number to indicate page is compressed */ 1492 struct inode *inode; /* inode the context belong to */ 1493 pgoff_t cluster_idx; /* cluster index number */ 1494 unsigned int cluster_size; /* page count in cluster */ 1495 unsigned int log_cluster_size; /* log of cluster size */ 1496 struct page **rpages; /* pages store raw data in cluster */ 1497 unsigned int nr_rpages; /* total page number in rpages */ 1498 struct page **cpages; /* pages store compressed data in cluster */ 1499 unsigned int nr_cpages; /* total page number in cpages */ 1500 struct page **tpages; /* temp pages to pad holes in cluster */ 1501 void *rbuf; /* virtual mapped address on rpages */ 1502 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1503 size_t rlen; /* valid data length in rbuf */ 1504 size_t clen; /* valid data length in cbuf */ 1505 1506 /* 1507 * The number of compressed pages remaining to be read in this cluster. 1508 * This is initially nr_cpages. It is decremented by 1 each time a page 1509 * has been read (or failed to be read). When it reaches 0, the cluster 1510 * is decompressed (or an error is reported). 1511 * 1512 * If an error occurs before all the pages have been submitted for I/O, 1513 * then this will never reach 0. In this case the I/O submitter is 1514 * responsible for calling f2fs_decompress_end_io() instead. 1515 */ 1516 atomic_t remaining_pages; 1517 1518 /* 1519 * Number of references to this decompress_io_ctx. 1520 * 1521 * One reference is held for I/O completion. This reference is dropped 1522 * after the pagecache pages are updated and unlocked -- either after 1523 * decompression (and verity if enabled), or after an error. 1524 * 1525 * In addition, each compressed page holds a reference while it is in a 1526 * bio. These references are necessary prevent compressed pages from 1527 * being freed while they are still in a bio. 1528 */ 1529 refcount_t refcnt; 1530 1531 bool failed; /* IO error occurred before decompression? */ 1532 bool need_verity; /* need fs-verity verification after decompression? */ 1533 void *private; /* payload buffer for specified decompression algorithm */ 1534 void *private2; /* extra payload buffer */ 1535 struct work_struct verity_work; /* work to verify the decompressed pages */ 1536 struct work_struct free_work; /* work for late free this structure itself */ 1537 }; 1538 1539 #define NULL_CLUSTER ((unsigned int)(~0)) 1540 #define MIN_COMPRESS_LOG_SIZE 2 1541 #define MAX_COMPRESS_LOG_SIZE 8 1542 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1543 1544 struct f2fs_sb_info { 1545 struct super_block *sb; /* pointer to VFS super block */ 1546 struct proc_dir_entry *s_proc; /* proc entry */ 1547 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1548 struct f2fs_rwsem sb_lock; /* lock for raw super block */ 1549 int valid_super_block; /* valid super block no */ 1550 unsigned long s_flag; /* flags for sbi */ 1551 struct mutex writepages; /* mutex for writepages() */ 1552 1553 #ifdef CONFIG_BLK_DEV_ZONED 1554 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1555 #endif 1556 1557 /* for node-related operations */ 1558 struct f2fs_nm_info *nm_info; /* node manager */ 1559 struct inode *node_inode; /* cache node blocks */ 1560 1561 /* for segment-related operations */ 1562 struct f2fs_sm_info *sm_info; /* segment manager */ 1563 1564 /* for bio operations */ 1565 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1566 /* keep migration IO order for LFS mode */ 1567 struct f2fs_rwsem io_order_lock; 1568 mempool_t *write_io_dummy; /* Dummy pages */ 1569 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ 1570 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ 1571 1572 /* for checkpoint */ 1573 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1574 int cur_cp_pack; /* remain current cp pack */ 1575 spinlock_t cp_lock; /* for flag in ckpt */ 1576 struct inode *meta_inode; /* cache meta blocks */ 1577 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ 1578 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ 1579 struct f2fs_rwsem node_write; /* locking node writes */ 1580 struct f2fs_rwsem node_change; /* locking node change */ 1581 wait_queue_head_t cp_wait; 1582 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1583 long interval_time[MAX_TIME]; /* to store thresholds */ 1584 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1585 1586 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1587 1588 spinlock_t fsync_node_lock; /* for node entry lock */ 1589 struct list_head fsync_node_list; /* node list head */ 1590 unsigned int fsync_seg_id; /* sequence id */ 1591 unsigned int fsync_node_num; /* number of node entries */ 1592 1593 /* for orphan inode, use 0'th array */ 1594 unsigned int max_orphans; /* max orphan inodes */ 1595 1596 /* for inode management */ 1597 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1598 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1599 struct mutex flush_lock; /* for flush exclusion */ 1600 1601 /* for extent tree cache */ 1602 struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; 1603 atomic64_t allocated_data_blocks; /* for block age extent_cache */ 1604 1605 /* The threshold used for hot and warm data seperation*/ 1606 unsigned int hot_data_age_threshold; 1607 unsigned int warm_data_age_threshold; 1608 unsigned int last_age_weight; 1609 1610 /* basic filesystem units */ 1611 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1612 unsigned int log_blocksize; /* log2 block size */ 1613 unsigned int blocksize; /* block size */ 1614 unsigned int root_ino_num; /* root inode number*/ 1615 unsigned int node_ino_num; /* node inode number*/ 1616 unsigned int meta_ino_num; /* meta inode number*/ 1617 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1618 unsigned int blocks_per_seg; /* blocks per segment */ 1619 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ 1620 unsigned int segs_per_sec; /* segments per section */ 1621 unsigned int secs_per_zone; /* sections per zone */ 1622 unsigned int total_sections; /* total section count */ 1623 unsigned int total_node_count; /* total node block count */ 1624 unsigned int total_valid_node_count; /* valid node block count */ 1625 int dir_level; /* directory level */ 1626 bool readdir_ra; /* readahead inode in readdir */ 1627 u64 max_io_bytes; /* max io bytes to merge IOs */ 1628 1629 block_t user_block_count; /* # of user blocks */ 1630 block_t total_valid_block_count; /* # of valid blocks */ 1631 block_t discard_blks; /* discard command candidats */ 1632 block_t last_valid_block_count; /* for recovery */ 1633 block_t reserved_blocks; /* configurable reserved blocks */ 1634 block_t current_reserved_blocks; /* current reserved blocks */ 1635 1636 /* Additional tracking for no checkpoint mode */ 1637 block_t unusable_block_count; /* # of blocks saved by last cp */ 1638 1639 unsigned int nquota_files; /* # of quota sysfile */ 1640 struct f2fs_rwsem quota_sem; /* blocking cp for flags */ 1641 1642 /* # of pages, see count_type */ 1643 atomic_t nr_pages[NR_COUNT_TYPE]; 1644 /* # of allocated blocks */ 1645 struct percpu_counter alloc_valid_block_count; 1646 /* # of node block writes as roll forward recovery */ 1647 struct percpu_counter rf_node_block_count; 1648 1649 /* writeback control */ 1650 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1651 1652 /* valid inode count */ 1653 struct percpu_counter total_valid_inode_count; 1654 1655 struct f2fs_mount_info mount_opt; /* mount options */ 1656 1657 /* for cleaning operations */ 1658 struct f2fs_rwsem gc_lock; /* 1659 * semaphore for GC, avoid 1660 * race between GC and GC or CP 1661 */ 1662 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1663 struct atgc_management am; /* atgc management */ 1664 unsigned int cur_victim_sec; /* current victim section num */ 1665 unsigned int gc_mode; /* current GC state */ 1666 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1667 spinlock_t gc_remaining_trials_lock; 1668 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ 1669 unsigned int gc_remaining_trials; 1670 1671 /* for skip statistic */ 1672 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1673 1674 /* threshold for gc trials on pinned files */ 1675 u64 gc_pin_file_threshold; 1676 struct f2fs_rwsem pin_sem; 1677 1678 /* maximum # of trials to find a victim segment for SSR and GC */ 1679 unsigned int max_victim_search; 1680 /* migration granularity of garbage collection, unit: segment */ 1681 unsigned int migration_granularity; 1682 1683 /* 1684 * for stat information. 1685 * one is for the LFS mode, and the other is for the SSR mode. 1686 */ 1687 #ifdef CONFIG_F2FS_STAT_FS 1688 struct f2fs_stat_info *stat_info; /* FS status information */ 1689 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1690 unsigned int segment_count[2]; /* # of allocated segments */ 1691 unsigned int block_count[2]; /* # of allocated blocks */ 1692 atomic_t inplace_count; /* # of inplace update */ 1693 /* # of lookup extent cache */ 1694 atomic64_t total_hit_ext[NR_EXTENT_CACHES]; 1695 /* # of hit rbtree extent node */ 1696 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; 1697 /* # of hit cached extent node */ 1698 atomic64_t read_hit_cached[NR_EXTENT_CACHES]; 1699 /* # of hit largest extent node in read extent cache */ 1700 atomic64_t read_hit_largest; 1701 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1702 atomic_t inline_inode; /* # of inline_data inodes */ 1703 atomic_t inline_dir; /* # of inline_dentry inodes */ 1704 atomic_t compr_inode; /* # of compressed inodes */ 1705 atomic64_t compr_blocks; /* # of compressed blocks */ 1706 atomic_t swapfile_inode; /* # of swapfile inodes */ 1707 atomic_t atomic_files; /* # of opened atomic file */ 1708 atomic_t max_aw_cnt; /* max # of atomic writes */ 1709 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1710 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1711 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1712 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */ 1713 #endif 1714 spinlock_t stat_lock; /* lock for stat operations */ 1715 1716 /* to attach REQ_META|REQ_FUA flags */ 1717 unsigned int data_io_flag; 1718 unsigned int node_io_flag; 1719 1720 /* For sysfs support */ 1721 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1722 struct completion s_kobj_unregister; 1723 1724 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1725 struct completion s_stat_kobj_unregister; 1726 1727 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1728 struct completion s_feature_list_kobj_unregister; 1729 1730 /* For shrinker support */ 1731 struct list_head s_list; 1732 struct mutex umount_mutex; 1733 unsigned int shrinker_run_no; 1734 1735 /* For multi devices */ 1736 int s_ndevs; /* number of devices */ 1737 struct f2fs_dev_info *devs; /* for device list */ 1738 unsigned int dirty_device; /* for checkpoint data flush */ 1739 spinlock_t dev_lock; /* protect dirty_device */ 1740 bool aligned_blksize; /* all devices has the same logical blksize */ 1741 1742 /* For write statistics */ 1743 u64 sectors_written_start; 1744 u64 kbytes_written; 1745 1746 /* Reference to checksum algorithm driver via cryptoapi */ 1747 struct crypto_shash *s_chksum_driver; 1748 1749 /* Precomputed FS UUID checksum for seeding other checksums */ 1750 __u32 s_chksum_seed; 1751 1752 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1753 1754 /* 1755 * If we are in irq context, let's update error information into 1756 * on-disk superblock in the work. 1757 */ 1758 struct work_struct s_error_work; 1759 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ 1760 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */ 1761 spinlock_t error_lock; /* protect errors/stop_reason array */ 1762 bool error_dirty; /* errors of sb is dirty */ 1763 1764 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1765 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1766 1767 /* For reclaimed segs statistics per each GC mode */ 1768 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1769 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1770 1771 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1772 1773 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1774 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1775 1776 /* For atomic write statistics */ 1777 atomic64_t current_atomic_write; 1778 s64 peak_atomic_write; 1779 u64 committed_atomic_block; 1780 u64 revoked_atomic_block; 1781 1782 #ifdef CONFIG_F2FS_FS_COMPRESSION 1783 struct kmem_cache *page_array_slab; /* page array entry */ 1784 unsigned int page_array_slab_size; /* default page array slab size */ 1785 1786 /* For runtime compression statistics */ 1787 u64 compr_written_block; 1788 u64 compr_saved_block; 1789 u32 compr_new_inode; 1790 1791 /* For compressed block cache */ 1792 struct inode *compress_inode; /* cache compressed blocks */ 1793 unsigned int compress_percent; /* cache page percentage */ 1794 unsigned int compress_watermark; /* cache page watermark */ 1795 atomic_t compress_page_hit; /* cache hit count */ 1796 #endif 1797 1798 #ifdef CONFIG_F2FS_IOSTAT 1799 /* For app/fs IO statistics */ 1800 spinlock_t iostat_lock; 1801 unsigned long long iostat_count[NR_IO_TYPE]; 1802 unsigned long long iostat_bytes[NR_IO_TYPE]; 1803 unsigned long long prev_iostat_bytes[NR_IO_TYPE]; 1804 bool iostat_enable; 1805 unsigned long iostat_next_period; 1806 unsigned int iostat_period_ms; 1807 1808 /* For io latency related statistics info in one iostat period */ 1809 spinlock_t iostat_lat_lock; 1810 struct iostat_lat_info *iostat_io_lat; 1811 #endif 1812 }; 1813 1814 #ifdef CONFIG_F2FS_FAULT_INJECTION 1815 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \ 1816 __builtin_return_address(0)) 1817 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type, 1818 const char *func, const char *parent_func) 1819 { 1820 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1821 1822 if (!ffi->inject_rate) 1823 return false; 1824 1825 if (!IS_FAULT_SET(ffi, type)) 1826 return false; 1827 1828 atomic_inc(&ffi->inject_ops); 1829 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1830 atomic_set(&ffi->inject_ops, 0); 1831 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", 1832 KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type], 1833 func, parent_func); 1834 return true; 1835 } 1836 return false; 1837 } 1838 #else 1839 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1840 { 1841 return false; 1842 } 1843 #endif 1844 1845 /* 1846 * Test if the mounted volume is a multi-device volume. 1847 * - For a single regular disk volume, sbi->s_ndevs is 0. 1848 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1849 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1850 */ 1851 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1852 { 1853 return sbi->s_ndevs > 1; 1854 } 1855 1856 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1857 { 1858 unsigned long now = jiffies; 1859 1860 sbi->last_time[type] = now; 1861 1862 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1863 if (type == REQ_TIME) { 1864 sbi->last_time[DISCARD_TIME] = now; 1865 sbi->last_time[GC_TIME] = now; 1866 } 1867 } 1868 1869 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1870 { 1871 unsigned long interval = sbi->interval_time[type] * HZ; 1872 1873 return time_after(jiffies, sbi->last_time[type] + interval); 1874 } 1875 1876 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1877 int type) 1878 { 1879 unsigned long interval = sbi->interval_time[type] * HZ; 1880 unsigned int wait_ms = 0; 1881 long delta; 1882 1883 delta = (sbi->last_time[type] + interval) - jiffies; 1884 if (delta > 0) 1885 wait_ms = jiffies_to_msecs(delta); 1886 1887 return wait_ms; 1888 } 1889 1890 /* 1891 * Inline functions 1892 */ 1893 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1894 const void *address, unsigned int length) 1895 { 1896 struct { 1897 struct shash_desc shash; 1898 char ctx[4]; 1899 } desc; 1900 int err; 1901 1902 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1903 1904 desc.shash.tfm = sbi->s_chksum_driver; 1905 *(u32 *)desc.ctx = crc; 1906 1907 err = crypto_shash_update(&desc.shash, address, length); 1908 BUG_ON(err); 1909 1910 return *(u32 *)desc.ctx; 1911 } 1912 1913 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1914 unsigned int length) 1915 { 1916 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1917 } 1918 1919 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1920 void *buf, size_t buf_size) 1921 { 1922 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1923 } 1924 1925 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1926 const void *address, unsigned int length) 1927 { 1928 return __f2fs_crc32(sbi, crc, address, length); 1929 } 1930 1931 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1932 { 1933 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1934 } 1935 1936 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1937 { 1938 return sb->s_fs_info; 1939 } 1940 1941 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1942 { 1943 return F2FS_SB(inode->i_sb); 1944 } 1945 1946 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1947 { 1948 return F2FS_I_SB(mapping->host); 1949 } 1950 1951 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1952 { 1953 return F2FS_M_SB(page_file_mapping(page)); 1954 } 1955 1956 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1957 { 1958 return (struct f2fs_super_block *)(sbi->raw_super); 1959 } 1960 1961 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1962 { 1963 return (struct f2fs_checkpoint *)(sbi->ckpt); 1964 } 1965 1966 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1967 { 1968 return (struct f2fs_node *)page_address(page); 1969 } 1970 1971 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1972 { 1973 return &((struct f2fs_node *)page_address(page))->i; 1974 } 1975 1976 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1977 { 1978 return (struct f2fs_nm_info *)(sbi->nm_info); 1979 } 1980 1981 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1982 { 1983 return (struct f2fs_sm_info *)(sbi->sm_info); 1984 } 1985 1986 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1987 { 1988 return (struct sit_info *)(SM_I(sbi)->sit_info); 1989 } 1990 1991 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1992 { 1993 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1994 } 1995 1996 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1997 { 1998 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1999 } 2000 2001 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 2002 { 2003 return sbi->meta_inode->i_mapping; 2004 } 2005 2006 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 2007 { 2008 return sbi->node_inode->i_mapping; 2009 } 2010 2011 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 2012 { 2013 return test_bit(type, &sbi->s_flag); 2014 } 2015 2016 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2017 { 2018 set_bit(type, &sbi->s_flag); 2019 } 2020 2021 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2022 { 2023 clear_bit(type, &sbi->s_flag); 2024 } 2025 2026 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2027 { 2028 return le64_to_cpu(cp->checkpoint_ver); 2029 } 2030 2031 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2032 { 2033 if (type < F2FS_MAX_QUOTAS) 2034 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2035 return 0; 2036 } 2037 2038 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2039 { 2040 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2041 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2042 } 2043 2044 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2045 { 2046 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2047 2048 return ckpt_flags & f; 2049 } 2050 2051 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2052 { 2053 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2054 } 2055 2056 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2057 { 2058 unsigned int ckpt_flags; 2059 2060 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2061 ckpt_flags |= f; 2062 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2063 } 2064 2065 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2066 { 2067 unsigned long flags; 2068 2069 spin_lock_irqsave(&sbi->cp_lock, flags); 2070 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2071 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2072 } 2073 2074 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2075 { 2076 unsigned int ckpt_flags; 2077 2078 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2079 ckpt_flags &= (~f); 2080 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2081 } 2082 2083 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2084 { 2085 unsigned long flags; 2086 2087 spin_lock_irqsave(&sbi->cp_lock, flags); 2088 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2089 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2090 } 2091 2092 #define init_f2fs_rwsem(sem) \ 2093 do { \ 2094 static struct lock_class_key __key; \ 2095 \ 2096 __init_f2fs_rwsem((sem), #sem, &__key); \ 2097 } while (0) 2098 2099 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, 2100 const char *sem_name, struct lock_class_key *key) 2101 { 2102 __init_rwsem(&sem->internal_rwsem, sem_name, key); 2103 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2104 init_waitqueue_head(&sem->read_waiters); 2105 #endif 2106 } 2107 2108 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) 2109 { 2110 return rwsem_is_locked(&sem->internal_rwsem); 2111 } 2112 2113 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) 2114 { 2115 return rwsem_is_contended(&sem->internal_rwsem); 2116 } 2117 2118 static inline void f2fs_down_read(struct f2fs_rwsem *sem) 2119 { 2120 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2121 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); 2122 #else 2123 down_read(&sem->internal_rwsem); 2124 #endif 2125 } 2126 2127 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) 2128 { 2129 return down_read_trylock(&sem->internal_rwsem); 2130 } 2131 2132 static inline void f2fs_up_read(struct f2fs_rwsem *sem) 2133 { 2134 up_read(&sem->internal_rwsem); 2135 } 2136 2137 static inline void f2fs_down_write(struct f2fs_rwsem *sem) 2138 { 2139 down_write(&sem->internal_rwsem); 2140 } 2141 2142 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2143 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) 2144 { 2145 down_read_nested(&sem->internal_rwsem, subclass); 2146 } 2147 2148 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass) 2149 { 2150 down_write_nested(&sem->internal_rwsem, subclass); 2151 } 2152 #else 2153 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) 2154 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem) 2155 #endif 2156 2157 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) 2158 { 2159 return down_write_trylock(&sem->internal_rwsem); 2160 } 2161 2162 static inline void f2fs_up_write(struct f2fs_rwsem *sem) 2163 { 2164 up_write(&sem->internal_rwsem); 2165 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2166 wake_up_all(&sem->read_waiters); 2167 #endif 2168 } 2169 2170 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2171 { 2172 f2fs_down_read(&sbi->cp_rwsem); 2173 } 2174 2175 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2176 { 2177 if (time_to_inject(sbi, FAULT_LOCK_OP)) 2178 return 0; 2179 return f2fs_down_read_trylock(&sbi->cp_rwsem); 2180 } 2181 2182 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2183 { 2184 f2fs_up_read(&sbi->cp_rwsem); 2185 } 2186 2187 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2188 { 2189 f2fs_down_write(&sbi->cp_rwsem); 2190 } 2191 2192 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2193 { 2194 f2fs_up_write(&sbi->cp_rwsem); 2195 } 2196 2197 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2198 { 2199 int reason = CP_SYNC; 2200 2201 if (test_opt(sbi, FASTBOOT)) 2202 reason = CP_FASTBOOT; 2203 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2204 reason = CP_UMOUNT; 2205 return reason; 2206 } 2207 2208 static inline bool __remain_node_summaries(int reason) 2209 { 2210 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2211 } 2212 2213 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2214 { 2215 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2216 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2217 } 2218 2219 /* 2220 * Check whether the inode has blocks or not 2221 */ 2222 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2223 { 2224 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2225 2226 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2227 } 2228 2229 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2230 { 2231 return ofs == XATTR_NODE_OFFSET; 2232 } 2233 2234 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2235 struct inode *inode, bool cap) 2236 { 2237 if (!inode) 2238 return true; 2239 if (!test_opt(sbi, RESERVE_ROOT)) 2240 return false; 2241 if (IS_NOQUOTA(inode)) 2242 return true; 2243 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2244 return true; 2245 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2246 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2247 return true; 2248 if (cap && capable(CAP_SYS_RESOURCE)) 2249 return true; 2250 return false; 2251 } 2252 2253 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2254 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2255 struct inode *inode, blkcnt_t *count) 2256 { 2257 blkcnt_t diff = 0, release = 0; 2258 block_t avail_user_block_count; 2259 int ret; 2260 2261 ret = dquot_reserve_block(inode, *count); 2262 if (ret) 2263 return ret; 2264 2265 if (time_to_inject(sbi, FAULT_BLOCK)) { 2266 release = *count; 2267 goto release_quota; 2268 } 2269 2270 /* 2271 * let's increase this in prior to actual block count change in order 2272 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2273 */ 2274 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2275 2276 spin_lock(&sbi->stat_lock); 2277 sbi->total_valid_block_count += (block_t)(*count); 2278 avail_user_block_count = sbi->user_block_count - 2279 sbi->current_reserved_blocks; 2280 2281 if (!__allow_reserved_blocks(sbi, inode, true)) 2282 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2283 2284 if (F2FS_IO_ALIGNED(sbi)) 2285 avail_user_block_count -= sbi->blocks_per_seg * 2286 SM_I(sbi)->additional_reserved_segments; 2287 2288 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2289 if (avail_user_block_count > sbi->unusable_block_count) 2290 avail_user_block_count -= sbi->unusable_block_count; 2291 else 2292 avail_user_block_count = 0; 2293 } 2294 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 2295 diff = sbi->total_valid_block_count - avail_user_block_count; 2296 if (diff > *count) 2297 diff = *count; 2298 *count -= diff; 2299 release = diff; 2300 sbi->total_valid_block_count -= diff; 2301 if (!*count) { 2302 spin_unlock(&sbi->stat_lock); 2303 goto enospc; 2304 } 2305 } 2306 spin_unlock(&sbi->stat_lock); 2307 2308 if (unlikely(release)) { 2309 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2310 dquot_release_reservation_block(inode, release); 2311 } 2312 f2fs_i_blocks_write(inode, *count, true, true); 2313 return 0; 2314 2315 enospc: 2316 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2317 release_quota: 2318 dquot_release_reservation_block(inode, release); 2319 return -ENOSPC; 2320 } 2321 2322 __printf(2, 3) 2323 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 2324 2325 #define f2fs_err(sbi, fmt, ...) \ 2326 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 2327 #define f2fs_warn(sbi, fmt, ...) \ 2328 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 2329 #define f2fs_notice(sbi, fmt, ...) \ 2330 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 2331 #define f2fs_info(sbi, fmt, ...) \ 2332 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 2333 #define f2fs_debug(sbi, fmt, ...) \ 2334 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 2335 2336 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 2337 static inline bool page_private_##name(struct page *page) \ 2338 { \ 2339 return PagePrivate(page) && \ 2340 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 2341 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2342 } 2343 2344 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 2345 static inline void set_page_private_##name(struct page *page) \ 2346 { \ 2347 if (!PagePrivate(page)) \ 2348 attach_page_private(page, (void *)0); \ 2349 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 2350 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2351 } 2352 2353 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 2354 static inline void clear_page_private_##name(struct page *page) \ 2355 { \ 2356 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2357 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \ 2358 detach_page_private(page); \ 2359 } 2360 2361 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 2362 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 2363 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 2364 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE); 2365 2366 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 2367 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 2368 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 2369 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE); 2370 2371 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 2372 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 2373 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 2374 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE); 2375 2376 static inline unsigned long get_page_private_data(struct page *page) 2377 { 2378 unsigned long data = page_private(page); 2379 2380 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 2381 return 0; 2382 return data >> PAGE_PRIVATE_MAX; 2383 } 2384 2385 static inline void set_page_private_data(struct page *page, unsigned long data) 2386 { 2387 if (!PagePrivate(page)) 2388 attach_page_private(page, (void *)0); 2389 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 2390 page_private(page) |= data << PAGE_PRIVATE_MAX; 2391 } 2392 2393 static inline void clear_page_private_data(struct page *page) 2394 { 2395 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0); 2396 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) 2397 detach_page_private(page); 2398 } 2399 2400 static inline void clear_page_private_all(struct page *page) 2401 { 2402 clear_page_private_data(page); 2403 clear_page_private_reference(page); 2404 clear_page_private_gcing(page); 2405 clear_page_private_inline(page); 2406 2407 f2fs_bug_on(F2FS_P_SB(page), page_private(page)); 2408 } 2409 2410 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2411 struct inode *inode, 2412 block_t count) 2413 { 2414 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2415 2416 spin_lock(&sbi->stat_lock); 2417 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2418 sbi->total_valid_block_count -= (block_t)count; 2419 if (sbi->reserved_blocks && 2420 sbi->current_reserved_blocks < sbi->reserved_blocks) 2421 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2422 sbi->current_reserved_blocks + count); 2423 spin_unlock(&sbi->stat_lock); 2424 if (unlikely(inode->i_blocks < sectors)) { 2425 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2426 inode->i_ino, 2427 (unsigned long long)inode->i_blocks, 2428 (unsigned long long)sectors); 2429 set_sbi_flag(sbi, SBI_NEED_FSCK); 2430 return; 2431 } 2432 f2fs_i_blocks_write(inode, count, false, true); 2433 } 2434 2435 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2436 { 2437 atomic_inc(&sbi->nr_pages[count_type]); 2438 2439 if (count_type == F2FS_DIRTY_DENTS || 2440 count_type == F2FS_DIRTY_NODES || 2441 count_type == F2FS_DIRTY_META || 2442 count_type == F2FS_DIRTY_QDATA || 2443 count_type == F2FS_DIRTY_IMETA) 2444 set_sbi_flag(sbi, SBI_IS_DIRTY); 2445 } 2446 2447 static inline void inode_inc_dirty_pages(struct inode *inode) 2448 { 2449 atomic_inc(&F2FS_I(inode)->dirty_pages); 2450 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2451 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2452 if (IS_NOQUOTA(inode)) 2453 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2454 } 2455 2456 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2457 { 2458 atomic_dec(&sbi->nr_pages[count_type]); 2459 } 2460 2461 static inline void inode_dec_dirty_pages(struct inode *inode) 2462 { 2463 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2464 !S_ISLNK(inode->i_mode)) 2465 return; 2466 2467 atomic_dec(&F2FS_I(inode)->dirty_pages); 2468 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2469 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2470 if (IS_NOQUOTA(inode)) 2471 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2472 } 2473 2474 static inline void inc_atomic_write_cnt(struct inode *inode) 2475 { 2476 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2477 struct f2fs_inode_info *fi = F2FS_I(inode); 2478 u64 current_write; 2479 2480 fi->atomic_write_cnt++; 2481 atomic64_inc(&sbi->current_atomic_write); 2482 current_write = atomic64_read(&sbi->current_atomic_write); 2483 if (current_write > sbi->peak_atomic_write) 2484 sbi->peak_atomic_write = current_write; 2485 } 2486 2487 static inline void release_atomic_write_cnt(struct inode *inode) 2488 { 2489 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2490 struct f2fs_inode_info *fi = F2FS_I(inode); 2491 2492 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); 2493 fi->atomic_write_cnt = 0; 2494 } 2495 2496 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2497 { 2498 return atomic_read(&sbi->nr_pages[count_type]); 2499 } 2500 2501 static inline int get_dirty_pages(struct inode *inode) 2502 { 2503 return atomic_read(&F2FS_I(inode)->dirty_pages); 2504 } 2505 2506 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2507 { 2508 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 2509 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 2510 sbi->log_blocks_per_seg; 2511 2512 return segs / sbi->segs_per_sec; 2513 } 2514 2515 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2516 { 2517 return sbi->total_valid_block_count; 2518 } 2519 2520 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2521 { 2522 return sbi->discard_blks; 2523 } 2524 2525 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2526 { 2527 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2528 2529 /* return NAT or SIT bitmap */ 2530 if (flag == NAT_BITMAP) 2531 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2532 else if (flag == SIT_BITMAP) 2533 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2534 2535 return 0; 2536 } 2537 2538 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2539 { 2540 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2541 } 2542 2543 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2544 { 2545 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2546 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2547 int offset; 2548 2549 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2550 offset = (flag == SIT_BITMAP) ? 2551 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2552 /* 2553 * if large_nat_bitmap feature is enabled, leave checksum 2554 * protection for all nat/sit bitmaps. 2555 */ 2556 return tmp_ptr + offset + sizeof(__le32); 2557 } 2558 2559 if (__cp_payload(sbi) > 0) { 2560 if (flag == NAT_BITMAP) 2561 return tmp_ptr; 2562 else 2563 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2564 } else { 2565 offset = (flag == NAT_BITMAP) ? 2566 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2567 return tmp_ptr + offset; 2568 } 2569 } 2570 2571 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2572 { 2573 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2574 2575 if (sbi->cur_cp_pack == 2) 2576 start_addr += sbi->blocks_per_seg; 2577 return start_addr; 2578 } 2579 2580 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2581 { 2582 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2583 2584 if (sbi->cur_cp_pack == 1) 2585 start_addr += sbi->blocks_per_seg; 2586 return start_addr; 2587 } 2588 2589 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2590 { 2591 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2592 } 2593 2594 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2595 { 2596 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2597 } 2598 2599 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 2600 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2601 struct inode *inode, bool is_inode) 2602 { 2603 block_t valid_block_count; 2604 unsigned int valid_node_count, user_block_count; 2605 int err; 2606 2607 if (is_inode) { 2608 if (inode) { 2609 err = dquot_alloc_inode(inode); 2610 if (err) 2611 return err; 2612 } 2613 } else { 2614 err = dquot_reserve_block(inode, 1); 2615 if (err) 2616 return err; 2617 } 2618 2619 if (time_to_inject(sbi, FAULT_BLOCK)) 2620 goto enospc; 2621 2622 spin_lock(&sbi->stat_lock); 2623 2624 valid_block_count = sbi->total_valid_block_count + 2625 sbi->current_reserved_blocks + 1; 2626 2627 if (!__allow_reserved_blocks(sbi, inode, false)) 2628 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2629 2630 if (F2FS_IO_ALIGNED(sbi)) 2631 valid_block_count += sbi->blocks_per_seg * 2632 SM_I(sbi)->additional_reserved_segments; 2633 2634 user_block_count = sbi->user_block_count; 2635 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2636 user_block_count -= sbi->unusable_block_count; 2637 2638 if (unlikely(valid_block_count > user_block_count)) { 2639 spin_unlock(&sbi->stat_lock); 2640 goto enospc; 2641 } 2642 2643 valid_node_count = sbi->total_valid_node_count + 1; 2644 if (unlikely(valid_node_count > sbi->total_node_count)) { 2645 spin_unlock(&sbi->stat_lock); 2646 goto enospc; 2647 } 2648 2649 sbi->total_valid_node_count++; 2650 sbi->total_valid_block_count++; 2651 spin_unlock(&sbi->stat_lock); 2652 2653 if (inode) { 2654 if (is_inode) 2655 f2fs_mark_inode_dirty_sync(inode, true); 2656 else 2657 f2fs_i_blocks_write(inode, 1, true, true); 2658 } 2659 2660 percpu_counter_inc(&sbi->alloc_valid_block_count); 2661 return 0; 2662 2663 enospc: 2664 if (is_inode) { 2665 if (inode) 2666 dquot_free_inode(inode); 2667 } else { 2668 dquot_release_reservation_block(inode, 1); 2669 } 2670 return -ENOSPC; 2671 } 2672 2673 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2674 struct inode *inode, bool is_inode) 2675 { 2676 spin_lock(&sbi->stat_lock); 2677 2678 if (unlikely(!sbi->total_valid_block_count || 2679 !sbi->total_valid_node_count)) { 2680 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", 2681 sbi->total_valid_block_count, 2682 sbi->total_valid_node_count); 2683 set_sbi_flag(sbi, SBI_NEED_FSCK); 2684 } else { 2685 sbi->total_valid_block_count--; 2686 sbi->total_valid_node_count--; 2687 } 2688 2689 if (sbi->reserved_blocks && 2690 sbi->current_reserved_blocks < sbi->reserved_blocks) 2691 sbi->current_reserved_blocks++; 2692 2693 spin_unlock(&sbi->stat_lock); 2694 2695 if (is_inode) { 2696 dquot_free_inode(inode); 2697 } else { 2698 if (unlikely(inode->i_blocks == 0)) { 2699 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2700 inode->i_ino, 2701 (unsigned long long)inode->i_blocks); 2702 set_sbi_flag(sbi, SBI_NEED_FSCK); 2703 return; 2704 } 2705 f2fs_i_blocks_write(inode, 1, false, true); 2706 } 2707 } 2708 2709 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2710 { 2711 return sbi->total_valid_node_count; 2712 } 2713 2714 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2715 { 2716 percpu_counter_inc(&sbi->total_valid_inode_count); 2717 } 2718 2719 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2720 { 2721 percpu_counter_dec(&sbi->total_valid_inode_count); 2722 } 2723 2724 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2725 { 2726 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2727 } 2728 2729 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2730 pgoff_t index, bool for_write) 2731 { 2732 struct page *page; 2733 unsigned int flags; 2734 2735 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2736 if (!for_write) 2737 page = find_get_page_flags(mapping, index, 2738 FGP_LOCK | FGP_ACCESSED); 2739 else 2740 page = find_lock_page(mapping, index); 2741 if (page) 2742 return page; 2743 2744 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 2745 return NULL; 2746 } 2747 2748 if (!for_write) 2749 return grab_cache_page(mapping, index); 2750 2751 flags = memalloc_nofs_save(); 2752 page = grab_cache_page_write_begin(mapping, index); 2753 memalloc_nofs_restore(flags); 2754 2755 return page; 2756 } 2757 2758 static inline struct page *f2fs_pagecache_get_page( 2759 struct address_space *mapping, pgoff_t index, 2760 fgf_t fgp_flags, gfp_t gfp_mask) 2761 { 2762 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) 2763 return NULL; 2764 2765 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2766 } 2767 2768 static inline void f2fs_put_page(struct page *page, int unlock) 2769 { 2770 if (!page) 2771 return; 2772 2773 if (unlock) { 2774 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2775 unlock_page(page); 2776 } 2777 put_page(page); 2778 } 2779 2780 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2781 { 2782 if (dn->node_page) 2783 f2fs_put_page(dn->node_page, 1); 2784 if (dn->inode_page && dn->node_page != dn->inode_page) 2785 f2fs_put_page(dn->inode_page, 0); 2786 dn->node_page = NULL; 2787 dn->inode_page = NULL; 2788 } 2789 2790 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2791 size_t size) 2792 { 2793 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2794 } 2795 2796 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2797 gfp_t flags) 2798 { 2799 void *entry; 2800 2801 entry = kmem_cache_alloc(cachep, flags); 2802 if (!entry) 2803 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2804 return entry; 2805 } 2806 2807 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2808 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2809 { 2810 if (nofail) 2811 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2812 2813 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) 2814 return NULL; 2815 2816 return kmem_cache_alloc(cachep, flags); 2817 } 2818 2819 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2820 { 2821 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2822 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2823 get_pages(sbi, F2FS_WB_CP_DATA) || 2824 get_pages(sbi, F2FS_DIO_READ) || 2825 get_pages(sbi, F2FS_DIO_WRITE)) 2826 return true; 2827 2828 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2829 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2830 return true; 2831 2832 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2833 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2834 return true; 2835 return false; 2836 } 2837 2838 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2839 { 2840 if (sbi->gc_mode == GC_URGENT_HIGH) 2841 return true; 2842 2843 if (is_inflight_io(sbi, type)) 2844 return false; 2845 2846 if (sbi->gc_mode == GC_URGENT_MID) 2847 return true; 2848 2849 if (sbi->gc_mode == GC_URGENT_LOW && 2850 (type == DISCARD_TIME || type == GC_TIME)) 2851 return true; 2852 2853 return f2fs_time_over(sbi, type); 2854 } 2855 2856 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2857 unsigned long index, void *item) 2858 { 2859 while (radix_tree_insert(root, index, item)) 2860 cond_resched(); 2861 } 2862 2863 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2864 2865 static inline bool IS_INODE(struct page *page) 2866 { 2867 struct f2fs_node *p = F2FS_NODE(page); 2868 2869 return RAW_IS_INODE(p); 2870 } 2871 2872 static inline int offset_in_addr(struct f2fs_inode *i) 2873 { 2874 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2875 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2876 } 2877 2878 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2879 { 2880 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2881 } 2882 2883 static inline int f2fs_has_extra_attr(struct inode *inode); 2884 static inline block_t data_blkaddr(struct inode *inode, 2885 struct page *node_page, unsigned int offset) 2886 { 2887 struct f2fs_node *raw_node; 2888 __le32 *addr_array; 2889 int base = 0; 2890 bool is_inode = IS_INODE(node_page); 2891 2892 raw_node = F2FS_NODE(node_page); 2893 2894 if (is_inode) { 2895 if (!inode) 2896 /* from GC path only */ 2897 base = offset_in_addr(&raw_node->i); 2898 else if (f2fs_has_extra_attr(inode)) 2899 base = get_extra_isize(inode); 2900 } 2901 2902 addr_array = blkaddr_in_node(raw_node); 2903 return le32_to_cpu(addr_array[base + offset]); 2904 } 2905 2906 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2907 { 2908 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2909 } 2910 2911 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2912 { 2913 int mask; 2914 2915 addr += (nr >> 3); 2916 mask = BIT(7 - (nr & 0x07)); 2917 return mask & *addr; 2918 } 2919 2920 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2921 { 2922 int mask; 2923 2924 addr += (nr >> 3); 2925 mask = BIT(7 - (nr & 0x07)); 2926 *addr |= mask; 2927 } 2928 2929 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2930 { 2931 int mask; 2932 2933 addr += (nr >> 3); 2934 mask = BIT(7 - (nr & 0x07)); 2935 *addr &= ~mask; 2936 } 2937 2938 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2939 { 2940 int mask; 2941 int ret; 2942 2943 addr += (nr >> 3); 2944 mask = BIT(7 - (nr & 0x07)); 2945 ret = mask & *addr; 2946 *addr |= mask; 2947 return ret; 2948 } 2949 2950 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2951 { 2952 int mask; 2953 int ret; 2954 2955 addr += (nr >> 3); 2956 mask = BIT(7 - (nr & 0x07)); 2957 ret = mask & *addr; 2958 *addr &= ~mask; 2959 return ret; 2960 } 2961 2962 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2963 { 2964 int mask; 2965 2966 addr += (nr >> 3); 2967 mask = BIT(7 - (nr & 0x07)); 2968 *addr ^= mask; 2969 } 2970 2971 /* 2972 * On-disk inode flags (f2fs_inode::i_flags) 2973 */ 2974 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2975 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2976 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2977 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2978 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2979 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2980 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2981 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2982 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2983 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2984 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2985 2986 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL) 2987 2988 /* Flags that should be inherited by new inodes from their parent. */ 2989 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2990 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2991 F2FS_CASEFOLD_FL) 2992 2993 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2994 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2995 F2FS_CASEFOLD_FL)) 2996 2997 /* Flags that are appropriate for non-directories/regular files. */ 2998 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2999 3000 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 3001 { 3002 if (S_ISDIR(mode)) 3003 return flags; 3004 else if (S_ISREG(mode)) 3005 return flags & F2FS_REG_FLMASK; 3006 else 3007 return flags & F2FS_OTHER_FLMASK; 3008 } 3009 3010 static inline void __mark_inode_dirty_flag(struct inode *inode, 3011 int flag, bool set) 3012 { 3013 switch (flag) { 3014 case FI_INLINE_XATTR: 3015 case FI_INLINE_DATA: 3016 case FI_INLINE_DENTRY: 3017 case FI_NEW_INODE: 3018 if (set) 3019 return; 3020 fallthrough; 3021 case FI_DATA_EXIST: 3022 case FI_INLINE_DOTS: 3023 case FI_PIN_FILE: 3024 case FI_COMPRESS_RELEASED: 3025 f2fs_mark_inode_dirty_sync(inode, true); 3026 } 3027 } 3028 3029 static inline void set_inode_flag(struct inode *inode, int flag) 3030 { 3031 set_bit(flag, F2FS_I(inode)->flags); 3032 __mark_inode_dirty_flag(inode, flag, true); 3033 } 3034 3035 static inline int is_inode_flag_set(struct inode *inode, int flag) 3036 { 3037 return test_bit(flag, F2FS_I(inode)->flags); 3038 } 3039 3040 static inline void clear_inode_flag(struct inode *inode, int flag) 3041 { 3042 clear_bit(flag, F2FS_I(inode)->flags); 3043 __mark_inode_dirty_flag(inode, flag, false); 3044 } 3045 3046 static inline bool f2fs_verity_in_progress(struct inode *inode) 3047 { 3048 return IS_ENABLED(CONFIG_FS_VERITY) && 3049 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 3050 } 3051 3052 static inline void set_acl_inode(struct inode *inode, umode_t mode) 3053 { 3054 F2FS_I(inode)->i_acl_mode = mode; 3055 set_inode_flag(inode, FI_ACL_MODE); 3056 f2fs_mark_inode_dirty_sync(inode, false); 3057 } 3058 3059 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 3060 { 3061 if (inc) 3062 inc_nlink(inode); 3063 else 3064 drop_nlink(inode); 3065 f2fs_mark_inode_dirty_sync(inode, true); 3066 } 3067 3068 static inline void f2fs_i_blocks_write(struct inode *inode, 3069 block_t diff, bool add, bool claim) 3070 { 3071 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3072 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3073 3074 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 3075 if (add) { 3076 if (claim) 3077 dquot_claim_block(inode, diff); 3078 else 3079 dquot_alloc_block_nofail(inode, diff); 3080 } else { 3081 dquot_free_block(inode, diff); 3082 } 3083 3084 f2fs_mark_inode_dirty_sync(inode, true); 3085 if (clean || recover) 3086 set_inode_flag(inode, FI_AUTO_RECOVER); 3087 } 3088 3089 static inline bool f2fs_is_atomic_file(struct inode *inode); 3090 3091 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 3092 { 3093 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3094 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3095 3096 if (i_size_read(inode) == i_size) 3097 return; 3098 3099 i_size_write(inode, i_size); 3100 3101 if (f2fs_is_atomic_file(inode)) 3102 return; 3103 3104 f2fs_mark_inode_dirty_sync(inode, true); 3105 if (clean || recover) 3106 set_inode_flag(inode, FI_AUTO_RECOVER); 3107 } 3108 3109 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 3110 { 3111 F2FS_I(inode)->i_current_depth = depth; 3112 f2fs_mark_inode_dirty_sync(inode, true); 3113 } 3114 3115 static inline void f2fs_i_gc_failures_write(struct inode *inode, 3116 unsigned int count) 3117 { 3118 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 3119 f2fs_mark_inode_dirty_sync(inode, true); 3120 } 3121 3122 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 3123 { 3124 F2FS_I(inode)->i_xattr_nid = xnid; 3125 f2fs_mark_inode_dirty_sync(inode, true); 3126 } 3127 3128 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 3129 { 3130 F2FS_I(inode)->i_pino = pino; 3131 f2fs_mark_inode_dirty_sync(inode, true); 3132 } 3133 3134 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 3135 { 3136 struct f2fs_inode_info *fi = F2FS_I(inode); 3137 3138 if (ri->i_inline & F2FS_INLINE_XATTR) 3139 set_bit(FI_INLINE_XATTR, fi->flags); 3140 if (ri->i_inline & F2FS_INLINE_DATA) 3141 set_bit(FI_INLINE_DATA, fi->flags); 3142 if (ri->i_inline & F2FS_INLINE_DENTRY) 3143 set_bit(FI_INLINE_DENTRY, fi->flags); 3144 if (ri->i_inline & F2FS_DATA_EXIST) 3145 set_bit(FI_DATA_EXIST, fi->flags); 3146 if (ri->i_inline & F2FS_INLINE_DOTS) 3147 set_bit(FI_INLINE_DOTS, fi->flags); 3148 if (ri->i_inline & F2FS_EXTRA_ATTR) 3149 set_bit(FI_EXTRA_ATTR, fi->flags); 3150 if (ri->i_inline & F2FS_PIN_FILE) 3151 set_bit(FI_PIN_FILE, fi->flags); 3152 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 3153 set_bit(FI_COMPRESS_RELEASED, fi->flags); 3154 } 3155 3156 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 3157 { 3158 ri->i_inline = 0; 3159 3160 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 3161 ri->i_inline |= F2FS_INLINE_XATTR; 3162 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 3163 ri->i_inline |= F2FS_INLINE_DATA; 3164 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 3165 ri->i_inline |= F2FS_INLINE_DENTRY; 3166 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 3167 ri->i_inline |= F2FS_DATA_EXIST; 3168 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 3169 ri->i_inline |= F2FS_INLINE_DOTS; 3170 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 3171 ri->i_inline |= F2FS_EXTRA_ATTR; 3172 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3173 ri->i_inline |= F2FS_PIN_FILE; 3174 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 3175 ri->i_inline |= F2FS_COMPRESS_RELEASED; 3176 } 3177 3178 static inline int f2fs_has_extra_attr(struct inode *inode) 3179 { 3180 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 3181 } 3182 3183 static inline int f2fs_has_inline_xattr(struct inode *inode) 3184 { 3185 return is_inode_flag_set(inode, FI_INLINE_XATTR); 3186 } 3187 3188 static inline int f2fs_compressed_file(struct inode *inode) 3189 { 3190 return S_ISREG(inode->i_mode) && 3191 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 3192 } 3193 3194 static inline bool f2fs_need_compress_data(struct inode *inode) 3195 { 3196 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3197 3198 if (!f2fs_compressed_file(inode)) 3199 return false; 3200 3201 if (compress_mode == COMPR_MODE_FS) 3202 return true; 3203 else if (compress_mode == COMPR_MODE_USER && 3204 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3205 return true; 3206 3207 return false; 3208 } 3209 3210 static inline unsigned int addrs_per_inode(struct inode *inode) 3211 { 3212 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 3213 get_inline_xattr_addrs(inode); 3214 3215 if (!f2fs_compressed_file(inode)) 3216 return addrs; 3217 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3218 } 3219 3220 static inline unsigned int addrs_per_block(struct inode *inode) 3221 { 3222 if (!f2fs_compressed_file(inode)) 3223 return DEF_ADDRS_PER_BLOCK; 3224 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 3225 } 3226 3227 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3228 { 3229 struct f2fs_inode *ri = F2FS_INODE(page); 3230 3231 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3232 get_inline_xattr_addrs(inode)]); 3233 } 3234 3235 static inline int inline_xattr_size(struct inode *inode) 3236 { 3237 if (f2fs_has_inline_xattr(inode)) 3238 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3239 return 0; 3240 } 3241 3242 /* 3243 * Notice: check inline_data flag without inode page lock is unsafe. 3244 * It could change at any time by f2fs_convert_inline_page(). 3245 */ 3246 static inline int f2fs_has_inline_data(struct inode *inode) 3247 { 3248 return is_inode_flag_set(inode, FI_INLINE_DATA); 3249 } 3250 3251 static inline int f2fs_exist_data(struct inode *inode) 3252 { 3253 return is_inode_flag_set(inode, FI_DATA_EXIST); 3254 } 3255 3256 static inline int f2fs_has_inline_dots(struct inode *inode) 3257 { 3258 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3259 } 3260 3261 static inline int f2fs_is_mmap_file(struct inode *inode) 3262 { 3263 return is_inode_flag_set(inode, FI_MMAP_FILE); 3264 } 3265 3266 static inline bool f2fs_is_pinned_file(struct inode *inode) 3267 { 3268 return is_inode_flag_set(inode, FI_PIN_FILE); 3269 } 3270 3271 static inline bool f2fs_is_atomic_file(struct inode *inode) 3272 { 3273 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3274 } 3275 3276 static inline bool f2fs_is_cow_file(struct inode *inode) 3277 { 3278 return is_inode_flag_set(inode, FI_COW_FILE); 3279 } 3280 3281 static inline __le32 *get_dnode_addr(struct inode *inode, 3282 struct page *node_page); 3283 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3284 { 3285 __le32 *addr = get_dnode_addr(inode, page); 3286 3287 return (void *)(addr + DEF_INLINE_RESERVED_SIZE); 3288 } 3289 3290 static inline int f2fs_has_inline_dentry(struct inode *inode) 3291 { 3292 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3293 } 3294 3295 static inline int is_file(struct inode *inode, int type) 3296 { 3297 return F2FS_I(inode)->i_advise & type; 3298 } 3299 3300 static inline void set_file(struct inode *inode, int type) 3301 { 3302 if (is_file(inode, type)) 3303 return; 3304 F2FS_I(inode)->i_advise |= type; 3305 f2fs_mark_inode_dirty_sync(inode, true); 3306 } 3307 3308 static inline void clear_file(struct inode *inode, int type) 3309 { 3310 if (!is_file(inode, type)) 3311 return; 3312 F2FS_I(inode)->i_advise &= ~type; 3313 f2fs_mark_inode_dirty_sync(inode, true); 3314 } 3315 3316 static inline bool f2fs_is_time_consistent(struct inode *inode) 3317 { 3318 struct timespec64 ts = inode_get_atime(inode); 3319 3320 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts)) 3321 return false; 3322 ts = inode_get_ctime(inode); 3323 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts)) 3324 return false; 3325 ts = inode_get_mtime(inode); 3326 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts)) 3327 return false; 3328 return true; 3329 } 3330 3331 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3332 { 3333 bool ret; 3334 3335 if (dsync) { 3336 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3337 3338 spin_lock(&sbi->inode_lock[DIRTY_META]); 3339 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3340 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3341 return ret; 3342 } 3343 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3344 file_keep_isize(inode) || 3345 i_size_read(inode) & ~PAGE_MASK) 3346 return false; 3347 3348 if (!f2fs_is_time_consistent(inode)) 3349 return false; 3350 3351 spin_lock(&F2FS_I(inode)->i_size_lock); 3352 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3353 spin_unlock(&F2FS_I(inode)->i_size_lock); 3354 3355 return ret; 3356 } 3357 3358 static inline bool f2fs_readonly(struct super_block *sb) 3359 { 3360 return sb_rdonly(sb); 3361 } 3362 3363 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3364 { 3365 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3366 } 3367 3368 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3369 size_t size, gfp_t flags) 3370 { 3371 if (time_to_inject(sbi, FAULT_KMALLOC)) 3372 return NULL; 3373 3374 return kmalloc(size, flags); 3375 } 3376 3377 static inline void *f2fs_getname(struct f2fs_sb_info *sbi) 3378 { 3379 if (time_to_inject(sbi, FAULT_KMALLOC)) 3380 return NULL; 3381 3382 return __getname(); 3383 } 3384 3385 static inline void f2fs_putname(char *buf) 3386 { 3387 __putname(buf); 3388 } 3389 3390 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3391 size_t size, gfp_t flags) 3392 { 3393 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3394 } 3395 3396 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3397 size_t size, gfp_t flags) 3398 { 3399 if (time_to_inject(sbi, FAULT_KVMALLOC)) 3400 return NULL; 3401 3402 return kvmalloc(size, flags); 3403 } 3404 3405 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3406 size_t size, gfp_t flags) 3407 { 3408 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3409 } 3410 3411 static inline int get_extra_isize(struct inode *inode) 3412 { 3413 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3414 } 3415 3416 static inline int get_inline_xattr_addrs(struct inode *inode) 3417 { 3418 return F2FS_I(inode)->i_inline_xattr_size; 3419 } 3420 3421 static inline __le32 *get_dnode_addr(struct inode *inode, 3422 struct page *node_page) 3423 { 3424 int base = 0; 3425 3426 if (IS_INODE(node_page) && f2fs_has_extra_attr(inode)) 3427 base = get_extra_isize(inode); 3428 3429 return blkaddr_in_node(F2FS_NODE(node_page)) + base; 3430 } 3431 3432 #define f2fs_get_inode_mode(i) \ 3433 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3434 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3435 3436 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32)) 3437 3438 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3439 (offsetof(struct f2fs_inode, i_extra_end) - \ 3440 offsetof(struct f2fs_inode, i_extra_isize)) \ 3441 3442 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3443 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3444 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3445 sizeof((f2fs_inode)->field)) \ 3446 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3447 3448 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 3449 3450 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3451 3452 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3453 block_t blkaddr, int type); 3454 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3455 block_t blkaddr, int type) 3456 { 3457 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 3458 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3459 blkaddr, type); 3460 f2fs_bug_on(sbi, 1); 3461 } 3462 } 3463 3464 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3465 { 3466 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3467 blkaddr == COMPRESS_ADDR) 3468 return false; 3469 return true; 3470 } 3471 3472 /* 3473 * file.c 3474 */ 3475 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3476 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3477 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3478 int f2fs_truncate(struct inode *inode); 3479 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 3480 struct kstat *stat, u32 request_mask, unsigned int flags); 3481 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3482 struct iattr *attr); 3483 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3484 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3485 int f2fs_precache_extents(struct inode *inode); 3486 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3487 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3488 struct dentry *dentry, struct fileattr *fa); 3489 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3490 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3491 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3492 int f2fs_pin_file_control(struct inode *inode, bool inc); 3493 3494 /* 3495 * inode.c 3496 */ 3497 void f2fs_set_inode_flags(struct inode *inode); 3498 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3499 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3500 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3501 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3502 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3503 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3504 void f2fs_update_inode_page(struct inode *inode); 3505 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3506 void f2fs_evict_inode(struct inode *inode); 3507 void f2fs_handle_failed_inode(struct inode *inode); 3508 3509 /* 3510 * namei.c 3511 */ 3512 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3513 bool hot, bool set); 3514 struct dentry *f2fs_get_parent(struct dentry *child); 3515 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3516 struct inode **new_inode); 3517 3518 /* 3519 * dir.c 3520 */ 3521 int f2fs_init_casefolded_name(const struct inode *dir, 3522 struct f2fs_filename *fname); 3523 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3524 int lookup, struct f2fs_filename *fname); 3525 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3526 struct f2fs_filename *fname); 3527 void f2fs_free_filename(struct f2fs_filename *fname); 3528 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3529 const struct f2fs_filename *fname, int *max_slots); 3530 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3531 unsigned int start_pos, struct fscrypt_str *fstr); 3532 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3533 struct f2fs_dentry_ptr *d); 3534 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3535 const struct f2fs_filename *fname, struct page *dpage); 3536 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3537 unsigned int current_depth); 3538 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3539 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3540 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3541 const struct f2fs_filename *fname, 3542 struct page **res_page); 3543 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3544 const struct qstr *child, struct page **res_page); 3545 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3546 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3547 struct page **page); 3548 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3549 struct page *page, struct inode *inode); 3550 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3551 const struct f2fs_filename *fname); 3552 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3553 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3554 unsigned int bit_pos); 3555 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3556 struct inode *inode, nid_t ino, umode_t mode); 3557 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3558 struct inode *inode, nid_t ino, umode_t mode); 3559 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3560 struct inode *inode, nid_t ino, umode_t mode); 3561 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3562 struct inode *dir, struct inode *inode); 3563 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 3564 bool f2fs_empty_dir(struct inode *dir); 3565 3566 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3567 { 3568 if (fscrypt_is_nokey_name(dentry)) 3569 return -ENOKEY; 3570 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3571 inode, inode->i_ino, inode->i_mode); 3572 } 3573 3574 /* 3575 * super.c 3576 */ 3577 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3578 void f2fs_inode_synced(struct inode *inode); 3579 int f2fs_dquot_initialize(struct inode *inode); 3580 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3581 int f2fs_quota_sync(struct super_block *sb, int type); 3582 loff_t max_file_blocks(struct inode *inode); 3583 void f2fs_quota_off_umount(struct super_block *sb); 3584 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag); 3585 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 3586 bool irq_context); 3587 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); 3588 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error); 3589 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3590 int f2fs_sync_fs(struct super_block *sb, int sync); 3591 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3592 3593 /* 3594 * hash.c 3595 */ 3596 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3597 3598 /* 3599 * node.c 3600 */ 3601 struct node_info; 3602 3603 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3604 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3605 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3606 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3607 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3608 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3609 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3610 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3611 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3612 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3613 struct node_info *ni, bool checkpoint_context); 3614 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3615 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3616 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3617 int f2fs_truncate_xattr_node(struct inode *inode); 3618 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3619 unsigned int seq_id); 3620 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3621 int f2fs_remove_inode_page(struct inode *inode); 3622 struct page *f2fs_new_inode_page(struct inode *inode); 3623 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3624 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3625 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3626 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3627 int f2fs_move_node_page(struct page *node_page, int gc_type); 3628 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3629 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3630 struct writeback_control *wbc, bool atomic, 3631 unsigned int *seq_id); 3632 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3633 struct writeback_control *wbc, 3634 bool do_balance, enum iostat_type io_type); 3635 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3636 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3637 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3638 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3639 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3640 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3641 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3642 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3643 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3644 unsigned int segno, struct f2fs_summary_block *sum); 3645 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3646 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3647 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3648 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3649 int __init f2fs_create_node_manager_caches(void); 3650 void f2fs_destroy_node_manager_caches(void); 3651 3652 /* 3653 * segment.c 3654 */ 3655 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3656 int f2fs_commit_atomic_write(struct inode *inode); 3657 void f2fs_abort_atomic_write(struct inode *inode, bool clean); 3658 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3659 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3660 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3661 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3662 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3663 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3664 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3665 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3666 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3667 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3668 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3669 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3670 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3671 struct cp_control *cpc); 3672 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3673 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3674 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3675 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3676 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3677 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3678 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3679 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3680 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3681 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3682 unsigned int *newseg, bool new_sec, int dir); 3683 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3684 unsigned int start, unsigned int end); 3685 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3686 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3687 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3688 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3689 struct cp_control *cpc); 3690 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3691 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3692 block_t blk_addr); 3693 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3694 enum iostat_type io_type); 3695 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3696 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3697 struct f2fs_io_info *fio); 3698 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3699 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3700 block_t old_blkaddr, block_t new_blkaddr, 3701 bool recover_curseg, bool recover_newaddr, 3702 bool from_gc); 3703 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3704 block_t old_addr, block_t new_addr, 3705 unsigned char version, bool recover_curseg, 3706 bool recover_newaddr); 3707 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3708 block_t old_blkaddr, block_t *new_blkaddr, 3709 struct f2fs_summary *sum, int type, 3710 struct f2fs_io_info *fio); 3711 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3712 block_t blkaddr, unsigned int blkcnt); 3713 void f2fs_wait_on_page_writeback(struct page *page, 3714 enum page_type type, bool ordered, bool locked); 3715 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3716 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3717 block_t len); 3718 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3719 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3720 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3721 unsigned int val, int alloc); 3722 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3723 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3724 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3725 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3726 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3727 int __init f2fs_create_segment_manager_caches(void); 3728 void f2fs_destroy_segment_manager_caches(void); 3729 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3730 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3731 unsigned int segno); 3732 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3733 unsigned int segno); 3734 3735 #define DEF_FRAGMENT_SIZE 4 3736 #define MIN_FRAGMENT_SIZE 1 3737 #define MAX_FRAGMENT_SIZE 512 3738 3739 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3740 { 3741 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3742 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3743 } 3744 3745 /* 3746 * checkpoint.c 3747 */ 3748 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 3749 unsigned char reason); 3750 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); 3751 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3752 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3753 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3754 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3755 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3756 block_t blkaddr, int type); 3757 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3758 int type, bool sync); 3759 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 3760 unsigned int ra_blocks); 3761 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3762 long nr_to_write, enum iostat_type io_type); 3763 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3764 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3765 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3766 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3767 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3768 unsigned int devidx, int type); 3769 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3770 unsigned int devidx, int type); 3771 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3772 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3773 void f2fs_add_orphan_inode(struct inode *inode); 3774 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3775 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3776 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3777 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); 3778 void f2fs_remove_dirty_inode(struct inode *inode); 3779 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 3780 bool from_cp); 3781 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3782 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3783 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3784 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3785 int __init f2fs_create_checkpoint_caches(void); 3786 void f2fs_destroy_checkpoint_caches(void); 3787 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3788 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3789 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3790 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3791 3792 /* 3793 * data.c 3794 */ 3795 int __init f2fs_init_bioset(void); 3796 void f2fs_destroy_bioset(void); 3797 int f2fs_init_bio_entry_cache(void); 3798 void f2fs_destroy_bio_entry_cache(void); 3799 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 3800 enum page_type type); 3801 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); 3802 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3803 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3804 struct inode *inode, struct page *page, 3805 nid_t ino, enum page_type type); 3806 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3807 struct bio **bio, struct page *page); 3808 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3809 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3810 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3811 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3812 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3813 block_t blk_addr, sector_t *sector); 3814 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3815 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3816 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3817 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3818 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3819 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index); 3820 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3821 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3822 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); 3823 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 3824 pgoff_t *next_pgofs); 3825 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3826 bool for_write); 3827 struct page *f2fs_get_new_data_page(struct inode *inode, 3828 struct page *ipage, pgoff_t index, bool new_i_size); 3829 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3830 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag); 3831 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3832 u64 start, u64 len); 3833 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3834 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3835 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3836 int f2fs_write_single_data_page(struct page *page, int *submitted, 3837 struct bio **bio, sector_t *last_block, 3838 struct writeback_control *wbc, 3839 enum iostat_type io_type, 3840 int compr_blocks, bool allow_balance); 3841 void f2fs_write_failed(struct inode *inode, loff_t to); 3842 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); 3843 bool f2fs_release_folio(struct folio *folio, gfp_t wait); 3844 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3845 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3846 int f2fs_init_post_read_processing(void); 3847 void f2fs_destroy_post_read_processing(void); 3848 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3849 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3850 extern const struct iomap_ops f2fs_iomap_ops; 3851 3852 /* 3853 * gc.c 3854 */ 3855 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3856 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3857 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3858 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); 3859 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3860 int f2fs_resize_fs(struct file *filp, __u64 block_count); 3861 int __init f2fs_create_garbage_collection_cache(void); 3862 void f2fs_destroy_garbage_collection_cache(void); 3863 /* victim selection function for cleaning and SSR */ 3864 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 3865 int gc_type, int type, char alloc_mode, 3866 unsigned long long age); 3867 3868 /* 3869 * recovery.c 3870 */ 3871 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3872 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3873 int __init f2fs_create_recovery_cache(void); 3874 void f2fs_destroy_recovery_cache(void); 3875 3876 /* 3877 * debug.c 3878 */ 3879 #ifdef CONFIG_F2FS_STAT_FS 3880 struct f2fs_stat_info { 3881 struct list_head stat_list; 3882 struct f2fs_sb_info *sbi; 3883 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3884 int main_area_segs, main_area_sections, main_area_zones; 3885 unsigned long long hit_cached[NR_EXTENT_CACHES]; 3886 unsigned long long hit_rbtree[NR_EXTENT_CACHES]; 3887 unsigned long long total_ext[NR_EXTENT_CACHES]; 3888 unsigned long long hit_total[NR_EXTENT_CACHES]; 3889 int ext_tree[NR_EXTENT_CACHES]; 3890 int zombie_tree[NR_EXTENT_CACHES]; 3891 int ext_node[NR_EXTENT_CACHES]; 3892 /* to count memory footprint */ 3893 unsigned long long ext_mem[NR_EXTENT_CACHES]; 3894 /* for read extent cache */ 3895 unsigned long long hit_largest; 3896 /* for block age extent cache */ 3897 unsigned long long allocated_data_blocks; 3898 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3899 int ndirty_data, ndirty_qdata; 3900 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3901 int nats, dirty_nats, sits, dirty_sits; 3902 int free_nids, avail_nids, alloc_nids; 3903 int total_count, utilization; 3904 int nr_wb_cp_data, nr_wb_data; 3905 int nr_rd_data, nr_rd_node, nr_rd_meta; 3906 int nr_dio_read, nr_dio_write; 3907 unsigned int io_skip_bggc, other_skip_bggc; 3908 int nr_flushing, nr_flushed, flush_list_empty; 3909 int nr_discarding, nr_discarded; 3910 int nr_discard_cmd; 3911 unsigned int undiscard_blks; 3912 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3913 unsigned int cur_ckpt_time, peak_ckpt_time; 3914 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3915 int compr_inode, swapfile_inode; 3916 unsigned long long compr_blocks; 3917 int aw_cnt, max_aw_cnt; 3918 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3919 unsigned int bimodal, avg_vblocks; 3920 int util_free, util_valid, util_invalid; 3921 int rsvd_segs, overp_segs; 3922 int dirty_count, node_pages, meta_pages, compress_pages; 3923 int compress_page_hit; 3924 int prefree_count, free_segs, free_secs; 3925 int cp_call_count[MAX_CALL_TYPE], cp_count; 3926 int gc_call_count[MAX_CALL_TYPE]; 3927 int gc_segs[2][2]; 3928 int gc_secs[2][2]; 3929 int tot_blks, data_blks, node_blks; 3930 int bg_data_blks, bg_node_blks; 3931 int curseg[NR_CURSEG_TYPE]; 3932 int cursec[NR_CURSEG_TYPE]; 3933 int curzone[NR_CURSEG_TYPE]; 3934 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3935 unsigned int full_seg[NR_CURSEG_TYPE]; 3936 unsigned int valid_blks[NR_CURSEG_TYPE]; 3937 3938 unsigned int meta_count[META_MAX]; 3939 unsigned int segment_count[2]; 3940 unsigned int block_count[2]; 3941 unsigned int inplace_count; 3942 unsigned long long base_mem, cache_mem, page_mem; 3943 }; 3944 3945 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3946 { 3947 return (struct f2fs_stat_info *)sbi->stat_info; 3948 } 3949 3950 #define stat_inc_cp_call_count(sbi, foreground) \ 3951 atomic_inc(&sbi->cp_call_count[(foreground)]) 3952 #define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++) 3953 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3954 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3955 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3956 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3957 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) 3958 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) 3959 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3960 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) 3961 #define stat_inc_inline_xattr(inode) \ 3962 do { \ 3963 if (f2fs_has_inline_xattr(inode)) \ 3964 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3965 } while (0) 3966 #define stat_dec_inline_xattr(inode) \ 3967 do { \ 3968 if (f2fs_has_inline_xattr(inode)) \ 3969 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3970 } while (0) 3971 #define stat_inc_inline_inode(inode) \ 3972 do { \ 3973 if (f2fs_has_inline_data(inode)) \ 3974 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3975 } while (0) 3976 #define stat_dec_inline_inode(inode) \ 3977 do { \ 3978 if (f2fs_has_inline_data(inode)) \ 3979 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3980 } while (0) 3981 #define stat_inc_inline_dir(inode) \ 3982 do { \ 3983 if (f2fs_has_inline_dentry(inode)) \ 3984 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3985 } while (0) 3986 #define stat_dec_inline_dir(inode) \ 3987 do { \ 3988 if (f2fs_has_inline_dentry(inode)) \ 3989 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3990 } while (0) 3991 #define stat_inc_compr_inode(inode) \ 3992 do { \ 3993 if (f2fs_compressed_file(inode)) \ 3994 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 3995 } while (0) 3996 #define stat_dec_compr_inode(inode) \ 3997 do { \ 3998 if (f2fs_compressed_file(inode)) \ 3999 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 4000 } while (0) 4001 #define stat_add_compr_blocks(inode, blocks) \ 4002 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4003 #define stat_sub_compr_blocks(inode, blocks) \ 4004 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4005 #define stat_inc_swapfile_inode(inode) \ 4006 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) 4007 #define stat_dec_swapfile_inode(inode) \ 4008 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) 4009 #define stat_inc_atomic_inode(inode) \ 4010 (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) 4011 #define stat_dec_atomic_inode(inode) \ 4012 (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) 4013 #define stat_inc_meta_count(sbi, blkaddr) \ 4014 do { \ 4015 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 4016 atomic_inc(&(sbi)->meta_count[META_CP]); \ 4017 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 4018 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 4019 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 4020 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 4021 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 4022 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 4023 } while (0) 4024 #define stat_inc_seg_type(sbi, curseg) \ 4025 ((sbi)->segment_count[(curseg)->alloc_type]++) 4026 #define stat_inc_block_count(sbi, curseg) \ 4027 ((sbi)->block_count[(curseg)->alloc_type]++) 4028 #define stat_inc_inplace_blocks(sbi) \ 4029 (atomic_inc(&(sbi)->inplace_count)) 4030 #define stat_update_max_atomic_write(inode) \ 4031 do { \ 4032 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ 4033 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 4034 if (cur > max) \ 4035 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 4036 } while (0) 4037 #define stat_inc_gc_call_count(sbi, foreground) \ 4038 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++) 4039 #define stat_inc_gc_sec_count(sbi, type, gc_type) \ 4040 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++) 4041 #define stat_inc_gc_seg_count(sbi, type, gc_type) \ 4042 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++) 4043 4044 #define stat_inc_tot_blk_count(si, blks) \ 4045 ((si)->tot_blks += (blks)) 4046 4047 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 4048 do { \ 4049 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4050 stat_inc_tot_blk_count(si, blks); \ 4051 si->data_blks += (blks); \ 4052 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4053 } while (0) 4054 4055 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 4056 do { \ 4057 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4058 stat_inc_tot_blk_count(si, blks); \ 4059 si->node_blks += (blks); \ 4060 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4061 } while (0) 4062 4063 int f2fs_build_stats(struct f2fs_sb_info *sbi); 4064 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 4065 void __init f2fs_create_root_stats(void); 4066 void f2fs_destroy_root_stats(void); 4067 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 4068 #else 4069 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0) 4070 #define stat_inc_cp_count(sbi) do { } while (0) 4071 #define stat_io_skip_bggc_count(sbi) do { } while (0) 4072 #define stat_other_skip_bggc_count(sbi) do { } while (0) 4073 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 4074 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 4075 #define stat_inc_total_hit(sbi, type) do { } while (0) 4076 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) 4077 #define stat_inc_largest_node_hit(sbi) do { } while (0) 4078 #define stat_inc_cached_node_hit(sbi, type) do { } while (0) 4079 #define stat_inc_inline_xattr(inode) do { } while (0) 4080 #define stat_dec_inline_xattr(inode) do { } while (0) 4081 #define stat_inc_inline_inode(inode) do { } while (0) 4082 #define stat_dec_inline_inode(inode) do { } while (0) 4083 #define stat_inc_inline_dir(inode) do { } while (0) 4084 #define stat_dec_inline_dir(inode) do { } while (0) 4085 #define stat_inc_compr_inode(inode) do { } while (0) 4086 #define stat_dec_compr_inode(inode) do { } while (0) 4087 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 4088 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 4089 #define stat_inc_swapfile_inode(inode) do { } while (0) 4090 #define stat_dec_swapfile_inode(inode) do { } while (0) 4091 #define stat_inc_atomic_inode(inode) do { } while (0) 4092 #define stat_dec_atomic_inode(inode) do { } while (0) 4093 #define stat_update_max_atomic_write(inode) do { } while (0) 4094 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 4095 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 4096 #define stat_inc_block_count(sbi, curseg) do { } while (0) 4097 #define stat_inc_inplace_blocks(sbi) do { } while (0) 4098 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0) 4099 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0) 4100 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0) 4101 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 4102 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 4103 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 4104 4105 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 4106 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 4107 static inline void __init f2fs_create_root_stats(void) { } 4108 static inline void f2fs_destroy_root_stats(void) { } 4109 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 4110 #endif 4111 4112 extern const struct file_operations f2fs_dir_operations; 4113 extern const struct file_operations f2fs_file_operations; 4114 extern const struct inode_operations f2fs_file_inode_operations; 4115 extern const struct address_space_operations f2fs_dblock_aops; 4116 extern const struct address_space_operations f2fs_node_aops; 4117 extern const struct address_space_operations f2fs_meta_aops; 4118 extern const struct inode_operations f2fs_dir_inode_operations; 4119 extern const struct inode_operations f2fs_symlink_inode_operations; 4120 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 4121 extern const struct inode_operations f2fs_special_inode_operations; 4122 extern struct kmem_cache *f2fs_inode_entry_slab; 4123 4124 /* 4125 * inline.c 4126 */ 4127 bool f2fs_may_inline_data(struct inode *inode); 4128 bool f2fs_sanity_check_inline_data(struct inode *inode); 4129 bool f2fs_may_inline_dentry(struct inode *inode); 4130 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 4131 void f2fs_truncate_inline_inode(struct inode *inode, 4132 struct page *ipage, u64 from); 4133 int f2fs_read_inline_data(struct inode *inode, struct page *page); 4134 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 4135 int f2fs_convert_inline_inode(struct inode *inode); 4136 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 4137 int f2fs_write_inline_data(struct inode *inode, struct page *page); 4138 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 4139 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 4140 const struct f2fs_filename *fname, 4141 struct page **res_page); 4142 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 4143 struct page *ipage); 4144 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 4145 struct inode *inode, nid_t ino, umode_t mode); 4146 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 4147 struct page *page, struct inode *dir, 4148 struct inode *inode); 4149 bool f2fs_empty_inline_dir(struct inode *dir); 4150 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 4151 struct fscrypt_str *fstr); 4152 int f2fs_inline_data_fiemap(struct inode *inode, 4153 struct fiemap_extent_info *fieinfo, 4154 __u64 start, __u64 len); 4155 4156 /* 4157 * shrinker.c 4158 */ 4159 unsigned long f2fs_shrink_count(struct shrinker *shrink, 4160 struct shrink_control *sc); 4161 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 4162 struct shrink_control *sc); 4163 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 4164 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 4165 4166 /* 4167 * extent_cache.c 4168 */ 4169 bool sanity_check_extent_cache(struct inode *inode); 4170 void f2fs_init_extent_tree(struct inode *inode); 4171 void f2fs_drop_extent_tree(struct inode *inode); 4172 void f2fs_destroy_extent_node(struct inode *inode); 4173 void f2fs_destroy_extent_tree(struct inode *inode); 4174 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 4175 int __init f2fs_create_extent_cache(void); 4176 void f2fs_destroy_extent_cache(void); 4177 4178 /* read extent cache ops */ 4179 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); 4180 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 4181 struct extent_info *ei); 4182 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, 4183 block_t *blkaddr); 4184 void f2fs_update_read_extent_cache(struct dnode_of_data *dn); 4185 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 4186 pgoff_t fofs, block_t blkaddr, unsigned int len); 4187 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, 4188 int nr_shrink); 4189 4190 /* block age extent cache ops */ 4191 void f2fs_init_age_extent_tree(struct inode *inode); 4192 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 4193 struct extent_info *ei); 4194 void f2fs_update_age_extent_cache(struct dnode_of_data *dn); 4195 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 4196 pgoff_t fofs, unsigned int len); 4197 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, 4198 int nr_shrink); 4199 4200 /* 4201 * sysfs.c 4202 */ 4203 #define MIN_RA_MUL 2 4204 #define MAX_RA_MUL 256 4205 4206 int __init f2fs_init_sysfs(void); 4207 void f2fs_exit_sysfs(void); 4208 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4209 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4210 4211 /* verity.c */ 4212 extern const struct fsverity_operations f2fs_verityops; 4213 4214 /* 4215 * crypto support 4216 */ 4217 static inline bool f2fs_encrypted_file(struct inode *inode) 4218 { 4219 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4220 } 4221 4222 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4223 { 4224 #ifdef CONFIG_FS_ENCRYPTION 4225 file_set_encrypt(inode); 4226 f2fs_set_inode_flags(inode); 4227 #endif 4228 } 4229 4230 /* 4231 * Returns true if the reads of the inode's data need to undergo some 4232 * postprocessing step, like decryption or authenticity verification. 4233 */ 4234 static inline bool f2fs_post_read_required(struct inode *inode) 4235 { 4236 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4237 f2fs_compressed_file(inode); 4238 } 4239 4240 /* 4241 * compress.c 4242 */ 4243 #ifdef CONFIG_F2FS_FS_COMPRESSION 4244 bool f2fs_is_compressed_page(struct page *page); 4245 struct page *f2fs_compress_control_page(struct page *page); 4246 int f2fs_prepare_compress_overwrite(struct inode *inode, 4247 struct page **pagep, pgoff_t index, void **fsdata); 4248 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4249 pgoff_t index, unsigned copied); 4250 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4251 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4252 bool f2fs_is_compress_backend_ready(struct inode *inode); 4253 bool f2fs_is_compress_level_valid(int alg, int lvl); 4254 int __init f2fs_init_compress_mempool(void); 4255 void f2fs_destroy_compress_mempool(void); 4256 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); 4257 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4258 block_t blkaddr, bool in_task); 4259 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4260 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4261 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 4262 int index, int nr_pages, bool uptodate); 4263 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4264 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4265 int f2fs_write_multi_pages(struct compress_ctx *cc, 4266 int *submitted, 4267 struct writeback_control *wbc, 4268 enum iostat_type io_type); 4269 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4270 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 4271 pgoff_t fofs, block_t blkaddr, 4272 unsigned int llen, unsigned int c_len); 4273 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4274 unsigned nr_pages, sector_t *last_block_in_bio, 4275 bool is_readahead, bool for_write); 4276 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4277 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 4278 bool in_task); 4279 void f2fs_put_page_dic(struct page *page, bool in_task); 4280 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn); 4281 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4282 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4283 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4284 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4285 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4286 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4287 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4288 int __init f2fs_init_compress_cache(void); 4289 void f2fs_destroy_compress_cache(void); 4290 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4291 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4292 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4293 nid_t ino, block_t blkaddr); 4294 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4295 block_t blkaddr); 4296 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4297 #define inc_compr_inode_stat(inode) \ 4298 do { \ 4299 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4300 sbi->compr_new_inode++; \ 4301 } while (0) 4302 #define add_compr_block_stat(inode, blocks) \ 4303 do { \ 4304 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4305 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4306 sbi->compr_written_block += blocks; \ 4307 sbi->compr_saved_block += diff; \ 4308 } while (0) 4309 #else 4310 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4311 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4312 { 4313 if (!f2fs_compressed_file(inode)) 4314 return true; 4315 /* not support compression */ 4316 return false; 4317 } 4318 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; } 4319 static inline struct page *f2fs_compress_control_page(struct page *page) 4320 { 4321 WARN_ON_ONCE(1); 4322 return ERR_PTR(-EINVAL); 4323 } 4324 static inline int __init f2fs_init_compress_mempool(void) { return 0; } 4325 static inline void f2fs_destroy_compress_mempool(void) { } 4326 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, 4327 bool in_task) { } 4328 static inline void f2fs_end_read_compressed_page(struct page *page, 4329 bool failed, block_t blkaddr, bool in_task) 4330 { 4331 WARN_ON_ONCE(1); 4332 } 4333 static inline void f2fs_put_page_dic(struct page *page, bool in_task) 4334 { 4335 WARN_ON_ONCE(1); 4336 } 4337 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; } 4338 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4339 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4340 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4341 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4342 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4343 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4344 static inline void f2fs_destroy_compress_cache(void) { } 4345 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4346 block_t blkaddr) { } 4347 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4348 struct page *page, nid_t ino, block_t blkaddr) { } 4349 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4350 struct page *page, block_t blkaddr) { return false; } 4351 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4352 nid_t ino) { } 4353 #define inc_compr_inode_stat(inode) do { } while (0) 4354 static inline void f2fs_update_read_extent_tree_range_compressed( 4355 struct inode *inode, 4356 pgoff_t fofs, block_t blkaddr, 4357 unsigned int llen, unsigned int c_len) { } 4358 #endif 4359 4360 static inline int set_compress_context(struct inode *inode) 4361 { 4362 #ifdef CONFIG_F2FS_FS_COMPRESSION 4363 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4364 4365 F2FS_I(inode)->i_compress_algorithm = 4366 F2FS_OPTION(sbi).compress_algorithm; 4367 F2FS_I(inode)->i_log_cluster_size = 4368 F2FS_OPTION(sbi).compress_log_size; 4369 F2FS_I(inode)->i_compress_flag = 4370 F2FS_OPTION(sbi).compress_chksum ? 4371 BIT(COMPRESS_CHKSUM) : 0; 4372 F2FS_I(inode)->i_cluster_size = 4373 BIT(F2FS_I(inode)->i_log_cluster_size); 4374 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 || 4375 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) && 4376 F2FS_OPTION(sbi).compress_level) 4377 F2FS_I(inode)->i_compress_level = 4378 F2FS_OPTION(sbi).compress_level; 4379 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4380 set_inode_flag(inode, FI_COMPRESSED_FILE); 4381 stat_inc_compr_inode(inode); 4382 inc_compr_inode_stat(inode); 4383 f2fs_mark_inode_dirty_sync(inode, true); 4384 return 0; 4385 #else 4386 return -EOPNOTSUPP; 4387 #endif 4388 } 4389 4390 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4391 { 4392 struct f2fs_inode_info *fi = F2FS_I(inode); 4393 4394 if (!f2fs_compressed_file(inode)) 4395 return true; 4396 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 4397 return false; 4398 4399 fi->i_flags &= ~F2FS_COMPR_FL; 4400 stat_dec_compr_inode(inode); 4401 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4402 f2fs_mark_inode_dirty_sync(inode, true); 4403 return true; 4404 } 4405 4406 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4407 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4408 { \ 4409 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4410 } 4411 4412 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4413 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4414 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4415 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4416 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4417 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4418 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4419 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4420 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4421 F2FS_FEATURE_FUNCS(verity, VERITY); 4422 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4423 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4424 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4425 F2FS_FEATURE_FUNCS(readonly, RO); 4426 4427 #ifdef CONFIG_BLK_DEV_ZONED 4428 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4429 block_t blkaddr) 4430 { 4431 unsigned int zno = blkaddr / sbi->blocks_per_blkz; 4432 4433 return test_bit(zno, FDEV(devi).blkz_seq); 4434 } 4435 #endif 4436 4437 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi, 4438 struct block_device *bdev) 4439 { 4440 int i; 4441 4442 if (!f2fs_is_multi_device(sbi)) 4443 return 0; 4444 4445 for (i = 0; i < sbi->s_ndevs; i++) 4446 if (FDEV(i).bdev == bdev) 4447 return i; 4448 4449 WARN_ON(1); 4450 return -1; 4451 } 4452 4453 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4454 { 4455 return f2fs_sb_has_blkzoned(sbi); 4456 } 4457 4458 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4459 { 4460 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); 4461 } 4462 4463 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4464 { 4465 int i; 4466 4467 if (!f2fs_is_multi_device(sbi)) 4468 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4469 4470 for (i = 0; i < sbi->s_ndevs; i++) 4471 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4472 return true; 4473 return false; 4474 } 4475 4476 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4477 { 4478 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4479 f2fs_hw_should_discard(sbi); 4480 } 4481 4482 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4483 { 4484 int i; 4485 4486 if (!f2fs_is_multi_device(sbi)) 4487 return bdev_read_only(sbi->sb->s_bdev); 4488 4489 for (i = 0; i < sbi->s_ndevs; i++) 4490 if (bdev_read_only(FDEV(i).bdev)) 4491 return true; 4492 return false; 4493 } 4494 4495 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi) 4496 { 4497 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi); 4498 } 4499 4500 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4501 { 4502 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4503 } 4504 4505 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) 4506 { 4507 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; 4508 } 4509 4510 static inline bool f2fs_may_compress(struct inode *inode) 4511 { 4512 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4513 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) || 4514 f2fs_is_mmap_file(inode)) 4515 return false; 4516 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4517 } 4518 4519 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4520 u64 blocks, bool add) 4521 { 4522 struct f2fs_inode_info *fi = F2FS_I(inode); 4523 int diff = fi->i_cluster_size - blocks; 4524 4525 /* don't update i_compr_blocks if saved blocks were released */ 4526 if (!add && !atomic_read(&fi->i_compr_blocks)) 4527 return; 4528 4529 if (add) { 4530 atomic_add(diff, &fi->i_compr_blocks); 4531 stat_add_compr_blocks(inode, diff); 4532 } else { 4533 atomic_sub(diff, &fi->i_compr_blocks); 4534 stat_sub_compr_blocks(inode, diff); 4535 } 4536 f2fs_mark_inode_dirty_sync(inode, true); 4537 } 4538 4539 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4540 int flag) 4541 { 4542 if (!f2fs_is_multi_device(sbi)) 4543 return false; 4544 if (flag != F2FS_GET_BLOCK_DIO) 4545 return false; 4546 return sbi->aligned_blksize; 4547 } 4548 4549 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4550 { 4551 return fsverity_active(inode) && 4552 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4553 } 4554 4555 #ifdef CONFIG_F2FS_FAULT_INJECTION 4556 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 4557 unsigned int type); 4558 #else 4559 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 4560 #endif 4561 4562 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4563 { 4564 #ifdef CONFIG_QUOTA 4565 if (f2fs_sb_has_quota_ino(sbi)) 4566 return true; 4567 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4568 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4569 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4570 return true; 4571 #endif 4572 return false; 4573 } 4574 4575 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4576 { 4577 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4578 } 4579 4580 static inline void f2fs_io_schedule_timeout(long timeout) 4581 { 4582 set_current_state(TASK_UNINTERRUPTIBLE); 4583 io_schedule_timeout(timeout); 4584 } 4585 4586 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs, 4587 enum page_type type) 4588 { 4589 if (unlikely(f2fs_cp_error(sbi))) 4590 return; 4591 4592 if (ofs == sbi->page_eio_ofs[type]) { 4593 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) 4594 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4595 } else { 4596 sbi->page_eio_ofs[type] = ofs; 4597 sbi->page_eio_cnt[type] = 0; 4598 } 4599 } 4600 4601 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) 4602 { 4603 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); 4604 } 4605 4606 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi, 4607 block_t blkaddr) 4608 { 4609 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr); 4610 f2fs_invalidate_compress_page(sbi, blkaddr); 4611 } 4612 4613 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4614 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4615 4616 #endif /* _LINUX_F2FS_H */ 4617