xref: /linux/fs/f2fs/f2fs.h (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/slab.h>
15 #include <linux/crc32.h>
16 #include <linux/magic.h>
17 #include <linux/kobject.h>
18 #include <linux/sched.h>
19 #include <linux/cred.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <linux/rw_hint.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR_VALIDITY,
64 	FAULT_BLKADDR_CONSISTENCE,
65 	FAULT_NO_SEGMENT,
66 	FAULT_MAX,
67 };
68 
69 #ifdef CONFIG_F2FS_FAULT_INJECTION
70 #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
71 
72 struct f2fs_fault_info {
73 	atomic_t inject_ops;
74 	int inject_rate;
75 	unsigned int inject_type;
76 };
77 
78 extern const char *f2fs_fault_name[FAULT_MAX];
79 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
80 
81 /* maximum retry count for injected failure */
82 #define DEFAULT_FAILURE_RETRY_COUNT		8
83 #else
84 #define DEFAULT_FAILURE_RETRY_COUNT		1
85 #endif
86 
87 /*
88  * For mount options
89  */
90 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
91 #define F2FS_MOUNT_DISCARD		0x00000002
92 #define F2FS_MOUNT_NOHEAP		0x00000004
93 #define F2FS_MOUNT_XATTR_USER		0x00000008
94 #define F2FS_MOUNT_POSIX_ACL		0x00000010
95 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
96 #define F2FS_MOUNT_INLINE_XATTR		0x00000040
97 #define F2FS_MOUNT_INLINE_DATA		0x00000080
98 #define F2FS_MOUNT_INLINE_DENTRY	0x00000100
99 #define F2FS_MOUNT_FLUSH_MERGE		0x00000200
100 #define F2FS_MOUNT_NOBARRIER		0x00000400
101 #define F2FS_MOUNT_FASTBOOT		0x00000800
102 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
103 #define F2FS_MOUNT_DATA_FLUSH		0x00002000
104 #define F2FS_MOUNT_FAULT_INJECTION	0x00004000
105 #define F2FS_MOUNT_USRQUOTA		0x00008000
106 #define F2FS_MOUNT_GRPQUOTA		0x00010000
107 #define F2FS_MOUNT_PRJQUOTA		0x00020000
108 #define F2FS_MOUNT_QUOTA		0x00040000
109 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
110 #define F2FS_MOUNT_RESERVE_ROOT		0x00100000
111 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
112 #define F2FS_MOUNT_NORECOVERY		0x00400000
113 #define F2FS_MOUNT_ATGC			0x00800000
114 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
115 #define	F2FS_MOUNT_GC_MERGE		0x02000000
116 #define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
117 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
118 
119 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
120 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
121 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
122 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
123 
124 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
125 		typecheck(unsigned long long, b) &&			\
126 		((long long)((a) - (b)) > 0))
127 
128 typedef u32 block_t;	/*
129 			 * should not change u32, since it is the on-disk block
130 			 * address format, __le32.
131 			 */
132 typedef u32 nid_t;
133 
134 #define COMPRESS_EXT_NUM		16
135 
136 enum blkzone_allocation_policy {
137 	BLKZONE_ALLOC_PRIOR_SEQ,	/* Prioritize writing to sequential zones */
138 	BLKZONE_ALLOC_ONLY_SEQ,		/* Only allow writing to sequential zones */
139 	BLKZONE_ALLOC_PRIOR_CONV,	/* Prioritize writing to conventional zones */
140 };
141 
142 /*
143  * An implementation of an rwsem that is explicitly unfair to readers. This
144  * prevents priority inversion when a low-priority reader acquires the read lock
145  * while sleeping on the write lock but the write lock is needed by
146  * higher-priority clients.
147  */
148 
149 struct f2fs_rwsem {
150         struct rw_semaphore internal_rwsem;
151 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
152         wait_queue_head_t read_waiters;
153 #endif
154 };
155 
156 struct f2fs_mount_info {
157 	unsigned int opt;
158 	block_t root_reserved_blocks;	/* root reserved blocks */
159 	kuid_t s_resuid;		/* reserved blocks for uid */
160 	kgid_t s_resgid;		/* reserved blocks for gid */
161 	int active_logs;		/* # of active logs */
162 	int inline_xattr_size;		/* inline xattr size */
163 #ifdef CONFIG_F2FS_FAULT_INJECTION
164 	struct f2fs_fault_info fault_info;	/* For fault injection */
165 #endif
166 #ifdef CONFIG_QUOTA
167 	/* Names of quota files with journalled quota */
168 	char *s_qf_names[MAXQUOTAS];
169 	int s_jquota_fmt;			/* Format of quota to use */
170 #endif
171 	/* For which write hints are passed down to block layer */
172 	int alloc_mode;			/* segment allocation policy */
173 	int fsync_mode;			/* fsync policy */
174 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
175 	int bggc_mode;			/* bggc mode: off, on or sync */
176 	int memory_mode;		/* memory mode */
177 	int errors;			/* errors parameter */
178 	int discard_unit;		/*
179 					 * discard command's offset/size should
180 					 * be aligned to this unit: block,
181 					 * segment or section
182 					 */
183 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
184 	block_t unusable_cap_perc;	/* percentage for cap */
185 	block_t unusable_cap;		/* Amount of space allowed to be
186 					 * unusable when disabling checkpoint
187 					 */
188 
189 	/* For compression */
190 	unsigned char compress_algorithm;	/* algorithm type */
191 	unsigned char compress_log_size;	/* cluster log size */
192 	unsigned char compress_level;		/* compress level */
193 	bool compress_chksum;			/* compressed data chksum */
194 	unsigned char compress_ext_cnt;		/* extension count */
195 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
196 	int compress_mode;			/* compression mode */
197 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
198 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
199 };
200 
201 #define F2FS_FEATURE_ENCRYPT			0x00000001
202 #define F2FS_FEATURE_BLKZONED			0x00000002
203 #define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
204 #define F2FS_FEATURE_EXTRA_ATTR			0x00000008
205 #define F2FS_FEATURE_PRJQUOTA			0x00000010
206 #define F2FS_FEATURE_INODE_CHKSUM		0x00000020
207 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
208 #define F2FS_FEATURE_QUOTA_INO			0x00000080
209 #define F2FS_FEATURE_INODE_CRTIME		0x00000100
210 #define F2FS_FEATURE_LOST_FOUND			0x00000200
211 #define F2FS_FEATURE_VERITY			0x00000400
212 #define F2FS_FEATURE_SB_CHKSUM			0x00000800
213 #define F2FS_FEATURE_CASEFOLD			0x00001000
214 #define F2FS_FEATURE_COMPRESSION		0x00002000
215 #define F2FS_FEATURE_RO				0x00004000
216 #define F2FS_FEATURE_DEVICE_ALIAS		0x00008000
217 
218 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
219 	((raw_super->feature & cpu_to_le32(mask)) != 0)
220 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
221 
222 /*
223  * Default values for user and/or group using reserved blocks
224  */
225 #define	F2FS_DEF_RESUID		0
226 #define	F2FS_DEF_RESGID		0
227 
228 /*
229  * For checkpoint manager
230  */
231 enum {
232 	NAT_BITMAP,
233 	SIT_BITMAP
234 };
235 
236 #define	CP_UMOUNT	0x00000001
237 #define	CP_FASTBOOT	0x00000002
238 #define	CP_SYNC		0x00000004
239 #define	CP_RECOVERY	0x00000008
240 #define	CP_DISCARD	0x00000010
241 #define CP_TRIMMED	0x00000020
242 #define CP_PAUSE	0x00000040
243 #define CP_RESIZE 	0x00000080
244 
245 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
246 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
247 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
248 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
249 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
250 #define DEF_CP_INTERVAL			60	/* 60 secs */
251 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
252 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
253 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
254 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
255 
256 struct cp_control {
257 	int reason;
258 	__u64 trim_start;
259 	__u64 trim_end;
260 	__u64 trim_minlen;
261 };
262 
263 /*
264  * indicate meta/data type
265  */
266 enum {
267 	META_CP,
268 	META_NAT,
269 	META_SIT,
270 	META_SSA,
271 	META_MAX,
272 	META_POR,
273 	DATA_GENERIC,		/* check range only */
274 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
275 	DATA_GENERIC_ENHANCE_READ,	/*
276 					 * strong check on range and segment
277 					 * bitmap but no warning due to race
278 					 * condition of read on truncated area
279 					 * by extent_cache
280 					 */
281 	DATA_GENERIC_ENHANCE_UPDATE,	/*
282 					 * strong check on range and segment
283 					 * bitmap for update case
284 					 */
285 	META_GENERIC,
286 };
287 
288 /* for the list of ino */
289 enum {
290 	ORPHAN_INO,		/* for orphan ino list */
291 	APPEND_INO,		/* for append ino list */
292 	UPDATE_INO,		/* for update ino list */
293 	TRANS_DIR_INO,		/* for transactions dir ino list */
294 	XATTR_DIR_INO,		/* for xattr updated dir ino list */
295 	FLUSH_INO,		/* for multiple device flushing */
296 	MAX_INO_ENTRY,		/* max. list */
297 };
298 
299 struct ino_entry {
300 	struct list_head list;		/* list head */
301 	nid_t ino;			/* inode number */
302 	unsigned int dirty_device;	/* dirty device bitmap */
303 };
304 
305 /* for the list of inodes to be GCed */
306 struct inode_entry {
307 	struct list_head list;	/* list head */
308 	struct inode *inode;	/* vfs inode pointer */
309 };
310 
311 struct fsync_node_entry {
312 	struct list_head list;	/* list head */
313 	struct page *page;	/* warm node page pointer */
314 	unsigned int seq_id;	/* sequence id */
315 };
316 
317 struct ckpt_req {
318 	struct completion wait;		/* completion for checkpoint done */
319 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
320 	int ret;			/* return code of checkpoint */
321 	ktime_t queue_time;		/* request queued time */
322 };
323 
324 struct ckpt_req_control {
325 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
326 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
327 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
328 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
329 	atomic_t total_ckpt;		/* # of total ckpts */
330 	atomic_t queued_ckpt;		/* # of queued ckpts */
331 	struct llist_head issue_list;	/* list for command issue */
332 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
333 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
334 	unsigned int peak_time;		/* peak wait time in msec until now */
335 };
336 
337 /* for the bitmap indicate blocks to be discarded */
338 struct discard_entry {
339 	struct list_head list;	/* list head */
340 	block_t start_blkaddr;	/* start blockaddr of current segment */
341 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
342 };
343 
344 /* minimum discard granularity, unit: block count */
345 #define MIN_DISCARD_GRANULARITY		1
346 /* default discard granularity of inner discard thread, unit: block count */
347 #define DEFAULT_DISCARD_GRANULARITY		16
348 /* default maximum discard granularity of ordered discard, unit: block count */
349 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
350 
351 /* max discard pend list number */
352 #define MAX_PLIST_NUM		512
353 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
354 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
355 
356 enum {
357 	D_PREP,			/* initial */
358 	D_PARTIAL,		/* partially submitted */
359 	D_SUBMIT,		/* all submitted */
360 	D_DONE,			/* finished */
361 };
362 
363 struct discard_info {
364 	block_t lstart;			/* logical start address */
365 	block_t len;			/* length */
366 	block_t start;			/* actual start address in dev */
367 };
368 
369 struct discard_cmd {
370 	struct rb_node rb_node;		/* rb node located in rb-tree */
371 	struct discard_info di;		/* discard info */
372 	struct list_head list;		/* command list */
373 	struct completion wait;		/* compleation */
374 	struct block_device *bdev;	/* bdev */
375 	unsigned short ref;		/* reference count */
376 	unsigned char state;		/* state */
377 	unsigned char queued;		/* queued discard */
378 	int error;			/* bio error */
379 	spinlock_t lock;		/* for state/bio_ref updating */
380 	unsigned short bio_ref;		/* bio reference count */
381 };
382 
383 enum {
384 	DPOLICY_BG,
385 	DPOLICY_FORCE,
386 	DPOLICY_FSTRIM,
387 	DPOLICY_UMOUNT,
388 	MAX_DPOLICY,
389 };
390 
391 enum {
392 	DPOLICY_IO_AWARE_DISABLE,	/* force to not be aware of IO */
393 	DPOLICY_IO_AWARE_ENABLE,	/* force to be aware of IO */
394 	DPOLICY_IO_AWARE_MAX,
395 };
396 
397 struct discard_policy {
398 	int type;			/* type of discard */
399 	unsigned int min_interval;	/* used for candidates exist */
400 	unsigned int mid_interval;	/* used for device busy */
401 	unsigned int max_interval;	/* used for candidates not exist */
402 	unsigned int max_requests;	/* # of discards issued per round */
403 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
404 	bool io_aware;			/* issue discard in idle time */
405 	bool sync;			/* submit discard with REQ_SYNC flag */
406 	bool ordered;			/* issue discard by lba order */
407 	bool timeout;			/* discard timeout for put_super */
408 	unsigned int granularity;	/* discard granularity */
409 };
410 
411 struct discard_cmd_control {
412 	struct task_struct *f2fs_issue_discard;	/* discard thread */
413 	struct list_head entry_list;		/* 4KB discard entry list */
414 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
415 	struct list_head wait_list;		/* store on-flushing entries */
416 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
417 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
418 	struct mutex cmd_lock;
419 	unsigned int nr_discards;		/* # of discards in the list */
420 	unsigned int max_discards;		/* max. discards to be issued */
421 	unsigned int max_discard_request;	/* max. discard request per round */
422 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
423 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
424 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
425 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
426 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
427 	unsigned int discard_granularity;	/* discard granularity */
428 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
429 	unsigned int discard_io_aware;		/* io_aware policy */
430 	unsigned int undiscard_blks;		/* # of undiscard blocks */
431 	unsigned int next_pos;			/* next discard position */
432 	atomic_t issued_discard;		/* # of issued discard */
433 	atomic_t queued_discard;		/* # of queued discard */
434 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
435 	struct rb_root_cached root;		/* root of discard rb-tree */
436 	bool rbtree_check;			/* config for consistence check */
437 	bool discard_wake;			/* to wake up discard thread */
438 };
439 
440 /* for the list of fsync inodes, used only during recovery */
441 struct fsync_inode_entry {
442 	struct list_head list;	/* list head */
443 	struct inode *inode;	/* vfs inode pointer */
444 	block_t blkaddr;	/* block address locating the last fsync */
445 	block_t last_dentry;	/* block address locating the last dentry */
446 };
447 
448 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
449 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
450 
451 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
452 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
453 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
454 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
455 
456 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
457 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
458 
459 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
460 {
461 	int before = nats_in_cursum(journal);
462 
463 	journal->n_nats = cpu_to_le16(before + i);
464 	return before;
465 }
466 
467 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
468 {
469 	int before = sits_in_cursum(journal);
470 
471 	journal->n_sits = cpu_to_le16(before + i);
472 	return before;
473 }
474 
475 static inline bool __has_cursum_space(struct f2fs_journal *journal,
476 							int size, int type)
477 {
478 	if (type == NAT_JOURNAL)
479 		return size <= MAX_NAT_JENTRIES(journal);
480 	return size <= MAX_SIT_JENTRIES(journal);
481 }
482 
483 /* for inline stuff */
484 #define DEF_INLINE_RESERVED_SIZE	1
485 static inline int get_extra_isize(struct inode *inode);
486 static inline int get_inline_xattr_addrs(struct inode *inode);
487 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
488 				(CUR_ADDRS_PER_INODE(inode) -		\
489 				get_inline_xattr_addrs(inode) -	\
490 				DEF_INLINE_RESERVED_SIZE))
491 
492 /* for inline dir */
493 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
494 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
495 				BITS_PER_BYTE + 1))
496 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
497 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
498 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
499 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
500 				NR_INLINE_DENTRY(inode) + \
501 				INLINE_DENTRY_BITMAP_SIZE(inode)))
502 
503 /*
504  * For INODE and NODE manager
505  */
506 /* for directory operations */
507 
508 struct f2fs_filename {
509 	/*
510 	 * The filename the user specified.  This is NULL for some
511 	 * filesystem-internal operations, e.g. converting an inline directory
512 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
513 	 */
514 	const struct qstr *usr_fname;
515 
516 	/*
517 	 * The on-disk filename.  For encrypted directories, this is encrypted.
518 	 * This may be NULL for lookups in an encrypted dir without the key.
519 	 */
520 	struct fscrypt_str disk_name;
521 
522 	/* The dirhash of this filename */
523 	f2fs_hash_t hash;
524 
525 #ifdef CONFIG_FS_ENCRYPTION
526 	/*
527 	 * For lookups in encrypted directories: either the buffer backing
528 	 * disk_name, or a buffer that holds the decoded no-key name.
529 	 */
530 	struct fscrypt_str crypto_buf;
531 #endif
532 #if IS_ENABLED(CONFIG_UNICODE)
533 	/*
534 	 * For casefolded directories: the casefolded name, but it's left NULL
535 	 * if the original name is not valid Unicode, if the original name is
536 	 * "." or "..", if the directory is both casefolded and encrypted and
537 	 * its encryption key is unavailable, or if the filesystem is doing an
538 	 * internal operation where usr_fname is also NULL.  In all these cases
539 	 * we fall back to treating the name as an opaque byte sequence.
540 	 */
541 	struct qstr cf_name;
542 #endif
543 };
544 
545 struct f2fs_dentry_ptr {
546 	struct inode *inode;
547 	void *bitmap;
548 	struct f2fs_dir_entry *dentry;
549 	__u8 (*filename)[F2FS_SLOT_LEN];
550 	int max;
551 	int nr_bitmap;
552 };
553 
554 static inline void make_dentry_ptr_block(struct inode *inode,
555 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
556 {
557 	d->inode = inode;
558 	d->max = NR_DENTRY_IN_BLOCK;
559 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
560 	d->bitmap = t->dentry_bitmap;
561 	d->dentry = t->dentry;
562 	d->filename = t->filename;
563 }
564 
565 static inline void make_dentry_ptr_inline(struct inode *inode,
566 					struct f2fs_dentry_ptr *d, void *t)
567 {
568 	int entry_cnt = NR_INLINE_DENTRY(inode);
569 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
570 	int reserved_size = INLINE_RESERVED_SIZE(inode);
571 
572 	d->inode = inode;
573 	d->max = entry_cnt;
574 	d->nr_bitmap = bitmap_size;
575 	d->bitmap = t;
576 	d->dentry = t + bitmap_size + reserved_size;
577 	d->filename = t + bitmap_size + reserved_size +
578 					SIZE_OF_DIR_ENTRY * entry_cnt;
579 }
580 
581 /*
582  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
583  * as its node offset to distinguish from index node blocks.
584  * But some bits are used to mark the node block.
585  */
586 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
587 				>> OFFSET_BIT_SHIFT)
588 enum {
589 	ALLOC_NODE,			/* allocate a new node page if needed */
590 	LOOKUP_NODE,			/* look up a node without readahead */
591 	LOOKUP_NODE_RA,			/*
592 					 * look up a node with readahead called
593 					 * by get_data_block.
594 					 */
595 };
596 
597 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
598 
599 /* congestion wait timeout value, default: 20ms */
600 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
601 
602 /* maximum retry quota flush count */
603 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
604 
605 /* maximum retry of EIO'ed page */
606 #define MAX_RETRY_PAGE_EIO			100
607 
608 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
609 
610 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
611 
612 /* dirty segments threshold for triggering CP */
613 #define DEFAULT_DIRTY_THRESHOLD		4
614 
615 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
616 #define RECOVERY_MIN_RA_BLOCKS		1
617 
618 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
619 
620 /* for in-memory extent cache entry */
621 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
622 
623 /* number of extent info in extent cache we try to shrink */
624 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
625 
626 /* number of age extent info in extent cache we try to shrink */
627 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
628 #define LAST_AGE_WEIGHT			30
629 #define SAME_AGE_REGION			1024
630 
631 /*
632  * Define data block with age less than 1GB as hot data
633  * define data block with age less than 10GB but more than 1GB as warm data
634  */
635 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
636 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
637 
638 /* default max read extent count per inode */
639 #define DEF_MAX_READ_EXTENT_COUNT	10240
640 
641 /* extent cache type */
642 enum extent_type {
643 	EX_READ,
644 	EX_BLOCK_AGE,
645 	NR_EXTENT_CACHES,
646 };
647 
648 struct extent_info {
649 	unsigned int fofs;		/* start offset in a file */
650 	unsigned int len;		/* length of the extent */
651 	union {
652 		/* read extent_cache */
653 		struct {
654 			/* start block address of the extent */
655 			block_t blk;
656 #ifdef CONFIG_F2FS_FS_COMPRESSION
657 			/* physical extent length of compressed blocks */
658 			unsigned int c_len;
659 #endif
660 		};
661 		/* block age extent_cache */
662 		struct {
663 			/* block age of the extent */
664 			unsigned long long age;
665 			/* last total blocks allocated */
666 			unsigned long long last_blocks;
667 		};
668 	};
669 };
670 
671 struct extent_node {
672 	struct rb_node rb_node;		/* rb node located in rb-tree */
673 	struct extent_info ei;		/* extent info */
674 	struct list_head list;		/* node in global extent list of sbi */
675 	struct extent_tree *et;		/* extent tree pointer */
676 };
677 
678 struct extent_tree {
679 	nid_t ino;			/* inode number */
680 	enum extent_type type;		/* keep the extent tree type */
681 	struct rb_root_cached root;	/* root of extent info rb-tree */
682 	struct extent_node *cached_en;	/* recently accessed extent node */
683 	struct list_head list;		/* to be used by sbi->zombie_list */
684 	rwlock_t lock;			/* protect extent info rb-tree */
685 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
686 	bool largest_updated;		/* largest extent updated */
687 	struct extent_info largest;	/* largest cached extent for EX_READ */
688 };
689 
690 struct extent_tree_info {
691 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
692 	struct mutex extent_tree_lock;	/* locking extent radix tree */
693 	struct list_head extent_list;		/* lru list for shrinker */
694 	spinlock_t extent_lock;			/* locking extent lru list */
695 	atomic_t total_ext_tree;		/* extent tree count */
696 	struct list_head zombie_list;		/* extent zombie tree list */
697 	atomic_t total_zombie_tree;		/* extent zombie tree count */
698 	atomic_t total_ext_node;		/* extent info count */
699 };
700 
701 /*
702  * State of block returned by f2fs_map_blocks.
703  */
704 #define F2FS_MAP_NEW		(1U << 0)
705 #define F2FS_MAP_MAPPED		(1U << 1)
706 #define F2FS_MAP_DELALLOC	(1U << 2)
707 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
708 				F2FS_MAP_DELALLOC)
709 
710 struct f2fs_map_blocks {
711 	struct block_device *m_bdev;	/* for multi-device dio */
712 	block_t m_pblk;
713 	block_t m_lblk;
714 	unsigned int m_len;
715 	unsigned int m_flags;
716 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
717 	pgoff_t *m_next_extent;		/* point to next possible extent */
718 	int m_seg_type;
719 	bool m_may_create;		/* indicate it is from write path */
720 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
721 };
722 
723 /* for flag in get_data_block */
724 enum {
725 	F2FS_GET_BLOCK_DEFAULT,
726 	F2FS_GET_BLOCK_FIEMAP,
727 	F2FS_GET_BLOCK_BMAP,
728 	F2FS_GET_BLOCK_DIO,
729 	F2FS_GET_BLOCK_PRE_DIO,
730 	F2FS_GET_BLOCK_PRE_AIO,
731 	F2FS_GET_BLOCK_PRECACHE,
732 };
733 
734 /*
735  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
736  */
737 #define FADVISE_COLD_BIT	0x01
738 #define FADVISE_LOST_PINO_BIT	0x02
739 #define FADVISE_ENCRYPT_BIT	0x04
740 #define FADVISE_ENC_NAME_BIT	0x08
741 #define FADVISE_KEEP_SIZE_BIT	0x10
742 #define FADVISE_HOT_BIT		0x20
743 #define FADVISE_VERITY_BIT	0x40
744 #define FADVISE_TRUNC_BIT	0x80
745 
746 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
747 
748 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
749 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
750 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
751 
752 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
753 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
754 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
755 
756 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
757 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
758 
759 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
760 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
761 
762 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
763 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
764 
765 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
766 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
767 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
768 
769 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
770 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
771 
772 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
773 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
774 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
775 
776 #define DEF_DIR_LEVEL		0
777 
778 /* used for f2fs_inode_info->flags */
779 enum {
780 	FI_NEW_INODE,		/* indicate newly allocated inode */
781 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
782 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
783 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
784 	FI_INC_LINK,		/* need to increment i_nlink */
785 	FI_ACL_MODE,		/* indicate acl mode */
786 	FI_NO_ALLOC,		/* should not allocate any blocks */
787 	FI_FREE_NID,		/* free allocated nide */
788 	FI_NO_EXTENT,		/* not to use the extent cache */
789 	FI_INLINE_XATTR,	/* used for inline xattr */
790 	FI_INLINE_DATA,		/* used for inline data*/
791 	FI_INLINE_DENTRY,	/* used for inline dentry */
792 	FI_APPEND_WRITE,	/* inode has appended data */
793 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
794 	FI_NEED_IPU,		/* used for ipu per file */
795 	FI_ATOMIC_FILE,		/* indicate atomic file */
796 	FI_DATA_EXIST,		/* indicate data exists */
797 	FI_SKIP_WRITES,		/* should skip data page writeback */
798 	FI_OPU_WRITE,		/* used for opu per file */
799 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
800 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
801 	FI_HOT_DATA,		/* indicate file is hot */
802 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
803 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
804 	FI_PIN_FILE,		/* indicate file should not be gced */
805 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
806 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
807 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
808 	FI_MMAP_FILE,		/* indicate file was mmapped */
809 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
810 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
811 	FI_ALIGNED_WRITE,	/* enable aligned write */
812 	FI_COW_FILE,		/* indicate COW file */
813 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
814 	FI_ATOMIC_DIRTIED,	/* indicate atomic file is dirtied */
815 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
816 	FI_OPENED_FILE,		/* indicate file has been opened */
817 	FI_MAX,			/* max flag, never be used */
818 };
819 
820 struct f2fs_inode_info {
821 	struct inode vfs_inode;		/* serve a vfs inode */
822 	unsigned long i_flags;		/* keep an inode flags for ioctl */
823 	unsigned char i_advise;		/* use to give file attribute hints */
824 	unsigned char i_dir_level;	/* use for dentry level for large dir */
825 	union {
826 		unsigned int i_current_depth;	/* only for directory depth */
827 		unsigned short i_gc_failures;	/* for gc failure statistic */
828 	};
829 	unsigned int i_pino;		/* parent inode number */
830 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
831 
832 	/* Use below internally in f2fs*/
833 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
834 	struct f2fs_rwsem i_sem;	/* protect fi info */
835 	atomic_t dirty_pages;		/* # of dirty pages */
836 	f2fs_hash_t chash;		/* hash value of given file name */
837 	unsigned int clevel;		/* maximum level of given file name */
838 	struct task_struct *task;	/* lookup and create consistency */
839 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
840 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
841 	nid_t i_xattr_nid;		/* node id that contains xattrs */
842 	loff_t	last_disk_size;		/* lastly written file size */
843 	spinlock_t i_size_lock;		/* protect last_disk_size */
844 
845 #ifdef CONFIG_QUOTA
846 	struct dquot __rcu *i_dquot[MAXQUOTAS];
847 
848 	/* quota space reservation, managed internally by quota code */
849 	qsize_t i_reserved_quota;
850 #endif
851 	struct list_head dirty_list;	/* dirty list for dirs and files */
852 	struct list_head gdirty_list;	/* linked in global dirty list */
853 	struct task_struct *atomic_write_task;	/* store atomic write task */
854 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
855 					/* cached extent_tree entry */
856 	union {
857 		struct inode *cow_inode;	/* copy-on-write inode for atomic write */
858 		struct inode *atomic_inode;
859 					/* point to atomic_inode, available only for cow_inode */
860 	};
861 
862 	/* avoid racing between foreground op and gc */
863 	struct f2fs_rwsem i_gc_rwsem[2];
864 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
865 
866 	int i_extra_isize;		/* size of extra space located in i_addr */
867 	kprojid_t i_projid;		/* id for project quota */
868 	int i_inline_xattr_size;	/* inline xattr size */
869 	struct timespec64 i_crtime;	/* inode creation time */
870 	struct timespec64 i_disk_time[3];/* inode disk times */
871 
872 	/* for file compress */
873 	atomic_t i_compr_blocks;		/* # of compressed blocks */
874 	unsigned char i_compress_algorithm;	/* algorithm type */
875 	unsigned char i_log_cluster_size;	/* log of cluster size */
876 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
877 	unsigned char i_compress_flag;		/* compress flag */
878 	unsigned int i_cluster_size;		/* cluster size */
879 
880 	unsigned int atomic_write_cnt;
881 	loff_t original_i_size;		/* original i_size before atomic write */
882 };
883 
884 static inline void get_read_extent_info(struct extent_info *ext,
885 					struct f2fs_extent *i_ext)
886 {
887 	ext->fofs = le32_to_cpu(i_ext->fofs);
888 	ext->blk = le32_to_cpu(i_ext->blk);
889 	ext->len = le32_to_cpu(i_ext->len);
890 }
891 
892 static inline void set_raw_read_extent(struct extent_info *ext,
893 					struct f2fs_extent *i_ext)
894 {
895 	i_ext->fofs = cpu_to_le32(ext->fofs);
896 	i_ext->blk = cpu_to_le32(ext->blk);
897 	i_ext->len = cpu_to_le32(ext->len);
898 }
899 
900 static inline bool __is_discard_mergeable(struct discard_info *back,
901 			struct discard_info *front, unsigned int max_len)
902 {
903 	return (back->lstart + back->len == front->lstart) &&
904 		(back->len + front->len <= max_len);
905 }
906 
907 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
908 			struct discard_info *back, unsigned int max_len)
909 {
910 	return __is_discard_mergeable(back, cur, max_len);
911 }
912 
913 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
914 			struct discard_info *front, unsigned int max_len)
915 {
916 	return __is_discard_mergeable(cur, front, max_len);
917 }
918 
919 /*
920  * For free nid management
921  */
922 enum nid_state {
923 	FREE_NID,		/* newly added to free nid list */
924 	PREALLOC_NID,		/* it is preallocated */
925 	MAX_NID_STATE,
926 };
927 
928 enum nat_state {
929 	TOTAL_NAT,
930 	DIRTY_NAT,
931 	RECLAIMABLE_NAT,
932 	MAX_NAT_STATE,
933 };
934 
935 struct f2fs_nm_info {
936 	block_t nat_blkaddr;		/* base disk address of NAT */
937 	nid_t max_nid;			/* maximum possible node ids */
938 	nid_t available_nids;		/* # of available node ids */
939 	nid_t next_scan_nid;		/* the next nid to be scanned */
940 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
941 	unsigned int ram_thresh;	/* control the memory footprint */
942 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
943 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
944 
945 	/* NAT cache management */
946 	struct radix_tree_root nat_root;/* root of the nat entry cache */
947 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
948 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
949 	struct list_head nat_entries;	/* cached nat entry list (clean) */
950 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
951 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
952 	unsigned int nat_blocks;	/* # of nat blocks */
953 
954 	/* free node ids management */
955 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
956 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
957 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
958 	spinlock_t nid_list_lock;	/* protect nid lists ops */
959 	struct mutex build_lock;	/* lock for build free nids */
960 	unsigned char **free_nid_bitmap;
961 	unsigned char *nat_block_bitmap;
962 	unsigned short *free_nid_count;	/* free nid count of NAT block */
963 
964 	/* for checkpoint */
965 	char *nat_bitmap;		/* NAT bitmap pointer */
966 
967 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
968 	unsigned char *nat_bits;	/* NAT bits blocks */
969 	unsigned char *full_nat_bits;	/* full NAT pages */
970 	unsigned char *empty_nat_bits;	/* empty NAT pages */
971 #ifdef CONFIG_F2FS_CHECK_FS
972 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
973 #endif
974 	int bitmap_size;		/* bitmap size */
975 };
976 
977 /*
978  * this structure is used as one of function parameters.
979  * all the information are dedicated to a given direct node block determined
980  * by the data offset in a file.
981  */
982 struct dnode_of_data {
983 	struct inode *inode;		/* vfs inode pointer */
984 	struct page *inode_page;	/* its inode page, NULL is possible */
985 	struct page *node_page;		/* cached direct node page */
986 	nid_t nid;			/* node id of the direct node block */
987 	unsigned int ofs_in_node;	/* data offset in the node page */
988 	bool inode_page_locked;		/* inode page is locked or not */
989 	bool node_changed;		/* is node block changed */
990 	char cur_level;			/* level of hole node page */
991 	char max_level;			/* level of current page located */
992 	block_t	data_blkaddr;		/* block address of the node block */
993 };
994 
995 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
996 		struct page *ipage, struct page *npage, nid_t nid)
997 {
998 	memset(dn, 0, sizeof(*dn));
999 	dn->inode = inode;
1000 	dn->inode_page = ipage;
1001 	dn->node_page = npage;
1002 	dn->nid = nid;
1003 }
1004 
1005 /*
1006  * For SIT manager
1007  *
1008  * By default, there are 6 active log areas across the whole main area.
1009  * When considering hot and cold data separation to reduce cleaning overhead,
1010  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1011  * respectively.
1012  * In the current design, you should not change the numbers intentionally.
1013  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1014  * logs individually according to the underlying devices. (default: 6)
1015  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1016  * data and 8 for node logs.
1017  */
1018 #define	NR_CURSEG_DATA_TYPE	(3)
1019 #define NR_CURSEG_NODE_TYPE	(3)
1020 #define NR_CURSEG_INMEM_TYPE	(2)
1021 #define NR_CURSEG_RO_TYPE	(2)
1022 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1023 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1024 
1025 enum log_type {
1026 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1027 	CURSEG_WARM_DATA,	/* data blocks */
1028 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1029 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1030 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1031 	CURSEG_COLD_NODE,	/* indirect node blocks */
1032 	NR_PERSISTENT_LOG,	/* number of persistent log */
1033 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1034 				/* pinned file that needs consecutive block address */
1035 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1036 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1037 };
1038 
1039 struct flush_cmd {
1040 	struct completion wait;
1041 	struct llist_node llnode;
1042 	nid_t ino;
1043 	int ret;
1044 };
1045 
1046 struct flush_cmd_control {
1047 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1048 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1049 	atomic_t issued_flush;			/* # of issued flushes */
1050 	atomic_t queued_flush;			/* # of queued flushes */
1051 	struct llist_head issue_list;		/* list for command issue */
1052 	struct llist_node *dispatch_list;	/* list for command dispatch */
1053 };
1054 
1055 struct f2fs_sm_info {
1056 	struct sit_info *sit_info;		/* whole segment information */
1057 	struct free_segmap_info *free_info;	/* free segment information */
1058 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1059 	struct curseg_info *curseg_array;	/* active segment information */
1060 
1061 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1062 
1063 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1064 	block_t main_blkaddr;		/* start block address of main area */
1065 	block_t ssa_blkaddr;		/* start block address of SSA area */
1066 
1067 	unsigned int segment_count;	/* total # of segments */
1068 	unsigned int main_segments;	/* # of segments in main area */
1069 	unsigned int reserved_segments;	/* # of reserved segments */
1070 	unsigned int ovp_segments;	/* # of overprovision segments */
1071 
1072 	/* a threshold to reclaim prefree segments */
1073 	unsigned int rec_prefree_segments;
1074 
1075 	struct list_head sit_entry_set;	/* sit entry set list */
1076 
1077 	unsigned int ipu_policy;	/* in-place-update policy */
1078 	unsigned int min_ipu_util;	/* in-place-update threshold */
1079 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1080 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1081 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1082 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1083 
1084 	/* for flush command control */
1085 	struct flush_cmd_control *fcc_info;
1086 
1087 	/* for discard command control */
1088 	struct discard_cmd_control *dcc_info;
1089 };
1090 
1091 /*
1092  * For superblock
1093  */
1094 /*
1095  * COUNT_TYPE for monitoring
1096  *
1097  * f2fs monitors the number of several block types such as on-writeback,
1098  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1099  */
1100 #define WB_DATA_TYPE(p, f)			\
1101 	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1102 enum count_type {
1103 	F2FS_DIRTY_DENTS,
1104 	F2FS_DIRTY_DATA,
1105 	F2FS_DIRTY_QDATA,
1106 	F2FS_DIRTY_NODES,
1107 	F2FS_DIRTY_META,
1108 	F2FS_DIRTY_IMETA,
1109 	F2FS_WB_CP_DATA,
1110 	F2FS_WB_DATA,
1111 	F2FS_RD_DATA,
1112 	F2FS_RD_NODE,
1113 	F2FS_RD_META,
1114 	F2FS_DIO_WRITE,
1115 	F2FS_DIO_READ,
1116 	NR_COUNT_TYPE,
1117 };
1118 
1119 /*
1120  * The below are the page types of bios used in submit_bio().
1121  * The available types are:
1122  * DATA			User data pages. It operates as async mode.
1123  * NODE			Node pages. It operates as async mode.
1124  * META			FS metadata pages such as SIT, NAT, CP.
1125  * NR_PAGE_TYPE		The number of page types.
1126  * META_FLUSH		Make sure the previous pages are written
1127  *			with waiting the bio's completion
1128  * ...			Only can be used with META.
1129  */
1130 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1131 #define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1132 enum page_type {
1133 	DATA = 0,
1134 	NODE = 1,	/* should not change this */
1135 	META,
1136 	NR_PAGE_TYPE,
1137 	META_FLUSH,
1138 	IPU,		/* the below types are used by tracepoints only. */
1139 	OPU,
1140 };
1141 
1142 enum temp_type {
1143 	HOT = 0,	/* must be zero for meta bio */
1144 	WARM,
1145 	COLD,
1146 	NR_TEMP_TYPE,
1147 };
1148 
1149 enum need_lock_type {
1150 	LOCK_REQ = 0,
1151 	LOCK_DONE,
1152 	LOCK_RETRY,
1153 };
1154 
1155 enum cp_reason_type {
1156 	CP_NO_NEEDED,
1157 	CP_NON_REGULAR,
1158 	CP_COMPRESSED,
1159 	CP_HARDLINK,
1160 	CP_SB_NEED_CP,
1161 	CP_WRONG_PINO,
1162 	CP_NO_SPC_ROLL,
1163 	CP_NODE_NEED_CP,
1164 	CP_FASTBOOT_MODE,
1165 	CP_SPEC_LOG_NUM,
1166 	CP_RECOVER_DIR,
1167 	CP_XATTR_DIR,
1168 };
1169 
1170 enum iostat_type {
1171 	/* WRITE IO */
1172 	APP_DIRECT_IO,			/* app direct write IOs */
1173 	APP_BUFFERED_IO,		/* app buffered write IOs */
1174 	APP_WRITE_IO,			/* app write IOs */
1175 	APP_MAPPED_IO,			/* app mapped IOs */
1176 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1177 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1178 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1179 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1180 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1181 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1182 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1183 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1184 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1185 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1186 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1187 
1188 	/* READ IO */
1189 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1190 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1191 	APP_READ_IO,			/* app read IOs */
1192 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1193 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1194 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1195 	FS_DATA_READ_IO,		/* data read IOs */
1196 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1197 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1198 	FS_NODE_READ_IO,		/* node read IOs */
1199 	FS_META_READ_IO,		/* meta read IOs */
1200 
1201 	/* other */
1202 	FS_DISCARD_IO,			/* discard */
1203 	FS_FLUSH_IO,			/* flush */
1204 	FS_ZONE_RESET_IO,		/* zone reset */
1205 	NR_IO_TYPE,
1206 };
1207 
1208 struct f2fs_io_info {
1209 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1210 	nid_t ino;		/* inode number */
1211 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1212 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1213 	enum req_op op;		/* contains REQ_OP_ */
1214 	blk_opf_t op_flags;	/* req_flag_bits */
1215 	block_t new_blkaddr;	/* new block address to be written */
1216 	block_t old_blkaddr;	/* old block address before Cow */
1217 	struct page *page;	/* page to be written */
1218 	struct page *encrypted_page;	/* encrypted page */
1219 	struct page *compressed_page;	/* compressed page */
1220 	struct list_head list;		/* serialize IOs */
1221 	unsigned int compr_blocks;	/* # of compressed block addresses */
1222 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1223 	unsigned int version:8;		/* version of the node */
1224 	unsigned int submitted:1;	/* indicate IO submission */
1225 	unsigned int in_list:1;		/* indicate fio is in io_list */
1226 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1227 	unsigned int encrypted:1;	/* indicate file is encrypted */
1228 	unsigned int meta_gc:1;		/* require meta inode GC */
1229 	enum iostat_type io_type;	/* io type */
1230 	struct writeback_control *io_wbc; /* writeback control */
1231 	struct bio **bio;		/* bio for ipu */
1232 	sector_t *last_block;		/* last block number in bio */
1233 };
1234 
1235 struct bio_entry {
1236 	struct bio *bio;
1237 	struct list_head list;
1238 };
1239 
1240 #define is_read_io(rw) ((rw) == READ)
1241 struct f2fs_bio_info {
1242 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1243 	struct bio *bio;		/* bios to merge */
1244 	sector_t last_block_in_bio;	/* last block number */
1245 	struct f2fs_io_info fio;	/* store buffered io info. */
1246 #ifdef CONFIG_BLK_DEV_ZONED
1247 	struct completion zone_wait;	/* condition value for the previous open zone to close */
1248 	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1249 	void *bi_private;		/* previous bi_private for pending bio */
1250 #endif
1251 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1252 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1253 	struct list_head io_list;	/* track fios */
1254 	struct list_head bio_list;	/* bio entry list head */
1255 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1256 };
1257 
1258 #define FDEV(i)				(sbi->devs[i])
1259 #define RDEV(i)				(raw_super->devs[i])
1260 struct f2fs_dev_info {
1261 	struct file *bdev_file;
1262 	struct block_device *bdev;
1263 	char path[MAX_PATH_LEN];
1264 	unsigned int total_segments;
1265 	block_t start_blk;
1266 	block_t end_blk;
1267 #ifdef CONFIG_BLK_DEV_ZONED
1268 	unsigned int nr_blkz;		/* Total number of zones */
1269 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1270 #endif
1271 };
1272 
1273 enum inode_type {
1274 	DIR_INODE,			/* for dirty dir inode */
1275 	FILE_INODE,			/* for dirty regular/symlink inode */
1276 	DIRTY_META,			/* for all dirtied inode metadata */
1277 	NR_INODE_TYPE,
1278 };
1279 
1280 /* for inner inode cache management */
1281 struct inode_management {
1282 	struct radix_tree_root ino_root;	/* ino entry array */
1283 	spinlock_t ino_lock;			/* for ino entry lock */
1284 	struct list_head ino_list;		/* inode list head */
1285 	unsigned long ino_num;			/* number of entries */
1286 };
1287 
1288 /* for GC_AT */
1289 struct atgc_management {
1290 	bool atgc_enabled;			/* ATGC is enabled or not */
1291 	struct rb_root_cached root;		/* root of victim rb-tree */
1292 	struct list_head victim_list;		/* linked with all victim entries */
1293 	unsigned int victim_count;		/* victim count in rb-tree */
1294 	unsigned int candidate_ratio;		/* candidate ratio */
1295 	unsigned int max_candidate_count;	/* max candidate count */
1296 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1297 	unsigned long long age_threshold;	/* age threshold */
1298 };
1299 
1300 struct f2fs_gc_control {
1301 	unsigned int victim_segno;	/* target victim segment number */
1302 	int init_gc_type;		/* FG_GC or BG_GC */
1303 	bool no_bg_gc;			/* check the space and stop bg_gc */
1304 	bool should_migrate_blocks;	/* should migrate blocks */
1305 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1306 	bool one_time;			/* require one time GC in one migration unit */
1307 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1308 };
1309 
1310 /*
1311  * For s_flag in struct f2fs_sb_info
1312  * Modification on enum should be synchronized with s_flag array
1313  */
1314 enum {
1315 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1316 	SBI_IS_CLOSE,				/* specify unmounting */
1317 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1318 	SBI_POR_DOING,				/* recovery is doing or not */
1319 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1320 	SBI_NEED_CP,				/* need to checkpoint */
1321 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1322 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1323 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1324 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1325 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1326 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1327 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1328 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1329 	SBI_IS_FREEZING,			/* freezefs is in process */
1330 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1331 	MAX_SBI_FLAG,
1332 };
1333 
1334 enum {
1335 	CP_TIME,
1336 	REQ_TIME,
1337 	DISCARD_TIME,
1338 	GC_TIME,
1339 	DISABLE_TIME,
1340 	UMOUNT_DISCARD_TIMEOUT,
1341 	MAX_TIME,
1342 };
1343 
1344 /* Note that you need to keep synchronization with this gc_mode_names array */
1345 enum {
1346 	GC_NORMAL,
1347 	GC_IDLE_CB,
1348 	GC_IDLE_GREEDY,
1349 	GC_IDLE_AT,
1350 	GC_URGENT_HIGH,
1351 	GC_URGENT_LOW,
1352 	GC_URGENT_MID,
1353 	MAX_GC_MODE,
1354 };
1355 
1356 enum {
1357 	BGGC_MODE_ON,		/* background gc is on */
1358 	BGGC_MODE_OFF,		/* background gc is off */
1359 	BGGC_MODE_SYNC,		/*
1360 				 * background gc is on, migrating blocks
1361 				 * like foreground gc
1362 				 */
1363 };
1364 
1365 enum {
1366 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1367 	FS_MODE_LFS,			/* use lfs allocation only */
1368 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1369 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1370 };
1371 
1372 enum {
1373 	ALLOC_MODE_DEFAULT,	/* stay default */
1374 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1375 };
1376 
1377 enum fsync_mode {
1378 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1379 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1380 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1381 };
1382 
1383 enum {
1384 	COMPR_MODE_FS,		/*
1385 				 * automatically compress compression
1386 				 * enabled files
1387 				 */
1388 	COMPR_MODE_USER,	/*
1389 				 * automatical compression is disabled.
1390 				 * user can control the file compression
1391 				 * using ioctls
1392 				 */
1393 };
1394 
1395 enum {
1396 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1397 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1398 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1399 };
1400 
1401 enum {
1402 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1403 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1404 };
1405 
1406 enum errors_option {
1407 	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1408 	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1409 	MOUNT_ERRORS_PANIC,	/* panic on errors */
1410 };
1411 
1412 enum {
1413 	BACKGROUND,
1414 	FOREGROUND,
1415 	MAX_CALL_TYPE,
1416 	TOTAL_CALL = FOREGROUND,
1417 };
1418 
1419 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1420 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1421 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1422 
1423 /*
1424  * Layout of f2fs page.private:
1425  *
1426  * Layout A: lowest bit should be 1
1427  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1428  * bit 0	PAGE_PRIVATE_NOT_POINTER
1429  * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1430  * bit 2	PAGE_PRIVATE_INLINE_INODE
1431  * bit 3	PAGE_PRIVATE_REF_RESOURCE
1432  * bit 4	PAGE_PRIVATE_ATOMIC_WRITE
1433  * bit 5-	f2fs private data
1434  *
1435  * Layout B: lowest bit should be 0
1436  * page.private is a wrapped pointer.
1437  */
1438 enum {
1439 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1440 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1441 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1442 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1443 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1444 	PAGE_PRIVATE_MAX
1445 };
1446 
1447 /* For compression */
1448 enum compress_algorithm_type {
1449 	COMPRESS_LZO,
1450 	COMPRESS_LZ4,
1451 	COMPRESS_ZSTD,
1452 	COMPRESS_LZORLE,
1453 	COMPRESS_MAX,
1454 };
1455 
1456 enum compress_flag {
1457 	COMPRESS_CHKSUM,
1458 	COMPRESS_MAX_FLAG,
1459 };
1460 
1461 #define	COMPRESS_WATERMARK			20
1462 #define	COMPRESS_PERCENT			20
1463 
1464 #define COMPRESS_DATA_RESERVED_SIZE		4
1465 struct compress_data {
1466 	__le32 clen;			/* compressed data size */
1467 	__le32 chksum;			/* compressed data chksum */
1468 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1469 	u8 cdata[];			/* compressed data */
1470 };
1471 
1472 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1473 
1474 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1475 
1476 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1477 
1478 #define	COMPRESS_LEVEL_OFFSET	8
1479 
1480 /* compress context */
1481 struct compress_ctx {
1482 	struct inode *inode;		/* inode the context belong to */
1483 	pgoff_t cluster_idx;		/* cluster index number */
1484 	unsigned int cluster_size;	/* page count in cluster */
1485 	unsigned int log_cluster_size;	/* log of cluster size */
1486 	struct page **rpages;		/* pages store raw data in cluster */
1487 	unsigned int nr_rpages;		/* total page number in rpages */
1488 	struct page **cpages;		/* pages store compressed data in cluster */
1489 	unsigned int nr_cpages;		/* total page number in cpages */
1490 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1491 	void *rbuf;			/* virtual mapped address on rpages */
1492 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1493 	size_t rlen;			/* valid data length in rbuf */
1494 	size_t clen;			/* valid data length in cbuf */
1495 	void *private;			/* payload buffer for specified compression algorithm */
1496 	void *private2;			/* extra payload buffer */
1497 };
1498 
1499 /* compress context for write IO path */
1500 struct compress_io_ctx {
1501 	u32 magic;			/* magic number to indicate page is compressed */
1502 	struct inode *inode;		/* inode the context belong to */
1503 	struct page **rpages;		/* pages store raw data in cluster */
1504 	unsigned int nr_rpages;		/* total page number in rpages */
1505 	atomic_t pending_pages;		/* in-flight compressed page count */
1506 };
1507 
1508 /* Context for decompressing one cluster on the read IO path */
1509 struct decompress_io_ctx {
1510 	u32 magic;			/* magic number to indicate page is compressed */
1511 	struct inode *inode;		/* inode the context belong to */
1512 	pgoff_t cluster_idx;		/* cluster index number */
1513 	unsigned int cluster_size;	/* page count in cluster */
1514 	unsigned int log_cluster_size;	/* log of cluster size */
1515 	struct page **rpages;		/* pages store raw data in cluster */
1516 	unsigned int nr_rpages;		/* total page number in rpages */
1517 	struct page **cpages;		/* pages store compressed data in cluster */
1518 	unsigned int nr_cpages;		/* total page number in cpages */
1519 	struct page **tpages;		/* temp pages to pad holes in cluster */
1520 	void *rbuf;			/* virtual mapped address on rpages */
1521 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1522 	size_t rlen;			/* valid data length in rbuf */
1523 	size_t clen;			/* valid data length in cbuf */
1524 
1525 	/*
1526 	 * The number of compressed pages remaining to be read in this cluster.
1527 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1528 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1529 	 * is decompressed (or an error is reported).
1530 	 *
1531 	 * If an error occurs before all the pages have been submitted for I/O,
1532 	 * then this will never reach 0.  In this case the I/O submitter is
1533 	 * responsible for calling f2fs_decompress_end_io() instead.
1534 	 */
1535 	atomic_t remaining_pages;
1536 
1537 	/*
1538 	 * Number of references to this decompress_io_ctx.
1539 	 *
1540 	 * One reference is held for I/O completion.  This reference is dropped
1541 	 * after the pagecache pages are updated and unlocked -- either after
1542 	 * decompression (and verity if enabled), or after an error.
1543 	 *
1544 	 * In addition, each compressed page holds a reference while it is in a
1545 	 * bio.  These references are necessary prevent compressed pages from
1546 	 * being freed while they are still in a bio.
1547 	 */
1548 	refcount_t refcnt;
1549 
1550 	bool failed;			/* IO error occurred before decompression? */
1551 	bool need_verity;		/* need fs-verity verification after decompression? */
1552 	void *private;			/* payload buffer for specified decompression algorithm */
1553 	void *private2;			/* extra payload buffer */
1554 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1555 	struct work_struct free_work;	/* work for late free this structure itself */
1556 };
1557 
1558 #define NULL_CLUSTER			((unsigned int)(~0))
1559 #define MIN_COMPRESS_LOG_SIZE		2
1560 #define MAX_COMPRESS_LOG_SIZE		8
1561 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1562 
1563 struct f2fs_sb_info {
1564 	struct super_block *sb;			/* pointer to VFS super block */
1565 	struct proc_dir_entry *s_proc;		/* proc entry */
1566 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1567 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1568 	int valid_super_block;			/* valid super block no */
1569 	unsigned long s_flag;				/* flags for sbi */
1570 	struct mutex writepages;		/* mutex for writepages() */
1571 
1572 #ifdef CONFIG_BLK_DEV_ZONED
1573 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1574 	unsigned int max_open_zones;		/* max open zone resources of the zoned device */
1575 	/* For adjust the priority writing position of data in zone UFS */
1576 	unsigned int blkzone_alloc_policy;
1577 #endif
1578 
1579 	/* for node-related operations */
1580 	struct f2fs_nm_info *nm_info;		/* node manager */
1581 	struct inode *node_inode;		/* cache node blocks */
1582 
1583 	/* for segment-related operations */
1584 	struct f2fs_sm_info *sm_info;		/* segment manager */
1585 
1586 	/* for bio operations */
1587 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1588 	/* keep migration IO order for LFS mode */
1589 	struct f2fs_rwsem io_order_lock;
1590 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1591 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1592 
1593 	/* for checkpoint */
1594 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1595 	int cur_cp_pack;			/* remain current cp pack */
1596 	spinlock_t cp_lock;			/* for flag in ckpt */
1597 	struct inode *meta_inode;		/* cache meta blocks */
1598 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1599 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1600 	struct f2fs_rwsem node_write;		/* locking node writes */
1601 	struct f2fs_rwsem node_change;	/* locking node change */
1602 	wait_queue_head_t cp_wait;
1603 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1604 	long interval_time[MAX_TIME];		/* to store thresholds */
1605 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1606 
1607 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1608 
1609 	spinlock_t fsync_node_lock;		/* for node entry lock */
1610 	struct list_head fsync_node_list;	/* node list head */
1611 	unsigned int fsync_seg_id;		/* sequence id */
1612 	unsigned int fsync_node_num;		/* number of node entries */
1613 
1614 	/* for orphan inode, use 0'th array */
1615 	unsigned int max_orphans;		/* max orphan inodes */
1616 
1617 	/* for inode management */
1618 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1619 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1620 	struct mutex flush_lock;		/* for flush exclusion */
1621 
1622 	/* for extent tree cache */
1623 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1624 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1625 	unsigned int max_read_extent_count;	/* max read extent count per inode */
1626 
1627 	/* The threshold used for hot and warm data seperation*/
1628 	unsigned int hot_data_age_threshold;
1629 	unsigned int warm_data_age_threshold;
1630 	unsigned int last_age_weight;
1631 
1632 	/* basic filesystem units */
1633 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1634 	unsigned int log_blocksize;		/* log2 block size */
1635 	unsigned int blocksize;			/* block size */
1636 	unsigned int root_ino_num;		/* root inode number*/
1637 	unsigned int node_ino_num;		/* node inode number*/
1638 	unsigned int meta_ino_num;		/* meta inode number*/
1639 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1640 	unsigned int blocks_per_seg;		/* blocks per segment */
1641 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1642 	unsigned int segs_per_sec;		/* segments per section */
1643 	unsigned int secs_per_zone;		/* sections per zone */
1644 	unsigned int total_sections;		/* total section count */
1645 	unsigned int total_node_count;		/* total node block count */
1646 	unsigned int total_valid_node_count;	/* valid node block count */
1647 	int dir_level;				/* directory level */
1648 	bool readdir_ra;			/* readahead inode in readdir */
1649 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1650 
1651 	block_t user_block_count;		/* # of user blocks */
1652 	block_t total_valid_block_count;	/* # of valid blocks */
1653 	block_t discard_blks;			/* discard command candidats */
1654 	block_t last_valid_block_count;		/* for recovery */
1655 	block_t reserved_blocks;		/* configurable reserved blocks */
1656 	block_t current_reserved_blocks;	/* current reserved blocks */
1657 
1658 	/* Additional tracking for no checkpoint mode */
1659 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1660 
1661 	unsigned int nquota_files;		/* # of quota sysfile */
1662 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1663 
1664 	/* # of pages, see count_type */
1665 	atomic_t nr_pages[NR_COUNT_TYPE];
1666 	/* # of allocated blocks */
1667 	struct percpu_counter alloc_valid_block_count;
1668 	/* # of node block writes as roll forward recovery */
1669 	struct percpu_counter rf_node_block_count;
1670 
1671 	/* writeback control */
1672 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1673 
1674 	/* valid inode count */
1675 	struct percpu_counter total_valid_inode_count;
1676 
1677 	struct f2fs_mount_info mount_opt;	/* mount options */
1678 
1679 	/* for cleaning operations */
1680 	struct f2fs_rwsem gc_lock;		/*
1681 						 * semaphore for GC, avoid
1682 						 * race between GC and GC or CP
1683 						 */
1684 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1685 	struct atgc_management am;		/* atgc management */
1686 	unsigned int cur_victim_sec;		/* current victim section num */
1687 	unsigned int gc_mode;			/* current GC state */
1688 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1689 	spinlock_t gc_remaining_trials_lock;
1690 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1691 	unsigned int gc_remaining_trials;
1692 
1693 	/* for skip statistic */
1694 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1695 
1696 	/* threshold for gc trials on pinned files */
1697 	unsigned short gc_pin_file_threshold;
1698 	struct f2fs_rwsem pin_sem;
1699 
1700 	/* maximum # of trials to find a victim segment for SSR and GC */
1701 	unsigned int max_victim_search;
1702 	/* migration granularity of garbage collection, unit: segment */
1703 	unsigned int migration_granularity;
1704 	/* migration window granularity of garbage collection, unit: segment */
1705 	unsigned int migration_window_granularity;
1706 
1707 	/*
1708 	 * for stat information.
1709 	 * one is for the LFS mode, and the other is for the SSR mode.
1710 	 */
1711 #ifdef CONFIG_F2FS_STAT_FS
1712 	struct f2fs_stat_info *stat_info;	/* FS status information */
1713 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1714 	unsigned int segment_count[2];		/* # of allocated segments */
1715 	unsigned int block_count[2];		/* # of allocated blocks */
1716 	atomic_t inplace_count;		/* # of inplace update */
1717 	/* # of lookup extent cache */
1718 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1719 	/* # of hit rbtree extent node */
1720 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1721 	/* # of hit cached extent node */
1722 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1723 	/* # of hit largest extent node in read extent cache */
1724 	atomic64_t read_hit_largest;
1725 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1726 	atomic_t inline_inode;			/* # of inline_data inodes */
1727 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1728 	atomic_t compr_inode;			/* # of compressed inodes */
1729 	atomic64_t compr_blocks;		/* # of compressed blocks */
1730 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1731 	atomic_t atomic_files;			/* # of opened atomic file */
1732 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1733 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1734 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1735 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1736 	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1737 #endif
1738 	spinlock_t stat_lock;			/* lock for stat operations */
1739 
1740 	/* to attach REQ_META|REQ_FUA flags */
1741 	unsigned int data_io_flag;
1742 	unsigned int node_io_flag;
1743 
1744 	/* For sysfs support */
1745 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1746 	struct completion s_kobj_unregister;
1747 
1748 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1749 	struct completion s_stat_kobj_unregister;
1750 
1751 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1752 	struct completion s_feature_list_kobj_unregister;
1753 
1754 	/* For shrinker support */
1755 	struct list_head s_list;
1756 	struct mutex umount_mutex;
1757 	unsigned int shrinker_run_no;
1758 
1759 	/* For multi devices */
1760 	int s_ndevs;				/* number of devices */
1761 	struct f2fs_dev_info *devs;		/* for device list */
1762 	unsigned int dirty_device;		/* for checkpoint data flush */
1763 	spinlock_t dev_lock;			/* protect dirty_device */
1764 	bool aligned_blksize;			/* all devices has the same logical blksize */
1765 	unsigned int first_zoned_segno;		/* first zoned segno */
1766 
1767 	/* For write statistics */
1768 	u64 sectors_written_start;
1769 	u64 kbytes_written;
1770 
1771 	/* Reference to checksum algorithm driver via cryptoapi */
1772 	struct crypto_shash *s_chksum_driver;
1773 
1774 	/* Precomputed FS UUID checksum for seeding other checksums */
1775 	__u32 s_chksum_seed;
1776 
1777 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1778 
1779 	/*
1780 	 * If we are in irq context, let's update error information into
1781 	 * on-disk superblock in the work.
1782 	 */
1783 	struct work_struct s_error_work;
1784 	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1785 	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1786 	spinlock_t error_lock;			/* protect errors/stop_reason array */
1787 	bool error_dirty;			/* errors of sb is dirty */
1788 
1789 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1790 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1791 
1792 	/* For reclaimed segs statistics per each GC mode */
1793 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1794 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1795 
1796 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1797 
1798 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1799 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1800 
1801 	/* For atomic write statistics */
1802 	atomic64_t current_atomic_write;
1803 	s64 peak_atomic_write;
1804 	u64 committed_atomic_block;
1805 	u64 revoked_atomic_block;
1806 
1807 #ifdef CONFIG_F2FS_FS_COMPRESSION
1808 	struct kmem_cache *page_array_slab;	/* page array entry */
1809 	unsigned int page_array_slab_size;	/* default page array slab size */
1810 
1811 	/* For runtime compression statistics */
1812 	u64 compr_written_block;
1813 	u64 compr_saved_block;
1814 	u32 compr_new_inode;
1815 
1816 	/* For compressed block cache */
1817 	struct inode *compress_inode;		/* cache compressed blocks */
1818 	unsigned int compress_percent;		/* cache page percentage */
1819 	unsigned int compress_watermark;	/* cache page watermark */
1820 	atomic_t compress_page_hit;		/* cache hit count */
1821 #endif
1822 
1823 #ifdef CONFIG_F2FS_IOSTAT
1824 	/* For app/fs IO statistics */
1825 	spinlock_t iostat_lock;
1826 	unsigned long long iostat_count[NR_IO_TYPE];
1827 	unsigned long long iostat_bytes[NR_IO_TYPE];
1828 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1829 	bool iostat_enable;
1830 	unsigned long iostat_next_period;
1831 	unsigned int iostat_period_ms;
1832 
1833 	/* For io latency related statistics info in one iostat period */
1834 	spinlock_t iostat_lat_lock;
1835 	struct iostat_lat_info *iostat_io_lat;
1836 #endif
1837 };
1838 
1839 /* Definitions to access f2fs_sb_info */
1840 #define SEGS_TO_BLKS(sbi, segs)					\
1841 		((segs) << (sbi)->log_blocks_per_seg)
1842 #define BLKS_TO_SEGS(sbi, blks)					\
1843 		((blks) >> (sbi)->log_blocks_per_seg)
1844 
1845 #define BLKS_PER_SEG(sbi)	((sbi)->blocks_per_seg)
1846 #define BLKS_PER_SEC(sbi)	(SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1847 #define SEGS_PER_SEC(sbi)	((sbi)->segs_per_sec)
1848 
1849 __printf(3, 4)
1850 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1851 
1852 #define f2fs_err(sbi, fmt, ...)						\
1853 	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1854 #define f2fs_warn(sbi, fmt, ...)					\
1855 	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1856 #define f2fs_notice(sbi, fmt, ...)					\
1857 	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1858 #define f2fs_info(sbi, fmt, ...)					\
1859 	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1860 #define f2fs_debug(sbi, fmt, ...)					\
1861 	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1862 
1863 #define f2fs_err_ratelimited(sbi, fmt, ...)				\
1864 	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1865 #define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1866 	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1867 #define f2fs_info_ratelimited(sbi, fmt, ...)				\
1868 	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1869 
1870 #ifdef CONFIG_F2FS_FAULT_INJECTION
1871 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1872 									__builtin_return_address(0))
1873 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1874 				const char *func, const char *parent_func)
1875 {
1876 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1877 
1878 	if (!ffi->inject_rate)
1879 		return false;
1880 
1881 	if (!IS_FAULT_SET(ffi, type))
1882 		return false;
1883 
1884 	atomic_inc(&ffi->inject_ops);
1885 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1886 		atomic_set(&ffi->inject_ops, 0);
1887 		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1888 				f2fs_fault_name[type], func, parent_func);
1889 		return true;
1890 	}
1891 	return false;
1892 }
1893 #else
1894 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1895 {
1896 	return false;
1897 }
1898 #endif
1899 
1900 /*
1901  * Test if the mounted volume is a multi-device volume.
1902  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1903  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1904  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1905  */
1906 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1907 {
1908 	return sbi->s_ndevs > 1;
1909 }
1910 
1911 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1912 {
1913 	unsigned long now = jiffies;
1914 
1915 	sbi->last_time[type] = now;
1916 
1917 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1918 	if (type == REQ_TIME) {
1919 		sbi->last_time[DISCARD_TIME] = now;
1920 		sbi->last_time[GC_TIME] = now;
1921 	}
1922 }
1923 
1924 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1925 {
1926 	unsigned long interval = sbi->interval_time[type] * HZ;
1927 
1928 	return time_after(jiffies, sbi->last_time[type] + interval);
1929 }
1930 
1931 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1932 						int type)
1933 {
1934 	unsigned long interval = sbi->interval_time[type] * HZ;
1935 	unsigned int wait_ms = 0;
1936 	long delta;
1937 
1938 	delta = (sbi->last_time[type] + interval) - jiffies;
1939 	if (delta > 0)
1940 		wait_ms = jiffies_to_msecs(delta);
1941 
1942 	return wait_ms;
1943 }
1944 
1945 /*
1946  * Inline functions
1947  */
1948 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1949 			      const void *address, unsigned int length)
1950 {
1951 	struct {
1952 		struct shash_desc shash;
1953 		char ctx[4];
1954 	} desc;
1955 	int err;
1956 
1957 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1958 
1959 	desc.shash.tfm = sbi->s_chksum_driver;
1960 	*(u32 *)desc.ctx = crc;
1961 
1962 	err = crypto_shash_update(&desc.shash, address, length);
1963 	BUG_ON(err);
1964 
1965 	return *(u32 *)desc.ctx;
1966 }
1967 
1968 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1969 			   unsigned int length)
1970 {
1971 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1972 }
1973 
1974 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1975 				  void *buf, size_t buf_size)
1976 {
1977 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1978 }
1979 
1980 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1981 			      const void *address, unsigned int length)
1982 {
1983 	return __f2fs_crc32(sbi, crc, address, length);
1984 }
1985 
1986 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1987 {
1988 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1989 }
1990 
1991 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1992 {
1993 	return sb->s_fs_info;
1994 }
1995 
1996 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1997 {
1998 	return F2FS_SB(inode->i_sb);
1999 }
2000 
2001 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2002 {
2003 	return F2FS_I_SB(mapping->host);
2004 }
2005 
2006 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2007 {
2008 	return F2FS_M_SB(page_file_mapping(page));
2009 }
2010 
2011 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2012 {
2013 	return (struct f2fs_super_block *)(sbi->raw_super);
2014 }
2015 
2016 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2017 								pgoff_t index)
2018 {
2019 	pgoff_t idx_in_folio = index % (1 << folio_order(folio));
2020 
2021 	return (struct f2fs_super_block *)
2022 		(page_address(folio_page(folio, idx_in_folio)) +
2023 						F2FS_SUPER_OFFSET);
2024 }
2025 
2026 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2027 {
2028 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2029 }
2030 
2031 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2032 {
2033 	return (struct f2fs_node *)page_address(page);
2034 }
2035 
2036 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2037 {
2038 	return &((struct f2fs_node *)page_address(page))->i;
2039 }
2040 
2041 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2042 {
2043 	return (struct f2fs_nm_info *)(sbi->nm_info);
2044 }
2045 
2046 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2047 {
2048 	return (struct f2fs_sm_info *)(sbi->sm_info);
2049 }
2050 
2051 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2052 {
2053 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2054 }
2055 
2056 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2057 {
2058 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2059 }
2060 
2061 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2062 {
2063 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2064 }
2065 
2066 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2067 {
2068 	return sbi->meta_inode->i_mapping;
2069 }
2070 
2071 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2072 {
2073 	return sbi->node_inode->i_mapping;
2074 }
2075 
2076 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2077 {
2078 	return test_bit(type, &sbi->s_flag);
2079 }
2080 
2081 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2082 {
2083 	set_bit(type, &sbi->s_flag);
2084 }
2085 
2086 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2087 {
2088 	clear_bit(type, &sbi->s_flag);
2089 }
2090 
2091 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2092 {
2093 	return le64_to_cpu(cp->checkpoint_ver);
2094 }
2095 
2096 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2097 {
2098 	if (type < F2FS_MAX_QUOTAS)
2099 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2100 	return 0;
2101 }
2102 
2103 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2104 {
2105 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2106 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2107 }
2108 
2109 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2110 {
2111 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2112 
2113 	return ckpt_flags & f;
2114 }
2115 
2116 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2117 {
2118 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2119 }
2120 
2121 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2122 {
2123 	unsigned int ckpt_flags;
2124 
2125 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2126 	ckpt_flags |= f;
2127 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2128 }
2129 
2130 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2131 {
2132 	unsigned long flags;
2133 
2134 	spin_lock_irqsave(&sbi->cp_lock, flags);
2135 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2136 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2137 }
2138 
2139 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2140 {
2141 	unsigned int ckpt_flags;
2142 
2143 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2144 	ckpt_flags &= (~f);
2145 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2146 }
2147 
2148 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2149 {
2150 	unsigned long flags;
2151 
2152 	spin_lock_irqsave(&sbi->cp_lock, flags);
2153 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2154 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2155 }
2156 
2157 #define init_f2fs_rwsem(sem)					\
2158 do {								\
2159 	static struct lock_class_key __key;			\
2160 								\
2161 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2162 } while (0)
2163 
2164 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2165 		const char *sem_name, struct lock_class_key *key)
2166 {
2167 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2168 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2169 	init_waitqueue_head(&sem->read_waiters);
2170 #endif
2171 }
2172 
2173 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2174 {
2175 	return rwsem_is_locked(&sem->internal_rwsem);
2176 }
2177 
2178 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2179 {
2180 	return rwsem_is_contended(&sem->internal_rwsem);
2181 }
2182 
2183 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2184 {
2185 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2186 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2187 #else
2188 	down_read(&sem->internal_rwsem);
2189 #endif
2190 }
2191 
2192 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2193 {
2194 	return down_read_trylock(&sem->internal_rwsem);
2195 }
2196 
2197 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2198 {
2199 	up_read(&sem->internal_rwsem);
2200 }
2201 
2202 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2203 {
2204 	down_write(&sem->internal_rwsem);
2205 }
2206 
2207 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2208 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2209 {
2210 	down_read_nested(&sem->internal_rwsem, subclass);
2211 }
2212 
2213 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2214 {
2215 	down_write_nested(&sem->internal_rwsem, subclass);
2216 }
2217 #else
2218 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2219 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2220 #endif
2221 
2222 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2223 {
2224 	return down_write_trylock(&sem->internal_rwsem);
2225 }
2226 
2227 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2228 {
2229 	up_write(&sem->internal_rwsem);
2230 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2231 	wake_up_all(&sem->read_waiters);
2232 #endif
2233 }
2234 
2235 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2236 {
2237 	f2fs_down_read(&sbi->cp_rwsem);
2238 }
2239 
2240 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2241 {
2242 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2243 		return 0;
2244 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2245 }
2246 
2247 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2248 {
2249 	f2fs_up_read(&sbi->cp_rwsem);
2250 }
2251 
2252 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2253 {
2254 	f2fs_down_write(&sbi->cp_rwsem);
2255 }
2256 
2257 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2258 {
2259 	f2fs_up_write(&sbi->cp_rwsem);
2260 }
2261 
2262 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2263 {
2264 	int reason = CP_SYNC;
2265 
2266 	if (test_opt(sbi, FASTBOOT))
2267 		reason = CP_FASTBOOT;
2268 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2269 		reason = CP_UMOUNT;
2270 	return reason;
2271 }
2272 
2273 static inline bool __remain_node_summaries(int reason)
2274 {
2275 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2276 }
2277 
2278 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2279 {
2280 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2281 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2282 }
2283 
2284 /*
2285  * Check whether the inode has blocks or not
2286  */
2287 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2288 {
2289 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2290 
2291 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2292 }
2293 
2294 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2295 {
2296 	return ofs == XATTR_NODE_OFFSET;
2297 }
2298 
2299 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2300 					struct inode *inode, bool cap)
2301 {
2302 	if (!inode)
2303 		return true;
2304 	if (!test_opt(sbi, RESERVE_ROOT))
2305 		return false;
2306 	if (IS_NOQUOTA(inode))
2307 		return true;
2308 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2309 		return true;
2310 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2311 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2312 		return true;
2313 	if (cap && capable(CAP_SYS_RESOURCE))
2314 		return true;
2315 	return false;
2316 }
2317 
2318 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2319 						struct inode *inode, bool cap)
2320 {
2321 	block_t avail_user_block_count;
2322 
2323 	avail_user_block_count = sbi->user_block_count -
2324 					sbi->current_reserved_blocks;
2325 
2326 	if (!__allow_reserved_blocks(sbi, inode, cap))
2327 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2328 
2329 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2330 		if (avail_user_block_count > sbi->unusable_block_count)
2331 			avail_user_block_count -= sbi->unusable_block_count;
2332 		else
2333 			avail_user_block_count = 0;
2334 	}
2335 
2336 	return avail_user_block_count;
2337 }
2338 
2339 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2340 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2341 				 struct inode *inode, blkcnt_t *count, bool partial)
2342 {
2343 	long long diff = 0, release = 0;
2344 	block_t avail_user_block_count;
2345 	int ret;
2346 
2347 	ret = dquot_reserve_block(inode, *count);
2348 	if (ret)
2349 		return ret;
2350 
2351 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2352 		release = *count;
2353 		goto release_quota;
2354 	}
2355 
2356 	/*
2357 	 * let's increase this in prior to actual block count change in order
2358 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2359 	 */
2360 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2361 
2362 	spin_lock(&sbi->stat_lock);
2363 
2364 	avail_user_block_count = get_available_block_count(sbi, inode, true);
2365 	diff = (long long)sbi->total_valid_block_count + *count -
2366 						avail_user_block_count;
2367 	if (unlikely(diff > 0)) {
2368 		if (!partial) {
2369 			spin_unlock(&sbi->stat_lock);
2370 			release = *count;
2371 			goto enospc;
2372 		}
2373 		if (diff > *count)
2374 			diff = *count;
2375 		*count -= diff;
2376 		release = diff;
2377 		if (!*count) {
2378 			spin_unlock(&sbi->stat_lock);
2379 			goto enospc;
2380 		}
2381 	}
2382 	sbi->total_valid_block_count += (block_t)(*count);
2383 
2384 	spin_unlock(&sbi->stat_lock);
2385 
2386 	if (unlikely(release)) {
2387 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2388 		dquot_release_reservation_block(inode, release);
2389 	}
2390 	f2fs_i_blocks_write(inode, *count, true, true);
2391 	return 0;
2392 
2393 enospc:
2394 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2395 release_quota:
2396 	dquot_release_reservation_block(inode, release);
2397 	return -ENOSPC;
2398 }
2399 
2400 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2401 static inline bool page_private_##name(struct page *page) \
2402 { \
2403 	return PagePrivate(page) && \
2404 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2405 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2406 }
2407 
2408 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2409 static inline void set_page_private_##name(struct page *page) \
2410 { \
2411 	if (!PagePrivate(page)) \
2412 		attach_page_private(page, (void *)0); \
2413 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2414 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2415 }
2416 
2417 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2418 static inline void clear_page_private_##name(struct page *page) \
2419 { \
2420 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2421 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2422 		detach_page_private(page); \
2423 }
2424 
2425 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2426 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2427 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2428 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2429 
2430 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2431 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2432 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2433 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2434 
2435 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2436 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2437 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2438 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2439 
2440 static inline unsigned long get_page_private_data(struct page *page)
2441 {
2442 	unsigned long data = page_private(page);
2443 
2444 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2445 		return 0;
2446 	return data >> PAGE_PRIVATE_MAX;
2447 }
2448 
2449 static inline void set_page_private_data(struct page *page, unsigned long data)
2450 {
2451 	if (!PagePrivate(page))
2452 		attach_page_private(page, (void *)0);
2453 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2454 	page_private(page) |= data << PAGE_PRIVATE_MAX;
2455 }
2456 
2457 static inline void clear_page_private_data(struct page *page)
2458 {
2459 	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2460 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2461 		detach_page_private(page);
2462 }
2463 
2464 static inline void clear_page_private_all(struct page *page)
2465 {
2466 	clear_page_private_data(page);
2467 	clear_page_private_reference(page);
2468 	clear_page_private_gcing(page);
2469 	clear_page_private_inline(page);
2470 	clear_page_private_atomic(page);
2471 
2472 	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2473 }
2474 
2475 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2476 						struct inode *inode,
2477 						block_t count)
2478 {
2479 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2480 
2481 	spin_lock(&sbi->stat_lock);
2482 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2483 	sbi->total_valid_block_count -= (block_t)count;
2484 	if (sbi->reserved_blocks &&
2485 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2486 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2487 					sbi->current_reserved_blocks + count);
2488 	spin_unlock(&sbi->stat_lock);
2489 	if (unlikely(inode->i_blocks < sectors)) {
2490 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2491 			  inode->i_ino,
2492 			  (unsigned long long)inode->i_blocks,
2493 			  (unsigned long long)sectors);
2494 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2495 		return;
2496 	}
2497 	f2fs_i_blocks_write(inode, count, false, true);
2498 }
2499 
2500 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2501 {
2502 	atomic_inc(&sbi->nr_pages[count_type]);
2503 
2504 	if (count_type == F2FS_DIRTY_DENTS ||
2505 			count_type == F2FS_DIRTY_NODES ||
2506 			count_type == F2FS_DIRTY_META ||
2507 			count_type == F2FS_DIRTY_QDATA ||
2508 			count_type == F2FS_DIRTY_IMETA)
2509 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2510 }
2511 
2512 static inline void inode_inc_dirty_pages(struct inode *inode)
2513 {
2514 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2515 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2516 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2517 	if (IS_NOQUOTA(inode))
2518 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2519 }
2520 
2521 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2522 {
2523 	atomic_dec(&sbi->nr_pages[count_type]);
2524 }
2525 
2526 static inline void inode_dec_dirty_pages(struct inode *inode)
2527 {
2528 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2529 			!S_ISLNK(inode->i_mode))
2530 		return;
2531 
2532 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2533 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2534 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2535 	if (IS_NOQUOTA(inode))
2536 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2537 }
2538 
2539 static inline void inc_atomic_write_cnt(struct inode *inode)
2540 {
2541 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2542 	struct f2fs_inode_info *fi = F2FS_I(inode);
2543 	u64 current_write;
2544 
2545 	fi->atomic_write_cnt++;
2546 	atomic64_inc(&sbi->current_atomic_write);
2547 	current_write = atomic64_read(&sbi->current_atomic_write);
2548 	if (current_write > sbi->peak_atomic_write)
2549 		sbi->peak_atomic_write = current_write;
2550 }
2551 
2552 static inline void release_atomic_write_cnt(struct inode *inode)
2553 {
2554 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2555 	struct f2fs_inode_info *fi = F2FS_I(inode);
2556 
2557 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2558 	fi->atomic_write_cnt = 0;
2559 }
2560 
2561 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2562 {
2563 	return atomic_read(&sbi->nr_pages[count_type]);
2564 }
2565 
2566 static inline int get_dirty_pages(struct inode *inode)
2567 {
2568 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2569 }
2570 
2571 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2572 {
2573 	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2574 							BLKS_PER_SEC(sbi));
2575 }
2576 
2577 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2578 {
2579 	return sbi->total_valid_block_count;
2580 }
2581 
2582 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2583 {
2584 	return sbi->discard_blks;
2585 }
2586 
2587 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2588 {
2589 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2590 
2591 	/* return NAT or SIT bitmap */
2592 	if (flag == NAT_BITMAP)
2593 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2594 	else if (flag == SIT_BITMAP)
2595 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2596 
2597 	return 0;
2598 }
2599 
2600 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2601 {
2602 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2603 }
2604 
2605 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2606 {
2607 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2608 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2609 	int offset;
2610 
2611 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2612 		offset = (flag == SIT_BITMAP) ?
2613 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2614 		/*
2615 		 * if large_nat_bitmap feature is enabled, leave checksum
2616 		 * protection for all nat/sit bitmaps.
2617 		 */
2618 		return tmp_ptr + offset + sizeof(__le32);
2619 	}
2620 
2621 	if (__cp_payload(sbi) > 0) {
2622 		if (flag == NAT_BITMAP)
2623 			return tmp_ptr;
2624 		else
2625 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2626 	} else {
2627 		offset = (flag == NAT_BITMAP) ?
2628 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2629 		return tmp_ptr + offset;
2630 	}
2631 }
2632 
2633 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2634 {
2635 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2636 
2637 	if (sbi->cur_cp_pack == 2)
2638 		start_addr += BLKS_PER_SEG(sbi);
2639 	return start_addr;
2640 }
2641 
2642 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2643 {
2644 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2645 
2646 	if (sbi->cur_cp_pack == 1)
2647 		start_addr += BLKS_PER_SEG(sbi);
2648 	return start_addr;
2649 }
2650 
2651 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2652 {
2653 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2654 }
2655 
2656 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2657 {
2658 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2659 }
2660 
2661 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2662 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2663 					struct inode *inode, bool is_inode)
2664 {
2665 	block_t	valid_block_count;
2666 	unsigned int valid_node_count;
2667 	unsigned int avail_user_block_count;
2668 	int err;
2669 
2670 	if (is_inode) {
2671 		if (inode) {
2672 			err = dquot_alloc_inode(inode);
2673 			if (err)
2674 				return err;
2675 		}
2676 	} else {
2677 		err = dquot_reserve_block(inode, 1);
2678 		if (err)
2679 			return err;
2680 	}
2681 
2682 	if (time_to_inject(sbi, FAULT_BLOCK))
2683 		goto enospc;
2684 
2685 	spin_lock(&sbi->stat_lock);
2686 
2687 	valid_block_count = sbi->total_valid_block_count + 1;
2688 	avail_user_block_count = get_available_block_count(sbi, inode, false);
2689 
2690 	if (unlikely(valid_block_count > avail_user_block_count)) {
2691 		spin_unlock(&sbi->stat_lock);
2692 		goto enospc;
2693 	}
2694 
2695 	valid_node_count = sbi->total_valid_node_count + 1;
2696 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2697 		spin_unlock(&sbi->stat_lock);
2698 		goto enospc;
2699 	}
2700 
2701 	sbi->total_valid_node_count++;
2702 	sbi->total_valid_block_count++;
2703 	spin_unlock(&sbi->stat_lock);
2704 
2705 	if (inode) {
2706 		if (is_inode)
2707 			f2fs_mark_inode_dirty_sync(inode, true);
2708 		else
2709 			f2fs_i_blocks_write(inode, 1, true, true);
2710 	}
2711 
2712 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2713 	return 0;
2714 
2715 enospc:
2716 	if (is_inode) {
2717 		if (inode)
2718 			dquot_free_inode(inode);
2719 	} else {
2720 		dquot_release_reservation_block(inode, 1);
2721 	}
2722 	return -ENOSPC;
2723 }
2724 
2725 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2726 					struct inode *inode, bool is_inode)
2727 {
2728 	spin_lock(&sbi->stat_lock);
2729 
2730 	if (unlikely(!sbi->total_valid_block_count ||
2731 			!sbi->total_valid_node_count)) {
2732 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2733 			  sbi->total_valid_block_count,
2734 			  sbi->total_valid_node_count);
2735 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2736 	} else {
2737 		sbi->total_valid_block_count--;
2738 		sbi->total_valid_node_count--;
2739 	}
2740 
2741 	if (sbi->reserved_blocks &&
2742 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2743 		sbi->current_reserved_blocks++;
2744 
2745 	spin_unlock(&sbi->stat_lock);
2746 
2747 	if (is_inode) {
2748 		dquot_free_inode(inode);
2749 	} else {
2750 		if (unlikely(inode->i_blocks == 0)) {
2751 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2752 				  inode->i_ino,
2753 				  (unsigned long long)inode->i_blocks);
2754 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2755 			return;
2756 		}
2757 		f2fs_i_blocks_write(inode, 1, false, true);
2758 	}
2759 }
2760 
2761 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2762 {
2763 	return sbi->total_valid_node_count;
2764 }
2765 
2766 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2767 {
2768 	percpu_counter_inc(&sbi->total_valid_inode_count);
2769 }
2770 
2771 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2772 {
2773 	percpu_counter_dec(&sbi->total_valid_inode_count);
2774 }
2775 
2776 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2777 {
2778 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2779 }
2780 
2781 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2782 						pgoff_t index, bool for_write)
2783 {
2784 	struct page *page;
2785 	unsigned int flags;
2786 
2787 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2788 		if (!for_write)
2789 			page = find_get_page_flags(mapping, index,
2790 							FGP_LOCK | FGP_ACCESSED);
2791 		else
2792 			page = find_lock_page(mapping, index);
2793 		if (page)
2794 			return page;
2795 
2796 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2797 			return NULL;
2798 	}
2799 
2800 	if (!for_write)
2801 		return grab_cache_page(mapping, index);
2802 
2803 	flags = memalloc_nofs_save();
2804 	page = grab_cache_page_write_begin(mapping, index);
2805 	memalloc_nofs_restore(flags);
2806 
2807 	return page;
2808 }
2809 
2810 static inline struct page *f2fs_pagecache_get_page(
2811 				struct address_space *mapping, pgoff_t index,
2812 				fgf_t fgp_flags, gfp_t gfp_mask)
2813 {
2814 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2815 		return NULL;
2816 
2817 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2818 }
2819 
2820 static inline void f2fs_put_page(struct page *page, int unlock)
2821 {
2822 	if (!page)
2823 		return;
2824 
2825 	if (unlock) {
2826 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2827 		unlock_page(page);
2828 	}
2829 	put_page(page);
2830 }
2831 
2832 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2833 {
2834 	if (dn->node_page)
2835 		f2fs_put_page(dn->node_page, 1);
2836 	if (dn->inode_page && dn->node_page != dn->inode_page)
2837 		f2fs_put_page(dn->inode_page, 0);
2838 	dn->node_page = NULL;
2839 	dn->inode_page = NULL;
2840 }
2841 
2842 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2843 					size_t size)
2844 {
2845 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2846 }
2847 
2848 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2849 						gfp_t flags)
2850 {
2851 	void *entry;
2852 
2853 	entry = kmem_cache_alloc(cachep, flags);
2854 	if (!entry)
2855 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2856 	return entry;
2857 }
2858 
2859 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2860 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2861 {
2862 	if (nofail)
2863 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2864 
2865 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2866 		return NULL;
2867 
2868 	return kmem_cache_alloc(cachep, flags);
2869 }
2870 
2871 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2872 {
2873 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2874 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2875 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2876 		get_pages(sbi, F2FS_DIO_READ) ||
2877 		get_pages(sbi, F2FS_DIO_WRITE))
2878 		return true;
2879 
2880 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2881 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2882 		return true;
2883 
2884 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2885 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2886 		return true;
2887 	return false;
2888 }
2889 
2890 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
2891 {
2892 	return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
2893 }
2894 
2895 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2896 {
2897 	bool zoned_gc = (type == GC_TIME &&
2898 			F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
2899 
2900 	if (sbi->gc_mode == GC_URGENT_HIGH)
2901 		return true;
2902 
2903 	if (zoned_gc) {
2904 		if (is_inflight_read_io(sbi))
2905 			return false;
2906 	} else {
2907 		if (is_inflight_io(sbi, type))
2908 			return false;
2909 	}
2910 
2911 	if (sbi->gc_mode == GC_URGENT_MID)
2912 		return true;
2913 
2914 	if (sbi->gc_mode == GC_URGENT_LOW &&
2915 			(type == DISCARD_TIME || type == GC_TIME))
2916 		return true;
2917 
2918 	if (zoned_gc)
2919 		return true;
2920 
2921 	return f2fs_time_over(sbi, type);
2922 }
2923 
2924 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2925 				unsigned long index, void *item)
2926 {
2927 	while (radix_tree_insert(root, index, item))
2928 		cond_resched();
2929 }
2930 
2931 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2932 
2933 static inline bool IS_INODE(struct page *page)
2934 {
2935 	struct f2fs_node *p = F2FS_NODE(page);
2936 
2937 	return RAW_IS_INODE(p);
2938 }
2939 
2940 static inline int offset_in_addr(struct f2fs_inode *i)
2941 {
2942 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2943 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2944 }
2945 
2946 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2947 {
2948 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2949 }
2950 
2951 static inline int f2fs_has_extra_attr(struct inode *inode);
2952 static inline unsigned int get_dnode_base(struct inode *inode,
2953 					struct page *node_page)
2954 {
2955 	if (!IS_INODE(node_page))
2956 		return 0;
2957 
2958 	return inode ? get_extra_isize(inode) :
2959 			offset_in_addr(&F2FS_NODE(node_page)->i);
2960 }
2961 
2962 static inline __le32 *get_dnode_addr(struct inode *inode,
2963 					struct page *node_page)
2964 {
2965 	return blkaddr_in_node(F2FS_NODE(node_page)) +
2966 			get_dnode_base(inode, node_page);
2967 }
2968 
2969 static inline block_t data_blkaddr(struct inode *inode,
2970 			struct page *node_page, unsigned int offset)
2971 {
2972 	return le32_to_cpu(*(get_dnode_addr(inode, node_page) + offset));
2973 }
2974 
2975 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2976 {
2977 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2978 }
2979 
2980 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2981 {
2982 	int mask;
2983 
2984 	addr += (nr >> 3);
2985 	mask = BIT(7 - (nr & 0x07));
2986 	return mask & *addr;
2987 }
2988 
2989 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2990 {
2991 	int mask;
2992 
2993 	addr += (nr >> 3);
2994 	mask = BIT(7 - (nr & 0x07));
2995 	*addr |= mask;
2996 }
2997 
2998 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2999 {
3000 	int mask;
3001 
3002 	addr += (nr >> 3);
3003 	mask = BIT(7 - (nr & 0x07));
3004 	*addr &= ~mask;
3005 }
3006 
3007 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3008 {
3009 	int mask;
3010 	int ret;
3011 
3012 	addr += (nr >> 3);
3013 	mask = BIT(7 - (nr & 0x07));
3014 	ret = mask & *addr;
3015 	*addr |= mask;
3016 	return ret;
3017 }
3018 
3019 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3020 {
3021 	int mask;
3022 	int ret;
3023 
3024 	addr += (nr >> 3);
3025 	mask = BIT(7 - (nr & 0x07));
3026 	ret = mask & *addr;
3027 	*addr &= ~mask;
3028 	return ret;
3029 }
3030 
3031 static inline void f2fs_change_bit(unsigned int nr, char *addr)
3032 {
3033 	int mask;
3034 
3035 	addr += (nr >> 3);
3036 	mask = BIT(7 - (nr & 0x07));
3037 	*addr ^= mask;
3038 }
3039 
3040 /*
3041  * On-disk inode flags (f2fs_inode::i_flags)
3042  */
3043 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
3044 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
3045 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
3046 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
3047 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
3048 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
3049 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
3050 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
3051 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
3052 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
3053 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
3054 #define F2FS_DEVICE_ALIAS_FL		0x80000000 /* File for aliasing a device */
3055 
3056 #define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3057 
3058 /* Flags that should be inherited by new inodes from their parent. */
3059 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3060 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3061 			   F2FS_CASEFOLD_FL)
3062 
3063 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3064 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3065 				F2FS_CASEFOLD_FL))
3066 
3067 /* Flags that are appropriate for non-directories/regular files. */
3068 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3069 
3070 #define IS_DEVICE_ALIASING(inode)	(F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL)
3071 
3072 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3073 {
3074 	if (S_ISDIR(mode))
3075 		return flags;
3076 	else if (S_ISREG(mode))
3077 		return flags & F2FS_REG_FLMASK;
3078 	else
3079 		return flags & F2FS_OTHER_FLMASK;
3080 }
3081 
3082 static inline void __mark_inode_dirty_flag(struct inode *inode,
3083 						int flag, bool set)
3084 {
3085 	switch (flag) {
3086 	case FI_INLINE_XATTR:
3087 	case FI_INLINE_DATA:
3088 	case FI_INLINE_DENTRY:
3089 	case FI_NEW_INODE:
3090 		if (set)
3091 			return;
3092 		fallthrough;
3093 	case FI_DATA_EXIST:
3094 	case FI_PIN_FILE:
3095 	case FI_COMPRESS_RELEASED:
3096 		f2fs_mark_inode_dirty_sync(inode, true);
3097 	}
3098 }
3099 
3100 static inline void set_inode_flag(struct inode *inode, int flag)
3101 {
3102 	set_bit(flag, F2FS_I(inode)->flags);
3103 	__mark_inode_dirty_flag(inode, flag, true);
3104 }
3105 
3106 static inline int is_inode_flag_set(struct inode *inode, int flag)
3107 {
3108 	return test_bit(flag, F2FS_I(inode)->flags);
3109 }
3110 
3111 static inline void clear_inode_flag(struct inode *inode, int flag)
3112 {
3113 	clear_bit(flag, F2FS_I(inode)->flags);
3114 	__mark_inode_dirty_flag(inode, flag, false);
3115 }
3116 
3117 static inline bool f2fs_verity_in_progress(struct inode *inode)
3118 {
3119 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3120 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3121 }
3122 
3123 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3124 {
3125 	F2FS_I(inode)->i_acl_mode = mode;
3126 	set_inode_flag(inode, FI_ACL_MODE);
3127 	f2fs_mark_inode_dirty_sync(inode, false);
3128 }
3129 
3130 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3131 {
3132 	if (inc)
3133 		inc_nlink(inode);
3134 	else
3135 		drop_nlink(inode);
3136 	f2fs_mark_inode_dirty_sync(inode, true);
3137 }
3138 
3139 static inline void f2fs_i_blocks_write(struct inode *inode,
3140 					block_t diff, bool add, bool claim)
3141 {
3142 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3143 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3144 
3145 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3146 	if (add) {
3147 		if (claim)
3148 			dquot_claim_block(inode, diff);
3149 		else
3150 			dquot_alloc_block_nofail(inode, diff);
3151 	} else {
3152 		dquot_free_block(inode, diff);
3153 	}
3154 
3155 	f2fs_mark_inode_dirty_sync(inode, true);
3156 	if (clean || recover)
3157 		set_inode_flag(inode, FI_AUTO_RECOVER);
3158 }
3159 
3160 static inline bool f2fs_is_atomic_file(struct inode *inode);
3161 
3162 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3163 {
3164 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3165 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3166 
3167 	if (i_size_read(inode) == i_size)
3168 		return;
3169 
3170 	i_size_write(inode, i_size);
3171 
3172 	if (f2fs_is_atomic_file(inode))
3173 		return;
3174 
3175 	f2fs_mark_inode_dirty_sync(inode, true);
3176 	if (clean || recover)
3177 		set_inode_flag(inode, FI_AUTO_RECOVER);
3178 }
3179 
3180 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3181 {
3182 	F2FS_I(inode)->i_current_depth = depth;
3183 	f2fs_mark_inode_dirty_sync(inode, true);
3184 }
3185 
3186 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3187 					unsigned int count)
3188 {
3189 	F2FS_I(inode)->i_gc_failures = count;
3190 	f2fs_mark_inode_dirty_sync(inode, true);
3191 }
3192 
3193 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3194 {
3195 	F2FS_I(inode)->i_xattr_nid = xnid;
3196 	f2fs_mark_inode_dirty_sync(inode, true);
3197 }
3198 
3199 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3200 {
3201 	F2FS_I(inode)->i_pino = pino;
3202 	f2fs_mark_inode_dirty_sync(inode, true);
3203 }
3204 
3205 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3206 {
3207 	struct f2fs_inode_info *fi = F2FS_I(inode);
3208 
3209 	if (ri->i_inline & F2FS_INLINE_XATTR)
3210 		set_bit(FI_INLINE_XATTR, fi->flags);
3211 	if (ri->i_inline & F2FS_INLINE_DATA)
3212 		set_bit(FI_INLINE_DATA, fi->flags);
3213 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3214 		set_bit(FI_INLINE_DENTRY, fi->flags);
3215 	if (ri->i_inline & F2FS_DATA_EXIST)
3216 		set_bit(FI_DATA_EXIST, fi->flags);
3217 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3218 		set_bit(FI_EXTRA_ATTR, fi->flags);
3219 	if (ri->i_inline & F2FS_PIN_FILE)
3220 		set_bit(FI_PIN_FILE, fi->flags);
3221 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3222 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3223 }
3224 
3225 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3226 {
3227 	ri->i_inline = 0;
3228 
3229 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3230 		ri->i_inline |= F2FS_INLINE_XATTR;
3231 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3232 		ri->i_inline |= F2FS_INLINE_DATA;
3233 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3234 		ri->i_inline |= F2FS_INLINE_DENTRY;
3235 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3236 		ri->i_inline |= F2FS_DATA_EXIST;
3237 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3238 		ri->i_inline |= F2FS_EXTRA_ATTR;
3239 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3240 		ri->i_inline |= F2FS_PIN_FILE;
3241 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3242 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3243 }
3244 
3245 static inline int f2fs_has_extra_attr(struct inode *inode)
3246 {
3247 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3248 }
3249 
3250 static inline int f2fs_has_inline_xattr(struct inode *inode)
3251 {
3252 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3253 }
3254 
3255 static inline int f2fs_compressed_file(struct inode *inode)
3256 {
3257 	return S_ISREG(inode->i_mode) &&
3258 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3259 }
3260 
3261 static inline bool f2fs_need_compress_data(struct inode *inode)
3262 {
3263 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3264 
3265 	if (!f2fs_compressed_file(inode))
3266 		return false;
3267 
3268 	if (compress_mode == COMPR_MODE_FS)
3269 		return true;
3270 	else if (compress_mode == COMPR_MODE_USER &&
3271 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3272 		return true;
3273 
3274 	return false;
3275 }
3276 
3277 static inline unsigned int addrs_per_page(struct inode *inode,
3278 							bool is_inode)
3279 {
3280 	unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3281 			get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3282 
3283 	if (f2fs_compressed_file(inode))
3284 		return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3285 	return addrs;
3286 }
3287 
3288 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3289 {
3290 	struct f2fs_inode *ri = F2FS_INODE(page);
3291 
3292 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3293 					get_inline_xattr_addrs(inode)]);
3294 }
3295 
3296 static inline int inline_xattr_size(struct inode *inode)
3297 {
3298 	if (f2fs_has_inline_xattr(inode))
3299 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3300 	return 0;
3301 }
3302 
3303 /*
3304  * Notice: check inline_data flag without inode page lock is unsafe.
3305  * It could change at any time by f2fs_convert_inline_page().
3306  */
3307 static inline int f2fs_has_inline_data(struct inode *inode)
3308 {
3309 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3310 }
3311 
3312 static inline int f2fs_exist_data(struct inode *inode)
3313 {
3314 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3315 }
3316 
3317 static inline int f2fs_is_mmap_file(struct inode *inode)
3318 {
3319 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3320 }
3321 
3322 static inline bool f2fs_is_pinned_file(struct inode *inode)
3323 {
3324 	return is_inode_flag_set(inode, FI_PIN_FILE);
3325 }
3326 
3327 static inline bool f2fs_is_atomic_file(struct inode *inode)
3328 {
3329 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3330 }
3331 
3332 static inline bool f2fs_is_cow_file(struct inode *inode)
3333 {
3334 	return is_inode_flag_set(inode, FI_COW_FILE);
3335 }
3336 
3337 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3338 {
3339 	__le32 *addr = get_dnode_addr(inode, page);
3340 
3341 	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3342 }
3343 
3344 static inline int f2fs_has_inline_dentry(struct inode *inode)
3345 {
3346 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3347 }
3348 
3349 static inline int is_file(struct inode *inode, int type)
3350 {
3351 	return F2FS_I(inode)->i_advise & type;
3352 }
3353 
3354 static inline void set_file(struct inode *inode, int type)
3355 {
3356 	if (is_file(inode, type))
3357 		return;
3358 	F2FS_I(inode)->i_advise |= type;
3359 	f2fs_mark_inode_dirty_sync(inode, true);
3360 }
3361 
3362 static inline void clear_file(struct inode *inode, int type)
3363 {
3364 	if (!is_file(inode, type))
3365 		return;
3366 	F2FS_I(inode)->i_advise &= ~type;
3367 	f2fs_mark_inode_dirty_sync(inode, true);
3368 }
3369 
3370 static inline bool f2fs_is_time_consistent(struct inode *inode)
3371 {
3372 	struct timespec64 ts = inode_get_atime(inode);
3373 
3374 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3375 		return false;
3376 	ts = inode_get_ctime(inode);
3377 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3378 		return false;
3379 	ts = inode_get_mtime(inode);
3380 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3381 		return false;
3382 	return true;
3383 }
3384 
3385 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3386 {
3387 	bool ret;
3388 
3389 	if (dsync) {
3390 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3391 
3392 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3393 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3394 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3395 		return ret;
3396 	}
3397 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3398 			file_keep_isize(inode) ||
3399 			i_size_read(inode) & ~PAGE_MASK)
3400 		return false;
3401 
3402 	if (!f2fs_is_time_consistent(inode))
3403 		return false;
3404 
3405 	spin_lock(&F2FS_I(inode)->i_size_lock);
3406 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3407 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3408 
3409 	return ret;
3410 }
3411 
3412 static inline bool f2fs_readonly(struct super_block *sb)
3413 {
3414 	return sb_rdonly(sb);
3415 }
3416 
3417 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3418 {
3419 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3420 }
3421 
3422 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3423 					size_t size, gfp_t flags)
3424 {
3425 	if (time_to_inject(sbi, FAULT_KMALLOC))
3426 		return NULL;
3427 
3428 	return kmalloc(size, flags);
3429 }
3430 
3431 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3432 {
3433 	if (time_to_inject(sbi, FAULT_KMALLOC))
3434 		return NULL;
3435 
3436 	return __getname();
3437 }
3438 
3439 static inline void f2fs_putname(char *buf)
3440 {
3441 	__putname(buf);
3442 }
3443 
3444 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3445 					size_t size, gfp_t flags)
3446 {
3447 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3448 }
3449 
3450 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3451 					size_t size, gfp_t flags)
3452 {
3453 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3454 		return NULL;
3455 
3456 	return kvmalloc(size, flags);
3457 }
3458 
3459 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3460 					size_t size, gfp_t flags)
3461 {
3462 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3463 }
3464 
3465 static inline int get_extra_isize(struct inode *inode)
3466 {
3467 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3468 }
3469 
3470 static inline int get_inline_xattr_addrs(struct inode *inode)
3471 {
3472 	return F2FS_I(inode)->i_inline_xattr_size;
3473 }
3474 
3475 #define f2fs_get_inode_mode(i) \
3476 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3477 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3478 
3479 #define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3480 
3481 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3482 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3483 	offsetof(struct f2fs_inode, i_extra_isize))	\
3484 
3485 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3486 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3487 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3488 		sizeof((f2fs_inode)->field))			\
3489 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3490 
3491 #define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3492 
3493 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3494 
3495 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3496 					block_t blkaddr, int type);
3497 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3498 					block_t blkaddr, int type)
3499 {
3500 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3501 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3502 			 blkaddr, type);
3503 }
3504 
3505 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3506 {
3507 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3508 			blkaddr == COMPRESS_ADDR)
3509 		return false;
3510 	return true;
3511 }
3512 
3513 /*
3514  * file.c
3515  */
3516 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3517 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3518 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3519 int f2fs_truncate(struct inode *inode);
3520 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3521 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3522 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3523 		 struct iattr *attr);
3524 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3525 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3526 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3527 						bool readonly, bool need_lock);
3528 int f2fs_precache_extents(struct inode *inode);
3529 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3530 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3531 		      struct dentry *dentry, struct fileattr *fa);
3532 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3533 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3534 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3535 int f2fs_pin_file_control(struct inode *inode, bool inc);
3536 
3537 /*
3538  * inode.c
3539  */
3540 void f2fs_set_inode_flags(struct inode *inode);
3541 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3542 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3543 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3544 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3545 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3546 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3547 void f2fs_update_inode_page(struct inode *inode);
3548 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3549 void f2fs_evict_inode(struct inode *inode);
3550 void f2fs_handle_failed_inode(struct inode *inode);
3551 
3552 /*
3553  * namei.c
3554  */
3555 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3556 							bool hot, bool set);
3557 struct dentry *f2fs_get_parent(struct dentry *child);
3558 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3559 		     struct inode **new_inode);
3560 
3561 /*
3562  * dir.c
3563  */
3564 #if IS_ENABLED(CONFIG_UNICODE)
3565 int f2fs_init_casefolded_name(const struct inode *dir,
3566 			      struct f2fs_filename *fname);
3567 void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3568 #else
3569 static inline int f2fs_init_casefolded_name(const struct inode *dir,
3570 					    struct f2fs_filename *fname)
3571 {
3572 	return 0;
3573 }
3574 
3575 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3576 {
3577 }
3578 #endif /* CONFIG_UNICODE */
3579 
3580 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3581 			int lookup, struct f2fs_filename *fname);
3582 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3583 			struct f2fs_filename *fname);
3584 void f2fs_free_filename(struct f2fs_filename *fname);
3585 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3586 			const struct f2fs_filename *fname, int *max_slots);
3587 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3588 			unsigned int start_pos, struct fscrypt_str *fstr);
3589 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3590 			struct f2fs_dentry_ptr *d);
3591 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3592 			const struct f2fs_filename *fname, struct page *dpage);
3593 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3594 			unsigned int current_depth);
3595 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3596 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3597 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3598 					 const struct f2fs_filename *fname,
3599 					 struct page **res_page);
3600 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3601 			const struct qstr *child, struct page **res_page);
3602 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3603 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3604 			struct page **page);
3605 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3606 			struct page *page, struct inode *inode);
3607 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3608 			  const struct f2fs_filename *fname);
3609 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3610 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3611 			unsigned int bit_pos);
3612 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3613 			struct inode *inode, nid_t ino, umode_t mode);
3614 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3615 			struct inode *inode, nid_t ino, umode_t mode);
3616 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3617 			struct inode *inode, nid_t ino, umode_t mode);
3618 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3619 			struct inode *dir, struct inode *inode);
3620 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3621 					struct f2fs_filename *fname);
3622 bool f2fs_empty_dir(struct inode *dir);
3623 
3624 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3625 {
3626 	if (fscrypt_is_nokey_name(dentry))
3627 		return -ENOKEY;
3628 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3629 				inode, inode->i_ino, inode->i_mode);
3630 }
3631 
3632 /*
3633  * super.c
3634  */
3635 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3636 void f2fs_inode_synced(struct inode *inode);
3637 int f2fs_dquot_initialize(struct inode *inode);
3638 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3639 int f2fs_quota_sync(struct super_block *sb, int type);
3640 loff_t max_file_blocks(struct inode *inode);
3641 void f2fs_quota_off_umount(struct super_block *sb);
3642 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3643 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3644 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3645 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3646 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3647 int f2fs_sync_fs(struct super_block *sb, int sync);
3648 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3649 
3650 /*
3651  * hash.c
3652  */
3653 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3654 
3655 /*
3656  * node.c
3657  */
3658 struct node_info;
3659 
3660 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3661 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3662 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3663 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3664 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3665 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3666 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3667 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3668 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3669 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3670 				struct node_info *ni, bool checkpoint_context);
3671 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3672 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3673 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3674 int f2fs_truncate_xattr_node(struct inode *inode);
3675 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3676 					unsigned int seq_id);
3677 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3678 int f2fs_remove_inode_page(struct inode *inode);
3679 struct page *f2fs_new_inode_page(struct inode *inode);
3680 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3681 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3682 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3683 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3684 int f2fs_move_node_page(struct page *node_page, int gc_type);
3685 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3686 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3687 			struct writeback_control *wbc, bool atomic,
3688 			unsigned int *seq_id);
3689 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3690 			struct writeback_control *wbc,
3691 			bool do_balance, enum iostat_type io_type);
3692 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3693 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3694 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3695 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3696 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3697 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3698 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3699 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3700 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3701 			unsigned int segno, struct f2fs_summary_block *sum);
3702 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3703 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3704 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3705 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3706 int __init f2fs_create_node_manager_caches(void);
3707 void f2fs_destroy_node_manager_caches(void);
3708 
3709 /*
3710  * segment.c
3711  */
3712 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3713 int f2fs_commit_atomic_write(struct inode *inode);
3714 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3715 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3716 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3717 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3718 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3719 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3720 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3721 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3722 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3723 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3724 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3725 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3726 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3727 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3728 					struct cp_control *cpc);
3729 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3730 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3731 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3732 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3733 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3734 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3735 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3736 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3737 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3738 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3739 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3740 					unsigned int start, unsigned int end);
3741 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3742 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3743 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3744 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3745 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3746 					struct cp_control *cpc);
3747 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3748 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3749 					block_t blk_addr);
3750 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3751 						enum iostat_type io_type);
3752 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3753 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3754 			struct f2fs_io_info *fio);
3755 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3756 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3757 			block_t old_blkaddr, block_t new_blkaddr,
3758 			bool recover_curseg, bool recover_newaddr,
3759 			bool from_gc);
3760 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3761 			block_t old_addr, block_t new_addr,
3762 			unsigned char version, bool recover_curseg,
3763 			bool recover_newaddr);
3764 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3765 						enum log_type seg_type);
3766 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3767 			block_t old_blkaddr, block_t *new_blkaddr,
3768 			struct f2fs_summary *sum, int type,
3769 			struct f2fs_io_info *fio);
3770 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3771 					block_t blkaddr, unsigned int blkcnt);
3772 void f2fs_wait_on_page_writeback(struct page *page,
3773 			enum page_type type, bool ordered, bool locked);
3774 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3775 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3776 								block_t len);
3777 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3778 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3779 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3780 			unsigned int val, int alloc);
3781 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3782 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi);
3783 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3784 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3785 int __init f2fs_create_segment_manager_caches(void);
3786 void f2fs_destroy_segment_manager_caches(void);
3787 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3788 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3789 			enum page_type type, enum temp_type temp);
3790 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3791 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3792 			unsigned int segno);
3793 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
3794 			unsigned int segno);
3795 
3796 #define DEF_FRAGMENT_SIZE	4
3797 #define MIN_FRAGMENT_SIZE	1
3798 #define MAX_FRAGMENT_SIZE	512
3799 
3800 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3801 {
3802 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3803 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3804 }
3805 
3806 /*
3807  * checkpoint.c
3808  */
3809 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3810 							unsigned char reason);
3811 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3812 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3813 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3814 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3815 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3816 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3817 					block_t blkaddr, int type);
3818 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3819 					block_t blkaddr, int type);
3820 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3821 			int type, bool sync);
3822 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3823 							unsigned int ra_blocks);
3824 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3825 			long nr_to_write, enum iostat_type io_type);
3826 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3827 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3828 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3829 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3830 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3831 					unsigned int devidx, int type);
3832 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3833 					unsigned int devidx, int type);
3834 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3835 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3836 void f2fs_add_orphan_inode(struct inode *inode);
3837 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3838 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3839 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3840 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3841 void f2fs_remove_dirty_inode(struct inode *inode);
3842 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3843 								bool from_cp);
3844 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3845 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3846 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3847 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3848 int __init f2fs_create_checkpoint_caches(void);
3849 void f2fs_destroy_checkpoint_caches(void);
3850 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3851 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3852 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3853 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3854 
3855 /*
3856  * data.c
3857  */
3858 int __init f2fs_init_bioset(void);
3859 void f2fs_destroy_bioset(void);
3860 bool f2fs_is_cp_guaranteed(struct page *page);
3861 int f2fs_init_bio_entry_cache(void);
3862 void f2fs_destroy_bio_entry_cache(void);
3863 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3864 			  enum page_type type);
3865 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3866 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3867 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3868 				struct inode *inode, struct page *page,
3869 				nid_t ino, enum page_type type);
3870 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3871 					struct bio **bio, struct page *page);
3872 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3873 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3874 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3875 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3876 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3877 		block_t blk_addr, sector_t *sector);
3878 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3879 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3880 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3881 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3882 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3883 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3884 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3885 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3886 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3887 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3888 							pgoff_t *next_pgofs);
3889 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3890 			bool for_write);
3891 struct page *f2fs_get_new_data_page(struct inode *inode,
3892 			struct page *ipage, pgoff_t index, bool new_i_size);
3893 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3894 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3895 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3896 			u64 start, u64 len);
3897 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3898 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3899 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3900 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
3901 				struct bio **bio, sector_t *last_block,
3902 				struct writeback_control *wbc,
3903 				enum iostat_type io_type,
3904 				int compr_blocks, bool allow_balance);
3905 void f2fs_write_failed(struct inode *inode, loff_t to);
3906 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3907 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3908 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3909 void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
3910 int f2fs_init_post_read_processing(void);
3911 void f2fs_destroy_post_read_processing(void);
3912 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3913 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3914 extern const struct iomap_ops f2fs_iomap_ops;
3915 
3916 /*
3917  * gc.c
3918  */
3919 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3920 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3921 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3922 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3923 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3924 int f2fs_gc_range(struct f2fs_sb_info *sbi,
3925 		unsigned int start_seg, unsigned int end_seg,
3926 		bool dry_run, unsigned int dry_run_sections);
3927 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3928 int __init f2fs_create_garbage_collection_cache(void);
3929 void f2fs_destroy_garbage_collection_cache(void);
3930 /* victim selection function for cleaning and SSR */
3931 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3932 			int gc_type, int type, char alloc_mode,
3933 			unsigned long long age, bool one_time);
3934 
3935 /*
3936  * recovery.c
3937  */
3938 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3939 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3940 int __init f2fs_create_recovery_cache(void);
3941 void f2fs_destroy_recovery_cache(void);
3942 
3943 /*
3944  * debug.c
3945  */
3946 #ifdef CONFIG_F2FS_STAT_FS
3947 enum {
3948 	DEVSTAT_INUSE,
3949 	DEVSTAT_DIRTY,
3950 	DEVSTAT_FULL,
3951 	DEVSTAT_FREE,
3952 	DEVSTAT_PREFREE,
3953 	DEVSTAT_MAX,
3954 };
3955 
3956 struct f2fs_dev_stats {
3957 	unsigned int devstats[2][DEVSTAT_MAX];		/* 0: segs, 1: secs */
3958 };
3959 
3960 struct f2fs_stat_info {
3961 	struct list_head stat_list;
3962 	struct f2fs_sb_info *sbi;
3963 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3964 	int main_area_segs, main_area_sections, main_area_zones;
3965 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3966 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3967 	unsigned long long total_ext[NR_EXTENT_CACHES];
3968 	unsigned long long hit_total[NR_EXTENT_CACHES];
3969 	int ext_tree[NR_EXTENT_CACHES];
3970 	int zombie_tree[NR_EXTENT_CACHES];
3971 	int ext_node[NR_EXTENT_CACHES];
3972 	/* to count memory footprint */
3973 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3974 	/* for read extent cache */
3975 	unsigned long long hit_largest;
3976 	/* for block age extent cache */
3977 	unsigned long long allocated_data_blocks;
3978 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3979 	int ndirty_data, ndirty_qdata;
3980 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3981 	int nats, dirty_nats, sits, dirty_sits;
3982 	int free_nids, avail_nids, alloc_nids;
3983 	int total_count, utilization;
3984 	int nr_wb_cp_data, nr_wb_data;
3985 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3986 	int nr_dio_read, nr_dio_write;
3987 	unsigned int io_skip_bggc, other_skip_bggc;
3988 	int nr_flushing, nr_flushed, flush_list_empty;
3989 	int nr_discarding, nr_discarded;
3990 	int nr_discard_cmd;
3991 	unsigned int undiscard_blks;
3992 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3993 	unsigned int cur_ckpt_time, peak_ckpt_time;
3994 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3995 	int compr_inode, swapfile_inode;
3996 	unsigned long long compr_blocks;
3997 	int aw_cnt, max_aw_cnt;
3998 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3999 	unsigned int bimodal, avg_vblocks;
4000 	int util_free, util_valid, util_invalid;
4001 	int rsvd_segs, overp_segs;
4002 	int dirty_count, node_pages, meta_pages, compress_pages;
4003 	int compress_page_hit;
4004 	int prefree_count, free_segs, free_secs;
4005 	int cp_call_count[MAX_CALL_TYPE], cp_count;
4006 	int gc_call_count[MAX_CALL_TYPE];
4007 	int gc_segs[2][2];
4008 	int gc_secs[2][2];
4009 	int tot_blks, data_blks, node_blks;
4010 	int bg_data_blks, bg_node_blks;
4011 	int curseg[NR_CURSEG_TYPE];
4012 	int cursec[NR_CURSEG_TYPE];
4013 	int curzone[NR_CURSEG_TYPE];
4014 	unsigned int dirty_seg[NR_CURSEG_TYPE];
4015 	unsigned int full_seg[NR_CURSEG_TYPE];
4016 	unsigned int valid_blks[NR_CURSEG_TYPE];
4017 
4018 	unsigned int meta_count[META_MAX];
4019 	unsigned int segment_count[2];
4020 	unsigned int block_count[2];
4021 	unsigned int inplace_count;
4022 	unsigned long long base_mem, cache_mem, page_mem;
4023 	struct f2fs_dev_stats *dev_stats;
4024 };
4025 
4026 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4027 {
4028 	return (struct f2fs_stat_info *)sbi->stat_info;
4029 }
4030 
4031 #define stat_inc_cp_call_count(sbi, foreground)				\
4032 		atomic_inc(&sbi->cp_call_count[(foreground)])
4033 #define stat_inc_cp_count(sbi)		(F2FS_STAT(sbi)->cp_count++)
4034 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
4035 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
4036 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
4037 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
4038 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
4039 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4040 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
4041 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
4042 #define stat_inc_inline_xattr(inode)					\
4043 	do {								\
4044 		if (f2fs_has_inline_xattr(inode))			\
4045 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
4046 	} while (0)
4047 #define stat_dec_inline_xattr(inode)					\
4048 	do {								\
4049 		if (f2fs_has_inline_xattr(inode))			\
4050 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
4051 	} while (0)
4052 #define stat_inc_inline_inode(inode)					\
4053 	do {								\
4054 		if (f2fs_has_inline_data(inode))			\
4055 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
4056 	} while (0)
4057 #define stat_dec_inline_inode(inode)					\
4058 	do {								\
4059 		if (f2fs_has_inline_data(inode))			\
4060 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
4061 	} while (0)
4062 #define stat_inc_inline_dir(inode)					\
4063 	do {								\
4064 		if (f2fs_has_inline_dentry(inode))			\
4065 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
4066 	} while (0)
4067 #define stat_dec_inline_dir(inode)					\
4068 	do {								\
4069 		if (f2fs_has_inline_dentry(inode))			\
4070 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4071 	} while (0)
4072 #define stat_inc_compr_inode(inode)					\
4073 	do {								\
4074 		if (f2fs_compressed_file(inode))			\
4075 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4076 	} while (0)
4077 #define stat_dec_compr_inode(inode)					\
4078 	do {								\
4079 		if (f2fs_compressed_file(inode))			\
4080 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4081 	} while (0)
4082 #define stat_add_compr_blocks(inode, blocks)				\
4083 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4084 #define stat_sub_compr_blocks(inode, blocks)				\
4085 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4086 #define stat_inc_swapfile_inode(inode)					\
4087 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4088 #define stat_dec_swapfile_inode(inode)					\
4089 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4090 #define stat_inc_atomic_inode(inode)					\
4091 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4092 #define stat_dec_atomic_inode(inode)					\
4093 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4094 #define stat_inc_meta_count(sbi, blkaddr)				\
4095 	do {								\
4096 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4097 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4098 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4099 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4100 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4101 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4102 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4103 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4104 	} while (0)
4105 #define stat_inc_seg_type(sbi, curseg)					\
4106 		((sbi)->segment_count[(curseg)->alloc_type]++)
4107 #define stat_inc_block_count(sbi, curseg)				\
4108 		((sbi)->block_count[(curseg)->alloc_type]++)
4109 #define stat_inc_inplace_blocks(sbi)					\
4110 		(atomic_inc(&(sbi)->inplace_count))
4111 #define stat_update_max_atomic_write(inode)				\
4112 	do {								\
4113 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4114 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4115 		if (cur > max)						\
4116 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4117 	} while (0)
4118 #define stat_inc_gc_call_count(sbi, foreground)				\
4119 		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4120 #define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4121 		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4122 #define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4123 		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4124 
4125 #define stat_inc_tot_blk_count(si, blks)				\
4126 	((si)->tot_blks += (blks))
4127 
4128 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4129 	do {								\
4130 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4131 		stat_inc_tot_blk_count(si, blks);			\
4132 		si->data_blks += (blks);				\
4133 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4134 	} while (0)
4135 
4136 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4137 	do {								\
4138 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4139 		stat_inc_tot_blk_count(si, blks);			\
4140 		si->node_blks += (blks);				\
4141 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4142 	} while (0)
4143 
4144 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4145 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4146 void __init f2fs_create_root_stats(void);
4147 void f2fs_destroy_root_stats(void);
4148 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4149 #else
4150 #define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4151 #define stat_inc_cp_count(sbi)				do { } while (0)
4152 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4153 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4154 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4155 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4156 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4157 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4158 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4159 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4160 #define stat_inc_inline_xattr(inode)			do { } while (0)
4161 #define stat_dec_inline_xattr(inode)			do { } while (0)
4162 #define stat_inc_inline_inode(inode)			do { } while (0)
4163 #define stat_dec_inline_inode(inode)			do { } while (0)
4164 #define stat_inc_inline_dir(inode)			do { } while (0)
4165 #define stat_dec_inline_dir(inode)			do { } while (0)
4166 #define stat_inc_compr_inode(inode)			do { } while (0)
4167 #define stat_dec_compr_inode(inode)			do { } while (0)
4168 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4169 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4170 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4171 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4172 #define stat_inc_atomic_inode(inode)			do { } while (0)
4173 #define stat_dec_atomic_inode(inode)			do { } while (0)
4174 #define stat_update_max_atomic_write(inode)		do { } while (0)
4175 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4176 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4177 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4178 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4179 #define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4180 #define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4181 #define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4182 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4183 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4184 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4185 
4186 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4187 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4188 static inline void __init f2fs_create_root_stats(void) { }
4189 static inline void f2fs_destroy_root_stats(void) { }
4190 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4191 #endif
4192 
4193 extern const struct file_operations f2fs_dir_operations;
4194 extern const struct file_operations f2fs_file_operations;
4195 extern const struct inode_operations f2fs_file_inode_operations;
4196 extern const struct address_space_operations f2fs_dblock_aops;
4197 extern const struct address_space_operations f2fs_node_aops;
4198 extern const struct address_space_operations f2fs_meta_aops;
4199 extern const struct inode_operations f2fs_dir_inode_operations;
4200 extern const struct inode_operations f2fs_symlink_inode_operations;
4201 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4202 extern const struct inode_operations f2fs_special_inode_operations;
4203 extern struct kmem_cache *f2fs_inode_entry_slab;
4204 
4205 /*
4206  * inline.c
4207  */
4208 bool f2fs_may_inline_data(struct inode *inode);
4209 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4210 bool f2fs_may_inline_dentry(struct inode *inode);
4211 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4212 void f2fs_truncate_inline_inode(struct inode *inode,
4213 						struct page *ipage, u64 from);
4214 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4215 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4216 int f2fs_convert_inline_inode(struct inode *inode);
4217 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4218 int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4219 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4220 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4221 					const struct f2fs_filename *fname,
4222 					struct page **res_page);
4223 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4224 			struct page *ipage);
4225 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4226 			struct inode *inode, nid_t ino, umode_t mode);
4227 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4228 				struct page *page, struct inode *dir,
4229 				struct inode *inode);
4230 bool f2fs_empty_inline_dir(struct inode *dir);
4231 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4232 			struct fscrypt_str *fstr);
4233 int f2fs_inline_data_fiemap(struct inode *inode,
4234 			struct fiemap_extent_info *fieinfo,
4235 			__u64 start, __u64 len);
4236 
4237 /*
4238  * shrinker.c
4239  */
4240 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4241 			struct shrink_control *sc);
4242 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4243 			struct shrink_control *sc);
4244 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4245 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4246 
4247 /*
4248  * extent_cache.c
4249  */
4250 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4251 void f2fs_init_extent_tree(struct inode *inode);
4252 void f2fs_drop_extent_tree(struct inode *inode);
4253 void f2fs_destroy_extent_node(struct inode *inode);
4254 void f2fs_destroy_extent_tree(struct inode *inode);
4255 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4256 int __init f2fs_create_extent_cache(void);
4257 void f2fs_destroy_extent_cache(void);
4258 
4259 /* read extent cache ops */
4260 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4261 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4262 			struct extent_info *ei);
4263 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4264 			block_t *blkaddr);
4265 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4266 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4267 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4268 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4269 			int nr_shrink);
4270 
4271 /* block age extent cache ops */
4272 void f2fs_init_age_extent_tree(struct inode *inode);
4273 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4274 			struct extent_info *ei);
4275 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4276 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4277 			pgoff_t fofs, unsigned int len);
4278 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4279 			int nr_shrink);
4280 
4281 /*
4282  * sysfs.c
4283  */
4284 #define MIN_RA_MUL	2
4285 #define MAX_RA_MUL	256
4286 
4287 int __init f2fs_init_sysfs(void);
4288 void f2fs_exit_sysfs(void);
4289 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4290 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4291 
4292 /* verity.c */
4293 extern const struct fsverity_operations f2fs_verityops;
4294 
4295 /*
4296  * crypto support
4297  */
4298 static inline bool f2fs_encrypted_file(struct inode *inode)
4299 {
4300 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4301 }
4302 
4303 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4304 {
4305 #ifdef CONFIG_FS_ENCRYPTION
4306 	file_set_encrypt(inode);
4307 	f2fs_set_inode_flags(inode);
4308 #endif
4309 }
4310 
4311 /*
4312  * Returns true if the reads of the inode's data need to undergo some
4313  * postprocessing step, like decryption or authenticity verification.
4314  */
4315 static inline bool f2fs_post_read_required(struct inode *inode)
4316 {
4317 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4318 		f2fs_compressed_file(inode);
4319 }
4320 
4321 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4322 {
4323 	return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4324 }
4325 
4326 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4327 {
4328 	return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4329 }
4330 
4331 /*
4332  * compress.c
4333  */
4334 #ifdef CONFIG_F2FS_FS_COMPRESSION
4335 enum cluster_check_type {
4336 	CLUSTER_IS_COMPR,   /* check only if compressed cluster */
4337 	CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4338 	CLUSTER_RAW_BLKS    /* return # of raw blocks in a cluster */
4339 };
4340 bool f2fs_is_compressed_page(struct page *page);
4341 struct page *f2fs_compress_control_page(struct page *page);
4342 int f2fs_prepare_compress_overwrite(struct inode *inode,
4343 			struct page **pagep, pgoff_t index, void **fsdata);
4344 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4345 					pgoff_t index, unsigned copied);
4346 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4347 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4348 bool f2fs_is_compress_backend_ready(struct inode *inode);
4349 bool f2fs_is_compress_level_valid(int alg, int lvl);
4350 int __init f2fs_init_compress_mempool(void);
4351 void f2fs_destroy_compress_mempool(void);
4352 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4353 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4354 				block_t blkaddr, bool in_task);
4355 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4356 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4357 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4358 				int index, int nr_pages, bool uptodate);
4359 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4360 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4361 int f2fs_write_multi_pages(struct compress_ctx *cc,
4362 						int *submitted,
4363 						struct writeback_control *wbc,
4364 						enum iostat_type io_type);
4365 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4366 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4367 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4368 				pgoff_t fofs, block_t blkaddr,
4369 				unsigned int llen, unsigned int c_len);
4370 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4371 				unsigned nr_pages, sector_t *last_block_in_bio,
4372 				struct readahead_control *rac, bool for_write);
4373 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4374 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4375 				bool in_task);
4376 void f2fs_put_page_dic(struct page *page, bool in_task);
4377 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4378 						unsigned int ofs_in_node);
4379 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4380 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4381 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4382 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4383 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4384 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4385 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4386 int __init f2fs_init_compress_cache(void);
4387 void f2fs_destroy_compress_cache(void);
4388 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4389 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4390 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4391 						nid_t ino, block_t blkaddr);
4392 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4393 								block_t blkaddr);
4394 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4395 #define inc_compr_inode_stat(inode)					\
4396 	do {								\
4397 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4398 		sbi->compr_new_inode++;					\
4399 	} while (0)
4400 #define add_compr_block_stat(inode, blocks)				\
4401 	do {								\
4402 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4403 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4404 		sbi->compr_written_block += blocks;			\
4405 		sbi->compr_saved_block += diff;				\
4406 	} while (0)
4407 #else
4408 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4409 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4410 {
4411 	if (!f2fs_compressed_file(inode))
4412 		return true;
4413 	/* not support compression */
4414 	return false;
4415 }
4416 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
4417 static inline struct page *f2fs_compress_control_page(struct page *page)
4418 {
4419 	WARN_ON_ONCE(1);
4420 	return ERR_PTR(-EINVAL);
4421 }
4422 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4423 static inline void f2fs_destroy_compress_mempool(void) { }
4424 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4425 				bool in_task) { }
4426 static inline void f2fs_end_read_compressed_page(struct page *page,
4427 				bool failed, block_t blkaddr, bool in_task)
4428 {
4429 	WARN_ON_ONCE(1);
4430 }
4431 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4432 {
4433 	WARN_ON_ONCE(1);
4434 }
4435 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4436 			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
4437 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4438 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4439 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4440 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4441 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4442 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4443 static inline void f2fs_destroy_compress_cache(void) { }
4444 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4445 				block_t blkaddr) { }
4446 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4447 				struct page *page, nid_t ino, block_t blkaddr) { }
4448 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4449 				struct page *page, block_t blkaddr) { return false; }
4450 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4451 							nid_t ino) { }
4452 #define inc_compr_inode_stat(inode)		do { } while (0)
4453 static inline int f2fs_is_compressed_cluster(
4454 				struct inode *inode,
4455 				pgoff_t index) { return 0; }
4456 static inline bool f2fs_is_sparse_cluster(
4457 				struct inode *inode,
4458 				pgoff_t index) { return true; }
4459 static inline void f2fs_update_read_extent_tree_range_compressed(
4460 				struct inode *inode,
4461 				pgoff_t fofs, block_t blkaddr,
4462 				unsigned int llen, unsigned int c_len) { }
4463 #endif
4464 
4465 static inline int set_compress_context(struct inode *inode)
4466 {
4467 #ifdef CONFIG_F2FS_FS_COMPRESSION
4468 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4469 	struct f2fs_inode_info *fi = F2FS_I(inode);
4470 
4471 	fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4472 	fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4473 	fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4474 					BIT(COMPRESS_CHKSUM) : 0;
4475 	fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4476 	if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4477 		fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4478 			F2FS_OPTION(sbi).compress_level)
4479 		fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4480 	fi->i_flags |= F2FS_COMPR_FL;
4481 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4482 	stat_inc_compr_inode(inode);
4483 	inc_compr_inode_stat(inode);
4484 	f2fs_mark_inode_dirty_sync(inode, true);
4485 	return 0;
4486 #else
4487 	return -EOPNOTSUPP;
4488 #endif
4489 }
4490 
4491 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4492 {
4493 	struct f2fs_inode_info *fi = F2FS_I(inode);
4494 
4495 	f2fs_down_write(&fi->i_sem);
4496 
4497 	if (!f2fs_compressed_file(inode)) {
4498 		f2fs_up_write(&fi->i_sem);
4499 		return true;
4500 	}
4501 	if (f2fs_is_mmap_file(inode) ||
4502 		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4503 		f2fs_up_write(&fi->i_sem);
4504 		return false;
4505 	}
4506 
4507 	fi->i_flags &= ~F2FS_COMPR_FL;
4508 	stat_dec_compr_inode(inode);
4509 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4510 	f2fs_mark_inode_dirty_sync(inode, true);
4511 
4512 	f2fs_up_write(&fi->i_sem);
4513 	return true;
4514 }
4515 
4516 #define F2FS_FEATURE_FUNCS(name, flagname) \
4517 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4518 { \
4519 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4520 }
4521 
4522 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4523 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4524 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4525 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4526 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4527 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4528 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4529 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4530 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4531 F2FS_FEATURE_FUNCS(verity, VERITY);
4532 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4533 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4534 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4535 F2FS_FEATURE_FUNCS(readonly, RO);
4536 F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS);
4537 
4538 #ifdef CONFIG_BLK_DEV_ZONED
4539 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4540 				    block_t blkaddr)
4541 {
4542 	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4543 
4544 	return test_bit(zno, FDEV(devi).blkz_seq);
4545 }
4546 #endif
4547 
4548 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4549 				  struct block_device *bdev)
4550 {
4551 	int i;
4552 
4553 	if (!f2fs_is_multi_device(sbi))
4554 		return 0;
4555 
4556 	for (i = 0; i < sbi->s_ndevs; i++)
4557 		if (FDEV(i).bdev == bdev)
4558 			return i;
4559 
4560 	WARN_ON(1);
4561 	return -1;
4562 }
4563 
4564 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4565 {
4566 	return f2fs_sb_has_blkzoned(sbi);
4567 }
4568 
4569 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4570 {
4571 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4572 }
4573 
4574 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4575 {
4576 	int i;
4577 
4578 	if (!f2fs_is_multi_device(sbi))
4579 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4580 
4581 	for (i = 0; i < sbi->s_ndevs; i++)
4582 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4583 			return true;
4584 	return false;
4585 }
4586 
4587 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4588 {
4589 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4590 					f2fs_hw_should_discard(sbi);
4591 }
4592 
4593 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4594 {
4595 	int i;
4596 
4597 	if (!f2fs_is_multi_device(sbi))
4598 		return bdev_read_only(sbi->sb->s_bdev);
4599 
4600 	for (i = 0; i < sbi->s_ndevs; i++)
4601 		if (bdev_read_only(FDEV(i).bdev))
4602 			return true;
4603 	return false;
4604 }
4605 
4606 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4607 {
4608 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4609 }
4610 
4611 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4612 {
4613 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4614 }
4615 
4616 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4617 					  block_t blkaddr)
4618 {
4619 	if (f2fs_sb_has_blkzoned(sbi)) {
4620 		int devi = f2fs_target_device_index(sbi, blkaddr);
4621 
4622 		return !bdev_is_zoned(FDEV(devi).bdev);
4623 	}
4624 	return true;
4625 }
4626 
4627 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4628 {
4629 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4630 }
4631 
4632 static inline bool f2fs_may_compress(struct inode *inode)
4633 {
4634 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4635 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4636 		f2fs_is_mmap_file(inode))
4637 		return false;
4638 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4639 }
4640 
4641 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4642 						u64 blocks, bool add)
4643 {
4644 	struct f2fs_inode_info *fi = F2FS_I(inode);
4645 	int diff = fi->i_cluster_size - blocks;
4646 
4647 	/* don't update i_compr_blocks if saved blocks were released */
4648 	if (!add && !atomic_read(&fi->i_compr_blocks))
4649 		return;
4650 
4651 	if (add) {
4652 		atomic_add(diff, &fi->i_compr_blocks);
4653 		stat_add_compr_blocks(inode, diff);
4654 	} else {
4655 		atomic_sub(diff, &fi->i_compr_blocks);
4656 		stat_sub_compr_blocks(inode, diff);
4657 	}
4658 	f2fs_mark_inode_dirty_sync(inode, true);
4659 }
4660 
4661 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4662 								int flag)
4663 {
4664 	if (!f2fs_is_multi_device(sbi))
4665 		return false;
4666 	if (flag != F2FS_GET_BLOCK_DIO)
4667 		return false;
4668 	return sbi->aligned_blksize;
4669 }
4670 
4671 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4672 {
4673 	return fsverity_active(inode) &&
4674 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4675 }
4676 
4677 #ifdef CONFIG_F2FS_FAULT_INJECTION
4678 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4679 							unsigned long type);
4680 #else
4681 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4682 					unsigned long rate, unsigned long type)
4683 {
4684 	return 0;
4685 }
4686 #endif
4687 
4688 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4689 {
4690 #ifdef CONFIG_QUOTA
4691 	if (f2fs_sb_has_quota_ino(sbi))
4692 		return true;
4693 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4694 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4695 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4696 		return true;
4697 #endif
4698 	return false;
4699 }
4700 
4701 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4702 {
4703 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4704 }
4705 
4706 static inline void f2fs_io_schedule_timeout(long timeout)
4707 {
4708 	set_current_state(TASK_UNINTERRUPTIBLE);
4709 	io_schedule_timeout(timeout);
4710 }
4711 
4712 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4713 				struct folio *folio, enum page_type type)
4714 {
4715 	pgoff_t ofs = folio->index;
4716 
4717 	if (unlikely(f2fs_cp_error(sbi)))
4718 		return;
4719 
4720 	if (ofs == sbi->page_eio_ofs[type]) {
4721 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4722 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4723 	} else {
4724 		sbi->page_eio_ofs[type] = ofs;
4725 		sbi->page_eio_cnt[type] = 0;
4726 	}
4727 }
4728 
4729 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4730 {
4731 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4732 }
4733 
4734 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4735 					block_t blkaddr, unsigned int cnt)
4736 {
4737 	bool need_submit = false;
4738 	int i = 0;
4739 
4740 	do {
4741 		struct page *page;
4742 
4743 		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4744 		if (page) {
4745 			if (folio_test_writeback(page_folio(page)))
4746 				need_submit = true;
4747 			f2fs_put_page(page, 0);
4748 		}
4749 	} while (++i < cnt && !need_submit);
4750 
4751 	if (need_submit)
4752 		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4753 							NULL, 0, DATA);
4754 
4755 	truncate_inode_pages_range(META_MAPPING(sbi),
4756 			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4757 			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4758 }
4759 
4760 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4761 								block_t blkaddr)
4762 {
4763 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1);
4764 	f2fs_invalidate_compress_page(sbi, blkaddr);
4765 }
4766 
4767 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4768 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4769 
4770 #endif /* _LINUX_F2FS_H */
4771