xref: /linux/fs/f2fs/f2fs.h (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #ifdef CONFIG_F2FS_FS_ENCRYPTION
27 #include <linux/fscrypt_supp.h>
28 #else
29 #include <linux/fscrypt_notsupp.h>
30 #endif
31 #include <crypto/hash.h>
32 
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition)					\
37 	do {								\
38 		if (unlikely(condition)) {				\
39 			WARN_ON(1);					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 		}							\
42 	} while (0)
43 #endif
44 
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46 enum {
47 	FAULT_KMALLOC,
48 	FAULT_PAGE_ALLOC,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_MAX,
58 };
59 
60 struct f2fs_fault_info {
61 	atomic_t inject_ops;
62 	unsigned int inject_rate;
63 	unsigned int inject_type;
64 };
65 
66 extern char *fault_name[FAULT_MAX];
67 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
68 #endif
69 
70 /*
71  * For mount options
72  */
73 #define F2FS_MOUNT_BG_GC		0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
75 #define F2FS_MOUNT_DISCARD		0x00000004
76 #define F2FS_MOUNT_NOHEAP		0x00000008
77 #define F2FS_MOUNT_XATTR_USER		0x00000010
78 #define F2FS_MOUNT_POSIX_ACL		0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
81 #define F2FS_MOUNT_INLINE_DATA		0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
84 #define F2FS_MOUNT_NOBARRIER		0x00000800
85 #define F2FS_MOUNT_FASTBOOT		0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
90 #define F2FS_MOUNT_ADAPTIVE		0x00020000
91 #define F2FS_MOUNT_LFS			0x00040000
92 #define F2FS_MOUNT_USRQUOTA		0x00080000
93 #define F2FS_MOUNT_GRPQUOTA		0x00100000
94 #define F2FS_MOUNT_PRJQUOTA		0x00200000
95 #define F2FS_MOUNT_QUOTA		0x00400000
96 
97 #define clear_opt(sbi, option)	((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
98 #define set_opt(sbi, option)	((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
99 #define test_opt(sbi, option)	((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
100 
101 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
102 		typecheck(unsigned long long, b) &&			\
103 		((long long)((a) - (b)) > 0))
104 
105 typedef u32 block_t;	/*
106 			 * should not change u32, since it is the on-disk block
107 			 * address format, __le32.
108 			 */
109 typedef u32 nid_t;
110 
111 struct f2fs_mount_info {
112 	unsigned int	opt;
113 };
114 
115 #define F2FS_FEATURE_ENCRYPT		0x0001
116 #define F2FS_FEATURE_BLKZONED		0x0002
117 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
118 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
119 #define F2FS_FEATURE_PRJQUOTA		0x0010
120 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
121 
122 #define F2FS_HAS_FEATURE(sb, mask)					\
123 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
124 #define F2FS_SET_FEATURE(sb, mask)					\
125 	(F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
126 #define F2FS_CLEAR_FEATURE(sb, mask)					\
127 	(F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
128 
129 /*
130  * For checkpoint manager
131  */
132 enum {
133 	NAT_BITMAP,
134 	SIT_BITMAP
135 };
136 
137 #define	CP_UMOUNT	0x00000001
138 #define	CP_FASTBOOT	0x00000002
139 #define	CP_SYNC		0x00000004
140 #define	CP_RECOVERY	0x00000008
141 #define	CP_DISCARD	0x00000010
142 #define CP_TRIMMED	0x00000020
143 
144 #define DEF_BATCHED_TRIM_SECTIONS	2048
145 #define BATCHED_TRIM_SEGMENTS(sbi)	\
146 		(GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
147 #define BATCHED_TRIM_BLOCKS(sbi)	\
148 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
149 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
150 #define DISCARD_ISSUE_RATE		8
151 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
152 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
153 #define DEF_CP_INTERVAL			60	/* 60 secs */
154 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
155 
156 struct cp_control {
157 	int reason;
158 	__u64 trim_start;
159 	__u64 trim_end;
160 	__u64 trim_minlen;
161 	__u64 trimmed;
162 };
163 
164 /*
165  * For CP/NAT/SIT/SSA readahead
166  */
167 enum {
168 	META_CP,
169 	META_NAT,
170 	META_SIT,
171 	META_SSA,
172 	META_POR,
173 };
174 
175 /* for the list of ino */
176 enum {
177 	ORPHAN_INO,		/* for orphan ino list */
178 	APPEND_INO,		/* for append ino list */
179 	UPDATE_INO,		/* for update ino list */
180 	MAX_INO_ENTRY,		/* max. list */
181 };
182 
183 struct ino_entry {
184 	struct list_head list;	/* list head */
185 	nid_t ino;		/* inode number */
186 };
187 
188 /* for the list of inodes to be GCed */
189 struct inode_entry {
190 	struct list_head list;	/* list head */
191 	struct inode *inode;	/* vfs inode pointer */
192 };
193 
194 /* for the bitmap indicate blocks to be discarded */
195 struct discard_entry {
196 	struct list_head list;	/* list head */
197 	block_t start_blkaddr;	/* start blockaddr of current segment */
198 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
199 };
200 
201 /* default discard granularity of inner discard thread, unit: block count */
202 #define DEFAULT_DISCARD_GRANULARITY		16
203 
204 /* max discard pend list number */
205 #define MAX_PLIST_NUM		512
206 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
207 					(MAX_PLIST_NUM - 1) : (blk_num - 1))
208 
209 #define P_ACTIVE	0x01
210 #define P_TRIM		0x02
211 #define plist_issue(tag)	(((tag) & P_ACTIVE) || ((tag) & P_TRIM))
212 
213 enum {
214 	D_PREP,
215 	D_SUBMIT,
216 	D_DONE,
217 };
218 
219 struct discard_info {
220 	block_t lstart;			/* logical start address */
221 	block_t len;			/* length */
222 	block_t start;			/* actual start address in dev */
223 };
224 
225 struct discard_cmd {
226 	struct rb_node rb_node;		/* rb node located in rb-tree */
227 	union {
228 		struct {
229 			block_t lstart;	/* logical start address */
230 			block_t len;	/* length */
231 			block_t start;	/* actual start address in dev */
232 		};
233 		struct discard_info di;	/* discard info */
234 
235 	};
236 	struct list_head list;		/* command list */
237 	struct completion wait;		/* compleation */
238 	struct block_device *bdev;	/* bdev */
239 	unsigned short ref;		/* reference count */
240 	unsigned char state;		/* state */
241 	int error;			/* bio error */
242 };
243 
244 struct discard_cmd_control {
245 	struct task_struct *f2fs_issue_discard;	/* discard thread */
246 	struct list_head entry_list;		/* 4KB discard entry list */
247 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
248 	unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
249 	struct list_head wait_list;		/* store on-flushing entries */
250 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
251 	unsigned int discard_wake;		/* to wake up discard thread */
252 	struct mutex cmd_lock;
253 	unsigned int nr_discards;		/* # of discards in the list */
254 	unsigned int max_discards;		/* max. discards to be issued */
255 	unsigned int discard_granularity;	/* discard granularity */
256 	unsigned int undiscard_blks;		/* # of undiscard blocks */
257 	atomic_t issued_discard;		/* # of issued discard */
258 	atomic_t issing_discard;		/* # of issing discard */
259 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
260 	struct rb_root root;			/* root of discard rb-tree */
261 };
262 
263 /* for the list of fsync inodes, used only during recovery */
264 struct fsync_inode_entry {
265 	struct list_head list;	/* list head */
266 	struct inode *inode;	/* vfs inode pointer */
267 	block_t blkaddr;	/* block address locating the last fsync */
268 	block_t last_dentry;	/* block address locating the last dentry */
269 };
270 
271 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
272 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
273 
274 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
275 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
276 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
277 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
278 
279 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
280 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
281 
282 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
283 {
284 	int before = nats_in_cursum(journal);
285 
286 	journal->n_nats = cpu_to_le16(before + i);
287 	return before;
288 }
289 
290 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
291 {
292 	int before = sits_in_cursum(journal);
293 
294 	journal->n_sits = cpu_to_le16(before + i);
295 	return before;
296 }
297 
298 static inline bool __has_cursum_space(struct f2fs_journal *journal,
299 							int size, int type)
300 {
301 	if (type == NAT_JOURNAL)
302 		return size <= MAX_NAT_JENTRIES(journal);
303 	return size <= MAX_SIT_JENTRIES(journal);
304 }
305 
306 /*
307  * ioctl commands
308  */
309 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
310 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
311 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
312 
313 #define F2FS_IOCTL_MAGIC		0xf5
314 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
315 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
316 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
317 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
318 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
319 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
320 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
321 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
322 						struct f2fs_defragment)
323 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
324 						struct f2fs_move_range)
325 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
326 						struct f2fs_flush_device)
327 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
328 						struct f2fs_gc_range)
329 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
330 
331 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
332 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
333 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
334 
335 /*
336  * should be same as XFS_IOC_GOINGDOWN.
337  * Flags for going down operation used by FS_IOC_GOINGDOWN
338  */
339 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
340 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
341 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
342 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
343 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
344 
345 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
346 /*
347  * ioctl commands in 32 bit emulation
348  */
349 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
350 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
351 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
352 #endif
353 
354 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
355 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
356 
357 struct f2fs_gc_range {
358 	u32 sync;
359 	u64 start;
360 	u64 len;
361 };
362 
363 struct f2fs_defragment {
364 	u64 start;
365 	u64 len;
366 };
367 
368 struct f2fs_move_range {
369 	u32 dst_fd;		/* destination fd */
370 	u64 pos_in;		/* start position in src_fd */
371 	u64 pos_out;		/* start position in dst_fd */
372 	u64 len;		/* size to move */
373 };
374 
375 struct f2fs_flush_device {
376 	u32 dev_num;		/* device number to flush */
377 	u32 segments;		/* # of segments to flush */
378 };
379 
380 /* for inline stuff */
381 #define DEF_INLINE_RESERVED_SIZE	1
382 static inline int get_extra_isize(struct inode *inode);
383 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) * \
384 				(CUR_ADDRS_PER_INODE(inode) - \
385 				DEF_INLINE_RESERVED_SIZE - \
386 				F2FS_INLINE_XATTR_ADDRS))
387 
388 /* for inline dir */
389 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
390 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
391 				BITS_PER_BYTE + 1))
392 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
393 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
394 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
395 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
396 				NR_INLINE_DENTRY(inode) + \
397 				INLINE_DENTRY_BITMAP_SIZE(inode)))
398 
399 /*
400  * For INODE and NODE manager
401  */
402 /* for directory operations */
403 struct f2fs_dentry_ptr {
404 	struct inode *inode;
405 	void *bitmap;
406 	struct f2fs_dir_entry *dentry;
407 	__u8 (*filename)[F2FS_SLOT_LEN];
408 	int max;
409 	int nr_bitmap;
410 };
411 
412 static inline void make_dentry_ptr_block(struct inode *inode,
413 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
414 {
415 	d->inode = inode;
416 	d->max = NR_DENTRY_IN_BLOCK;
417 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
418 	d->bitmap = &t->dentry_bitmap;
419 	d->dentry = t->dentry;
420 	d->filename = t->filename;
421 }
422 
423 static inline void make_dentry_ptr_inline(struct inode *inode,
424 					struct f2fs_dentry_ptr *d, void *t)
425 {
426 	int entry_cnt = NR_INLINE_DENTRY(inode);
427 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
428 	int reserved_size = INLINE_RESERVED_SIZE(inode);
429 
430 	d->inode = inode;
431 	d->max = entry_cnt;
432 	d->nr_bitmap = bitmap_size;
433 	d->bitmap = t;
434 	d->dentry = t + bitmap_size + reserved_size;
435 	d->filename = t + bitmap_size + reserved_size +
436 					SIZE_OF_DIR_ENTRY * entry_cnt;
437 }
438 
439 /*
440  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
441  * as its node offset to distinguish from index node blocks.
442  * But some bits are used to mark the node block.
443  */
444 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
445 				>> OFFSET_BIT_SHIFT)
446 enum {
447 	ALLOC_NODE,			/* allocate a new node page if needed */
448 	LOOKUP_NODE,			/* look up a node without readahead */
449 	LOOKUP_NODE_RA,			/*
450 					 * look up a node with readahead called
451 					 * by get_data_block.
452 					 */
453 };
454 
455 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
456 
457 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
458 
459 /* vector size for gang look-up from extent cache that consists of radix tree */
460 #define EXT_TREE_VEC_SIZE	64
461 
462 /* for in-memory extent cache entry */
463 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
464 
465 /* number of extent info in extent cache we try to shrink */
466 #define EXTENT_CACHE_SHRINK_NUMBER	128
467 
468 struct rb_entry {
469 	struct rb_node rb_node;		/* rb node located in rb-tree */
470 	unsigned int ofs;		/* start offset of the entry */
471 	unsigned int len;		/* length of the entry */
472 };
473 
474 struct extent_info {
475 	unsigned int fofs;		/* start offset in a file */
476 	unsigned int len;		/* length of the extent */
477 	u32 blk;			/* start block address of the extent */
478 };
479 
480 struct extent_node {
481 	struct rb_node rb_node;
482 	union {
483 		struct {
484 			unsigned int fofs;
485 			unsigned int len;
486 			u32 blk;
487 		};
488 		struct extent_info ei;	/* extent info */
489 
490 	};
491 	struct list_head list;		/* node in global extent list of sbi */
492 	struct extent_tree *et;		/* extent tree pointer */
493 };
494 
495 struct extent_tree {
496 	nid_t ino;			/* inode number */
497 	struct rb_root root;		/* root of extent info rb-tree */
498 	struct extent_node *cached_en;	/* recently accessed extent node */
499 	struct extent_info largest;	/* largested extent info */
500 	struct list_head list;		/* to be used by sbi->zombie_list */
501 	rwlock_t lock;			/* protect extent info rb-tree */
502 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
503 };
504 
505 /*
506  * This structure is taken from ext4_map_blocks.
507  *
508  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
509  */
510 #define F2FS_MAP_NEW		(1 << BH_New)
511 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
512 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
513 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
514 				F2FS_MAP_UNWRITTEN)
515 
516 struct f2fs_map_blocks {
517 	block_t m_pblk;
518 	block_t m_lblk;
519 	unsigned int m_len;
520 	unsigned int m_flags;
521 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
522 };
523 
524 /* for flag in get_data_block */
525 enum {
526 	F2FS_GET_BLOCK_DEFAULT,
527 	F2FS_GET_BLOCK_FIEMAP,
528 	F2FS_GET_BLOCK_BMAP,
529 	F2FS_GET_BLOCK_PRE_DIO,
530 	F2FS_GET_BLOCK_PRE_AIO,
531 };
532 
533 /*
534  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
535  */
536 #define FADVISE_COLD_BIT	0x01
537 #define FADVISE_LOST_PINO_BIT	0x02
538 #define FADVISE_ENCRYPT_BIT	0x04
539 #define FADVISE_ENC_NAME_BIT	0x08
540 #define FADVISE_KEEP_SIZE_BIT	0x10
541 
542 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
543 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
544 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
545 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
546 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
547 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
548 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
549 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
550 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
551 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
552 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
553 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
554 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
555 
556 #define DEF_DIR_LEVEL		0
557 
558 struct f2fs_inode_info {
559 	struct inode vfs_inode;		/* serve a vfs inode */
560 	unsigned long i_flags;		/* keep an inode flags for ioctl */
561 	unsigned char i_advise;		/* use to give file attribute hints */
562 	unsigned char i_dir_level;	/* use for dentry level for large dir */
563 	unsigned int i_current_depth;	/* use only in directory structure */
564 	unsigned int i_pino;		/* parent inode number */
565 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
566 
567 	/* Use below internally in f2fs*/
568 	unsigned long flags;		/* use to pass per-file flags */
569 	struct rw_semaphore i_sem;	/* protect fi info */
570 	atomic_t dirty_pages;		/* # of dirty pages */
571 	f2fs_hash_t chash;		/* hash value of given file name */
572 	unsigned int clevel;		/* maximum level of given file name */
573 	struct task_struct *task;	/* lookup and create consistency */
574 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
575 	nid_t i_xattr_nid;		/* node id that contains xattrs */
576 	loff_t	last_disk_size;		/* lastly written file size */
577 
578 #ifdef CONFIG_QUOTA
579 	struct dquot *i_dquot[MAXQUOTAS];
580 
581 	/* quota space reservation, managed internally by quota code */
582 	qsize_t i_reserved_quota;
583 #endif
584 	struct list_head dirty_list;	/* dirty list for dirs and files */
585 	struct list_head gdirty_list;	/* linked in global dirty list */
586 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
587 	struct task_struct *inmem_task;	/* store inmemory task */
588 	struct mutex inmem_lock;	/* lock for inmemory pages */
589 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
590 	struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
591 	struct rw_semaphore i_mmap_sem;
592 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
593 
594 	int i_extra_isize;		/* size of extra space located in i_addr */
595 	kprojid_t i_projid;		/* id for project quota */
596 };
597 
598 static inline void get_extent_info(struct extent_info *ext,
599 					struct f2fs_extent *i_ext)
600 {
601 	ext->fofs = le32_to_cpu(i_ext->fofs);
602 	ext->blk = le32_to_cpu(i_ext->blk);
603 	ext->len = le32_to_cpu(i_ext->len);
604 }
605 
606 static inline void set_raw_extent(struct extent_info *ext,
607 					struct f2fs_extent *i_ext)
608 {
609 	i_ext->fofs = cpu_to_le32(ext->fofs);
610 	i_ext->blk = cpu_to_le32(ext->blk);
611 	i_ext->len = cpu_to_le32(ext->len);
612 }
613 
614 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
615 						u32 blk, unsigned int len)
616 {
617 	ei->fofs = fofs;
618 	ei->blk = blk;
619 	ei->len = len;
620 }
621 
622 static inline bool __is_discard_mergeable(struct discard_info *back,
623 						struct discard_info *front)
624 {
625 	return back->lstart + back->len == front->lstart;
626 }
627 
628 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
629 						struct discard_info *back)
630 {
631 	return __is_discard_mergeable(back, cur);
632 }
633 
634 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
635 						struct discard_info *front)
636 {
637 	return __is_discard_mergeable(cur, front);
638 }
639 
640 static inline bool __is_extent_mergeable(struct extent_info *back,
641 						struct extent_info *front)
642 {
643 	return (back->fofs + back->len == front->fofs &&
644 			back->blk + back->len == front->blk);
645 }
646 
647 static inline bool __is_back_mergeable(struct extent_info *cur,
648 						struct extent_info *back)
649 {
650 	return __is_extent_mergeable(back, cur);
651 }
652 
653 static inline bool __is_front_mergeable(struct extent_info *cur,
654 						struct extent_info *front)
655 {
656 	return __is_extent_mergeable(cur, front);
657 }
658 
659 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
660 static inline void __try_update_largest_extent(struct inode *inode,
661 			struct extent_tree *et, struct extent_node *en)
662 {
663 	if (en->ei.len > et->largest.len) {
664 		et->largest = en->ei;
665 		f2fs_mark_inode_dirty_sync(inode, true);
666 	}
667 }
668 
669 enum nid_list {
670 	FREE_NID_LIST,
671 	ALLOC_NID_LIST,
672 	MAX_NID_LIST,
673 };
674 
675 struct f2fs_nm_info {
676 	block_t nat_blkaddr;		/* base disk address of NAT */
677 	nid_t max_nid;			/* maximum possible node ids */
678 	nid_t available_nids;		/* # of available node ids */
679 	nid_t next_scan_nid;		/* the next nid to be scanned */
680 	unsigned int ram_thresh;	/* control the memory footprint */
681 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
682 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
683 
684 	/* NAT cache management */
685 	struct radix_tree_root nat_root;/* root of the nat entry cache */
686 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
687 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
688 	struct list_head nat_entries;	/* cached nat entry list (clean) */
689 	unsigned int nat_cnt;		/* the # of cached nat entries */
690 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
691 	unsigned int nat_blocks;	/* # of nat blocks */
692 
693 	/* free node ids management */
694 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
695 	struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
696 	unsigned int nid_cnt[MAX_NID_LIST];	/* the number of free node id */
697 	spinlock_t nid_list_lock;	/* protect nid lists ops */
698 	struct mutex build_lock;	/* lock for build free nids */
699 	unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
700 	unsigned char *nat_block_bitmap;
701 	unsigned short *free_nid_count;	/* free nid count of NAT block */
702 
703 	/* for checkpoint */
704 	char *nat_bitmap;		/* NAT bitmap pointer */
705 
706 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
707 	unsigned char *nat_bits;	/* NAT bits blocks */
708 	unsigned char *full_nat_bits;	/* full NAT pages */
709 	unsigned char *empty_nat_bits;	/* empty NAT pages */
710 #ifdef CONFIG_F2FS_CHECK_FS
711 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
712 #endif
713 	int bitmap_size;		/* bitmap size */
714 };
715 
716 /*
717  * this structure is used as one of function parameters.
718  * all the information are dedicated to a given direct node block determined
719  * by the data offset in a file.
720  */
721 struct dnode_of_data {
722 	struct inode *inode;		/* vfs inode pointer */
723 	struct page *inode_page;	/* its inode page, NULL is possible */
724 	struct page *node_page;		/* cached direct node page */
725 	nid_t nid;			/* node id of the direct node block */
726 	unsigned int ofs_in_node;	/* data offset in the node page */
727 	bool inode_page_locked;		/* inode page is locked or not */
728 	bool node_changed;		/* is node block changed */
729 	char cur_level;			/* level of hole node page */
730 	char max_level;			/* level of current page located */
731 	block_t	data_blkaddr;		/* block address of the node block */
732 };
733 
734 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
735 		struct page *ipage, struct page *npage, nid_t nid)
736 {
737 	memset(dn, 0, sizeof(*dn));
738 	dn->inode = inode;
739 	dn->inode_page = ipage;
740 	dn->node_page = npage;
741 	dn->nid = nid;
742 }
743 
744 /*
745  * For SIT manager
746  *
747  * By default, there are 6 active log areas across the whole main area.
748  * When considering hot and cold data separation to reduce cleaning overhead,
749  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
750  * respectively.
751  * In the current design, you should not change the numbers intentionally.
752  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
753  * logs individually according to the underlying devices. (default: 6)
754  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
755  * data and 8 for node logs.
756  */
757 #define	NR_CURSEG_DATA_TYPE	(3)
758 #define NR_CURSEG_NODE_TYPE	(3)
759 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
760 
761 enum {
762 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
763 	CURSEG_WARM_DATA,	/* data blocks */
764 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
765 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
766 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
767 	CURSEG_COLD_NODE,	/* indirect node blocks */
768 	NO_CHECK_TYPE,
769 };
770 
771 struct flush_cmd {
772 	struct completion wait;
773 	struct llist_node llnode;
774 	int ret;
775 };
776 
777 struct flush_cmd_control {
778 	struct task_struct *f2fs_issue_flush;	/* flush thread */
779 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
780 	atomic_t issued_flush;			/* # of issued flushes */
781 	atomic_t issing_flush;			/* # of issing flushes */
782 	struct llist_head issue_list;		/* list for command issue */
783 	struct llist_node *dispatch_list;	/* list for command dispatch */
784 };
785 
786 struct f2fs_sm_info {
787 	struct sit_info *sit_info;		/* whole segment information */
788 	struct free_segmap_info *free_info;	/* free segment information */
789 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
790 	struct curseg_info *curseg_array;	/* active segment information */
791 
792 	block_t seg0_blkaddr;		/* block address of 0'th segment */
793 	block_t main_blkaddr;		/* start block address of main area */
794 	block_t ssa_blkaddr;		/* start block address of SSA area */
795 
796 	unsigned int segment_count;	/* total # of segments */
797 	unsigned int main_segments;	/* # of segments in main area */
798 	unsigned int reserved_segments;	/* # of reserved segments */
799 	unsigned int ovp_segments;	/* # of overprovision segments */
800 
801 	/* a threshold to reclaim prefree segments */
802 	unsigned int rec_prefree_segments;
803 
804 	/* for batched trimming */
805 	unsigned int trim_sections;		/* # of sections to trim */
806 
807 	struct list_head sit_entry_set;	/* sit entry set list */
808 
809 	unsigned int ipu_policy;	/* in-place-update policy */
810 	unsigned int min_ipu_util;	/* in-place-update threshold */
811 	unsigned int min_fsync_blocks;	/* threshold for fsync */
812 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
813 
814 	/* for flush command control */
815 	struct flush_cmd_control *fcc_info;
816 
817 	/* for discard command control */
818 	struct discard_cmd_control *dcc_info;
819 };
820 
821 /*
822  * For superblock
823  */
824 /*
825  * COUNT_TYPE for monitoring
826  *
827  * f2fs monitors the number of several block types such as on-writeback,
828  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
829  */
830 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
831 enum count_type {
832 	F2FS_DIRTY_DENTS,
833 	F2FS_DIRTY_DATA,
834 	F2FS_DIRTY_NODES,
835 	F2FS_DIRTY_META,
836 	F2FS_INMEM_PAGES,
837 	F2FS_DIRTY_IMETA,
838 	F2FS_WB_CP_DATA,
839 	F2FS_WB_DATA,
840 	NR_COUNT_TYPE,
841 };
842 
843 /*
844  * The below are the page types of bios used in submit_bio().
845  * The available types are:
846  * DATA			User data pages. It operates as async mode.
847  * NODE			Node pages. It operates as async mode.
848  * META			FS metadata pages such as SIT, NAT, CP.
849  * NR_PAGE_TYPE		The number of page types.
850  * META_FLUSH		Make sure the previous pages are written
851  *			with waiting the bio's completion
852  * ...			Only can be used with META.
853  */
854 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
855 enum page_type {
856 	DATA,
857 	NODE,
858 	META,
859 	NR_PAGE_TYPE,
860 	META_FLUSH,
861 	INMEM,		/* the below types are used by tracepoints only. */
862 	INMEM_DROP,
863 	INMEM_INVALIDATE,
864 	INMEM_REVOKE,
865 	IPU,
866 	OPU,
867 };
868 
869 enum temp_type {
870 	HOT = 0,	/* must be zero for meta bio */
871 	WARM,
872 	COLD,
873 	NR_TEMP_TYPE,
874 };
875 
876 enum need_lock_type {
877 	LOCK_REQ = 0,
878 	LOCK_DONE,
879 	LOCK_RETRY,
880 };
881 
882 enum iostat_type {
883 	APP_DIRECT_IO,			/* app direct IOs */
884 	APP_BUFFERED_IO,		/* app buffered IOs */
885 	APP_WRITE_IO,			/* app write IOs */
886 	APP_MAPPED_IO,			/* app mapped IOs */
887 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
888 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
889 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
890 	FS_GC_DATA_IO,			/* data IOs from forground gc */
891 	FS_GC_NODE_IO,			/* node IOs from forground gc */
892 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
893 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
894 	FS_CP_META_IO,			/* meta IOs from checkpoint */
895 	FS_DISCARD,			/* discard */
896 	NR_IO_TYPE,
897 };
898 
899 struct f2fs_io_info {
900 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
901 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
902 	enum temp_type temp;	/* contains HOT/WARM/COLD */
903 	int op;			/* contains REQ_OP_ */
904 	int op_flags;		/* req_flag_bits */
905 	block_t new_blkaddr;	/* new block address to be written */
906 	block_t old_blkaddr;	/* old block address before Cow */
907 	struct page *page;	/* page to be written */
908 	struct page *encrypted_page;	/* encrypted page */
909 	struct list_head list;		/* serialize IOs */
910 	bool submitted;		/* indicate IO submission */
911 	int need_lock;		/* indicate we need to lock cp_rwsem */
912 	bool in_list;		/* indicate fio is in io_list */
913 	enum iostat_type io_type;	/* io type */
914 };
915 
916 #define is_read_io(rw) ((rw) == READ)
917 struct f2fs_bio_info {
918 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
919 	struct bio *bio;		/* bios to merge */
920 	sector_t last_block_in_bio;	/* last block number */
921 	struct f2fs_io_info fio;	/* store buffered io info. */
922 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
923 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
924 	struct list_head io_list;	/* track fios */
925 };
926 
927 #define FDEV(i)				(sbi->devs[i])
928 #define RDEV(i)				(raw_super->devs[i])
929 struct f2fs_dev_info {
930 	struct block_device *bdev;
931 	char path[MAX_PATH_LEN];
932 	unsigned int total_segments;
933 	block_t start_blk;
934 	block_t end_blk;
935 #ifdef CONFIG_BLK_DEV_ZONED
936 	unsigned int nr_blkz;			/* Total number of zones */
937 	u8 *blkz_type;				/* Array of zones type */
938 #endif
939 };
940 
941 enum inode_type {
942 	DIR_INODE,			/* for dirty dir inode */
943 	FILE_INODE,			/* for dirty regular/symlink inode */
944 	DIRTY_META,			/* for all dirtied inode metadata */
945 	NR_INODE_TYPE,
946 };
947 
948 /* for inner inode cache management */
949 struct inode_management {
950 	struct radix_tree_root ino_root;	/* ino entry array */
951 	spinlock_t ino_lock;			/* for ino entry lock */
952 	struct list_head ino_list;		/* inode list head */
953 	unsigned long ino_num;			/* number of entries */
954 };
955 
956 /* For s_flag in struct f2fs_sb_info */
957 enum {
958 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
959 	SBI_IS_CLOSE,				/* specify unmounting */
960 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
961 	SBI_POR_DOING,				/* recovery is doing or not */
962 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
963 	SBI_NEED_CP,				/* need to checkpoint */
964 };
965 
966 enum {
967 	CP_TIME,
968 	REQ_TIME,
969 	MAX_TIME,
970 };
971 
972 struct f2fs_sb_info {
973 	struct super_block *sb;			/* pointer to VFS super block */
974 	struct proc_dir_entry *s_proc;		/* proc entry */
975 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
976 	int valid_super_block;			/* valid super block no */
977 	unsigned long s_flag;				/* flags for sbi */
978 
979 #ifdef CONFIG_BLK_DEV_ZONED
980 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
981 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
982 #endif
983 
984 	/* for node-related operations */
985 	struct f2fs_nm_info *nm_info;		/* node manager */
986 	struct inode *node_inode;		/* cache node blocks */
987 
988 	/* for segment-related operations */
989 	struct f2fs_sm_info *sm_info;		/* segment manager */
990 
991 	/* for bio operations */
992 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
993 	struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
994 						/* bio ordering for NODE/DATA */
995 	int write_io_size_bits;			/* Write IO size bits */
996 	mempool_t *write_io_dummy;		/* Dummy pages */
997 
998 	/* for checkpoint */
999 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1000 	int cur_cp_pack;			/* remain current cp pack */
1001 	spinlock_t cp_lock;			/* for flag in ckpt */
1002 	struct inode *meta_inode;		/* cache meta blocks */
1003 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1004 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1005 	struct rw_semaphore node_write;		/* locking node writes */
1006 	struct rw_semaphore node_change;	/* locking node change */
1007 	wait_queue_head_t cp_wait;
1008 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1009 	long interval_time[MAX_TIME];		/* to store thresholds */
1010 
1011 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1012 
1013 	/* for orphan inode, use 0'th array */
1014 	unsigned int max_orphans;		/* max orphan inodes */
1015 
1016 	/* for inode management */
1017 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1018 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1019 
1020 	/* for extent tree cache */
1021 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1022 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1023 	struct list_head extent_list;		/* lru list for shrinker */
1024 	spinlock_t extent_lock;			/* locking extent lru list */
1025 	atomic_t total_ext_tree;		/* extent tree count */
1026 	struct list_head zombie_list;		/* extent zombie tree list */
1027 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1028 	atomic_t total_ext_node;		/* extent info count */
1029 
1030 	/* basic filesystem units */
1031 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1032 	unsigned int log_blocksize;		/* log2 block size */
1033 	unsigned int blocksize;			/* block size */
1034 	unsigned int root_ino_num;		/* root inode number*/
1035 	unsigned int node_ino_num;		/* node inode number*/
1036 	unsigned int meta_ino_num;		/* meta inode number*/
1037 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1038 	unsigned int blocks_per_seg;		/* blocks per segment */
1039 	unsigned int segs_per_sec;		/* segments per section */
1040 	unsigned int secs_per_zone;		/* sections per zone */
1041 	unsigned int total_sections;		/* total section count */
1042 	unsigned int total_node_count;		/* total node block count */
1043 	unsigned int total_valid_node_count;	/* valid node block count */
1044 	loff_t max_file_blocks;			/* max block index of file */
1045 	int active_logs;			/* # of active logs */
1046 	int dir_level;				/* directory level */
1047 
1048 	block_t user_block_count;		/* # of user blocks */
1049 	block_t total_valid_block_count;	/* # of valid blocks */
1050 	block_t discard_blks;			/* discard command candidats */
1051 	block_t last_valid_block_count;		/* for recovery */
1052 	block_t reserved_blocks;		/* configurable reserved blocks */
1053 
1054 	u32 s_next_generation;			/* for NFS support */
1055 
1056 	/* # of pages, see count_type */
1057 	atomic_t nr_pages[NR_COUNT_TYPE];
1058 	/* # of allocated blocks */
1059 	struct percpu_counter alloc_valid_block_count;
1060 
1061 	/* writeback control */
1062 	atomic_t wb_sync_req;			/* count # of WB_SYNC threads */
1063 
1064 	/* valid inode count */
1065 	struct percpu_counter total_valid_inode_count;
1066 
1067 	struct f2fs_mount_info mount_opt;	/* mount options */
1068 
1069 	/* for cleaning operations */
1070 	struct mutex gc_mutex;			/* mutex for GC */
1071 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1072 	unsigned int cur_victim_sec;		/* current victim section num */
1073 
1074 	/* threshold for converting bg victims for fg */
1075 	u64 fggc_threshold;
1076 
1077 	/* maximum # of trials to find a victim segment for SSR and GC */
1078 	unsigned int max_victim_search;
1079 
1080 	/*
1081 	 * for stat information.
1082 	 * one is for the LFS mode, and the other is for the SSR mode.
1083 	 */
1084 #ifdef CONFIG_F2FS_STAT_FS
1085 	struct f2fs_stat_info *stat_info;	/* FS status information */
1086 	unsigned int segment_count[2];		/* # of allocated segments */
1087 	unsigned int block_count[2];		/* # of allocated blocks */
1088 	atomic_t inplace_count;		/* # of inplace update */
1089 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1090 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1091 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1092 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1093 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1094 	atomic_t inline_inode;			/* # of inline_data inodes */
1095 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1096 	atomic_t aw_cnt;			/* # of atomic writes */
1097 	atomic_t vw_cnt;			/* # of volatile writes */
1098 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1099 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1100 	int bg_gc;				/* background gc calls */
1101 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1102 #endif
1103 	spinlock_t stat_lock;			/* lock for stat operations */
1104 
1105 	/* For app/fs IO statistics */
1106 	spinlock_t iostat_lock;
1107 	unsigned long long write_iostat[NR_IO_TYPE];
1108 	bool iostat_enable;
1109 
1110 	/* For sysfs suppport */
1111 	struct kobject s_kobj;
1112 	struct completion s_kobj_unregister;
1113 
1114 	/* For shrinker support */
1115 	struct list_head s_list;
1116 	int s_ndevs;				/* number of devices */
1117 	struct f2fs_dev_info *devs;		/* for device list */
1118 	struct mutex umount_mutex;
1119 	unsigned int shrinker_run_no;
1120 
1121 	/* For write statistics */
1122 	u64 sectors_written_start;
1123 	u64 kbytes_written;
1124 
1125 	/* Reference to checksum algorithm driver via cryptoapi */
1126 	struct crypto_shash *s_chksum_driver;
1127 
1128 	/* Precomputed FS UUID checksum for seeding other checksums */
1129 	__u32 s_chksum_seed;
1130 
1131 	/* For fault injection */
1132 #ifdef CONFIG_F2FS_FAULT_INJECTION
1133 	struct f2fs_fault_info fault_info;
1134 #endif
1135 
1136 #ifdef CONFIG_QUOTA
1137 	/* Names of quota files with journalled quota */
1138 	char *s_qf_names[MAXQUOTAS];
1139 	int s_jquota_fmt;			/* Format of quota to use */
1140 #endif
1141 };
1142 
1143 #ifdef CONFIG_F2FS_FAULT_INJECTION
1144 #define f2fs_show_injection_info(type)				\
1145 	printk("%sF2FS-fs : inject %s in %s of %pF\n",		\
1146 		KERN_INFO, fault_name[type],			\
1147 		__func__, __builtin_return_address(0))
1148 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1149 {
1150 	struct f2fs_fault_info *ffi = &sbi->fault_info;
1151 
1152 	if (!ffi->inject_rate)
1153 		return false;
1154 
1155 	if (!IS_FAULT_SET(ffi, type))
1156 		return false;
1157 
1158 	atomic_inc(&ffi->inject_ops);
1159 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1160 		atomic_set(&ffi->inject_ops, 0);
1161 		return true;
1162 	}
1163 	return false;
1164 }
1165 #endif
1166 
1167 /* For write statistics. Suppose sector size is 512 bytes,
1168  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1169  */
1170 #define BD_PART_WRITTEN(s)						 \
1171 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) -		 \
1172 		(s)->sectors_written_start) >> 1)
1173 
1174 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1175 {
1176 	sbi->last_time[type] = jiffies;
1177 }
1178 
1179 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1180 {
1181 	struct timespec ts = {sbi->interval_time[type], 0};
1182 	unsigned long interval = timespec_to_jiffies(&ts);
1183 
1184 	return time_after(jiffies, sbi->last_time[type] + interval);
1185 }
1186 
1187 static inline bool is_idle(struct f2fs_sb_info *sbi)
1188 {
1189 	struct block_device *bdev = sbi->sb->s_bdev;
1190 	struct request_queue *q = bdev_get_queue(bdev);
1191 	struct request_list *rl = &q->root_rl;
1192 
1193 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1194 		return 0;
1195 
1196 	return f2fs_time_over(sbi, REQ_TIME);
1197 }
1198 
1199 /*
1200  * Inline functions
1201  */
1202 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1203 			   unsigned int length)
1204 {
1205 	SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1206 	u32 *ctx = (u32 *)shash_desc_ctx(shash);
1207 	u32 retval;
1208 	int err;
1209 
1210 	shash->tfm = sbi->s_chksum_driver;
1211 	shash->flags = 0;
1212 	*ctx = F2FS_SUPER_MAGIC;
1213 
1214 	err = crypto_shash_update(shash, address, length);
1215 	BUG_ON(err);
1216 
1217 	retval = *ctx;
1218 	barrier_data(ctx);
1219 	return retval;
1220 }
1221 
1222 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1223 				  void *buf, size_t buf_size)
1224 {
1225 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1226 }
1227 
1228 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1229 			      const void *address, unsigned int length)
1230 {
1231 	struct {
1232 		struct shash_desc shash;
1233 		char ctx[4];
1234 	} desc;
1235 	int err;
1236 
1237 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1238 
1239 	desc.shash.tfm = sbi->s_chksum_driver;
1240 	desc.shash.flags = 0;
1241 	*(u32 *)desc.ctx = crc;
1242 
1243 	err = crypto_shash_update(&desc.shash, address, length);
1244 	BUG_ON(err);
1245 
1246 	return *(u32 *)desc.ctx;
1247 }
1248 
1249 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1250 {
1251 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1252 }
1253 
1254 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1255 {
1256 	return sb->s_fs_info;
1257 }
1258 
1259 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1260 {
1261 	return F2FS_SB(inode->i_sb);
1262 }
1263 
1264 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1265 {
1266 	return F2FS_I_SB(mapping->host);
1267 }
1268 
1269 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1270 {
1271 	return F2FS_M_SB(page->mapping);
1272 }
1273 
1274 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1275 {
1276 	return (struct f2fs_super_block *)(sbi->raw_super);
1277 }
1278 
1279 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1280 {
1281 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1282 }
1283 
1284 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1285 {
1286 	return (struct f2fs_node *)page_address(page);
1287 }
1288 
1289 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1290 {
1291 	return &((struct f2fs_node *)page_address(page))->i;
1292 }
1293 
1294 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1295 {
1296 	return (struct f2fs_nm_info *)(sbi->nm_info);
1297 }
1298 
1299 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1300 {
1301 	return (struct f2fs_sm_info *)(sbi->sm_info);
1302 }
1303 
1304 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1305 {
1306 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1307 }
1308 
1309 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1310 {
1311 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1312 }
1313 
1314 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1315 {
1316 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1317 }
1318 
1319 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1320 {
1321 	return sbi->meta_inode->i_mapping;
1322 }
1323 
1324 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1325 {
1326 	return sbi->node_inode->i_mapping;
1327 }
1328 
1329 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1330 {
1331 	return test_bit(type, &sbi->s_flag);
1332 }
1333 
1334 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1335 {
1336 	set_bit(type, &sbi->s_flag);
1337 }
1338 
1339 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1340 {
1341 	clear_bit(type, &sbi->s_flag);
1342 }
1343 
1344 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1345 {
1346 	return le64_to_cpu(cp->checkpoint_ver);
1347 }
1348 
1349 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1350 {
1351 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1352 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1353 }
1354 
1355 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1356 {
1357 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1358 
1359 	return ckpt_flags & f;
1360 }
1361 
1362 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1363 {
1364 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1365 }
1366 
1367 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1368 {
1369 	unsigned int ckpt_flags;
1370 
1371 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1372 	ckpt_flags |= f;
1373 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1374 }
1375 
1376 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1377 {
1378 	unsigned long flags;
1379 
1380 	spin_lock_irqsave(&sbi->cp_lock, flags);
1381 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1382 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1383 }
1384 
1385 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1386 {
1387 	unsigned int ckpt_flags;
1388 
1389 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1390 	ckpt_flags &= (~f);
1391 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1392 }
1393 
1394 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1395 {
1396 	unsigned long flags;
1397 
1398 	spin_lock_irqsave(&sbi->cp_lock, flags);
1399 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1400 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1401 }
1402 
1403 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1404 {
1405 	unsigned long flags;
1406 
1407 	set_sbi_flag(sbi, SBI_NEED_FSCK);
1408 
1409 	if (lock)
1410 		spin_lock_irqsave(&sbi->cp_lock, flags);
1411 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1412 	kfree(NM_I(sbi)->nat_bits);
1413 	NM_I(sbi)->nat_bits = NULL;
1414 	if (lock)
1415 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1416 }
1417 
1418 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1419 					struct cp_control *cpc)
1420 {
1421 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1422 
1423 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1424 }
1425 
1426 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1427 {
1428 	down_read(&sbi->cp_rwsem);
1429 }
1430 
1431 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1432 {
1433 	return down_read_trylock(&sbi->cp_rwsem);
1434 }
1435 
1436 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1437 {
1438 	up_read(&sbi->cp_rwsem);
1439 }
1440 
1441 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1442 {
1443 	down_write(&sbi->cp_rwsem);
1444 }
1445 
1446 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1447 {
1448 	up_write(&sbi->cp_rwsem);
1449 }
1450 
1451 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1452 {
1453 	int reason = CP_SYNC;
1454 
1455 	if (test_opt(sbi, FASTBOOT))
1456 		reason = CP_FASTBOOT;
1457 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1458 		reason = CP_UMOUNT;
1459 	return reason;
1460 }
1461 
1462 static inline bool __remain_node_summaries(int reason)
1463 {
1464 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1465 }
1466 
1467 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1468 {
1469 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1470 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1471 }
1472 
1473 /*
1474  * Check whether the given nid is within node id range.
1475  */
1476 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1477 {
1478 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1479 		return -EINVAL;
1480 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1481 		return -EINVAL;
1482 	return 0;
1483 }
1484 
1485 /*
1486  * Check whether the inode has blocks or not
1487  */
1488 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1489 {
1490 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1491 
1492 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1493 }
1494 
1495 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1496 {
1497 	return ofs == XATTR_NODE_OFFSET;
1498 }
1499 
1500 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1501 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1502 				 struct inode *inode, blkcnt_t *count)
1503 {
1504 	blkcnt_t diff = 0, release = 0;
1505 	block_t avail_user_block_count;
1506 	int ret;
1507 
1508 	ret = dquot_reserve_block(inode, *count);
1509 	if (ret)
1510 		return ret;
1511 
1512 #ifdef CONFIG_F2FS_FAULT_INJECTION
1513 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1514 		f2fs_show_injection_info(FAULT_BLOCK);
1515 		release = *count;
1516 		goto enospc;
1517 	}
1518 #endif
1519 	/*
1520 	 * let's increase this in prior to actual block count change in order
1521 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1522 	 */
1523 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1524 
1525 	spin_lock(&sbi->stat_lock);
1526 	sbi->total_valid_block_count += (block_t)(*count);
1527 	avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks;
1528 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1529 		diff = sbi->total_valid_block_count - avail_user_block_count;
1530 		*count -= diff;
1531 		release = diff;
1532 		sbi->total_valid_block_count = avail_user_block_count;
1533 		if (!*count) {
1534 			spin_unlock(&sbi->stat_lock);
1535 			percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1536 			goto enospc;
1537 		}
1538 	}
1539 	spin_unlock(&sbi->stat_lock);
1540 
1541 	if (release)
1542 		dquot_release_reservation_block(inode, release);
1543 	f2fs_i_blocks_write(inode, *count, true, true);
1544 	return 0;
1545 
1546 enospc:
1547 	dquot_release_reservation_block(inode, release);
1548 	return -ENOSPC;
1549 }
1550 
1551 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1552 						struct inode *inode,
1553 						block_t count)
1554 {
1555 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1556 
1557 	spin_lock(&sbi->stat_lock);
1558 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1559 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1560 	sbi->total_valid_block_count -= (block_t)count;
1561 	spin_unlock(&sbi->stat_lock);
1562 	f2fs_i_blocks_write(inode, count, false, true);
1563 }
1564 
1565 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1566 {
1567 	atomic_inc(&sbi->nr_pages[count_type]);
1568 
1569 	if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1570 		count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1571 		return;
1572 
1573 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1574 }
1575 
1576 static inline void inode_inc_dirty_pages(struct inode *inode)
1577 {
1578 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1579 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1580 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1581 }
1582 
1583 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1584 {
1585 	atomic_dec(&sbi->nr_pages[count_type]);
1586 }
1587 
1588 static inline void inode_dec_dirty_pages(struct inode *inode)
1589 {
1590 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1591 			!S_ISLNK(inode->i_mode))
1592 		return;
1593 
1594 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1595 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1596 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1597 }
1598 
1599 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1600 {
1601 	return atomic_read(&sbi->nr_pages[count_type]);
1602 }
1603 
1604 static inline int get_dirty_pages(struct inode *inode)
1605 {
1606 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1607 }
1608 
1609 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1610 {
1611 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1612 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1613 						sbi->log_blocks_per_seg;
1614 
1615 	return segs / sbi->segs_per_sec;
1616 }
1617 
1618 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1619 {
1620 	return sbi->total_valid_block_count;
1621 }
1622 
1623 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1624 {
1625 	return sbi->discard_blks;
1626 }
1627 
1628 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1629 {
1630 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1631 
1632 	/* return NAT or SIT bitmap */
1633 	if (flag == NAT_BITMAP)
1634 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1635 	else if (flag == SIT_BITMAP)
1636 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1637 
1638 	return 0;
1639 }
1640 
1641 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1642 {
1643 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1644 }
1645 
1646 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1647 {
1648 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1649 	int offset;
1650 
1651 	if (__cp_payload(sbi) > 0) {
1652 		if (flag == NAT_BITMAP)
1653 			return &ckpt->sit_nat_version_bitmap;
1654 		else
1655 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1656 	} else {
1657 		offset = (flag == NAT_BITMAP) ?
1658 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1659 		return &ckpt->sit_nat_version_bitmap + offset;
1660 	}
1661 }
1662 
1663 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1664 {
1665 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1666 
1667 	if (sbi->cur_cp_pack == 2)
1668 		start_addr += sbi->blocks_per_seg;
1669 	return start_addr;
1670 }
1671 
1672 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1673 {
1674 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1675 
1676 	if (sbi->cur_cp_pack == 1)
1677 		start_addr += sbi->blocks_per_seg;
1678 	return start_addr;
1679 }
1680 
1681 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1682 {
1683 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1684 }
1685 
1686 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1687 {
1688 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1689 }
1690 
1691 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1692 					struct inode *inode, bool is_inode)
1693 {
1694 	block_t	valid_block_count;
1695 	unsigned int valid_node_count;
1696 	bool quota = inode && !is_inode;
1697 
1698 	if (quota) {
1699 		int ret = dquot_reserve_block(inode, 1);
1700 		if (ret)
1701 			return ret;
1702 	}
1703 
1704 	spin_lock(&sbi->stat_lock);
1705 
1706 	valid_block_count = sbi->total_valid_block_count + 1;
1707 	if (unlikely(valid_block_count + sbi->reserved_blocks >
1708 						sbi->user_block_count)) {
1709 		spin_unlock(&sbi->stat_lock);
1710 		goto enospc;
1711 	}
1712 
1713 	valid_node_count = sbi->total_valid_node_count + 1;
1714 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1715 		spin_unlock(&sbi->stat_lock);
1716 		goto enospc;
1717 	}
1718 
1719 	sbi->total_valid_node_count++;
1720 	sbi->total_valid_block_count++;
1721 	spin_unlock(&sbi->stat_lock);
1722 
1723 	if (inode) {
1724 		if (is_inode)
1725 			f2fs_mark_inode_dirty_sync(inode, true);
1726 		else
1727 			f2fs_i_blocks_write(inode, 1, true, true);
1728 	}
1729 
1730 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1731 	return 0;
1732 
1733 enospc:
1734 	if (quota)
1735 		dquot_release_reservation_block(inode, 1);
1736 	return -ENOSPC;
1737 }
1738 
1739 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1740 					struct inode *inode, bool is_inode)
1741 {
1742 	spin_lock(&sbi->stat_lock);
1743 
1744 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1745 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1746 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1747 
1748 	sbi->total_valid_node_count--;
1749 	sbi->total_valid_block_count--;
1750 
1751 	spin_unlock(&sbi->stat_lock);
1752 
1753 	if (!is_inode)
1754 		f2fs_i_blocks_write(inode, 1, false, true);
1755 }
1756 
1757 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1758 {
1759 	return sbi->total_valid_node_count;
1760 }
1761 
1762 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1763 {
1764 	percpu_counter_inc(&sbi->total_valid_inode_count);
1765 }
1766 
1767 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1768 {
1769 	percpu_counter_dec(&sbi->total_valid_inode_count);
1770 }
1771 
1772 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1773 {
1774 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1775 }
1776 
1777 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1778 						pgoff_t index, bool for_write)
1779 {
1780 #ifdef CONFIG_F2FS_FAULT_INJECTION
1781 	struct page *page = find_lock_page(mapping, index);
1782 
1783 	if (page)
1784 		return page;
1785 
1786 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1787 		f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1788 		return NULL;
1789 	}
1790 #endif
1791 	if (!for_write)
1792 		return grab_cache_page(mapping, index);
1793 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1794 }
1795 
1796 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1797 {
1798 	char *src_kaddr = kmap(src);
1799 	char *dst_kaddr = kmap(dst);
1800 
1801 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1802 	kunmap(dst);
1803 	kunmap(src);
1804 }
1805 
1806 static inline void f2fs_put_page(struct page *page, int unlock)
1807 {
1808 	if (!page)
1809 		return;
1810 
1811 	if (unlock) {
1812 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1813 		unlock_page(page);
1814 	}
1815 	put_page(page);
1816 }
1817 
1818 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1819 {
1820 	if (dn->node_page)
1821 		f2fs_put_page(dn->node_page, 1);
1822 	if (dn->inode_page && dn->node_page != dn->inode_page)
1823 		f2fs_put_page(dn->inode_page, 0);
1824 	dn->node_page = NULL;
1825 	dn->inode_page = NULL;
1826 }
1827 
1828 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1829 					size_t size)
1830 {
1831 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1832 }
1833 
1834 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1835 						gfp_t flags)
1836 {
1837 	void *entry;
1838 
1839 	entry = kmem_cache_alloc(cachep, flags);
1840 	if (!entry)
1841 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1842 	return entry;
1843 }
1844 
1845 static inline struct bio *f2fs_bio_alloc(int npages)
1846 {
1847 	struct bio *bio;
1848 
1849 	/* No failure on bio allocation */
1850 	bio = bio_alloc(GFP_NOIO, npages);
1851 	if (!bio)
1852 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1853 	return bio;
1854 }
1855 
1856 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1857 				unsigned long index, void *item)
1858 {
1859 	while (radix_tree_insert(root, index, item))
1860 		cond_resched();
1861 }
1862 
1863 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1864 
1865 static inline bool IS_INODE(struct page *page)
1866 {
1867 	struct f2fs_node *p = F2FS_NODE(page);
1868 
1869 	return RAW_IS_INODE(p);
1870 }
1871 
1872 static inline int offset_in_addr(struct f2fs_inode *i)
1873 {
1874 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
1875 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
1876 }
1877 
1878 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1879 {
1880 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1881 }
1882 
1883 static inline int f2fs_has_extra_attr(struct inode *inode);
1884 static inline block_t datablock_addr(struct inode *inode,
1885 			struct page *node_page, unsigned int offset)
1886 {
1887 	struct f2fs_node *raw_node;
1888 	__le32 *addr_array;
1889 	int base = 0;
1890 	bool is_inode = IS_INODE(node_page);
1891 
1892 	raw_node = F2FS_NODE(node_page);
1893 
1894 	/* from GC path only */
1895 	if (!inode) {
1896 		if (is_inode)
1897 			base = offset_in_addr(&raw_node->i);
1898 	} else if (f2fs_has_extra_attr(inode) && is_inode) {
1899 		base = get_extra_isize(inode);
1900 	}
1901 
1902 	addr_array = blkaddr_in_node(raw_node);
1903 	return le32_to_cpu(addr_array[base + offset]);
1904 }
1905 
1906 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1907 {
1908 	int mask;
1909 
1910 	addr += (nr >> 3);
1911 	mask = 1 << (7 - (nr & 0x07));
1912 	return mask & *addr;
1913 }
1914 
1915 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1916 {
1917 	int mask;
1918 
1919 	addr += (nr >> 3);
1920 	mask = 1 << (7 - (nr & 0x07));
1921 	*addr |= mask;
1922 }
1923 
1924 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1925 {
1926 	int mask;
1927 
1928 	addr += (nr >> 3);
1929 	mask = 1 << (7 - (nr & 0x07));
1930 	*addr &= ~mask;
1931 }
1932 
1933 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1934 {
1935 	int mask;
1936 	int ret;
1937 
1938 	addr += (nr >> 3);
1939 	mask = 1 << (7 - (nr & 0x07));
1940 	ret = mask & *addr;
1941 	*addr |= mask;
1942 	return ret;
1943 }
1944 
1945 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1946 {
1947 	int mask;
1948 	int ret;
1949 
1950 	addr += (nr >> 3);
1951 	mask = 1 << (7 - (nr & 0x07));
1952 	ret = mask & *addr;
1953 	*addr &= ~mask;
1954 	return ret;
1955 }
1956 
1957 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1958 {
1959 	int mask;
1960 
1961 	addr += (nr >> 3);
1962 	mask = 1 << (7 - (nr & 0x07));
1963 	*addr ^= mask;
1964 }
1965 
1966 #define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1967 #define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
1968 #define F2FS_FL_INHERITED	(FS_PROJINHERIT_FL)
1969 
1970 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1971 {
1972 	if (S_ISDIR(mode))
1973 		return flags;
1974 	else if (S_ISREG(mode))
1975 		return flags & F2FS_REG_FLMASK;
1976 	else
1977 		return flags & F2FS_OTHER_FLMASK;
1978 }
1979 
1980 /* used for f2fs_inode_info->flags */
1981 enum {
1982 	FI_NEW_INODE,		/* indicate newly allocated inode */
1983 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1984 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
1985 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1986 	FI_INC_LINK,		/* need to increment i_nlink */
1987 	FI_ACL_MODE,		/* indicate acl mode */
1988 	FI_NO_ALLOC,		/* should not allocate any blocks */
1989 	FI_FREE_NID,		/* free allocated nide */
1990 	FI_NO_EXTENT,		/* not to use the extent cache */
1991 	FI_INLINE_XATTR,	/* used for inline xattr */
1992 	FI_INLINE_DATA,		/* used for inline data*/
1993 	FI_INLINE_DENTRY,	/* used for inline dentry */
1994 	FI_APPEND_WRITE,	/* inode has appended data */
1995 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1996 	FI_NEED_IPU,		/* used for ipu per file */
1997 	FI_ATOMIC_FILE,		/* indicate atomic file */
1998 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
1999 	FI_VOLATILE_FILE,	/* indicate volatile file */
2000 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2001 	FI_DROP_CACHE,		/* drop dirty page cache */
2002 	FI_DATA_EXIST,		/* indicate data exists */
2003 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2004 	FI_DO_DEFRAG,		/* indicate defragment is running */
2005 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2006 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2007 	FI_HOT_DATA,		/* indicate file is hot */
2008 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2009 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2010 };
2011 
2012 static inline void __mark_inode_dirty_flag(struct inode *inode,
2013 						int flag, bool set)
2014 {
2015 	switch (flag) {
2016 	case FI_INLINE_XATTR:
2017 	case FI_INLINE_DATA:
2018 	case FI_INLINE_DENTRY:
2019 		if (set)
2020 			return;
2021 	case FI_DATA_EXIST:
2022 	case FI_INLINE_DOTS:
2023 		f2fs_mark_inode_dirty_sync(inode, true);
2024 	}
2025 }
2026 
2027 static inline void set_inode_flag(struct inode *inode, int flag)
2028 {
2029 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2030 		set_bit(flag, &F2FS_I(inode)->flags);
2031 	__mark_inode_dirty_flag(inode, flag, true);
2032 }
2033 
2034 static inline int is_inode_flag_set(struct inode *inode, int flag)
2035 {
2036 	return test_bit(flag, &F2FS_I(inode)->flags);
2037 }
2038 
2039 static inline void clear_inode_flag(struct inode *inode, int flag)
2040 {
2041 	if (test_bit(flag, &F2FS_I(inode)->flags))
2042 		clear_bit(flag, &F2FS_I(inode)->flags);
2043 	__mark_inode_dirty_flag(inode, flag, false);
2044 }
2045 
2046 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2047 {
2048 	F2FS_I(inode)->i_acl_mode = mode;
2049 	set_inode_flag(inode, FI_ACL_MODE);
2050 	f2fs_mark_inode_dirty_sync(inode, false);
2051 }
2052 
2053 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2054 {
2055 	if (inc)
2056 		inc_nlink(inode);
2057 	else
2058 		drop_nlink(inode);
2059 	f2fs_mark_inode_dirty_sync(inode, true);
2060 }
2061 
2062 static inline void f2fs_i_blocks_write(struct inode *inode,
2063 					block_t diff, bool add, bool claim)
2064 {
2065 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2066 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2067 
2068 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2069 	if (add) {
2070 		if (claim)
2071 			dquot_claim_block(inode, diff);
2072 		else
2073 			dquot_alloc_block_nofail(inode, diff);
2074 	} else {
2075 		dquot_free_block(inode, diff);
2076 	}
2077 
2078 	f2fs_mark_inode_dirty_sync(inode, true);
2079 	if (clean || recover)
2080 		set_inode_flag(inode, FI_AUTO_RECOVER);
2081 }
2082 
2083 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2084 {
2085 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2086 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2087 
2088 	if (i_size_read(inode) == i_size)
2089 		return;
2090 
2091 	i_size_write(inode, i_size);
2092 	f2fs_mark_inode_dirty_sync(inode, true);
2093 	if (clean || recover)
2094 		set_inode_flag(inode, FI_AUTO_RECOVER);
2095 }
2096 
2097 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2098 {
2099 	F2FS_I(inode)->i_current_depth = depth;
2100 	f2fs_mark_inode_dirty_sync(inode, true);
2101 }
2102 
2103 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2104 {
2105 	F2FS_I(inode)->i_xattr_nid = xnid;
2106 	f2fs_mark_inode_dirty_sync(inode, true);
2107 }
2108 
2109 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2110 {
2111 	F2FS_I(inode)->i_pino = pino;
2112 	f2fs_mark_inode_dirty_sync(inode, true);
2113 }
2114 
2115 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2116 {
2117 	struct f2fs_inode_info *fi = F2FS_I(inode);
2118 
2119 	if (ri->i_inline & F2FS_INLINE_XATTR)
2120 		set_bit(FI_INLINE_XATTR, &fi->flags);
2121 	if (ri->i_inline & F2FS_INLINE_DATA)
2122 		set_bit(FI_INLINE_DATA, &fi->flags);
2123 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2124 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2125 	if (ri->i_inline & F2FS_DATA_EXIST)
2126 		set_bit(FI_DATA_EXIST, &fi->flags);
2127 	if (ri->i_inline & F2FS_INLINE_DOTS)
2128 		set_bit(FI_INLINE_DOTS, &fi->flags);
2129 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2130 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2131 }
2132 
2133 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2134 {
2135 	ri->i_inline = 0;
2136 
2137 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2138 		ri->i_inline |= F2FS_INLINE_XATTR;
2139 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2140 		ri->i_inline |= F2FS_INLINE_DATA;
2141 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2142 		ri->i_inline |= F2FS_INLINE_DENTRY;
2143 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2144 		ri->i_inline |= F2FS_DATA_EXIST;
2145 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2146 		ri->i_inline |= F2FS_INLINE_DOTS;
2147 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2148 		ri->i_inline |= F2FS_EXTRA_ATTR;
2149 }
2150 
2151 static inline int f2fs_has_extra_attr(struct inode *inode)
2152 {
2153 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2154 }
2155 
2156 static inline int f2fs_has_inline_xattr(struct inode *inode)
2157 {
2158 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2159 }
2160 
2161 static inline unsigned int addrs_per_inode(struct inode *inode)
2162 {
2163 	if (f2fs_has_inline_xattr(inode))
2164 		return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS;
2165 	return CUR_ADDRS_PER_INODE(inode);
2166 }
2167 
2168 static inline void *inline_xattr_addr(struct page *page)
2169 {
2170 	struct f2fs_inode *ri = F2FS_INODE(page);
2171 
2172 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2173 					F2FS_INLINE_XATTR_ADDRS]);
2174 }
2175 
2176 static inline int inline_xattr_size(struct inode *inode)
2177 {
2178 	if (f2fs_has_inline_xattr(inode))
2179 		return F2FS_INLINE_XATTR_ADDRS << 2;
2180 	else
2181 		return 0;
2182 }
2183 
2184 static inline int f2fs_has_inline_data(struct inode *inode)
2185 {
2186 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2187 }
2188 
2189 static inline int f2fs_exist_data(struct inode *inode)
2190 {
2191 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2192 }
2193 
2194 static inline int f2fs_has_inline_dots(struct inode *inode)
2195 {
2196 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2197 }
2198 
2199 static inline bool f2fs_is_atomic_file(struct inode *inode)
2200 {
2201 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2202 }
2203 
2204 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2205 {
2206 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2207 }
2208 
2209 static inline bool f2fs_is_volatile_file(struct inode *inode)
2210 {
2211 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2212 }
2213 
2214 static inline bool f2fs_is_first_block_written(struct inode *inode)
2215 {
2216 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2217 }
2218 
2219 static inline bool f2fs_is_drop_cache(struct inode *inode)
2220 {
2221 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2222 }
2223 
2224 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2225 {
2226 	struct f2fs_inode *ri = F2FS_INODE(page);
2227 	int extra_size = get_extra_isize(inode);
2228 
2229 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2230 }
2231 
2232 static inline int f2fs_has_inline_dentry(struct inode *inode)
2233 {
2234 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2235 }
2236 
2237 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2238 {
2239 	if (!f2fs_has_inline_dentry(dir))
2240 		kunmap(page);
2241 }
2242 
2243 static inline int is_file(struct inode *inode, int type)
2244 {
2245 	return F2FS_I(inode)->i_advise & type;
2246 }
2247 
2248 static inline void set_file(struct inode *inode, int type)
2249 {
2250 	F2FS_I(inode)->i_advise |= type;
2251 	f2fs_mark_inode_dirty_sync(inode, true);
2252 }
2253 
2254 static inline void clear_file(struct inode *inode, int type)
2255 {
2256 	F2FS_I(inode)->i_advise &= ~type;
2257 	f2fs_mark_inode_dirty_sync(inode, true);
2258 }
2259 
2260 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2261 {
2262 	if (dsync) {
2263 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2264 		bool ret;
2265 
2266 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2267 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2268 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2269 		return ret;
2270 	}
2271 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2272 			file_keep_isize(inode) ||
2273 			i_size_read(inode) & PAGE_MASK)
2274 		return false;
2275 	return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2276 }
2277 
2278 static inline int f2fs_readonly(struct super_block *sb)
2279 {
2280 	return sb->s_flags & MS_RDONLY;
2281 }
2282 
2283 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2284 {
2285 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2286 }
2287 
2288 static inline bool is_dot_dotdot(const struct qstr *str)
2289 {
2290 	if (str->len == 1 && str->name[0] == '.')
2291 		return true;
2292 
2293 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2294 		return true;
2295 
2296 	return false;
2297 }
2298 
2299 static inline bool f2fs_may_extent_tree(struct inode *inode)
2300 {
2301 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2302 			is_inode_flag_set(inode, FI_NO_EXTENT))
2303 		return false;
2304 
2305 	return S_ISREG(inode->i_mode);
2306 }
2307 
2308 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2309 					size_t size, gfp_t flags)
2310 {
2311 #ifdef CONFIG_F2FS_FAULT_INJECTION
2312 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2313 		f2fs_show_injection_info(FAULT_KMALLOC);
2314 		return NULL;
2315 	}
2316 #endif
2317 	return kmalloc(size, flags);
2318 }
2319 
2320 static inline int get_extra_isize(struct inode *inode)
2321 {
2322 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2323 }
2324 
2325 #define get_inode_mode(i) \
2326 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2327 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2328 
2329 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2330 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2331 	offsetof(struct f2fs_inode, i_extra_isize))	\
2332 
2333 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2334 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2335 		((offsetof(typeof(*f2fs_inode), field) +	\
2336 		sizeof((f2fs_inode)->field))			\
2337 		<= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize))	\
2338 
2339 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2340 {
2341 	int i;
2342 
2343 	spin_lock(&sbi->iostat_lock);
2344 	for (i = 0; i < NR_IO_TYPE; i++)
2345 		sbi->write_iostat[i] = 0;
2346 	spin_unlock(&sbi->iostat_lock);
2347 }
2348 
2349 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2350 			enum iostat_type type, unsigned long long io_bytes)
2351 {
2352 	if (!sbi->iostat_enable)
2353 		return;
2354 	spin_lock(&sbi->iostat_lock);
2355 	sbi->write_iostat[type] += io_bytes;
2356 
2357 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2358 		sbi->write_iostat[APP_BUFFERED_IO] =
2359 			sbi->write_iostat[APP_WRITE_IO] -
2360 			sbi->write_iostat[APP_DIRECT_IO];
2361 	spin_unlock(&sbi->iostat_lock);
2362 }
2363 
2364 /*
2365  * file.c
2366  */
2367 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2368 void truncate_data_blocks(struct dnode_of_data *dn);
2369 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2370 int f2fs_truncate(struct inode *inode);
2371 int f2fs_getattr(const struct path *path, struct kstat *stat,
2372 			u32 request_mask, unsigned int flags);
2373 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2374 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2375 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2376 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2377 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2378 
2379 /*
2380  * inode.c
2381  */
2382 void f2fs_set_inode_flags(struct inode *inode);
2383 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2384 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2385 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2386 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2387 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2388 int update_inode(struct inode *inode, struct page *node_page);
2389 int update_inode_page(struct inode *inode);
2390 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2391 void f2fs_evict_inode(struct inode *inode);
2392 void handle_failed_inode(struct inode *inode);
2393 
2394 /*
2395  * namei.c
2396  */
2397 struct dentry *f2fs_get_parent(struct dentry *child);
2398 
2399 /*
2400  * dir.c
2401  */
2402 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2403 unsigned char get_de_type(struct f2fs_dir_entry *de);
2404 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2405 			f2fs_hash_t namehash, int *max_slots,
2406 			struct f2fs_dentry_ptr *d);
2407 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2408 			unsigned int start_pos, struct fscrypt_str *fstr);
2409 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2410 			struct f2fs_dentry_ptr *d);
2411 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2412 			const struct qstr *new_name,
2413 			const struct qstr *orig_name, struct page *dpage);
2414 void update_parent_metadata(struct inode *dir, struct inode *inode,
2415 			unsigned int current_depth);
2416 int room_for_filename(const void *bitmap, int slots, int max_slots);
2417 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2418 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2419 			struct fscrypt_name *fname, struct page **res_page);
2420 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2421 			const struct qstr *child, struct page **res_page);
2422 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2423 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2424 			struct page **page);
2425 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2426 			struct page *page, struct inode *inode);
2427 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2428 			const struct qstr *name, f2fs_hash_t name_hash,
2429 			unsigned int bit_pos);
2430 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2431 			const struct qstr *orig_name,
2432 			struct inode *inode, nid_t ino, umode_t mode);
2433 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2434 			struct inode *inode, nid_t ino, umode_t mode);
2435 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2436 			struct inode *inode, nid_t ino, umode_t mode);
2437 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2438 			struct inode *dir, struct inode *inode);
2439 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2440 bool f2fs_empty_dir(struct inode *dir);
2441 
2442 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2443 {
2444 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2445 				inode, inode->i_ino, inode->i_mode);
2446 }
2447 
2448 /*
2449  * super.c
2450  */
2451 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2452 void f2fs_inode_synced(struct inode *inode);
2453 void f2fs_enable_quota_files(struct f2fs_sb_info *sbi);
2454 void f2fs_quota_off_umount(struct super_block *sb);
2455 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2456 int f2fs_sync_fs(struct super_block *sb, int sync);
2457 extern __printf(3, 4)
2458 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2459 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2460 
2461 /*
2462  * hash.c
2463  */
2464 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2465 				struct fscrypt_name *fname);
2466 
2467 /*
2468  * node.c
2469  */
2470 struct dnode_of_data;
2471 struct node_info;
2472 
2473 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2474 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2475 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2476 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2477 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2478 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2479 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2480 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2481 int truncate_xattr_node(struct inode *inode, struct page *page);
2482 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2483 int remove_inode_page(struct inode *inode);
2484 struct page *new_inode_page(struct inode *inode);
2485 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2486 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2487 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2488 struct page *get_node_page_ra(struct page *parent, int start);
2489 void move_node_page(struct page *node_page, int gc_type);
2490 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2491 			struct writeback_control *wbc, bool atomic);
2492 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2493 			bool do_balance, enum iostat_type io_type);
2494 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2495 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2496 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2497 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2498 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2499 void recover_inline_xattr(struct inode *inode, struct page *page);
2500 int recover_xattr_data(struct inode *inode, struct page *page,
2501 			block_t blkaddr);
2502 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2503 int restore_node_summary(struct f2fs_sb_info *sbi,
2504 			unsigned int segno, struct f2fs_summary_block *sum);
2505 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2506 int build_node_manager(struct f2fs_sb_info *sbi);
2507 void destroy_node_manager(struct f2fs_sb_info *sbi);
2508 int __init create_node_manager_caches(void);
2509 void destroy_node_manager_caches(void);
2510 
2511 /*
2512  * segment.c
2513  */
2514 bool need_SSR(struct f2fs_sb_info *sbi);
2515 void register_inmem_page(struct inode *inode, struct page *page);
2516 void drop_inmem_pages(struct inode *inode);
2517 void drop_inmem_page(struct inode *inode, struct page *page);
2518 int commit_inmem_pages(struct inode *inode);
2519 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2520 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2521 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2522 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2523 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2524 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2525 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2526 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2527 void stop_discard_thread(struct f2fs_sb_info *sbi);
2528 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi, bool umount);
2529 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2530 void release_discard_addrs(struct f2fs_sb_info *sbi);
2531 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2532 void allocate_new_segments(struct f2fs_sb_info *sbi);
2533 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2534 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2535 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2536 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2537 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2538 						enum iostat_type io_type);
2539 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2540 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2541 int rewrite_data_page(struct f2fs_io_info *fio);
2542 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2543 			block_t old_blkaddr, block_t new_blkaddr,
2544 			bool recover_curseg, bool recover_newaddr);
2545 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2546 			block_t old_addr, block_t new_addr,
2547 			unsigned char version, bool recover_curseg,
2548 			bool recover_newaddr);
2549 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2550 			block_t old_blkaddr, block_t *new_blkaddr,
2551 			struct f2fs_summary *sum, int type,
2552 			struct f2fs_io_info *fio, bool add_list);
2553 void f2fs_wait_on_page_writeback(struct page *page,
2554 			enum page_type type, bool ordered);
2555 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2556 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2557 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2558 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2559 			unsigned int val, int alloc);
2560 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2561 int build_segment_manager(struct f2fs_sb_info *sbi);
2562 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2563 int __init create_segment_manager_caches(void);
2564 void destroy_segment_manager_caches(void);
2565 
2566 /*
2567  * checkpoint.c
2568  */
2569 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2570 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2571 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2572 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2573 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2574 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2575 			int type, bool sync);
2576 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2577 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2578 			long nr_to_write, enum iostat_type io_type);
2579 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2580 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2581 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2582 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2583 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2584 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2585 void release_orphan_inode(struct f2fs_sb_info *sbi);
2586 void add_orphan_inode(struct inode *inode);
2587 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2588 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2589 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2590 void update_dirty_page(struct inode *inode, struct page *page);
2591 void remove_dirty_inode(struct inode *inode);
2592 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2593 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2594 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2595 int __init create_checkpoint_caches(void);
2596 void destroy_checkpoint_caches(void);
2597 
2598 /*
2599  * data.c
2600  */
2601 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2602 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2603 				struct inode *inode, nid_t ino, pgoff_t idx,
2604 				enum page_type type);
2605 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2606 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2607 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2608 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2609 			block_t blk_addr, struct bio *bio);
2610 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2611 void set_data_blkaddr(struct dnode_of_data *dn);
2612 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2613 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2614 int reserve_new_block(struct dnode_of_data *dn);
2615 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2616 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2617 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2618 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2619 			int op_flags, bool for_write);
2620 struct page *find_data_page(struct inode *inode, pgoff_t index);
2621 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2622 			bool for_write);
2623 struct page *get_new_data_page(struct inode *inode,
2624 			struct page *ipage, pgoff_t index, bool new_i_size);
2625 int do_write_data_page(struct f2fs_io_info *fio);
2626 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2627 			int create, int flag);
2628 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2629 			u64 start, u64 len);
2630 void f2fs_set_page_dirty_nobuffers(struct page *page);
2631 int __f2fs_write_data_pages(struct address_space *mapping,
2632 						struct writeback_control *wbc,
2633 						enum iostat_type io_type);
2634 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2635 			unsigned int length);
2636 int f2fs_release_page(struct page *page, gfp_t wait);
2637 #ifdef CONFIG_MIGRATION
2638 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2639 			struct page *page, enum migrate_mode mode);
2640 #endif
2641 
2642 /*
2643  * gc.c
2644  */
2645 int start_gc_thread(struct f2fs_sb_info *sbi);
2646 void stop_gc_thread(struct f2fs_sb_info *sbi);
2647 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2648 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2649 			unsigned int segno);
2650 void build_gc_manager(struct f2fs_sb_info *sbi);
2651 
2652 /*
2653  * recovery.c
2654  */
2655 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2656 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2657 
2658 /*
2659  * debug.c
2660  */
2661 #ifdef CONFIG_F2FS_STAT_FS
2662 struct f2fs_stat_info {
2663 	struct list_head stat_list;
2664 	struct f2fs_sb_info *sbi;
2665 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2666 	int main_area_segs, main_area_sections, main_area_zones;
2667 	unsigned long long hit_largest, hit_cached, hit_rbtree;
2668 	unsigned long long hit_total, total_ext;
2669 	int ext_tree, zombie_tree, ext_node;
2670 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2671 	int inmem_pages;
2672 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2673 	int nats, dirty_nats, sits, dirty_sits;
2674 	int free_nids, avail_nids, alloc_nids;
2675 	int total_count, utilization;
2676 	int bg_gc, nr_wb_cp_data, nr_wb_data;
2677 	int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2678 	int nr_discard_cmd;
2679 	unsigned int undiscard_blks;
2680 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2681 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2682 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2683 	unsigned int bimodal, avg_vblocks;
2684 	int util_free, util_valid, util_invalid;
2685 	int rsvd_segs, overp_segs;
2686 	int dirty_count, node_pages, meta_pages;
2687 	int prefree_count, call_count, cp_count, bg_cp_count;
2688 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
2689 	int bg_node_segs, bg_data_segs;
2690 	int tot_blks, data_blks, node_blks;
2691 	int bg_data_blks, bg_node_blks;
2692 	int curseg[NR_CURSEG_TYPE];
2693 	int cursec[NR_CURSEG_TYPE];
2694 	int curzone[NR_CURSEG_TYPE];
2695 
2696 	unsigned int segment_count[2];
2697 	unsigned int block_count[2];
2698 	unsigned int inplace_count;
2699 	unsigned long long base_mem, cache_mem, page_mem;
2700 };
2701 
2702 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2703 {
2704 	return (struct f2fs_stat_info *)sbi->stat_info;
2705 }
2706 
2707 #define stat_inc_cp_count(si)		((si)->cp_count++)
2708 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
2709 #define stat_inc_call_count(si)		((si)->call_count++)
2710 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
2711 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
2712 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
2713 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
2714 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
2715 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
2716 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
2717 #define stat_inc_inline_xattr(inode)					\
2718 	do {								\
2719 		if (f2fs_has_inline_xattr(inode))			\
2720 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
2721 	} while (0)
2722 #define stat_dec_inline_xattr(inode)					\
2723 	do {								\
2724 		if (f2fs_has_inline_xattr(inode))			\
2725 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
2726 	} while (0)
2727 #define stat_inc_inline_inode(inode)					\
2728 	do {								\
2729 		if (f2fs_has_inline_data(inode))			\
2730 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
2731 	} while (0)
2732 #define stat_dec_inline_inode(inode)					\
2733 	do {								\
2734 		if (f2fs_has_inline_data(inode))			\
2735 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
2736 	} while (0)
2737 #define stat_inc_inline_dir(inode)					\
2738 	do {								\
2739 		if (f2fs_has_inline_dentry(inode))			\
2740 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
2741 	} while (0)
2742 #define stat_dec_inline_dir(inode)					\
2743 	do {								\
2744 		if (f2fs_has_inline_dentry(inode))			\
2745 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
2746 	} while (0)
2747 #define stat_inc_seg_type(sbi, curseg)					\
2748 		((sbi)->segment_count[(curseg)->alloc_type]++)
2749 #define stat_inc_block_count(sbi, curseg)				\
2750 		((sbi)->block_count[(curseg)->alloc_type]++)
2751 #define stat_inc_inplace_blocks(sbi)					\
2752 		(atomic_inc(&(sbi)->inplace_count))
2753 #define stat_inc_atomic_write(inode)					\
2754 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2755 #define stat_dec_atomic_write(inode)					\
2756 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2757 #define stat_update_max_atomic_write(inode)				\
2758 	do {								\
2759 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
2760 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
2761 		if (cur > max)						\
2762 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
2763 	} while (0)
2764 #define stat_inc_volatile_write(inode)					\
2765 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2766 #define stat_dec_volatile_write(inode)					\
2767 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2768 #define stat_update_max_volatile_write(inode)				\
2769 	do {								\
2770 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
2771 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
2772 		if (cur > max)						\
2773 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
2774 	} while (0)
2775 #define stat_inc_seg_count(sbi, type, gc_type)				\
2776 	do {								\
2777 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2778 		si->tot_segs++;						\
2779 		if ((type) == SUM_TYPE_DATA) {				\
2780 			si->data_segs++;				\
2781 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2782 		} else {						\
2783 			si->node_segs++;				\
2784 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2785 		}							\
2786 	} while (0)
2787 
2788 #define stat_inc_tot_blk_count(si, blks)				\
2789 	((si)->tot_blks += (blks))
2790 
2791 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2792 	do {								\
2793 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2794 		stat_inc_tot_blk_count(si, blks);			\
2795 		si->data_blks += (blks);				\
2796 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2797 	} while (0)
2798 
2799 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2800 	do {								\
2801 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2802 		stat_inc_tot_blk_count(si, blks);			\
2803 		si->node_blks += (blks);				\
2804 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
2805 	} while (0)
2806 
2807 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2808 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2809 int __init f2fs_create_root_stats(void);
2810 void f2fs_destroy_root_stats(void);
2811 #else
2812 #define stat_inc_cp_count(si)				do { } while (0)
2813 #define stat_inc_bg_cp_count(si)			do { } while (0)
2814 #define stat_inc_call_count(si)				do { } while (0)
2815 #define stat_inc_bggc_count(si)				do { } while (0)
2816 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
2817 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
2818 #define stat_inc_total_hit(sb)				do { } while (0)
2819 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
2820 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
2821 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
2822 #define stat_inc_inline_xattr(inode)			do { } while (0)
2823 #define stat_dec_inline_xattr(inode)			do { } while (0)
2824 #define stat_inc_inline_inode(inode)			do { } while (0)
2825 #define stat_dec_inline_inode(inode)			do { } while (0)
2826 #define stat_inc_inline_dir(inode)			do { } while (0)
2827 #define stat_dec_inline_dir(inode)			do { } while (0)
2828 #define stat_inc_atomic_write(inode)			do { } while (0)
2829 #define stat_dec_atomic_write(inode)			do { } while (0)
2830 #define stat_update_max_atomic_write(inode)		do { } while (0)
2831 #define stat_inc_volatile_write(inode)			do { } while (0)
2832 #define stat_dec_volatile_write(inode)			do { } while (0)
2833 #define stat_update_max_volatile_write(inode)		do { } while (0)
2834 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
2835 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
2836 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
2837 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
2838 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
2839 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
2840 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
2841 
2842 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2843 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2844 static inline int __init f2fs_create_root_stats(void) { return 0; }
2845 static inline void f2fs_destroy_root_stats(void) { }
2846 #endif
2847 
2848 extern const struct file_operations f2fs_dir_operations;
2849 extern const struct file_operations f2fs_file_operations;
2850 extern const struct inode_operations f2fs_file_inode_operations;
2851 extern const struct address_space_operations f2fs_dblock_aops;
2852 extern const struct address_space_operations f2fs_node_aops;
2853 extern const struct address_space_operations f2fs_meta_aops;
2854 extern const struct inode_operations f2fs_dir_inode_operations;
2855 extern const struct inode_operations f2fs_symlink_inode_operations;
2856 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2857 extern const struct inode_operations f2fs_special_inode_operations;
2858 extern struct kmem_cache *inode_entry_slab;
2859 
2860 /*
2861  * inline.c
2862  */
2863 bool f2fs_may_inline_data(struct inode *inode);
2864 bool f2fs_may_inline_dentry(struct inode *inode);
2865 void read_inline_data(struct page *page, struct page *ipage);
2866 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2867 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2868 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2869 int f2fs_convert_inline_inode(struct inode *inode);
2870 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2871 bool recover_inline_data(struct inode *inode, struct page *npage);
2872 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2873 			struct fscrypt_name *fname, struct page **res_page);
2874 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2875 			struct page *ipage);
2876 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2877 			const struct qstr *orig_name,
2878 			struct inode *inode, nid_t ino, umode_t mode);
2879 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2880 			struct inode *dir, struct inode *inode);
2881 bool f2fs_empty_inline_dir(struct inode *dir);
2882 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2883 			struct fscrypt_str *fstr);
2884 int f2fs_inline_data_fiemap(struct inode *inode,
2885 			struct fiemap_extent_info *fieinfo,
2886 			__u64 start, __u64 len);
2887 
2888 /*
2889  * shrinker.c
2890  */
2891 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2892 			struct shrink_control *sc);
2893 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2894 			struct shrink_control *sc);
2895 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2896 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2897 
2898 /*
2899  * extent_cache.c
2900  */
2901 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2902 				struct rb_entry *cached_re, unsigned int ofs);
2903 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2904 				struct rb_root *root, struct rb_node **parent,
2905 				unsigned int ofs);
2906 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2907 		struct rb_entry *cached_re, unsigned int ofs,
2908 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
2909 		struct rb_node ***insert_p, struct rb_node **insert_parent,
2910 		bool force);
2911 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2912 						struct rb_root *root);
2913 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2914 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2915 void f2fs_drop_extent_tree(struct inode *inode);
2916 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2917 void f2fs_destroy_extent_tree(struct inode *inode);
2918 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
2919 			struct extent_info *ei);
2920 void f2fs_update_extent_cache(struct dnode_of_data *dn);
2921 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2922 			pgoff_t fofs, block_t blkaddr, unsigned int len);
2923 void init_extent_cache_info(struct f2fs_sb_info *sbi);
2924 int __init create_extent_cache(void);
2925 void destroy_extent_cache(void);
2926 
2927 /*
2928  * sysfs.c
2929  */
2930 int __init f2fs_init_sysfs(void);
2931 void f2fs_exit_sysfs(void);
2932 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
2933 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
2934 
2935 /*
2936  * crypto support
2937  */
2938 static inline bool f2fs_encrypted_inode(struct inode *inode)
2939 {
2940 	return file_is_encrypt(inode);
2941 }
2942 
2943 static inline bool f2fs_encrypted_file(struct inode *inode)
2944 {
2945 	return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
2946 }
2947 
2948 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2949 {
2950 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2951 	file_set_encrypt(inode);
2952 #endif
2953 }
2954 
2955 static inline bool f2fs_bio_encrypted(struct bio *bio)
2956 {
2957 	return bio->bi_private != NULL;
2958 }
2959 
2960 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2961 {
2962 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2963 }
2964 
2965 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
2966 {
2967 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
2968 }
2969 
2970 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
2971 {
2972 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
2973 }
2974 
2975 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
2976 {
2977 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
2978 }
2979 
2980 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
2981 {
2982 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
2983 }
2984 
2985 #ifdef CONFIG_BLK_DEV_ZONED
2986 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
2987 			struct block_device *bdev, block_t blkaddr)
2988 {
2989 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
2990 	int i;
2991 
2992 	for (i = 0; i < sbi->s_ndevs; i++)
2993 		if (FDEV(i).bdev == bdev)
2994 			return FDEV(i).blkz_type[zno];
2995 	return -EINVAL;
2996 }
2997 #endif
2998 
2999 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3000 {
3001 	struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3002 
3003 	return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3004 }
3005 
3006 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3007 {
3008 	clear_opt(sbi, ADAPTIVE);
3009 	clear_opt(sbi, LFS);
3010 
3011 	switch (mt) {
3012 	case F2FS_MOUNT_ADAPTIVE:
3013 		set_opt(sbi, ADAPTIVE);
3014 		break;
3015 	case F2FS_MOUNT_LFS:
3016 		set_opt(sbi, LFS);
3017 		break;
3018 	}
3019 }
3020 
3021 static inline bool f2fs_may_encrypt(struct inode *inode)
3022 {
3023 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3024 	umode_t mode = inode->i_mode;
3025 
3026 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3027 #else
3028 	return 0;
3029 #endif
3030 }
3031 
3032 #endif
3033