xref: /linux/fs/f2fs/f2fs.h (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * fs/f2fs/f2fs.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13 
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 
26 #ifdef CONFIG_F2FS_CHECK_FS
27 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
28 #define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
29 #else
30 #define f2fs_bug_on(sbi, condition)					\
31 	do {								\
32 		if (unlikely(condition)) {				\
33 			WARN_ON(1);					\
34 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
35 		}							\
36 	} while (0)
37 #define f2fs_down_write(x, y)	down_write(x)
38 #endif
39 
40 /*
41  * For mount options
42  */
43 #define F2FS_MOUNT_BG_GC		0x00000001
44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
45 #define F2FS_MOUNT_DISCARD		0x00000004
46 #define F2FS_MOUNT_NOHEAP		0x00000008
47 #define F2FS_MOUNT_XATTR_USER		0x00000010
48 #define F2FS_MOUNT_POSIX_ACL		0x00000020
49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
50 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
51 #define F2FS_MOUNT_INLINE_DATA		0x00000100
52 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
53 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
54 #define F2FS_MOUNT_NOBARRIER		0x00000800
55 #define F2FS_MOUNT_FASTBOOT		0x00001000
56 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
57 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
58 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
59 
60 #define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
61 #define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
62 #define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
63 
64 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
65 		typecheck(unsigned long long, b) &&			\
66 		((long long)((a) - (b)) > 0))
67 
68 typedef u32 block_t;	/*
69 			 * should not change u32, since it is the on-disk block
70 			 * address format, __le32.
71 			 */
72 typedef u32 nid_t;
73 
74 struct f2fs_mount_info {
75 	unsigned int	opt;
76 };
77 
78 #define F2FS_FEATURE_ENCRYPT	0x0001
79 
80 #define F2FS_HAS_FEATURE(sb, mask)					\
81 	((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
82 #define F2FS_SET_FEATURE(sb, mask)					\
83 	F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
84 #define F2FS_CLEAR_FEATURE(sb, mask)					\
85 	F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
86 
87 #define CRCPOLY_LE 0xedb88320
88 
89 static inline __u32 f2fs_crc32(void *buf, size_t len)
90 {
91 	unsigned char *p = (unsigned char *)buf;
92 	__u32 crc = F2FS_SUPER_MAGIC;
93 	int i;
94 
95 	while (len--) {
96 		crc ^= *p++;
97 		for (i = 0; i < 8; i++)
98 			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
99 	}
100 	return crc;
101 }
102 
103 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
104 {
105 	return f2fs_crc32(buf, buf_size) == blk_crc;
106 }
107 
108 /*
109  * For checkpoint manager
110  */
111 enum {
112 	NAT_BITMAP,
113 	SIT_BITMAP
114 };
115 
116 enum {
117 	CP_UMOUNT,
118 	CP_FASTBOOT,
119 	CP_SYNC,
120 	CP_RECOVERY,
121 	CP_DISCARD,
122 };
123 
124 #define DEF_BATCHED_TRIM_SECTIONS	32
125 #define BATCHED_TRIM_SEGMENTS(sbi)	\
126 		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
127 #define BATCHED_TRIM_BLOCKS(sbi)	\
128 		(BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
129 #define DEF_CP_INTERVAL			60	/* 60 secs */
130 #define DEF_IDLE_INTERVAL		120	/* 2 mins */
131 
132 struct cp_control {
133 	int reason;
134 	__u64 trim_start;
135 	__u64 trim_end;
136 	__u64 trim_minlen;
137 	__u64 trimmed;
138 };
139 
140 /*
141  * For CP/NAT/SIT/SSA readahead
142  */
143 enum {
144 	META_CP,
145 	META_NAT,
146 	META_SIT,
147 	META_SSA,
148 	META_POR,
149 };
150 
151 /* for the list of ino */
152 enum {
153 	ORPHAN_INO,		/* for orphan ino list */
154 	APPEND_INO,		/* for append ino list */
155 	UPDATE_INO,		/* for update ino list */
156 	MAX_INO_ENTRY,		/* max. list */
157 };
158 
159 struct ino_entry {
160 	struct list_head list;	/* list head */
161 	nid_t ino;		/* inode number */
162 };
163 
164 /* for the list of inodes to be GCed */
165 struct inode_entry {
166 	struct list_head list;	/* list head */
167 	struct inode *inode;	/* vfs inode pointer */
168 };
169 
170 /* for the list of blockaddresses to be discarded */
171 struct discard_entry {
172 	struct list_head list;	/* list head */
173 	block_t blkaddr;	/* block address to be discarded */
174 	int len;		/* # of consecutive blocks of the discard */
175 };
176 
177 /* for the list of fsync inodes, used only during recovery */
178 struct fsync_inode_entry {
179 	struct list_head list;	/* list head */
180 	struct inode *inode;	/* vfs inode pointer */
181 	block_t blkaddr;	/* block address locating the last fsync */
182 	block_t last_dentry;	/* block address locating the last dentry */
183 	block_t last_inode;	/* block address locating the last inode */
184 };
185 
186 #define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
187 #define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
188 
189 #define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
190 #define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
191 #define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
192 #define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
193 
194 #define MAX_NAT_JENTRIES(sum)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
195 #define MAX_SIT_JENTRIES(sum)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
196 
197 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
198 {
199 	int before = nats_in_cursum(rs);
200 	rs->n_nats = cpu_to_le16(before + i);
201 	return before;
202 }
203 
204 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
205 {
206 	int before = sits_in_cursum(rs);
207 	rs->n_sits = cpu_to_le16(before + i);
208 	return before;
209 }
210 
211 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
212 								int type)
213 {
214 	if (type == NAT_JOURNAL)
215 		return size <= MAX_NAT_JENTRIES(sum);
216 	return size <= MAX_SIT_JENTRIES(sum);
217 }
218 
219 /*
220  * ioctl commands
221  */
222 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
223 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
224 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
225 
226 #define F2FS_IOCTL_MAGIC		0xf5
227 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
229 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
231 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
232 #define F2FS_IOC_GARBAGE_COLLECT	_IO(F2FS_IOCTL_MAGIC, 6)
233 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
234 #define F2FS_IOC_DEFRAGMENT		_IO(F2FS_IOCTL_MAGIC, 8)
235 
236 #define F2FS_IOC_SET_ENCRYPTION_POLICY					\
237 		_IOR('f', 19, struct f2fs_encryption_policy)
238 #define F2FS_IOC_GET_ENCRYPTION_PWSALT					\
239 		_IOW('f', 20, __u8[16])
240 #define F2FS_IOC_GET_ENCRYPTION_POLICY					\
241 		_IOW('f', 21, struct f2fs_encryption_policy)
242 
243 /*
244  * should be same as XFS_IOC_GOINGDOWN.
245  * Flags for going down operation used by FS_IOC_GOINGDOWN
246  */
247 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
248 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
249 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
250 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
251 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
252 
253 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
254 /*
255  * ioctl commands in 32 bit emulation
256  */
257 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
258 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
259 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
260 #endif
261 
262 struct f2fs_defragment {
263 	u64 start;
264 	u64 len;
265 };
266 
267 /*
268  * For INODE and NODE manager
269  */
270 /* for directory operations */
271 struct f2fs_str {
272 	unsigned char *name;
273 	u32 len;
274 };
275 
276 struct f2fs_filename {
277 	const struct qstr *usr_fname;
278 	struct f2fs_str disk_name;
279 	f2fs_hash_t hash;
280 #ifdef CONFIG_F2FS_FS_ENCRYPTION
281 	struct f2fs_str crypto_buf;
282 #endif
283 };
284 
285 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
286 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
287 #define fname_name(p)		((p)->disk_name.name)
288 #define fname_len(p)		((p)->disk_name.len)
289 
290 struct f2fs_dentry_ptr {
291 	struct inode *inode;
292 	const void *bitmap;
293 	struct f2fs_dir_entry *dentry;
294 	__u8 (*filename)[F2FS_SLOT_LEN];
295 	int max;
296 };
297 
298 static inline void make_dentry_ptr(struct inode *inode,
299 		struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 	d->inode = inode;
302 
303 	if (type == 1) {
304 		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 		d->max = NR_DENTRY_IN_BLOCK;
306 		d->bitmap = &t->dentry_bitmap;
307 		d->dentry = t->dentry;
308 		d->filename = t->filename;
309 	} else {
310 		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 		d->max = NR_INLINE_DENTRY;
312 		d->bitmap = &t->dentry_bitmap;
313 		d->dentry = t->dentry;
314 		d->filename = t->filename;
315 	}
316 }
317 
318 /*
319  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320  * as its node offset to distinguish from index node blocks.
321  * But some bits are used to mark the node block.
322  */
323 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 				>> OFFSET_BIT_SHIFT)
325 enum {
326 	ALLOC_NODE,			/* allocate a new node page if needed */
327 	LOOKUP_NODE,			/* look up a node without readahead */
328 	LOOKUP_NODE_RA,			/*
329 					 * look up a node with readahead called
330 					 * by get_data_block.
331 					 */
332 };
333 
334 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
335 
336 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
337 
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE	64
340 
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
343 
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER	128
346 
347 struct extent_info {
348 	unsigned int fofs;		/* start offset in a file */
349 	u32 blk;			/* start block address of the extent */
350 	unsigned int len;		/* length of the extent */
351 };
352 
353 struct extent_node {
354 	struct rb_node rb_node;		/* rb node located in rb-tree */
355 	struct list_head list;		/* node in global extent list of sbi */
356 	struct extent_info ei;		/* extent info */
357 };
358 
359 struct extent_tree {
360 	nid_t ino;			/* inode number */
361 	struct rb_root root;		/* root of extent info rb-tree */
362 	struct extent_node *cached_en;	/* recently accessed extent node */
363 	struct extent_info largest;	/* largested extent info */
364 	struct list_head list;		/* to be used by sbi->zombie_list */
365 	rwlock_t lock;			/* protect extent info rb-tree */
366 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
367 };
368 
369 /*
370  * This structure is taken from ext4_map_blocks.
371  *
372  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
373  */
374 #define F2FS_MAP_NEW		(1 << BH_New)
375 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
376 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
377 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
378 				F2FS_MAP_UNWRITTEN)
379 
380 struct f2fs_map_blocks {
381 	block_t m_pblk;
382 	block_t m_lblk;
383 	unsigned int m_len;
384 	unsigned int m_flags;
385 };
386 
387 /* for flag in get_data_block */
388 #define F2FS_GET_BLOCK_READ		0
389 #define F2FS_GET_BLOCK_DIO		1
390 #define F2FS_GET_BLOCK_FIEMAP		2
391 #define F2FS_GET_BLOCK_BMAP		3
392 
393 /*
394  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
395  */
396 #define FADVISE_COLD_BIT	0x01
397 #define FADVISE_LOST_PINO_BIT	0x02
398 #define FADVISE_ENCRYPT_BIT	0x04
399 #define FADVISE_ENC_NAME_BIT	0x08
400 
401 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
402 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
403 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
404 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
405 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
406 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
407 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
408 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
409 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
410 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
411 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
412 
413 /* Encryption algorithms */
414 #define F2FS_ENCRYPTION_MODE_INVALID		0
415 #define F2FS_ENCRYPTION_MODE_AES_256_XTS	1
416 #define F2FS_ENCRYPTION_MODE_AES_256_GCM	2
417 #define F2FS_ENCRYPTION_MODE_AES_256_CBC	3
418 #define F2FS_ENCRYPTION_MODE_AES_256_CTS	4
419 
420 #include "f2fs_crypto.h"
421 
422 #define DEF_DIR_LEVEL		0
423 
424 struct f2fs_inode_info {
425 	struct inode vfs_inode;		/* serve a vfs inode */
426 	unsigned long i_flags;		/* keep an inode flags for ioctl */
427 	unsigned char i_advise;		/* use to give file attribute hints */
428 	unsigned char i_dir_level;	/* use for dentry level for large dir */
429 	unsigned int i_current_depth;	/* use only in directory structure */
430 	unsigned int i_pino;		/* parent inode number */
431 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
432 
433 	/* Use below internally in f2fs*/
434 	unsigned long flags;		/* use to pass per-file flags */
435 	struct rw_semaphore i_sem;	/* protect fi info */
436 	atomic_t dirty_pages;		/* # of dirty pages */
437 	f2fs_hash_t chash;		/* hash value of given file name */
438 	unsigned int clevel;		/* maximum level of given file name */
439 	nid_t i_xattr_nid;		/* node id that contains xattrs */
440 	unsigned long long xattr_ver;	/* cp version of xattr modification */
441 
442 	struct list_head dirty_list;	/* linked in global dirty list */
443 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
444 	struct mutex inmem_lock;	/* lock for inmemory pages */
445 
446 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
447 
448 #ifdef CONFIG_F2FS_FS_ENCRYPTION
449 	/* Encryption params */
450 	struct f2fs_crypt_info *i_crypt_info;
451 #endif
452 };
453 
454 static inline void get_extent_info(struct extent_info *ext,
455 					struct f2fs_extent i_ext)
456 {
457 	ext->fofs = le32_to_cpu(i_ext.fofs);
458 	ext->blk = le32_to_cpu(i_ext.blk);
459 	ext->len = le32_to_cpu(i_ext.len);
460 }
461 
462 static inline void set_raw_extent(struct extent_info *ext,
463 					struct f2fs_extent *i_ext)
464 {
465 	i_ext->fofs = cpu_to_le32(ext->fofs);
466 	i_ext->blk = cpu_to_le32(ext->blk);
467 	i_ext->len = cpu_to_le32(ext->len);
468 }
469 
470 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
471 						u32 blk, unsigned int len)
472 {
473 	ei->fofs = fofs;
474 	ei->blk = blk;
475 	ei->len = len;
476 }
477 
478 static inline bool __is_extent_same(struct extent_info *ei1,
479 						struct extent_info *ei2)
480 {
481 	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
482 						ei1->len == ei2->len);
483 }
484 
485 static inline bool __is_extent_mergeable(struct extent_info *back,
486 						struct extent_info *front)
487 {
488 	return (back->fofs + back->len == front->fofs &&
489 			back->blk + back->len == front->blk);
490 }
491 
492 static inline bool __is_back_mergeable(struct extent_info *cur,
493 						struct extent_info *back)
494 {
495 	return __is_extent_mergeable(back, cur);
496 }
497 
498 static inline bool __is_front_mergeable(struct extent_info *cur,
499 						struct extent_info *front)
500 {
501 	return __is_extent_mergeable(cur, front);
502 }
503 
504 static inline void __try_update_largest_extent(struct extent_tree *et,
505 						struct extent_node *en)
506 {
507 	if (en->ei.len > et->largest.len)
508 		et->largest = en->ei;
509 }
510 
511 struct f2fs_nm_info {
512 	block_t nat_blkaddr;		/* base disk address of NAT */
513 	nid_t max_nid;			/* maximum possible node ids */
514 	nid_t available_nids;		/* maximum available node ids */
515 	nid_t next_scan_nid;		/* the next nid to be scanned */
516 	unsigned int ram_thresh;	/* control the memory footprint */
517 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
518 
519 	/* NAT cache management */
520 	struct radix_tree_root nat_root;/* root of the nat entry cache */
521 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
522 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
523 	struct list_head nat_entries;	/* cached nat entry list (clean) */
524 	unsigned int nat_cnt;		/* the # of cached nat entries */
525 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
526 
527 	/* free node ids management */
528 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
529 	struct list_head free_nid_list;	/* a list for free nids */
530 	spinlock_t free_nid_list_lock;	/* protect free nid list */
531 	unsigned int fcnt;		/* the number of free node id */
532 	struct mutex build_lock;	/* lock for build free nids */
533 
534 	/* for checkpoint */
535 	char *nat_bitmap;		/* NAT bitmap pointer */
536 	int bitmap_size;		/* bitmap size */
537 };
538 
539 /*
540  * this structure is used as one of function parameters.
541  * all the information are dedicated to a given direct node block determined
542  * by the data offset in a file.
543  */
544 struct dnode_of_data {
545 	struct inode *inode;		/* vfs inode pointer */
546 	struct page *inode_page;	/* its inode page, NULL is possible */
547 	struct page *node_page;		/* cached direct node page */
548 	nid_t nid;			/* node id of the direct node block */
549 	unsigned int ofs_in_node;	/* data offset in the node page */
550 	bool inode_page_locked;		/* inode page is locked or not */
551 	bool node_changed;		/* is node block changed */
552 	block_t	data_blkaddr;		/* block address of the node block */
553 };
554 
555 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
556 		struct page *ipage, struct page *npage, nid_t nid)
557 {
558 	memset(dn, 0, sizeof(*dn));
559 	dn->inode = inode;
560 	dn->inode_page = ipage;
561 	dn->node_page = npage;
562 	dn->nid = nid;
563 }
564 
565 /*
566  * For SIT manager
567  *
568  * By default, there are 6 active log areas across the whole main area.
569  * When considering hot and cold data separation to reduce cleaning overhead,
570  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
571  * respectively.
572  * In the current design, you should not change the numbers intentionally.
573  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
574  * logs individually according to the underlying devices. (default: 6)
575  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
576  * data and 8 for node logs.
577  */
578 #define	NR_CURSEG_DATA_TYPE	(3)
579 #define NR_CURSEG_NODE_TYPE	(3)
580 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
581 
582 enum {
583 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
584 	CURSEG_WARM_DATA,	/* data blocks */
585 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
586 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
587 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
588 	CURSEG_COLD_NODE,	/* indirect node blocks */
589 	NO_CHECK_TYPE,
590 	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
591 };
592 
593 struct flush_cmd {
594 	struct completion wait;
595 	struct llist_node llnode;
596 	int ret;
597 };
598 
599 struct flush_cmd_control {
600 	struct task_struct *f2fs_issue_flush;	/* flush thread */
601 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
602 	struct llist_head issue_list;		/* list for command issue */
603 	struct llist_node *dispatch_list;	/* list for command dispatch */
604 };
605 
606 struct f2fs_sm_info {
607 	struct sit_info *sit_info;		/* whole segment information */
608 	struct free_segmap_info *free_info;	/* free segment information */
609 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
610 	struct curseg_info *curseg_array;	/* active segment information */
611 
612 	block_t seg0_blkaddr;		/* block address of 0'th segment */
613 	block_t main_blkaddr;		/* start block address of main area */
614 	block_t ssa_blkaddr;		/* start block address of SSA area */
615 
616 	unsigned int segment_count;	/* total # of segments */
617 	unsigned int main_segments;	/* # of segments in main area */
618 	unsigned int reserved_segments;	/* # of reserved segments */
619 	unsigned int ovp_segments;	/* # of overprovision segments */
620 
621 	/* a threshold to reclaim prefree segments */
622 	unsigned int rec_prefree_segments;
623 
624 	/* for small discard management */
625 	struct list_head discard_list;		/* 4KB discard list */
626 	int nr_discards;			/* # of discards in the list */
627 	int max_discards;			/* max. discards to be issued */
628 
629 	/* for batched trimming */
630 	unsigned int trim_sections;		/* # of sections to trim */
631 
632 	struct list_head sit_entry_set;	/* sit entry set list */
633 
634 	unsigned int ipu_policy;	/* in-place-update policy */
635 	unsigned int min_ipu_util;	/* in-place-update threshold */
636 	unsigned int min_fsync_blocks;	/* threshold for fsync */
637 
638 	/* for flush command control */
639 	struct flush_cmd_control *cmd_control_info;
640 
641 };
642 
643 /*
644  * For superblock
645  */
646 /*
647  * COUNT_TYPE for monitoring
648  *
649  * f2fs monitors the number of several block types such as on-writeback,
650  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
651  */
652 enum count_type {
653 	F2FS_WRITEBACK,
654 	F2FS_DIRTY_DENTS,
655 	F2FS_DIRTY_DATA,
656 	F2FS_DIRTY_NODES,
657 	F2FS_DIRTY_META,
658 	F2FS_INMEM_PAGES,
659 	NR_COUNT_TYPE,
660 };
661 
662 /*
663  * The below are the page types of bios used in submit_bio().
664  * The available types are:
665  * DATA			User data pages. It operates as async mode.
666  * NODE			Node pages. It operates as async mode.
667  * META			FS metadata pages such as SIT, NAT, CP.
668  * NR_PAGE_TYPE		The number of page types.
669  * META_FLUSH		Make sure the previous pages are written
670  *			with waiting the bio's completion
671  * ...			Only can be used with META.
672  */
673 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
674 enum page_type {
675 	DATA,
676 	NODE,
677 	META,
678 	NR_PAGE_TYPE,
679 	META_FLUSH,
680 	INMEM,		/* the below types are used by tracepoints only. */
681 	INMEM_DROP,
682 	IPU,
683 	OPU,
684 };
685 
686 struct f2fs_io_info {
687 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
688 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
689 	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
690 	block_t blk_addr;	/* block address to be written */
691 	struct page *page;	/* page to be written */
692 	struct page *encrypted_page;	/* encrypted page */
693 };
694 
695 #define is_read_io(rw)	(((rw) & 1) == READ)
696 struct f2fs_bio_info {
697 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
698 	struct bio *bio;		/* bios to merge */
699 	sector_t last_block_in_bio;	/* last block number */
700 	struct f2fs_io_info fio;	/* store buffered io info. */
701 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
702 };
703 
704 enum inode_type {
705 	DIR_INODE,			/* for dirty dir inode */
706 	FILE_INODE,			/* for dirty regular/symlink inode */
707 	NR_INODE_TYPE,
708 };
709 
710 /* for inner inode cache management */
711 struct inode_management {
712 	struct radix_tree_root ino_root;	/* ino entry array */
713 	spinlock_t ino_lock;			/* for ino entry lock */
714 	struct list_head ino_list;		/* inode list head */
715 	unsigned long ino_num;			/* number of entries */
716 };
717 
718 /* For s_flag in struct f2fs_sb_info */
719 enum {
720 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
721 	SBI_IS_CLOSE,				/* specify unmounting */
722 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
723 	SBI_POR_DOING,				/* recovery is doing or not */
724 };
725 
726 enum {
727 	CP_TIME,
728 	REQ_TIME,
729 	MAX_TIME,
730 };
731 
732 struct f2fs_sb_info {
733 	struct super_block *sb;			/* pointer to VFS super block */
734 	struct proc_dir_entry *s_proc;		/* proc entry */
735 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
736 	int valid_super_block;			/* valid super block no */
737 	int s_flag;				/* flags for sbi */
738 
739 	/* for node-related operations */
740 	struct f2fs_nm_info *nm_info;		/* node manager */
741 	struct inode *node_inode;		/* cache node blocks */
742 
743 	/* for segment-related operations */
744 	struct f2fs_sm_info *sm_info;		/* segment manager */
745 
746 	/* for bio operations */
747 	struct f2fs_bio_info read_io;			/* for read bios */
748 	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
749 
750 	/* for checkpoint */
751 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
752 	struct inode *meta_inode;		/* cache meta blocks */
753 	struct mutex cp_mutex;			/* checkpoint procedure lock */
754 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
755 	struct rw_semaphore node_write;		/* locking node writes */
756 	struct mutex writepages;		/* mutex for writepages() */
757 	wait_queue_head_t cp_wait;
758 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
759 	long interval_time[MAX_TIME];		/* to store thresholds */
760 
761 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
762 
763 	/* for orphan inode, use 0'th array */
764 	unsigned int max_orphans;		/* max orphan inodes */
765 
766 	/* for inode management */
767 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
768 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
769 
770 	/* for extent tree cache */
771 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
772 	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
773 	struct list_head extent_list;		/* lru list for shrinker */
774 	spinlock_t extent_lock;			/* locking extent lru list */
775 	atomic_t total_ext_tree;		/* extent tree count */
776 	struct list_head zombie_list;		/* extent zombie tree list */
777 	atomic_t total_zombie_tree;		/* extent zombie tree count */
778 	atomic_t total_ext_node;		/* extent info count */
779 
780 	/* basic filesystem units */
781 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
782 	unsigned int log_blocksize;		/* log2 block size */
783 	unsigned int blocksize;			/* block size */
784 	unsigned int root_ino_num;		/* root inode number*/
785 	unsigned int node_ino_num;		/* node inode number*/
786 	unsigned int meta_ino_num;		/* meta inode number*/
787 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
788 	unsigned int blocks_per_seg;		/* blocks per segment */
789 	unsigned int segs_per_sec;		/* segments per section */
790 	unsigned int secs_per_zone;		/* sections per zone */
791 	unsigned int total_sections;		/* total section count */
792 	unsigned int total_node_count;		/* total node block count */
793 	unsigned int total_valid_node_count;	/* valid node block count */
794 	unsigned int total_valid_inode_count;	/* valid inode count */
795 	loff_t max_file_blocks;			/* max block index of file */
796 	int active_logs;			/* # of active logs */
797 	int dir_level;				/* directory level */
798 
799 	block_t user_block_count;		/* # of user blocks */
800 	block_t total_valid_block_count;	/* # of valid blocks */
801 	block_t alloc_valid_block_count;	/* # of allocated blocks */
802 	block_t discard_blks;			/* discard command candidats */
803 	block_t last_valid_block_count;		/* for recovery */
804 	u32 s_next_generation;			/* for NFS support */
805 	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
806 
807 	struct f2fs_mount_info mount_opt;	/* mount options */
808 
809 	/* for cleaning operations */
810 	struct mutex gc_mutex;			/* mutex for GC */
811 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
812 	unsigned int cur_victim_sec;		/* current victim section num */
813 
814 	/* maximum # of trials to find a victim segment for SSR and GC */
815 	unsigned int max_victim_search;
816 
817 	/*
818 	 * for stat information.
819 	 * one is for the LFS mode, and the other is for the SSR mode.
820 	 */
821 #ifdef CONFIG_F2FS_STAT_FS
822 	struct f2fs_stat_info *stat_info;	/* FS status information */
823 	unsigned int segment_count[2];		/* # of allocated segments */
824 	unsigned int block_count[2];		/* # of allocated blocks */
825 	atomic_t inplace_count;		/* # of inplace update */
826 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
827 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
828 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
829 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
830 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
831 	atomic_t inline_inode;			/* # of inline_data inodes */
832 	atomic_t inline_dir;			/* # of inline_dentry inodes */
833 	int bg_gc;				/* background gc calls */
834 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
835 #endif
836 	unsigned int last_victim[2];		/* last victim segment # */
837 	spinlock_t stat_lock;			/* lock for stat operations */
838 
839 	/* For sysfs suppport */
840 	struct kobject s_kobj;
841 	struct completion s_kobj_unregister;
842 
843 	/* For shrinker support */
844 	struct list_head s_list;
845 	struct mutex umount_mutex;
846 	unsigned int shrinker_run_no;
847 };
848 
849 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
850 {
851 	sbi->last_time[type] = jiffies;
852 }
853 
854 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
855 {
856 	struct timespec ts = {sbi->interval_time[type], 0};
857 	unsigned long interval = timespec_to_jiffies(&ts);
858 
859 	return time_after(jiffies, sbi->last_time[type] + interval);
860 }
861 
862 static inline bool is_idle(struct f2fs_sb_info *sbi)
863 {
864 	struct block_device *bdev = sbi->sb->s_bdev;
865 	struct request_queue *q = bdev_get_queue(bdev);
866 	struct request_list *rl = &q->root_rl;
867 
868 	if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
869 		return 0;
870 
871 	return f2fs_time_over(sbi, REQ_TIME);
872 }
873 
874 /*
875  * Inline functions
876  */
877 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
878 {
879 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
880 }
881 
882 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
883 {
884 	return sb->s_fs_info;
885 }
886 
887 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
888 {
889 	return F2FS_SB(inode->i_sb);
890 }
891 
892 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
893 {
894 	return F2FS_I_SB(mapping->host);
895 }
896 
897 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
898 {
899 	return F2FS_M_SB(page->mapping);
900 }
901 
902 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
903 {
904 	return (struct f2fs_super_block *)(sbi->raw_super);
905 }
906 
907 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
908 {
909 	return (struct f2fs_checkpoint *)(sbi->ckpt);
910 }
911 
912 static inline struct f2fs_node *F2FS_NODE(struct page *page)
913 {
914 	return (struct f2fs_node *)page_address(page);
915 }
916 
917 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
918 {
919 	return &((struct f2fs_node *)page_address(page))->i;
920 }
921 
922 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
923 {
924 	return (struct f2fs_nm_info *)(sbi->nm_info);
925 }
926 
927 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
928 {
929 	return (struct f2fs_sm_info *)(sbi->sm_info);
930 }
931 
932 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
933 {
934 	return (struct sit_info *)(SM_I(sbi)->sit_info);
935 }
936 
937 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
938 {
939 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
940 }
941 
942 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
943 {
944 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
945 }
946 
947 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
948 {
949 	return sbi->meta_inode->i_mapping;
950 }
951 
952 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
953 {
954 	return sbi->node_inode->i_mapping;
955 }
956 
957 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
958 {
959 	return sbi->s_flag & (0x01 << type);
960 }
961 
962 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
963 {
964 	sbi->s_flag |= (0x01 << type);
965 }
966 
967 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
968 {
969 	sbi->s_flag &= ~(0x01 << type);
970 }
971 
972 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
973 {
974 	return le64_to_cpu(cp->checkpoint_ver);
975 }
976 
977 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
978 {
979 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
980 	return ckpt_flags & f;
981 }
982 
983 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
984 {
985 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
986 	ckpt_flags |= f;
987 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
988 }
989 
990 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
991 {
992 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
993 	ckpt_flags &= (~f);
994 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
995 }
996 
997 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
998 {
999 	down_read(&sbi->cp_rwsem);
1000 }
1001 
1002 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1003 {
1004 	up_read(&sbi->cp_rwsem);
1005 }
1006 
1007 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1008 {
1009 	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
1010 }
1011 
1012 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1013 {
1014 	up_write(&sbi->cp_rwsem);
1015 }
1016 
1017 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1018 {
1019 	int reason = CP_SYNC;
1020 
1021 	if (test_opt(sbi, FASTBOOT))
1022 		reason = CP_FASTBOOT;
1023 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1024 		reason = CP_UMOUNT;
1025 	return reason;
1026 }
1027 
1028 static inline bool __remain_node_summaries(int reason)
1029 {
1030 	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1031 }
1032 
1033 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1034 {
1035 	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1036 			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1037 }
1038 
1039 /*
1040  * Check whether the given nid is within node id range.
1041  */
1042 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1043 {
1044 	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1045 		return -EINVAL;
1046 	if (unlikely(nid >= NM_I(sbi)->max_nid))
1047 		return -EINVAL;
1048 	return 0;
1049 }
1050 
1051 #define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
1052 
1053 /*
1054  * Check whether the inode has blocks or not
1055  */
1056 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1057 {
1058 	if (F2FS_I(inode)->i_xattr_nid)
1059 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1060 	else
1061 		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1062 }
1063 
1064 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1065 {
1066 	return ofs == XATTR_NODE_OFFSET;
1067 }
1068 
1069 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1070 				 struct inode *inode, blkcnt_t count)
1071 {
1072 	block_t	valid_block_count;
1073 
1074 	spin_lock(&sbi->stat_lock);
1075 	valid_block_count =
1076 		sbi->total_valid_block_count + (block_t)count;
1077 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1078 		spin_unlock(&sbi->stat_lock);
1079 		return false;
1080 	}
1081 	inode->i_blocks += count;
1082 	sbi->total_valid_block_count = valid_block_count;
1083 	sbi->alloc_valid_block_count += (block_t)count;
1084 	spin_unlock(&sbi->stat_lock);
1085 	return true;
1086 }
1087 
1088 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1089 						struct inode *inode,
1090 						blkcnt_t count)
1091 {
1092 	spin_lock(&sbi->stat_lock);
1093 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1094 	f2fs_bug_on(sbi, inode->i_blocks < count);
1095 	inode->i_blocks -= count;
1096 	sbi->total_valid_block_count -= (block_t)count;
1097 	spin_unlock(&sbi->stat_lock);
1098 }
1099 
1100 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1101 {
1102 	atomic_inc(&sbi->nr_pages[count_type]);
1103 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1104 }
1105 
1106 static inline void inode_inc_dirty_pages(struct inode *inode)
1107 {
1108 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1109 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1110 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1111 }
1112 
1113 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1114 {
1115 	atomic_dec(&sbi->nr_pages[count_type]);
1116 }
1117 
1118 static inline void inode_dec_dirty_pages(struct inode *inode)
1119 {
1120 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1121 			!S_ISLNK(inode->i_mode))
1122 		return;
1123 
1124 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1125 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1126 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1127 }
1128 
1129 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1130 {
1131 	return atomic_read(&sbi->nr_pages[count_type]);
1132 }
1133 
1134 static inline int get_dirty_pages(struct inode *inode)
1135 {
1136 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1137 }
1138 
1139 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1140 {
1141 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1142 	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1143 			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1144 }
1145 
1146 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1147 {
1148 	return sbi->total_valid_block_count;
1149 }
1150 
1151 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1152 {
1153 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1154 
1155 	/* return NAT or SIT bitmap */
1156 	if (flag == NAT_BITMAP)
1157 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1158 	else if (flag == SIT_BITMAP)
1159 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1160 
1161 	return 0;
1162 }
1163 
1164 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1165 {
1166 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1167 }
1168 
1169 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1170 {
1171 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1172 	int offset;
1173 
1174 	if (__cp_payload(sbi) > 0) {
1175 		if (flag == NAT_BITMAP)
1176 			return &ckpt->sit_nat_version_bitmap;
1177 		else
1178 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1179 	} else {
1180 		offset = (flag == NAT_BITMAP) ?
1181 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1182 		return &ckpt->sit_nat_version_bitmap + offset;
1183 	}
1184 }
1185 
1186 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1187 {
1188 	block_t start_addr;
1189 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1190 	unsigned long long ckpt_version = cur_cp_version(ckpt);
1191 
1192 	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1193 
1194 	/*
1195 	 * odd numbered checkpoint should at cp segment 0
1196 	 * and even segment must be at cp segment 1
1197 	 */
1198 	if (!(ckpt_version & 1))
1199 		start_addr += sbi->blocks_per_seg;
1200 
1201 	return start_addr;
1202 }
1203 
1204 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1205 {
1206 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1207 }
1208 
1209 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1210 						struct inode *inode)
1211 {
1212 	block_t	valid_block_count;
1213 	unsigned int valid_node_count;
1214 
1215 	spin_lock(&sbi->stat_lock);
1216 
1217 	valid_block_count = sbi->total_valid_block_count + 1;
1218 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1219 		spin_unlock(&sbi->stat_lock);
1220 		return false;
1221 	}
1222 
1223 	valid_node_count = sbi->total_valid_node_count + 1;
1224 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1225 		spin_unlock(&sbi->stat_lock);
1226 		return false;
1227 	}
1228 
1229 	if (inode)
1230 		inode->i_blocks++;
1231 
1232 	sbi->alloc_valid_block_count++;
1233 	sbi->total_valid_node_count++;
1234 	sbi->total_valid_block_count++;
1235 	spin_unlock(&sbi->stat_lock);
1236 
1237 	return true;
1238 }
1239 
1240 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1241 						struct inode *inode)
1242 {
1243 	spin_lock(&sbi->stat_lock);
1244 
1245 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1246 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1247 	f2fs_bug_on(sbi, !inode->i_blocks);
1248 
1249 	inode->i_blocks--;
1250 	sbi->total_valid_node_count--;
1251 	sbi->total_valid_block_count--;
1252 
1253 	spin_unlock(&sbi->stat_lock);
1254 }
1255 
1256 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1257 {
1258 	return sbi->total_valid_node_count;
1259 }
1260 
1261 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1262 {
1263 	spin_lock(&sbi->stat_lock);
1264 	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1265 	sbi->total_valid_inode_count++;
1266 	spin_unlock(&sbi->stat_lock);
1267 }
1268 
1269 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1270 {
1271 	spin_lock(&sbi->stat_lock);
1272 	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1273 	sbi->total_valid_inode_count--;
1274 	spin_unlock(&sbi->stat_lock);
1275 }
1276 
1277 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1278 {
1279 	return sbi->total_valid_inode_count;
1280 }
1281 
1282 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1283 						pgoff_t index, bool for_write)
1284 {
1285 	if (!for_write)
1286 		return grab_cache_page(mapping, index);
1287 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1288 }
1289 
1290 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1291 {
1292 	char *src_kaddr = kmap(src);
1293 	char *dst_kaddr = kmap(dst);
1294 
1295 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1296 	kunmap(dst);
1297 	kunmap(src);
1298 }
1299 
1300 static inline void f2fs_put_page(struct page *page, int unlock)
1301 {
1302 	if (!page)
1303 		return;
1304 
1305 	if (unlock) {
1306 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1307 		unlock_page(page);
1308 	}
1309 	page_cache_release(page);
1310 }
1311 
1312 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1313 {
1314 	if (dn->node_page)
1315 		f2fs_put_page(dn->node_page, 1);
1316 	if (dn->inode_page && dn->node_page != dn->inode_page)
1317 		f2fs_put_page(dn->inode_page, 0);
1318 	dn->node_page = NULL;
1319 	dn->inode_page = NULL;
1320 }
1321 
1322 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1323 					size_t size)
1324 {
1325 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1326 }
1327 
1328 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1329 						gfp_t flags)
1330 {
1331 	void *entry;
1332 
1333 	entry = kmem_cache_alloc(cachep, flags);
1334 	if (!entry)
1335 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1336 	return entry;
1337 }
1338 
1339 static inline struct bio *f2fs_bio_alloc(int npages)
1340 {
1341 	struct bio *bio;
1342 
1343 	/* No failure on bio allocation */
1344 	bio = bio_alloc(GFP_NOIO, npages);
1345 	if (!bio)
1346 		bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1347 	return bio;
1348 }
1349 
1350 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1351 				unsigned long index, void *item)
1352 {
1353 	while (radix_tree_insert(root, index, item))
1354 		cond_resched();
1355 }
1356 
1357 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1358 
1359 static inline bool IS_INODE(struct page *page)
1360 {
1361 	struct f2fs_node *p = F2FS_NODE(page);
1362 	return RAW_IS_INODE(p);
1363 }
1364 
1365 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1366 {
1367 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1368 }
1369 
1370 static inline block_t datablock_addr(struct page *node_page,
1371 		unsigned int offset)
1372 {
1373 	struct f2fs_node *raw_node;
1374 	__le32 *addr_array;
1375 	raw_node = F2FS_NODE(node_page);
1376 	addr_array = blkaddr_in_node(raw_node);
1377 	return le32_to_cpu(addr_array[offset]);
1378 }
1379 
1380 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1381 {
1382 	int mask;
1383 
1384 	addr += (nr >> 3);
1385 	mask = 1 << (7 - (nr & 0x07));
1386 	return mask & *addr;
1387 }
1388 
1389 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1390 {
1391 	int mask;
1392 
1393 	addr += (nr >> 3);
1394 	mask = 1 << (7 - (nr & 0x07));
1395 	*addr |= mask;
1396 }
1397 
1398 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1399 {
1400 	int mask;
1401 
1402 	addr += (nr >> 3);
1403 	mask = 1 << (7 - (nr & 0x07));
1404 	*addr &= ~mask;
1405 }
1406 
1407 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1408 {
1409 	int mask;
1410 	int ret;
1411 
1412 	addr += (nr >> 3);
1413 	mask = 1 << (7 - (nr & 0x07));
1414 	ret = mask & *addr;
1415 	*addr |= mask;
1416 	return ret;
1417 }
1418 
1419 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1420 {
1421 	int mask;
1422 	int ret;
1423 
1424 	addr += (nr >> 3);
1425 	mask = 1 << (7 - (nr & 0x07));
1426 	ret = mask & *addr;
1427 	*addr &= ~mask;
1428 	return ret;
1429 }
1430 
1431 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1432 {
1433 	int mask;
1434 
1435 	addr += (nr >> 3);
1436 	mask = 1 << (7 - (nr & 0x07));
1437 	*addr ^= mask;
1438 }
1439 
1440 /* used for f2fs_inode_info->flags */
1441 enum {
1442 	FI_NEW_INODE,		/* indicate newly allocated inode */
1443 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1444 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1445 	FI_INC_LINK,		/* need to increment i_nlink */
1446 	FI_ACL_MODE,		/* indicate acl mode */
1447 	FI_NO_ALLOC,		/* should not allocate any blocks */
1448 	FI_FREE_NID,		/* free allocated nide */
1449 	FI_UPDATE_DIR,		/* should update inode block for consistency */
1450 	FI_DELAY_IPUT,		/* used for the recovery */
1451 	FI_NO_EXTENT,		/* not to use the extent cache */
1452 	FI_INLINE_XATTR,	/* used for inline xattr */
1453 	FI_INLINE_DATA,		/* used for inline data*/
1454 	FI_INLINE_DENTRY,	/* used for inline dentry */
1455 	FI_APPEND_WRITE,	/* inode has appended data */
1456 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1457 	FI_NEED_IPU,		/* used for ipu per file */
1458 	FI_ATOMIC_FILE,		/* indicate atomic file */
1459 	FI_VOLATILE_FILE,	/* indicate volatile file */
1460 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1461 	FI_DROP_CACHE,		/* drop dirty page cache */
1462 	FI_DATA_EXIST,		/* indicate data exists */
1463 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1464 	FI_DO_DEFRAG,		/* indicate defragment is running */
1465 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
1466 };
1467 
1468 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1469 {
1470 	if (!test_bit(flag, &fi->flags))
1471 		set_bit(flag, &fi->flags);
1472 }
1473 
1474 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1475 {
1476 	return test_bit(flag, &fi->flags);
1477 }
1478 
1479 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1480 {
1481 	if (test_bit(flag, &fi->flags))
1482 		clear_bit(flag, &fi->flags);
1483 }
1484 
1485 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1486 {
1487 	fi->i_acl_mode = mode;
1488 	set_inode_flag(fi, FI_ACL_MODE);
1489 }
1490 
1491 static inline void get_inline_info(struct f2fs_inode_info *fi,
1492 					struct f2fs_inode *ri)
1493 {
1494 	if (ri->i_inline & F2FS_INLINE_XATTR)
1495 		set_inode_flag(fi, FI_INLINE_XATTR);
1496 	if (ri->i_inline & F2FS_INLINE_DATA)
1497 		set_inode_flag(fi, FI_INLINE_DATA);
1498 	if (ri->i_inline & F2FS_INLINE_DENTRY)
1499 		set_inode_flag(fi, FI_INLINE_DENTRY);
1500 	if (ri->i_inline & F2FS_DATA_EXIST)
1501 		set_inode_flag(fi, FI_DATA_EXIST);
1502 	if (ri->i_inline & F2FS_INLINE_DOTS)
1503 		set_inode_flag(fi, FI_INLINE_DOTS);
1504 }
1505 
1506 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1507 					struct f2fs_inode *ri)
1508 {
1509 	ri->i_inline = 0;
1510 
1511 	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1512 		ri->i_inline |= F2FS_INLINE_XATTR;
1513 	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1514 		ri->i_inline |= F2FS_INLINE_DATA;
1515 	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1516 		ri->i_inline |= F2FS_INLINE_DENTRY;
1517 	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1518 		ri->i_inline |= F2FS_DATA_EXIST;
1519 	if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1520 		ri->i_inline |= F2FS_INLINE_DOTS;
1521 }
1522 
1523 static inline int f2fs_has_inline_xattr(struct inode *inode)
1524 {
1525 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1526 }
1527 
1528 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1529 {
1530 	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1531 		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1532 	return DEF_ADDRS_PER_INODE;
1533 }
1534 
1535 static inline void *inline_xattr_addr(struct page *page)
1536 {
1537 	struct f2fs_inode *ri = F2FS_INODE(page);
1538 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1539 					F2FS_INLINE_XATTR_ADDRS]);
1540 }
1541 
1542 static inline int inline_xattr_size(struct inode *inode)
1543 {
1544 	if (f2fs_has_inline_xattr(inode))
1545 		return F2FS_INLINE_XATTR_ADDRS << 2;
1546 	else
1547 		return 0;
1548 }
1549 
1550 static inline int f2fs_has_inline_data(struct inode *inode)
1551 {
1552 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1553 }
1554 
1555 static inline void f2fs_clear_inline_inode(struct inode *inode)
1556 {
1557 	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1558 	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1559 }
1560 
1561 static inline int f2fs_exist_data(struct inode *inode)
1562 {
1563 	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1564 }
1565 
1566 static inline int f2fs_has_inline_dots(struct inode *inode)
1567 {
1568 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1569 }
1570 
1571 static inline bool f2fs_is_atomic_file(struct inode *inode)
1572 {
1573 	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1574 }
1575 
1576 static inline bool f2fs_is_volatile_file(struct inode *inode)
1577 {
1578 	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1579 }
1580 
1581 static inline bool f2fs_is_first_block_written(struct inode *inode)
1582 {
1583 	return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1584 }
1585 
1586 static inline bool f2fs_is_drop_cache(struct inode *inode)
1587 {
1588 	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1589 }
1590 
1591 static inline void *inline_data_addr(struct page *page)
1592 {
1593 	struct f2fs_inode *ri = F2FS_INODE(page);
1594 	return (void *)&(ri->i_addr[1]);
1595 }
1596 
1597 static inline int f2fs_has_inline_dentry(struct inode *inode)
1598 {
1599 	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1600 }
1601 
1602 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1603 {
1604 	if (!f2fs_has_inline_dentry(dir))
1605 		kunmap(page);
1606 }
1607 
1608 static inline int is_file(struct inode *inode, int type)
1609 {
1610 	return F2FS_I(inode)->i_advise & type;
1611 }
1612 
1613 static inline void set_file(struct inode *inode, int type)
1614 {
1615 	F2FS_I(inode)->i_advise |= type;
1616 }
1617 
1618 static inline void clear_file(struct inode *inode, int type)
1619 {
1620 	F2FS_I(inode)->i_advise &= ~type;
1621 }
1622 
1623 static inline int f2fs_readonly(struct super_block *sb)
1624 {
1625 	return sb->s_flags & MS_RDONLY;
1626 }
1627 
1628 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1629 {
1630 	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1631 }
1632 
1633 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1634 {
1635 	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1636 	sbi->sb->s_flags |= MS_RDONLY;
1637 }
1638 
1639 static inline bool is_dot_dotdot(const struct qstr *str)
1640 {
1641 	if (str->len == 1 && str->name[0] == '.')
1642 		return true;
1643 
1644 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1645 		return true;
1646 
1647 	return false;
1648 }
1649 
1650 static inline bool f2fs_may_extent_tree(struct inode *inode)
1651 {
1652 	if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1653 			is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1654 		return false;
1655 
1656 	return S_ISREG(inode->i_mode);
1657 }
1658 
1659 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1660 {
1661 	void *ret;
1662 
1663 	ret = kmalloc(size, flags | __GFP_NOWARN);
1664 	if (!ret)
1665 		ret = __vmalloc(size, flags, PAGE_KERNEL);
1666 	return ret;
1667 }
1668 
1669 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1670 {
1671 	void *ret;
1672 
1673 	ret = kzalloc(size, flags | __GFP_NOWARN);
1674 	if (!ret)
1675 		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1676 	return ret;
1677 }
1678 
1679 #define get_inode_mode(i) \
1680 	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1681 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1682 
1683 /* get offset of first page in next direct node */
1684 #define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
1685 	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
1686 	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
1687 	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1688 
1689 /*
1690  * file.c
1691  */
1692 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1693 void truncate_data_blocks(struct dnode_of_data *);
1694 int truncate_blocks(struct inode *, u64, bool);
1695 int f2fs_truncate(struct inode *, bool);
1696 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1697 int f2fs_setattr(struct dentry *, struct iattr *);
1698 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1699 int truncate_data_blocks_range(struct dnode_of_data *, int);
1700 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1701 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1702 
1703 /*
1704  * inode.c
1705  */
1706 void f2fs_set_inode_flags(struct inode *);
1707 struct inode *f2fs_iget(struct super_block *, unsigned long);
1708 int try_to_free_nats(struct f2fs_sb_info *, int);
1709 int update_inode(struct inode *, struct page *);
1710 int update_inode_page(struct inode *);
1711 int f2fs_write_inode(struct inode *, struct writeback_control *);
1712 void f2fs_evict_inode(struct inode *);
1713 void handle_failed_inode(struct inode *);
1714 
1715 /*
1716  * namei.c
1717  */
1718 struct dentry *f2fs_get_parent(struct dentry *child);
1719 
1720 /*
1721  * dir.c
1722  */
1723 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1724 void set_de_type(struct f2fs_dir_entry *, umode_t);
1725 
1726 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1727 			f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1728 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1729 			unsigned int, struct f2fs_str *);
1730 void do_make_empty_dir(struct inode *, struct inode *,
1731 			struct f2fs_dentry_ptr *);
1732 struct page *init_inode_metadata(struct inode *, struct inode *,
1733 			const struct qstr *, struct page *);
1734 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1735 int room_for_filename(const void *, int, int);
1736 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1737 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1738 							struct page **);
1739 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1740 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1741 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1742 				struct page *, struct inode *);
1743 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1744 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1745 			const struct qstr *, f2fs_hash_t , unsigned int);
1746 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1747 			umode_t);
1748 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1749 							struct inode *);
1750 int f2fs_do_tmpfile(struct inode *, struct inode *);
1751 bool f2fs_empty_dir(struct inode *);
1752 
1753 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1754 {
1755 	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1756 				inode, inode->i_ino, inode->i_mode);
1757 }
1758 
1759 /*
1760  * super.c
1761  */
1762 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1763 int f2fs_sync_fs(struct super_block *, int);
1764 extern __printf(3, 4)
1765 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1766 
1767 /*
1768  * hash.c
1769  */
1770 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1771 
1772 /*
1773  * node.c
1774  */
1775 struct dnode_of_data;
1776 struct node_info;
1777 
1778 bool available_free_memory(struct f2fs_sb_info *, int);
1779 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1780 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1781 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1782 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1783 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1784 int truncate_inode_blocks(struct inode *, pgoff_t);
1785 int truncate_xattr_node(struct inode *, struct page *);
1786 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1787 int remove_inode_page(struct inode *);
1788 struct page *new_inode_page(struct inode *);
1789 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1790 void ra_node_page(struct f2fs_sb_info *, nid_t);
1791 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1792 struct page *get_node_page_ra(struct page *, int);
1793 void sync_inode_page(struct dnode_of_data *);
1794 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1795 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1796 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1797 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1798 int try_to_free_nids(struct f2fs_sb_info *, int);
1799 void recover_inline_xattr(struct inode *, struct page *);
1800 void recover_xattr_data(struct inode *, struct page *, block_t);
1801 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1802 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1803 				struct f2fs_summary_block *);
1804 void flush_nat_entries(struct f2fs_sb_info *);
1805 int build_node_manager(struct f2fs_sb_info *);
1806 void destroy_node_manager(struct f2fs_sb_info *);
1807 int __init create_node_manager_caches(void);
1808 void destroy_node_manager_caches(void);
1809 
1810 /*
1811  * segment.c
1812  */
1813 void register_inmem_page(struct inode *, struct page *);
1814 int commit_inmem_pages(struct inode *, bool);
1815 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1816 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1817 int f2fs_issue_flush(struct f2fs_sb_info *);
1818 int create_flush_cmd_control(struct f2fs_sb_info *);
1819 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1820 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1821 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1822 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1823 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1824 void release_discard_addrs(struct f2fs_sb_info *);
1825 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1826 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1827 void allocate_new_segments(struct f2fs_sb_info *);
1828 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1829 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1830 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1831 void write_meta_page(struct f2fs_sb_info *, struct page *);
1832 void write_node_page(unsigned int, struct f2fs_io_info *);
1833 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1834 void rewrite_data_page(struct f2fs_io_info *);
1835 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1836 				block_t, block_t, unsigned char, bool);
1837 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1838 		block_t, block_t *, struct f2fs_summary *, int);
1839 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1840 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1841 void write_data_summaries(struct f2fs_sb_info *, block_t);
1842 void write_node_summaries(struct f2fs_sb_info *, block_t);
1843 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1844 					int, unsigned int, int);
1845 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1846 int build_segment_manager(struct f2fs_sb_info *);
1847 void destroy_segment_manager(struct f2fs_sb_info *);
1848 int __init create_segment_manager_caches(void);
1849 void destroy_segment_manager_caches(void);
1850 
1851 /*
1852  * checkpoint.c
1853  */
1854 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1855 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1856 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1857 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1858 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1859 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1860 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1861 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1862 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1863 void release_ino_entry(struct f2fs_sb_info *);
1864 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1865 int acquire_orphan_inode(struct f2fs_sb_info *);
1866 void release_orphan_inode(struct f2fs_sb_info *);
1867 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1868 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1869 int recover_orphan_inodes(struct f2fs_sb_info *);
1870 int get_valid_checkpoint(struct f2fs_sb_info *);
1871 void update_dirty_page(struct inode *, struct page *);
1872 void add_dirty_dir_inode(struct inode *);
1873 void remove_dirty_inode(struct inode *);
1874 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1875 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1876 void init_ino_entry_info(struct f2fs_sb_info *);
1877 int __init create_checkpoint_caches(void);
1878 void destroy_checkpoint_caches(void);
1879 
1880 /*
1881  * data.c
1882  */
1883 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1884 int f2fs_submit_page_bio(struct f2fs_io_info *);
1885 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1886 void set_data_blkaddr(struct dnode_of_data *);
1887 int reserve_new_block(struct dnode_of_data *);
1888 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1889 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1890 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1891 struct page *find_data_page(struct inode *, pgoff_t);
1892 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1893 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1894 int do_write_data_page(struct f2fs_io_info *);
1895 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1896 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1897 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1898 int f2fs_release_page(struct page *, gfp_t);
1899 
1900 /*
1901  * gc.c
1902  */
1903 int start_gc_thread(struct f2fs_sb_info *);
1904 void stop_gc_thread(struct f2fs_sb_info *);
1905 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1906 int f2fs_gc(struct f2fs_sb_info *, bool);
1907 void build_gc_manager(struct f2fs_sb_info *);
1908 
1909 /*
1910  * recovery.c
1911  */
1912 int recover_fsync_data(struct f2fs_sb_info *);
1913 bool space_for_roll_forward(struct f2fs_sb_info *);
1914 
1915 /*
1916  * debug.c
1917  */
1918 #ifdef CONFIG_F2FS_STAT_FS
1919 struct f2fs_stat_info {
1920 	struct list_head stat_list;
1921 	struct f2fs_sb_info *sbi;
1922 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1923 	int main_area_segs, main_area_sections, main_area_zones;
1924 	unsigned long long hit_largest, hit_cached, hit_rbtree;
1925 	unsigned long long hit_total, total_ext;
1926 	int ext_tree, zombie_tree, ext_node;
1927 	int ndirty_node, ndirty_meta;
1928 	int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1929 	int nats, dirty_nats, sits, dirty_sits, fnids;
1930 	int total_count, utilization;
1931 	int bg_gc, inmem_pages, wb_pages;
1932 	int inline_xattr, inline_inode, inline_dir;
1933 	unsigned int valid_count, valid_node_count, valid_inode_count;
1934 	unsigned int bimodal, avg_vblocks;
1935 	int util_free, util_valid, util_invalid;
1936 	int rsvd_segs, overp_segs;
1937 	int dirty_count, node_pages, meta_pages;
1938 	int prefree_count, call_count, cp_count, bg_cp_count;
1939 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1940 	int bg_node_segs, bg_data_segs;
1941 	int tot_blks, data_blks, node_blks;
1942 	int bg_data_blks, bg_node_blks;
1943 	int curseg[NR_CURSEG_TYPE];
1944 	int cursec[NR_CURSEG_TYPE];
1945 	int curzone[NR_CURSEG_TYPE];
1946 
1947 	unsigned int segment_count[2];
1948 	unsigned int block_count[2];
1949 	unsigned int inplace_count;
1950 	unsigned long long base_mem, cache_mem, page_mem;
1951 };
1952 
1953 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1954 {
1955 	return (struct f2fs_stat_info *)sbi->stat_info;
1956 }
1957 
1958 #define stat_inc_cp_count(si)		((si)->cp_count++)
1959 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
1960 #define stat_inc_call_count(si)		((si)->call_count++)
1961 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1962 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
1963 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
1964 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
1965 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
1966 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
1967 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
1968 #define stat_inc_inline_xattr(inode)					\
1969 	do {								\
1970 		if (f2fs_has_inline_xattr(inode))			\
1971 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
1972 	} while (0)
1973 #define stat_dec_inline_xattr(inode)					\
1974 	do {								\
1975 		if (f2fs_has_inline_xattr(inode))			\
1976 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
1977 	} while (0)
1978 #define stat_inc_inline_inode(inode)					\
1979 	do {								\
1980 		if (f2fs_has_inline_data(inode))			\
1981 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
1982 	} while (0)
1983 #define stat_dec_inline_inode(inode)					\
1984 	do {								\
1985 		if (f2fs_has_inline_data(inode))			\
1986 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
1987 	} while (0)
1988 #define stat_inc_inline_dir(inode)					\
1989 	do {								\
1990 		if (f2fs_has_inline_dentry(inode))			\
1991 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
1992 	} while (0)
1993 #define stat_dec_inline_dir(inode)					\
1994 	do {								\
1995 		if (f2fs_has_inline_dentry(inode))			\
1996 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
1997 	} while (0)
1998 #define stat_inc_seg_type(sbi, curseg)					\
1999 		((sbi)->segment_count[(curseg)->alloc_type]++)
2000 #define stat_inc_block_count(sbi, curseg)				\
2001 		((sbi)->block_count[(curseg)->alloc_type]++)
2002 #define stat_inc_inplace_blocks(sbi)					\
2003 		(atomic_inc(&(sbi)->inplace_count))
2004 #define stat_inc_seg_count(sbi, type, gc_type)				\
2005 	do {								\
2006 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2007 		(si)->tot_segs++;					\
2008 		if (type == SUM_TYPE_DATA) {				\
2009 			si->data_segs++;				\
2010 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
2011 		} else {						\
2012 			si->node_segs++;				\
2013 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
2014 		}							\
2015 	} while (0)
2016 
2017 #define stat_inc_tot_blk_count(si, blks)				\
2018 	(si->tot_blks += (blks))
2019 
2020 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
2021 	do {								\
2022 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2023 		stat_inc_tot_blk_count(si, blks);			\
2024 		si->data_blks += (blks);				\
2025 		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2026 	} while (0)
2027 
2028 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
2029 	do {								\
2030 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
2031 		stat_inc_tot_blk_count(si, blks);			\
2032 		si->node_blks += (blks);				\
2033 		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
2034 	} while (0)
2035 
2036 int f2fs_build_stats(struct f2fs_sb_info *);
2037 void f2fs_destroy_stats(struct f2fs_sb_info *);
2038 int __init f2fs_create_root_stats(void);
2039 void f2fs_destroy_root_stats(void);
2040 #else
2041 #define stat_inc_cp_count(si)
2042 #define stat_inc_bg_cp_count(si)
2043 #define stat_inc_call_count(si)
2044 #define stat_inc_bggc_count(si)
2045 #define stat_inc_dirty_inode(sbi, type)
2046 #define stat_dec_dirty_inode(sbi, type)
2047 #define stat_inc_total_hit(sb)
2048 #define stat_inc_rbtree_node_hit(sb)
2049 #define stat_inc_largest_node_hit(sbi)
2050 #define stat_inc_cached_node_hit(sbi)
2051 #define stat_inc_inline_xattr(inode)
2052 #define stat_dec_inline_xattr(inode)
2053 #define stat_inc_inline_inode(inode)
2054 #define stat_dec_inline_inode(inode)
2055 #define stat_inc_inline_dir(inode)
2056 #define stat_dec_inline_dir(inode)
2057 #define stat_inc_seg_type(sbi, curseg)
2058 #define stat_inc_block_count(sbi, curseg)
2059 #define stat_inc_inplace_blocks(sbi)
2060 #define stat_inc_seg_count(sbi, type, gc_type)
2061 #define stat_inc_tot_blk_count(si, blks)
2062 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2063 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2064 
2065 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2066 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2067 static inline int __init f2fs_create_root_stats(void) { return 0; }
2068 static inline void f2fs_destroy_root_stats(void) { }
2069 #endif
2070 
2071 extern const struct file_operations f2fs_dir_operations;
2072 extern const struct file_operations f2fs_file_operations;
2073 extern const struct inode_operations f2fs_file_inode_operations;
2074 extern const struct address_space_operations f2fs_dblock_aops;
2075 extern const struct address_space_operations f2fs_node_aops;
2076 extern const struct address_space_operations f2fs_meta_aops;
2077 extern const struct inode_operations f2fs_dir_inode_operations;
2078 extern const struct inode_operations f2fs_symlink_inode_operations;
2079 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2080 extern const struct inode_operations f2fs_special_inode_operations;
2081 extern struct kmem_cache *inode_entry_slab;
2082 
2083 /*
2084  * inline.c
2085  */
2086 bool f2fs_may_inline_data(struct inode *);
2087 bool f2fs_may_inline_dentry(struct inode *);
2088 void read_inline_data(struct page *, struct page *);
2089 bool truncate_inline_inode(struct page *, u64);
2090 int f2fs_read_inline_data(struct inode *, struct page *);
2091 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2092 int f2fs_convert_inline_inode(struct inode *);
2093 int f2fs_write_inline_data(struct inode *, struct page *);
2094 bool recover_inline_data(struct inode *, struct page *);
2095 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2096 				struct f2fs_filename *, struct page **);
2097 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2098 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2099 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2100 						nid_t, umode_t);
2101 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2102 						struct inode *, struct inode *);
2103 bool f2fs_empty_inline_dir(struct inode *);
2104 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2105 						struct f2fs_str *);
2106 int f2fs_inline_data_fiemap(struct inode *,
2107 		struct fiemap_extent_info *, __u64, __u64);
2108 
2109 /*
2110  * shrinker.c
2111  */
2112 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2113 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2114 void f2fs_join_shrinker(struct f2fs_sb_info *);
2115 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2116 
2117 /*
2118  * extent_cache.c
2119  */
2120 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2121 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2122 unsigned int f2fs_destroy_extent_node(struct inode *);
2123 void f2fs_destroy_extent_tree(struct inode *);
2124 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2125 void f2fs_update_extent_cache(struct dnode_of_data *);
2126 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2127 						pgoff_t, block_t, unsigned int);
2128 void init_extent_cache_info(struct f2fs_sb_info *);
2129 int __init create_extent_cache(void);
2130 void destroy_extent_cache(void);
2131 
2132 /*
2133  * crypto support
2134  */
2135 static inline int f2fs_encrypted_inode(struct inode *inode)
2136 {
2137 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2138 	return file_is_encrypt(inode);
2139 #else
2140 	return 0;
2141 #endif
2142 }
2143 
2144 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2145 {
2146 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2147 	file_set_encrypt(inode);
2148 #endif
2149 }
2150 
2151 static inline bool f2fs_bio_encrypted(struct bio *bio)
2152 {
2153 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2154 	return unlikely(bio->bi_private != NULL);
2155 #else
2156 	return false;
2157 #endif
2158 }
2159 
2160 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2161 {
2162 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2163 	return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2164 #else
2165 	return 0;
2166 #endif
2167 }
2168 
2169 static inline bool f2fs_may_encrypt(struct inode *inode)
2170 {
2171 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2172 	umode_t mode = inode->i_mode;
2173 
2174 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2175 #else
2176 	return 0;
2177 #endif
2178 }
2179 
2180 /* crypto_policy.c */
2181 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2182 							struct inode *);
2183 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2184 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2185 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2186 
2187 /* crypt.c */
2188 extern struct kmem_cache *f2fs_crypt_info_cachep;
2189 bool f2fs_valid_contents_enc_mode(uint32_t);
2190 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2191 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2192 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2193 struct page *f2fs_encrypt(struct inode *, struct page *);
2194 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2195 int f2fs_decrypt_one(struct inode *, struct page *);
2196 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2197 
2198 /* crypto_key.c */
2199 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2200 int _f2fs_get_encryption_info(struct inode *inode);
2201 
2202 /* crypto_fname.c */
2203 bool f2fs_valid_filenames_enc_mode(uint32_t);
2204 u32 f2fs_fname_crypto_round_up(u32, u32);
2205 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2206 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2207 			const struct f2fs_str *, struct f2fs_str *);
2208 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2209 			struct f2fs_str *);
2210 
2211 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2212 void f2fs_restore_and_release_control_page(struct page **);
2213 void f2fs_restore_control_page(struct page *);
2214 
2215 int __init f2fs_init_crypto(void);
2216 int f2fs_crypto_initialize(void);
2217 void f2fs_exit_crypto(void);
2218 
2219 int f2fs_has_encryption_key(struct inode *);
2220 
2221 static inline int f2fs_get_encryption_info(struct inode *inode)
2222 {
2223 	struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2224 
2225 	if (!ci ||
2226 		(ci->ci_keyring_key &&
2227 		 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2228 					       (1 << KEY_FLAG_REVOKED) |
2229 					       (1 << KEY_FLAG_DEAD)))))
2230 		return _f2fs_get_encryption_info(inode);
2231 	return 0;
2232 }
2233 
2234 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2235 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2236 				int lookup, struct f2fs_filename *);
2237 void f2fs_fname_free_filename(struct f2fs_filename *);
2238 #else
2239 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2240 static inline void f2fs_restore_control_page(struct page *p) { }
2241 
2242 static inline int __init f2fs_init_crypto(void) { return 0; }
2243 static inline void f2fs_exit_crypto(void) { }
2244 
2245 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2246 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2247 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2248 
2249 static inline int f2fs_fname_setup_filename(struct inode *dir,
2250 					const struct qstr *iname,
2251 					int lookup, struct f2fs_filename *fname)
2252 {
2253 	memset(fname, 0, sizeof(struct f2fs_filename));
2254 	fname->usr_fname = iname;
2255 	fname->disk_name.name = (unsigned char *)iname->name;
2256 	fname->disk_name.len = iname->len;
2257 	return 0;
2258 }
2259 
2260 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2261 #endif
2262 #endif
2263