1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 26 #ifdef CONFIG_F2FS_CHECK_FS 27 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 28 #define f2fs_down_write(x, y) down_write_nest_lock(x, y) 29 #else 30 #define f2fs_bug_on(sbi, condition) \ 31 do { \ 32 if (unlikely(condition)) { \ 33 WARN_ON(1); \ 34 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 35 } \ 36 } while (0) 37 #define f2fs_down_write(x, y) down_write(x) 38 #endif 39 40 /* 41 * For mount options 42 */ 43 #define F2FS_MOUNT_BG_GC 0x00000001 44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 45 #define F2FS_MOUNT_DISCARD 0x00000004 46 #define F2FS_MOUNT_NOHEAP 0x00000008 47 #define F2FS_MOUNT_XATTR_USER 0x00000010 48 #define F2FS_MOUNT_POSIX_ACL 0x00000020 49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 50 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 51 #define F2FS_MOUNT_INLINE_DATA 0x00000100 52 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 53 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 54 #define F2FS_MOUNT_NOBARRIER 0x00000800 55 #define F2FS_MOUNT_FASTBOOT 0x00001000 56 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 57 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 58 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 59 60 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 61 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 62 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 63 64 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 65 typecheck(unsigned long long, b) && \ 66 ((long long)((a) - (b)) > 0)) 67 68 typedef u32 block_t; /* 69 * should not change u32, since it is the on-disk block 70 * address format, __le32. 71 */ 72 typedef u32 nid_t; 73 74 struct f2fs_mount_info { 75 unsigned int opt; 76 }; 77 78 #define F2FS_FEATURE_ENCRYPT 0x0001 79 80 #define F2FS_HAS_FEATURE(sb, mask) \ 81 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 82 #define F2FS_SET_FEATURE(sb, mask) \ 83 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 84 #define F2FS_CLEAR_FEATURE(sb, mask) \ 85 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 86 87 #define CRCPOLY_LE 0xedb88320 88 89 static inline __u32 f2fs_crc32(void *buf, size_t len) 90 { 91 unsigned char *p = (unsigned char *)buf; 92 __u32 crc = F2FS_SUPER_MAGIC; 93 int i; 94 95 while (len--) { 96 crc ^= *p++; 97 for (i = 0; i < 8; i++) 98 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 99 } 100 return crc; 101 } 102 103 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size) 104 { 105 return f2fs_crc32(buf, buf_size) == blk_crc; 106 } 107 108 /* 109 * For checkpoint manager 110 */ 111 enum { 112 NAT_BITMAP, 113 SIT_BITMAP 114 }; 115 116 enum { 117 CP_UMOUNT, 118 CP_FASTBOOT, 119 CP_SYNC, 120 CP_RECOVERY, 121 CP_DISCARD, 122 }; 123 124 #define DEF_BATCHED_TRIM_SECTIONS 32 125 #define BATCHED_TRIM_SEGMENTS(sbi) \ 126 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 127 #define BATCHED_TRIM_BLOCKS(sbi) \ 128 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 129 #define DEF_CP_INTERVAL 60 /* 60 secs */ 130 #define DEF_IDLE_INTERVAL 120 /* 2 mins */ 131 132 struct cp_control { 133 int reason; 134 __u64 trim_start; 135 __u64 trim_end; 136 __u64 trim_minlen; 137 __u64 trimmed; 138 }; 139 140 /* 141 * For CP/NAT/SIT/SSA readahead 142 */ 143 enum { 144 META_CP, 145 META_NAT, 146 META_SIT, 147 META_SSA, 148 META_POR, 149 }; 150 151 /* for the list of ino */ 152 enum { 153 ORPHAN_INO, /* for orphan ino list */ 154 APPEND_INO, /* for append ino list */ 155 UPDATE_INO, /* for update ino list */ 156 MAX_INO_ENTRY, /* max. list */ 157 }; 158 159 struct ino_entry { 160 struct list_head list; /* list head */ 161 nid_t ino; /* inode number */ 162 }; 163 164 /* for the list of inodes to be GCed */ 165 struct inode_entry { 166 struct list_head list; /* list head */ 167 struct inode *inode; /* vfs inode pointer */ 168 }; 169 170 /* for the list of blockaddresses to be discarded */ 171 struct discard_entry { 172 struct list_head list; /* list head */ 173 block_t blkaddr; /* block address to be discarded */ 174 int len; /* # of consecutive blocks of the discard */ 175 }; 176 177 /* for the list of fsync inodes, used only during recovery */ 178 struct fsync_inode_entry { 179 struct list_head list; /* list head */ 180 struct inode *inode; /* vfs inode pointer */ 181 block_t blkaddr; /* block address locating the last fsync */ 182 block_t last_dentry; /* block address locating the last dentry */ 183 block_t last_inode; /* block address locating the last inode */ 184 }; 185 186 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) 187 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) 188 189 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) 190 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) 191 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) 192 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) 193 194 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum)) 195 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum)) 196 197 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) 198 { 199 int before = nats_in_cursum(rs); 200 rs->n_nats = cpu_to_le16(before + i); 201 return before; 202 } 203 204 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) 205 { 206 int before = sits_in_cursum(rs); 207 rs->n_sits = cpu_to_le16(before + i); 208 return before; 209 } 210 211 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size, 212 int type) 213 { 214 if (type == NAT_JOURNAL) 215 return size <= MAX_NAT_JENTRIES(sum); 216 return size <= MAX_SIT_JENTRIES(sum); 217 } 218 219 /* 220 * ioctl commands 221 */ 222 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 223 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 224 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 225 226 #define F2FS_IOCTL_MAGIC 0xf5 227 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 229 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 231 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 232 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6) 233 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 234 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8) 235 236 #define F2FS_IOC_SET_ENCRYPTION_POLICY \ 237 _IOR('f', 19, struct f2fs_encryption_policy) 238 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \ 239 _IOW('f', 20, __u8[16]) 240 #define F2FS_IOC_GET_ENCRYPTION_POLICY \ 241 _IOW('f', 21, struct f2fs_encryption_policy) 242 243 /* 244 * should be same as XFS_IOC_GOINGDOWN. 245 * Flags for going down operation used by FS_IOC_GOINGDOWN 246 */ 247 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 248 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 249 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 250 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 251 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 252 253 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 254 /* 255 * ioctl commands in 32 bit emulation 256 */ 257 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 258 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 259 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 260 #endif 261 262 struct f2fs_defragment { 263 u64 start; 264 u64 len; 265 }; 266 267 /* 268 * For INODE and NODE manager 269 */ 270 /* for directory operations */ 271 struct f2fs_str { 272 unsigned char *name; 273 u32 len; 274 }; 275 276 struct f2fs_filename { 277 const struct qstr *usr_fname; 278 struct f2fs_str disk_name; 279 f2fs_hash_t hash; 280 #ifdef CONFIG_F2FS_FS_ENCRYPTION 281 struct f2fs_str crypto_buf; 282 #endif 283 }; 284 285 #define FSTR_INIT(n, l) { .name = n, .len = l } 286 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 287 #define fname_name(p) ((p)->disk_name.name) 288 #define fname_len(p) ((p)->disk_name.len) 289 290 struct f2fs_dentry_ptr { 291 struct inode *inode; 292 const void *bitmap; 293 struct f2fs_dir_entry *dentry; 294 __u8 (*filename)[F2FS_SLOT_LEN]; 295 int max; 296 }; 297 298 static inline void make_dentry_ptr(struct inode *inode, 299 struct f2fs_dentry_ptr *d, void *src, int type) 300 { 301 d->inode = inode; 302 303 if (type == 1) { 304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 305 d->max = NR_DENTRY_IN_BLOCK; 306 d->bitmap = &t->dentry_bitmap; 307 d->dentry = t->dentry; 308 d->filename = t->filename; 309 } else { 310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 311 d->max = NR_INLINE_DENTRY; 312 d->bitmap = &t->dentry_bitmap; 313 d->dentry = t->dentry; 314 d->filename = t->filename; 315 } 316 } 317 318 /* 319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 320 * as its node offset to distinguish from index node blocks. 321 * But some bits are used to mark the node block. 322 */ 323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 324 >> OFFSET_BIT_SHIFT) 325 enum { 326 ALLOC_NODE, /* allocate a new node page if needed */ 327 LOOKUP_NODE, /* look up a node without readahead */ 328 LOOKUP_NODE_RA, /* 329 * look up a node with readahead called 330 * by get_data_block. 331 */ 332 }; 333 334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 335 336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 337 338 /* vector size for gang look-up from extent cache that consists of radix tree */ 339 #define EXT_TREE_VEC_SIZE 64 340 341 /* for in-memory extent cache entry */ 342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 343 344 /* number of extent info in extent cache we try to shrink */ 345 #define EXTENT_CACHE_SHRINK_NUMBER 128 346 347 struct extent_info { 348 unsigned int fofs; /* start offset in a file */ 349 u32 blk; /* start block address of the extent */ 350 unsigned int len; /* length of the extent */ 351 }; 352 353 struct extent_node { 354 struct rb_node rb_node; /* rb node located in rb-tree */ 355 struct list_head list; /* node in global extent list of sbi */ 356 struct extent_info ei; /* extent info */ 357 }; 358 359 struct extent_tree { 360 nid_t ino; /* inode number */ 361 struct rb_root root; /* root of extent info rb-tree */ 362 struct extent_node *cached_en; /* recently accessed extent node */ 363 struct extent_info largest; /* largested extent info */ 364 struct list_head list; /* to be used by sbi->zombie_list */ 365 rwlock_t lock; /* protect extent info rb-tree */ 366 atomic_t node_cnt; /* # of extent node in rb-tree*/ 367 }; 368 369 /* 370 * This structure is taken from ext4_map_blocks. 371 * 372 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 373 */ 374 #define F2FS_MAP_NEW (1 << BH_New) 375 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 376 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 377 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 378 F2FS_MAP_UNWRITTEN) 379 380 struct f2fs_map_blocks { 381 block_t m_pblk; 382 block_t m_lblk; 383 unsigned int m_len; 384 unsigned int m_flags; 385 }; 386 387 /* for flag in get_data_block */ 388 #define F2FS_GET_BLOCK_READ 0 389 #define F2FS_GET_BLOCK_DIO 1 390 #define F2FS_GET_BLOCK_FIEMAP 2 391 #define F2FS_GET_BLOCK_BMAP 3 392 393 /* 394 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 395 */ 396 #define FADVISE_COLD_BIT 0x01 397 #define FADVISE_LOST_PINO_BIT 0x02 398 #define FADVISE_ENCRYPT_BIT 0x04 399 #define FADVISE_ENC_NAME_BIT 0x08 400 401 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 402 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 403 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 404 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 405 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 406 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 407 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 408 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 409 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 410 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 411 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 412 413 /* Encryption algorithms */ 414 #define F2FS_ENCRYPTION_MODE_INVALID 0 415 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1 416 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2 417 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3 418 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4 419 420 #include "f2fs_crypto.h" 421 422 #define DEF_DIR_LEVEL 0 423 424 struct f2fs_inode_info { 425 struct inode vfs_inode; /* serve a vfs inode */ 426 unsigned long i_flags; /* keep an inode flags for ioctl */ 427 unsigned char i_advise; /* use to give file attribute hints */ 428 unsigned char i_dir_level; /* use for dentry level for large dir */ 429 unsigned int i_current_depth; /* use only in directory structure */ 430 unsigned int i_pino; /* parent inode number */ 431 umode_t i_acl_mode; /* keep file acl mode temporarily */ 432 433 /* Use below internally in f2fs*/ 434 unsigned long flags; /* use to pass per-file flags */ 435 struct rw_semaphore i_sem; /* protect fi info */ 436 atomic_t dirty_pages; /* # of dirty pages */ 437 f2fs_hash_t chash; /* hash value of given file name */ 438 unsigned int clevel; /* maximum level of given file name */ 439 nid_t i_xattr_nid; /* node id that contains xattrs */ 440 unsigned long long xattr_ver; /* cp version of xattr modification */ 441 442 struct list_head dirty_list; /* linked in global dirty list */ 443 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 444 struct mutex inmem_lock; /* lock for inmemory pages */ 445 446 struct extent_tree *extent_tree; /* cached extent_tree entry */ 447 448 #ifdef CONFIG_F2FS_FS_ENCRYPTION 449 /* Encryption params */ 450 struct f2fs_crypt_info *i_crypt_info; 451 #endif 452 }; 453 454 static inline void get_extent_info(struct extent_info *ext, 455 struct f2fs_extent i_ext) 456 { 457 ext->fofs = le32_to_cpu(i_ext.fofs); 458 ext->blk = le32_to_cpu(i_ext.blk); 459 ext->len = le32_to_cpu(i_ext.len); 460 } 461 462 static inline void set_raw_extent(struct extent_info *ext, 463 struct f2fs_extent *i_ext) 464 { 465 i_ext->fofs = cpu_to_le32(ext->fofs); 466 i_ext->blk = cpu_to_le32(ext->blk); 467 i_ext->len = cpu_to_le32(ext->len); 468 } 469 470 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 471 u32 blk, unsigned int len) 472 { 473 ei->fofs = fofs; 474 ei->blk = blk; 475 ei->len = len; 476 } 477 478 static inline bool __is_extent_same(struct extent_info *ei1, 479 struct extent_info *ei2) 480 { 481 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 482 ei1->len == ei2->len); 483 } 484 485 static inline bool __is_extent_mergeable(struct extent_info *back, 486 struct extent_info *front) 487 { 488 return (back->fofs + back->len == front->fofs && 489 back->blk + back->len == front->blk); 490 } 491 492 static inline bool __is_back_mergeable(struct extent_info *cur, 493 struct extent_info *back) 494 { 495 return __is_extent_mergeable(back, cur); 496 } 497 498 static inline bool __is_front_mergeable(struct extent_info *cur, 499 struct extent_info *front) 500 { 501 return __is_extent_mergeable(cur, front); 502 } 503 504 static inline void __try_update_largest_extent(struct extent_tree *et, 505 struct extent_node *en) 506 { 507 if (en->ei.len > et->largest.len) 508 et->largest = en->ei; 509 } 510 511 struct f2fs_nm_info { 512 block_t nat_blkaddr; /* base disk address of NAT */ 513 nid_t max_nid; /* maximum possible node ids */ 514 nid_t available_nids; /* maximum available node ids */ 515 nid_t next_scan_nid; /* the next nid to be scanned */ 516 unsigned int ram_thresh; /* control the memory footprint */ 517 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 518 519 /* NAT cache management */ 520 struct radix_tree_root nat_root;/* root of the nat entry cache */ 521 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 522 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 523 struct list_head nat_entries; /* cached nat entry list (clean) */ 524 unsigned int nat_cnt; /* the # of cached nat entries */ 525 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 526 527 /* free node ids management */ 528 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 529 struct list_head free_nid_list; /* a list for free nids */ 530 spinlock_t free_nid_list_lock; /* protect free nid list */ 531 unsigned int fcnt; /* the number of free node id */ 532 struct mutex build_lock; /* lock for build free nids */ 533 534 /* for checkpoint */ 535 char *nat_bitmap; /* NAT bitmap pointer */ 536 int bitmap_size; /* bitmap size */ 537 }; 538 539 /* 540 * this structure is used as one of function parameters. 541 * all the information are dedicated to a given direct node block determined 542 * by the data offset in a file. 543 */ 544 struct dnode_of_data { 545 struct inode *inode; /* vfs inode pointer */ 546 struct page *inode_page; /* its inode page, NULL is possible */ 547 struct page *node_page; /* cached direct node page */ 548 nid_t nid; /* node id of the direct node block */ 549 unsigned int ofs_in_node; /* data offset in the node page */ 550 bool inode_page_locked; /* inode page is locked or not */ 551 bool node_changed; /* is node block changed */ 552 block_t data_blkaddr; /* block address of the node block */ 553 }; 554 555 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 556 struct page *ipage, struct page *npage, nid_t nid) 557 { 558 memset(dn, 0, sizeof(*dn)); 559 dn->inode = inode; 560 dn->inode_page = ipage; 561 dn->node_page = npage; 562 dn->nid = nid; 563 } 564 565 /* 566 * For SIT manager 567 * 568 * By default, there are 6 active log areas across the whole main area. 569 * When considering hot and cold data separation to reduce cleaning overhead, 570 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 571 * respectively. 572 * In the current design, you should not change the numbers intentionally. 573 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 574 * logs individually according to the underlying devices. (default: 6) 575 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 576 * data and 8 for node logs. 577 */ 578 #define NR_CURSEG_DATA_TYPE (3) 579 #define NR_CURSEG_NODE_TYPE (3) 580 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 581 582 enum { 583 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 584 CURSEG_WARM_DATA, /* data blocks */ 585 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 586 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 587 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 588 CURSEG_COLD_NODE, /* indirect node blocks */ 589 NO_CHECK_TYPE, 590 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 591 }; 592 593 struct flush_cmd { 594 struct completion wait; 595 struct llist_node llnode; 596 int ret; 597 }; 598 599 struct flush_cmd_control { 600 struct task_struct *f2fs_issue_flush; /* flush thread */ 601 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 602 struct llist_head issue_list; /* list for command issue */ 603 struct llist_node *dispatch_list; /* list for command dispatch */ 604 }; 605 606 struct f2fs_sm_info { 607 struct sit_info *sit_info; /* whole segment information */ 608 struct free_segmap_info *free_info; /* free segment information */ 609 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 610 struct curseg_info *curseg_array; /* active segment information */ 611 612 block_t seg0_blkaddr; /* block address of 0'th segment */ 613 block_t main_blkaddr; /* start block address of main area */ 614 block_t ssa_blkaddr; /* start block address of SSA area */ 615 616 unsigned int segment_count; /* total # of segments */ 617 unsigned int main_segments; /* # of segments in main area */ 618 unsigned int reserved_segments; /* # of reserved segments */ 619 unsigned int ovp_segments; /* # of overprovision segments */ 620 621 /* a threshold to reclaim prefree segments */ 622 unsigned int rec_prefree_segments; 623 624 /* for small discard management */ 625 struct list_head discard_list; /* 4KB discard list */ 626 int nr_discards; /* # of discards in the list */ 627 int max_discards; /* max. discards to be issued */ 628 629 /* for batched trimming */ 630 unsigned int trim_sections; /* # of sections to trim */ 631 632 struct list_head sit_entry_set; /* sit entry set list */ 633 634 unsigned int ipu_policy; /* in-place-update policy */ 635 unsigned int min_ipu_util; /* in-place-update threshold */ 636 unsigned int min_fsync_blocks; /* threshold for fsync */ 637 638 /* for flush command control */ 639 struct flush_cmd_control *cmd_control_info; 640 641 }; 642 643 /* 644 * For superblock 645 */ 646 /* 647 * COUNT_TYPE for monitoring 648 * 649 * f2fs monitors the number of several block types such as on-writeback, 650 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 651 */ 652 enum count_type { 653 F2FS_WRITEBACK, 654 F2FS_DIRTY_DENTS, 655 F2FS_DIRTY_DATA, 656 F2FS_DIRTY_NODES, 657 F2FS_DIRTY_META, 658 F2FS_INMEM_PAGES, 659 NR_COUNT_TYPE, 660 }; 661 662 /* 663 * The below are the page types of bios used in submit_bio(). 664 * The available types are: 665 * DATA User data pages. It operates as async mode. 666 * NODE Node pages. It operates as async mode. 667 * META FS metadata pages such as SIT, NAT, CP. 668 * NR_PAGE_TYPE The number of page types. 669 * META_FLUSH Make sure the previous pages are written 670 * with waiting the bio's completion 671 * ... Only can be used with META. 672 */ 673 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 674 enum page_type { 675 DATA, 676 NODE, 677 META, 678 NR_PAGE_TYPE, 679 META_FLUSH, 680 INMEM, /* the below types are used by tracepoints only. */ 681 INMEM_DROP, 682 IPU, 683 OPU, 684 }; 685 686 struct f2fs_io_info { 687 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 688 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 689 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 690 block_t blk_addr; /* block address to be written */ 691 struct page *page; /* page to be written */ 692 struct page *encrypted_page; /* encrypted page */ 693 }; 694 695 #define is_read_io(rw) (((rw) & 1) == READ) 696 struct f2fs_bio_info { 697 struct f2fs_sb_info *sbi; /* f2fs superblock */ 698 struct bio *bio; /* bios to merge */ 699 sector_t last_block_in_bio; /* last block number */ 700 struct f2fs_io_info fio; /* store buffered io info. */ 701 struct rw_semaphore io_rwsem; /* blocking op for bio */ 702 }; 703 704 enum inode_type { 705 DIR_INODE, /* for dirty dir inode */ 706 FILE_INODE, /* for dirty regular/symlink inode */ 707 NR_INODE_TYPE, 708 }; 709 710 /* for inner inode cache management */ 711 struct inode_management { 712 struct radix_tree_root ino_root; /* ino entry array */ 713 spinlock_t ino_lock; /* for ino entry lock */ 714 struct list_head ino_list; /* inode list head */ 715 unsigned long ino_num; /* number of entries */ 716 }; 717 718 /* For s_flag in struct f2fs_sb_info */ 719 enum { 720 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 721 SBI_IS_CLOSE, /* specify unmounting */ 722 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 723 SBI_POR_DOING, /* recovery is doing or not */ 724 }; 725 726 enum { 727 CP_TIME, 728 REQ_TIME, 729 MAX_TIME, 730 }; 731 732 struct f2fs_sb_info { 733 struct super_block *sb; /* pointer to VFS super block */ 734 struct proc_dir_entry *s_proc; /* proc entry */ 735 struct f2fs_super_block *raw_super; /* raw super block pointer */ 736 int valid_super_block; /* valid super block no */ 737 int s_flag; /* flags for sbi */ 738 739 /* for node-related operations */ 740 struct f2fs_nm_info *nm_info; /* node manager */ 741 struct inode *node_inode; /* cache node blocks */ 742 743 /* for segment-related operations */ 744 struct f2fs_sm_info *sm_info; /* segment manager */ 745 746 /* for bio operations */ 747 struct f2fs_bio_info read_io; /* for read bios */ 748 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 749 750 /* for checkpoint */ 751 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 752 struct inode *meta_inode; /* cache meta blocks */ 753 struct mutex cp_mutex; /* checkpoint procedure lock */ 754 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 755 struct rw_semaphore node_write; /* locking node writes */ 756 struct mutex writepages; /* mutex for writepages() */ 757 wait_queue_head_t cp_wait; 758 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 759 long interval_time[MAX_TIME]; /* to store thresholds */ 760 761 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 762 763 /* for orphan inode, use 0'th array */ 764 unsigned int max_orphans; /* max orphan inodes */ 765 766 /* for inode management */ 767 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 768 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 769 770 /* for extent tree cache */ 771 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 772 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 773 struct list_head extent_list; /* lru list for shrinker */ 774 spinlock_t extent_lock; /* locking extent lru list */ 775 atomic_t total_ext_tree; /* extent tree count */ 776 struct list_head zombie_list; /* extent zombie tree list */ 777 atomic_t total_zombie_tree; /* extent zombie tree count */ 778 atomic_t total_ext_node; /* extent info count */ 779 780 /* basic filesystem units */ 781 unsigned int log_sectors_per_block; /* log2 sectors per block */ 782 unsigned int log_blocksize; /* log2 block size */ 783 unsigned int blocksize; /* block size */ 784 unsigned int root_ino_num; /* root inode number*/ 785 unsigned int node_ino_num; /* node inode number*/ 786 unsigned int meta_ino_num; /* meta inode number*/ 787 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 788 unsigned int blocks_per_seg; /* blocks per segment */ 789 unsigned int segs_per_sec; /* segments per section */ 790 unsigned int secs_per_zone; /* sections per zone */ 791 unsigned int total_sections; /* total section count */ 792 unsigned int total_node_count; /* total node block count */ 793 unsigned int total_valid_node_count; /* valid node block count */ 794 unsigned int total_valid_inode_count; /* valid inode count */ 795 loff_t max_file_blocks; /* max block index of file */ 796 int active_logs; /* # of active logs */ 797 int dir_level; /* directory level */ 798 799 block_t user_block_count; /* # of user blocks */ 800 block_t total_valid_block_count; /* # of valid blocks */ 801 block_t alloc_valid_block_count; /* # of allocated blocks */ 802 block_t discard_blks; /* discard command candidats */ 803 block_t last_valid_block_count; /* for recovery */ 804 u32 s_next_generation; /* for NFS support */ 805 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 806 807 struct f2fs_mount_info mount_opt; /* mount options */ 808 809 /* for cleaning operations */ 810 struct mutex gc_mutex; /* mutex for GC */ 811 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 812 unsigned int cur_victim_sec; /* current victim section num */ 813 814 /* maximum # of trials to find a victim segment for SSR and GC */ 815 unsigned int max_victim_search; 816 817 /* 818 * for stat information. 819 * one is for the LFS mode, and the other is for the SSR mode. 820 */ 821 #ifdef CONFIG_F2FS_STAT_FS 822 struct f2fs_stat_info *stat_info; /* FS status information */ 823 unsigned int segment_count[2]; /* # of allocated segments */ 824 unsigned int block_count[2]; /* # of allocated blocks */ 825 atomic_t inplace_count; /* # of inplace update */ 826 atomic64_t total_hit_ext; /* # of lookup extent cache */ 827 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 828 atomic64_t read_hit_largest; /* # of hit largest extent node */ 829 atomic64_t read_hit_cached; /* # of hit cached extent node */ 830 atomic_t inline_xattr; /* # of inline_xattr inodes */ 831 atomic_t inline_inode; /* # of inline_data inodes */ 832 atomic_t inline_dir; /* # of inline_dentry inodes */ 833 int bg_gc; /* background gc calls */ 834 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 835 #endif 836 unsigned int last_victim[2]; /* last victim segment # */ 837 spinlock_t stat_lock; /* lock for stat operations */ 838 839 /* For sysfs suppport */ 840 struct kobject s_kobj; 841 struct completion s_kobj_unregister; 842 843 /* For shrinker support */ 844 struct list_head s_list; 845 struct mutex umount_mutex; 846 unsigned int shrinker_run_no; 847 }; 848 849 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 850 { 851 sbi->last_time[type] = jiffies; 852 } 853 854 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 855 { 856 struct timespec ts = {sbi->interval_time[type], 0}; 857 unsigned long interval = timespec_to_jiffies(&ts); 858 859 return time_after(jiffies, sbi->last_time[type] + interval); 860 } 861 862 static inline bool is_idle(struct f2fs_sb_info *sbi) 863 { 864 struct block_device *bdev = sbi->sb->s_bdev; 865 struct request_queue *q = bdev_get_queue(bdev); 866 struct request_list *rl = &q->root_rl; 867 868 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 869 return 0; 870 871 return f2fs_time_over(sbi, REQ_TIME); 872 } 873 874 /* 875 * Inline functions 876 */ 877 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 878 { 879 return container_of(inode, struct f2fs_inode_info, vfs_inode); 880 } 881 882 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 883 { 884 return sb->s_fs_info; 885 } 886 887 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 888 { 889 return F2FS_SB(inode->i_sb); 890 } 891 892 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 893 { 894 return F2FS_I_SB(mapping->host); 895 } 896 897 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 898 { 899 return F2FS_M_SB(page->mapping); 900 } 901 902 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 903 { 904 return (struct f2fs_super_block *)(sbi->raw_super); 905 } 906 907 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 908 { 909 return (struct f2fs_checkpoint *)(sbi->ckpt); 910 } 911 912 static inline struct f2fs_node *F2FS_NODE(struct page *page) 913 { 914 return (struct f2fs_node *)page_address(page); 915 } 916 917 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 918 { 919 return &((struct f2fs_node *)page_address(page))->i; 920 } 921 922 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 923 { 924 return (struct f2fs_nm_info *)(sbi->nm_info); 925 } 926 927 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 928 { 929 return (struct f2fs_sm_info *)(sbi->sm_info); 930 } 931 932 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 933 { 934 return (struct sit_info *)(SM_I(sbi)->sit_info); 935 } 936 937 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 938 { 939 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 940 } 941 942 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 943 { 944 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 945 } 946 947 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 948 { 949 return sbi->meta_inode->i_mapping; 950 } 951 952 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 953 { 954 return sbi->node_inode->i_mapping; 955 } 956 957 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 958 { 959 return sbi->s_flag & (0x01 << type); 960 } 961 962 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 963 { 964 sbi->s_flag |= (0x01 << type); 965 } 966 967 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 968 { 969 sbi->s_flag &= ~(0x01 << type); 970 } 971 972 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 973 { 974 return le64_to_cpu(cp->checkpoint_ver); 975 } 976 977 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 978 { 979 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 980 return ckpt_flags & f; 981 } 982 983 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 984 { 985 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 986 ckpt_flags |= f; 987 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 988 } 989 990 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 991 { 992 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 993 ckpt_flags &= (~f); 994 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 995 } 996 997 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 998 { 999 down_read(&sbi->cp_rwsem); 1000 } 1001 1002 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1003 { 1004 up_read(&sbi->cp_rwsem); 1005 } 1006 1007 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1008 { 1009 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex); 1010 } 1011 1012 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1013 { 1014 up_write(&sbi->cp_rwsem); 1015 } 1016 1017 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1018 { 1019 int reason = CP_SYNC; 1020 1021 if (test_opt(sbi, FASTBOOT)) 1022 reason = CP_FASTBOOT; 1023 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1024 reason = CP_UMOUNT; 1025 return reason; 1026 } 1027 1028 static inline bool __remain_node_summaries(int reason) 1029 { 1030 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 1031 } 1032 1033 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1034 { 1035 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) || 1036 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG)); 1037 } 1038 1039 /* 1040 * Check whether the given nid is within node id range. 1041 */ 1042 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1043 { 1044 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1045 return -EINVAL; 1046 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1047 return -EINVAL; 1048 return 0; 1049 } 1050 1051 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 1052 1053 /* 1054 * Check whether the inode has blocks or not 1055 */ 1056 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1057 { 1058 if (F2FS_I(inode)->i_xattr_nid) 1059 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 1060 else 1061 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 1062 } 1063 1064 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1065 { 1066 return ofs == XATTR_NODE_OFFSET; 1067 } 1068 1069 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 1070 struct inode *inode, blkcnt_t count) 1071 { 1072 block_t valid_block_count; 1073 1074 spin_lock(&sbi->stat_lock); 1075 valid_block_count = 1076 sbi->total_valid_block_count + (block_t)count; 1077 if (unlikely(valid_block_count > sbi->user_block_count)) { 1078 spin_unlock(&sbi->stat_lock); 1079 return false; 1080 } 1081 inode->i_blocks += count; 1082 sbi->total_valid_block_count = valid_block_count; 1083 sbi->alloc_valid_block_count += (block_t)count; 1084 spin_unlock(&sbi->stat_lock); 1085 return true; 1086 } 1087 1088 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1089 struct inode *inode, 1090 blkcnt_t count) 1091 { 1092 spin_lock(&sbi->stat_lock); 1093 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1094 f2fs_bug_on(sbi, inode->i_blocks < count); 1095 inode->i_blocks -= count; 1096 sbi->total_valid_block_count -= (block_t)count; 1097 spin_unlock(&sbi->stat_lock); 1098 } 1099 1100 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1101 { 1102 atomic_inc(&sbi->nr_pages[count_type]); 1103 set_sbi_flag(sbi, SBI_IS_DIRTY); 1104 } 1105 1106 static inline void inode_inc_dirty_pages(struct inode *inode) 1107 { 1108 atomic_inc(&F2FS_I(inode)->dirty_pages); 1109 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1110 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1111 } 1112 1113 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1114 { 1115 atomic_dec(&sbi->nr_pages[count_type]); 1116 } 1117 1118 static inline void inode_dec_dirty_pages(struct inode *inode) 1119 { 1120 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1121 !S_ISLNK(inode->i_mode)) 1122 return; 1123 1124 atomic_dec(&F2FS_I(inode)->dirty_pages); 1125 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1126 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1127 } 1128 1129 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 1130 { 1131 return atomic_read(&sbi->nr_pages[count_type]); 1132 } 1133 1134 static inline int get_dirty_pages(struct inode *inode) 1135 { 1136 return atomic_read(&F2FS_I(inode)->dirty_pages); 1137 } 1138 1139 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1140 { 1141 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1142 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 1143 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 1144 } 1145 1146 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1147 { 1148 return sbi->total_valid_block_count; 1149 } 1150 1151 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1152 { 1153 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1154 1155 /* return NAT or SIT bitmap */ 1156 if (flag == NAT_BITMAP) 1157 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1158 else if (flag == SIT_BITMAP) 1159 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1160 1161 return 0; 1162 } 1163 1164 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1165 { 1166 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1167 } 1168 1169 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1170 { 1171 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1172 int offset; 1173 1174 if (__cp_payload(sbi) > 0) { 1175 if (flag == NAT_BITMAP) 1176 return &ckpt->sit_nat_version_bitmap; 1177 else 1178 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1179 } else { 1180 offset = (flag == NAT_BITMAP) ? 1181 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1182 return &ckpt->sit_nat_version_bitmap + offset; 1183 } 1184 } 1185 1186 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1187 { 1188 block_t start_addr; 1189 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1190 unsigned long long ckpt_version = cur_cp_version(ckpt); 1191 1192 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1193 1194 /* 1195 * odd numbered checkpoint should at cp segment 0 1196 * and even segment must be at cp segment 1 1197 */ 1198 if (!(ckpt_version & 1)) 1199 start_addr += sbi->blocks_per_seg; 1200 1201 return start_addr; 1202 } 1203 1204 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1205 { 1206 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1207 } 1208 1209 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1210 struct inode *inode) 1211 { 1212 block_t valid_block_count; 1213 unsigned int valid_node_count; 1214 1215 spin_lock(&sbi->stat_lock); 1216 1217 valid_block_count = sbi->total_valid_block_count + 1; 1218 if (unlikely(valid_block_count > sbi->user_block_count)) { 1219 spin_unlock(&sbi->stat_lock); 1220 return false; 1221 } 1222 1223 valid_node_count = sbi->total_valid_node_count + 1; 1224 if (unlikely(valid_node_count > sbi->total_node_count)) { 1225 spin_unlock(&sbi->stat_lock); 1226 return false; 1227 } 1228 1229 if (inode) 1230 inode->i_blocks++; 1231 1232 sbi->alloc_valid_block_count++; 1233 sbi->total_valid_node_count++; 1234 sbi->total_valid_block_count++; 1235 spin_unlock(&sbi->stat_lock); 1236 1237 return true; 1238 } 1239 1240 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1241 struct inode *inode) 1242 { 1243 spin_lock(&sbi->stat_lock); 1244 1245 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1246 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1247 f2fs_bug_on(sbi, !inode->i_blocks); 1248 1249 inode->i_blocks--; 1250 sbi->total_valid_node_count--; 1251 sbi->total_valid_block_count--; 1252 1253 spin_unlock(&sbi->stat_lock); 1254 } 1255 1256 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1257 { 1258 return sbi->total_valid_node_count; 1259 } 1260 1261 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1262 { 1263 spin_lock(&sbi->stat_lock); 1264 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count); 1265 sbi->total_valid_inode_count++; 1266 spin_unlock(&sbi->stat_lock); 1267 } 1268 1269 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1270 { 1271 spin_lock(&sbi->stat_lock); 1272 f2fs_bug_on(sbi, !sbi->total_valid_inode_count); 1273 sbi->total_valid_inode_count--; 1274 spin_unlock(&sbi->stat_lock); 1275 } 1276 1277 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 1278 { 1279 return sbi->total_valid_inode_count; 1280 } 1281 1282 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1283 pgoff_t index, bool for_write) 1284 { 1285 if (!for_write) 1286 return grab_cache_page(mapping, index); 1287 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1288 } 1289 1290 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1291 { 1292 char *src_kaddr = kmap(src); 1293 char *dst_kaddr = kmap(dst); 1294 1295 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1296 kunmap(dst); 1297 kunmap(src); 1298 } 1299 1300 static inline void f2fs_put_page(struct page *page, int unlock) 1301 { 1302 if (!page) 1303 return; 1304 1305 if (unlock) { 1306 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1307 unlock_page(page); 1308 } 1309 page_cache_release(page); 1310 } 1311 1312 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1313 { 1314 if (dn->node_page) 1315 f2fs_put_page(dn->node_page, 1); 1316 if (dn->inode_page && dn->node_page != dn->inode_page) 1317 f2fs_put_page(dn->inode_page, 0); 1318 dn->node_page = NULL; 1319 dn->inode_page = NULL; 1320 } 1321 1322 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1323 size_t size) 1324 { 1325 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1326 } 1327 1328 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1329 gfp_t flags) 1330 { 1331 void *entry; 1332 1333 entry = kmem_cache_alloc(cachep, flags); 1334 if (!entry) 1335 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1336 return entry; 1337 } 1338 1339 static inline struct bio *f2fs_bio_alloc(int npages) 1340 { 1341 struct bio *bio; 1342 1343 /* No failure on bio allocation */ 1344 bio = bio_alloc(GFP_NOIO, npages); 1345 if (!bio) 1346 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1347 return bio; 1348 } 1349 1350 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1351 unsigned long index, void *item) 1352 { 1353 while (radix_tree_insert(root, index, item)) 1354 cond_resched(); 1355 } 1356 1357 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1358 1359 static inline bool IS_INODE(struct page *page) 1360 { 1361 struct f2fs_node *p = F2FS_NODE(page); 1362 return RAW_IS_INODE(p); 1363 } 1364 1365 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1366 { 1367 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1368 } 1369 1370 static inline block_t datablock_addr(struct page *node_page, 1371 unsigned int offset) 1372 { 1373 struct f2fs_node *raw_node; 1374 __le32 *addr_array; 1375 raw_node = F2FS_NODE(node_page); 1376 addr_array = blkaddr_in_node(raw_node); 1377 return le32_to_cpu(addr_array[offset]); 1378 } 1379 1380 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1381 { 1382 int mask; 1383 1384 addr += (nr >> 3); 1385 mask = 1 << (7 - (nr & 0x07)); 1386 return mask & *addr; 1387 } 1388 1389 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1390 { 1391 int mask; 1392 1393 addr += (nr >> 3); 1394 mask = 1 << (7 - (nr & 0x07)); 1395 *addr |= mask; 1396 } 1397 1398 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1399 { 1400 int mask; 1401 1402 addr += (nr >> 3); 1403 mask = 1 << (7 - (nr & 0x07)); 1404 *addr &= ~mask; 1405 } 1406 1407 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1408 { 1409 int mask; 1410 int ret; 1411 1412 addr += (nr >> 3); 1413 mask = 1 << (7 - (nr & 0x07)); 1414 ret = mask & *addr; 1415 *addr |= mask; 1416 return ret; 1417 } 1418 1419 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1420 { 1421 int mask; 1422 int ret; 1423 1424 addr += (nr >> 3); 1425 mask = 1 << (7 - (nr & 0x07)); 1426 ret = mask & *addr; 1427 *addr &= ~mask; 1428 return ret; 1429 } 1430 1431 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1432 { 1433 int mask; 1434 1435 addr += (nr >> 3); 1436 mask = 1 << (7 - (nr & 0x07)); 1437 *addr ^= mask; 1438 } 1439 1440 /* used for f2fs_inode_info->flags */ 1441 enum { 1442 FI_NEW_INODE, /* indicate newly allocated inode */ 1443 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1444 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1445 FI_INC_LINK, /* need to increment i_nlink */ 1446 FI_ACL_MODE, /* indicate acl mode */ 1447 FI_NO_ALLOC, /* should not allocate any blocks */ 1448 FI_FREE_NID, /* free allocated nide */ 1449 FI_UPDATE_DIR, /* should update inode block for consistency */ 1450 FI_DELAY_IPUT, /* used for the recovery */ 1451 FI_NO_EXTENT, /* not to use the extent cache */ 1452 FI_INLINE_XATTR, /* used for inline xattr */ 1453 FI_INLINE_DATA, /* used for inline data*/ 1454 FI_INLINE_DENTRY, /* used for inline dentry */ 1455 FI_APPEND_WRITE, /* inode has appended data */ 1456 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1457 FI_NEED_IPU, /* used for ipu per file */ 1458 FI_ATOMIC_FILE, /* indicate atomic file */ 1459 FI_VOLATILE_FILE, /* indicate volatile file */ 1460 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1461 FI_DROP_CACHE, /* drop dirty page cache */ 1462 FI_DATA_EXIST, /* indicate data exists */ 1463 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1464 FI_DO_DEFRAG, /* indicate defragment is running */ 1465 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 1466 }; 1467 1468 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 1469 { 1470 if (!test_bit(flag, &fi->flags)) 1471 set_bit(flag, &fi->flags); 1472 } 1473 1474 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 1475 { 1476 return test_bit(flag, &fi->flags); 1477 } 1478 1479 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1480 { 1481 if (test_bit(flag, &fi->flags)) 1482 clear_bit(flag, &fi->flags); 1483 } 1484 1485 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 1486 { 1487 fi->i_acl_mode = mode; 1488 set_inode_flag(fi, FI_ACL_MODE); 1489 } 1490 1491 static inline void get_inline_info(struct f2fs_inode_info *fi, 1492 struct f2fs_inode *ri) 1493 { 1494 if (ri->i_inline & F2FS_INLINE_XATTR) 1495 set_inode_flag(fi, FI_INLINE_XATTR); 1496 if (ri->i_inline & F2FS_INLINE_DATA) 1497 set_inode_flag(fi, FI_INLINE_DATA); 1498 if (ri->i_inline & F2FS_INLINE_DENTRY) 1499 set_inode_flag(fi, FI_INLINE_DENTRY); 1500 if (ri->i_inline & F2FS_DATA_EXIST) 1501 set_inode_flag(fi, FI_DATA_EXIST); 1502 if (ri->i_inline & F2FS_INLINE_DOTS) 1503 set_inode_flag(fi, FI_INLINE_DOTS); 1504 } 1505 1506 static inline void set_raw_inline(struct f2fs_inode_info *fi, 1507 struct f2fs_inode *ri) 1508 { 1509 ri->i_inline = 0; 1510 1511 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 1512 ri->i_inline |= F2FS_INLINE_XATTR; 1513 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 1514 ri->i_inline |= F2FS_INLINE_DATA; 1515 if (is_inode_flag_set(fi, FI_INLINE_DENTRY)) 1516 ri->i_inline |= F2FS_INLINE_DENTRY; 1517 if (is_inode_flag_set(fi, FI_DATA_EXIST)) 1518 ri->i_inline |= F2FS_DATA_EXIST; 1519 if (is_inode_flag_set(fi, FI_INLINE_DOTS)) 1520 ri->i_inline |= F2FS_INLINE_DOTS; 1521 } 1522 1523 static inline int f2fs_has_inline_xattr(struct inode *inode) 1524 { 1525 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR); 1526 } 1527 1528 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi) 1529 { 1530 if (f2fs_has_inline_xattr(&fi->vfs_inode)) 1531 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1532 return DEF_ADDRS_PER_INODE; 1533 } 1534 1535 static inline void *inline_xattr_addr(struct page *page) 1536 { 1537 struct f2fs_inode *ri = F2FS_INODE(page); 1538 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1539 F2FS_INLINE_XATTR_ADDRS]); 1540 } 1541 1542 static inline int inline_xattr_size(struct inode *inode) 1543 { 1544 if (f2fs_has_inline_xattr(inode)) 1545 return F2FS_INLINE_XATTR_ADDRS << 2; 1546 else 1547 return 0; 1548 } 1549 1550 static inline int f2fs_has_inline_data(struct inode *inode) 1551 { 1552 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1553 } 1554 1555 static inline void f2fs_clear_inline_inode(struct inode *inode) 1556 { 1557 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); 1558 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1559 } 1560 1561 static inline int f2fs_exist_data(struct inode *inode) 1562 { 1563 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST); 1564 } 1565 1566 static inline int f2fs_has_inline_dots(struct inode *inode) 1567 { 1568 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS); 1569 } 1570 1571 static inline bool f2fs_is_atomic_file(struct inode *inode) 1572 { 1573 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE); 1574 } 1575 1576 static inline bool f2fs_is_volatile_file(struct inode *inode) 1577 { 1578 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE); 1579 } 1580 1581 static inline bool f2fs_is_first_block_written(struct inode *inode) 1582 { 1583 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 1584 } 1585 1586 static inline bool f2fs_is_drop_cache(struct inode *inode) 1587 { 1588 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE); 1589 } 1590 1591 static inline void *inline_data_addr(struct page *page) 1592 { 1593 struct f2fs_inode *ri = F2FS_INODE(page); 1594 return (void *)&(ri->i_addr[1]); 1595 } 1596 1597 static inline int f2fs_has_inline_dentry(struct inode *inode) 1598 { 1599 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY); 1600 } 1601 1602 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1603 { 1604 if (!f2fs_has_inline_dentry(dir)) 1605 kunmap(page); 1606 } 1607 1608 static inline int is_file(struct inode *inode, int type) 1609 { 1610 return F2FS_I(inode)->i_advise & type; 1611 } 1612 1613 static inline void set_file(struct inode *inode, int type) 1614 { 1615 F2FS_I(inode)->i_advise |= type; 1616 } 1617 1618 static inline void clear_file(struct inode *inode, int type) 1619 { 1620 F2FS_I(inode)->i_advise &= ~type; 1621 } 1622 1623 static inline int f2fs_readonly(struct super_block *sb) 1624 { 1625 return sb->s_flags & MS_RDONLY; 1626 } 1627 1628 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1629 { 1630 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1631 } 1632 1633 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi) 1634 { 1635 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1636 sbi->sb->s_flags |= MS_RDONLY; 1637 } 1638 1639 static inline bool is_dot_dotdot(const struct qstr *str) 1640 { 1641 if (str->len == 1 && str->name[0] == '.') 1642 return true; 1643 1644 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1645 return true; 1646 1647 return false; 1648 } 1649 1650 static inline bool f2fs_may_extent_tree(struct inode *inode) 1651 { 1652 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 1653 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) 1654 return false; 1655 1656 return S_ISREG(inode->i_mode); 1657 } 1658 1659 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags) 1660 { 1661 void *ret; 1662 1663 ret = kmalloc(size, flags | __GFP_NOWARN); 1664 if (!ret) 1665 ret = __vmalloc(size, flags, PAGE_KERNEL); 1666 return ret; 1667 } 1668 1669 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags) 1670 { 1671 void *ret; 1672 1673 ret = kzalloc(size, flags | __GFP_NOWARN); 1674 if (!ret) 1675 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 1676 return ret; 1677 } 1678 1679 #define get_inode_mode(i) \ 1680 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1681 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1682 1683 /* get offset of first page in next direct node */ 1684 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \ 1685 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \ 1686 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \ 1687 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi)) 1688 1689 /* 1690 * file.c 1691 */ 1692 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1693 void truncate_data_blocks(struct dnode_of_data *); 1694 int truncate_blocks(struct inode *, u64, bool); 1695 int f2fs_truncate(struct inode *, bool); 1696 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1697 int f2fs_setattr(struct dentry *, struct iattr *); 1698 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1699 int truncate_data_blocks_range(struct dnode_of_data *, int); 1700 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1701 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1702 1703 /* 1704 * inode.c 1705 */ 1706 void f2fs_set_inode_flags(struct inode *); 1707 struct inode *f2fs_iget(struct super_block *, unsigned long); 1708 int try_to_free_nats(struct f2fs_sb_info *, int); 1709 int update_inode(struct inode *, struct page *); 1710 int update_inode_page(struct inode *); 1711 int f2fs_write_inode(struct inode *, struct writeback_control *); 1712 void f2fs_evict_inode(struct inode *); 1713 void handle_failed_inode(struct inode *); 1714 1715 /* 1716 * namei.c 1717 */ 1718 struct dentry *f2fs_get_parent(struct dentry *child); 1719 1720 /* 1721 * dir.c 1722 */ 1723 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX]; 1724 void set_de_type(struct f2fs_dir_entry *, umode_t); 1725 1726 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *, 1727 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1728 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1729 unsigned int, struct f2fs_str *); 1730 void do_make_empty_dir(struct inode *, struct inode *, 1731 struct f2fs_dentry_ptr *); 1732 struct page *init_inode_metadata(struct inode *, struct inode *, 1733 const struct qstr *, struct page *); 1734 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1735 int room_for_filename(const void *, int, int); 1736 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *); 1737 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1738 struct page **); 1739 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1740 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1741 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1742 struct page *, struct inode *); 1743 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 1744 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1745 const struct qstr *, f2fs_hash_t , unsigned int); 1746 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1747 umode_t); 1748 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1749 struct inode *); 1750 int f2fs_do_tmpfile(struct inode *, struct inode *); 1751 bool f2fs_empty_dir(struct inode *); 1752 1753 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1754 { 1755 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1756 inode, inode->i_ino, inode->i_mode); 1757 } 1758 1759 /* 1760 * super.c 1761 */ 1762 int f2fs_commit_super(struct f2fs_sb_info *, bool); 1763 int f2fs_sync_fs(struct super_block *, int); 1764 extern __printf(3, 4) 1765 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1766 1767 /* 1768 * hash.c 1769 */ 1770 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1771 1772 /* 1773 * node.c 1774 */ 1775 struct dnode_of_data; 1776 struct node_info; 1777 1778 bool available_free_memory(struct f2fs_sb_info *, int); 1779 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 1780 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1781 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1782 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1783 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1784 int truncate_inode_blocks(struct inode *, pgoff_t); 1785 int truncate_xattr_node(struct inode *, struct page *); 1786 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1787 int remove_inode_page(struct inode *); 1788 struct page *new_inode_page(struct inode *); 1789 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1790 void ra_node_page(struct f2fs_sb_info *, nid_t); 1791 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1792 struct page *get_node_page_ra(struct page *, int); 1793 void sync_inode_page(struct dnode_of_data *); 1794 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 1795 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1796 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1797 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1798 int try_to_free_nids(struct f2fs_sb_info *, int); 1799 void recover_inline_xattr(struct inode *, struct page *); 1800 void recover_xattr_data(struct inode *, struct page *, block_t); 1801 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1802 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1803 struct f2fs_summary_block *); 1804 void flush_nat_entries(struct f2fs_sb_info *); 1805 int build_node_manager(struct f2fs_sb_info *); 1806 void destroy_node_manager(struct f2fs_sb_info *); 1807 int __init create_node_manager_caches(void); 1808 void destroy_node_manager_caches(void); 1809 1810 /* 1811 * segment.c 1812 */ 1813 void register_inmem_page(struct inode *, struct page *); 1814 int commit_inmem_pages(struct inode *, bool); 1815 void f2fs_balance_fs(struct f2fs_sb_info *, bool); 1816 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1817 int f2fs_issue_flush(struct f2fs_sb_info *); 1818 int create_flush_cmd_control(struct f2fs_sb_info *); 1819 void destroy_flush_cmd_control(struct f2fs_sb_info *); 1820 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1821 bool is_checkpointed_data(struct f2fs_sb_info *, block_t); 1822 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 1823 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 1824 void release_discard_addrs(struct f2fs_sb_info *); 1825 bool discard_next_dnode(struct f2fs_sb_info *, block_t); 1826 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 1827 void allocate_new_segments(struct f2fs_sb_info *); 1828 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 1829 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1830 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 1831 void write_meta_page(struct f2fs_sb_info *, struct page *); 1832 void write_node_page(unsigned int, struct f2fs_io_info *); 1833 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 1834 void rewrite_data_page(struct f2fs_io_info *); 1835 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 1836 block_t, block_t, unsigned char, bool); 1837 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1838 block_t, block_t *, struct f2fs_summary *, int); 1839 void f2fs_wait_on_page_writeback(struct page *, enum page_type); 1840 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t); 1841 void write_data_summaries(struct f2fs_sb_info *, block_t); 1842 void write_node_summaries(struct f2fs_sb_info *, block_t); 1843 int lookup_journal_in_cursum(struct f2fs_summary_block *, 1844 int, unsigned int, int); 1845 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 1846 int build_segment_manager(struct f2fs_sb_info *); 1847 void destroy_segment_manager(struct f2fs_sb_info *); 1848 int __init create_segment_manager_caches(void); 1849 void destroy_segment_manager_caches(void); 1850 1851 /* 1852 * checkpoint.c 1853 */ 1854 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1855 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1856 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t); 1857 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 1858 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool); 1859 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 1860 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1861 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type); 1862 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type); 1863 void release_ino_entry(struct f2fs_sb_info *); 1864 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 1865 int acquire_orphan_inode(struct f2fs_sb_info *); 1866 void release_orphan_inode(struct f2fs_sb_info *); 1867 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1868 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1869 int recover_orphan_inodes(struct f2fs_sb_info *); 1870 int get_valid_checkpoint(struct f2fs_sb_info *); 1871 void update_dirty_page(struct inode *, struct page *); 1872 void add_dirty_dir_inode(struct inode *); 1873 void remove_dirty_inode(struct inode *); 1874 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type); 1875 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 1876 void init_ino_entry_info(struct f2fs_sb_info *); 1877 int __init create_checkpoint_caches(void); 1878 void destroy_checkpoint_caches(void); 1879 1880 /* 1881 * data.c 1882 */ 1883 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1884 int f2fs_submit_page_bio(struct f2fs_io_info *); 1885 void f2fs_submit_page_mbio(struct f2fs_io_info *); 1886 void set_data_blkaddr(struct dnode_of_data *); 1887 int reserve_new_block(struct dnode_of_data *); 1888 int f2fs_get_block(struct dnode_of_data *, pgoff_t); 1889 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1890 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool); 1891 struct page *find_data_page(struct inode *, pgoff_t); 1892 struct page *get_lock_data_page(struct inode *, pgoff_t, bool); 1893 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1894 int do_write_data_page(struct f2fs_io_info *); 1895 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int); 1896 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 1897 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 1898 int f2fs_release_page(struct page *, gfp_t); 1899 1900 /* 1901 * gc.c 1902 */ 1903 int start_gc_thread(struct f2fs_sb_info *); 1904 void stop_gc_thread(struct f2fs_sb_info *); 1905 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *); 1906 int f2fs_gc(struct f2fs_sb_info *, bool); 1907 void build_gc_manager(struct f2fs_sb_info *); 1908 1909 /* 1910 * recovery.c 1911 */ 1912 int recover_fsync_data(struct f2fs_sb_info *); 1913 bool space_for_roll_forward(struct f2fs_sb_info *); 1914 1915 /* 1916 * debug.c 1917 */ 1918 #ifdef CONFIG_F2FS_STAT_FS 1919 struct f2fs_stat_info { 1920 struct list_head stat_list; 1921 struct f2fs_sb_info *sbi; 1922 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1923 int main_area_segs, main_area_sections, main_area_zones; 1924 unsigned long long hit_largest, hit_cached, hit_rbtree; 1925 unsigned long long hit_total, total_ext; 1926 int ext_tree, zombie_tree, ext_node; 1927 int ndirty_node, ndirty_meta; 1928 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files; 1929 int nats, dirty_nats, sits, dirty_sits, fnids; 1930 int total_count, utilization; 1931 int bg_gc, inmem_pages, wb_pages; 1932 int inline_xattr, inline_inode, inline_dir; 1933 unsigned int valid_count, valid_node_count, valid_inode_count; 1934 unsigned int bimodal, avg_vblocks; 1935 int util_free, util_valid, util_invalid; 1936 int rsvd_segs, overp_segs; 1937 int dirty_count, node_pages, meta_pages; 1938 int prefree_count, call_count, cp_count, bg_cp_count; 1939 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1940 int bg_node_segs, bg_data_segs; 1941 int tot_blks, data_blks, node_blks; 1942 int bg_data_blks, bg_node_blks; 1943 int curseg[NR_CURSEG_TYPE]; 1944 int cursec[NR_CURSEG_TYPE]; 1945 int curzone[NR_CURSEG_TYPE]; 1946 1947 unsigned int segment_count[2]; 1948 unsigned int block_count[2]; 1949 unsigned int inplace_count; 1950 unsigned long long base_mem, cache_mem, page_mem; 1951 }; 1952 1953 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 1954 { 1955 return (struct f2fs_stat_info *)sbi->stat_info; 1956 } 1957 1958 #define stat_inc_cp_count(si) ((si)->cp_count++) 1959 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 1960 #define stat_inc_call_count(si) ((si)->call_count++) 1961 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 1962 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 1963 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 1964 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 1965 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 1966 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 1967 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 1968 #define stat_inc_inline_xattr(inode) \ 1969 do { \ 1970 if (f2fs_has_inline_xattr(inode)) \ 1971 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 1972 } while (0) 1973 #define stat_dec_inline_xattr(inode) \ 1974 do { \ 1975 if (f2fs_has_inline_xattr(inode)) \ 1976 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 1977 } while (0) 1978 #define stat_inc_inline_inode(inode) \ 1979 do { \ 1980 if (f2fs_has_inline_data(inode)) \ 1981 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 1982 } while (0) 1983 #define stat_dec_inline_inode(inode) \ 1984 do { \ 1985 if (f2fs_has_inline_data(inode)) \ 1986 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 1987 } while (0) 1988 #define stat_inc_inline_dir(inode) \ 1989 do { \ 1990 if (f2fs_has_inline_dentry(inode)) \ 1991 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 1992 } while (0) 1993 #define stat_dec_inline_dir(inode) \ 1994 do { \ 1995 if (f2fs_has_inline_dentry(inode)) \ 1996 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 1997 } while (0) 1998 #define stat_inc_seg_type(sbi, curseg) \ 1999 ((sbi)->segment_count[(curseg)->alloc_type]++) 2000 #define stat_inc_block_count(sbi, curseg) \ 2001 ((sbi)->block_count[(curseg)->alloc_type]++) 2002 #define stat_inc_inplace_blocks(sbi) \ 2003 (atomic_inc(&(sbi)->inplace_count)) 2004 #define stat_inc_seg_count(sbi, type, gc_type) \ 2005 do { \ 2006 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2007 (si)->tot_segs++; \ 2008 if (type == SUM_TYPE_DATA) { \ 2009 si->data_segs++; \ 2010 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2011 } else { \ 2012 si->node_segs++; \ 2013 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2014 } \ 2015 } while (0) 2016 2017 #define stat_inc_tot_blk_count(si, blks) \ 2018 (si->tot_blks += (blks)) 2019 2020 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 2021 do { \ 2022 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2023 stat_inc_tot_blk_count(si, blks); \ 2024 si->data_blks += (blks); \ 2025 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2026 } while (0) 2027 2028 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 2029 do { \ 2030 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2031 stat_inc_tot_blk_count(si, blks); \ 2032 si->node_blks += (blks); \ 2033 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 2034 } while (0) 2035 2036 int f2fs_build_stats(struct f2fs_sb_info *); 2037 void f2fs_destroy_stats(struct f2fs_sb_info *); 2038 int __init f2fs_create_root_stats(void); 2039 void f2fs_destroy_root_stats(void); 2040 #else 2041 #define stat_inc_cp_count(si) 2042 #define stat_inc_bg_cp_count(si) 2043 #define stat_inc_call_count(si) 2044 #define stat_inc_bggc_count(si) 2045 #define stat_inc_dirty_inode(sbi, type) 2046 #define stat_dec_dirty_inode(sbi, type) 2047 #define stat_inc_total_hit(sb) 2048 #define stat_inc_rbtree_node_hit(sb) 2049 #define stat_inc_largest_node_hit(sbi) 2050 #define stat_inc_cached_node_hit(sbi) 2051 #define stat_inc_inline_xattr(inode) 2052 #define stat_dec_inline_xattr(inode) 2053 #define stat_inc_inline_inode(inode) 2054 #define stat_dec_inline_inode(inode) 2055 #define stat_inc_inline_dir(inode) 2056 #define stat_dec_inline_dir(inode) 2057 #define stat_inc_seg_type(sbi, curseg) 2058 #define stat_inc_block_count(sbi, curseg) 2059 #define stat_inc_inplace_blocks(sbi) 2060 #define stat_inc_seg_count(sbi, type, gc_type) 2061 #define stat_inc_tot_blk_count(si, blks) 2062 #define stat_inc_data_blk_count(sbi, blks, gc_type) 2063 #define stat_inc_node_blk_count(sbi, blks, gc_type) 2064 2065 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 2066 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 2067 static inline int __init f2fs_create_root_stats(void) { return 0; } 2068 static inline void f2fs_destroy_root_stats(void) { } 2069 #endif 2070 2071 extern const struct file_operations f2fs_dir_operations; 2072 extern const struct file_operations f2fs_file_operations; 2073 extern const struct inode_operations f2fs_file_inode_operations; 2074 extern const struct address_space_operations f2fs_dblock_aops; 2075 extern const struct address_space_operations f2fs_node_aops; 2076 extern const struct address_space_operations f2fs_meta_aops; 2077 extern const struct inode_operations f2fs_dir_inode_operations; 2078 extern const struct inode_operations f2fs_symlink_inode_operations; 2079 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 2080 extern const struct inode_operations f2fs_special_inode_operations; 2081 extern struct kmem_cache *inode_entry_slab; 2082 2083 /* 2084 * inline.c 2085 */ 2086 bool f2fs_may_inline_data(struct inode *); 2087 bool f2fs_may_inline_dentry(struct inode *); 2088 void read_inline_data(struct page *, struct page *); 2089 bool truncate_inline_inode(struct page *, u64); 2090 int f2fs_read_inline_data(struct inode *, struct page *); 2091 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 2092 int f2fs_convert_inline_inode(struct inode *); 2093 int f2fs_write_inline_data(struct inode *, struct page *); 2094 bool recover_inline_data(struct inode *, struct page *); 2095 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 2096 struct f2fs_filename *, struct page **); 2097 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **); 2098 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 2099 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *, 2100 nid_t, umode_t); 2101 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 2102 struct inode *, struct inode *); 2103 bool f2fs_empty_inline_dir(struct inode *); 2104 int f2fs_read_inline_dir(struct file *, struct dir_context *, 2105 struct f2fs_str *); 2106 int f2fs_inline_data_fiemap(struct inode *, 2107 struct fiemap_extent_info *, __u64, __u64); 2108 2109 /* 2110 * shrinker.c 2111 */ 2112 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *); 2113 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *); 2114 void f2fs_join_shrinker(struct f2fs_sb_info *); 2115 void f2fs_leave_shrinker(struct f2fs_sb_info *); 2116 2117 /* 2118 * extent_cache.c 2119 */ 2120 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 2121 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *); 2122 unsigned int f2fs_destroy_extent_node(struct inode *); 2123 void f2fs_destroy_extent_tree(struct inode *); 2124 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *); 2125 void f2fs_update_extent_cache(struct dnode_of_data *); 2126 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 2127 pgoff_t, block_t, unsigned int); 2128 void init_extent_cache_info(struct f2fs_sb_info *); 2129 int __init create_extent_cache(void); 2130 void destroy_extent_cache(void); 2131 2132 /* 2133 * crypto support 2134 */ 2135 static inline int f2fs_encrypted_inode(struct inode *inode) 2136 { 2137 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2138 return file_is_encrypt(inode); 2139 #else 2140 return 0; 2141 #endif 2142 } 2143 2144 static inline void f2fs_set_encrypted_inode(struct inode *inode) 2145 { 2146 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2147 file_set_encrypt(inode); 2148 #endif 2149 } 2150 2151 static inline bool f2fs_bio_encrypted(struct bio *bio) 2152 { 2153 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2154 return unlikely(bio->bi_private != NULL); 2155 #else 2156 return false; 2157 #endif 2158 } 2159 2160 static inline int f2fs_sb_has_crypto(struct super_block *sb) 2161 { 2162 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2163 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 2164 #else 2165 return 0; 2166 #endif 2167 } 2168 2169 static inline bool f2fs_may_encrypt(struct inode *inode) 2170 { 2171 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2172 umode_t mode = inode->i_mode; 2173 2174 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 2175 #else 2176 return 0; 2177 #endif 2178 } 2179 2180 /* crypto_policy.c */ 2181 int f2fs_is_child_context_consistent_with_parent(struct inode *, 2182 struct inode *); 2183 int f2fs_inherit_context(struct inode *, struct inode *, struct page *); 2184 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *); 2185 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *); 2186 2187 /* crypt.c */ 2188 extern struct kmem_cache *f2fs_crypt_info_cachep; 2189 bool f2fs_valid_contents_enc_mode(uint32_t); 2190 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t); 2191 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *); 2192 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *); 2193 struct page *f2fs_encrypt(struct inode *, struct page *); 2194 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *); 2195 int f2fs_decrypt_one(struct inode *, struct page *); 2196 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *); 2197 2198 /* crypto_key.c */ 2199 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *); 2200 int _f2fs_get_encryption_info(struct inode *inode); 2201 2202 /* crypto_fname.c */ 2203 bool f2fs_valid_filenames_enc_mode(uint32_t); 2204 u32 f2fs_fname_crypto_round_up(u32, u32); 2205 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *); 2206 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *, 2207 const struct f2fs_str *, struct f2fs_str *); 2208 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *, 2209 struct f2fs_str *); 2210 2211 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2212 void f2fs_restore_and_release_control_page(struct page **); 2213 void f2fs_restore_control_page(struct page *); 2214 2215 int __init f2fs_init_crypto(void); 2216 int f2fs_crypto_initialize(void); 2217 void f2fs_exit_crypto(void); 2218 2219 int f2fs_has_encryption_key(struct inode *); 2220 2221 static inline int f2fs_get_encryption_info(struct inode *inode) 2222 { 2223 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info; 2224 2225 if (!ci || 2226 (ci->ci_keyring_key && 2227 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | 2228 (1 << KEY_FLAG_REVOKED) | 2229 (1 << KEY_FLAG_DEAD))))) 2230 return _f2fs_get_encryption_info(inode); 2231 return 0; 2232 } 2233 2234 void f2fs_fname_crypto_free_buffer(struct f2fs_str *); 2235 int f2fs_fname_setup_filename(struct inode *, const struct qstr *, 2236 int lookup, struct f2fs_filename *); 2237 void f2fs_fname_free_filename(struct f2fs_filename *); 2238 #else 2239 static inline void f2fs_restore_and_release_control_page(struct page **p) { } 2240 static inline void f2fs_restore_control_page(struct page *p) { } 2241 2242 static inline int __init f2fs_init_crypto(void) { return 0; } 2243 static inline void f2fs_exit_crypto(void) { } 2244 2245 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; } 2246 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; } 2247 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { } 2248 2249 static inline int f2fs_fname_setup_filename(struct inode *dir, 2250 const struct qstr *iname, 2251 int lookup, struct f2fs_filename *fname) 2252 { 2253 memset(fname, 0, sizeof(struct f2fs_filename)); 2254 fname->usr_fname = iname; 2255 fname->disk_name.name = (unsigned char *)iname->name; 2256 fname->disk_name.len = iname->len; 2257 return 0; 2258 } 2259 2260 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { } 2261 #endif 2262 #endif 2263