1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <crypto/hash.h> 26 27 #include <linux/fscrypt.h> 28 #include <linux/fsverity.h> 29 30 #ifdef CONFIG_F2FS_CHECK_FS 31 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 32 #else 33 #define f2fs_bug_on(sbi, condition) \ 34 do { \ 35 if (unlikely(condition)) { \ 36 WARN_ON(1); \ 37 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 38 } \ 39 } while (0) 40 #endif 41 42 enum { 43 FAULT_KMALLOC, 44 FAULT_KVMALLOC, 45 FAULT_PAGE_ALLOC, 46 FAULT_PAGE_GET, 47 FAULT_ALLOC_BIO, 48 FAULT_ALLOC_NID, 49 FAULT_ORPHAN, 50 FAULT_BLOCK, 51 FAULT_DIR_DEPTH, 52 FAULT_EVICT_INODE, 53 FAULT_TRUNCATE, 54 FAULT_READ_IO, 55 FAULT_CHECKPOINT, 56 FAULT_DISCARD, 57 FAULT_WRITE_IO, 58 FAULT_MAX, 59 }; 60 61 #ifdef CONFIG_F2FS_FAULT_INJECTION 62 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 63 64 struct f2fs_fault_info { 65 atomic_t inject_ops; 66 unsigned int inject_rate; 67 unsigned int inject_type; 68 }; 69 70 extern const char *f2fs_fault_name[FAULT_MAX]; 71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 72 #endif 73 74 /* 75 * For mount options 76 */ 77 #define F2FS_MOUNT_BG_GC 0x00000001 78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 79 #define F2FS_MOUNT_DISCARD 0x00000004 80 #define F2FS_MOUNT_NOHEAP 0x00000008 81 #define F2FS_MOUNT_XATTR_USER 0x00000010 82 #define F2FS_MOUNT_POSIX_ACL 0x00000020 83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 84 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 85 #define F2FS_MOUNT_INLINE_DATA 0x00000100 86 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 87 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 88 #define F2FS_MOUNT_NOBARRIER 0x00000800 89 #define F2FS_MOUNT_FASTBOOT 0x00001000 90 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 91 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 92 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 93 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 94 #define F2FS_MOUNT_ADAPTIVE 0x00020000 95 #define F2FS_MOUNT_LFS 0x00040000 96 #define F2FS_MOUNT_USRQUOTA 0x00080000 97 #define F2FS_MOUNT_GRPQUOTA 0x00100000 98 #define F2FS_MOUNT_PRJQUOTA 0x00200000 99 #define F2FS_MOUNT_QUOTA 0x00400000 100 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 101 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 102 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 103 104 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 105 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 106 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 107 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 108 109 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 110 typecheck(unsigned long long, b) && \ 111 ((long long)((a) - (b)) > 0)) 112 113 typedef u32 block_t; /* 114 * should not change u32, since it is the on-disk block 115 * address format, __le32. 116 */ 117 typedef u32 nid_t; 118 119 struct f2fs_mount_info { 120 unsigned int opt; 121 int write_io_size_bits; /* Write IO size bits */ 122 block_t root_reserved_blocks; /* root reserved blocks */ 123 kuid_t s_resuid; /* reserved blocks for uid */ 124 kgid_t s_resgid; /* reserved blocks for gid */ 125 int active_logs; /* # of active logs */ 126 int inline_xattr_size; /* inline xattr size */ 127 #ifdef CONFIG_F2FS_FAULT_INJECTION 128 struct f2fs_fault_info fault_info; /* For fault injection */ 129 #endif 130 #ifdef CONFIG_QUOTA 131 /* Names of quota files with journalled quota */ 132 char *s_qf_names[MAXQUOTAS]; 133 int s_jquota_fmt; /* Format of quota to use */ 134 #endif 135 /* For which write hints are passed down to block layer */ 136 int whint_mode; 137 int alloc_mode; /* segment allocation policy */ 138 int fsync_mode; /* fsync policy */ 139 bool test_dummy_encryption; /* test dummy encryption */ 140 block_t unusable_cap; /* Amount of space allowed to be 141 * unusable when disabling checkpoint 142 */ 143 }; 144 145 #define F2FS_FEATURE_ENCRYPT 0x0001 146 #define F2FS_FEATURE_BLKZONED 0x0002 147 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 148 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 149 #define F2FS_FEATURE_PRJQUOTA 0x0010 150 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 151 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 152 #define F2FS_FEATURE_QUOTA_INO 0x0080 153 #define F2FS_FEATURE_INODE_CRTIME 0x0100 154 #define F2FS_FEATURE_LOST_FOUND 0x0200 155 #define F2FS_FEATURE_VERITY 0x0400 156 #define F2FS_FEATURE_SB_CHKSUM 0x0800 157 #define F2FS_FEATURE_CASEFOLD 0x1000 158 159 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 160 ((raw_super->feature & cpu_to_le32(mask)) != 0) 161 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 162 #define F2FS_SET_FEATURE(sbi, mask) \ 163 (sbi->raw_super->feature |= cpu_to_le32(mask)) 164 #define F2FS_CLEAR_FEATURE(sbi, mask) \ 165 (sbi->raw_super->feature &= ~cpu_to_le32(mask)) 166 167 /* 168 * Default values for user and/or group using reserved blocks 169 */ 170 #define F2FS_DEF_RESUID 0 171 #define F2FS_DEF_RESGID 0 172 173 /* 174 * For checkpoint manager 175 */ 176 enum { 177 NAT_BITMAP, 178 SIT_BITMAP 179 }; 180 181 #define CP_UMOUNT 0x00000001 182 #define CP_FASTBOOT 0x00000002 183 #define CP_SYNC 0x00000004 184 #define CP_RECOVERY 0x00000008 185 #define CP_DISCARD 0x00000010 186 #define CP_TRIMMED 0x00000020 187 #define CP_PAUSE 0x00000040 188 189 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 190 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 191 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 192 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 193 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 194 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 195 #define DEF_CP_INTERVAL 60 /* 60 secs */ 196 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 197 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 198 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 199 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 200 201 struct cp_control { 202 int reason; 203 __u64 trim_start; 204 __u64 trim_end; 205 __u64 trim_minlen; 206 }; 207 208 /* 209 * indicate meta/data type 210 */ 211 enum { 212 META_CP, 213 META_NAT, 214 META_SIT, 215 META_SSA, 216 META_MAX, 217 META_POR, 218 DATA_GENERIC, /* check range only */ 219 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 220 DATA_GENERIC_ENHANCE_READ, /* 221 * strong check on range and segment 222 * bitmap but no warning due to race 223 * condition of read on truncated area 224 * by extent_cache 225 */ 226 META_GENERIC, 227 }; 228 229 /* for the list of ino */ 230 enum { 231 ORPHAN_INO, /* for orphan ino list */ 232 APPEND_INO, /* for append ino list */ 233 UPDATE_INO, /* for update ino list */ 234 TRANS_DIR_INO, /* for trasactions dir ino list */ 235 FLUSH_INO, /* for multiple device flushing */ 236 MAX_INO_ENTRY, /* max. list */ 237 }; 238 239 struct ino_entry { 240 struct list_head list; /* list head */ 241 nid_t ino; /* inode number */ 242 unsigned int dirty_device; /* dirty device bitmap */ 243 }; 244 245 /* for the list of inodes to be GCed */ 246 struct inode_entry { 247 struct list_head list; /* list head */ 248 struct inode *inode; /* vfs inode pointer */ 249 }; 250 251 struct fsync_node_entry { 252 struct list_head list; /* list head */ 253 struct page *page; /* warm node page pointer */ 254 unsigned int seq_id; /* sequence id */ 255 }; 256 257 /* for the bitmap indicate blocks to be discarded */ 258 struct discard_entry { 259 struct list_head list; /* list head */ 260 block_t start_blkaddr; /* start blockaddr of current segment */ 261 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 262 }; 263 264 /* default discard granularity of inner discard thread, unit: block count */ 265 #define DEFAULT_DISCARD_GRANULARITY 16 266 267 /* max discard pend list number */ 268 #define MAX_PLIST_NUM 512 269 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 270 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 271 272 enum { 273 D_PREP, /* initial */ 274 D_PARTIAL, /* partially submitted */ 275 D_SUBMIT, /* all submitted */ 276 D_DONE, /* finished */ 277 }; 278 279 struct discard_info { 280 block_t lstart; /* logical start address */ 281 block_t len; /* length */ 282 block_t start; /* actual start address in dev */ 283 }; 284 285 struct discard_cmd { 286 struct rb_node rb_node; /* rb node located in rb-tree */ 287 union { 288 struct { 289 block_t lstart; /* logical start address */ 290 block_t len; /* length */ 291 block_t start; /* actual start address in dev */ 292 }; 293 struct discard_info di; /* discard info */ 294 295 }; 296 struct list_head list; /* command list */ 297 struct completion wait; /* compleation */ 298 struct block_device *bdev; /* bdev */ 299 unsigned short ref; /* reference count */ 300 unsigned char state; /* state */ 301 unsigned char queued; /* queued discard */ 302 int error; /* bio error */ 303 spinlock_t lock; /* for state/bio_ref updating */ 304 unsigned short bio_ref; /* bio reference count */ 305 }; 306 307 enum { 308 DPOLICY_BG, 309 DPOLICY_FORCE, 310 DPOLICY_FSTRIM, 311 DPOLICY_UMOUNT, 312 MAX_DPOLICY, 313 }; 314 315 struct discard_policy { 316 int type; /* type of discard */ 317 unsigned int min_interval; /* used for candidates exist */ 318 unsigned int mid_interval; /* used for device busy */ 319 unsigned int max_interval; /* used for candidates not exist */ 320 unsigned int max_requests; /* # of discards issued per round */ 321 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 322 bool io_aware; /* issue discard in idle time */ 323 bool sync; /* submit discard with REQ_SYNC flag */ 324 bool ordered; /* issue discard by lba order */ 325 unsigned int granularity; /* discard granularity */ 326 int timeout; /* discard timeout for put_super */ 327 }; 328 329 struct discard_cmd_control { 330 struct task_struct *f2fs_issue_discard; /* discard thread */ 331 struct list_head entry_list; /* 4KB discard entry list */ 332 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 333 struct list_head wait_list; /* store on-flushing entries */ 334 struct list_head fstrim_list; /* in-flight discard from fstrim */ 335 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 336 unsigned int discard_wake; /* to wake up discard thread */ 337 struct mutex cmd_lock; 338 unsigned int nr_discards; /* # of discards in the list */ 339 unsigned int max_discards; /* max. discards to be issued */ 340 unsigned int discard_granularity; /* discard granularity */ 341 unsigned int undiscard_blks; /* # of undiscard blocks */ 342 unsigned int next_pos; /* next discard position */ 343 atomic_t issued_discard; /* # of issued discard */ 344 atomic_t queued_discard; /* # of queued discard */ 345 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 346 struct rb_root_cached root; /* root of discard rb-tree */ 347 bool rbtree_check; /* config for consistence check */ 348 }; 349 350 /* for the list of fsync inodes, used only during recovery */ 351 struct fsync_inode_entry { 352 struct list_head list; /* list head */ 353 struct inode *inode; /* vfs inode pointer */ 354 block_t blkaddr; /* block address locating the last fsync */ 355 block_t last_dentry; /* block address locating the last dentry */ 356 }; 357 358 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 359 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 360 361 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 362 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 363 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 364 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 365 366 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 367 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 368 369 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 370 { 371 int before = nats_in_cursum(journal); 372 373 journal->n_nats = cpu_to_le16(before + i); 374 return before; 375 } 376 377 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 378 { 379 int before = sits_in_cursum(journal); 380 381 journal->n_sits = cpu_to_le16(before + i); 382 return before; 383 } 384 385 static inline bool __has_cursum_space(struct f2fs_journal *journal, 386 int size, int type) 387 { 388 if (type == NAT_JOURNAL) 389 return size <= MAX_NAT_JENTRIES(journal); 390 return size <= MAX_SIT_JENTRIES(journal); 391 } 392 393 /* 394 * ioctl commands 395 */ 396 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 397 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 398 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 399 400 #define F2FS_IOCTL_MAGIC 0xf5 401 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 402 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 403 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 404 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 405 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 406 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 407 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 408 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 409 struct f2fs_defragment) 410 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 411 struct f2fs_move_range) 412 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 413 struct f2fs_flush_device) 414 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 415 struct f2fs_gc_range) 416 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 417 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 418 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 419 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 420 #define F2FS_IOC_RESIZE_FS _IOW(F2FS_IOCTL_MAGIC, 16, __u64) 421 422 #define F2FS_IOC_GET_VOLUME_NAME FS_IOC_GETFSLABEL 423 #define F2FS_IOC_SET_VOLUME_NAME FS_IOC_SETFSLABEL 424 425 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 426 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 427 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 428 429 /* 430 * should be same as XFS_IOC_GOINGDOWN. 431 * Flags for going down operation used by FS_IOC_GOINGDOWN 432 */ 433 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 434 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 435 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 436 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 437 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 438 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */ 439 440 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 441 /* 442 * ioctl commands in 32 bit emulation 443 */ 444 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 445 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 446 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 447 #endif 448 449 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 450 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 451 452 struct f2fs_gc_range { 453 u32 sync; 454 u64 start; 455 u64 len; 456 }; 457 458 struct f2fs_defragment { 459 u64 start; 460 u64 len; 461 }; 462 463 struct f2fs_move_range { 464 u32 dst_fd; /* destination fd */ 465 u64 pos_in; /* start position in src_fd */ 466 u64 pos_out; /* start position in dst_fd */ 467 u64 len; /* size to move */ 468 }; 469 470 struct f2fs_flush_device { 471 u32 dev_num; /* device number to flush */ 472 u32 segments; /* # of segments to flush */ 473 }; 474 475 /* for inline stuff */ 476 #define DEF_INLINE_RESERVED_SIZE 1 477 static inline int get_extra_isize(struct inode *inode); 478 static inline int get_inline_xattr_addrs(struct inode *inode); 479 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 480 (CUR_ADDRS_PER_INODE(inode) - \ 481 get_inline_xattr_addrs(inode) - \ 482 DEF_INLINE_RESERVED_SIZE)) 483 484 /* for inline dir */ 485 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 486 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 487 BITS_PER_BYTE + 1)) 488 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 489 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 490 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 491 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 492 NR_INLINE_DENTRY(inode) + \ 493 INLINE_DENTRY_BITMAP_SIZE(inode))) 494 495 /* 496 * For INODE and NODE manager 497 */ 498 /* for directory operations */ 499 struct f2fs_dentry_ptr { 500 struct inode *inode; 501 void *bitmap; 502 struct f2fs_dir_entry *dentry; 503 __u8 (*filename)[F2FS_SLOT_LEN]; 504 int max; 505 int nr_bitmap; 506 }; 507 508 static inline void make_dentry_ptr_block(struct inode *inode, 509 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 510 { 511 d->inode = inode; 512 d->max = NR_DENTRY_IN_BLOCK; 513 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 514 d->bitmap = t->dentry_bitmap; 515 d->dentry = t->dentry; 516 d->filename = t->filename; 517 } 518 519 static inline void make_dentry_ptr_inline(struct inode *inode, 520 struct f2fs_dentry_ptr *d, void *t) 521 { 522 int entry_cnt = NR_INLINE_DENTRY(inode); 523 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 524 int reserved_size = INLINE_RESERVED_SIZE(inode); 525 526 d->inode = inode; 527 d->max = entry_cnt; 528 d->nr_bitmap = bitmap_size; 529 d->bitmap = t; 530 d->dentry = t + bitmap_size + reserved_size; 531 d->filename = t + bitmap_size + reserved_size + 532 SIZE_OF_DIR_ENTRY * entry_cnt; 533 } 534 535 /* 536 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 537 * as its node offset to distinguish from index node blocks. 538 * But some bits are used to mark the node block. 539 */ 540 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 541 >> OFFSET_BIT_SHIFT) 542 enum { 543 ALLOC_NODE, /* allocate a new node page if needed */ 544 LOOKUP_NODE, /* look up a node without readahead */ 545 LOOKUP_NODE_RA, /* 546 * look up a node with readahead called 547 * by get_data_block. 548 */ 549 }; 550 551 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */ 552 553 /* maximum retry quota flush count */ 554 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 555 556 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 557 558 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 559 560 /* for in-memory extent cache entry */ 561 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 562 563 /* number of extent info in extent cache we try to shrink */ 564 #define EXTENT_CACHE_SHRINK_NUMBER 128 565 566 struct rb_entry { 567 struct rb_node rb_node; /* rb node located in rb-tree */ 568 unsigned int ofs; /* start offset of the entry */ 569 unsigned int len; /* length of the entry */ 570 }; 571 572 struct extent_info { 573 unsigned int fofs; /* start offset in a file */ 574 unsigned int len; /* length of the extent */ 575 u32 blk; /* start block address of the extent */ 576 }; 577 578 struct extent_node { 579 struct rb_node rb_node; /* rb node located in rb-tree */ 580 struct extent_info ei; /* extent info */ 581 struct list_head list; /* node in global extent list of sbi */ 582 struct extent_tree *et; /* extent tree pointer */ 583 }; 584 585 struct extent_tree { 586 nid_t ino; /* inode number */ 587 struct rb_root_cached root; /* root of extent info rb-tree */ 588 struct extent_node *cached_en; /* recently accessed extent node */ 589 struct extent_info largest; /* largested extent info */ 590 struct list_head list; /* to be used by sbi->zombie_list */ 591 rwlock_t lock; /* protect extent info rb-tree */ 592 atomic_t node_cnt; /* # of extent node in rb-tree*/ 593 bool largest_updated; /* largest extent updated */ 594 }; 595 596 /* 597 * This structure is taken from ext4_map_blocks. 598 * 599 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 600 */ 601 #define F2FS_MAP_NEW (1 << BH_New) 602 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 603 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 604 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 605 F2FS_MAP_UNWRITTEN) 606 607 struct f2fs_map_blocks { 608 block_t m_pblk; 609 block_t m_lblk; 610 unsigned int m_len; 611 unsigned int m_flags; 612 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 613 pgoff_t *m_next_extent; /* point to next possible extent */ 614 int m_seg_type; 615 bool m_may_create; /* indicate it is from write path */ 616 }; 617 618 /* for flag in get_data_block */ 619 enum { 620 F2FS_GET_BLOCK_DEFAULT, 621 F2FS_GET_BLOCK_FIEMAP, 622 F2FS_GET_BLOCK_BMAP, 623 F2FS_GET_BLOCK_DIO, 624 F2FS_GET_BLOCK_PRE_DIO, 625 F2FS_GET_BLOCK_PRE_AIO, 626 F2FS_GET_BLOCK_PRECACHE, 627 }; 628 629 /* 630 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 631 */ 632 #define FADVISE_COLD_BIT 0x01 633 #define FADVISE_LOST_PINO_BIT 0x02 634 #define FADVISE_ENCRYPT_BIT 0x04 635 #define FADVISE_ENC_NAME_BIT 0x08 636 #define FADVISE_KEEP_SIZE_BIT 0x10 637 #define FADVISE_HOT_BIT 0x20 638 #define FADVISE_VERITY_BIT 0x40 639 640 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 641 642 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 643 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 644 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 645 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 646 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 647 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 648 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 649 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 650 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 651 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 652 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 653 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 654 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 655 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 656 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 657 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 658 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 659 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 660 661 #define DEF_DIR_LEVEL 0 662 663 enum { 664 GC_FAILURE_PIN, 665 GC_FAILURE_ATOMIC, 666 MAX_GC_FAILURE 667 }; 668 669 struct f2fs_inode_info { 670 struct inode vfs_inode; /* serve a vfs inode */ 671 unsigned long i_flags; /* keep an inode flags for ioctl */ 672 unsigned char i_advise; /* use to give file attribute hints */ 673 unsigned char i_dir_level; /* use for dentry level for large dir */ 674 unsigned int i_current_depth; /* only for directory depth */ 675 /* for gc failure statistic */ 676 unsigned int i_gc_failures[MAX_GC_FAILURE]; 677 unsigned int i_pino; /* parent inode number */ 678 umode_t i_acl_mode; /* keep file acl mode temporarily */ 679 680 /* Use below internally in f2fs*/ 681 unsigned long flags; /* use to pass per-file flags */ 682 struct rw_semaphore i_sem; /* protect fi info */ 683 atomic_t dirty_pages; /* # of dirty pages */ 684 f2fs_hash_t chash; /* hash value of given file name */ 685 unsigned int clevel; /* maximum level of given file name */ 686 struct task_struct *task; /* lookup and create consistency */ 687 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 688 nid_t i_xattr_nid; /* node id that contains xattrs */ 689 loff_t last_disk_size; /* lastly written file size */ 690 691 #ifdef CONFIG_QUOTA 692 struct dquot *i_dquot[MAXQUOTAS]; 693 694 /* quota space reservation, managed internally by quota code */ 695 qsize_t i_reserved_quota; 696 #endif 697 struct list_head dirty_list; /* dirty list for dirs and files */ 698 struct list_head gdirty_list; /* linked in global dirty list */ 699 struct list_head inmem_ilist; /* list for inmem inodes */ 700 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 701 struct task_struct *inmem_task; /* store inmemory task */ 702 struct mutex inmem_lock; /* lock for inmemory pages */ 703 struct extent_tree *extent_tree; /* cached extent_tree entry */ 704 705 /* avoid racing between foreground op and gc */ 706 struct rw_semaphore i_gc_rwsem[2]; 707 struct rw_semaphore i_mmap_sem; 708 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 709 710 int i_extra_isize; /* size of extra space located in i_addr */ 711 kprojid_t i_projid; /* id for project quota */ 712 int i_inline_xattr_size; /* inline xattr size */ 713 struct timespec64 i_crtime; /* inode creation time */ 714 struct timespec64 i_disk_time[4];/* inode disk times */ 715 }; 716 717 static inline void get_extent_info(struct extent_info *ext, 718 struct f2fs_extent *i_ext) 719 { 720 ext->fofs = le32_to_cpu(i_ext->fofs); 721 ext->blk = le32_to_cpu(i_ext->blk); 722 ext->len = le32_to_cpu(i_ext->len); 723 } 724 725 static inline void set_raw_extent(struct extent_info *ext, 726 struct f2fs_extent *i_ext) 727 { 728 i_ext->fofs = cpu_to_le32(ext->fofs); 729 i_ext->blk = cpu_to_le32(ext->blk); 730 i_ext->len = cpu_to_le32(ext->len); 731 } 732 733 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 734 u32 blk, unsigned int len) 735 { 736 ei->fofs = fofs; 737 ei->blk = blk; 738 ei->len = len; 739 } 740 741 static inline bool __is_discard_mergeable(struct discard_info *back, 742 struct discard_info *front, unsigned int max_len) 743 { 744 return (back->lstart + back->len == front->lstart) && 745 (back->len + front->len <= max_len); 746 } 747 748 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 749 struct discard_info *back, unsigned int max_len) 750 { 751 return __is_discard_mergeable(back, cur, max_len); 752 } 753 754 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 755 struct discard_info *front, unsigned int max_len) 756 { 757 return __is_discard_mergeable(cur, front, max_len); 758 } 759 760 static inline bool __is_extent_mergeable(struct extent_info *back, 761 struct extent_info *front) 762 { 763 return (back->fofs + back->len == front->fofs && 764 back->blk + back->len == front->blk); 765 } 766 767 static inline bool __is_back_mergeable(struct extent_info *cur, 768 struct extent_info *back) 769 { 770 return __is_extent_mergeable(back, cur); 771 } 772 773 static inline bool __is_front_mergeable(struct extent_info *cur, 774 struct extent_info *front) 775 { 776 return __is_extent_mergeable(cur, front); 777 } 778 779 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 780 static inline void __try_update_largest_extent(struct extent_tree *et, 781 struct extent_node *en) 782 { 783 if (en->ei.len > et->largest.len) { 784 et->largest = en->ei; 785 et->largest_updated = true; 786 } 787 } 788 789 /* 790 * For free nid management 791 */ 792 enum nid_state { 793 FREE_NID, /* newly added to free nid list */ 794 PREALLOC_NID, /* it is preallocated */ 795 MAX_NID_STATE, 796 }; 797 798 struct f2fs_nm_info { 799 block_t nat_blkaddr; /* base disk address of NAT */ 800 nid_t max_nid; /* maximum possible node ids */ 801 nid_t available_nids; /* # of available node ids */ 802 nid_t next_scan_nid; /* the next nid to be scanned */ 803 unsigned int ram_thresh; /* control the memory footprint */ 804 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 805 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 806 807 /* NAT cache management */ 808 struct radix_tree_root nat_root;/* root of the nat entry cache */ 809 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 810 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 811 struct list_head nat_entries; /* cached nat entry list (clean) */ 812 spinlock_t nat_list_lock; /* protect clean nat entry list */ 813 unsigned int nat_cnt; /* the # of cached nat entries */ 814 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 815 unsigned int nat_blocks; /* # of nat blocks */ 816 817 /* free node ids management */ 818 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 819 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 820 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 821 spinlock_t nid_list_lock; /* protect nid lists ops */ 822 struct mutex build_lock; /* lock for build free nids */ 823 unsigned char **free_nid_bitmap; 824 unsigned char *nat_block_bitmap; 825 unsigned short *free_nid_count; /* free nid count of NAT block */ 826 827 /* for checkpoint */ 828 char *nat_bitmap; /* NAT bitmap pointer */ 829 830 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 831 unsigned char *nat_bits; /* NAT bits blocks */ 832 unsigned char *full_nat_bits; /* full NAT pages */ 833 unsigned char *empty_nat_bits; /* empty NAT pages */ 834 #ifdef CONFIG_F2FS_CHECK_FS 835 char *nat_bitmap_mir; /* NAT bitmap mirror */ 836 #endif 837 int bitmap_size; /* bitmap size */ 838 }; 839 840 /* 841 * this structure is used as one of function parameters. 842 * all the information are dedicated to a given direct node block determined 843 * by the data offset in a file. 844 */ 845 struct dnode_of_data { 846 struct inode *inode; /* vfs inode pointer */ 847 struct page *inode_page; /* its inode page, NULL is possible */ 848 struct page *node_page; /* cached direct node page */ 849 nid_t nid; /* node id of the direct node block */ 850 unsigned int ofs_in_node; /* data offset in the node page */ 851 bool inode_page_locked; /* inode page is locked or not */ 852 bool node_changed; /* is node block changed */ 853 char cur_level; /* level of hole node page */ 854 char max_level; /* level of current page located */ 855 block_t data_blkaddr; /* block address of the node block */ 856 }; 857 858 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 859 struct page *ipage, struct page *npage, nid_t nid) 860 { 861 memset(dn, 0, sizeof(*dn)); 862 dn->inode = inode; 863 dn->inode_page = ipage; 864 dn->node_page = npage; 865 dn->nid = nid; 866 } 867 868 /* 869 * For SIT manager 870 * 871 * By default, there are 6 active log areas across the whole main area. 872 * When considering hot and cold data separation to reduce cleaning overhead, 873 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 874 * respectively. 875 * In the current design, you should not change the numbers intentionally. 876 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 877 * logs individually according to the underlying devices. (default: 6) 878 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 879 * data and 8 for node logs. 880 */ 881 #define NR_CURSEG_DATA_TYPE (3) 882 #define NR_CURSEG_NODE_TYPE (3) 883 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 884 885 enum { 886 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 887 CURSEG_WARM_DATA, /* data blocks */ 888 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 889 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 890 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 891 CURSEG_COLD_NODE, /* indirect node blocks */ 892 NO_CHECK_TYPE, 893 CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */ 894 }; 895 896 struct flush_cmd { 897 struct completion wait; 898 struct llist_node llnode; 899 nid_t ino; 900 int ret; 901 }; 902 903 struct flush_cmd_control { 904 struct task_struct *f2fs_issue_flush; /* flush thread */ 905 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 906 atomic_t issued_flush; /* # of issued flushes */ 907 atomic_t queued_flush; /* # of queued flushes */ 908 struct llist_head issue_list; /* list for command issue */ 909 struct llist_node *dispatch_list; /* list for command dispatch */ 910 }; 911 912 struct f2fs_sm_info { 913 struct sit_info *sit_info; /* whole segment information */ 914 struct free_segmap_info *free_info; /* free segment information */ 915 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 916 struct curseg_info *curseg_array; /* active segment information */ 917 918 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 919 920 block_t seg0_blkaddr; /* block address of 0'th segment */ 921 block_t main_blkaddr; /* start block address of main area */ 922 block_t ssa_blkaddr; /* start block address of SSA area */ 923 924 unsigned int segment_count; /* total # of segments */ 925 unsigned int main_segments; /* # of segments in main area */ 926 unsigned int reserved_segments; /* # of reserved segments */ 927 unsigned int ovp_segments; /* # of overprovision segments */ 928 929 /* a threshold to reclaim prefree segments */ 930 unsigned int rec_prefree_segments; 931 932 /* for batched trimming */ 933 unsigned int trim_sections; /* # of sections to trim */ 934 935 struct list_head sit_entry_set; /* sit entry set list */ 936 937 unsigned int ipu_policy; /* in-place-update policy */ 938 unsigned int min_ipu_util; /* in-place-update threshold */ 939 unsigned int min_fsync_blocks; /* threshold for fsync */ 940 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 941 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 942 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 943 944 /* for flush command control */ 945 struct flush_cmd_control *fcc_info; 946 947 /* for discard command control */ 948 struct discard_cmd_control *dcc_info; 949 }; 950 951 /* 952 * For superblock 953 */ 954 /* 955 * COUNT_TYPE for monitoring 956 * 957 * f2fs monitors the number of several block types such as on-writeback, 958 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 959 */ 960 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 961 enum count_type { 962 F2FS_DIRTY_DENTS, 963 F2FS_DIRTY_DATA, 964 F2FS_DIRTY_QDATA, 965 F2FS_DIRTY_NODES, 966 F2FS_DIRTY_META, 967 F2FS_INMEM_PAGES, 968 F2FS_DIRTY_IMETA, 969 F2FS_WB_CP_DATA, 970 F2FS_WB_DATA, 971 F2FS_RD_DATA, 972 F2FS_RD_NODE, 973 F2FS_RD_META, 974 F2FS_DIO_WRITE, 975 F2FS_DIO_READ, 976 NR_COUNT_TYPE, 977 }; 978 979 /* 980 * The below are the page types of bios used in submit_bio(). 981 * The available types are: 982 * DATA User data pages. It operates as async mode. 983 * NODE Node pages. It operates as async mode. 984 * META FS metadata pages such as SIT, NAT, CP. 985 * NR_PAGE_TYPE The number of page types. 986 * META_FLUSH Make sure the previous pages are written 987 * with waiting the bio's completion 988 * ... Only can be used with META. 989 */ 990 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 991 enum page_type { 992 DATA, 993 NODE, 994 META, 995 NR_PAGE_TYPE, 996 META_FLUSH, 997 INMEM, /* the below types are used by tracepoints only. */ 998 INMEM_DROP, 999 INMEM_INVALIDATE, 1000 INMEM_REVOKE, 1001 IPU, 1002 OPU, 1003 }; 1004 1005 enum temp_type { 1006 HOT = 0, /* must be zero for meta bio */ 1007 WARM, 1008 COLD, 1009 NR_TEMP_TYPE, 1010 }; 1011 1012 enum need_lock_type { 1013 LOCK_REQ = 0, 1014 LOCK_DONE, 1015 LOCK_RETRY, 1016 }; 1017 1018 enum cp_reason_type { 1019 CP_NO_NEEDED, 1020 CP_NON_REGULAR, 1021 CP_HARDLINK, 1022 CP_SB_NEED_CP, 1023 CP_WRONG_PINO, 1024 CP_NO_SPC_ROLL, 1025 CP_NODE_NEED_CP, 1026 CP_FASTBOOT_MODE, 1027 CP_SPEC_LOG_NUM, 1028 CP_RECOVER_DIR, 1029 }; 1030 1031 enum iostat_type { 1032 APP_DIRECT_IO, /* app direct IOs */ 1033 APP_BUFFERED_IO, /* app buffered IOs */ 1034 APP_WRITE_IO, /* app write IOs */ 1035 APP_MAPPED_IO, /* app mapped IOs */ 1036 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1037 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1038 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1039 FS_GC_DATA_IO, /* data IOs from forground gc */ 1040 FS_GC_NODE_IO, /* node IOs from forground gc */ 1041 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1042 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1043 FS_CP_META_IO, /* meta IOs from checkpoint */ 1044 FS_DISCARD, /* discard */ 1045 NR_IO_TYPE, 1046 }; 1047 1048 struct f2fs_io_info { 1049 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1050 nid_t ino; /* inode number */ 1051 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1052 enum temp_type temp; /* contains HOT/WARM/COLD */ 1053 int op; /* contains REQ_OP_ */ 1054 int op_flags; /* req_flag_bits */ 1055 block_t new_blkaddr; /* new block address to be written */ 1056 block_t old_blkaddr; /* old block address before Cow */ 1057 struct page *page; /* page to be written */ 1058 struct page *encrypted_page; /* encrypted page */ 1059 struct list_head list; /* serialize IOs */ 1060 bool submitted; /* indicate IO submission */ 1061 int need_lock; /* indicate we need to lock cp_rwsem */ 1062 bool in_list; /* indicate fio is in io_list */ 1063 bool is_por; /* indicate IO is from recovery or not */ 1064 bool retry; /* need to reallocate block address */ 1065 enum iostat_type io_type; /* io type */ 1066 struct writeback_control *io_wbc; /* writeback control */ 1067 struct bio **bio; /* bio for ipu */ 1068 sector_t *last_block; /* last block number in bio */ 1069 unsigned char version; /* version of the node */ 1070 }; 1071 1072 struct bio_entry { 1073 struct bio *bio; 1074 struct list_head list; 1075 }; 1076 1077 #define is_read_io(rw) ((rw) == READ) 1078 struct f2fs_bio_info { 1079 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1080 struct bio *bio; /* bios to merge */ 1081 sector_t last_block_in_bio; /* last block number */ 1082 struct f2fs_io_info fio; /* store buffered io info. */ 1083 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1084 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1085 struct list_head io_list; /* track fios */ 1086 struct list_head bio_list; /* bio entry list head */ 1087 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */ 1088 }; 1089 1090 #define FDEV(i) (sbi->devs[i]) 1091 #define RDEV(i) (raw_super->devs[i]) 1092 struct f2fs_dev_info { 1093 struct block_device *bdev; 1094 char path[MAX_PATH_LEN]; 1095 unsigned int total_segments; 1096 block_t start_blk; 1097 block_t end_blk; 1098 #ifdef CONFIG_BLK_DEV_ZONED 1099 unsigned int nr_blkz; /* Total number of zones */ 1100 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1101 #endif 1102 }; 1103 1104 enum inode_type { 1105 DIR_INODE, /* for dirty dir inode */ 1106 FILE_INODE, /* for dirty regular/symlink inode */ 1107 DIRTY_META, /* for all dirtied inode metadata */ 1108 ATOMIC_FILE, /* for all atomic files */ 1109 NR_INODE_TYPE, 1110 }; 1111 1112 /* for inner inode cache management */ 1113 struct inode_management { 1114 struct radix_tree_root ino_root; /* ino entry array */ 1115 spinlock_t ino_lock; /* for ino entry lock */ 1116 struct list_head ino_list; /* inode list head */ 1117 unsigned long ino_num; /* number of entries */ 1118 }; 1119 1120 /* For s_flag in struct f2fs_sb_info */ 1121 enum { 1122 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1123 SBI_IS_CLOSE, /* specify unmounting */ 1124 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1125 SBI_POR_DOING, /* recovery is doing or not */ 1126 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1127 SBI_NEED_CP, /* need to checkpoint */ 1128 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1129 SBI_IS_RECOVERED, /* recovered orphan/data */ 1130 SBI_CP_DISABLED, /* CP was disabled last mount */ 1131 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1132 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1133 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1134 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1135 SBI_IS_RESIZEFS, /* resizefs is in process */ 1136 }; 1137 1138 enum { 1139 CP_TIME, 1140 REQ_TIME, 1141 DISCARD_TIME, 1142 GC_TIME, 1143 DISABLE_TIME, 1144 UMOUNT_DISCARD_TIMEOUT, 1145 MAX_TIME, 1146 }; 1147 1148 enum { 1149 GC_NORMAL, 1150 GC_IDLE_CB, 1151 GC_IDLE_GREEDY, 1152 GC_URGENT, 1153 }; 1154 1155 enum { 1156 WHINT_MODE_OFF, /* not pass down write hints */ 1157 WHINT_MODE_USER, /* try to pass down hints given by users */ 1158 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1159 }; 1160 1161 enum { 1162 ALLOC_MODE_DEFAULT, /* stay default */ 1163 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1164 }; 1165 1166 enum fsync_mode { 1167 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1168 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1169 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1170 }; 1171 1172 #ifdef CONFIG_FS_ENCRYPTION 1173 #define DUMMY_ENCRYPTION_ENABLED(sbi) \ 1174 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption)) 1175 #else 1176 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0) 1177 #endif 1178 1179 struct f2fs_sb_info { 1180 struct super_block *sb; /* pointer to VFS super block */ 1181 struct proc_dir_entry *s_proc; /* proc entry */ 1182 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1183 struct rw_semaphore sb_lock; /* lock for raw super block */ 1184 int valid_super_block; /* valid super block no */ 1185 unsigned long s_flag; /* flags for sbi */ 1186 struct mutex writepages; /* mutex for writepages() */ 1187 #ifdef CONFIG_UNICODE 1188 struct unicode_map *s_encoding; 1189 __u16 s_encoding_flags; 1190 #endif 1191 1192 #ifdef CONFIG_BLK_DEV_ZONED 1193 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1194 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1195 #endif 1196 1197 /* for node-related operations */ 1198 struct f2fs_nm_info *nm_info; /* node manager */ 1199 struct inode *node_inode; /* cache node blocks */ 1200 1201 /* for segment-related operations */ 1202 struct f2fs_sm_info *sm_info; /* segment manager */ 1203 1204 /* for bio operations */ 1205 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1206 /* keep migration IO order for LFS mode */ 1207 struct rw_semaphore io_order_lock; 1208 mempool_t *write_io_dummy; /* Dummy pages */ 1209 1210 /* for checkpoint */ 1211 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1212 int cur_cp_pack; /* remain current cp pack */ 1213 spinlock_t cp_lock; /* for flag in ckpt */ 1214 struct inode *meta_inode; /* cache meta blocks */ 1215 struct mutex cp_mutex; /* checkpoint procedure lock */ 1216 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1217 struct rw_semaphore node_write; /* locking node writes */ 1218 struct rw_semaphore node_change; /* locking node change */ 1219 wait_queue_head_t cp_wait; 1220 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1221 long interval_time[MAX_TIME]; /* to store thresholds */ 1222 1223 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1224 1225 spinlock_t fsync_node_lock; /* for node entry lock */ 1226 struct list_head fsync_node_list; /* node list head */ 1227 unsigned int fsync_seg_id; /* sequence id */ 1228 unsigned int fsync_node_num; /* number of node entries */ 1229 1230 /* for orphan inode, use 0'th array */ 1231 unsigned int max_orphans; /* max orphan inodes */ 1232 1233 /* for inode management */ 1234 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1235 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1236 struct mutex flush_lock; /* for flush exclusion */ 1237 1238 /* for extent tree cache */ 1239 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1240 struct mutex extent_tree_lock; /* locking extent radix tree */ 1241 struct list_head extent_list; /* lru list for shrinker */ 1242 spinlock_t extent_lock; /* locking extent lru list */ 1243 atomic_t total_ext_tree; /* extent tree count */ 1244 struct list_head zombie_list; /* extent zombie tree list */ 1245 atomic_t total_zombie_tree; /* extent zombie tree count */ 1246 atomic_t total_ext_node; /* extent info count */ 1247 1248 /* basic filesystem units */ 1249 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1250 unsigned int log_blocksize; /* log2 block size */ 1251 unsigned int blocksize; /* block size */ 1252 unsigned int root_ino_num; /* root inode number*/ 1253 unsigned int node_ino_num; /* node inode number*/ 1254 unsigned int meta_ino_num; /* meta inode number*/ 1255 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1256 unsigned int blocks_per_seg; /* blocks per segment */ 1257 unsigned int segs_per_sec; /* segments per section */ 1258 unsigned int secs_per_zone; /* sections per zone */ 1259 unsigned int total_sections; /* total section count */ 1260 struct mutex resize_mutex; /* for resize exclusion */ 1261 unsigned int total_node_count; /* total node block count */ 1262 unsigned int total_valid_node_count; /* valid node block count */ 1263 loff_t max_file_blocks; /* max block index of file */ 1264 int dir_level; /* directory level */ 1265 int readdir_ra; /* readahead inode in readdir */ 1266 1267 block_t user_block_count; /* # of user blocks */ 1268 block_t total_valid_block_count; /* # of valid blocks */ 1269 block_t discard_blks; /* discard command candidats */ 1270 block_t last_valid_block_count; /* for recovery */ 1271 block_t reserved_blocks; /* configurable reserved blocks */ 1272 block_t current_reserved_blocks; /* current reserved blocks */ 1273 1274 /* Additional tracking for no checkpoint mode */ 1275 block_t unusable_block_count; /* # of blocks saved by last cp */ 1276 1277 unsigned int nquota_files; /* # of quota sysfile */ 1278 struct rw_semaphore quota_sem; /* blocking cp for flags */ 1279 1280 /* # of pages, see count_type */ 1281 atomic_t nr_pages[NR_COUNT_TYPE]; 1282 /* # of allocated blocks */ 1283 struct percpu_counter alloc_valid_block_count; 1284 1285 /* writeback control */ 1286 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1287 1288 /* valid inode count */ 1289 struct percpu_counter total_valid_inode_count; 1290 1291 struct f2fs_mount_info mount_opt; /* mount options */ 1292 1293 /* for cleaning operations */ 1294 struct mutex gc_mutex; /* mutex for GC */ 1295 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1296 unsigned int cur_victim_sec; /* current victim section num */ 1297 unsigned int gc_mode; /* current GC state */ 1298 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1299 /* for skip statistic */ 1300 unsigned int atomic_files; /* # of opened atomic file */ 1301 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1302 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1303 1304 /* threshold for gc trials on pinned files */ 1305 u64 gc_pin_file_threshold; 1306 struct rw_semaphore pin_sem; 1307 1308 /* maximum # of trials to find a victim segment for SSR and GC */ 1309 unsigned int max_victim_search; 1310 /* migration granularity of garbage collection, unit: segment */ 1311 unsigned int migration_granularity; 1312 1313 /* 1314 * for stat information. 1315 * one is for the LFS mode, and the other is for the SSR mode. 1316 */ 1317 #ifdef CONFIG_F2FS_STAT_FS 1318 struct f2fs_stat_info *stat_info; /* FS status information */ 1319 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1320 unsigned int segment_count[2]; /* # of allocated segments */ 1321 unsigned int block_count[2]; /* # of allocated blocks */ 1322 atomic_t inplace_count; /* # of inplace update */ 1323 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1324 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1325 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1326 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1327 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1328 atomic_t inline_inode; /* # of inline_data inodes */ 1329 atomic_t inline_dir; /* # of inline_dentry inodes */ 1330 atomic_t aw_cnt; /* # of atomic writes */ 1331 atomic_t vw_cnt; /* # of volatile writes */ 1332 atomic_t max_aw_cnt; /* max # of atomic writes */ 1333 atomic_t max_vw_cnt; /* max # of volatile writes */ 1334 int bg_gc; /* background gc calls */ 1335 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1336 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1337 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1338 #endif 1339 spinlock_t stat_lock; /* lock for stat operations */ 1340 1341 /* For app/fs IO statistics */ 1342 spinlock_t iostat_lock; 1343 unsigned long long write_iostat[NR_IO_TYPE]; 1344 bool iostat_enable; 1345 1346 /* For sysfs suppport */ 1347 struct kobject s_kobj; 1348 struct completion s_kobj_unregister; 1349 1350 /* For shrinker support */ 1351 struct list_head s_list; 1352 int s_ndevs; /* number of devices */ 1353 struct f2fs_dev_info *devs; /* for device list */ 1354 unsigned int dirty_device; /* for checkpoint data flush */ 1355 spinlock_t dev_lock; /* protect dirty_device */ 1356 struct mutex umount_mutex; 1357 unsigned int shrinker_run_no; 1358 1359 /* For write statistics */ 1360 u64 sectors_written_start; 1361 u64 kbytes_written; 1362 1363 /* Reference to checksum algorithm driver via cryptoapi */ 1364 struct crypto_shash *s_chksum_driver; 1365 1366 /* Precomputed FS UUID checksum for seeding other checksums */ 1367 __u32 s_chksum_seed; 1368 }; 1369 1370 struct f2fs_private_dio { 1371 struct inode *inode; 1372 void *orig_private; 1373 bio_end_io_t *orig_end_io; 1374 bool write; 1375 }; 1376 1377 #ifdef CONFIG_F2FS_FAULT_INJECTION 1378 #define f2fs_show_injection_info(sbi, type) \ 1379 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \ 1380 KERN_INFO, sbi->sb->s_id, \ 1381 f2fs_fault_name[type], \ 1382 __func__, __builtin_return_address(0)) 1383 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1384 { 1385 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1386 1387 if (!ffi->inject_rate) 1388 return false; 1389 1390 if (!IS_FAULT_SET(ffi, type)) 1391 return false; 1392 1393 atomic_inc(&ffi->inject_ops); 1394 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1395 atomic_set(&ffi->inject_ops, 0); 1396 return true; 1397 } 1398 return false; 1399 } 1400 #else 1401 #define f2fs_show_injection_info(sbi, type) do { } while (0) 1402 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1403 { 1404 return false; 1405 } 1406 #endif 1407 1408 /* 1409 * Test if the mounted volume is a multi-device volume. 1410 * - For a single regular disk volume, sbi->s_ndevs is 0. 1411 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1412 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1413 */ 1414 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1415 { 1416 return sbi->s_ndevs > 1; 1417 } 1418 1419 /* For write statistics. Suppose sector size is 512 bytes, 1420 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1421 */ 1422 #define BD_PART_WRITTEN(s) \ 1423 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \ 1424 (s)->sectors_written_start) >> 1) 1425 1426 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1427 { 1428 unsigned long now = jiffies; 1429 1430 sbi->last_time[type] = now; 1431 1432 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1433 if (type == REQ_TIME) { 1434 sbi->last_time[DISCARD_TIME] = now; 1435 sbi->last_time[GC_TIME] = now; 1436 } 1437 } 1438 1439 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1440 { 1441 unsigned long interval = sbi->interval_time[type] * HZ; 1442 1443 return time_after(jiffies, sbi->last_time[type] + interval); 1444 } 1445 1446 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1447 int type) 1448 { 1449 unsigned long interval = sbi->interval_time[type] * HZ; 1450 unsigned int wait_ms = 0; 1451 long delta; 1452 1453 delta = (sbi->last_time[type] + interval) - jiffies; 1454 if (delta > 0) 1455 wait_ms = jiffies_to_msecs(delta); 1456 1457 return wait_ms; 1458 } 1459 1460 /* 1461 * Inline functions 1462 */ 1463 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1464 const void *address, unsigned int length) 1465 { 1466 struct { 1467 struct shash_desc shash; 1468 char ctx[4]; 1469 } desc; 1470 int err; 1471 1472 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1473 1474 desc.shash.tfm = sbi->s_chksum_driver; 1475 *(u32 *)desc.ctx = crc; 1476 1477 err = crypto_shash_update(&desc.shash, address, length); 1478 BUG_ON(err); 1479 1480 return *(u32 *)desc.ctx; 1481 } 1482 1483 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1484 unsigned int length) 1485 { 1486 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1487 } 1488 1489 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1490 void *buf, size_t buf_size) 1491 { 1492 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1493 } 1494 1495 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1496 const void *address, unsigned int length) 1497 { 1498 return __f2fs_crc32(sbi, crc, address, length); 1499 } 1500 1501 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1502 { 1503 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1504 } 1505 1506 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1507 { 1508 return sb->s_fs_info; 1509 } 1510 1511 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1512 { 1513 return F2FS_SB(inode->i_sb); 1514 } 1515 1516 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1517 { 1518 return F2FS_I_SB(mapping->host); 1519 } 1520 1521 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1522 { 1523 return F2FS_M_SB(page_file_mapping(page)); 1524 } 1525 1526 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1527 { 1528 return (struct f2fs_super_block *)(sbi->raw_super); 1529 } 1530 1531 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1532 { 1533 return (struct f2fs_checkpoint *)(sbi->ckpt); 1534 } 1535 1536 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1537 { 1538 return (struct f2fs_node *)page_address(page); 1539 } 1540 1541 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1542 { 1543 return &((struct f2fs_node *)page_address(page))->i; 1544 } 1545 1546 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1547 { 1548 return (struct f2fs_nm_info *)(sbi->nm_info); 1549 } 1550 1551 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1552 { 1553 return (struct f2fs_sm_info *)(sbi->sm_info); 1554 } 1555 1556 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1557 { 1558 return (struct sit_info *)(SM_I(sbi)->sit_info); 1559 } 1560 1561 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1562 { 1563 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1564 } 1565 1566 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1567 { 1568 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1569 } 1570 1571 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1572 { 1573 return sbi->meta_inode->i_mapping; 1574 } 1575 1576 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1577 { 1578 return sbi->node_inode->i_mapping; 1579 } 1580 1581 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1582 { 1583 return test_bit(type, &sbi->s_flag); 1584 } 1585 1586 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1587 { 1588 set_bit(type, &sbi->s_flag); 1589 } 1590 1591 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1592 { 1593 clear_bit(type, &sbi->s_flag); 1594 } 1595 1596 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1597 { 1598 return le64_to_cpu(cp->checkpoint_ver); 1599 } 1600 1601 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1602 { 1603 if (type < F2FS_MAX_QUOTAS) 1604 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1605 return 0; 1606 } 1607 1608 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1609 { 1610 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1611 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1612 } 1613 1614 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1615 { 1616 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1617 1618 return ckpt_flags & f; 1619 } 1620 1621 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1622 { 1623 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1624 } 1625 1626 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1627 { 1628 unsigned int ckpt_flags; 1629 1630 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1631 ckpt_flags |= f; 1632 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1633 } 1634 1635 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1636 { 1637 unsigned long flags; 1638 1639 spin_lock_irqsave(&sbi->cp_lock, flags); 1640 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1641 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1642 } 1643 1644 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1645 { 1646 unsigned int ckpt_flags; 1647 1648 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1649 ckpt_flags &= (~f); 1650 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1651 } 1652 1653 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1654 { 1655 unsigned long flags; 1656 1657 spin_lock_irqsave(&sbi->cp_lock, flags); 1658 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1659 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1660 } 1661 1662 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1663 { 1664 unsigned long flags; 1665 unsigned char *nat_bits; 1666 1667 /* 1668 * In order to re-enable nat_bits we need to call fsck.f2fs by 1669 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost, 1670 * so let's rely on regular fsck or unclean shutdown. 1671 */ 1672 1673 if (lock) 1674 spin_lock_irqsave(&sbi->cp_lock, flags); 1675 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1676 nat_bits = NM_I(sbi)->nat_bits; 1677 NM_I(sbi)->nat_bits = NULL; 1678 if (lock) 1679 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1680 1681 kvfree(nat_bits); 1682 } 1683 1684 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1685 struct cp_control *cpc) 1686 { 1687 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1688 1689 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1690 } 1691 1692 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1693 { 1694 down_read(&sbi->cp_rwsem); 1695 } 1696 1697 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1698 { 1699 return down_read_trylock(&sbi->cp_rwsem); 1700 } 1701 1702 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1703 { 1704 up_read(&sbi->cp_rwsem); 1705 } 1706 1707 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1708 { 1709 down_write(&sbi->cp_rwsem); 1710 } 1711 1712 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1713 { 1714 up_write(&sbi->cp_rwsem); 1715 } 1716 1717 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1718 { 1719 int reason = CP_SYNC; 1720 1721 if (test_opt(sbi, FASTBOOT)) 1722 reason = CP_FASTBOOT; 1723 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1724 reason = CP_UMOUNT; 1725 return reason; 1726 } 1727 1728 static inline bool __remain_node_summaries(int reason) 1729 { 1730 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1731 } 1732 1733 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1734 { 1735 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1736 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1737 } 1738 1739 /* 1740 * Check whether the inode has blocks or not 1741 */ 1742 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1743 { 1744 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1745 1746 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1747 } 1748 1749 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1750 { 1751 return ofs == XATTR_NODE_OFFSET; 1752 } 1753 1754 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1755 struct inode *inode, bool cap) 1756 { 1757 if (!inode) 1758 return true; 1759 if (!test_opt(sbi, RESERVE_ROOT)) 1760 return false; 1761 if (IS_NOQUOTA(inode)) 1762 return true; 1763 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1764 return true; 1765 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1766 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1767 return true; 1768 if (cap && capable(CAP_SYS_RESOURCE)) 1769 return true; 1770 return false; 1771 } 1772 1773 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1774 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1775 struct inode *inode, blkcnt_t *count) 1776 { 1777 blkcnt_t diff = 0, release = 0; 1778 block_t avail_user_block_count; 1779 int ret; 1780 1781 ret = dquot_reserve_block(inode, *count); 1782 if (ret) 1783 return ret; 1784 1785 if (time_to_inject(sbi, FAULT_BLOCK)) { 1786 f2fs_show_injection_info(sbi, FAULT_BLOCK); 1787 release = *count; 1788 goto release_quota; 1789 } 1790 1791 /* 1792 * let's increase this in prior to actual block count change in order 1793 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1794 */ 1795 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1796 1797 spin_lock(&sbi->stat_lock); 1798 sbi->total_valid_block_count += (block_t)(*count); 1799 avail_user_block_count = sbi->user_block_count - 1800 sbi->current_reserved_blocks; 1801 1802 if (!__allow_reserved_blocks(sbi, inode, true)) 1803 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1804 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1805 if (avail_user_block_count > sbi->unusable_block_count) 1806 avail_user_block_count -= sbi->unusable_block_count; 1807 else 1808 avail_user_block_count = 0; 1809 } 1810 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1811 diff = sbi->total_valid_block_count - avail_user_block_count; 1812 if (diff > *count) 1813 diff = *count; 1814 *count -= diff; 1815 release = diff; 1816 sbi->total_valid_block_count -= diff; 1817 if (!*count) { 1818 spin_unlock(&sbi->stat_lock); 1819 goto enospc; 1820 } 1821 } 1822 spin_unlock(&sbi->stat_lock); 1823 1824 if (unlikely(release)) { 1825 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1826 dquot_release_reservation_block(inode, release); 1827 } 1828 f2fs_i_blocks_write(inode, *count, true, true); 1829 return 0; 1830 1831 enospc: 1832 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1833 release_quota: 1834 dquot_release_reservation_block(inode, release); 1835 return -ENOSPC; 1836 } 1837 1838 __printf(2, 3) 1839 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 1840 1841 #define f2fs_err(sbi, fmt, ...) \ 1842 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 1843 #define f2fs_warn(sbi, fmt, ...) \ 1844 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 1845 #define f2fs_notice(sbi, fmt, ...) \ 1846 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 1847 #define f2fs_info(sbi, fmt, ...) \ 1848 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 1849 #define f2fs_debug(sbi, fmt, ...) \ 1850 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 1851 1852 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1853 struct inode *inode, 1854 block_t count) 1855 { 1856 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1857 1858 spin_lock(&sbi->stat_lock); 1859 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1860 sbi->total_valid_block_count -= (block_t)count; 1861 if (sbi->reserved_blocks && 1862 sbi->current_reserved_blocks < sbi->reserved_blocks) 1863 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1864 sbi->current_reserved_blocks + count); 1865 spin_unlock(&sbi->stat_lock); 1866 if (unlikely(inode->i_blocks < sectors)) { 1867 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 1868 inode->i_ino, 1869 (unsigned long long)inode->i_blocks, 1870 (unsigned long long)sectors); 1871 set_sbi_flag(sbi, SBI_NEED_FSCK); 1872 return; 1873 } 1874 f2fs_i_blocks_write(inode, count, false, true); 1875 } 1876 1877 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1878 { 1879 atomic_inc(&sbi->nr_pages[count_type]); 1880 1881 if (count_type == F2FS_DIRTY_DENTS || 1882 count_type == F2FS_DIRTY_NODES || 1883 count_type == F2FS_DIRTY_META || 1884 count_type == F2FS_DIRTY_QDATA || 1885 count_type == F2FS_DIRTY_IMETA) 1886 set_sbi_flag(sbi, SBI_IS_DIRTY); 1887 } 1888 1889 static inline void inode_inc_dirty_pages(struct inode *inode) 1890 { 1891 atomic_inc(&F2FS_I(inode)->dirty_pages); 1892 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1893 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1894 if (IS_NOQUOTA(inode)) 1895 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1896 } 1897 1898 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1899 { 1900 atomic_dec(&sbi->nr_pages[count_type]); 1901 } 1902 1903 static inline void inode_dec_dirty_pages(struct inode *inode) 1904 { 1905 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1906 !S_ISLNK(inode->i_mode)) 1907 return; 1908 1909 atomic_dec(&F2FS_I(inode)->dirty_pages); 1910 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1911 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1912 if (IS_NOQUOTA(inode)) 1913 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1914 } 1915 1916 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1917 { 1918 return atomic_read(&sbi->nr_pages[count_type]); 1919 } 1920 1921 static inline int get_dirty_pages(struct inode *inode) 1922 { 1923 return atomic_read(&F2FS_I(inode)->dirty_pages); 1924 } 1925 1926 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1927 { 1928 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1929 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1930 sbi->log_blocks_per_seg; 1931 1932 return segs / sbi->segs_per_sec; 1933 } 1934 1935 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1936 { 1937 return sbi->total_valid_block_count; 1938 } 1939 1940 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1941 { 1942 return sbi->discard_blks; 1943 } 1944 1945 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1946 { 1947 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1948 1949 /* return NAT or SIT bitmap */ 1950 if (flag == NAT_BITMAP) 1951 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1952 else if (flag == SIT_BITMAP) 1953 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1954 1955 return 0; 1956 } 1957 1958 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1959 { 1960 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1961 } 1962 1963 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1964 { 1965 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1966 int offset; 1967 1968 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 1969 offset = (flag == SIT_BITMAP) ? 1970 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 1971 /* 1972 * if large_nat_bitmap feature is enabled, leave checksum 1973 * protection for all nat/sit bitmaps. 1974 */ 1975 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32); 1976 } 1977 1978 if (__cp_payload(sbi) > 0) { 1979 if (flag == NAT_BITMAP) 1980 return &ckpt->sit_nat_version_bitmap; 1981 else 1982 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1983 } else { 1984 offset = (flag == NAT_BITMAP) ? 1985 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1986 return &ckpt->sit_nat_version_bitmap + offset; 1987 } 1988 } 1989 1990 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1991 { 1992 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1993 1994 if (sbi->cur_cp_pack == 2) 1995 start_addr += sbi->blocks_per_seg; 1996 return start_addr; 1997 } 1998 1999 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2000 { 2001 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2002 2003 if (sbi->cur_cp_pack == 1) 2004 start_addr += sbi->blocks_per_seg; 2005 return start_addr; 2006 } 2007 2008 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2009 { 2010 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2011 } 2012 2013 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2014 { 2015 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2016 } 2017 2018 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2019 struct inode *inode, bool is_inode) 2020 { 2021 block_t valid_block_count; 2022 unsigned int valid_node_count, user_block_count; 2023 int err; 2024 2025 if (is_inode) { 2026 if (inode) { 2027 err = dquot_alloc_inode(inode); 2028 if (err) 2029 return err; 2030 } 2031 } else { 2032 err = dquot_reserve_block(inode, 1); 2033 if (err) 2034 return err; 2035 } 2036 2037 if (time_to_inject(sbi, FAULT_BLOCK)) { 2038 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2039 goto enospc; 2040 } 2041 2042 spin_lock(&sbi->stat_lock); 2043 2044 valid_block_count = sbi->total_valid_block_count + 2045 sbi->current_reserved_blocks + 1; 2046 2047 if (!__allow_reserved_blocks(sbi, inode, false)) 2048 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2049 user_block_count = sbi->user_block_count; 2050 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2051 user_block_count -= sbi->unusable_block_count; 2052 2053 if (unlikely(valid_block_count > user_block_count)) { 2054 spin_unlock(&sbi->stat_lock); 2055 goto enospc; 2056 } 2057 2058 valid_node_count = sbi->total_valid_node_count + 1; 2059 if (unlikely(valid_node_count > sbi->total_node_count)) { 2060 spin_unlock(&sbi->stat_lock); 2061 goto enospc; 2062 } 2063 2064 sbi->total_valid_node_count++; 2065 sbi->total_valid_block_count++; 2066 spin_unlock(&sbi->stat_lock); 2067 2068 if (inode) { 2069 if (is_inode) 2070 f2fs_mark_inode_dirty_sync(inode, true); 2071 else 2072 f2fs_i_blocks_write(inode, 1, true, true); 2073 } 2074 2075 percpu_counter_inc(&sbi->alloc_valid_block_count); 2076 return 0; 2077 2078 enospc: 2079 if (is_inode) { 2080 if (inode) 2081 dquot_free_inode(inode); 2082 } else { 2083 dquot_release_reservation_block(inode, 1); 2084 } 2085 return -ENOSPC; 2086 } 2087 2088 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2089 struct inode *inode, bool is_inode) 2090 { 2091 spin_lock(&sbi->stat_lock); 2092 2093 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 2094 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 2095 2096 sbi->total_valid_node_count--; 2097 sbi->total_valid_block_count--; 2098 if (sbi->reserved_blocks && 2099 sbi->current_reserved_blocks < sbi->reserved_blocks) 2100 sbi->current_reserved_blocks++; 2101 2102 spin_unlock(&sbi->stat_lock); 2103 2104 if (is_inode) { 2105 dquot_free_inode(inode); 2106 } else { 2107 if (unlikely(inode->i_blocks == 0)) { 2108 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu", 2109 inode->i_ino, 2110 (unsigned long long)inode->i_blocks); 2111 set_sbi_flag(sbi, SBI_NEED_FSCK); 2112 return; 2113 } 2114 f2fs_i_blocks_write(inode, 1, false, true); 2115 } 2116 } 2117 2118 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2119 { 2120 return sbi->total_valid_node_count; 2121 } 2122 2123 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2124 { 2125 percpu_counter_inc(&sbi->total_valid_inode_count); 2126 } 2127 2128 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2129 { 2130 percpu_counter_dec(&sbi->total_valid_inode_count); 2131 } 2132 2133 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2134 { 2135 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2136 } 2137 2138 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2139 pgoff_t index, bool for_write) 2140 { 2141 struct page *page; 2142 2143 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2144 if (!for_write) 2145 page = find_get_page_flags(mapping, index, 2146 FGP_LOCK | FGP_ACCESSED); 2147 else 2148 page = find_lock_page(mapping, index); 2149 if (page) 2150 return page; 2151 2152 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2153 f2fs_show_injection_info(F2FS_M_SB(mapping), 2154 FAULT_PAGE_ALLOC); 2155 return NULL; 2156 } 2157 } 2158 2159 if (!for_write) 2160 return grab_cache_page(mapping, index); 2161 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 2162 } 2163 2164 static inline struct page *f2fs_pagecache_get_page( 2165 struct address_space *mapping, pgoff_t index, 2166 int fgp_flags, gfp_t gfp_mask) 2167 { 2168 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2169 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET); 2170 return NULL; 2171 } 2172 2173 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2174 } 2175 2176 static inline void f2fs_copy_page(struct page *src, struct page *dst) 2177 { 2178 char *src_kaddr = kmap(src); 2179 char *dst_kaddr = kmap(dst); 2180 2181 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 2182 kunmap(dst); 2183 kunmap(src); 2184 } 2185 2186 static inline void f2fs_put_page(struct page *page, int unlock) 2187 { 2188 if (!page) 2189 return; 2190 2191 if (unlock) { 2192 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2193 unlock_page(page); 2194 } 2195 put_page(page); 2196 } 2197 2198 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2199 { 2200 if (dn->node_page) 2201 f2fs_put_page(dn->node_page, 1); 2202 if (dn->inode_page && dn->node_page != dn->inode_page) 2203 f2fs_put_page(dn->inode_page, 0); 2204 dn->node_page = NULL; 2205 dn->inode_page = NULL; 2206 } 2207 2208 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2209 size_t size) 2210 { 2211 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2212 } 2213 2214 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2215 gfp_t flags) 2216 { 2217 void *entry; 2218 2219 entry = kmem_cache_alloc(cachep, flags); 2220 if (!entry) 2221 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2222 return entry; 2223 } 2224 2225 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 2226 int npages, bool no_fail) 2227 { 2228 struct bio *bio; 2229 2230 if (no_fail) { 2231 /* No failure on bio allocation */ 2232 bio = bio_alloc(GFP_NOIO, npages); 2233 if (!bio) 2234 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 2235 return bio; 2236 } 2237 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2238 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO); 2239 return NULL; 2240 } 2241 2242 return bio_alloc(GFP_KERNEL, npages); 2243 } 2244 2245 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2246 { 2247 if (sbi->gc_mode == GC_URGENT) 2248 return true; 2249 2250 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2251 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2252 get_pages(sbi, F2FS_WB_CP_DATA) || 2253 get_pages(sbi, F2FS_DIO_READ) || 2254 get_pages(sbi, F2FS_DIO_WRITE)) 2255 return false; 2256 2257 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2258 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2259 return false; 2260 2261 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2262 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2263 return false; 2264 2265 return f2fs_time_over(sbi, type); 2266 } 2267 2268 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2269 unsigned long index, void *item) 2270 { 2271 while (radix_tree_insert(root, index, item)) 2272 cond_resched(); 2273 } 2274 2275 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2276 2277 static inline bool IS_INODE(struct page *page) 2278 { 2279 struct f2fs_node *p = F2FS_NODE(page); 2280 2281 return RAW_IS_INODE(p); 2282 } 2283 2284 static inline int offset_in_addr(struct f2fs_inode *i) 2285 { 2286 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2287 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2288 } 2289 2290 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2291 { 2292 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2293 } 2294 2295 static inline int f2fs_has_extra_attr(struct inode *inode); 2296 static inline block_t datablock_addr(struct inode *inode, 2297 struct page *node_page, unsigned int offset) 2298 { 2299 struct f2fs_node *raw_node; 2300 __le32 *addr_array; 2301 int base = 0; 2302 bool is_inode = IS_INODE(node_page); 2303 2304 raw_node = F2FS_NODE(node_page); 2305 2306 /* from GC path only */ 2307 if (is_inode) { 2308 if (!inode) 2309 base = offset_in_addr(&raw_node->i); 2310 else if (f2fs_has_extra_attr(inode)) 2311 base = get_extra_isize(inode); 2312 } 2313 2314 addr_array = blkaddr_in_node(raw_node); 2315 return le32_to_cpu(addr_array[base + offset]); 2316 } 2317 2318 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2319 { 2320 int mask; 2321 2322 addr += (nr >> 3); 2323 mask = 1 << (7 - (nr & 0x07)); 2324 return mask & *addr; 2325 } 2326 2327 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2328 { 2329 int mask; 2330 2331 addr += (nr >> 3); 2332 mask = 1 << (7 - (nr & 0x07)); 2333 *addr |= mask; 2334 } 2335 2336 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2337 { 2338 int mask; 2339 2340 addr += (nr >> 3); 2341 mask = 1 << (7 - (nr & 0x07)); 2342 *addr &= ~mask; 2343 } 2344 2345 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2346 { 2347 int mask; 2348 int ret; 2349 2350 addr += (nr >> 3); 2351 mask = 1 << (7 - (nr & 0x07)); 2352 ret = mask & *addr; 2353 *addr |= mask; 2354 return ret; 2355 } 2356 2357 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2358 { 2359 int mask; 2360 int ret; 2361 2362 addr += (nr >> 3); 2363 mask = 1 << (7 - (nr & 0x07)); 2364 ret = mask & *addr; 2365 *addr &= ~mask; 2366 return ret; 2367 } 2368 2369 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2370 { 2371 int mask; 2372 2373 addr += (nr >> 3); 2374 mask = 1 << (7 - (nr & 0x07)); 2375 *addr ^= mask; 2376 } 2377 2378 /* 2379 * On-disk inode flags (f2fs_inode::i_flags) 2380 */ 2381 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2382 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2383 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2384 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2385 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2386 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2387 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2388 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2389 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2390 2391 /* Flags that should be inherited by new inodes from their parent. */ 2392 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2393 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2394 F2FS_CASEFOLD_FL) 2395 2396 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2397 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2398 F2FS_CASEFOLD_FL)) 2399 2400 /* Flags that are appropriate for non-directories/regular files. */ 2401 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2402 2403 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2404 { 2405 if (S_ISDIR(mode)) 2406 return flags; 2407 else if (S_ISREG(mode)) 2408 return flags & F2FS_REG_FLMASK; 2409 else 2410 return flags & F2FS_OTHER_FLMASK; 2411 } 2412 2413 /* used for f2fs_inode_info->flags */ 2414 enum { 2415 FI_NEW_INODE, /* indicate newly allocated inode */ 2416 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2417 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2418 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2419 FI_INC_LINK, /* need to increment i_nlink */ 2420 FI_ACL_MODE, /* indicate acl mode */ 2421 FI_NO_ALLOC, /* should not allocate any blocks */ 2422 FI_FREE_NID, /* free allocated nide */ 2423 FI_NO_EXTENT, /* not to use the extent cache */ 2424 FI_INLINE_XATTR, /* used for inline xattr */ 2425 FI_INLINE_DATA, /* used for inline data*/ 2426 FI_INLINE_DENTRY, /* used for inline dentry */ 2427 FI_APPEND_WRITE, /* inode has appended data */ 2428 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2429 FI_NEED_IPU, /* used for ipu per file */ 2430 FI_ATOMIC_FILE, /* indicate atomic file */ 2431 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2432 FI_VOLATILE_FILE, /* indicate volatile file */ 2433 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2434 FI_DROP_CACHE, /* drop dirty page cache */ 2435 FI_DATA_EXIST, /* indicate data exists */ 2436 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2437 FI_DO_DEFRAG, /* indicate defragment is running */ 2438 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2439 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2440 FI_HOT_DATA, /* indicate file is hot */ 2441 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2442 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2443 FI_PIN_FILE, /* indicate file should not be gced */ 2444 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 2445 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 2446 }; 2447 2448 static inline void __mark_inode_dirty_flag(struct inode *inode, 2449 int flag, bool set) 2450 { 2451 switch (flag) { 2452 case FI_INLINE_XATTR: 2453 case FI_INLINE_DATA: 2454 case FI_INLINE_DENTRY: 2455 case FI_NEW_INODE: 2456 if (set) 2457 return; 2458 /* fall through */ 2459 case FI_DATA_EXIST: 2460 case FI_INLINE_DOTS: 2461 case FI_PIN_FILE: 2462 f2fs_mark_inode_dirty_sync(inode, true); 2463 } 2464 } 2465 2466 static inline void set_inode_flag(struct inode *inode, int flag) 2467 { 2468 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2469 set_bit(flag, &F2FS_I(inode)->flags); 2470 __mark_inode_dirty_flag(inode, flag, true); 2471 } 2472 2473 static inline int is_inode_flag_set(struct inode *inode, int flag) 2474 { 2475 return test_bit(flag, &F2FS_I(inode)->flags); 2476 } 2477 2478 static inline void clear_inode_flag(struct inode *inode, int flag) 2479 { 2480 if (test_bit(flag, &F2FS_I(inode)->flags)) 2481 clear_bit(flag, &F2FS_I(inode)->flags); 2482 __mark_inode_dirty_flag(inode, flag, false); 2483 } 2484 2485 static inline bool f2fs_verity_in_progress(struct inode *inode) 2486 { 2487 return IS_ENABLED(CONFIG_FS_VERITY) && 2488 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 2489 } 2490 2491 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2492 { 2493 F2FS_I(inode)->i_acl_mode = mode; 2494 set_inode_flag(inode, FI_ACL_MODE); 2495 f2fs_mark_inode_dirty_sync(inode, false); 2496 } 2497 2498 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2499 { 2500 if (inc) 2501 inc_nlink(inode); 2502 else 2503 drop_nlink(inode); 2504 f2fs_mark_inode_dirty_sync(inode, true); 2505 } 2506 2507 static inline void f2fs_i_blocks_write(struct inode *inode, 2508 block_t diff, bool add, bool claim) 2509 { 2510 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2511 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2512 2513 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2514 if (add) { 2515 if (claim) 2516 dquot_claim_block(inode, diff); 2517 else 2518 dquot_alloc_block_nofail(inode, diff); 2519 } else { 2520 dquot_free_block(inode, diff); 2521 } 2522 2523 f2fs_mark_inode_dirty_sync(inode, true); 2524 if (clean || recover) 2525 set_inode_flag(inode, FI_AUTO_RECOVER); 2526 } 2527 2528 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2529 { 2530 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2531 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2532 2533 if (i_size_read(inode) == i_size) 2534 return; 2535 2536 i_size_write(inode, i_size); 2537 f2fs_mark_inode_dirty_sync(inode, true); 2538 if (clean || recover) 2539 set_inode_flag(inode, FI_AUTO_RECOVER); 2540 } 2541 2542 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2543 { 2544 F2FS_I(inode)->i_current_depth = depth; 2545 f2fs_mark_inode_dirty_sync(inode, true); 2546 } 2547 2548 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2549 unsigned int count) 2550 { 2551 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2552 f2fs_mark_inode_dirty_sync(inode, true); 2553 } 2554 2555 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2556 { 2557 F2FS_I(inode)->i_xattr_nid = xnid; 2558 f2fs_mark_inode_dirty_sync(inode, true); 2559 } 2560 2561 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2562 { 2563 F2FS_I(inode)->i_pino = pino; 2564 f2fs_mark_inode_dirty_sync(inode, true); 2565 } 2566 2567 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2568 { 2569 struct f2fs_inode_info *fi = F2FS_I(inode); 2570 2571 if (ri->i_inline & F2FS_INLINE_XATTR) 2572 set_bit(FI_INLINE_XATTR, &fi->flags); 2573 if (ri->i_inline & F2FS_INLINE_DATA) 2574 set_bit(FI_INLINE_DATA, &fi->flags); 2575 if (ri->i_inline & F2FS_INLINE_DENTRY) 2576 set_bit(FI_INLINE_DENTRY, &fi->flags); 2577 if (ri->i_inline & F2FS_DATA_EXIST) 2578 set_bit(FI_DATA_EXIST, &fi->flags); 2579 if (ri->i_inline & F2FS_INLINE_DOTS) 2580 set_bit(FI_INLINE_DOTS, &fi->flags); 2581 if (ri->i_inline & F2FS_EXTRA_ATTR) 2582 set_bit(FI_EXTRA_ATTR, &fi->flags); 2583 if (ri->i_inline & F2FS_PIN_FILE) 2584 set_bit(FI_PIN_FILE, &fi->flags); 2585 } 2586 2587 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2588 { 2589 ri->i_inline = 0; 2590 2591 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2592 ri->i_inline |= F2FS_INLINE_XATTR; 2593 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2594 ri->i_inline |= F2FS_INLINE_DATA; 2595 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2596 ri->i_inline |= F2FS_INLINE_DENTRY; 2597 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2598 ri->i_inline |= F2FS_DATA_EXIST; 2599 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2600 ri->i_inline |= F2FS_INLINE_DOTS; 2601 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2602 ri->i_inline |= F2FS_EXTRA_ATTR; 2603 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2604 ri->i_inline |= F2FS_PIN_FILE; 2605 } 2606 2607 static inline int f2fs_has_extra_attr(struct inode *inode) 2608 { 2609 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2610 } 2611 2612 static inline int f2fs_has_inline_xattr(struct inode *inode) 2613 { 2614 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2615 } 2616 2617 static inline unsigned int addrs_per_inode(struct inode *inode) 2618 { 2619 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 2620 get_inline_xattr_addrs(inode); 2621 return ALIGN_DOWN(addrs, 1); 2622 } 2623 2624 static inline unsigned int addrs_per_block(struct inode *inode) 2625 { 2626 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1); 2627 } 2628 2629 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2630 { 2631 struct f2fs_inode *ri = F2FS_INODE(page); 2632 2633 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2634 get_inline_xattr_addrs(inode)]); 2635 } 2636 2637 static inline int inline_xattr_size(struct inode *inode) 2638 { 2639 if (f2fs_has_inline_xattr(inode)) 2640 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2641 return 0; 2642 } 2643 2644 static inline int f2fs_has_inline_data(struct inode *inode) 2645 { 2646 return is_inode_flag_set(inode, FI_INLINE_DATA); 2647 } 2648 2649 static inline int f2fs_exist_data(struct inode *inode) 2650 { 2651 return is_inode_flag_set(inode, FI_DATA_EXIST); 2652 } 2653 2654 static inline int f2fs_has_inline_dots(struct inode *inode) 2655 { 2656 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2657 } 2658 2659 static inline bool f2fs_is_pinned_file(struct inode *inode) 2660 { 2661 return is_inode_flag_set(inode, FI_PIN_FILE); 2662 } 2663 2664 static inline bool f2fs_is_atomic_file(struct inode *inode) 2665 { 2666 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2667 } 2668 2669 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2670 { 2671 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2672 } 2673 2674 static inline bool f2fs_is_volatile_file(struct inode *inode) 2675 { 2676 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2677 } 2678 2679 static inline bool f2fs_is_first_block_written(struct inode *inode) 2680 { 2681 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2682 } 2683 2684 static inline bool f2fs_is_drop_cache(struct inode *inode) 2685 { 2686 return is_inode_flag_set(inode, FI_DROP_CACHE); 2687 } 2688 2689 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2690 { 2691 struct f2fs_inode *ri = F2FS_INODE(page); 2692 int extra_size = get_extra_isize(inode); 2693 2694 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2695 } 2696 2697 static inline int f2fs_has_inline_dentry(struct inode *inode) 2698 { 2699 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2700 } 2701 2702 static inline int is_file(struct inode *inode, int type) 2703 { 2704 return F2FS_I(inode)->i_advise & type; 2705 } 2706 2707 static inline void set_file(struct inode *inode, int type) 2708 { 2709 F2FS_I(inode)->i_advise |= type; 2710 f2fs_mark_inode_dirty_sync(inode, true); 2711 } 2712 2713 static inline void clear_file(struct inode *inode, int type) 2714 { 2715 F2FS_I(inode)->i_advise &= ~type; 2716 f2fs_mark_inode_dirty_sync(inode, true); 2717 } 2718 2719 static inline bool f2fs_is_time_consistent(struct inode *inode) 2720 { 2721 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 2722 return false; 2723 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 2724 return false; 2725 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 2726 return false; 2727 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 2728 &F2FS_I(inode)->i_crtime)) 2729 return false; 2730 return true; 2731 } 2732 2733 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2734 { 2735 bool ret; 2736 2737 if (dsync) { 2738 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2739 2740 spin_lock(&sbi->inode_lock[DIRTY_META]); 2741 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2742 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2743 return ret; 2744 } 2745 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2746 file_keep_isize(inode) || 2747 i_size_read(inode) & ~PAGE_MASK) 2748 return false; 2749 2750 if (!f2fs_is_time_consistent(inode)) 2751 return false; 2752 2753 down_read(&F2FS_I(inode)->i_sem); 2754 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2755 up_read(&F2FS_I(inode)->i_sem); 2756 2757 return ret; 2758 } 2759 2760 static inline bool f2fs_readonly(struct super_block *sb) 2761 { 2762 return sb_rdonly(sb); 2763 } 2764 2765 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2766 { 2767 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2768 } 2769 2770 static inline bool is_dot_dotdot(const struct qstr *str) 2771 { 2772 if (str->len == 1 && str->name[0] == '.') 2773 return true; 2774 2775 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2776 return true; 2777 2778 return false; 2779 } 2780 2781 static inline bool f2fs_may_extent_tree(struct inode *inode) 2782 { 2783 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2784 2785 if (!test_opt(sbi, EXTENT_CACHE) || 2786 is_inode_flag_set(inode, FI_NO_EXTENT)) 2787 return false; 2788 2789 /* 2790 * for recovered files during mount do not create extents 2791 * if shrinker is not registered. 2792 */ 2793 if (list_empty(&sbi->s_list)) 2794 return false; 2795 2796 return S_ISREG(inode->i_mode); 2797 } 2798 2799 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2800 size_t size, gfp_t flags) 2801 { 2802 void *ret; 2803 2804 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2805 f2fs_show_injection_info(sbi, FAULT_KMALLOC); 2806 return NULL; 2807 } 2808 2809 ret = kmalloc(size, flags); 2810 if (ret) 2811 return ret; 2812 2813 return kvmalloc(size, flags); 2814 } 2815 2816 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2817 size_t size, gfp_t flags) 2818 { 2819 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2820 } 2821 2822 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2823 size_t size, gfp_t flags) 2824 { 2825 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2826 f2fs_show_injection_info(sbi, FAULT_KVMALLOC); 2827 return NULL; 2828 } 2829 2830 return kvmalloc(size, flags); 2831 } 2832 2833 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2834 size_t size, gfp_t flags) 2835 { 2836 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2837 } 2838 2839 static inline int get_extra_isize(struct inode *inode) 2840 { 2841 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2842 } 2843 2844 static inline int get_inline_xattr_addrs(struct inode *inode) 2845 { 2846 return F2FS_I(inode)->i_inline_xattr_size; 2847 } 2848 2849 #define f2fs_get_inode_mode(i) \ 2850 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2851 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2852 2853 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2854 (offsetof(struct f2fs_inode, i_extra_end) - \ 2855 offsetof(struct f2fs_inode, i_extra_isize)) \ 2856 2857 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2858 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2859 ((offsetof(typeof(*(f2fs_inode)), field) + \ 2860 sizeof((f2fs_inode)->field)) \ 2861 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 2862 2863 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2864 { 2865 int i; 2866 2867 spin_lock(&sbi->iostat_lock); 2868 for (i = 0; i < NR_IO_TYPE; i++) 2869 sbi->write_iostat[i] = 0; 2870 spin_unlock(&sbi->iostat_lock); 2871 } 2872 2873 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2874 enum iostat_type type, unsigned long long io_bytes) 2875 { 2876 if (!sbi->iostat_enable) 2877 return; 2878 spin_lock(&sbi->iostat_lock); 2879 sbi->write_iostat[type] += io_bytes; 2880 2881 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2882 sbi->write_iostat[APP_BUFFERED_IO] = 2883 sbi->write_iostat[APP_WRITE_IO] - 2884 sbi->write_iostat[APP_DIRECT_IO]; 2885 spin_unlock(&sbi->iostat_lock); 2886 } 2887 2888 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 2889 2890 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 2891 2892 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 2893 block_t blkaddr, int type); 2894 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 2895 block_t blkaddr, int type) 2896 { 2897 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 2898 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 2899 blkaddr, type); 2900 f2fs_bug_on(sbi, 1); 2901 } 2902 } 2903 2904 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 2905 { 2906 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 2907 return false; 2908 return true; 2909 } 2910 2911 static inline void f2fs_set_page_private(struct page *page, 2912 unsigned long data) 2913 { 2914 if (PagePrivate(page)) 2915 return; 2916 2917 get_page(page); 2918 SetPagePrivate(page); 2919 set_page_private(page, data); 2920 } 2921 2922 static inline void f2fs_clear_page_private(struct page *page) 2923 { 2924 if (!PagePrivate(page)) 2925 return; 2926 2927 set_page_private(page, 0); 2928 ClearPagePrivate(page); 2929 f2fs_put_page(page, 0); 2930 } 2931 2932 /* 2933 * file.c 2934 */ 2935 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2936 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 2937 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 2938 int f2fs_truncate(struct inode *inode); 2939 int f2fs_getattr(const struct path *path, struct kstat *stat, 2940 u32 request_mask, unsigned int flags); 2941 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2942 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2943 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2944 int f2fs_precache_extents(struct inode *inode); 2945 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2946 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2947 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 2948 int f2fs_pin_file_control(struct inode *inode, bool inc); 2949 2950 /* 2951 * inode.c 2952 */ 2953 void f2fs_set_inode_flags(struct inode *inode); 2954 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2955 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2956 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2957 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2958 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2959 void f2fs_update_inode(struct inode *inode, struct page *node_page); 2960 void f2fs_update_inode_page(struct inode *inode); 2961 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2962 void f2fs_evict_inode(struct inode *inode); 2963 void f2fs_handle_failed_inode(struct inode *inode); 2964 2965 /* 2966 * namei.c 2967 */ 2968 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 2969 bool hot, bool set); 2970 struct dentry *f2fs_get_parent(struct dentry *child); 2971 2972 extern int f2fs_ci_compare(const struct inode *parent, 2973 const struct qstr *name, 2974 const struct qstr *entry, 2975 bool quick); 2976 2977 /* 2978 * dir.c 2979 */ 2980 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 2981 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname, 2982 f2fs_hash_t namehash, int *max_slots, 2983 struct f2fs_dentry_ptr *d); 2984 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2985 unsigned int start_pos, struct fscrypt_str *fstr); 2986 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 2987 struct f2fs_dentry_ptr *d); 2988 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 2989 const struct qstr *new_name, 2990 const struct qstr *orig_name, struct page *dpage); 2991 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 2992 unsigned int current_depth); 2993 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 2994 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2995 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2996 struct fscrypt_name *fname, struct page **res_page); 2997 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2998 const struct qstr *child, struct page **res_page); 2999 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3000 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3001 struct page **page); 3002 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3003 struct page *page, struct inode *inode); 3004 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3005 const struct qstr *name, f2fs_hash_t name_hash, 3006 unsigned int bit_pos); 3007 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 3008 const struct qstr *orig_name, 3009 struct inode *inode, nid_t ino, umode_t mode); 3010 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname, 3011 struct inode *inode, nid_t ino, umode_t mode); 3012 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3013 struct inode *inode, nid_t ino, umode_t mode); 3014 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3015 struct inode *dir, struct inode *inode); 3016 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 3017 bool f2fs_empty_dir(struct inode *dir); 3018 3019 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3020 { 3021 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3022 inode, inode->i_ino, inode->i_mode); 3023 } 3024 3025 /* 3026 * super.c 3027 */ 3028 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3029 void f2fs_inode_synced(struct inode *inode); 3030 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3031 int f2fs_quota_sync(struct super_block *sb, int type); 3032 void f2fs_quota_off_umount(struct super_block *sb); 3033 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3034 int f2fs_sync_fs(struct super_block *sb, int sync); 3035 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3036 3037 /* 3038 * hash.c 3039 */ 3040 f2fs_hash_t f2fs_dentry_hash(const struct inode *dir, 3041 const struct qstr *name_info, struct fscrypt_name *fname); 3042 3043 /* 3044 * node.c 3045 */ 3046 struct dnode_of_data; 3047 struct node_info; 3048 3049 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3050 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3051 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3052 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3053 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3054 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3055 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3056 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3057 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3058 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3059 struct node_info *ni); 3060 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3061 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3062 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3063 int f2fs_truncate_xattr_node(struct inode *inode); 3064 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3065 unsigned int seq_id); 3066 int f2fs_remove_inode_page(struct inode *inode); 3067 struct page *f2fs_new_inode_page(struct inode *inode); 3068 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3069 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3070 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3071 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3072 int f2fs_move_node_page(struct page *node_page, int gc_type); 3073 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3074 struct writeback_control *wbc, bool atomic, 3075 unsigned int *seq_id); 3076 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3077 struct writeback_control *wbc, 3078 bool do_balance, enum iostat_type io_type); 3079 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3080 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3081 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3082 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3083 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3084 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3085 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3086 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3087 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3088 unsigned int segno, struct f2fs_summary_block *sum); 3089 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3090 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3091 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3092 int __init f2fs_create_node_manager_caches(void); 3093 void f2fs_destroy_node_manager_caches(void); 3094 3095 /* 3096 * segment.c 3097 */ 3098 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3099 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 3100 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 3101 void f2fs_drop_inmem_pages(struct inode *inode); 3102 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 3103 int f2fs_commit_inmem_pages(struct inode *inode); 3104 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3105 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 3106 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3107 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3108 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3109 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3110 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3111 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3112 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3113 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3114 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3115 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3116 struct cp_control *cpc); 3117 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3118 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3119 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3120 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3121 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3122 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3123 unsigned int start, unsigned int end); 3124 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type); 3125 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3126 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3127 struct cp_control *cpc); 3128 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3129 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3130 block_t blk_addr); 3131 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3132 enum iostat_type io_type); 3133 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3134 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3135 struct f2fs_io_info *fio); 3136 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3137 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3138 block_t old_blkaddr, block_t new_blkaddr, 3139 bool recover_curseg, bool recover_newaddr); 3140 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3141 block_t old_addr, block_t new_addr, 3142 unsigned char version, bool recover_curseg, 3143 bool recover_newaddr); 3144 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3145 block_t old_blkaddr, block_t *new_blkaddr, 3146 struct f2fs_summary *sum, int type, 3147 struct f2fs_io_info *fio, bool add_list); 3148 void f2fs_wait_on_page_writeback(struct page *page, 3149 enum page_type type, bool ordered, bool locked); 3150 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3151 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3152 block_t len); 3153 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3154 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3155 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3156 unsigned int val, int alloc); 3157 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3158 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3159 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3160 int __init f2fs_create_segment_manager_caches(void); 3161 void f2fs_destroy_segment_manager_caches(void); 3162 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3163 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3164 enum page_type type, enum temp_type temp); 3165 3166 /* 3167 * checkpoint.c 3168 */ 3169 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 3170 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3171 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3172 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index); 3173 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3174 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3175 block_t blkaddr, int type); 3176 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3177 int type, bool sync); 3178 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 3179 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3180 long nr_to_write, enum iostat_type io_type); 3181 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3182 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3183 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3184 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3185 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3186 unsigned int devidx, int type); 3187 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3188 unsigned int devidx, int type); 3189 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3190 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3191 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3192 void f2fs_add_orphan_inode(struct inode *inode); 3193 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3194 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3195 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3196 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 3197 void f2fs_remove_dirty_inode(struct inode *inode); 3198 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 3199 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi); 3200 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3201 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3202 int __init f2fs_create_checkpoint_caches(void); 3203 void f2fs_destroy_checkpoint_caches(void); 3204 3205 /* 3206 * data.c 3207 */ 3208 int f2fs_init_post_read_processing(void); 3209 void f2fs_destroy_post_read_processing(void); 3210 int f2fs_init_bio_entry_cache(void); 3211 void f2fs_destroy_bio_entry_cache(void); 3212 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3213 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3214 struct inode *inode, struct page *page, 3215 nid_t ino, enum page_type type); 3216 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3217 struct bio **bio, struct page *page); 3218 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3219 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3220 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3221 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3222 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3223 block_t blk_addr, struct bio *bio); 3224 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3225 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3226 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3227 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3228 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3229 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3230 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 3231 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3232 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3233 int op_flags, bool for_write); 3234 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 3235 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3236 bool for_write); 3237 struct page *f2fs_get_new_data_page(struct inode *inode, 3238 struct page *ipage, pgoff_t index, bool new_i_size); 3239 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3240 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock); 3241 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3242 int create, int flag); 3243 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3244 u64 start, u64 len); 3245 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3246 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3247 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3248 unsigned int length); 3249 int f2fs_release_page(struct page *page, gfp_t wait); 3250 #ifdef CONFIG_MIGRATION 3251 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 3252 struct page *page, enum migrate_mode mode); 3253 #endif 3254 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3255 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3256 3257 /* 3258 * gc.c 3259 */ 3260 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3261 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3262 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3263 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 3264 unsigned int segno); 3265 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3266 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3267 3268 /* 3269 * recovery.c 3270 */ 3271 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3272 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3273 3274 /* 3275 * debug.c 3276 */ 3277 #ifdef CONFIG_F2FS_STAT_FS 3278 struct f2fs_stat_info { 3279 struct list_head stat_list; 3280 struct f2fs_sb_info *sbi; 3281 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3282 int main_area_segs, main_area_sections, main_area_zones; 3283 unsigned long long hit_largest, hit_cached, hit_rbtree; 3284 unsigned long long hit_total, total_ext; 3285 int ext_tree, zombie_tree, ext_node; 3286 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3287 int ndirty_data, ndirty_qdata; 3288 int inmem_pages; 3289 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3290 int nats, dirty_nats, sits, dirty_sits; 3291 int free_nids, avail_nids, alloc_nids; 3292 int total_count, utilization; 3293 int bg_gc, nr_wb_cp_data, nr_wb_data; 3294 int nr_rd_data, nr_rd_node, nr_rd_meta; 3295 int nr_dio_read, nr_dio_write; 3296 unsigned int io_skip_bggc, other_skip_bggc; 3297 int nr_flushing, nr_flushed, flush_list_empty; 3298 int nr_discarding, nr_discarded; 3299 int nr_discard_cmd; 3300 unsigned int undiscard_blks; 3301 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3302 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3303 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3304 unsigned int bimodal, avg_vblocks; 3305 int util_free, util_valid, util_invalid; 3306 int rsvd_segs, overp_segs; 3307 int dirty_count, node_pages, meta_pages; 3308 int prefree_count, call_count, cp_count, bg_cp_count; 3309 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3310 int bg_node_segs, bg_data_segs; 3311 int tot_blks, data_blks, node_blks; 3312 int bg_data_blks, bg_node_blks; 3313 unsigned long long skipped_atomic_files[2]; 3314 int curseg[NR_CURSEG_TYPE]; 3315 int cursec[NR_CURSEG_TYPE]; 3316 int curzone[NR_CURSEG_TYPE]; 3317 3318 unsigned int meta_count[META_MAX]; 3319 unsigned int segment_count[2]; 3320 unsigned int block_count[2]; 3321 unsigned int inplace_count; 3322 unsigned long long base_mem, cache_mem, page_mem; 3323 }; 3324 3325 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3326 { 3327 return (struct f2fs_stat_info *)sbi->stat_info; 3328 } 3329 3330 #define stat_inc_cp_count(si) ((si)->cp_count++) 3331 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3332 #define stat_inc_call_count(si) ((si)->call_count++) 3333 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 3334 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3335 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3336 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3337 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3338 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3339 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3340 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3341 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3342 #define stat_inc_inline_xattr(inode) \ 3343 do { \ 3344 if (f2fs_has_inline_xattr(inode)) \ 3345 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3346 } while (0) 3347 #define stat_dec_inline_xattr(inode) \ 3348 do { \ 3349 if (f2fs_has_inline_xattr(inode)) \ 3350 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3351 } while (0) 3352 #define stat_inc_inline_inode(inode) \ 3353 do { \ 3354 if (f2fs_has_inline_data(inode)) \ 3355 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3356 } while (0) 3357 #define stat_dec_inline_inode(inode) \ 3358 do { \ 3359 if (f2fs_has_inline_data(inode)) \ 3360 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3361 } while (0) 3362 #define stat_inc_inline_dir(inode) \ 3363 do { \ 3364 if (f2fs_has_inline_dentry(inode)) \ 3365 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3366 } while (0) 3367 #define stat_dec_inline_dir(inode) \ 3368 do { \ 3369 if (f2fs_has_inline_dentry(inode)) \ 3370 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3371 } while (0) 3372 #define stat_inc_meta_count(sbi, blkaddr) \ 3373 do { \ 3374 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3375 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3376 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3377 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3378 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3379 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3380 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3381 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3382 } while (0) 3383 #define stat_inc_seg_type(sbi, curseg) \ 3384 ((sbi)->segment_count[(curseg)->alloc_type]++) 3385 #define stat_inc_block_count(sbi, curseg) \ 3386 ((sbi)->block_count[(curseg)->alloc_type]++) 3387 #define stat_inc_inplace_blocks(sbi) \ 3388 (atomic_inc(&(sbi)->inplace_count)) 3389 #define stat_inc_atomic_write(inode) \ 3390 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 3391 #define stat_dec_atomic_write(inode) \ 3392 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 3393 #define stat_update_max_atomic_write(inode) \ 3394 do { \ 3395 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 3396 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3397 if (cur > max) \ 3398 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3399 } while (0) 3400 #define stat_inc_volatile_write(inode) \ 3401 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3402 #define stat_dec_volatile_write(inode) \ 3403 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3404 #define stat_update_max_volatile_write(inode) \ 3405 do { \ 3406 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3407 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3408 if (cur > max) \ 3409 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3410 } while (0) 3411 #define stat_inc_seg_count(sbi, type, gc_type) \ 3412 do { \ 3413 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3414 si->tot_segs++; \ 3415 if ((type) == SUM_TYPE_DATA) { \ 3416 si->data_segs++; \ 3417 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3418 } else { \ 3419 si->node_segs++; \ 3420 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3421 } \ 3422 } while (0) 3423 3424 #define stat_inc_tot_blk_count(si, blks) \ 3425 ((si)->tot_blks += (blks)) 3426 3427 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3428 do { \ 3429 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3430 stat_inc_tot_blk_count(si, blks); \ 3431 si->data_blks += (blks); \ 3432 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3433 } while (0) 3434 3435 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3436 do { \ 3437 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3438 stat_inc_tot_blk_count(si, blks); \ 3439 si->node_blks += (blks); \ 3440 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3441 } while (0) 3442 3443 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3444 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3445 void __init f2fs_create_root_stats(void); 3446 void f2fs_destroy_root_stats(void); 3447 #else 3448 #define stat_inc_cp_count(si) do { } while (0) 3449 #define stat_inc_bg_cp_count(si) do { } while (0) 3450 #define stat_inc_call_count(si) do { } while (0) 3451 #define stat_inc_bggc_count(si) do { } while (0) 3452 #define stat_io_skip_bggc_count(sbi) do { } while (0) 3453 #define stat_other_skip_bggc_count(sbi) do { } while (0) 3454 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3455 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3456 #define stat_inc_total_hit(sb) do { } while (0) 3457 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3458 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3459 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3460 #define stat_inc_inline_xattr(inode) do { } while (0) 3461 #define stat_dec_inline_xattr(inode) do { } while (0) 3462 #define stat_inc_inline_inode(inode) do { } while (0) 3463 #define stat_dec_inline_inode(inode) do { } while (0) 3464 #define stat_inc_inline_dir(inode) do { } while (0) 3465 #define stat_dec_inline_dir(inode) do { } while (0) 3466 #define stat_inc_atomic_write(inode) do { } while (0) 3467 #define stat_dec_atomic_write(inode) do { } while (0) 3468 #define stat_update_max_atomic_write(inode) do { } while (0) 3469 #define stat_inc_volatile_write(inode) do { } while (0) 3470 #define stat_dec_volatile_write(inode) do { } while (0) 3471 #define stat_update_max_volatile_write(inode) do { } while (0) 3472 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 3473 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3474 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3475 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3476 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3477 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3478 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3479 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3480 3481 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3482 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3483 static inline void __init f2fs_create_root_stats(void) { } 3484 static inline void f2fs_destroy_root_stats(void) { } 3485 #endif 3486 3487 extern const struct file_operations f2fs_dir_operations; 3488 #ifdef CONFIG_UNICODE 3489 extern const struct dentry_operations f2fs_dentry_ops; 3490 #endif 3491 extern const struct file_operations f2fs_file_operations; 3492 extern const struct inode_operations f2fs_file_inode_operations; 3493 extern const struct address_space_operations f2fs_dblock_aops; 3494 extern const struct address_space_operations f2fs_node_aops; 3495 extern const struct address_space_operations f2fs_meta_aops; 3496 extern const struct inode_operations f2fs_dir_inode_operations; 3497 extern const struct inode_operations f2fs_symlink_inode_operations; 3498 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3499 extern const struct inode_operations f2fs_special_inode_operations; 3500 extern struct kmem_cache *f2fs_inode_entry_slab; 3501 3502 /* 3503 * inline.c 3504 */ 3505 bool f2fs_may_inline_data(struct inode *inode); 3506 bool f2fs_may_inline_dentry(struct inode *inode); 3507 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3508 void f2fs_truncate_inline_inode(struct inode *inode, 3509 struct page *ipage, u64 from); 3510 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3511 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3512 int f2fs_convert_inline_inode(struct inode *inode); 3513 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3514 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3515 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3516 struct fscrypt_name *fname, struct page **res_page); 3517 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3518 struct page *ipage); 3519 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3520 const struct qstr *orig_name, 3521 struct inode *inode, nid_t ino, umode_t mode); 3522 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3523 struct page *page, struct inode *dir, 3524 struct inode *inode); 3525 bool f2fs_empty_inline_dir(struct inode *dir); 3526 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3527 struct fscrypt_str *fstr); 3528 int f2fs_inline_data_fiemap(struct inode *inode, 3529 struct fiemap_extent_info *fieinfo, 3530 __u64 start, __u64 len); 3531 3532 /* 3533 * shrinker.c 3534 */ 3535 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3536 struct shrink_control *sc); 3537 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3538 struct shrink_control *sc); 3539 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3540 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3541 3542 /* 3543 * extent_cache.c 3544 */ 3545 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 3546 struct rb_entry *cached_re, unsigned int ofs); 3547 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3548 struct rb_root_cached *root, 3549 struct rb_node **parent, 3550 unsigned int ofs, bool *leftmost); 3551 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 3552 struct rb_entry *cached_re, unsigned int ofs, 3553 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3554 struct rb_node ***insert_p, struct rb_node **insert_parent, 3555 bool force, bool *leftmost); 3556 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3557 struct rb_root_cached *root); 3558 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3559 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3560 void f2fs_drop_extent_tree(struct inode *inode); 3561 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3562 void f2fs_destroy_extent_tree(struct inode *inode); 3563 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3564 struct extent_info *ei); 3565 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3566 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3567 pgoff_t fofs, block_t blkaddr, unsigned int len); 3568 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3569 int __init f2fs_create_extent_cache(void); 3570 void f2fs_destroy_extent_cache(void); 3571 3572 /* 3573 * sysfs.c 3574 */ 3575 int __init f2fs_init_sysfs(void); 3576 void f2fs_exit_sysfs(void); 3577 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3578 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3579 3580 /* verity.c */ 3581 extern const struct fsverity_operations f2fs_verityops; 3582 3583 /* 3584 * crypto support 3585 */ 3586 static inline bool f2fs_encrypted_file(struct inode *inode) 3587 { 3588 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 3589 } 3590 3591 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3592 { 3593 #ifdef CONFIG_FS_ENCRYPTION 3594 file_set_encrypt(inode); 3595 f2fs_set_inode_flags(inode); 3596 #endif 3597 } 3598 3599 /* 3600 * Returns true if the reads of the inode's data need to undergo some 3601 * postprocessing step, like decryption or authenticity verification. 3602 */ 3603 static inline bool f2fs_post_read_required(struct inode *inode) 3604 { 3605 return f2fs_encrypted_file(inode) || fsverity_active(inode); 3606 } 3607 3608 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3609 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 3610 { \ 3611 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 3612 } 3613 3614 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3615 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3616 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3617 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3618 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3619 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3620 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3621 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3622 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 3623 F2FS_FEATURE_FUNCS(verity, VERITY); 3624 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 3625 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 3626 3627 #ifdef CONFIG_BLK_DEV_ZONED 3628 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 3629 block_t blkaddr) 3630 { 3631 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3632 3633 return test_bit(zno, FDEV(devi).blkz_seq); 3634 } 3635 #endif 3636 3637 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 3638 { 3639 return f2fs_sb_has_blkzoned(sbi); 3640 } 3641 3642 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 3643 { 3644 return blk_queue_discard(bdev_get_queue(bdev)) || 3645 bdev_is_zoned(bdev); 3646 } 3647 3648 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 3649 { 3650 int i; 3651 3652 if (!f2fs_is_multi_device(sbi)) 3653 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 3654 3655 for (i = 0; i < sbi->s_ndevs; i++) 3656 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 3657 return true; 3658 return false; 3659 } 3660 3661 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 3662 { 3663 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 3664 f2fs_hw_should_discard(sbi); 3665 } 3666 3667 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 3668 { 3669 int i; 3670 3671 if (!f2fs_is_multi_device(sbi)) 3672 return bdev_read_only(sbi->sb->s_bdev); 3673 3674 for (i = 0; i < sbi->s_ndevs; i++) 3675 if (bdev_read_only(FDEV(i).bdev)) 3676 return true; 3677 return false; 3678 } 3679 3680 3681 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3682 { 3683 clear_opt(sbi, ADAPTIVE); 3684 clear_opt(sbi, LFS); 3685 3686 switch (mt) { 3687 case F2FS_MOUNT_ADAPTIVE: 3688 set_opt(sbi, ADAPTIVE); 3689 break; 3690 case F2FS_MOUNT_LFS: 3691 set_opt(sbi, LFS); 3692 break; 3693 } 3694 } 3695 3696 static inline bool f2fs_may_encrypt(struct inode *inode) 3697 { 3698 #ifdef CONFIG_FS_ENCRYPTION 3699 umode_t mode = inode->i_mode; 3700 3701 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3702 #else 3703 return false; 3704 #endif 3705 } 3706 3707 static inline int block_unaligned_IO(struct inode *inode, 3708 struct kiocb *iocb, struct iov_iter *iter) 3709 { 3710 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits); 3711 unsigned int blocksize_mask = (1 << i_blkbits) - 1; 3712 loff_t offset = iocb->ki_pos; 3713 unsigned long align = offset | iov_iter_alignment(iter); 3714 3715 return align & blocksize_mask; 3716 } 3717 3718 static inline int allow_outplace_dio(struct inode *inode, 3719 struct kiocb *iocb, struct iov_iter *iter) 3720 { 3721 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3722 int rw = iov_iter_rw(iter); 3723 3724 return (test_opt(sbi, LFS) && (rw == WRITE) && 3725 !block_unaligned_IO(inode, iocb, iter)); 3726 } 3727 3728 static inline bool f2fs_force_buffered_io(struct inode *inode, 3729 struct kiocb *iocb, struct iov_iter *iter) 3730 { 3731 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3732 int rw = iov_iter_rw(iter); 3733 3734 if (f2fs_post_read_required(inode)) 3735 return true; 3736 if (f2fs_is_multi_device(sbi)) 3737 return true; 3738 /* 3739 * for blkzoned device, fallback direct IO to buffered IO, so 3740 * all IOs can be serialized by log-structured write. 3741 */ 3742 if (f2fs_sb_has_blkzoned(sbi)) 3743 return true; 3744 if (test_opt(sbi, LFS) && (rw == WRITE)) { 3745 if (block_unaligned_IO(inode, iocb, iter)) 3746 return true; 3747 if (F2FS_IO_ALIGNED(sbi)) 3748 return true; 3749 } 3750 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) && 3751 !IS_SWAPFILE(inode)) 3752 return true; 3753 3754 return false; 3755 } 3756 3757 #ifdef CONFIG_F2FS_FAULT_INJECTION 3758 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 3759 unsigned int type); 3760 #else 3761 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 3762 #endif 3763 3764 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 3765 { 3766 #ifdef CONFIG_QUOTA 3767 if (f2fs_sb_has_quota_ino(sbi)) 3768 return true; 3769 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 3770 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 3771 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 3772 return true; 3773 #endif 3774 return false; 3775 } 3776 3777 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 3778 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 3779 3780 #endif /* _LINUX_F2FS_H */ 3781