1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/part_stat.h> 27 #include <crypto/hash.h> 28 29 #include <linux/fscrypt.h> 30 #include <linux/fsverity.h> 31 32 struct pagevec; 33 34 #ifdef CONFIG_F2FS_CHECK_FS 35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 36 #else 37 #define f2fs_bug_on(sbi, condition) \ 38 do { \ 39 if (WARN_ON(condition)) \ 40 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 41 } while (0) 42 #endif 43 44 enum { 45 FAULT_KMALLOC, 46 FAULT_KVMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_PAGE_GET, 49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 50 FAULT_ALLOC_NID, 51 FAULT_ORPHAN, 52 FAULT_BLOCK, 53 FAULT_DIR_DEPTH, 54 FAULT_EVICT_INODE, 55 FAULT_TRUNCATE, 56 FAULT_READ_IO, 57 FAULT_CHECKPOINT, 58 FAULT_DISCARD, 59 FAULT_WRITE_IO, 60 FAULT_SLAB_ALLOC, 61 FAULT_DQUOT_INIT, 62 FAULT_LOCK_OP, 63 FAULT_BLKADDR, 64 FAULT_MAX, 65 }; 66 67 #ifdef CONFIG_F2FS_FAULT_INJECTION 68 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0)) 69 70 struct f2fs_fault_info { 71 atomic_t inject_ops; 72 unsigned int inject_rate; 73 unsigned int inject_type; 74 }; 75 76 extern const char *f2fs_fault_name[FAULT_MAX]; 77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type)) 78 #endif 79 80 /* 81 * For mount options 82 */ 83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001 84 #define F2FS_MOUNT_DISCARD 0x00000002 85 #define F2FS_MOUNT_NOHEAP 0x00000004 86 #define F2FS_MOUNT_XATTR_USER 0x00000008 87 #define F2FS_MOUNT_POSIX_ACL 0x00000010 88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020 89 #define F2FS_MOUNT_INLINE_XATTR 0x00000040 90 #define F2FS_MOUNT_INLINE_DATA 0x00000080 91 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100 92 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200 93 #define F2FS_MOUNT_NOBARRIER 0x00000400 94 #define F2FS_MOUNT_FASTBOOT 0x00000800 95 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000 96 #define F2FS_MOUNT_DATA_FLUSH 0x00002000 97 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000 98 #define F2FS_MOUNT_USRQUOTA 0x00008000 99 #define F2FS_MOUNT_GRPQUOTA 0x00010000 100 #define F2FS_MOUNT_PRJQUOTA 0x00020000 101 #define F2FS_MOUNT_QUOTA 0x00040000 102 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000 103 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000 104 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000 105 #define F2FS_MOUNT_NORECOVERY 0x00400000 106 #define F2FS_MOUNT_ATGC 0x00800000 107 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000 108 #define F2FS_MOUNT_GC_MERGE 0x02000000 109 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000 110 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000 111 112 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 113 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 114 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 115 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 116 117 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 118 typecheck(unsigned long long, b) && \ 119 ((long long)((a) - (b)) > 0)) 120 121 typedef u32 block_t; /* 122 * should not change u32, since it is the on-disk block 123 * address format, __le32. 124 */ 125 typedef u32 nid_t; 126 127 #define COMPRESS_EXT_NUM 16 128 129 /* 130 * An implementation of an rwsem that is explicitly unfair to readers. This 131 * prevents priority inversion when a low-priority reader acquires the read lock 132 * while sleeping on the write lock but the write lock is needed by 133 * higher-priority clients. 134 */ 135 136 struct f2fs_rwsem { 137 struct rw_semaphore internal_rwsem; 138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 139 wait_queue_head_t read_waiters; 140 #endif 141 }; 142 143 struct f2fs_mount_info { 144 unsigned int opt; 145 int write_io_size_bits; /* Write IO size bits */ 146 block_t root_reserved_blocks; /* root reserved blocks */ 147 kuid_t s_resuid; /* reserved blocks for uid */ 148 kgid_t s_resgid; /* reserved blocks for gid */ 149 int active_logs; /* # of active logs */ 150 int inline_xattr_size; /* inline xattr size */ 151 #ifdef CONFIG_F2FS_FAULT_INJECTION 152 struct f2fs_fault_info fault_info; /* For fault injection */ 153 #endif 154 #ifdef CONFIG_QUOTA 155 /* Names of quota files with journalled quota */ 156 char *s_qf_names[MAXQUOTAS]; 157 int s_jquota_fmt; /* Format of quota to use */ 158 #endif 159 /* For which write hints are passed down to block layer */ 160 int alloc_mode; /* segment allocation policy */ 161 int fsync_mode; /* fsync policy */ 162 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 163 int bggc_mode; /* bggc mode: off, on or sync */ 164 int memory_mode; /* memory mode */ 165 int errors; /* errors parameter */ 166 int discard_unit; /* 167 * discard command's offset/size should 168 * be aligned to this unit: block, 169 * segment or section 170 */ 171 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 172 block_t unusable_cap_perc; /* percentage for cap */ 173 block_t unusable_cap; /* Amount of space allowed to be 174 * unusable when disabling checkpoint 175 */ 176 177 /* For compression */ 178 unsigned char compress_algorithm; /* algorithm type */ 179 unsigned char compress_log_size; /* cluster log size */ 180 unsigned char compress_level; /* compress level */ 181 bool compress_chksum; /* compressed data chksum */ 182 unsigned char compress_ext_cnt; /* extension count */ 183 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 184 int compress_mode; /* compression mode */ 185 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 186 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 187 }; 188 189 #define F2FS_FEATURE_ENCRYPT 0x00000001 190 #define F2FS_FEATURE_BLKZONED 0x00000002 191 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004 192 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008 193 #define F2FS_FEATURE_PRJQUOTA 0x00000010 194 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020 195 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040 196 #define F2FS_FEATURE_QUOTA_INO 0x00000080 197 #define F2FS_FEATURE_INODE_CRTIME 0x00000100 198 #define F2FS_FEATURE_LOST_FOUND 0x00000200 199 #define F2FS_FEATURE_VERITY 0x00000400 200 #define F2FS_FEATURE_SB_CHKSUM 0x00000800 201 #define F2FS_FEATURE_CASEFOLD 0x00001000 202 #define F2FS_FEATURE_COMPRESSION 0x00002000 203 #define F2FS_FEATURE_RO 0x00004000 204 205 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 206 ((raw_super->feature & cpu_to_le32(mask)) != 0) 207 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 208 209 /* 210 * Default values for user and/or group using reserved blocks 211 */ 212 #define F2FS_DEF_RESUID 0 213 #define F2FS_DEF_RESGID 0 214 215 /* 216 * For checkpoint manager 217 */ 218 enum { 219 NAT_BITMAP, 220 SIT_BITMAP 221 }; 222 223 #define CP_UMOUNT 0x00000001 224 #define CP_FASTBOOT 0x00000002 225 #define CP_SYNC 0x00000004 226 #define CP_RECOVERY 0x00000008 227 #define CP_DISCARD 0x00000010 228 #define CP_TRIMMED 0x00000020 229 #define CP_PAUSE 0x00000040 230 #define CP_RESIZE 0x00000080 231 232 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 233 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 234 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 235 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 236 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 237 #define DEF_CP_INTERVAL 60 /* 60 secs */ 238 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 239 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 240 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 241 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 242 243 struct cp_control { 244 int reason; 245 __u64 trim_start; 246 __u64 trim_end; 247 __u64 trim_minlen; 248 }; 249 250 /* 251 * indicate meta/data type 252 */ 253 enum { 254 META_CP, 255 META_NAT, 256 META_SIT, 257 META_SSA, 258 META_MAX, 259 META_POR, 260 DATA_GENERIC, /* check range only */ 261 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 262 DATA_GENERIC_ENHANCE_READ, /* 263 * strong check on range and segment 264 * bitmap but no warning due to race 265 * condition of read on truncated area 266 * by extent_cache 267 */ 268 DATA_GENERIC_ENHANCE_UPDATE, /* 269 * strong check on range and segment 270 * bitmap for update case 271 */ 272 META_GENERIC, 273 }; 274 275 /* for the list of ino */ 276 enum { 277 ORPHAN_INO, /* for orphan ino list */ 278 APPEND_INO, /* for append ino list */ 279 UPDATE_INO, /* for update ino list */ 280 TRANS_DIR_INO, /* for transactions dir ino list */ 281 FLUSH_INO, /* for multiple device flushing */ 282 MAX_INO_ENTRY, /* max. list */ 283 }; 284 285 struct ino_entry { 286 struct list_head list; /* list head */ 287 nid_t ino; /* inode number */ 288 unsigned int dirty_device; /* dirty device bitmap */ 289 }; 290 291 /* for the list of inodes to be GCed */ 292 struct inode_entry { 293 struct list_head list; /* list head */ 294 struct inode *inode; /* vfs inode pointer */ 295 }; 296 297 struct fsync_node_entry { 298 struct list_head list; /* list head */ 299 struct page *page; /* warm node page pointer */ 300 unsigned int seq_id; /* sequence id */ 301 }; 302 303 struct ckpt_req { 304 struct completion wait; /* completion for checkpoint done */ 305 struct llist_node llnode; /* llist_node to be linked in wait queue */ 306 int ret; /* return code of checkpoint */ 307 ktime_t queue_time; /* request queued time */ 308 }; 309 310 struct ckpt_req_control { 311 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 312 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 313 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 314 atomic_t issued_ckpt; /* # of actually issued ckpts */ 315 atomic_t total_ckpt; /* # of total ckpts */ 316 atomic_t queued_ckpt; /* # of queued ckpts */ 317 struct llist_head issue_list; /* list for command issue */ 318 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 319 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 320 unsigned int peak_time; /* peak wait time in msec until now */ 321 }; 322 323 /* for the bitmap indicate blocks to be discarded */ 324 struct discard_entry { 325 struct list_head list; /* list head */ 326 block_t start_blkaddr; /* start blockaddr of current segment */ 327 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 328 }; 329 330 /* minimum discard granularity, unit: block count */ 331 #define MIN_DISCARD_GRANULARITY 1 332 /* default discard granularity of inner discard thread, unit: block count */ 333 #define DEFAULT_DISCARD_GRANULARITY 16 334 /* default maximum discard granularity of ordered discard, unit: block count */ 335 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 336 337 /* max discard pend list number */ 338 #define MAX_PLIST_NUM 512 339 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 340 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 341 342 enum { 343 D_PREP, /* initial */ 344 D_PARTIAL, /* partially submitted */ 345 D_SUBMIT, /* all submitted */ 346 D_DONE, /* finished */ 347 }; 348 349 struct discard_info { 350 block_t lstart; /* logical start address */ 351 block_t len; /* length */ 352 block_t start; /* actual start address in dev */ 353 }; 354 355 struct discard_cmd { 356 struct rb_node rb_node; /* rb node located in rb-tree */ 357 struct discard_info di; /* discard info */ 358 struct list_head list; /* command list */ 359 struct completion wait; /* compleation */ 360 struct block_device *bdev; /* bdev */ 361 unsigned short ref; /* reference count */ 362 unsigned char state; /* state */ 363 unsigned char queued; /* queued discard */ 364 int error; /* bio error */ 365 spinlock_t lock; /* for state/bio_ref updating */ 366 unsigned short bio_ref; /* bio reference count */ 367 }; 368 369 enum { 370 DPOLICY_BG, 371 DPOLICY_FORCE, 372 DPOLICY_FSTRIM, 373 DPOLICY_UMOUNT, 374 MAX_DPOLICY, 375 }; 376 377 struct discard_policy { 378 int type; /* type of discard */ 379 unsigned int min_interval; /* used for candidates exist */ 380 unsigned int mid_interval; /* used for device busy */ 381 unsigned int max_interval; /* used for candidates not exist */ 382 unsigned int max_requests; /* # of discards issued per round */ 383 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 384 bool io_aware; /* issue discard in idle time */ 385 bool sync; /* submit discard with REQ_SYNC flag */ 386 bool ordered; /* issue discard by lba order */ 387 bool timeout; /* discard timeout for put_super */ 388 unsigned int granularity; /* discard granularity */ 389 }; 390 391 struct discard_cmd_control { 392 struct task_struct *f2fs_issue_discard; /* discard thread */ 393 struct list_head entry_list; /* 4KB discard entry list */ 394 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 395 struct list_head wait_list; /* store on-flushing entries */ 396 struct list_head fstrim_list; /* in-flight discard from fstrim */ 397 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 398 struct mutex cmd_lock; 399 unsigned int nr_discards; /* # of discards in the list */ 400 unsigned int max_discards; /* max. discards to be issued */ 401 unsigned int max_discard_request; /* max. discard request per round */ 402 unsigned int min_discard_issue_time; /* min. interval between discard issue */ 403 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ 404 unsigned int max_discard_issue_time; /* max. interval between discard issue */ 405 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */ 406 unsigned int discard_urgent_util; /* utilization which issue discard proactively */ 407 unsigned int discard_granularity; /* discard granularity */ 408 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ 409 unsigned int undiscard_blks; /* # of undiscard blocks */ 410 unsigned int next_pos; /* next discard position */ 411 atomic_t issued_discard; /* # of issued discard */ 412 atomic_t queued_discard; /* # of queued discard */ 413 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 414 struct rb_root_cached root; /* root of discard rb-tree */ 415 bool rbtree_check; /* config for consistence check */ 416 bool discard_wake; /* to wake up discard thread */ 417 }; 418 419 /* for the list of fsync inodes, used only during recovery */ 420 struct fsync_inode_entry { 421 struct list_head list; /* list head */ 422 struct inode *inode; /* vfs inode pointer */ 423 block_t blkaddr; /* block address locating the last fsync */ 424 block_t last_dentry; /* block address locating the last dentry */ 425 }; 426 427 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 428 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 429 430 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 431 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 432 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 433 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 434 435 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 436 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 437 438 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 439 { 440 int before = nats_in_cursum(journal); 441 442 journal->n_nats = cpu_to_le16(before + i); 443 return before; 444 } 445 446 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 447 { 448 int before = sits_in_cursum(journal); 449 450 journal->n_sits = cpu_to_le16(before + i); 451 return before; 452 } 453 454 static inline bool __has_cursum_space(struct f2fs_journal *journal, 455 int size, int type) 456 { 457 if (type == NAT_JOURNAL) 458 return size <= MAX_NAT_JENTRIES(journal); 459 return size <= MAX_SIT_JENTRIES(journal); 460 } 461 462 /* for inline stuff */ 463 #define DEF_INLINE_RESERVED_SIZE 1 464 static inline int get_extra_isize(struct inode *inode); 465 static inline int get_inline_xattr_addrs(struct inode *inode); 466 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 467 (CUR_ADDRS_PER_INODE(inode) - \ 468 get_inline_xattr_addrs(inode) - \ 469 DEF_INLINE_RESERVED_SIZE)) 470 471 /* for inline dir */ 472 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 473 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 474 BITS_PER_BYTE + 1)) 475 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 476 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 477 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 478 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 479 NR_INLINE_DENTRY(inode) + \ 480 INLINE_DENTRY_BITMAP_SIZE(inode))) 481 482 /* 483 * For INODE and NODE manager 484 */ 485 /* for directory operations */ 486 487 struct f2fs_filename { 488 /* 489 * The filename the user specified. This is NULL for some 490 * filesystem-internal operations, e.g. converting an inline directory 491 * to a non-inline one, or roll-forward recovering an encrypted dentry. 492 */ 493 const struct qstr *usr_fname; 494 495 /* 496 * The on-disk filename. For encrypted directories, this is encrypted. 497 * This may be NULL for lookups in an encrypted dir without the key. 498 */ 499 struct fscrypt_str disk_name; 500 501 /* The dirhash of this filename */ 502 f2fs_hash_t hash; 503 504 #ifdef CONFIG_FS_ENCRYPTION 505 /* 506 * For lookups in encrypted directories: either the buffer backing 507 * disk_name, or a buffer that holds the decoded no-key name. 508 */ 509 struct fscrypt_str crypto_buf; 510 #endif 511 #if IS_ENABLED(CONFIG_UNICODE) 512 /* 513 * For casefolded directories: the casefolded name, but it's left NULL 514 * if the original name is not valid Unicode, if the original name is 515 * "." or "..", if the directory is both casefolded and encrypted and 516 * its encryption key is unavailable, or if the filesystem is doing an 517 * internal operation where usr_fname is also NULL. In all these cases 518 * we fall back to treating the name as an opaque byte sequence. 519 */ 520 struct fscrypt_str cf_name; 521 #endif 522 }; 523 524 struct f2fs_dentry_ptr { 525 struct inode *inode; 526 void *bitmap; 527 struct f2fs_dir_entry *dentry; 528 __u8 (*filename)[F2FS_SLOT_LEN]; 529 int max; 530 int nr_bitmap; 531 }; 532 533 static inline void make_dentry_ptr_block(struct inode *inode, 534 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 535 { 536 d->inode = inode; 537 d->max = NR_DENTRY_IN_BLOCK; 538 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 539 d->bitmap = t->dentry_bitmap; 540 d->dentry = t->dentry; 541 d->filename = t->filename; 542 } 543 544 static inline void make_dentry_ptr_inline(struct inode *inode, 545 struct f2fs_dentry_ptr *d, void *t) 546 { 547 int entry_cnt = NR_INLINE_DENTRY(inode); 548 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 549 int reserved_size = INLINE_RESERVED_SIZE(inode); 550 551 d->inode = inode; 552 d->max = entry_cnt; 553 d->nr_bitmap = bitmap_size; 554 d->bitmap = t; 555 d->dentry = t + bitmap_size + reserved_size; 556 d->filename = t + bitmap_size + reserved_size + 557 SIZE_OF_DIR_ENTRY * entry_cnt; 558 } 559 560 /* 561 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 562 * as its node offset to distinguish from index node blocks. 563 * But some bits are used to mark the node block. 564 */ 565 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 566 >> OFFSET_BIT_SHIFT) 567 enum { 568 ALLOC_NODE, /* allocate a new node page if needed */ 569 LOOKUP_NODE, /* look up a node without readahead */ 570 LOOKUP_NODE_RA, /* 571 * look up a node with readahead called 572 * by get_data_block. 573 */ 574 }; 575 576 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 577 578 /* congestion wait timeout value, default: 20ms */ 579 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 580 581 /* maximum retry quota flush count */ 582 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 583 584 /* maximum retry of EIO'ed page */ 585 #define MAX_RETRY_PAGE_EIO 100 586 587 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 588 589 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 590 591 /* dirty segments threshold for triggering CP */ 592 #define DEFAULT_DIRTY_THRESHOLD 4 593 594 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS 595 #define RECOVERY_MIN_RA_BLOCKS 1 596 597 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ 598 599 /* for in-memory extent cache entry */ 600 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 601 602 /* number of extent info in extent cache we try to shrink */ 603 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 604 605 /* number of age extent info in extent cache we try to shrink */ 606 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 607 #define LAST_AGE_WEIGHT 30 608 #define SAME_AGE_REGION 1024 609 610 /* 611 * Define data block with age less than 1GB as hot data 612 * define data block with age less than 10GB but more than 1GB as warm data 613 */ 614 #define DEF_HOT_DATA_AGE_THRESHOLD 262144 615 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 616 617 /* extent cache type */ 618 enum extent_type { 619 EX_READ, 620 EX_BLOCK_AGE, 621 NR_EXTENT_CACHES, 622 }; 623 624 struct extent_info { 625 unsigned int fofs; /* start offset in a file */ 626 unsigned int len; /* length of the extent */ 627 union { 628 /* read extent_cache */ 629 struct { 630 /* start block address of the extent */ 631 block_t blk; 632 #ifdef CONFIG_F2FS_FS_COMPRESSION 633 /* physical extent length of compressed blocks */ 634 unsigned int c_len; 635 #endif 636 }; 637 /* block age extent_cache */ 638 struct { 639 /* block age of the extent */ 640 unsigned long long age; 641 /* last total blocks allocated */ 642 unsigned long long last_blocks; 643 }; 644 }; 645 }; 646 647 struct extent_node { 648 struct rb_node rb_node; /* rb node located in rb-tree */ 649 struct extent_info ei; /* extent info */ 650 struct list_head list; /* node in global extent list of sbi */ 651 struct extent_tree *et; /* extent tree pointer */ 652 }; 653 654 struct extent_tree { 655 nid_t ino; /* inode number */ 656 enum extent_type type; /* keep the extent tree type */ 657 struct rb_root_cached root; /* root of extent info rb-tree */ 658 struct extent_node *cached_en; /* recently accessed extent node */ 659 struct list_head list; /* to be used by sbi->zombie_list */ 660 rwlock_t lock; /* protect extent info rb-tree */ 661 atomic_t node_cnt; /* # of extent node in rb-tree*/ 662 bool largest_updated; /* largest extent updated */ 663 struct extent_info largest; /* largest cached extent for EX_READ */ 664 }; 665 666 struct extent_tree_info { 667 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 668 struct mutex extent_tree_lock; /* locking extent radix tree */ 669 struct list_head extent_list; /* lru list for shrinker */ 670 spinlock_t extent_lock; /* locking extent lru list */ 671 atomic_t total_ext_tree; /* extent tree count */ 672 struct list_head zombie_list; /* extent zombie tree list */ 673 atomic_t total_zombie_tree; /* extent zombie tree count */ 674 atomic_t total_ext_node; /* extent info count */ 675 }; 676 677 /* 678 * State of block returned by f2fs_map_blocks. 679 */ 680 #define F2FS_MAP_NEW (1U << 0) 681 #define F2FS_MAP_MAPPED (1U << 1) 682 #define F2FS_MAP_DELALLOC (1U << 2) 683 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 684 F2FS_MAP_DELALLOC) 685 686 struct f2fs_map_blocks { 687 struct block_device *m_bdev; /* for multi-device dio */ 688 block_t m_pblk; 689 block_t m_lblk; 690 unsigned int m_len; 691 unsigned int m_flags; 692 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 693 pgoff_t *m_next_extent; /* point to next possible extent */ 694 int m_seg_type; 695 bool m_may_create; /* indicate it is from write path */ 696 bool m_multidev_dio; /* indicate it allows multi-device dio */ 697 }; 698 699 /* for flag in get_data_block */ 700 enum { 701 F2FS_GET_BLOCK_DEFAULT, 702 F2FS_GET_BLOCK_FIEMAP, 703 F2FS_GET_BLOCK_BMAP, 704 F2FS_GET_BLOCK_DIO, 705 F2FS_GET_BLOCK_PRE_DIO, 706 F2FS_GET_BLOCK_PRE_AIO, 707 F2FS_GET_BLOCK_PRECACHE, 708 }; 709 710 /* 711 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 712 */ 713 #define FADVISE_COLD_BIT 0x01 714 #define FADVISE_LOST_PINO_BIT 0x02 715 #define FADVISE_ENCRYPT_BIT 0x04 716 #define FADVISE_ENC_NAME_BIT 0x08 717 #define FADVISE_KEEP_SIZE_BIT 0x10 718 #define FADVISE_HOT_BIT 0x20 719 #define FADVISE_VERITY_BIT 0x40 720 #define FADVISE_TRUNC_BIT 0x80 721 722 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 723 724 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 725 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 726 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 727 728 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 729 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 730 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 731 732 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 733 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 734 735 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 736 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 737 738 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 739 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 740 741 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 742 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 743 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 744 745 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 746 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 747 748 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) 749 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) 750 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) 751 752 #define DEF_DIR_LEVEL 0 753 754 enum { 755 GC_FAILURE_PIN, 756 MAX_GC_FAILURE 757 }; 758 759 /* used for f2fs_inode_info->flags */ 760 enum { 761 FI_NEW_INODE, /* indicate newly allocated inode */ 762 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 763 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 764 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 765 FI_INC_LINK, /* need to increment i_nlink */ 766 FI_ACL_MODE, /* indicate acl mode */ 767 FI_NO_ALLOC, /* should not allocate any blocks */ 768 FI_FREE_NID, /* free allocated nide */ 769 FI_NO_EXTENT, /* not to use the extent cache */ 770 FI_INLINE_XATTR, /* used for inline xattr */ 771 FI_INLINE_DATA, /* used for inline data*/ 772 FI_INLINE_DENTRY, /* used for inline dentry */ 773 FI_APPEND_WRITE, /* inode has appended data */ 774 FI_UPDATE_WRITE, /* inode has in-place-update data */ 775 FI_NEED_IPU, /* used for ipu per file */ 776 FI_ATOMIC_FILE, /* indicate atomic file */ 777 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 778 FI_DROP_CACHE, /* drop dirty page cache */ 779 FI_DATA_EXIST, /* indicate data exists */ 780 FI_INLINE_DOTS, /* indicate inline dot dentries */ 781 FI_SKIP_WRITES, /* should skip data page writeback */ 782 FI_OPU_WRITE, /* used for opu per file */ 783 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 784 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ 785 FI_HOT_DATA, /* indicate file is hot */ 786 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 787 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 788 FI_PIN_FILE, /* indicate file should not be gced */ 789 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 790 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 791 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 792 FI_MMAP_FILE, /* indicate file was mmapped */ 793 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 794 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 795 FI_ALIGNED_WRITE, /* enable aligned write */ 796 FI_COW_FILE, /* indicate COW file */ 797 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ 798 FI_ATOMIC_REPLACE, /* indicate atomic replace */ 799 FI_MAX, /* max flag, never be used */ 800 }; 801 802 struct f2fs_inode_info { 803 struct inode vfs_inode; /* serve a vfs inode */ 804 unsigned long i_flags; /* keep an inode flags for ioctl */ 805 unsigned char i_advise; /* use to give file attribute hints */ 806 unsigned char i_dir_level; /* use for dentry level for large dir */ 807 unsigned int i_current_depth; /* only for directory depth */ 808 /* for gc failure statistic */ 809 unsigned int i_gc_failures[MAX_GC_FAILURE]; 810 unsigned int i_pino; /* parent inode number */ 811 umode_t i_acl_mode; /* keep file acl mode temporarily */ 812 813 /* Use below internally in f2fs*/ 814 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 815 struct f2fs_rwsem i_sem; /* protect fi info */ 816 atomic_t dirty_pages; /* # of dirty pages */ 817 f2fs_hash_t chash; /* hash value of given file name */ 818 unsigned int clevel; /* maximum level of given file name */ 819 struct task_struct *task; /* lookup and create consistency */ 820 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 821 struct task_struct *wb_task; /* indicate inode is in context of writeback */ 822 nid_t i_xattr_nid; /* node id that contains xattrs */ 823 loff_t last_disk_size; /* lastly written file size */ 824 spinlock_t i_size_lock; /* protect last_disk_size */ 825 826 #ifdef CONFIG_QUOTA 827 struct dquot *i_dquot[MAXQUOTAS]; 828 829 /* quota space reservation, managed internally by quota code */ 830 qsize_t i_reserved_quota; 831 #endif 832 struct list_head dirty_list; /* dirty list for dirs and files */ 833 struct list_head gdirty_list; /* linked in global dirty list */ 834 struct task_struct *atomic_write_task; /* store atomic write task */ 835 struct extent_tree *extent_tree[NR_EXTENT_CACHES]; 836 /* cached extent_tree entry */ 837 struct inode *cow_inode; /* copy-on-write inode for atomic write */ 838 839 /* avoid racing between foreground op and gc */ 840 struct f2fs_rwsem i_gc_rwsem[2]; 841 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ 842 843 int i_extra_isize; /* size of extra space located in i_addr */ 844 kprojid_t i_projid; /* id for project quota */ 845 int i_inline_xattr_size; /* inline xattr size */ 846 struct timespec64 i_crtime; /* inode creation time */ 847 struct timespec64 i_disk_time[3];/* inode disk times */ 848 849 /* for file compress */ 850 atomic_t i_compr_blocks; /* # of compressed blocks */ 851 unsigned char i_compress_algorithm; /* algorithm type */ 852 unsigned char i_log_cluster_size; /* log of cluster size */ 853 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 854 unsigned char i_compress_flag; /* compress flag */ 855 unsigned int i_cluster_size; /* cluster size */ 856 857 unsigned int atomic_write_cnt; 858 loff_t original_i_size; /* original i_size before atomic write */ 859 }; 860 861 static inline void get_read_extent_info(struct extent_info *ext, 862 struct f2fs_extent *i_ext) 863 { 864 ext->fofs = le32_to_cpu(i_ext->fofs); 865 ext->blk = le32_to_cpu(i_ext->blk); 866 ext->len = le32_to_cpu(i_ext->len); 867 } 868 869 static inline void set_raw_read_extent(struct extent_info *ext, 870 struct f2fs_extent *i_ext) 871 { 872 i_ext->fofs = cpu_to_le32(ext->fofs); 873 i_ext->blk = cpu_to_le32(ext->blk); 874 i_ext->len = cpu_to_le32(ext->len); 875 } 876 877 static inline bool __is_discard_mergeable(struct discard_info *back, 878 struct discard_info *front, unsigned int max_len) 879 { 880 return (back->lstart + back->len == front->lstart) && 881 (back->len + front->len <= max_len); 882 } 883 884 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 885 struct discard_info *back, unsigned int max_len) 886 { 887 return __is_discard_mergeable(back, cur, max_len); 888 } 889 890 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 891 struct discard_info *front, unsigned int max_len) 892 { 893 return __is_discard_mergeable(cur, front, max_len); 894 } 895 896 /* 897 * For free nid management 898 */ 899 enum nid_state { 900 FREE_NID, /* newly added to free nid list */ 901 PREALLOC_NID, /* it is preallocated */ 902 MAX_NID_STATE, 903 }; 904 905 enum nat_state { 906 TOTAL_NAT, 907 DIRTY_NAT, 908 RECLAIMABLE_NAT, 909 MAX_NAT_STATE, 910 }; 911 912 struct f2fs_nm_info { 913 block_t nat_blkaddr; /* base disk address of NAT */ 914 nid_t max_nid; /* maximum possible node ids */ 915 nid_t available_nids; /* # of available node ids */ 916 nid_t next_scan_nid; /* the next nid to be scanned */ 917 nid_t max_rf_node_blocks; /* max # of nodes for recovery */ 918 unsigned int ram_thresh; /* control the memory footprint */ 919 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 920 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 921 922 /* NAT cache management */ 923 struct radix_tree_root nat_root;/* root of the nat entry cache */ 924 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 925 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ 926 struct list_head nat_entries; /* cached nat entry list (clean) */ 927 spinlock_t nat_list_lock; /* protect clean nat entry list */ 928 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 929 unsigned int nat_blocks; /* # of nat blocks */ 930 931 /* free node ids management */ 932 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 933 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 934 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 935 spinlock_t nid_list_lock; /* protect nid lists ops */ 936 struct mutex build_lock; /* lock for build free nids */ 937 unsigned char **free_nid_bitmap; 938 unsigned char *nat_block_bitmap; 939 unsigned short *free_nid_count; /* free nid count of NAT block */ 940 941 /* for checkpoint */ 942 char *nat_bitmap; /* NAT bitmap pointer */ 943 944 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 945 unsigned char *nat_bits; /* NAT bits blocks */ 946 unsigned char *full_nat_bits; /* full NAT pages */ 947 unsigned char *empty_nat_bits; /* empty NAT pages */ 948 #ifdef CONFIG_F2FS_CHECK_FS 949 char *nat_bitmap_mir; /* NAT bitmap mirror */ 950 #endif 951 int bitmap_size; /* bitmap size */ 952 }; 953 954 /* 955 * this structure is used as one of function parameters. 956 * all the information are dedicated to a given direct node block determined 957 * by the data offset in a file. 958 */ 959 struct dnode_of_data { 960 struct inode *inode; /* vfs inode pointer */ 961 struct page *inode_page; /* its inode page, NULL is possible */ 962 struct page *node_page; /* cached direct node page */ 963 nid_t nid; /* node id of the direct node block */ 964 unsigned int ofs_in_node; /* data offset in the node page */ 965 bool inode_page_locked; /* inode page is locked or not */ 966 bool node_changed; /* is node block changed */ 967 char cur_level; /* level of hole node page */ 968 char max_level; /* level of current page located */ 969 block_t data_blkaddr; /* block address of the node block */ 970 }; 971 972 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 973 struct page *ipage, struct page *npage, nid_t nid) 974 { 975 memset(dn, 0, sizeof(*dn)); 976 dn->inode = inode; 977 dn->inode_page = ipage; 978 dn->node_page = npage; 979 dn->nid = nid; 980 } 981 982 /* 983 * For SIT manager 984 * 985 * By default, there are 6 active log areas across the whole main area. 986 * When considering hot and cold data separation to reduce cleaning overhead, 987 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 988 * respectively. 989 * In the current design, you should not change the numbers intentionally. 990 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 991 * logs individually according to the underlying devices. (default: 6) 992 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 993 * data and 8 for node logs. 994 */ 995 #define NR_CURSEG_DATA_TYPE (3) 996 #define NR_CURSEG_NODE_TYPE (3) 997 #define NR_CURSEG_INMEM_TYPE (2) 998 #define NR_CURSEG_RO_TYPE (2) 999 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 1000 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 1001 1002 enum { 1003 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 1004 CURSEG_WARM_DATA, /* data blocks */ 1005 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 1006 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 1007 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 1008 CURSEG_COLD_NODE, /* indirect node blocks */ 1009 NR_PERSISTENT_LOG, /* number of persistent log */ 1010 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 1011 /* pinned file that needs consecutive block address */ 1012 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 1013 NO_CHECK_TYPE, /* number of persistent & inmem log */ 1014 }; 1015 1016 struct flush_cmd { 1017 struct completion wait; 1018 struct llist_node llnode; 1019 nid_t ino; 1020 int ret; 1021 }; 1022 1023 struct flush_cmd_control { 1024 struct task_struct *f2fs_issue_flush; /* flush thread */ 1025 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 1026 atomic_t issued_flush; /* # of issued flushes */ 1027 atomic_t queued_flush; /* # of queued flushes */ 1028 struct llist_head issue_list; /* list for command issue */ 1029 struct llist_node *dispatch_list; /* list for command dispatch */ 1030 }; 1031 1032 struct f2fs_sm_info { 1033 struct sit_info *sit_info; /* whole segment information */ 1034 struct free_segmap_info *free_info; /* free segment information */ 1035 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1036 struct curseg_info *curseg_array; /* active segment information */ 1037 1038 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ 1039 1040 block_t seg0_blkaddr; /* block address of 0'th segment */ 1041 block_t main_blkaddr; /* start block address of main area */ 1042 block_t ssa_blkaddr; /* start block address of SSA area */ 1043 1044 unsigned int segment_count; /* total # of segments */ 1045 unsigned int main_segments; /* # of segments in main area */ 1046 unsigned int reserved_segments; /* # of reserved segments */ 1047 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */ 1048 unsigned int ovp_segments; /* # of overprovision segments */ 1049 1050 /* a threshold to reclaim prefree segments */ 1051 unsigned int rec_prefree_segments; 1052 1053 struct list_head sit_entry_set; /* sit entry set list */ 1054 1055 unsigned int ipu_policy; /* in-place-update policy */ 1056 unsigned int min_ipu_util; /* in-place-update threshold */ 1057 unsigned int min_fsync_blocks; /* threshold for fsync */ 1058 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1059 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1060 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1061 1062 /* for flush command control */ 1063 struct flush_cmd_control *fcc_info; 1064 1065 /* for discard command control */ 1066 struct discard_cmd_control *dcc_info; 1067 }; 1068 1069 /* 1070 * For superblock 1071 */ 1072 /* 1073 * COUNT_TYPE for monitoring 1074 * 1075 * f2fs monitors the number of several block types such as on-writeback, 1076 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1077 */ 1078 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1079 enum count_type { 1080 F2FS_DIRTY_DENTS, 1081 F2FS_DIRTY_DATA, 1082 F2FS_DIRTY_QDATA, 1083 F2FS_DIRTY_NODES, 1084 F2FS_DIRTY_META, 1085 F2FS_DIRTY_IMETA, 1086 F2FS_WB_CP_DATA, 1087 F2FS_WB_DATA, 1088 F2FS_RD_DATA, 1089 F2FS_RD_NODE, 1090 F2FS_RD_META, 1091 F2FS_DIO_WRITE, 1092 F2FS_DIO_READ, 1093 NR_COUNT_TYPE, 1094 }; 1095 1096 /* 1097 * The below are the page types of bios used in submit_bio(). 1098 * The available types are: 1099 * DATA User data pages. It operates as async mode. 1100 * NODE Node pages. It operates as async mode. 1101 * META FS metadata pages such as SIT, NAT, CP. 1102 * NR_PAGE_TYPE The number of page types. 1103 * META_FLUSH Make sure the previous pages are written 1104 * with waiting the bio's completion 1105 * ... Only can be used with META. 1106 */ 1107 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1108 enum page_type { 1109 DATA = 0, 1110 NODE = 1, /* should not change this */ 1111 META, 1112 NR_PAGE_TYPE, 1113 META_FLUSH, 1114 IPU, /* the below types are used by tracepoints only. */ 1115 OPU, 1116 }; 1117 1118 enum temp_type { 1119 HOT = 0, /* must be zero for meta bio */ 1120 WARM, 1121 COLD, 1122 NR_TEMP_TYPE, 1123 }; 1124 1125 enum need_lock_type { 1126 LOCK_REQ = 0, 1127 LOCK_DONE, 1128 LOCK_RETRY, 1129 }; 1130 1131 enum cp_reason_type { 1132 CP_NO_NEEDED, 1133 CP_NON_REGULAR, 1134 CP_COMPRESSED, 1135 CP_HARDLINK, 1136 CP_SB_NEED_CP, 1137 CP_WRONG_PINO, 1138 CP_NO_SPC_ROLL, 1139 CP_NODE_NEED_CP, 1140 CP_FASTBOOT_MODE, 1141 CP_SPEC_LOG_NUM, 1142 CP_RECOVER_DIR, 1143 }; 1144 1145 enum iostat_type { 1146 /* WRITE IO */ 1147 APP_DIRECT_IO, /* app direct write IOs */ 1148 APP_BUFFERED_IO, /* app buffered write IOs */ 1149 APP_WRITE_IO, /* app write IOs */ 1150 APP_MAPPED_IO, /* app mapped IOs */ 1151 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ 1152 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ 1153 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1154 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ 1155 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1156 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1157 FS_GC_DATA_IO, /* data IOs from forground gc */ 1158 FS_GC_NODE_IO, /* node IOs from forground gc */ 1159 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1160 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1161 FS_CP_META_IO, /* meta IOs from checkpoint */ 1162 1163 /* READ IO */ 1164 APP_DIRECT_READ_IO, /* app direct read IOs */ 1165 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1166 APP_READ_IO, /* app read IOs */ 1167 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1168 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ 1169 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ 1170 FS_DATA_READ_IO, /* data read IOs */ 1171 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1172 FS_CDATA_READ_IO, /* compressed data read IOs */ 1173 FS_NODE_READ_IO, /* node read IOs */ 1174 FS_META_READ_IO, /* meta read IOs */ 1175 1176 /* other */ 1177 FS_DISCARD_IO, /* discard */ 1178 FS_FLUSH_IO, /* flush */ 1179 FS_ZONE_RESET_IO, /* zone reset */ 1180 NR_IO_TYPE, 1181 }; 1182 1183 struct f2fs_io_info { 1184 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1185 nid_t ino; /* inode number */ 1186 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1187 enum temp_type temp; /* contains HOT/WARM/COLD */ 1188 enum req_op op; /* contains REQ_OP_ */ 1189 blk_opf_t op_flags; /* req_flag_bits */ 1190 block_t new_blkaddr; /* new block address to be written */ 1191 block_t old_blkaddr; /* old block address before Cow */ 1192 struct page *page; /* page to be written */ 1193 struct page *encrypted_page; /* encrypted page */ 1194 struct page *compressed_page; /* compressed page */ 1195 struct list_head list; /* serialize IOs */ 1196 unsigned int compr_blocks; /* # of compressed block addresses */ 1197 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */ 1198 unsigned int version:8; /* version of the node */ 1199 unsigned int submitted:1; /* indicate IO submission */ 1200 unsigned int in_list:1; /* indicate fio is in io_list */ 1201 unsigned int is_por:1; /* indicate IO is from recovery or not */ 1202 unsigned int retry:1; /* need to reallocate block address */ 1203 unsigned int encrypted:1; /* indicate file is encrypted */ 1204 unsigned int post_read:1; /* require post read */ 1205 enum iostat_type io_type; /* io type */ 1206 struct writeback_control *io_wbc; /* writeback control */ 1207 struct bio **bio; /* bio for ipu */ 1208 sector_t *last_block; /* last block number in bio */ 1209 }; 1210 1211 struct bio_entry { 1212 struct bio *bio; 1213 struct list_head list; 1214 }; 1215 1216 #define is_read_io(rw) ((rw) == READ) 1217 struct f2fs_bio_info { 1218 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1219 struct bio *bio; /* bios to merge */ 1220 sector_t last_block_in_bio; /* last block number */ 1221 struct f2fs_io_info fio; /* store buffered io info. */ 1222 #ifdef CONFIG_BLK_DEV_ZONED 1223 struct completion zone_wait; /* condition value for the previous open zone to close */ 1224 struct bio *zone_pending_bio; /* pending bio for the previous zone */ 1225 void *bi_private; /* previous bi_private for pending bio */ 1226 #endif 1227 struct f2fs_rwsem io_rwsem; /* blocking op for bio */ 1228 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1229 struct list_head io_list; /* track fios */ 1230 struct list_head bio_list; /* bio entry list head */ 1231 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ 1232 }; 1233 1234 #define FDEV(i) (sbi->devs[i]) 1235 #define RDEV(i) (raw_super->devs[i]) 1236 struct f2fs_dev_info { 1237 struct bdev_handle *bdev_handle; 1238 struct block_device *bdev; 1239 char path[MAX_PATH_LEN]; 1240 unsigned int total_segments; 1241 block_t start_blk; 1242 block_t end_blk; 1243 #ifdef CONFIG_BLK_DEV_ZONED 1244 unsigned int nr_blkz; /* Total number of zones */ 1245 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1246 #endif 1247 }; 1248 1249 enum inode_type { 1250 DIR_INODE, /* for dirty dir inode */ 1251 FILE_INODE, /* for dirty regular/symlink inode */ 1252 DIRTY_META, /* for all dirtied inode metadata */ 1253 NR_INODE_TYPE, 1254 }; 1255 1256 /* for inner inode cache management */ 1257 struct inode_management { 1258 struct radix_tree_root ino_root; /* ino entry array */ 1259 spinlock_t ino_lock; /* for ino entry lock */ 1260 struct list_head ino_list; /* inode list head */ 1261 unsigned long ino_num; /* number of entries */ 1262 }; 1263 1264 /* for GC_AT */ 1265 struct atgc_management { 1266 bool atgc_enabled; /* ATGC is enabled or not */ 1267 struct rb_root_cached root; /* root of victim rb-tree */ 1268 struct list_head victim_list; /* linked with all victim entries */ 1269 unsigned int victim_count; /* victim count in rb-tree */ 1270 unsigned int candidate_ratio; /* candidate ratio */ 1271 unsigned int max_candidate_count; /* max candidate count */ 1272 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1273 unsigned long long age_threshold; /* age threshold */ 1274 }; 1275 1276 struct f2fs_gc_control { 1277 unsigned int victim_segno; /* target victim segment number */ 1278 int init_gc_type; /* FG_GC or BG_GC */ 1279 bool no_bg_gc; /* check the space and stop bg_gc */ 1280 bool should_migrate_blocks; /* should migrate blocks */ 1281 bool err_gc_skipped; /* return EAGAIN if GC skipped */ 1282 unsigned int nr_free_secs; /* # of free sections to do GC */ 1283 }; 1284 1285 /* 1286 * For s_flag in struct f2fs_sb_info 1287 * Modification on enum should be synchronized with s_flag array 1288 */ 1289 enum { 1290 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1291 SBI_IS_CLOSE, /* specify unmounting */ 1292 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1293 SBI_POR_DOING, /* recovery is doing or not */ 1294 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1295 SBI_NEED_CP, /* need to checkpoint */ 1296 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1297 SBI_IS_RECOVERED, /* recovered orphan/data */ 1298 SBI_CP_DISABLED, /* CP was disabled last mount */ 1299 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1300 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1301 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1302 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1303 SBI_IS_RESIZEFS, /* resizefs is in process */ 1304 SBI_IS_FREEZING, /* freezefs is in process */ 1305 SBI_IS_WRITABLE, /* remove ro mountoption transiently */ 1306 MAX_SBI_FLAG, 1307 }; 1308 1309 enum { 1310 CP_TIME, 1311 REQ_TIME, 1312 DISCARD_TIME, 1313 GC_TIME, 1314 DISABLE_TIME, 1315 UMOUNT_DISCARD_TIMEOUT, 1316 MAX_TIME, 1317 }; 1318 1319 /* Note that you need to keep synchronization with this gc_mode_names array */ 1320 enum { 1321 GC_NORMAL, 1322 GC_IDLE_CB, 1323 GC_IDLE_GREEDY, 1324 GC_IDLE_AT, 1325 GC_URGENT_HIGH, 1326 GC_URGENT_LOW, 1327 GC_URGENT_MID, 1328 MAX_GC_MODE, 1329 }; 1330 1331 enum { 1332 BGGC_MODE_ON, /* background gc is on */ 1333 BGGC_MODE_OFF, /* background gc is off */ 1334 BGGC_MODE_SYNC, /* 1335 * background gc is on, migrating blocks 1336 * like foreground gc 1337 */ 1338 }; 1339 1340 enum { 1341 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1342 FS_MODE_LFS, /* use lfs allocation only */ 1343 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1344 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1345 }; 1346 1347 enum { 1348 ALLOC_MODE_DEFAULT, /* stay default */ 1349 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1350 }; 1351 1352 enum fsync_mode { 1353 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1354 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1355 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1356 }; 1357 1358 enum { 1359 COMPR_MODE_FS, /* 1360 * automatically compress compression 1361 * enabled files 1362 */ 1363 COMPR_MODE_USER, /* 1364 * automatical compression is disabled. 1365 * user can control the file compression 1366 * using ioctls 1367 */ 1368 }; 1369 1370 enum { 1371 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1372 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1373 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1374 }; 1375 1376 enum { 1377 MEMORY_MODE_NORMAL, /* memory mode for normal devices */ 1378 MEMORY_MODE_LOW, /* memory mode for low memry devices */ 1379 }; 1380 1381 enum errors_option { 1382 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */ 1383 MOUNT_ERRORS_CONTINUE, /* continue on errors */ 1384 MOUNT_ERRORS_PANIC, /* panic on errors */ 1385 }; 1386 1387 enum { 1388 BACKGROUND, 1389 FOREGROUND, 1390 MAX_CALL_TYPE, 1391 TOTAL_CALL = FOREGROUND, 1392 }; 1393 1394 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1395 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1396 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1397 1398 /* 1399 * Layout of f2fs page.private: 1400 * 1401 * Layout A: lowest bit should be 1 1402 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1403 * bit 0 PAGE_PRIVATE_NOT_POINTER 1404 * bit 1 PAGE_PRIVATE_DUMMY_WRITE 1405 * bit 2 PAGE_PRIVATE_ONGOING_MIGRATION 1406 * bit 3 PAGE_PRIVATE_INLINE_INODE 1407 * bit 4 PAGE_PRIVATE_REF_RESOURCE 1408 * bit 5- f2fs private data 1409 * 1410 * Layout B: lowest bit should be 0 1411 * page.private is a wrapped pointer. 1412 */ 1413 enum { 1414 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1415 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */ 1416 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1417 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1418 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1419 PAGE_PRIVATE_MAX 1420 }; 1421 1422 /* For compression */ 1423 enum compress_algorithm_type { 1424 COMPRESS_LZO, 1425 COMPRESS_LZ4, 1426 COMPRESS_ZSTD, 1427 COMPRESS_LZORLE, 1428 COMPRESS_MAX, 1429 }; 1430 1431 enum compress_flag { 1432 COMPRESS_CHKSUM, 1433 COMPRESS_MAX_FLAG, 1434 }; 1435 1436 #define COMPRESS_WATERMARK 20 1437 #define COMPRESS_PERCENT 20 1438 1439 #define COMPRESS_DATA_RESERVED_SIZE 4 1440 struct compress_data { 1441 __le32 clen; /* compressed data size */ 1442 __le32 chksum; /* compressed data chksum */ 1443 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1444 u8 cdata[]; /* compressed data */ 1445 }; 1446 1447 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1448 1449 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1450 1451 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 1452 1453 #define COMPRESS_LEVEL_OFFSET 8 1454 1455 /* compress context */ 1456 struct compress_ctx { 1457 struct inode *inode; /* inode the context belong to */ 1458 pgoff_t cluster_idx; /* cluster index number */ 1459 unsigned int cluster_size; /* page count in cluster */ 1460 unsigned int log_cluster_size; /* log of cluster size */ 1461 struct page **rpages; /* pages store raw data in cluster */ 1462 unsigned int nr_rpages; /* total page number in rpages */ 1463 struct page **cpages; /* pages store compressed data in cluster */ 1464 unsigned int nr_cpages; /* total page number in cpages */ 1465 unsigned int valid_nr_cpages; /* valid page number in cpages */ 1466 void *rbuf; /* virtual mapped address on rpages */ 1467 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1468 size_t rlen; /* valid data length in rbuf */ 1469 size_t clen; /* valid data length in cbuf */ 1470 void *private; /* payload buffer for specified compression algorithm */ 1471 void *private2; /* extra payload buffer */ 1472 }; 1473 1474 /* compress context for write IO path */ 1475 struct compress_io_ctx { 1476 u32 magic; /* magic number to indicate page is compressed */ 1477 struct inode *inode; /* inode the context belong to */ 1478 struct page **rpages; /* pages store raw data in cluster */ 1479 unsigned int nr_rpages; /* total page number in rpages */ 1480 atomic_t pending_pages; /* in-flight compressed page count */ 1481 }; 1482 1483 /* Context for decompressing one cluster on the read IO path */ 1484 struct decompress_io_ctx { 1485 u32 magic; /* magic number to indicate page is compressed */ 1486 struct inode *inode; /* inode the context belong to */ 1487 pgoff_t cluster_idx; /* cluster index number */ 1488 unsigned int cluster_size; /* page count in cluster */ 1489 unsigned int log_cluster_size; /* log of cluster size */ 1490 struct page **rpages; /* pages store raw data in cluster */ 1491 unsigned int nr_rpages; /* total page number in rpages */ 1492 struct page **cpages; /* pages store compressed data in cluster */ 1493 unsigned int nr_cpages; /* total page number in cpages */ 1494 struct page **tpages; /* temp pages to pad holes in cluster */ 1495 void *rbuf; /* virtual mapped address on rpages */ 1496 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1497 size_t rlen; /* valid data length in rbuf */ 1498 size_t clen; /* valid data length in cbuf */ 1499 1500 /* 1501 * The number of compressed pages remaining to be read in this cluster. 1502 * This is initially nr_cpages. It is decremented by 1 each time a page 1503 * has been read (or failed to be read). When it reaches 0, the cluster 1504 * is decompressed (or an error is reported). 1505 * 1506 * If an error occurs before all the pages have been submitted for I/O, 1507 * then this will never reach 0. In this case the I/O submitter is 1508 * responsible for calling f2fs_decompress_end_io() instead. 1509 */ 1510 atomic_t remaining_pages; 1511 1512 /* 1513 * Number of references to this decompress_io_ctx. 1514 * 1515 * One reference is held for I/O completion. This reference is dropped 1516 * after the pagecache pages are updated and unlocked -- either after 1517 * decompression (and verity if enabled), or after an error. 1518 * 1519 * In addition, each compressed page holds a reference while it is in a 1520 * bio. These references are necessary prevent compressed pages from 1521 * being freed while they are still in a bio. 1522 */ 1523 refcount_t refcnt; 1524 1525 bool failed; /* IO error occurred before decompression? */ 1526 bool need_verity; /* need fs-verity verification after decompression? */ 1527 void *private; /* payload buffer for specified decompression algorithm */ 1528 void *private2; /* extra payload buffer */ 1529 struct work_struct verity_work; /* work to verify the decompressed pages */ 1530 struct work_struct free_work; /* work for late free this structure itself */ 1531 }; 1532 1533 #define NULL_CLUSTER ((unsigned int)(~0)) 1534 #define MIN_COMPRESS_LOG_SIZE 2 1535 #define MAX_COMPRESS_LOG_SIZE 8 1536 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1537 1538 struct f2fs_sb_info { 1539 struct super_block *sb; /* pointer to VFS super block */ 1540 struct proc_dir_entry *s_proc; /* proc entry */ 1541 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1542 struct f2fs_rwsem sb_lock; /* lock for raw super block */ 1543 int valid_super_block; /* valid super block no */ 1544 unsigned long s_flag; /* flags for sbi */ 1545 struct mutex writepages; /* mutex for writepages() */ 1546 1547 #ifdef CONFIG_BLK_DEV_ZONED 1548 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1549 #endif 1550 1551 /* for node-related operations */ 1552 struct f2fs_nm_info *nm_info; /* node manager */ 1553 struct inode *node_inode; /* cache node blocks */ 1554 1555 /* for segment-related operations */ 1556 struct f2fs_sm_info *sm_info; /* segment manager */ 1557 1558 /* for bio operations */ 1559 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1560 /* keep migration IO order for LFS mode */ 1561 struct f2fs_rwsem io_order_lock; 1562 mempool_t *write_io_dummy; /* Dummy pages */ 1563 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ 1564 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ 1565 1566 /* for checkpoint */ 1567 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1568 int cur_cp_pack; /* remain current cp pack */ 1569 spinlock_t cp_lock; /* for flag in ckpt */ 1570 struct inode *meta_inode; /* cache meta blocks */ 1571 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ 1572 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ 1573 struct f2fs_rwsem node_write; /* locking node writes */ 1574 struct f2fs_rwsem node_change; /* locking node change */ 1575 wait_queue_head_t cp_wait; 1576 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1577 long interval_time[MAX_TIME]; /* to store thresholds */ 1578 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1579 1580 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1581 1582 spinlock_t fsync_node_lock; /* for node entry lock */ 1583 struct list_head fsync_node_list; /* node list head */ 1584 unsigned int fsync_seg_id; /* sequence id */ 1585 unsigned int fsync_node_num; /* number of node entries */ 1586 1587 /* for orphan inode, use 0'th array */ 1588 unsigned int max_orphans; /* max orphan inodes */ 1589 1590 /* for inode management */ 1591 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1592 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1593 struct mutex flush_lock; /* for flush exclusion */ 1594 1595 /* for extent tree cache */ 1596 struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; 1597 atomic64_t allocated_data_blocks; /* for block age extent_cache */ 1598 1599 /* The threshold used for hot and warm data seperation*/ 1600 unsigned int hot_data_age_threshold; 1601 unsigned int warm_data_age_threshold; 1602 unsigned int last_age_weight; 1603 1604 /* basic filesystem units */ 1605 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1606 unsigned int log_blocksize; /* log2 block size */ 1607 unsigned int blocksize; /* block size */ 1608 unsigned int root_ino_num; /* root inode number*/ 1609 unsigned int node_ino_num; /* node inode number*/ 1610 unsigned int meta_ino_num; /* meta inode number*/ 1611 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1612 unsigned int blocks_per_seg; /* blocks per segment */ 1613 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ 1614 unsigned int segs_per_sec; /* segments per section */ 1615 unsigned int secs_per_zone; /* sections per zone */ 1616 unsigned int total_sections; /* total section count */ 1617 unsigned int total_node_count; /* total node block count */ 1618 unsigned int total_valid_node_count; /* valid node block count */ 1619 int dir_level; /* directory level */ 1620 bool readdir_ra; /* readahead inode in readdir */ 1621 u64 max_io_bytes; /* max io bytes to merge IOs */ 1622 1623 block_t user_block_count; /* # of user blocks */ 1624 block_t total_valid_block_count; /* # of valid blocks */ 1625 block_t discard_blks; /* discard command candidats */ 1626 block_t last_valid_block_count; /* for recovery */ 1627 block_t reserved_blocks; /* configurable reserved blocks */ 1628 block_t current_reserved_blocks; /* current reserved blocks */ 1629 1630 /* Additional tracking for no checkpoint mode */ 1631 block_t unusable_block_count; /* # of blocks saved by last cp */ 1632 1633 unsigned int nquota_files; /* # of quota sysfile */ 1634 struct f2fs_rwsem quota_sem; /* blocking cp for flags */ 1635 1636 /* # of pages, see count_type */ 1637 atomic_t nr_pages[NR_COUNT_TYPE]; 1638 /* # of allocated blocks */ 1639 struct percpu_counter alloc_valid_block_count; 1640 /* # of node block writes as roll forward recovery */ 1641 struct percpu_counter rf_node_block_count; 1642 1643 /* writeback control */ 1644 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1645 1646 /* valid inode count */ 1647 struct percpu_counter total_valid_inode_count; 1648 1649 struct f2fs_mount_info mount_opt; /* mount options */ 1650 1651 /* for cleaning operations */ 1652 struct f2fs_rwsem gc_lock; /* 1653 * semaphore for GC, avoid 1654 * race between GC and GC or CP 1655 */ 1656 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1657 struct atgc_management am; /* atgc management */ 1658 unsigned int cur_victim_sec; /* current victim section num */ 1659 unsigned int gc_mode; /* current GC state */ 1660 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1661 spinlock_t gc_remaining_trials_lock; 1662 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ 1663 unsigned int gc_remaining_trials; 1664 1665 /* for skip statistic */ 1666 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1667 1668 /* threshold for gc trials on pinned files */ 1669 u64 gc_pin_file_threshold; 1670 struct f2fs_rwsem pin_sem; 1671 1672 /* maximum # of trials to find a victim segment for SSR and GC */ 1673 unsigned int max_victim_search; 1674 /* migration granularity of garbage collection, unit: segment */ 1675 unsigned int migration_granularity; 1676 1677 /* 1678 * for stat information. 1679 * one is for the LFS mode, and the other is for the SSR mode. 1680 */ 1681 #ifdef CONFIG_F2FS_STAT_FS 1682 struct f2fs_stat_info *stat_info; /* FS status information */ 1683 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1684 unsigned int segment_count[2]; /* # of allocated segments */ 1685 unsigned int block_count[2]; /* # of allocated blocks */ 1686 atomic_t inplace_count; /* # of inplace update */ 1687 /* # of lookup extent cache */ 1688 atomic64_t total_hit_ext[NR_EXTENT_CACHES]; 1689 /* # of hit rbtree extent node */ 1690 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; 1691 /* # of hit cached extent node */ 1692 atomic64_t read_hit_cached[NR_EXTENT_CACHES]; 1693 /* # of hit largest extent node in read extent cache */ 1694 atomic64_t read_hit_largest; 1695 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1696 atomic_t inline_inode; /* # of inline_data inodes */ 1697 atomic_t inline_dir; /* # of inline_dentry inodes */ 1698 atomic_t compr_inode; /* # of compressed inodes */ 1699 atomic64_t compr_blocks; /* # of compressed blocks */ 1700 atomic_t swapfile_inode; /* # of swapfile inodes */ 1701 atomic_t atomic_files; /* # of opened atomic file */ 1702 atomic_t max_aw_cnt; /* max # of atomic writes */ 1703 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1704 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1705 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1706 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */ 1707 #endif 1708 spinlock_t stat_lock; /* lock for stat operations */ 1709 1710 /* to attach REQ_META|REQ_FUA flags */ 1711 unsigned int data_io_flag; 1712 unsigned int node_io_flag; 1713 1714 /* For sysfs support */ 1715 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1716 struct completion s_kobj_unregister; 1717 1718 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1719 struct completion s_stat_kobj_unregister; 1720 1721 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1722 struct completion s_feature_list_kobj_unregister; 1723 1724 /* For shrinker support */ 1725 struct list_head s_list; 1726 struct mutex umount_mutex; 1727 unsigned int shrinker_run_no; 1728 1729 /* For multi devices */ 1730 int s_ndevs; /* number of devices */ 1731 struct f2fs_dev_info *devs; /* for device list */ 1732 unsigned int dirty_device; /* for checkpoint data flush */ 1733 spinlock_t dev_lock; /* protect dirty_device */ 1734 bool aligned_blksize; /* all devices has the same logical blksize */ 1735 1736 /* For write statistics */ 1737 u64 sectors_written_start; 1738 u64 kbytes_written; 1739 1740 /* Reference to checksum algorithm driver via cryptoapi */ 1741 struct crypto_shash *s_chksum_driver; 1742 1743 /* Precomputed FS UUID checksum for seeding other checksums */ 1744 __u32 s_chksum_seed; 1745 1746 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1747 1748 /* 1749 * If we are in irq context, let's update error information into 1750 * on-disk superblock in the work. 1751 */ 1752 struct work_struct s_error_work; 1753 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ 1754 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */ 1755 spinlock_t error_lock; /* protect errors/stop_reason array */ 1756 bool error_dirty; /* errors of sb is dirty */ 1757 1758 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1759 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1760 1761 /* For reclaimed segs statistics per each GC mode */ 1762 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1763 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1764 1765 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1766 1767 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1768 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1769 1770 /* For atomic write statistics */ 1771 atomic64_t current_atomic_write; 1772 s64 peak_atomic_write; 1773 u64 committed_atomic_block; 1774 u64 revoked_atomic_block; 1775 1776 #ifdef CONFIG_F2FS_FS_COMPRESSION 1777 struct kmem_cache *page_array_slab; /* page array entry */ 1778 unsigned int page_array_slab_size; /* default page array slab size */ 1779 1780 /* For runtime compression statistics */ 1781 u64 compr_written_block; 1782 u64 compr_saved_block; 1783 u32 compr_new_inode; 1784 1785 /* For compressed block cache */ 1786 struct inode *compress_inode; /* cache compressed blocks */ 1787 unsigned int compress_percent; /* cache page percentage */ 1788 unsigned int compress_watermark; /* cache page watermark */ 1789 atomic_t compress_page_hit; /* cache hit count */ 1790 #endif 1791 1792 #ifdef CONFIG_F2FS_IOSTAT 1793 /* For app/fs IO statistics */ 1794 spinlock_t iostat_lock; 1795 unsigned long long iostat_count[NR_IO_TYPE]; 1796 unsigned long long iostat_bytes[NR_IO_TYPE]; 1797 unsigned long long prev_iostat_bytes[NR_IO_TYPE]; 1798 bool iostat_enable; 1799 unsigned long iostat_next_period; 1800 unsigned int iostat_period_ms; 1801 1802 /* For io latency related statistics info in one iostat period */ 1803 spinlock_t iostat_lat_lock; 1804 struct iostat_lat_info *iostat_io_lat; 1805 #endif 1806 }; 1807 1808 #ifdef CONFIG_F2FS_FAULT_INJECTION 1809 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \ 1810 __builtin_return_address(0)) 1811 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type, 1812 const char *func, const char *parent_func) 1813 { 1814 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1815 1816 if (!ffi->inject_rate) 1817 return false; 1818 1819 if (!IS_FAULT_SET(ffi, type)) 1820 return false; 1821 1822 atomic_inc(&ffi->inject_ops); 1823 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1824 atomic_set(&ffi->inject_ops, 0); 1825 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", 1826 KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type], 1827 func, parent_func); 1828 return true; 1829 } 1830 return false; 1831 } 1832 #else 1833 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1834 { 1835 return false; 1836 } 1837 #endif 1838 1839 /* 1840 * Test if the mounted volume is a multi-device volume. 1841 * - For a single regular disk volume, sbi->s_ndevs is 0. 1842 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1843 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1844 */ 1845 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1846 { 1847 return sbi->s_ndevs > 1; 1848 } 1849 1850 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1851 { 1852 unsigned long now = jiffies; 1853 1854 sbi->last_time[type] = now; 1855 1856 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1857 if (type == REQ_TIME) { 1858 sbi->last_time[DISCARD_TIME] = now; 1859 sbi->last_time[GC_TIME] = now; 1860 } 1861 } 1862 1863 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1864 { 1865 unsigned long interval = sbi->interval_time[type] * HZ; 1866 1867 return time_after(jiffies, sbi->last_time[type] + interval); 1868 } 1869 1870 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1871 int type) 1872 { 1873 unsigned long interval = sbi->interval_time[type] * HZ; 1874 unsigned int wait_ms = 0; 1875 long delta; 1876 1877 delta = (sbi->last_time[type] + interval) - jiffies; 1878 if (delta > 0) 1879 wait_ms = jiffies_to_msecs(delta); 1880 1881 return wait_ms; 1882 } 1883 1884 /* 1885 * Inline functions 1886 */ 1887 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1888 const void *address, unsigned int length) 1889 { 1890 struct { 1891 struct shash_desc shash; 1892 char ctx[4]; 1893 } desc; 1894 int err; 1895 1896 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1897 1898 desc.shash.tfm = sbi->s_chksum_driver; 1899 *(u32 *)desc.ctx = crc; 1900 1901 err = crypto_shash_update(&desc.shash, address, length); 1902 BUG_ON(err); 1903 1904 return *(u32 *)desc.ctx; 1905 } 1906 1907 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1908 unsigned int length) 1909 { 1910 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1911 } 1912 1913 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1914 void *buf, size_t buf_size) 1915 { 1916 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1917 } 1918 1919 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1920 const void *address, unsigned int length) 1921 { 1922 return __f2fs_crc32(sbi, crc, address, length); 1923 } 1924 1925 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1926 { 1927 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1928 } 1929 1930 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1931 { 1932 return sb->s_fs_info; 1933 } 1934 1935 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1936 { 1937 return F2FS_SB(inode->i_sb); 1938 } 1939 1940 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1941 { 1942 return F2FS_I_SB(mapping->host); 1943 } 1944 1945 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1946 { 1947 return F2FS_M_SB(page_file_mapping(page)); 1948 } 1949 1950 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1951 { 1952 return (struct f2fs_super_block *)(sbi->raw_super); 1953 } 1954 1955 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1956 { 1957 return (struct f2fs_checkpoint *)(sbi->ckpt); 1958 } 1959 1960 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1961 { 1962 return (struct f2fs_node *)page_address(page); 1963 } 1964 1965 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1966 { 1967 return &((struct f2fs_node *)page_address(page))->i; 1968 } 1969 1970 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1971 { 1972 return (struct f2fs_nm_info *)(sbi->nm_info); 1973 } 1974 1975 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1976 { 1977 return (struct f2fs_sm_info *)(sbi->sm_info); 1978 } 1979 1980 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1981 { 1982 return (struct sit_info *)(SM_I(sbi)->sit_info); 1983 } 1984 1985 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1986 { 1987 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1988 } 1989 1990 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1991 { 1992 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1993 } 1994 1995 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1996 { 1997 return sbi->meta_inode->i_mapping; 1998 } 1999 2000 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 2001 { 2002 return sbi->node_inode->i_mapping; 2003 } 2004 2005 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 2006 { 2007 return test_bit(type, &sbi->s_flag); 2008 } 2009 2010 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2011 { 2012 set_bit(type, &sbi->s_flag); 2013 } 2014 2015 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2016 { 2017 clear_bit(type, &sbi->s_flag); 2018 } 2019 2020 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2021 { 2022 return le64_to_cpu(cp->checkpoint_ver); 2023 } 2024 2025 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2026 { 2027 if (type < F2FS_MAX_QUOTAS) 2028 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2029 return 0; 2030 } 2031 2032 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2033 { 2034 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2035 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2036 } 2037 2038 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2039 { 2040 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2041 2042 return ckpt_flags & f; 2043 } 2044 2045 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2046 { 2047 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2048 } 2049 2050 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2051 { 2052 unsigned int ckpt_flags; 2053 2054 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2055 ckpt_flags |= f; 2056 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2057 } 2058 2059 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2060 { 2061 unsigned long flags; 2062 2063 spin_lock_irqsave(&sbi->cp_lock, flags); 2064 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2065 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2066 } 2067 2068 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2069 { 2070 unsigned int ckpt_flags; 2071 2072 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2073 ckpt_flags &= (~f); 2074 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2075 } 2076 2077 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2078 { 2079 unsigned long flags; 2080 2081 spin_lock_irqsave(&sbi->cp_lock, flags); 2082 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2083 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2084 } 2085 2086 #define init_f2fs_rwsem(sem) \ 2087 do { \ 2088 static struct lock_class_key __key; \ 2089 \ 2090 __init_f2fs_rwsem((sem), #sem, &__key); \ 2091 } while (0) 2092 2093 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, 2094 const char *sem_name, struct lock_class_key *key) 2095 { 2096 __init_rwsem(&sem->internal_rwsem, sem_name, key); 2097 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2098 init_waitqueue_head(&sem->read_waiters); 2099 #endif 2100 } 2101 2102 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) 2103 { 2104 return rwsem_is_locked(&sem->internal_rwsem); 2105 } 2106 2107 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) 2108 { 2109 return rwsem_is_contended(&sem->internal_rwsem); 2110 } 2111 2112 static inline void f2fs_down_read(struct f2fs_rwsem *sem) 2113 { 2114 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2115 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); 2116 #else 2117 down_read(&sem->internal_rwsem); 2118 #endif 2119 } 2120 2121 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) 2122 { 2123 return down_read_trylock(&sem->internal_rwsem); 2124 } 2125 2126 static inline void f2fs_up_read(struct f2fs_rwsem *sem) 2127 { 2128 up_read(&sem->internal_rwsem); 2129 } 2130 2131 static inline void f2fs_down_write(struct f2fs_rwsem *sem) 2132 { 2133 down_write(&sem->internal_rwsem); 2134 } 2135 2136 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2137 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) 2138 { 2139 down_read_nested(&sem->internal_rwsem, subclass); 2140 } 2141 2142 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass) 2143 { 2144 down_write_nested(&sem->internal_rwsem, subclass); 2145 } 2146 #else 2147 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) 2148 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem) 2149 #endif 2150 2151 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) 2152 { 2153 return down_write_trylock(&sem->internal_rwsem); 2154 } 2155 2156 static inline void f2fs_up_write(struct f2fs_rwsem *sem) 2157 { 2158 up_write(&sem->internal_rwsem); 2159 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2160 wake_up_all(&sem->read_waiters); 2161 #endif 2162 } 2163 2164 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2165 { 2166 f2fs_down_read(&sbi->cp_rwsem); 2167 } 2168 2169 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2170 { 2171 if (time_to_inject(sbi, FAULT_LOCK_OP)) 2172 return 0; 2173 return f2fs_down_read_trylock(&sbi->cp_rwsem); 2174 } 2175 2176 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2177 { 2178 f2fs_up_read(&sbi->cp_rwsem); 2179 } 2180 2181 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2182 { 2183 f2fs_down_write(&sbi->cp_rwsem); 2184 } 2185 2186 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2187 { 2188 f2fs_up_write(&sbi->cp_rwsem); 2189 } 2190 2191 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2192 { 2193 int reason = CP_SYNC; 2194 2195 if (test_opt(sbi, FASTBOOT)) 2196 reason = CP_FASTBOOT; 2197 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2198 reason = CP_UMOUNT; 2199 return reason; 2200 } 2201 2202 static inline bool __remain_node_summaries(int reason) 2203 { 2204 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2205 } 2206 2207 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2208 { 2209 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2210 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2211 } 2212 2213 /* 2214 * Check whether the inode has blocks or not 2215 */ 2216 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2217 { 2218 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2219 2220 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2221 } 2222 2223 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2224 { 2225 return ofs == XATTR_NODE_OFFSET; 2226 } 2227 2228 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2229 struct inode *inode, bool cap) 2230 { 2231 if (!inode) 2232 return true; 2233 if (!test_opt(sbi, RESERVE_ROOT)) 2234 return false; 2235 if (IS_NOQUOTA(inode)) 2236 return true; 2237 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2238 return true; 2239 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2240 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2241 return true; 2242 if (cap && capable(CAP_SYS_RESOURCE)) 2243 return true; 2244 return false; 2245 } 2246 2247 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2248 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2249 struct inode *inode, blkcnt_t *count) 2250 { 2251 blkcnt_t diff = 0, release = 0; 2252 block_t avail_user_block_count; 2253 int ret; 2254 2255 ret = dquot_reserve_block(inode, *count); 2256 if (ret) 2257 return ret; 2258 2259 if (time_to_inject(sbi, FAULT_BLOCK)) { 2260 release = *count; 2261 goto release_quota; 2262 } 2263 2264 /* 2265 * let's increase this in prior to actual block count change in order 2266 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2267 */ 2268 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2269 2270 spin_lock(&sbi->stat_lock); 2271 sbi->total_valid_block_count += (block_t)(*count); 2272 avail_user_block_count = sbi->user_block_count - 2273 sbi->current_reserved_blocks; 2274 2275 if (!__allow_reserved_blocks(sbi, inode, true)) 2276 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2277 2278 if (F2FS_IO_ALIGNED(sbi)) 2279 avail_user_block_count -= sbi->blocks_per_seg * 2280 SM_I(sbi)->additional_reserved_segments; 2281 2282 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2283 if (avail_user_block_count > sbi->unusable_block_count) 2284 avail_user_block_count -= sbi->unusable_block_count; 2285 else 2286 avail_user_block_count = 0; 2287 } 2288 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 2289 diff = sbi->total_valid_block_count - avail_user_block_count; 2290 if (diff > *count) 2291 diff = *count; 2292 *count -= diff; 2293 release = diff; 2294 sbi->total_valid_block_count -= diff; 2295 if (!*count) { 2296 spin_unlock(&sbi->stat_lock); 2297 goto enospc; 2298 } 2299 } 2300 spin_unlock(&sbi->stat_lock); 2301 2302 if (unlikely(release)) { 2303 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2304 dquot_release_reservation_block(inode, release); 2305 } 2306 f2fs_i_blocks_write(inode, *count, true, true); 2307 return 0; 2308 2309 enospc: 2310 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2311 release_quota: 2312 dquot_release_reservation_block(inode, release); 2313 return -ENOSPC; 2314 } 2315 2316 __printf(2, 3) 2317 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 2318 2319 #define f2fs_err(sbi, fmt, ...) \ 2320 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 2321 #define f2fs_warn(sbi, fmt, ...) \ 2322 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 2323 #define f2fs_notice(sbi, fmt, ...) \ 2324 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 2325 #define f2fs_info(sbi, fmt, ...) \ 2326 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 2327 #define f2fs_debug(sbi, fmt, ...) \ 2328 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 2329 2330 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 2331 static inline bool page_private_##name(struct page *page) \ 2332 { \ 2333 return PagePrivate(page) && \ 2334 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 2335 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2336 } 2337 2338 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 2339 static inline void set_page_private_##name(struct page *page) \ 2340 { \ 2341 if (!PagePrivate(page)) \ 2342 attach_page_private(page, (void *)0); \ 2343 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 2344 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2345 } 2346 2347 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 2348 static inline void clear_page_private_##name(struct page *page) \ 2349 { \ 2350 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2351 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \ 2352 detach_page_private(page); \ 2353 } 2354 2355 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 2356 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 2357 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 2358 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE); 2359 2360 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 2361 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 2362 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 2363 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE); 2364 2365 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 2366 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 2367 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 2368 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE); 2369 2370 static inline unsigned long get_page_private_data(struct page *page) 2371 { 2372 unsigned long data = page_private(page); 2373 2374 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 2375 return 0; 2376 return data >> PAGE_PRIVATE_MAX; 2377 } 2378 2379 static inline void set_page_private_data(struct page *page, unsigned long data) 2380 { 2381 if (!PagePrivate(page)) 2382 attach_page_private(page, (void *)0); 2383 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 2384 page_private(page) |= data << PAGE_PRIVATE_MAX; 2385 } 2386 2387 static inline void clear_page_private_data(struct page *page) 2388 { 2389 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0); 2390 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) 2391 detach_page_private(page); 2392 } 2393 2394 static inline void clear_page_private_all(struct page *page) 2395 { 2396 clear_page_private_data(page); 2397 clear_page_private_reference(page); 2398 clear_page_private_gcing(page); 2399 clear_page_private_inline(page); 2400 2401 f2fs_bug_on(F2FS_P_SB(page), page_private(page)); 2402 } 2403 2404 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2405 struct inode *inode, 2406 block_t count) 2407 { 2408 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2409 2410 spin_lock(&sbi->stat_lock); 2411 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2412 sbi->total_valid_block_count -= (block_t)count; 2413 if (sbi->reserved_blocks && 2414 sbi->current_reserved_blocks < sbi->reserved_blocks) 2415 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2416 sbi->current_reserved_blocks + count); 2417 spin_unlock(&sbi->stat_lock); 2418 if (unlikely(inode->i_blocks < sectors)) { 2419 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2420 inode->i_ino, 2421 (unsigned long long)inode->i_blocks, 2422 (unsigned long long)sectors); 2423 set_sbi_flag(sbi, SBI_NEED_FSCK); 2424 return; 2425 } 2426 f2fs_i_blocks_write(inode, count, false, true); 2427 } 2428 2429 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2430 { 2431 atomic_inc(&sbi->nr_pages[count_type]); 2432 2433 if (count_type == F2FS_DIRTY_DENTS || 2434 count_type == F2FS_DIRTY_NODES || 2435 count_type == F2FS_DIRTY_META || 2436 count_type == F2FS_DIRTY_QDATA || 2437 count_type == F2FS_DIRTY_IMETA) 2438 set_sbi_flag(sbi, SBI_IS_DIRTY); 2439 } 2440 2441 static inline void inode_inc_dirty_pages(struct inode *inode) 2442 { 2443 atomic_inc(&F2FS_I(inode)->dirty_pages); 2444 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2445 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2446 if (IS_NOQUOTA(inode)) 2447 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2448 } 2449 2450 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2451 { 2452 atomic_dec(&sbi->nr_pages[count_type]); 2453 } 2454 2455 static inline void inode_dec_dirty_pages(struct inode *inode) 2456 { 2457 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2458 !S_ISLNK(inode->i_mode)) 2459 return; 2460 2461 atomic_dec(&F2FS_I(inode)->dirty_pages); 2462 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2463 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2464 if (IS_NOQUOTA(inode)) 2465 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2466 } 2467 2468 static inline void inc_atomic_write_cnt(struct inode *inode) 2469 { 2470 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2471 struct f2fs_inode_info *fi = F2FS_I(inode); 2472 u64 current_write; 2473 2474 fi->atomic_write_cnt++; 2475 atomic64_inc(&sbi->current_atomic_write); 2476 current_write = atomic64_read(&sbi->current_atomic_write); 2477 if (current_write > sbi->peak_atomic_write) 2478 sbi->peak_atomic_write = current_write; 2479 } 2480 2481 static inline void release_atomic_write_cnt(struct inode *inode) 2482 { 2483 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2484 struct f2fs_inode_info *fi = F2FS_I(inode); 2485 2486 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); 2487 fi->atomic_write_cnt = 0; 2488 } 2489 2490 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2491 { 2492 return atomic_read(&sbi->nr_pages[count_type]); 2493 } 2494 2495 static inline int get_dirty_pages(struct inode *inode) 2496 { 2497 return atomic_read(&F2FS_I(inode)->dirty_pages); 2498 } 2499 2500 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2501 { 2502 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 2503 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 2504 sbi->log_blocks_per_seg; 2505 2506 return segs / sbi->segs_per_sec; 2507 } 2508 2509 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2510 { 2511 return sbi->total_valid_block_count; 2512 } 2513 2514 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2515 { 2516 return sbi->discard_blks; 2517 } 2518 2519 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2520 { 2521 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2522 2523 /* return NAT or SIT bitmap */ 2524 if (flag == NAT_BITMAP) 2525 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2526 else if (flag == SIT_BITMAP) 2527 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2528 2529 return 0; 2530 } 2531 2532 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2533 { 2534 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2535 } 2536 2537 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2538 { 2539 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2540 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2541 int offset; 2542 2543 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2544 offset = (flag == SIT_BITMAP) ? 2545 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2546 /* 2547 * if large_nat_bitmap feature is enabled, leave checksum 2548 * protection for all nat/sit bitmaps. 2549 */ 2550 return tmp_ptr + offset + sizeof(__le32); 2551 } 2552 2553 if (__cp_payload(sbi) > 0) { 2554 if (flag == NAT_BITMAP) 2555 return tmp_ptr; 2556 else 2557 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2558 } else { 2559 offset = (flag == NAT_BITMAP) ? 2560 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2561 return tmp_ptr + offset; 2562 } 2563 } 2564 2565 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2566 { 2567 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2568 2569 if (sbi->cur_cp_pack == 2) 2570 start_addr += sbi->blocks_per_seg; 2571 return start_addr; 2572 } 2573 2574 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2575 { 2576 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2577 2578 if (sbi->cur_cp_pack == 1) 2579 start_addr += sbi->blocks_per_seg; 2580 return start_addr; 2581 } 2582 2583 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2584 { 2585 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2586 } 2587 2588 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2589 { 2590 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2591 } 2592 2593 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 2594 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2595 struct inode *inode, bool is_inode) 2596 { 2597 block_t valid_block_count; 2598 unsigned int valid_node_count, user_block_count; 2599 int err; 2600 2601 if (is_inode) { 2602 if (inode) { 2603 err = dquot_alloc_inode(inode); 2604 if (err) 2605 return err; 2606 } 2607 } else { 2608 err = dquot_reserve_block(inode, 1); 2609 if (err) 2610 return err; 2611 } 2612 2613 if (time_to_inject(sbi, FAULT_BLOCK)) 2614 goto enospc; 2615 2616 spin_lock(&sbi->stat_lock); 2617 2618 valid_block_count = sbi->total_valid_block_count + 2619 sbi->current_reserved_blocks + 1; 2620 2621 if (!__allow_reserved_blocks(sbi, inode, false)) 2622 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2623 2624 if (F2FS_IO_ALIGNED(sbi)) 2625 valid_block_count += sbi->blocks_per_seg * 2626 SM_I(sbi)->additional_reserved_segments; 2627 2628 user_block_count = sbi->user_block_count; 2629 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2630 user_block_count -= sbi->unusable_block_count; 2631 2632 if (unlikely(valid_block_count > user_block_count)) { 2633 spin_unlock(&sbi->stat_lock); 2634 goto enospc; 2635 } 2636 2637 valid_node_count = sbi->total_valid_node_count + 1; 2638 if (unlikely(valid_node_count > sbi->total_node_count)) { 2639 spin_unlock(&sbi->stat_lock); 2640 goto enospc; 2641 } 2642 2643 sbi->total_valid_node_count++; 2644 sbi->total_valid_block_count++; 2645 spin_unlock(&sbi->stat_lock); 2646 2647 if (inode) { 2648 if (is_inode) 2649 f2fs_mark_inode_dirty_sync(inode, true); 2650 else 2651 f2fs_i_blocks_write(inode, 1, true, true); 2652 } 2653 2654 percpu_counter_inc(&sbi->alloc_valid_block_count); 2655 return 0; 2656 2657 enospc: 2658 if (is_inode) { 2659 if (inode) 2660 dquot_free_inode(inode); 2661 } else { 2662 dquot_release_reservation_block(inode, 1); 2663 } 2664 return -ENOSPC; 2665 } 2666 2667 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2668 struct inode *inode, bool is_inode) 2669 { 2670 spin_lock(&sbi->stat_lock); 2671 2672 if (unlikely(!sbi->total_valid_block_count || 2673 !sbi->total_valid_node_count)) { 2674 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", 2675 sbi->total_valid_block_count, 2676 sbi->total_valid_node_count); 2677 set_sbi_flag(sbi, SBI_NEED_FSCK); 2678 } else { 2679 sbi->total_valid_block_count--; 2680 sbi->total_valid_node_count--; 2681 } 2682 2683 if (sbi->reserved_blocks && 2684 sbi->current_reserved_blocks < sbi->reserved_blocks) 2685 sbi->current_reserved_blocks++; 2686 2687 spin_unlock(&sbi->stat_lock); 2688 2689 if (is_inode) { 2690 dquot_free_inode(inode); 2691 } else { 2692 if (unlikely(inode->i_blocks == 0)) { 2693 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2694 inode->i_ino, 2695 (unsigned long long)inode->i_blocks); 2696 set_sbi_flag(sbi, SBI_NEED_FSCK); 2697 return; 2698 } 2699 f2fs_i_blocks_write(inode, 1, false, true); 2700 } 2701 } 2702 2703 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2704 { 2705 return sbi->total_valid_node_count; 2706 } 2707 2708 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2709 { 2710 percpu_counter_inc(&sbi->total_valid_inode_count); 2711 } 2712 2713 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2714 { 2715 percpu_counter_dec(&sbi->total_valid_inode_count); 2716 } 2717 2718 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2719 { 2720 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2721 } 2722 2723 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2724 pgoff_t index, bool for_write) 2725 { 2726 struct page *page; 2727 unsigned int flags; 2728 2729 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2730 if (!for_write) 2731 page = find_get_page_flags(mapping, index, 2732 FGP_LOCK | FGP_ACCESSED); 2733 else 2734 page = find_lock_page(mapping, index); 2735 if (page) 2736 return page; 2737 2738 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 2739 return NULL; 2740 } 2741 2742 if (!for_write) 2743 return grab_cache_page(mapping, index); 2744 2745 flags = memalloc_nofs_save(); 2746 page = grab_cache_page_write_begin(mapping, index); 2747 memalloc_nofs_restore(flags); 2748 2749 return page; 2750 } 2751 2752 static inline struct page *f2fs_pagecache_get_page( 2753 struct address_space *mapping, pgoff_t index, 2754 fgf_t fgp_flags, gfp_t gfp_mask) 2755 { 2756 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) 2757 return NULL; 2758 2759 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2760 } 2761 2762 static inline void f2fs_put_page(struct page *page, int unlock) 2763 { 2764 if (!page) 2765 return; 2766 2767 if (unlock) { 2768 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2769 unlock_page(page); 2770 } 2771 put_page(page); 2772 } 2773 2774 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2775 { 2776 if (dn->node_page) 2777 f2fs_put_page(dn->node_page, 1); 2778 if (dn->inode_page && dn->node_page != dn->inode_page) 2779 f2fs_put_page(dn->inode_page, 0); 2780 dn->node_page = NULL; 2781 dn->inode_page = NULL; 2782 } 2783 2784 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2785 size_t size) 2786 { 2787 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2788 } 2789 2790 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2791 gfp_t flags) 2792 { 2793 void *entry; 2794 2795 entry = kmem_cache_alloc(cachep, flags); 2796 if (!entry) 2797 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2798 return entry; 2799 } 2800 2801 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2802 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2803 { 2804 if (nofail) 2805 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2806 2807 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) 2808 return NULL; 2809 2810 return kmem_cache_alloc(cachep, flags); 2811 } 2812 2813 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2814 { 2815 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2816 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2817 get_pages(sbi, F2FS_WB_CP_DATA) || 2818 get_pages(sbi, F2FS_DIO_READ) || 2819 get_pages(sbi, F2FS_DIO_WRITE)) 2820 return true; 2821 2822 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2823 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2824 return true; 2825 2826 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2827 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2828 return true; 2829 return false; 2830 } 2831 2832 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2833 { 2834 if (sbi->gc_mode == GC_URGENT_HIGH) 2835 return true; 2836 2837 if (is_inflight_io(sbi, type)) 2838 return false; 2839 2840 if (sbi->gc_mode == GC_URGENT_MID) 2841 return true; 2842 2843 if (sbi->gc_mode == GC_URGENT_LOW && 2844 (type == DISCARD_TIME || type == GC_TIME)) 2845 return true; 2846 2847 return f2fs_time_over(sbi, type); 2848 } 2849 2850 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2851 unsigned long index, void *item) 2852 { 2853 while (radix_tree_insert(root, index, item)) 2854 cond_resched(); 2855 } 2856 2857 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2858 2859 static inline bool IS_INODE(struct page *page) 2860 { 2861 struct f2fs_node *p = F2FS_NODE(page); 2862 2863 return RAW_IS_INODE(p); 2864 } 2865 2866 static inline int offset_in_addr(struct f2fs_inode *i) 2867 { 2868 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2869 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2870 } 2871 2872 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2873 { 2874 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2875 } 2876 2877 static inline int f2fs_has_extra_attr(struct inode *inode); 2878 static inline block_t data_blkaddr(struct inode *inode, 2879 struct page *node_page, unsigned int offset) 2880 { 2881 struct f2fs_node *raw_node; 2882 __le32 *addr_array; 2883 int base = 0; 2884 bool is_inode = IS_INODE(node_page); 2885 2886 raw_node = F2FS_NODE(node_page); 2887 2888 if (is_inode) { 2889 if (!inode) 2890 /* from GC path only */ 2891 base = offset_in_addr(&raw_node->i); 2892 else if (f2fs_has_extra_attr(inode)) 2893 base = get_extra_isize(inode); 2894 } 2895 2896 addr_array = blkaddr_in_node(raw_node); 2897 return le32_to_cpu(addr_array[base + offset]); 2898 } 2899 2900 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2901 { 2902 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2903 } 2904 2905 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2906 { 2907 int mask; 2908 2909 addr += (nr >> 3); 2910 mask = BIT(7 - (nr & 0x07)); 2911 return mask & *addr; 2912 } 2913 2914 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2915 { 2916 int mask; 2917 2918 addr += (nr >> 3); 2919 mask = BIT(7 - (nr & 0x07)); 2920 *addr |= mask; 2921 } 2922 2923 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2924 { 2925 int mask; 2926 2927 addr += (nr >> 3); 2928 mask = BIT(7 - (nr & 0x07)); 2929 *addr &= ~mask; 2930 } 2931 2932 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2933 { 2934 int mask; 2935 int ret; 2936 2937 addr += (nr >> 3); 2938 mask = BIT(7 - (nr & 0x07)); 2939 ret = mask & *addr; 2940 *addr |= mask; 2941 return ret; 2942 } 2943 2944 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2945 { 2946 int mask; 2947 int ret; 2948 2949 addr += (nr >> 3); 2950 mask = BIT(7 - (nr & 0x07)); 2951 ret = mask & *addr; 2952 *addr &= ~mask; 2953 return ret; 2954 } 2955 2956 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2957 { 2958 int mask; 2959 2960 addr += (nr >> 3); 2961 mask = BIT(7 - (nr & 0x07)); 2962 *addr ^= mask; 2963 } 2964 2965 /* 2966 * On-disk inode flags (f2fs_inode::i_flags) 2967 */ 2968 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2969 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2970 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2971 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2972 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2973 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2974 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2975 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2976 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2977 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2978 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2979 2980 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL) 2981 2982 /* Flags that should be inherited by new inodes from their parent. */ 2983 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2984 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2985 F2FS_CASEFOLD_FL) 2986 2987 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2988 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2989 F2FS_CASEFOLD_FL)) 2990 2991 /* Flags that are appropriate for non-directories/regular files. */ 2992 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2993 2994 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2995 { 2996 if (S_ISDIR(mode)) 2997 return flags; 2998 else if (S_ISREG(mode)) 2999 return flags & F2FS_REG_FLMASK; 3000 else 3001 return flags & F2FS_OTHER_FLMASK; 3002 } 3003 3004 static inline void __mark_inode_dirty_flag(struct inode *inode, 3005 int flag, bool set) 3006 { 3007 switch (flag) { 3008 case FI_INLINE_XATTR: 3009 case FI_INLINE_DATA: 3010 case FI_INLINE_DENTRY: 3011 case FI_NEW_INODE: 3012 if (set) 3013 return; 3014 fallthrough; 3015 case FI_DATA_EXIST: 3016 case FI_INLINE_DOTS: 3017 case FI_PIN_FILE: 3018 case FI_COMPRESS_RELEASED: 3019 f2fs_mark_inode_dirty_sync(inode, true); 3020 } 3021 } 3022 3023 static inline void set_inode_flag(struct inode *inode, int flag) 3024 { 3025 set_bit(flag, F2FS_I(inode)->flags); 3026 __mark_inode_dirty_flag(inode, flag, true); 3027 } 3028 3029 static inline int is_inode_flag_set(struct inode *inode, int flag) 3030 { 3031 return test_bit(flag, F2FS_I(inode)->flags); 3032 } 3033 3034 static inline void clear_inode_flag(struct inode *inode, int flag) 3035 { 3036 clear_bit(flag, F2FS_I(inode)->flags); 3037 __mark_inode_dirty_flag(inode, flag, false); 3038 } 3039 3040 static inline bool f2fs_verity_in_progress(struct inode *inode) 3041 { 3042 return IS_ENABLED(CONFIG_FS_VERITY) && 3043 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 3044 } 3045 3046 static inline void set_acl_inode(struct inode *inode, umode_t mode) 3047 { 3048 F2FS_I(inode)->i_acl_mode = mode; 3049 set_inode_flag(inode, FI_ACL_MODE); 3050 f2fs_mark_inode_dirty_sync(inode, false); 3051 } 3052 3053 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 3054 { 3055 if (inc) 3056 inc_nlink(inode); 3057 else 3058 drop_nlink(inode); 3059 f2fs_mark_inode_dirty_sync(inode, true); 3060 } 3061 3062 static inline void f2fs_i_blocks_write(struct inode *inode, 3063 block_t diff, bool add, bool claim) 3064 { 3065 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3066 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3067 3068 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 3069 if (add) { 3070 if (claim) 3071 dquot_claim_block(inode, diff); 3072 else 3073 dquot_alloc_block_nofail(inode, diff); 3074 } else { 3075 dquot_free_block(inode, diff); 3076 } 3077 3078 f2fs_mark_inode_dirty_sync(inode, true); 3079 if (clean || recover) 3080 set_inode_flag(inode, FI_AUTO_RECOVER); 3081 } 3082 3083 static inline bool f2fs_is_atomic_file(struct inode *inode); 3084 3085 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 3086 { 3087 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3088 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3089 3090 if (i_size_read(inode) == i_size) 3091 return; 3092 3093 i_size_write(inode, i_size); 3094 3095 if (f2fs_is_atomic_file(inode)) 3096 return; 3097 3098 f2fs_mark_inode_dirty_sync(inode, true); 3099 if (clean || recover) 3100 set_inode_flag(inode, FI_AUTO_RECOVER); 3101 } 3102 3103 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 3104 { 3105 F2FS_I(inode)->i_current_depth = depth; 3106 f2fs_mark_inode_dirty_sync(inode, true); 3107 } 3108 3109 static inline void f2fs_i_gc_failures_write(struct inode *inode, 3110 unsigned int count) 3111 { 3112 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 3113 f2fs_mark_inode_dirty_sync(inode, true); 3114 } 3115 3116 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 3117 { 3118 F2FS_I(inode)->i_xattr_nid = xnid; 3119 f2fs_mark_inode_dirty_sync(inode, true); 3120 } 3121 3122 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 3123 { 3124 F2FS_I(inode)->i_pino = pino; 3125 f2fs_mark_inode_dirty_sync(inode, true); 3126 } 3127 3128 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 3129 { 3130 struct f2fs_inode_info *fi = F2FS_I(inode); 3131 3132 if (ri->i_inline & F2FS_INLINE_XATTR) 3133 set_bit(FI_INLINE_XATTR, fi->flags); 3134 if (ri->i_inline & F2FS_INLINE_DATA) 3135 set_bit(FI_INLINE_DATA, fi->flags); 3136 if (ri->i_inline & F2FS_INLINE_DENTRY) 3137 set_bit(FI_INLINE_DENTRY, fi->flags); 3138 if (ri->i_inline & F2FS_DATA_EXIST) 3139 set_bit(FI_DATA_EXIST, fi->flags); 3140 if (ri->i_inline & F2FS_INLINE_DOTS) 3141 set_bit(FI_INLINE_DOTS, fi->flags); 3142 if (ri->i_inline & F2FS_EXTRA_ATTR) 3143 set_bit(FI_EXTRA_ATTR, fi->flags); 3144 if (ri->i_inline & F2FS_PIN_FILE) 3145 set_bit(FI_PIN_FILE, fi->flags); 3146 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 3147 set_bit(FI_COMPRESS_RELEASED, fi->flags); 3148 } 3149 3150 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 3151 { 3152 ri->i_inline = 0; 3153 3154 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 3155 ri->i_inline |= F2FS_INLINE_XATTR; 3156 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 3157 ri->i_inline |= F2FS_INLINE_DATA; 3158 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 3159 ri->i_inline |= F2FS_INLINE_DENTRY; 3160 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 3161 ri->i_inline |= F2FS_DATA_EXIST; 3162 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 3163 ri->i_inline |= F2FS_INLINE_DOTS; 3164 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 3165 ri->i_inline |= F2FS_EXTRA_ATTR; 3166 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3167 ri->i_inline |= F2FS_PIN_FILE; 3168 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 3169 ri->i_inline |= F2FS_COMPRESS_RELEASED; 3170 } 3171 3172 static inline int f2fs_has_extra_attr(struct inode *inode) 3173 { 3174 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 3175 } 3176 3177 static inline int f2fs_has_inline_xattr(struct inode *inode) 3178 { 3179 return is_inode_flag_set(inode, FI_INLINE_XATTR); 3180 } 3181 3182 static inline int f2fs_compressed_file(struct inode *inode) 3183 { 3184 return S_ISREG(inode->i_mode) && 3185 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 3186 } 3187 3188 static inline bool f2fs_need_compress_data(struct inode *inode) 3189 { 3190 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3191 3192 if (!f2fs_compressed_file(inode)) 3193 return false; 3194 3195 if (compress_mode == COMPR_MODE_FS) 3196 return true; 3197 else if (compress_mode == COMPR_MODE_USER && 3198 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3199 return true; 3200 3201 return false; 3202 } 3203 3204 static inline unsigned int addrs_per_inode(struct inode *inode) 3205 { 3206 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 3207 get_inline_xattr_addrs(inode); 3208 3209 if (!f2fs_compressed_file(inode)) 3210 return addrs; 3211 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3212 } 3213 3214 static inline unsigned int addrs_per_block(struct inode *inode) 3215 { 3216 if (!f2fs_compressed_file(inode)) 3217 return DEF_ADDRS_PER_BLOCK; 3218 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 3219 } 3220 3221 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3222 { 3223 struct f2fs_inode *ri = F2FS_INODE(page); 3224 3225 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3226 get_inline_xattr_addrs(inode)]); 3227 } 3228 3229 static inline int inline_xattr_size(struct inode *inode) 3230 { 3231 if (f2fs_has_inline_xattr(inode)) 3232 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3233 return 0; 3234 } 3235 3236 /* 3237 * Notice: check inline_data flag without inode page lock is unsafe. 3238 * It could change at any time by f2fs_convert_inline_page(). 3239 */ 3240 static inline int f2fs_has_inline_data(struct inode *inode) 3241 { 3242 return is_inode_flag_set(inode, FI_INLINE_DATA); 3243 } 3244 3245 static inline int f2fs_exist_data(struct inode *inode) 3246 { 3247 return is_inode_flag_set(inode, FI_DATA_EXIST); 3248 } 3249 3250 static inline int f2fs_has_inline_dots(struct inode *inode) 3251 { 3252 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3253 } 3254 3255 static inline int f2fs_is_mmap_file(struct inode *inode) 3256 { 3257 return is_inode_flag_set(inode, FI_MMAP_FILE); 3258 } 3259 3260 static inline bool f2fs_is_pinned_file(struct inode *inode) 3261 { 3262 return is_inode_flag_set(inode, FI_PIN_FILE); 3263 } 3264 3265 static inline bool f2fs_is_atomic_file(struct inode *inode) 3266 { 3267 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3268 } 3269 3270 static inline bool f2fs_is_cow_file(struct inode *inode) 3271 { 3272 return is_inode_flag_set(inode, FI_COW_FILE); 3273 } 3274 3275 static inline bool f2fs_is_first_block_written(struct inode *inode) 3276 { 3277 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 3278 } 3279 3280 static inline bool f2fs_is_drop_cache(struct inode *inode) 3281 { 3282 return is_inode_flag_set(inode, FI_DROP_CACHE); 3283 } 3284 3285 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3286 { 3287 struct f2fs_inode *ri = F2FS_INODE(page); 3288 int extra_size = get_extra_isize(inode); 3289 3290 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 3291 } 3292 3293 static inline int f2fs_has_inline_dentry(struct inode *inode) 3294 { 3295 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3296 } 3297 3298 static inline int is_file(struct inode *inode, int type) 3299 { 3300 return F2FS_I(inode)->i_advise & type; 3301 } 3302 3303 static inline void set_file(struct inode *inode, int type) 3304 { 3305 if (is_file(inode, type)) 3306 return; 3307 F2FS_I(inode)->i_advise |= type; 3308 f2fs_mark_inode_dirty_sync(inode, true); 3309 } 3310 3311 static inline void clear_file(struct inode *inode, int type) 3312 { 3313 if (!is_file(inode, type)) 3314 return; 3315 F2FS_I(inode)->i_advise &= ~type; 3316 f2fs_mark_inode_dirty_sync(inode, true); 3317 } 3318 3319 static inline bool f2fs_is_time_consistent(struct inode *inode) 3320 { 3321 struct timespec64 ts = inode_get_atime(inode); 3322 3323 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts)) 3324 return false; 3325 ts = inode_get_ctime(inode); 3326 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts)) 3327 return false; 3328 ts = inode_get_mtime(inode); 3329 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts)) 3330 return false; 3331 return true; 3332 } 3333 3334 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3335 { 3336 bool ret; 3337 3338 if (dsync) { 3339 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3340 3341 spin_lock(&sbi->inode_lock[DIRTY_META]); 3342 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3343 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3344 return ret; 3345 } 3346 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3347 file_keep_isize(inode) || 3348 i_size_read(inode) & ~PAGE_MASK) 3349 return false; 3350 3351 if (!f2fs_is_time_consistent(inode)) 3352 return false; 3353 3354 spin_lock(&F2FS_I(inode)->i_size_lock); 3355 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3356 spin_unlock(&F2FS_I(inode)->i_size_lock); 3357 3358 return ret; 3359 } 3360 3361 static inline bool f2fs_readonly(struct super_block *sb) 3362 { 3363 return sb_rdonly(sb); 3364 } 3365 3366 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3367 { 3368 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3369 } 3370 3371 static inline bool is_dot_dotdot(const u8 *name, size_t len) 3372 { 3373 if (len == 1 && name[0] == '.') 3374 return true; 3375 3376 if (len == 2 && name[0] == '.' && name[1] == '.') 3377 return true; 3378 3379 return false; 3380 } 3381 3382 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3383 size_t size, gfp_t flags) 3384 { 3385 if (time_to_inject(sbi, FAULT_KMALLOC)) 3386 return NULL; 3387 3388 return kmalloc(size, flags); 3389 } 3390 3391 static inline void *f2fs_getname(struct f2fs_sb_info *sbi) 3392 { 3393 if (time_to_inject(sbi, FAULT_KMALLOC)) 3394 return NULL; 3395 3396 return __getname(); 3397 } 3398 3399 static inline void f2fs_putname(char *buf) 3400 { 3401 __putname(buf); 3402 } 3403 3404 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3405 size_t size, gfp_t flags) 3406 { 3407 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3408 } 3409 3410 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3411 size_t size, gfp_t flags) 3412 { 3413 if (time_to_inject(sbi, FAULT_KVMALLOC)) 3414 return NULL; 3415 3416 return kvmalloc(size, flags); 3417 } 3418 3419 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3420 size_t size, gfp_t flags) 3421 { 3422 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3423 } 3424 3425 static inline int get_extra_isize(struct inode *inode) 3426 { 3427 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3428 } 3429 3430 static inline int get_inline_xattr_addrs(struct inode *inode) 3431 { 3432 return F2FS_I(inode)->i_inline_xattr_size; 3433 } 3434 3435 #define f2fs_get_inode_mode(i) \ 3436 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3437 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3438 3439 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32)) 3440 3441 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3442 (offsetof(struct f2fs_inode, i_extra_end) - \ 3443 offsetof(struct f2fs_inode, i_extra_isize)) \ 3444 3445 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3446 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3447 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3448 sizeof((f2fs_inode)->field)) \ 3449 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3450 3451 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 3452 3453 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3454 3455 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3456 block_t blkaddr, int type); 3457 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3458 block_t blkaddr, int type) 3459 { 3460 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 3461 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3462 blkaddr, type); 3463 f2fs_bug_on(sbi, 1); 3464 } 3465 } 3466 3467 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3468 { 3469 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3470 blkaddr == COMPRESS_ADDR) 3471 return false; 3472 return true; 3473 } 3474 3475 /* 3476 * file.c 3477 */ 3478 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3479 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3480 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3481 int f2fs_truncate(struct inode *inode); 3482 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 3483 struct kstat *stat, u32 request_mask, unsigned int flags); 3484 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3485 struct iattr *attr); 3486 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3487 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3488 int f2fs_precache_extents(struct inode *inode); 3489 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3490 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3491 struct dentry *dentry, struct fileattr *fa); 3492 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3493 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3494 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3495 int f2fs_pin_file_control(struct inode *inode, bool inc); 3496 3497 /* 3498 * inode.c 3499 */ 3500 void f2fs_set_inode_flags(struct inode *inode); 3501 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3502 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3503 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3504 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3505 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3506 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3507 void f2fs_update_inode_page(struct inode *inode); 3508 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3509 void f2fs_evict_inode(struct inode *inode); 3510 void f2fs_handle_failed_inode(struct inode *inode); 3511 3512 /* 3513 * namei.c 3514 */ 3515 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3516 bool hot, bool set); 3517 struct dentry *f2fs_get_parent(struct dentry *child); 3518 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3519 struct inode **new_inode); 3520 3521 /* 3522 * dir.c 3523 */ 3524 int f2fs_init_casefolded_name(const struct inode *dir, 3525 struct f2fs_filename *fname); 3526 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3527 int lookup, struct f2fs_filename *fname); 3528 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3529 struct f2fs_filename *fname); 3530 void f2fs_free_filename(struct f2fs_filename *fname); 3531 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3532 const struct f2fs_filename *fname, int *max_slots); 3533 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3534 unsigned int start_pos, struct fscrypt_str *fstr); 3535 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3536 struct f2fs_dentry_ptr *d); 3537 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3538 const struct f2fs_filename *fname, struct page *dpage); 3539 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3540 unsigned int current_depth); 3541 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3542 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3543 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3544 const struct f2fs_filename *fname, 3545 struct page **res_page); 3546 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3547 const struct qstr *child, struct page **res_page); 3548 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3549 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3550 struct page **page); 3551 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3552 struct page *page, struct inode *inode); 3553 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3554 const struct f2fs_filename *fname); 3555 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3556 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3557 unsigned int bit_pos); 3558 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3559 struct inode *inode, nid_t ino, umode_t mode); 3560 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3561 struct inode *inode, nid_t ino, umode_t mode); 3562 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3563 struct inode *inode, nid_t ino, umode_t mode); 3564 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3565 struct inode *dir, struct inode *inode); 3566 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 3567 bool f2fs_empty_dir(struct inode *dir); 3568 3569 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3570 { 3571 if (fscrypt_is_nokey_name(dentry)) 3572 return -ENOKEY; 3573 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3574 inode, inode->i_ino, inode->i_mode); 3575 } 3576 3577 /* 3578 * super.c 3579 */ 3580 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3581 void f2fs_inode_synced(struct inode *inode); 3582 int f2fs_dquot_initialize(struct inode *inode); 3583 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3584 int f2fs_quota_sync(struct super_block *sb, int type); 3585 loff_t max_file_blocks(struct inode *inode); 3586 void f2fs_quota_off_umount(struct super_block *sb); 3587 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag); 3588 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 3589 bool irq_context); 3590 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); 3591 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error); 3592 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3593 int f2fs_sync_fs(struct super_block *sb, int sync); 3594 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3595 3596 /* 3597 * hash.c 3598 */ 3599 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3600 3601 /* 3602 * node.c 3603 */ 3604 struct node_info; 3605 3606 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3607 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3608 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3609 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3610 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3611 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3612 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3613 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3614 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3615 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3616 struct node_info *ni, bool checkpoint_context); 3617 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3618 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3619 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3620 int f2fs_truncate_xattr_node(struct inode *inode); 3621 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3622 unsigned int seq_id); 3623 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3624 int f2fs_remove_inode_page(struct inode *inode); 3625 struct page *f2fs_new_inode_page(struct inode *inode); 3626 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3627 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3628 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3629 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3630 int f2fs_move_node_page(struct page *node_page, int gc_type); 3631 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3632 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3633 struct writeback_control *wbc, bool atomic, 3634 unsigned int *seq_id); 3635 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3636 struct writeback_control *wbc, 3637 bool do_balance, enum iostat_type io_type); 3638 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3639 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3640 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3641 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3642 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3643 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3644 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3645 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3646 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3647 unsigned int segno, struct f2fs_summary_block *sum); 3648 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3649 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3650 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3651 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3652 int __init f2fs_create_node_manager_caches(void); 3653 void f2fs_destroy_node_manager_caches(void); 3654 3655 /* 3656 * segment.c 3657 */ 3658 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3659 int f2fs_commit_atomic_write(struct inode *inode); 3660 void f2fs_abort_atomic_write(struct inode *inode, bool clean); 3661 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3662 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3663 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3664 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3665 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3666 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3667 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3668 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3669 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3670 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3671 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3672 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3673 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3674 struct cp_control *cpc); 3675 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3676 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3677 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3678 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3679 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3680 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3681 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3682 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3683 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3684 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3685 unsigned int *newseg, bool new_sec, int dir); 3686 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3687 unsigned int start, unsigned int end); 3688 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3689 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3690 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3691 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3692 struct cp_control *cpc); 3693 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3694 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3695 block_t blk_addr); 3696 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3697 enum iostat_type io_type); 3698 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3699 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3700 struct f2fs_io_info *fio); 3701 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3702 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3703 block_t old_blkaddr, block_t new_blkaddr, 3704 bool recover_curseg, bool recover_newaddr, 3705 bool from_gc); 3706 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3707 block_t old_addr, block_t new_addr, 3708 unsigned char version, bool recover_curseg, 3709 bool recover_newaddr); 3710 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3711 block_t old_blkaddr, block_t *new_blkaddr, 3712 struct f2fs_summary *sum, int type, 3713 struct f2fs_io_info *fio); 3714 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3715 block_t blkaddr, unsigned int blkcnt); 3716 void f2fs_wait_on_page_writeback(struct page *page, 3717 enum page_type type, bool ordered, bool locked); 3718 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3719 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3720 block_t len); 3721 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3722 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3723 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3724 unsigned int val, int alloc); 3725 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3726 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3727 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3728 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3729 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3730 int __init f2fs_create_segment_manager_caches(void); 3731 void f2fs_destroy_segment_manager_caches(void); 3732 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3733 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3734 unsigned int segno); 3735 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3736 unsigned int segno); 3737 3738 #define DEF_FRAGMENT_SIZE 4 3739 #define MIN_FRAGMENT_SIZE 1 3740 #define MAX_FRAGMENT_SIZE 512 3741 3742 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3743 { 3744 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3745 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3746 } 3747 3748 /* 3749 * checkpoint.c 3750 */ 3751 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 3752 unsigned char reason); 3753 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); 3754 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3755 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3756 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3757 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3758 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3759 block_t blkaddr, int type); 3760 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3761 int type, bool sync); 3762 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 3763 unsigned int ra_blocks); 3764 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3765 long nr_to_write, enum iostat_type io_type); 3766 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3767 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3768 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3769 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3770 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3771 unsigned int devidx, int type); 3772 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3773 unsigned int devidx, int type); 3774 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3775 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3776 void f2fs_add_orphan_inode(struct inode *inode); 3777 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3778 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3779 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3780 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); 3781 void f2fs_remove_dirty_inode(struct inode *inode); 3782 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 3783 bool from_cp); 3784 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3785 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3786 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3787 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3788 int __init f2fs_create_checkpoint_caches(void); 3789 void f2fs_destroy_checkpoint_caches(void); 3790 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3791 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3792 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3793 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3794 3795 /* 3796 * data.c 3797 */ 3798 int __init f2fs_init_bioset(void); 3799 void f2fs_destroy_bioset(void); 3800 int f2fs_init_bio_entry_cache(void); 3801 void f2fs_destroy_bio_entry_cache(void); 3802 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 3803 enum page_type type); 3804 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); 3805 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3806 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3807 struct inode *inode, struct page *page, 3808 nid_t ino, enum page_type type); 3809 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3810 struct bio **bio, struct page *page); 3811 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3812 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3813 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3814 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3815 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3816 block_t blk_addr, sector_t *sector); 3817 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3818 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3819 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3820 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3821 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3822 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index); 3823 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3824 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3825 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); 3826 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 3827 pgoff_t *next_pgofs); 3828 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3829 bool for_write); 3830 struct page *f2fs_get_new_data_page(struct inode *inode, 3831 struct page *ipage, pgoff_t index, bool new_i_size); 3832 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3833 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag); 3834 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3835 u64 start, u64 len); 3836 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3837 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3838 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3839 int f2fs_write_single_data_page(struct page *page, int *submitted, 3840 struct bio **bio, sector_t *last_block, 3841 struct writeback_control *wbc, 3842 enum iostat_type io_type, 3843 int compr_blocks, bool allow_balance); 3844 void f2fs_write_failed(struct inode *inode, loff_t to); 3845 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); 3846 bool f2fs_release_folio(struct folio *folio, gfp_t wait); 3847 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3848 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3849 int f2fs_init_post_read_processing(void); 3850 void f2fs_destroy_post_read_processing(void); 3851 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3852 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3853 extern const struct iomap_ops f2fs_iomap_ops; 3854 3855 /* 3856 * gc.c 3857 */ 3858 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3859 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3860 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3861 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); 3862 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3863 int f2fs_resize_fs(struct file *filp, __u64 block_count); 3864 int __init f2fs_create_garbage_collection_cache(void); 3865 void f2fs_destroy_garbage_collection_cache(void); 3866 /* victim selection function for cleaning and SSR */ 3867 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 3868 int gc_type, int type, char alloc_mode, 3869 unsigned long long age); 3870 3871 /* 3872 * recovery.c 3873 */ 3874 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3875 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3876 int __init f2fs_create_recovery_cache(void); 3877 void f2fs_destroy_recovery_cache(void); 3878 3879 /* 3880 * debug.c 3881 */ 3882 #ifdef CONFIG_F2FS_STAT_FS 3883 struct f2fs_stat_info { 3884 struct list_head stat_list; 3885 struct f2fs_sb_info *sbi; 3886 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3887 int main_area_segs, main_area_sections, main_area_zones; 3888 unsigned long long hit_cached[NR_EXTENT_CACHES]; 3889 unsigned long long hit_rbtree[NR_EXTENT_CACHES]; 3890 unsigned long long total_ext[NR_EXTENT_CACHES]; 3891 unsigned long long hit_total[NR_EXTENT_CACHES]; 3892 int ext_tree[NR_EXTENT_CACHES]; 3893 int zombie_tree[NR_EXTENT_CACHES]; 3894 int ext_node[NR_EXTENT_CACHES]; 3895 /* to count memory footprint */ 3896 unsigned long long ext_mem[NR_EXTENT_CACHES]; 3897 /* for read extent cache */ 3898 unsigned long long hit_largest; 3899 /* for block age extent cache */ 3900 unsigned long long allocated_data_blocks; 3901 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3902 int ndirty_data, ndirty_qdata; 3903 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3904 int nats, dirty_nats, sits, dirty_sits; 3905 int free_nids, avail_nids, alloc_nids; 3906 int total_count, utilization; 3907 int nr_wb_cp_data, nr_wb_data; 3908 int nr_rd_data, nr_rd_node, nr_rd_meta; 3909 int nr_dio_read, nr_dio_write; 3910 unsigned int io_skip_bggc, other_skip_bggc; 3911 int nr_flushing, nr_flushed, flush_list_empty; 3912 int nr_discarding, nr_discarded; 3913 int nr_discard_cmd; 3914 unsigned int undiscard_blks; 3915 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3916 unsigned int cur_ckpt_time, peak_ckpt_time; 3917 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3918 int compr_inode, swapfile_inode; 3919 unsigned long long compr_blocks; 3920 int aw_cnt, max_aw_cnt; 3921 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3922 unsigned int bimodal, avg_vblocks; 3923 int util_free, util_valid, util_invalid; 3924 int rsvd_segs, overp_segs; 3925 int dirty_count, node_pages, meta_pages, compress_pages; 3926 int compress_page_hit; 3927 int prefree_count, free_segs, free_secs; 3928 int cp_call_count[MAX_CALL_TYPE], cp_count; 3929 int gc_call_count[MAX_CALL_TYPE]; 3930 int gc_segs[2][2]; 3931 int gc_secs[2][2]; 3932 int tot_blks, data_blks, node_blks; 3933 int bg_data_blks, bg_node_blks; 3934 int curseg[NR_CURSEG_TYPE]; 3935 int cursec[NR_CURSEG_TYPE]; 3936 int curzone[NR_CURSEG_TYPE]; 3937 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3938 unsigned int full_seg[NR_CURSEG_TYPE]; 3939 unsigned int valid_blks[NR_CURSEG_TYPE]; 3940 3941 unsigned int meta_count[META_MAX]; 3942 unsigned int segment_count[2]; 3943 unsigned int block_count[2]; 3944 unsigned int inplace_count; 3945 unsigned long long base_mem, cache_mem, page_mem; 3946 }; 3947 3948 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3949 { 3950 return (struct f2fs_stat_info *)sbi->stat_info; 3951 } 3952 3953 #define stat_inc_cp_call_count(sbi, foreground) \ 3954 atomic_inc(&sbi->cp_call_count[(foreground)]) 3955 #define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++) 3956 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3957 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3958 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3959 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3960 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) 3961 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) 3962 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3963 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) 3964 #define stat_inc_inline_xattr(inode) \ 3965 do { \ 3966 if (f2fs_has_inline_xattr(inode)) \ 3967 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3968 } while (0) 3969 #define stat_dec_inline_xattr(inode) \ 3970 do { \ 3971 if (f2fs_has_inline_xattr(inode)) \ 3972 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3973 } while (0) 3974 #define stat_inc_inline_inode(inode) \ 3975 do { \ 3976 if (f2fs_has_inline_data(inode)) \ 3977 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3978 } while (0) 3979 #define stat_dec_inline_inode(inode) \ 3980 do { \ 3981 if (f2fs_has_inline_data(inode)) \ 3982 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3983 } while (0) 3984 #define stat_inc_inline_dir(inode) \ 3985 do { \ 3986 if (f2fs_has_inline_dentry(inode)) \ 3987 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3988 } while (0) 3989 #define stat_dec_inline_dir(inode) \ 3990 do { \ 3991 if (f2fs_has_inline_dentry(inode)) \ 3992 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3993 } while (0) 3994 #define stat_inc_compr_inode(inode) \ 3995 do { \ 3996 if (f2fs_compressed_file(inode)) \ 3997 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 3998 } while (0) 3999 #define stat_dec_compr_inode(inode) \ 4000 do { \ 4001 if (f2fs_compressed_file(inode)) \ 4002 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 4003 } while (0) 4004 #define stat_add_compr_blocks(inode, blocks) \ 4005 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4006 #define stat_sub_compr_blocks(inode, blocks) \ 4007 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4008 #define stat_inc_swapfile_inode(inode) \ 4009 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) 4010 #define stat_dec_swapfile_inode(inode) \ 4011 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) 4012 #define stat_inc_atomic_inode(inode) \ 4013 (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) 4014 #define stat_dec_atomic_inode(inode) \ 4015 (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) 4016 #define stat_inc_meta_count(sbi, blkaddr) \ 4017 do { \ 4018 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 4019 atomic_inc(&(sbi)->meta_count[META_CP]); \ 4020 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 4021 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 4022 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 4023 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 4024 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 4025 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 4026 } while (0) 4027 #define stat_inc_seg_type(sbi, curseg) \ 4028 ((sbi)->segment_count[(curseg)->alloc_type]++) 4029 #define stat_inc_block_count(sbi, curseg) \ 4030 ((sbi)->block_count[(curseg)->alloc_type]++) 4031 #define stat_inc_inplace_blocks(sbi) \ 4032 (atomic_inc(&(sbi)->inplace_count)) 4033 #define stat_update_max_atomic_write(inode) \ 4034 do { \ 4035 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ 4036 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 4037 if (cur > max) \ 4038 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 4039 } while (0) 4040 #define stat_inc_gc_call_count(sbi, foreground) \ 4041 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++) 4042 #define stat_inc_gc_sec_count(sbi, type, gc_type) \ 4043 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++) 4044 #define stat_inc_gc_seg_count(sbi, type, gc_type) \ 4045 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++) 4046 4047 #define stat_inc_tot_blk_count(si, blks) \ 4048 ((si)->tot_blks += (blks)) 4049 4050 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 4051 do { \ 4052 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4053 stat_inc_tot_blk_count(si, blks); \ 4054 si->data_blks += (blks); \ 4055 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4056 } while (0) 4057 4058 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 4059 do { \ 4060 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4061 stat_inc_tot_blk_count(si, blks); \ 4062 si->node_blks += (blks); \ 4063 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4064 } while (0) 4065 4066 int f2fs_build_stats(struct f2fs_sb_info *sbi); 4067 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 4068 void __init f2fs_create_root_stats(void); 4069 void f2fs_destroy_root_stats(void); 4070 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 4071 #else 4072 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0) 4073 #define stat_inc_cp_count(sbi) do { } while (0) 4074 #define stat_io_skip_bggc_count(sbi) do { } while (0) 4075 #define stat_other_skip_bggc_count(sbi) do { } while (0) 4076 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 4077 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 4078 #define stat_inc_total_hit(sbi, type) do { } while (0) 4079 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) 4080 #define stat_inc_largest_node_hit(sbi) do { } while (0) 4081 #define stat_inc_cached_node_hit(sbi, type) do { } while (0) 4082 #define stat_inc_inline_xattr(inode) do { } while (0) 4083 #define stat_dec_inline_xattr(inode) do { } while (0) 4084 #define stat_inc_inline_inode(inode) do { } while (0) 4085 #define stat_dec_inline_inode(inode) do { } while (0) 4086 #define stat_inc_inline_dir(inode) do { } while (0) 4087 #define stat_dec_inline_dir(inode) do { } while (0) 4088 #define stat_inc_compr_inode(inode) do { } while (0) 4089 #define stat_dec_compr_inode(inode) do { } while (0) 4090 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 4091 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 4092 #define stat_inc_swapfile_inode(inode) do { } while (0) 4093 #define stat_dec_swapfile_inode(inode) do { } while (0) 4094 #define stat_inc_atomic_inode(inode) do { } while (0) 4095 #define stat_dec_atomic_inode(inode) do { } while (0) 4096 #define stat_update_max_atomic_write(inode) do { } while (0) 4097 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 4098 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 4099 #define stat_inc_block_count(sbi, curseg) do { } while (0) 4100 #define stat_inc_inplace_blocks(sbi) do { } while (0) 4101 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0) 4102 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0) 4103 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0) 4104 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 4105 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 4106 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 4107 4108 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 4109 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 4110 static inline void __init f2fs_create_root_stats(void) { } 4111 static inline void f2fs_destroy_root_stats(void) { } 4112 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 4113 #endif 4114 4115 extern const struct file_operations f2fs_dir_operations; 4116 extern const struct file_operations f2fs_file_operations; 4117 extern const struct inode_operations f2fs_file_inode_operations; 4118 extern const struct address_space_operations f2fs_dblock_aops; 4119 extern const struct address_space_operations f2fs_node_aops; 4120 extern const struct address_space_operations f2fs_meta_aops; 4121 extern const struct inode_operations f2fs_dir_inode_operations; 4122 extern const struct inode_operations f2fs_symlink_inode_operations; 4123 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 4124 extern const struct inode_operations f2fs_special_inode_operations; 4125 extern struct kmem_cache *f2fs_inode_entry_slab; 4126 4127 /* 4128 * inline.c 4129 */ 4130 bool f2fs_may_inline_data(struct inode *inode); 4131 bool f2fs_sanity_check_inline_data(struct inode *inode); 4132 bool f2fs_may_inline_dentry(struct inode *inode); 4133 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 4134 void f2fs_truncate_inline_inode(struct inode *inode, 4135 struct page *ipage, u64 from); 4136 int f2fs_read_inline_data(struct inode *inode, struct page *page); 4137 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 4138 int f2fs_convert_inline_inode(struct inode *inode); 4139 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 4140 int f2fs_write_inline_data(struct inode *inode, struct page *page); 4141 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 4142 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 4143 const struct f2fs_filename *fname, 4144 struct page **res_page); 4145 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 4146 struct page *ipage); 4147 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 4148 struct inode *inode, nid_t ino, umode_t mode); 4149 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 4150 struct page *page, struct inode *dir, 4151 struct inode *inode); 4152 bool f2fs_empty_inline_dir(struct inode *dir); 4153 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 4154 struct fscrypt_str *fstr); 4155 int f2fs_inline_data_fiemap(struct inode *inode, 4156 struct fiemap_extent_info *fieinfo, 4157 __u64 start, __u64 len); 4158 4159 /* 4160 * shrinker.c 4161 */ 4162 unsigned long f2fs_shrink_count(struct shrinker *shrink, 4163 struct shrink_control *sc); 4164 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 4165 struct shrink_control *sc); 4166 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 4167 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 4168 4169 /* 4170 * extent_cache.c 4171 */ 4172 bool sanity_check_extent_cache(struct inode *inode); 4173 void f2fs_init_extent_tree(struct inode *inode); 4174 void f2fs_drop_extent_tree(struct inode *inode); 4175 void f2fs_destroy_extent_node(struct inode *inode); 4176 void f2fs_destroy_extent_tree(struct inode *inode); 4177 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 4178 int __init f2fs_create_extent_cache(void); 4179 void f2fs_destroy_extent_cache(void); 4180 4181 /* read extent cache ops */ 4182 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); 4183 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 4184 struct extent_info *ei); 4185 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, 4186 block_t *blkaddr); 4187 void f2fs_update_read_extent_cache(struct dnode_of_data *dn); 4188 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 4189 pgoff_t fofs, block_t blkaddr, unsigned int len); 4190 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, 4191 int nr_shrink); 4192 4193 /* block age extent cache ops */ 4194 void f2fs_init_age_extent_tree(struct inode *inode); 4195 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 4196 struct extent_info *ei); 4197 void f2fs_update_age_extent_cache(struct dnode_of_data *dn); 4198 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 4199 pgoff_t fofs, unsigned int len); 4200 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, 4201 int nr_shrink); 4202 4203 /* 4204 * sysfs.c 4205 */ 4206 #define MIN_RA_MUL 2 4207 #define MAX_RA_MUL 256 4208 4209 int __init f2fs_init_sysfs(void); 4210 void f2fs_exit_sysfs(void); 4211 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4212 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4213 4214 /* verity.c */ 4215 extern const struct fsverity_operations f2fs_verityops; 4216 4217 /* 4218 * crypto support 4219 */ 4220 static inline bool f2fs_encrypted_file(struct inode *inode) 4221 { 4222 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4223 } 4224 4225 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4226 { 4227 #ifdef CONFIG_FS_ENCRYPTION 4228 file_set_encrypt(inode); 4229 f2fs_set_inode_flags(inode); 4230 #endif 4231 } 4232 4233 /* 4234 * Returns true if the reads of the inode's data need to undergo some 4235 * postprocessing step, like decryption or authenticity verification. 4236 */ 4237 static inline bool f2fs_post_read_required(struct inode *inode) 4238 { 4239 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4240 f2fs_compressed_file(inode); 4241 } 4242 4243 /* 4244 * compress.c 4245 */ 4246 #ifdef CONFIG_F2FS_FS_COMPRESSION 4247 bool f2fs_is_compressed_page(struct page *page); 4248 struct page *f2fs_compress_control_page(struct page *page); 4249 int f2fs_prepare_compress_overwrite(struct inode *inode, 4250 struct page **pagep, pgoff_t index, void **fsdata); 4251 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4252 pgoff_t index, unsigned copied); 4253 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4254 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4255 bool f2fs_is_compress_backend_ready(struct inode *inode); 4256 bool f2fs_is_compress_level_valid(int alg, int lvl); 4257 int __init f2fs_init_compress_mempool(void); 4258 void f2fs_destroy_compress_mempool(void); 4259 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); 4260 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4261 block_t blkaddr, bool in_task); 4262 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4263 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4264 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 4265 int index, int nr_pages, bool uptodate); 4266 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4267 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4268 int f2fs_write_multi_pages(struct compress_ctx *cc, 4269 int *submitted, 4270 struct writeback_control *wbc, 4271 enum iostat_type io_type); 4272 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4273 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 4274 pgoff_t fofs, block_t blkaddr, 4275 unsigned int llen, unsigned int c_len); 4276 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4277 unsigned nr_pages, sector_t *last_block_in_bio, 4278 bool is_readahead, bool for_write); 4279 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4280 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 4281 bool in_task); 4282 void f2fs_put_page_dic(struct page *page, bool in_task); 4283 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn); 4284 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4285 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4286 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4287 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4288 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4289 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4290 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4291 int __init f2fs_init_compress_cache(void); 4292 void f2fs_destroy_compress_cache(void); 4293 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4294 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4295 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4296 nid_t ino, block_t blkaddr); 4297 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4298 block_t blkaddr); 4299 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4300 #define inc_compr_inode_stat(inode) \ 4301 do { \ 4302 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4303 sbi->compr_new_inode++; \ 4304 } while (0) 4305 #define add_compr_block_stat(inode, blocks) \ 4306 do { \ 4307 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4308 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4309 sbi->compr_written_block += blocks; \ 4310 sbi->compr_saved_block += diff; \ 4311 } while (0) 4312 #else 4313 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4314 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4315 { 4316 if (!f2fs_compressed_file(inode)) 4317 return true; 4318 /* not support compression */ 4319 return false; 4320 } 4321 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; } 4322 static inline struct page *f2fs_compress_control_page(struct page *page) 4323 { 4324 WARN_ON_ONCE(1); 4325 return ERR_PTR(-EINVAL); 4326 } 4327 static inline int __init f2fs_init_compress_mempool(void) { return 0; } 4328 static inline void f2fs_destroy_compress_mempool(void) { } 4329 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, 4330 bool in_task) { } 4331 static inline void f2fs_end_read_compressed_page(struct page *page, 4332 bool failed, block_t blkaddr, bool in_task) 4333 { 4334 WARN_ON_ONCE(1); 4335 } 4336 static inline void f2fs_put_page_dic(struct page *page, bool in_task) 4337 { 4338 WARN_ON_ONCE(1); 4339 } 4340 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; } 4341 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4342 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4343 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4344 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4345 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4346 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4347 static inline void f2fs_destroy_compress_cache(void) { } 4348 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4349 block_t blkaddr) { } 4350 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4351 struct page *page, nid_t ino, block_t blkaddr) { } 4352 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4353 struct page *page, block_t blkaddr) { return false; } 4354 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4355 nid_t ino) { } 4356 #define inc_compr_inode_stat(inode) do { } while (0) 4357 static inline void f2fs_update_read_extent_tree_range_compressed( 4358 struct inode *inode, 4359 pgoff_t fofs, block_t blkaddr, 4360 unsigned int llen, unsigned int c_len) { } 4361 #endif 4362 4363 static inline int set_compress_context(struct inode *inode) 4364 { 4365 #ifdef CONFIG_F2FS_FS_COMPRESSION 4366 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4367 4368 F2FS_I(inode)->i_compress_algorithm = 4369 F2FS_OPTION(sbi).compress_algorithm; 4370 F2FS_I(inode)->i_log_cluster_size = 4371 F2FS_OPTION(sbi).compress_log_size; 4372 F2FS_I(inode)->i_compress_flag = 4373 F2FS_OPTION(sbi).compress_chksum ? 4374 BIT(COMPRESS_CHKSUM) : 0; 4375 F2FS_I(inode)->i_cluster_size = 4376 BIT(F2FS_I(inode)->i_log_cluster_size); 4377 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 || 4378 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) && 4379 F2FS_OPTION(sbi).compress_level) 4380 F2FS_I(inode)->i_compress_level = 4381 F2FS_OPTION(sbi).compress_level; 4382 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4383 set_inode_flag(inode, FI_COMPRESSED_FILE); 4384 stat_inc_compr_inode(inode); 4385 inc_compr_inode_stat(inode); 4386 f2fs_mark_inode_dirty_sync(inode, true); 4387 return 0; 4388 #else 4389 return -EOPNOTSUPP; 4390 #endif 4391 } 4392 4393 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4394 { 4395 struct f2fs_inode_info *fi = F2FS_I(inode); 4396 4397 if (!f2fs_compressed_file(inode)) 4398 return true; 4399 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode)) 4400 return false; 4401 4402 fi->i_flags &= ~F2FS_COMPR_FL; 4403 stat_dec_compr_inode(inode); 4404 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4405 f2fs_mark_inode_dirty_sync(inode, true); 4406 return true; 4407 } 4408 4409 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4410 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4411 { \ 4412 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4413 } 4414 4415 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4416 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4417 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4418 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4419 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4420 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4421 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4422 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4423 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4424 F2FS_FEATURE_FUNCS(verity, VERITY); 4425 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4426 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4427 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4428 F2FS_FEATURE_FUNCS(readonly, RO); 4429 4430 #ifdef CONFIG_BLK_DEV_ZONED 4431 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4432 block_t blkaddr) 4433 { 4434 unsigned int zno = blkaddr / sbi->blocks_per_blkz; 4435 4436 return test_bit(zno, FDEV(devi).blkz_seq); 4437 } 4438 #endif 4439 4440 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi, 4441 struct block_device *bdev) 4442 { 4443 int i; 4444 4445 if (!f2fs_is_multi_device(sbi)) 4446 return 0; 4447 4448 for (i = 0; i < sbi->s_ndevs; i++) 4449 if (FDEV(i).bdev == bdev) 4450 return i; 4451 4452 WARN_ON(1); 4453 return -1; 4454 } 4455 4456 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4457 { 4458 return f2fs_sb_has_blkzoned(sbi); 4459 } 4460 4461 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4462 { 4463 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); 4464 } 4465 4466 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4467 { 4468 int i; 4469 4470 if (!f2fs_is_multi_device(sbi)) 4471 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4472 4473 for (i = 0; i < sbi->s_ndevs; i++) 4474 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4475 return true; 4476 return false; 4477 } 4478 4479 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4480 { 4481 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4482 f2fs_hw_should_discard(sbi); 4483 } 4484 4485 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4486 { 4487 int i; 4488 4489 if (!f2fs_is_multi_device(sbi)) 4490 return bdev_read_only(sbi->sb->s_bdev); 4491 4492 for (i = 0; i < sbi->s_ndevs; i++) 4493 if (bdev_read_only(FDEV(i).bdev)) 4494 return true; 4495 return false; 4496 } 4497 4498 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi) 4499 { 4500 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi); 4501 } 4502 4503 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4504 { 4505 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4506 } 4507 4508 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) 4509 { 4510 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; 4511 } 4512 4513 static inline bool f2fs_may_compress(struct inode *inode) 4514 { 4515 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4516 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) || 4517 f2fs_is_mmap_file(inode)) 4518 return false; 4519 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4520 } 4521 4522 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4523 u64 blocks, bool add) 4524 { 4525 struct f2fs_inode_info *fi = F2FS_I(inode); 4526 int diff = fi->i_cluster_size - blocks; 4527 4528 /* don't update i_compr_blocks if saved blocks were released */ 4529 if (!add && !atomic_read(&fi->i_compr_blocks)) 4530 return; 4531 4532 if (add) { 4533 atomic_add(diff, &fi->i_compr_blocks); 4534 stat_add_compr_blocks(inode, diff); 4535 } else { 4536 atomic_sub(diff, &fi->i_compr_blocks); 4537 stat_sub_compr_blocks(inode, diff); 4538 } 4539 f2fs_mark_inode_dirty_sync(inode, true); 4540 } 4541 4542 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4543 int flag) 4544 { 4545 if (!f2fs_is_multi_device(sbi)) 4546 return false; 4547 if (flag != F2FS_GET_BLOCK_DIO) 4548 return false; 4549 return sbi->aligned_blksize; 4550 } 4551 4552 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4553 { 4554 return fsverity_active(inode) && 4555 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4556 } 4557 4558 #ifdef CONFIG_F2FS_FAULT_INJECTION 4559 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 4560 unsigned int type); 4561 #else 4562 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 4563 #endif 4564 4565 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4566 { 4567 #ifdef CONFIG_QUOTA 4568 if (f2fs_sb_has_quota_ino(sbi)) 4569 return true; 4570 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4571 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4572 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4573 return true; 4574 #endif 4575 return false; 4576 } 4577 4578 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4579 { 4580 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4581 } 4582 4583 static inline void f2fs_io_schedule_timeout(long timeout) 4584 { 4585 set_current_state(TASK_UNINTERRUPTIBLE); 4586 io_schedule_timeout(timeout); 4587 } 4588 4589 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs, 4590 enum page_type type) 4591 { 4592 if (unlikely(f2fs_cp_error(sbi))) 4593 return; 4594 4595 if (ofs == sbi->page_eio_ofs[type]) { 4596 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) 4597 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4598 } else { 4599 sbi->page_eio_ofs[type] = ofs; 4600 sbi->page_eio_cnt[type] = 0; 4601 } 4602 } 4603 4604 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) 4605 { 4606 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); 4607 } 4608 4609 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4610 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4611 4612 #endif /* _LINUX_F2FS_H */ 4613