1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 #include <linux/cred.h> 23 #include <linux/vmalloc.h> 24 #include <linux/bio.h> 25 #include <linux/blkdev.h> 26 #include <linux/quotaops.h> 27 #include <crypto/hash.h> 28 29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION) 30 #include <linux/fscrypt.h> 31 32 #ifdef CONFIG_F2FS_CHECK_FS 33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 34 #else 35 #define f2fs_bug_on(sbi, condition) \ 36 do { \ 37 if (unlikely(condition)) { \ 38 WARN_ON(1); \ 39 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 40 } \ 41 } while (0) 42 #endif 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 enum { 46 FAULT_KMALLOC, 47 FAULT_KVMALLOC, 48 FAULT_PAGE_ALLOC, 49 FAULT_PAGE_GET, 50 FAULT_ALLOC_BIO, 51 FAULT_ALLOC_NID, 52 FAULT_ORPHAN, 53 FAULT_BLOCK, 54 FAULT_DIR_DEPTH, 55 FAULT_EVICT_INODE, 56 FAULT_TRUNCATE, 57 FAULT_IO, 58 FAULT_CHECKPOINT, 59 FAULT_MAX, 60 }; 61 62 struct f2fs_fault_info { 63 atomic_t inject_ops; 64 unsigned int inject_rate; 65 unsigned int inject_type; 66 }; 67 68 extern char *fault_name[FAULT_MAX]; 69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 70 #endif 71 72 /* 73 * For mount options 74 */ 75 #define F2FS_MOUNT_BG_GC 0x00000001 76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 77 #define F2FS_MOUNT_DISCARD 0x00000004 78 #define F2FS_MOUNT_NOHEAP 0x00000008 79 #define F2FS_MOUNT_XATTR_USER 0x00000010 80 #define F2FS_MOUNT_POSIX_ACL 0x00000020 81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 83 #define F2FS_MOUNT_INLINE_DATA 0x00000100 84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 86 #define F2FS_MOUNT_NOBARRIER 0x00000800 87 #define F2FS_MOUNT_FASTBOOT 0x00001000 88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 89 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 92 #define F2FS_MOUNT_ADAPTIVE 0x00020000 93 #define F2FS_MOUNT_LFS 0x00040000 94 #define F2FS_MOUNT_USRQUOTA 0x00080000 95 #define F2FS_MOUNT_GRPQUOTA 0x00100000 96 #define F2FS_MOUNT_PRJQUOTA 0x00200000 97 #define F2FS_MOUNT_QUOTA 0x00400000 98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 100 101 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option) 102 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option) 103 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option) 104 105 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 106 typecheck(unsigned long long, b) && \ 107 ((long long)((a) - (b)) > 0)) 108 109 typedef u32 block_t; /* 110 * should not change u32, since it is the on-disk block 111 * address format, __le32. 112 */ 113 typedef u32 nid_t; 114 115 struct f2fs_mount_info { 116 unsigned int opt; 117 }; 118 119 #define F2FS_FEATURE_ENCRYPT 0x0001 120 #define F2FS_FEATURE_BLKZONED 0x0002 121 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 122 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 123 #define F2FS_FEATURE_PRJQUOTA 0x0010 124 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 125 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 126 #define F2FS_FEATURE_QUOTA_INO 0x0080 127 #define F2FS_FEATURE_INODE_CRTIME 0x0100 128 129 #define F2FS_HAS_FEATURE(sb, mask) \ 130 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 131 #define F2FS_SET_FEATURE(sb, mask) \ 132 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)) 133 #define F2FS_CLEAR_FEATURE(sb, mask) \ 134 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)) 135 136 /* 137 * Default values for user and/or group using reserved blocks 138 */ 139 #define F2FS_DEF_RESUID 0 140 #define F2FS_DEF_RESGID 0 141 142 /* 143 * For checkpoint manager 144 */ 145 enum { 146 NAT_BITMAP, 147 SIT_BITMAP 148 }; 149 150 #define CP_UMOUNT 0x00000001 151 #define CP_FASTBOOT 0x00000002 152 #define CP_SYNC 0x00000004 153 #define CP_RECOVERY 0x00000008 154 #define CP_DISCARD 0x00000010 155 #define CP_TRIMMED 0x00000020 156 157 #define DEF_BATCHED_TRIM_SECTIONS 2048 158 #define BATCHED_TRIM_SEGMENTS(sbi) \ 159 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections)) 160 #define BATCHED_TRIM_BLOCKS(sbi) \ 161 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 162 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 163 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 164 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 165 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 166 #define DEF_CP_INTERVAL 60 /* 60 secs */ 167 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 168 169 struct cp_control { 170 int reason; 171 __u64 trim_start; 172 __u64 trim_end; 173 __u64 trim_minlen; 174 }; 175 176 /* 177 * For CP/NAT/SIT/SSA readahead 178 */ 179 enum { 180 META_CP, 181 META_NAT, 182 META_SIT, 183 META_SSA, 184 META_POR, 185 }; 186 187 /* for the list of ino */ 188 enum { 189 ORPHAN_INO, /* for orphan ino list */ 190 APPEND_INO, /* for append ino list */ 191 UPDATE_INO, /* for update ino list */ 192 TRANS_DIR_INO, /* for trasactions dir ino list */ 193 FLUSH_INO, /* for multiple device flushing */ 194 MAX_INO_ENTRY, /* max. list */ 195 }; 196 197 struct ino_entry { 198 struct list_head list; /* list head */ 199 nid_t ino; /* inode number */ 200 unsigned int dirty_device; /* dirty device bitmap */ 201 }; 202 203 /* for the list of inodes to be GCed */ 204 struct inode_entry { 205 struct list_head list; /* list head */ 206 struct inode *inode; /* vfs inode pointer */ 207 }; 208 209 /* for the bitmap indicate blocks to be discarded */ 210 struct discard_entry { 211 struct list_head list; /* list head */ 212 block_t start_blkaddr; /* start blockaddr of current segment */ 213 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 214 }; 215 216 /* default discard granularity of inner discard thread, unit: block count */ 217 #define DEFAULT_DISCARD_GRANULARITY 16 218 219 /* max discard pend list number */ 220 #define MAX_PLIST_NUM 512 221 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 222 (MAX_PLIST_NUM - 1) : (blk_num - 1)) 223 224 enum { 225 D_PREP, 226 D_SUBMIT, 227 D_DONE, 228 }; 229 230 struct discard_info { 231 block_t lstart; /* logical start address */ 232 block_t len; /* length */ 233 block_t start; /* actual start address in dev */ 234 }; 235 236 struct discard_cmd { 237 struct rb_node rb_node; /* rb node located in rb-tree */ 238 union { 239 struct { 240 block_t lstart; /* logical start address */ 241 block_t len; /* length */ 242 block_t start; /* actual start address in dev */ 243 }; 244 struct discard_info di; /* discard info */ 245 246 }; 247 struct list_head list; /* command list */ 248 struct completion wait; /* compleation */ 249 struct block_device *bdev; /* bdev */ 250 unsigned short ref; /* reference count */ 251 unsigned char state; /* state */ 252 int error; /* bio error */ 253 }; 254 255 enum { 256 DPOLICY_BG, 257 DPOLICY_FORCE, 258 DPOLICY_FSTRIM, 259 DPOLICY_UMOUNT, 260 MAX_DPOLICY, 261 }; 262 263 struct discard_policy { 264 int type; /* type of discard */ 265 unsigned int min_interval; /* used for candidates exist */ 266 unsigned int max_interval; /* used for candidates not exist */ 267 unsigned int max_requests; /* # of discards issued per round */ 268 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 269 bool io_aware; /* issue discard in idle time */ 270 bool sync; /* submit discard with REQ_SYNC flag */ 271 unsigned int granularity; /* discard granularity */ 272 }; 273 274 struct discard_cmd_control { 275 struct task_struct *f2fs_issue_discard; /* discard thread */ 276 struct list_head entry_list; /* 4KB discard entry list */ 277 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 278 struct list_head wait_list; /* store on-flushing entries */ 279 struct list_head fstrim_list; /* in-flight discard from fstrim */ 280 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 281 unsigned int discard_wake; /* to wake up discard thread */ 282 struct mutex cmd_lock; 283 unsigned int nr_discards; /* # of discards in the list */ 284 unsigned int max_discards; /* max. discards to be issued */ 285 unsigned int discard_granularity; /* discard granularity */ 286 unsigned int undiscard_blks; /* # of undiscard blocks */ 287 atomic_t issued_discard; /* # of issued discard */ 288 atomic_t issing_discard; /* # of issing discard */ 289 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 290 struct rb_root root; /* root of discard rb-tree */ 291 }; 292 293 /* for the list of fsync inodes, used only during recovery */ 294 struct fsync_inode_entry { 295 struct list_head list; /* list head */ 296 struct inode *inode; /* vfs inode pointer */ 297 block_t blkaddr; /* block address locating the last fsync */ 298 block_t last_dentry; /* block address locating the last dentry */ 299 }; 300 301 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 302 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 303 304 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 305 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 306 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 307 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 308 309 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 310 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 311 312 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 313 { 314 int before = nats_in_cursum(journal); 315 316 journal->n_nats = cpu_to_le16(before + i); 317 return before; 318 } 319 320 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 321 { 322 int before = sits_in_cursum(journal); 323 324 journal->n_sits = cpu_to_le16(before + i); 325 return before; 326 } 327 328 static inline bool __has_cursum_space(struct f2fs_journal *journal, 329 int size, int type) 330 { 331 if (type == NAT_JOURNAL) 332 return size <= MAX_NAT_JENTRIES(journal); 333 return size <= MAX_SIT_JENTRIES(journal); 334 } 335 336 /* 337 * ioctl commands 338 */ 339 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 340 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 341 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 342 343 #define F2FS_IOCTL_MAGIC 0xf5 344 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 345 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 346 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 347 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 348 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 349 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 350 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 351 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 352 struct f2fs_defragment) 353 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 354 struct f2fs_move_range) 355 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 356 struct f2fs_flush_device) 357 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 358 struct f2fs_gc_range) 359 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 360 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 361 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 362 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 363 364 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 365 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 366 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 367 368 /* 369 * should be same as XFS_IOC_GOINGDOWN. 370 * Flags for going down operation used by FS_IOC_GOINGDOWN 371 */ 372 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 373 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 374 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 375 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 376 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 377 378 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 379 /* 380 * ioctl commands in 32 bit emulation 381 */ 382 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 383 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 384 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 385 #endif 386 387 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 388 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 389 390 struct f2fs_gc_range { 391 u32 sync; 392 u64 start; 393 u64 len; 394 }; 395 396 struct f2fs_defragment { 397 u64 start; 398 u64 len; 399 }; 400 401 struct f2fs_move_range { 402 u32 dst_fd; /* destination fd */ 403 u64 pos_in; /* start position in src_fd */ 404 u64 pos_out; /* start position in dst_fd */ 405 u64 len; /* size to move */ 406 }; 407 408 struct f2fs_flush_device { 409 u32 dev_num; /* device number to flush */ 410 u32 segments; /* # of segments to flush */ 411 }; 412 413 /* for inline stuff */ 414 #define DEF_INLINE_RESERVED_SIZE 1 415 #define DEF_MIN_INLINE_SIZE 1 416 static inline int get_extra_isize(struct inode *inode); 417 static inline int get_inline_xattr_addrs(struct inode *inode); 418 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 419 (CUR_ADDRS_PER_INODE(inode) - \ 420 get_inline_xattr_addrs(inode) - \ 421 DEF_INLINE_RESERVED_SIZE)) 422 423 /* for inline dir */ 424 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 425 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 426 BITS_PER_BYTE + 1)) 427 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \ 428 BITS_PER_BYTE - 1) / BITS_PER_BYTE) 429 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 430 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 431 NR_INLINE_DENTRY(inode) + \ 432 INLINE_DENTRY_BITMAP_SIZE(inode))) 433 434 /* 435 * For INODE and NODE manager 436 */ 437 /* for directory operations */ 438 struct f2fs_dentry_ptr { 439 struct inode *inode; 440 void *bitmap; 441 struct f2fs_dir_entry *dentry; 442 __u8 (*filename)[F2FS_SLOT_LEN]; 443 int max; 444 int nr_bitmap; 445 }; 446 447 static inline void make_dentry_ptr_block(struct inode *inode, 448 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 449 { 450 d->inode = inode; 451 d->max = NR_DENTRY_IN_BLOCK; 452 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 453 d->bitmap = &t->dentry_bitmap; 454 d->dentry = t->dentry; 455 d->filename = t->filename; 456 } 457 458 static inline void make_dentry_ptr_inline(struct inode *inode, 459 struct f2fs_dentry_ptr *d, void *t) 460 { 461 int entry_cnt = NR_INLINE_DENTRY(inode); 462 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 463 int reserved_size = INLINE_RESERVED_SIZE(inode); 464 465 d->inode = inode; 466 d->max = entry_cnt; 467 d->nr_bitmap = bitmap_size; 468 d->bitmap = t; 469 d->dentry = t + bitmap_size + reserved_size; 470 d->filename = t + bitmap_size + reserved_size + 471 SIZE_OF_DIR_ENTRY * entry_cnt; 472 } 473 474 /* 475 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 476 * as its node offset to distinguish from index node blocks. 477 * But some bits are used to mark the node block. 478 */ 479 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 480 >> OFFSET_BIT_SHIFT) 481 enum { 482 ALLOC_NODE, /* allocate a new node page if needed */ 483 LOOKUP_NODE, /* look up a node without readahead */ 484 LOOKUP_NODE_RA, /* 485 * look up a node with readahead called 486 * by get_data_block. 487 */ 488 }; 489 490 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 491 492 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 493 494 /* vector size for gang look-up from extent cache that consists of radix tree */ 495 #define EXT_TREE_VEC_SIZE 64 496 497 /* for in-memory extent cache entry */ 498 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 499 500 /* number of extent info in extent cache we try to shrink */ 501 #define EXTENT_CACHE_SHRINK_NUMBER 128 502 503 struct rb_entry { 504 struct rb_node rb_node; /* rb node located in rb-tree */ 505 unsigned int ofs; /* start offset of the entry */ 506 unsigned int len; /* length of the entry */ 507 }; 508 509 struct extent_info { 510 unsigned int fofs; /* start offset in a file */ 511 unsigned int len; /* length of the extent */ 512 u32 blk; /* start block address of the extent */ 513 }; 514 515 struct extent_node { 516 struct rb_node rb_node; 517 union { 518 struct { 519 unsigned int fofs; 520 unsigned int len; 521 u32 blk; 522 }; 523 struct extent_info ei; /* extent info */ 524 525 }; 526 struct list_head list; /* node in global extent list of sbi */ 527 struct extent_tree *et; /* extent tree pointer */ 528 }; 529 530 struct extent_tree { 531 nid_t ino; /* inode number */ 532 struct rb_root root; /* root of extent info rb-tree */ 533 struct extent_node *cached_en; /* recently accessed extent node */ 534 struct extent_info largest; /* largested extent info */ 535 struct list_head list; /* to be used by sbi->zombie_list */ 536 rwlock_t lock; /* protect extent info rb-tree */ 537 atomic_t node_cnt; /* # of extent node in rb-tree*/ 538 }; 539 540 /* 541 * This structure is taken from ext4_map_blocks. 542 * 543 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 544 */ 545 #define F2FS_MAP_NEW (1 << BH_New) 546 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 547 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 548 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 549 F2FS_MAP_UNWRITTEN) 550 551 struct f2fs_map_blocks { 552 block_t m_pblk; 553 block_t m_lblk; 554 unsigned int m_len; 555 unsigned int m_flags; 556 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 557 pgoff_t *m_next_extent; /* point to next possible extent */ 558 int m_seg_type; 559 }; 560 561 /* for flag in get_data_block */ 562 enum { 563 F2FS_GET_BLOCK_DEFAULT, 564 F2FS_GET_BLOCK_FIEMAP, 565 F2FS_GET_BLOCK_BMAP, 566 F2FS_GET_BLOCK_PRE_DIO, 567 F2FS_GET_BLOCK_PRE_AIO, 568 F2FS_GET_BLOCK_PRECACHE, 569 }; 570 571 /* 572 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 573 */ 574 #define FADVISE_COLD_BIT 0x01 575 #define FADVISE_LOST_PINO_BIT 0x02 576 #define FADVISE_ENCRYPT_BIT 0x04 577 #define FADVISE_ENC_NAME_BIT 0x08 578 #define FADVISE_KEEP_SIZE_BIT 0x10 579 580 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 581 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 582 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 583 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 584 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 585 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 586 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 587 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 588 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 589 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 590 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 591 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 592 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 593 594 #define DEF_DIR_LEVEL 0 595 596 struct f2fs_inode_info { 597 struct inode vfs_inode; /* serve a vfs inode */ 598 unsigned long i_flags; /* keep an inode flags for ioctl */ 599 unsigned char i_advise; /* use to give file attribute hints */ 600 unsigned char i_dir_level; /* use for dentry level for large dir */ 601 union { 602 unsigned int i_current_depth; /* only for directory depth */ 603 unsigned short i_gc_failures; /* only for regular file */ 604 }; 605 unsigned int i_pino; /* parent inode number */ 606 umode_t i_acl_mode; /* keep file acl mode temporarily */ 607 608 /* Use below internally in f2fs*/ 609 unsigned long flags; /* use to pass per-file flags */ 610 struct rw_semaphore i_sem; /* protect fi info */ 611 atomic_t dirty_pages; /* # of dirty pages */ 612 f2fs_hash_t chash; /* hash value of given file name */ 613 unsigned int clevel; /* maximum level of given file name */ 614 struct task_struct *task; /* lookup and create consistency */ 615 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 616 nid_t i_xattr_nid; /* node id that contains xattrs */ 617 loff_t last_disk_size; /* lastly written file size */ 618 619 #ifdef CONFIG_QUOTA 620 struct dquot *i_dquot[MAXQUOTAS]; 621 622 /* quota space reservation, managed internally by quota code */ 623 qsize_t i_reserved_quota; 624 #endif 625 struct list_head dirty_list; /* dirty list for dirs and files */ 626 struct list_head gdirty_list; /* linked in global dirty list */ 627 struct list_head inmem_ilist; /* list for inmem inodes */ 628 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 629 struct task_struct *inmem_task; /* store inmemory task */ 630 struct mutex inmem_lock; /* lock for inmemory pages */ 631 struct extent_tree *extent_tree; /* cached extent_tree entry */ 632 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */ 633 struct rw_semaphore i_mmap_sem; 634 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 635 636 int i_extra_isize; /* size of extra space located in i_addr */ 637 kprojid_t i_projid; /* id for project quota */ 638 int i_inline_xattr_size; /* inline xattr size */ 639 struct timespec i_crtime; /* inode creation time */ 640 }; 641 642 static inline void get_extent_info(struct extent_info *ext, 643 struct f2fs_extent *i_ext) 644 { 645 ext->fofs = le32_to_cpu(i_ext->fofs); 646 ext->blk = le32_to_cpu(i_ext->blk); 647 ext->len = le32_to_cpu(i_ext->len); 648 } 649 650 static inline void set_raw_extent(struct extent_info *ext, 651 struct f2fs_extent *i_ext) 652 { 653 i_ext->fofs = cpu_to_le32(ext->fofs); 654 i_ext->blk = cpu_to_le32(ext->blk); 655 i_ext->len = cpu_to_le32(ext->len); 656 } 657 658 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 659 u32 blk, unsigned int len) 660 { 661 ei->fofs = fofs; 662 ei->blk = blk; 663 ei->len = len; 664 } 665 666 static inline bool __is_discard_mergeable(struct discard_info *back, 667 struct discard_info *front) 668 { 669 return back->lstart + back->len == front->lstart; 670 } 671 672 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 673 struct discard_info *back) 674 { 675 return __is_discard_mergeable(back, cur); 676 } 677 678 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 679 struct discard_info *front) 680 { 681 return __is_discard_mergeable(cur, front); 682 } 683 684 static inline bool __is_extent_mergeable(struct extent_info *back, 685 struct extent_info *front) 686 { 687 return (back->fofs + back->len == front->fofs && 688 back->blk + back->len == front->blk); 689 } 690 691 static inline bool __is_back_mergeable(struct extent_info *cur, 692 struct extent_info *back) 693 { 694 return __is_extent_mergeable(back, cur); 695 } 696 697 static inline bool __is_front_mergeable(struct extent_info *cur, 698 struct extent_info *front) 699 { 700 return __is_extent_mergeable(cur, front); 701 } 702 703 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 704 static inline void __try_update_largest_extent(struct inode *inode, 705 struct extent_tree *et, struct extent_node *en) 706 { 707 if (en->ei.len > et->largest.len) { 708 et->largest = en->ei; 709 f2fs_mark_inode_dirty_sync(inode, true); 710 } 711 } 712 713 /* 714 * For free nid management 715 */ 716 enum nid_state { 717 FREE_NID, /* newly added to free nid list */ 718 PREALLOC_NID, /* it is preallocated */ 719 MAX_NID_STATE, 720 }; 721 722 struct f2fs_nm_info { 723 block_t nat_blkaddr; /* base disk address of NAT */ 724 nid_t max_nid; /* maximum possible node ids */ 725 nid_t available_nids; /* # of available node ids */ 726 nid_t next_scan_nid; /* the next nid to be scanned */ 727 unsigned int ram_thresh; /* control the memory footprint */ 728 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 729 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 730 731 /* NAT cache management */ 732 struct radix_tree_root nat_root;/* root of the nat entry cache */ 733 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 734 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 735 struct list_head nat_entries; /* cached nat entry list (clean) */ 736 unsigned int nat_cnt; /* the # of cached nat entries */ 737 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 738 unsigned int nat_blocks; /* # of nat blocks */ 739 740 /* free node ids management */ 741 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 742 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 743 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 744 spinlock_t nid_list_lock; /* protect nid lists ops */ 745 struct mutex build_lock; /* lock for build free nids */ 746 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE]; 747 unsigned char *nat_block_bitmap; 748 unsigned short *free_nid_count; /* free nid count of NAT block */ 749 750 /* for checkpoint */ 751 char *nat_bitmap; /* NAT bitmap pointer */ 752 753 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 754 unsigned char *nat_bits; /* NAT bits blocks */ 755 unsigned char *full_nat_bits; /* full NAT pages */ 756 unsigned char *empty_nat_bits; /* empty NAT pages */ 757 #ifdef CONFIG_F2FS_CHECK_FS 758 char *nat_bitmap_mir; /* NAT bitmap mirror */ 759 #endif 760 int bitmap_size; /* bitmap size */ 761 }; 762 763 /* 764 * this structure is used as one of function parameters. 765 * all the information are dedicated to a given direct node block determined 766 * by the data offset in a file. 767 */ 768 struct dnode_of_data { 769 struct inode *inode; /* vfs inode pointer */ 770 struct page *inode_page; /* its inode page, NULL is possible */ 771 struct page *node_page; /* cached direct node page */ 772 nid_t nid; /* node id of the direct node block */ 773 unsigned int ofs_in_node; /* data offset in the node page */ 774 bool inode_page_locked; /* inode page is locked or not */ 775 bool node_changed; /* is node block changed */ 776 char cur_level; /* level of hole node page */ 777 char max_level; /* level of current page located */ 778 block_t data_blkaddr; /* block address of the node block */ 779 }; 780 781 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 782 struct page *ipage, struct page *npage, nid_t nid) 783 { 784 memset(dn, 0, sizeof(*dn)); 785 dn->inode = inode; 786 dn->inode_page = ipage; 787 dn->node_page = npage; 788 dn->nid = nid; 789 } 790 791 /* 792 * For SIT manager 793 * 794 * By default, there are 6 active log areas across the whole main area. 795 * When considering hot and cold data separation to reduce cleaning overhead, 796 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 797 * respectively. 798 * In the current design, you should not change the numbers intentionally. 799 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 800 * logs individually according to the underlying devices. (default: 6) 801 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 802 * data and 8 for node logs. 803 */ 804 #define NR_CURSEG_DATA_TYPE (3) 805 #define NR_CURSEG_NODE_TYPE (3) 806 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 807 808 enum { 809 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 810 CURSEG_WARM_DATA, /* data blocks */ 811 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 812 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 813 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 814 CURSEG_COLD_NODE, /* indirect node blocks */ 815 NO_CHECK_TYPE, 816 }; 817 818 struct flush_cmd { 819 struct completion wait; 820 struct llist_node llnode; 821 nid_t ino; 822 int ret; 823 }; 824 825 struct flush_cmd_control { 826 struct task_struct *f2fs_issue_flush; /* flush thread */ 827 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 828 atomic_t issued_flush; /* # of issued flushes */ 829 atomic_t issing_flush; /* # of issing flushes */ 830 struct llist_head issue_list; /* list for command issue */ 831 struct llist_node *dispatch_list; /* list for command dispatch */ 832 }; 833 834 struct f2fs_sm_info { 835 struct sit_info *sit_info; /* whole segment information */ 836 struct free_segmap_info *free_info; /* free segment information */ 837 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 838 struct curseg_info *curseg_array; /* active segment information */ 839 840 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 841 842 block_t seg0_blkaddr; /* block address of 0'th segment */ 843 block_t main_blkaddr; /* start block address of main area */ 844 block_t ssa_blkaddr; /* start block address of SSA area */ 845 846 unsigned int segment_count; /* total # of segments */ 847 unsigned int main_segments; /* # of segments in main area */ 848 unsigned int reserved_segments; /* # of reserved segments */ 849 unsigned int ovp_segments; /* # of overprovision segments */ 850 851 /* a threshold to reclaim prefree segments */ 852 unsigned int rec_prefree_segments; 853 854 /* for batched trimming */ 855 unsigned int trim_sections; /* # of sections to trim */ 856 857 struct list_head sit_entry_set; /* sit entry set list */ 858 859 unsigned int ipu_policy; /* in-place-update policy */ 860 unsigned int min_ipu_util; /* in-place-update threshold */ 861 unsigned int min_fsync_blocks; /* threshold for fsync */ 862 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 863 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 864 865 /* for flush command control */ 866 struct flush_cmd_control *fcc_info; 867 868 /* for discard command control */ 869 struct discard_cmd_control *dcc_info; 870 }; 871 872 /* 873 * For superblock 874 */ 875 /* 876 * COUNT_TYPE for monitoring 877 * 878 * f2fs monitors the number of several block types such as on-writeback, 879 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 880 */ 881 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 882 enum count_type { 883 F2FS_DIRTY_DENTS, 884 F2FS_DIRTY_DATA, 885 F2FS_DIRTY_QDATA, 886 F2FS_DIRTY_NODES, 887 F2FS_DIRTY_META, 888 F2FS_INMEM_PAGES, 889 F2FS_DIRTY_IMETA, 890 F2FS_WB_CP_DATA, 891 F2FS_WB_DATA, 892 NR_COUNT_TYPE, 893 }; 894 895 /* 896 * The below are the page types of bios used in submit_bio(). 897 * The available types are: 898 * DATA User data pages. It operates as async mode. 899 * NODE Node pages. It operates as async mode. 900 * META FS metadata pages such as SIT, NAT, CP. 901 * NR_PAGE_TYPE The number of page types. 902 * META_FLUSH Make sure the previous pages are written 903 * with waiting the bio's completion 904 * ... Only can be used with META. 905 */ 906 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 907 enum page_type { 908 DATA, 909 NODE, 910 META, 911 NR_PAGE_TYPE, 912 META_FLUSH, 913 INMEM, /* the below types are used by tracepoints only. */ 914 INMEM_DROP, 915 INMEM_INVALIDATE, 916 INMEM_REVOKE, 917 IPU, 918 OPU, 919 }; 920 921 enum temp_type { 922 HOT = 0, /* must be zero for meta bio */ 923 WARM, 924 COLD, 925 NR_TEMP_TYPE, 926 }; 927 928 enum need_lock_type { 929 LOCK_REQ = 0, 930 LOCK_DONE, 931 LOCK_RETRY, 932 }; 933 934 enum cp_reason_type { 935 CP_NO_NEEDED, 936 CP_NON_REGULAR, 937 CP_HARDLINK, 938 CP_SB_NEED_CP, 939 CP_WRONG_PINO, 940 CP_NO_SPC_ROLL, 941 CP_NODE_NEED_CP, 942 CP_FASTBOOT_MODE, 943 CP_SPEC_LOG_NUM, 944 CP_RECOVER_DIR, 945 }; 946 947 enum iostat_type { 948 APP_DIRECT_IO, /* app direct IOs */ 949 APP_BUFFERED_IO, /* app buffered IOs */ 950 APP_WRITE_IO, /* app write IOs */ 951 APP_MAPPED_IO, /* app mapped IOs */ 952 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 953 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 954 FS_META_IO, /* meta IOs from kworker/reclaimer */ 955 FS_GC_DATA_IO, /* data IOs from forground gc */ 956 FS_GC_NODE_IO, /* node IOs from forground gc */ 957 FS_CP_DATA_IO, /* data IOs from checkpoint */ 958 FS_CP_NODE_IO, /* node IOs from checkpoint */ 959 FS_CP_META_IO, /* meta IOs from checkpoint */ 960 FS_DISCARD, /* discard */ 961 NR_IO_TYPE, 962 }; 963 964 struct f2fs_io_info { 965 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 966 nid_t ino; /* inode number */ 967 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 968 enum temp_type temp; /* contains HOT/WARM/COLD */ 969 int op; /* contains REQ_OP_ */ 970 int op_flags; /* req_flag_bits */ 971 block_t new_blkaddr; /* new block address to be written */ 972 block_t old_blkaddr; /* old block address before Cow */ 973 struct page *page; /* page to be written */ 974 struct page *encrypted_page; /* encrypted page */ 975 struct list_head list; /* serialize IOs */ 976 bool submitted; /* indicate IO submission */ 977 int need_lock; /* indicate we need to lock cp_rwsem */ 978 bool in_list; /* indicate fio is in io_list */ 979 enum iostat_type io_type; /* io type */ 980 struct writeback_control *io_wbc; /* writeback control */ 981 }; 982 983 #define is_read_io(rw) ((rw) == READ) 984 struct f2fs_bio_info { 985 struct f2fs_sb_info *sbi; /* f2fs superblock */ 986 struct bio *bio; /* bios to merge */ 987 sector_t last_block_in_bio; /* last block number */ 988 struct f2fs_io_info fio; /* store buffered io info. */ 989 struct rw_semaphore io_rwsem; /* blocking op for bio */ 990 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 991 struct list_head io_list; /* track fios */ 992 }; 993 994 #define FDEV(i) (sbi->devs[i]) 995 #define RDEV(i) (raw_super->devs[i]) 996 struct f2fs_dev_info { 997 struct block_device *bdev; 998 char path[MAX_PATH_LEN]; 999 unsigned int total_segments; 1000 block_t start_blk; 1001 block_t end_blk; 1002 #ifdef CONFIG_BLK_DEV_ZONED 1003 unsigned int nr_blkz; /* Total number of zones */ 1004 u8 *blkz_type; /* Array of zones type */ 1005 #endif 1006 }; 1007 1008 enum inode_type { 1009 DIR_INODE, /* for dirty dir inode */ 1010 FILE_INODE, /* for dirty regular/symlink inode */ 1011 DIRTY_META, /* for all dirtied inode metadata */ 1012 ATOMIC_FILE, /* for all atomic files */ 1013 NR_INODE_TYPE, 1014 }; 1015 1016 /* for inner inode cache management */ 1017 struct inode_management { 1018 struct radix_tree_root ino_root; /* ino entry array */ 1019 spinlock_t ino_lock; /* for ino entry lock */ 1020 struct list_head ino_list; /* inode list head */ 1021 unsigned long ino_num; /* number of entries */ 1022 }; 1023 1024 /* For s_flag in struct f2fs_sb_info */ 1025 enum { 1026 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1027 SBI_IS_CLOSE, /* specify unmounting */ 1028 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1029 SBI_POR_DOING, /* recovery is doing or not */ 1030 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1031 SBI_NEED_CP, /* need to checkpoint */ 1032 }; 1033 1034 enum { 1035 CP_TIME, 1036 REQ_TIME, 1037 MAX_TIME, 1038 }; 1039 1040 struct f2fs_sb_info { 1041 struct super_block *sb; /* pointer to VFS super block */ 1042 struct proc_dir_entry *s_proc; /* proc entry */ 1043 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1044 int valid_super_block; /* valid super block no */ 1045 unsigned long s_flag; /* flags for sbi */ 1046 1047 #ifdef CONFIG_BLK_DEV_ZONED 1048 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1049 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1050 #endif 1051 1052 /* for node-related operations */ 1053 struct f2fs_nm_info *nm_info; /* node manager */ 1054 struct inode *node_inode; /* cache node blocks */ 1055 1056 /* for segment-related operations */ 1057 struct f2fs_sm_info *sm_info; /* segment manager */ 1058 1059 /* for bio operations */ 1060 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1061 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE]; 1062 /* bio ordering for NODE/DATA */ 1063 int write_io_size_bits; /* Write IO size bits */ 1064 mempool_t *write_io_dummy; /* Dummy pages */ 1065 1066 /* for checkpoint */ 1067 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1068 int cur_cp_pack; /* remain current cp pack */ 1069 spinlock_t cp_lock; /* for flag in ckpt */ 1070 struct inode *meta_inode; /* cache meta blocks */ 1071 struct mutex cp_mutex; /* checkpoint procedure lock */ 1072 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1073 struct rw_semaphore node_write; /* locking node writes */ 1074 struct rw_semaphore node_change; /* locking node change */ 1075 wait_queue_head_t cp_wait; 1076 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1077 long interval_time[MAX_TIME]; /* to store thresholds */ 1078 1079 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1080 1081 /* for orphan inode, use 0'th array */ 1082 unsigned int max_orphans; /* max orphan inodes */ 1083 1084 /* for inode management */ 1085 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1086 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1087 1088 /* for extent tree cache */ 1089 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1090 struct mutex extent_tree_lock; /* locking extent radix tree */ 1091 struct list_head extent_list; /* lru list for shrinker */ 1092 spinlock_t extent_lock; /* locking extent lru list */ 1093 atomic_t total_ext_tree; /* extent tree count */ 1094 struct list_head zombie_list; /* extent zombie tree list */ 1095 atomic_t total_zombie_tree; /* extent zombie tree count */ 1096 atomic_t total_ext_node; /* extent info count */ 1097 1098 /* basic filesystem units */ 1099 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1100 unsigned int log_blocksize; /* log2 block size */ 1101 unsigned int blocksize; /* block size */ 1102 unsigned int root_ino_num; /* root inode number*/ 1103 unsigned int node_ino_num; /* node inode number*/ 1104 unsigned int meta_ino_num; /* meta inode number*/ 1105 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1106 unsigned int blocks_per_seg; /* blocks per segment */ 1107 unsigned int segs_per_sec; /* segments per section */ 1108 unsigned int secs_per_zone; /* sections per zone */ 1109 unsigned int total_sections; /* total section count */ 1110 unsigned int total_node_count; /* total node block count */ 1111 unsigned int total_valid_node_count; /* valid node block count */ 1112 loff_t max_file_blocks; /* max block index of file */ 1113 int active_logs; /* # of active logs */ 1114 int dir_level; /* directory level */ 1115 int inline_xattr_size; /* inline xattr size */ 1116 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */ 1117 int readdir_ra; /* readahead inode in readdir */ 1118 1119 block_t user_block_count; /* # of user blocks */ 1120 block_t total_valid_block_count; /* # of valid blocks */ 1121 block_t discard_blks; /* discard command candidats */ 1122 block_t last_valid_block_count; /* for recovery */ 1123 block_t reserved_blocks; /* configurable reserved blocks */ 1124 block_t current_reserved_blocks; /* current reserved blocks */ 1125 block_t root_reserved_blocks; /* root reserved blocks */ 1126 kuid_t s_resuid; /* reserved blocks for uid */ 1127 kgid_t s_resgid; /* reserved blocks for gid */ 1128 1129 unsigned int nquota_files; /* # of quota sysfile */ 1130 1131 u32 s_next_generation; /* for NFS support */ 1132 1133 /* # of pages, see count_type */ 1134 atomic_t nr_pages[NR_COUNT_TYPE]; 1135 /* # of allocated blocks */ 1136 struct percpu_counter alloc_valid_block_count; 1137 1138 /* writeback control */ 1139 atomic_t wb_sync_req; /* count # of WB_SYNC threads */ 1140 1141 /* valid inode count */ 1142 struct percpu_counter total_valid_inode_count; 1143 1144 struct f2fs_mount_info mount_opt; /* mount options */ 1145 1146 /* for cleaning operations */ 1147 struct mutex gc_mutex; /* mutex for GC */ 1148 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1149 unsigned int cur_victim_sec; /* current victim section num */ 1150 1151 /* threshold for converting bg victims for fg */ 1152 u64 fggc_threshold; 1153 1154 /* threshold for gc trials on pinned files */ 1155 u64 gc_pin_file_threshold; 1156 1157 /* maximum # of trials to find a victim segment for SSR and GC */ 1158 unsigned int max_victim_search; 1159 1160 /* 1161 * for stat information. 1162 * one is for the LFS mode, and the other is for the SSR mode. 1163 */ 1164 #ifdef CONFIG_F2FS_STAT_FS 1165 struct f2fs_stat_info *stat_info; /* FS status information */ 1166 unsigned int segment_count[2]; /* # of allocated segments */ 1167 unsigned int block_count[2]; /* # of allocated blocks */ 1168 atomic_t inplace_count; /* # of inplace update */ 1169 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1170 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1171 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1172 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1173 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1174 atomic_t inline_inode; /* # of inline_data inodes */ 1175 atomic_t inline_dir; /* # of inline_dentry inodes */ 1176 atomic_t aw_cnt; /* # of atomic writes */ 1177 atomic_t vw_cnt; /* # of volatile writes */ 1178 atomic_t max_aw_cnt; /* max # of atomic writes */ 1179 atomic_t max_vw_cnt; /* max # of volatile writes */ 1180 int bg_gc; /* background gc calls */ 1181 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1182 #endif 1183 spinlock_t stat_lock; /* lock for stat operations */ 1184 1185 /* For app/fs IO statistics */ 1186 spinlock_t iostat_lock; 1187 unsigned long long write_iostat[NR_IO_TYPE]; 1188 bool iostat_enable; 1189 1190 /* For sysfs suppport */ 1191 struct kobject s_kobj; 1192 struct completion s_kobj_unregister; 1193 1194 /* For shrinker support */ 1195 struct list_head s_list; 1196 int s_ndevs; /* number of devices */ 1197 struct f2fs_dev_info *devs; /* for device list */ 1198 unsigned int dirty_device; /* for checkpoint data flush */ 1199 spinlock_t dev_lock; /* protect dirty_device */ 1200 struct mutex umount_mutex; 1201 unsigned int shrinker_run_no; 1202 1203 /* For write statistics */ 1204 u64 sectors_written_start; 1205 u64 kbytes_written; 1206 1207 /* Reference to checksum algorithm driver via cryptoapi */ 1208 struct crypto_shash *s_chksum_driver; 1209 1210 /* Precomputed FS UUID checksum for seeding other checksums */ 1211 __u32 s_chksum_seed; 1212 1213 /* For fault injection */ 1214 #ifdef CONFIG_F2FS_FAULT_INJECTION 1215 struct f2fs_fault_info fault_info; 1216 #endif 1217 1218 #ifdef CONFIG_QUOTA 1219 /* Names of quota files with journalled quota */ 1220 char *s_qf_names[MAXQUOTAS]; 1221 int s_jquota_fmt; /* Format of quota to use */ 1222 #endif 1223 }; 1224 1225 #ifdef CONFIG_F2FS_FAULT_INJECTION 1226 #define f2fs_show_injection_info(type) \ 1227 printk("%sF2FS-fs : inject %s in %s of %pF\n", \ 1228 KERN_INFO, fault_name[type], \ 1229 __func__, __builtin_return_address(0)) 1230 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1231 { 1232 struct f2fs_fault_info *ffi = &sbi->fault_info; 1233 1234 if (!ffi->inject_rate) 1235 return false; 1236 1237 if (!IS_FAULT_SET(ffi, type)) 1238 return false; 1239 1240 atomic_inc(&ffi->inject_ops); 1241 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1242 atomic_set(&ffi->inject_ops, 0); 1243 return true; 1244 } 1245 return false; 1246 } 1247 #endif 1248 1249 /* For write statistics. Suppose sector size is 512 bytes, 1250 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1251 */ 1252 #define BD_PART_WRITTEN(s) \ 1253 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \ 1254 (s)->sectors_written_start) >> 1) 1255 1256 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1257 { 1258 sbi->last_time[type] = jiffies; 1259 } 1260 1261 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1262 { 1263 unsigned long interval = sbi->interval_time[type] * HZ; 1264 1265 return time_after(jiffies, sbi->last_time[type] + interval); 1266 } 1267 1268 static inline bool is_idle(struct f2fs_sb_info *sbi) 1269 { 1270 struct block_device *bdev = sbi->sb->s_bdev; 1271 struct request_queue *q = bdev_get_queue(bdev); 1272 struct request_list *rl = &q->root_rl; 1273 1274 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC]) 1275 return 0; 1276 1277 return f2fs_time_over(sbi, REQ_TIME); 1278 } 1279 1280 /* 1281 * Inline functions 1282 */ 1283 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1284 const void *address, unsigned int length) 1285 { 1286 struct { 1287 struct shash_desc shash; 1288 char ctx[4]; 1289 } desc; 1290 int err; 1291 1292 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1293 1294 desc.shash.tfm = sbi->s_chksum_driver; 1295 desc.shash.flags = 0; 1296 *(u32 *)desc.ctx = crc; 1297 1298 err = crypto_shash_update(&desc.shash, address, length); 1299 BUG_ON(err); 1300 1301 return *(u32 *)desc.ctx; 1302 } 1303 1304 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1305 unsigned int length) 1306 { 1307 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1308 } 1309 1310 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1311 void *buf, size_t buf_size) 1312 { 1313 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1314 } 1315 1316 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1317 const void *address, unsigned int length) 1318 { 1319 return __f2fs_crc32(sbi, crc, address, length); 1320 } 1321 1322 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1323 { 1324 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1325 } 1326 1327 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1328 { 1329 return sb->s_fs_info; 1330 } 1331 1332 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1333 { 1334 return F2FS_SB(inode->i_sb); 1335 } 1336 1337 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1338 { 1339 return F2FS_I_SB(mapping->host); 1340 } 1341 1342 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1343 { 1344 return F2FS_M_SB(page->mapping); 1345 } 1346 1347 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1348 { 1349 return (struct f2fs_super_block *)(sbi->raw_super); 1350 } 1351 1352 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1353 { 1354 return (struct f2fs_checkpoint *)(sbi->ckpt); 1355 } 1356 1357 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1358 { 1359 return (struct f2fs_node *)page_address(page); 1360 } 1361 1362 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1363 { 1364 return &((struct f2fs_node *)page_address(page))->i; 1365 } 1366 1367 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1368 { 1369 return (struct f2fs_nm_info *)(sbi->nm_info); 1370 } 1371 1372 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1373 { 1374 return (struct f2fs_sm_info *)(sbi->sm_info); 1375 } 1376 1377 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1378 { 1379 return (struct sit_info *)(SM_I(sbi)->sit_info); 1380 } 1381 1382 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1383 { 1384 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1385 } 1386 1387 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1388 { 1389 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1390 } 1391 1392 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1393 { 1394 return sbi->meta_inode->i_mapping; 1395 } 1396 1397 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1398 { 1399 return sbi->node_inode->i_mapping; 1400 } 1401 1402 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1403 { 1404 return test_bit(type, &sbi->s_flag); 1405 } 1406 1407 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1408 { 1409 set_bit(type, &sbi->s_flag); 1410 } 1411 1412 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1413 { 1414 clear_bit(type, &sbi->s_flag); 1415 } 1416 1417 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1418 { 1419 return le64_to_cpu(cp->checkpoint_ver); 1420 } 1421 1422 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1423 { 1424 if (type < F2FS_MAX_QUOTAS) 1425 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1426 return 0; 1427 } 1428 1429 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1430 { 1431 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1432 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1433 } 1434 1435 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1436 { 1437 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1438 1439 return ckpt_flags & f; 1440 } 1441 1442 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1443 { 1444 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1445 } 1446 1447 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1448 { 1449 unsigned int ckpt_flags; 1450 1451 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1452 ckpt_flags |= f; 1453 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1454 } 1455 1456 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1457 { 1458 unsigned long flags; 1459 1460 spin_lock_irqsave(&sbi->cp_lock, flags); 1461 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1462 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1463 } 1464 1465 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1466 { 1467 unsigned int ckpt_flags; 1468 1469 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1470 ckpt_flags &= (~f); 1471 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1472 } 1473 1474 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1475 { 1476 unsigned long flags; 1477 1478 spin_lock_irqsave(&sbi->cp_lock, flags); 1479 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1480 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1481 } 1482 1483 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1484 { 1485 unsigned long flags; 1486 1487 set_sbi_flag(sbi, SBI_NEED_FSCK); 1488 1489 if (lock) 1490 spin_lock_irqsave(&sbi->cp_lock, flags); 1491 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1492 kfree(NM_I(sbi)->nat_bits); 1493 NM_I(sbi)->nat_bits = NULL; 1494 if (lock) 1495 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1496 } 1497 1498 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1499 struct cp_control *cpc) 1500 { 1501 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1502 1503 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1504 } 1505 1506 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1507 { 1508 down_read(&sbi->cp_rwsem); 1509 } 1510 1511 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1512 { 1513 return down_read_trylock(&sbi->cp_rwsem); 1514 } 1515 1516 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1517 { 1518 up_read(&sbi->cp_rwsem); 1519 } 1520 1521 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1522 { 1523 down_write(&sbi->cp_rwsem); 1524 } 1525 1526 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1527 { 1528 up_write(&sbi->cp_rwsem); 1529 } 1530 1531 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1532 { 1533 int reason = CP_SYNC; 1534 1535 if (test_opt(sbi, FASTBOOT)) 1536 reason = CP_FASTBOOT; 1537 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1538 reason = CP_UMOUNT; 1539 return reason; 1540 } 1541 1542 static inline bool __remain_node_summaries(int reason) 1543 { 1544 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1545 } 1546 1547 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1548 { 1549 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1550 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1551 } 1552 1553 /* 1554 * Check whether the given nid is within node id range. 1555 */ 1556 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 1557 { 1558 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 1559 return -EINVAL; 1560 if (unlikely(nid >= NM_I(sbi)->max_nid)) 1561 return -EINVAL; 1562 return 0; 1563 } 1564 1565 /* 1566 * Check whether the inode has blocks or not 1567 */ 1568 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1569 { 1570 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1571 1572 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1573 } 1574 1575 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1576 { 1577 return ofs == XATTR_NODE_OFFSET; 1578 } 1579 1580 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1581 struct inode *inode) 1582 { 1583 if (!inode) 1584 return true; 1585 if (!test_opt(sbi, RESERVE_ROOT)) 1586 return false; 1587 if (IS_NOQUOTA(inode)) 1588 return true; 1589 if (capable(CAP_SYS_RESOURCE)) 1590 return true; 1591 if (uid_eq(sbi->s_resuid, current_fsuid())) 1592 return true; 1593 if (!gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) && 1594 in_group_p(sbi->s_resgid)) 1595 return true; 1596 return false; 1597 } 1598 1599 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1600 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1601 struct inode *inode, blkcnt_t *count) 1602 { 1603 blkcnt_t diff = 0, release = 0; 1604 block_t avail_user_block_count; 1605 int ret; 1606 1607 ret = dquot_reserve_block(inode, *count); 1608 if (ret) 1609 return ret; 1610 1611 #ifdef CONFIG_F2FS_FAULT_INJECTION 1612 if (time_to_inject(sbi, FAULT_BLOCK)) { 1613 f2fs_show_injection_info(FAULT_BLOCK); 1614 release = *count; 1615 goto enospc; 1616 } 1617 #endif 1618 /* 1619 * let's increase this in prior to actual block count change in order 1620 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1621 */ 1622 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1623 1624 spin_lock(&sbi->stat_lock); 1625 sbi->total_valid_block_count += (block_t)(*count); 1626 avail_user_block_count = sbi->user_block_count - 1627 sbi->current_reserved_blocks; 1628 1629 if (!__allow_reserved_blocks(sbi, inode)) 1630 avail_user_block_count -= sbi->root_reserved_blocks; 1631 1632 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1633 diff = sbi->total_valid_block_count - avail_user_block_count; 1634 if (diff > *count) 1635 diff = *count; 1636 *count -= diff; 1637 release = diff; 1638 sbi->total_valid_block_count -= diff; 1639 if (!*count) { 1640 spin_unlock(&sbi->stat_lock); 1641 percpu_counter_sub(&sbi->alloc_valid_block_count, diff); 1642 goto enospc; 1643 } 1644 } 1645 spin_unlock(&sbi->stat_lock); 1646 1647 if (unlikely(release)) 1648 dquot_release_reservation_block(inode, release); 1649 f2fs_i_blocks_write(inode, *count, true, true); 1650 return 0; 1651 1652 enospc: 1653 dquot_release_reservation_block(inode, release); 1654 return -ENOSPC; 1655 } 1656 1657 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1658 struct inode *inode, 1659 block_t count) 1660 { 1661 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1662 1663 spin_lock(&sbi->stat_lock); 1664 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1665 f2fs_bug_on(sbi, inode->i_blocks < sectors); 1666 sbi->total_valid_block_count -= (block_t)count; 1667 if (sbi->reserved_blocks && 1668 sbi->current_reserved_blocks < sbi->reserved_blocks) 1669 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1670 sbi->current_reserved_blocks + count); 1671 spin_unlock(&sbi->stat_lock); 1672 f2fs_i_blocks_write(inode, count, false, true); 1673 } 1674 1675 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1676 { 1677 atomic_inc(&sbi->nr_pages[count_type]); 1678 1679 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES || 1680 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA) 1681 return; 1682 1683 set_sbi_flag(sbi, SBI_IS_DIRTY); 1684 } 1685 1686 static inline void inode_inc_dirty_pages(struct inode *inode) 1687 { 1688 atomic_inc(&F2FS_I(inode)->dirty_pages); 1689 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1690 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1691 if (IS_NOQUOTA(inode)) 1692 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1693 } 1694 1695 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1696 { 1697 atomic_dec(&sbi->nr_pages[count_type]); 1698 } 1699 1700 static inline void inode_dec_dirty_pages(struct inode *inode) 1701 { 1702 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 1703 !S_ISLNK(inode->i_mode)) 1704 return; 1705 1706 atomic_dec(&F2FS_I(inode)->dirty_pages); 1707 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1708 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 1709 if (IS_NOQUOTA(inode)) 1710 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 1711 } 1712 1713 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 1714 { 1715 return atomic_read(&sbi->nr_pages[count_type]); 1716 } 1717 1718 static inline int get_dirty_pages(struct inode *inode) 1719 { 1720 return atomic_read(&F2FS_I(inode)->dirty_pages); 1721 } 1722 1723 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1724 { 1725 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 1726 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 1727 sbi->log_blocks_per_seg; 1728 1729 return segs / sbi->segs_per_sec; 1730 } 1731 1732 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1733 { 1734 return sbi->total_valid_block_count; 1735 } 1736 1737 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 1738 { 1739 return sbi->discard_blks; 1740 } 1741 1742 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1743 { 1744 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1745 1746 /* return NAT or SIT bitmap */ 1747 if (flag == NAT_BITMAP) 1748 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1749 else if (flag == SIT_BITMAP) 1750 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1751 1752 return 0; 1753 } 1754 1755 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1756 { 1757 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1758 } 1759 1760 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1761 { 1762 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1763 int offset; 1764 1765 if (__cp_payload(sbi) > 0) { 1766 if (flag == NAT_BITMAP) 1767 return &ckpt->sit_nat_version_bitmap; 1768 else 1769 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1770 } else { 1771 offset = (flag == NAT_BITMAP) ? 1772 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1773 return &ckpt->sit_nat_version_bitmap + offset; 1774 } 1775 } 1776 1777 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1778 { 1779 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1780 1781 if (sbi->cur_cp_pack == 2) 1782 start_addr += sbi->blocks_per_seg; 1783 return start_addr; 1784 } 1785 1786 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 1787 { 1788 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1789 1790 if (sbi->cur_cp_pack == 1) 1791 start_addr += sbi->blocks_per_seg; 1792 return start_addr; 1793 } 1794 1795 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 1796 { 1797 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 1798 } 1799 1800 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1801 { 1802 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1803 } 1804 1805 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 1806 struct inode *inode, bool is_inode) 1807 { 1808 block_t valid_block_count; 1809 unsigned int valid_node_count; 1810 bool quota = inode && !is_inode; 1811 1812 if (quota) { 1813 int ret = dquot_reserve_block(inode, 1); 1814 if (ret) 1815 return ret; 1816 } 1817 1818 #ifdef CONFIG_F2FS_FAULT_INJECTION 1819 if (time_to_inject(sbi, FAULT_BLOCK)) { 1820 f2fs_show_injection_info(FAULT_BLOCK); 1821 goto enospc; 1822 } 1823 #endif 1824 1825 spin_lock(&sbi->stat_lock); 1826 1827 valid_block_count = sbi->total_valid_block_count + 1828 sbi->current_reserved_blocks + 1; 1829 1830 if (!__allow_reserved_blocks(sbi, inode)) 1831 valid_block_count += sbi->root_reserved_blocks; 1832 1833 if (unlikely(valid_block_count > sbi->user_block_count)) { 1834 spin_unlock(&sbi->stat_lock); 1835 goto enospc; 1836 } 1837 1838 valid_node_count = sbi->total_valid_node_count + 1; 1839 if (unlikely(valid_node_count > sbi->total_node_count)) { 1840 spin_unlock(&sbi->stat_lock); 1841 goto enospc; 1842 } 1843 1844 sbi->total_valid_node_count++; 1845 sbi->total_valid_block_count++; 1846 spin_unlock(&sbi->stat_lock); 1847 1848 if (inode) { 1849 if (is_inode) 1850 f2fs_mark_inode_dirty_sync(inode, true); 1851 else 1852 f2fs_i_blocks_write(inode, 1, true, true); 1853 } 1854 1855 percpu_counter_inc(&sbi->alloc_valid_block_count); 1856 return 0; 1857 1858 enospc: 1859 if (quota) 1860 dquot_release_reservation_block(inode, 1); 1861 return -ENOSPC; 1862 } 1863 1864 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1865 struct inode *inode, bool is_inode) 1866 { 1867 spin_lock(&sbi->stat_lock); 1868 1869 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1870 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1871 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks); 1872 1873 sbi->total_valid_node_count--; 1874 sbi->total_valid_block_count--; 1875 if (sbi->reserved_blocks && 1876 sbi->current_reserved_blocks < sbi->reserved_blocks) 1877 sbi->current_reserved_blocks++; 1878 1879 spin_unlock(&sbi->stat_lock); 1880 1881 if (!is_inode) 1882 f2fs_i_blocks_write(inode, 1, false, true); 1883 } 1884 1885 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1886 { 1887 return sbi->total_valid_node_count; 1888 } 1889 1890 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1891 { 1892 percpu_counter_inc(&sbi->total_valid_inode_count); 1893 } 1894 1895 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1896 { 1897 percpu_counter_dec(&sbi->total_valid_inode_count); 1898 } 1899 1900 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 1901 { 1902 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 1903 } 1904 1905 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 1906 pgoff_t index, bool for_write) 1907 { 1908 #ifdef CONFIG_F2FS_FAULT_INJECTION 1909 struct page *page = find_lock_page(mapping, index); 1910 1911 if (page) 1912 return page; 1913 1914 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 1915 f2fs_show_injection_info(FAULT_PAGE_ALLOC); 1916 return NULL; 1917 } 1918 #endif 1919 if (!for_write) 1920 return grab_cache_page(mapping, index); 1921 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 1922 } 1923 1924 static inline struct page *f2fs_pagecache_get_page( 1925 struct address_space *mapping, pgoff_t index, 1926 int fgp_flags, gfp_t gfp_mask) 1927 { 1928 #ifdef CONFIG_F2FS_FAULT_INJECTION 1929 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 1930 f2fs_show_injection_info(FAULT_PAGE_GET); 1931 return NULL; 1932 } 1933 #endif 1934 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 1935 } 1936 1937 static inline void f2fs_copy_page(struct page *src, struct page *dst) 1938 { 1939 char *src_kaddr = kmap(src); 1940 char *dst_kaddr = kmap(dst); 1941 1942 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 1943 kunmap(dst); 1944 kunmap(src); 1945 } 1946 1947 static inline void f2fs_put_page(struct page *page, int unlock) 1948 { 1949 if (!page) 1950 return; 1951 1952 if (unlock) { 1953 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1954 unlock_page(page); 1955 } 1956 put_page(page); 1957 } 1958 1959 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1960 { 1961 if (dn->node_page) 1962 f2fs_put_page(dn->node_page, 1); 1963 if (dn->inode_page && dn->node_page != dn->inode_page) 1964 f2fs_put_page(dn->inode_page, 0); 1965 dn->node_page = NULL; 1966 dn->inode_page = NULL; 1967 } 1968 1969 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1970 size_t size) 1971 { 1972 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1973 } 1974 1975 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1976 gfp_t flags) 1977 { 1978 void *entry; 1979 1980 entry = kmem_cache_alloc(cachep, flags); 1981 if (!entry) 1982 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 1983 return entry; 1984 } 1985 1986 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, 1987 int npages, bool no_fail) 1988 { 1989 struct bio *bio; 1990 1991 if (no_fail) { 1992 /* No failure on bio allocation */ 1993 bio = bio_alloc(GFP_NOIO, npages); 1994 if (!bio) 1995 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages); 1996 return bio; 1997 } 1998 #ifdef CONFIG_F2FS_FAULT_INJECTION 1999 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) { 2000 f2fs_show_injection_info(FAULT_ALLOC_BIO); 2001 return NULL; 2002 } 2003 #endif 2004 return bio_alloc(GFP_KERNEL, npages); 2005 } 2006 2007 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2008 unsigned long index, void *item) 2009 { 2010 while (radix_tree_insert(root, index, item)) 2011 cond_resched(); 2012 } 2013 2014 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2015 2016 static inline bool IS_INODE(struct page *page) 2017 { 2018 struct f2fs_node *p = F2FS_NODE(page); 2019 2020 return RAW_IS_INODE(p); 2021 } 2022 2023 static inline int offset_in_addr(struct f2fs_inode *i) 2024 { 2025 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2026 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2027 } 2028 2029 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2030 { 2031 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2032 } 2033 2034 static inline int f2fs_has_extra_attr(struct inode *inode); 2035 static inline block_t datablock_addr(struct inode *inode, 2036 struct page *node_page, unsigned int offset) 2037 { 2038 struct f2fs_node *raw_node; 2039 __le32 *addr_array; 2040 int base = 0; 2041 bool is_inode = IS_INODE(node_page); 2042 2043 raw_node = F2FS_NODE(node_page); 2044 2045 /* from GC path only */ 2046 if (is_inode) { 2047 if (!inode) 2048 base = offset_in_addr(&raw_node->i); 2049 else if (f2fs_has_extra_attr(inode)) 2050 base = get_extra_isize(inode); 2051 } 2052 2053 addr_array = blkaddr_in_node(raw_node); 2054 return le32_to_cpu(addr_array[base + offset]); 2055 } 2056 2057 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2058 { 2059 int mask; 2060 2061 addr += (nr >> 3); 2062 mask = 1 << (7 - (nr & 0x07)); 2063 return mask & *addr; 2064 } 2065 2066 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2067 { 2068 int mask; 2069 2070 addr += (nr >> 3); 2071 mask = 1 << (7 - (nr & 0x07)); 2072 *addr |= mask; 2073 } 2074 2075 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2076 { 2077 int mask; 2078 2079 addr += (nr >> 3); 2080 mask = 1 << (7 - (nr & 0x07)); 2081 *addr &= ~mask; 2082 } 2083 2084 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2085 { 2086 int mask; 2087 int ret; 2088 2089 addr += (nr >> 3); 2090 mask = 1 << (7 - (nr & 0x07)); 2091 ret = mask & *addr; 2092 *addr |= mask; 2093 return ret; 2094 } 2095 2096 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2097 { 2098 int mask; 2099 int ret; 2100 2101 addr += (nr >> 3); 2102 mask = 1 << (7 - (nr & 0x07)); 2103 ret = mask & *addr; 2104 *addr &= ~mask; 2105 return ret; 2106 } 2107 2108 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2109 { 2110 int mask; 2111 2112 addr += (nr >> 3); 2113 mask = 1 << (7 - (nr & 0x07)); 2114 *addr ^= mask; 2115 } 2116 2117 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL)) 2118 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL) 2119 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL) 2120 2121 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2122 { 2123 if (S_ISDIR(mode)) 2124 return flags; 2125 else if (S_ISREG(mode)) 2126 return flags & F2FS_REG_FLMASK; 2127 else 2128 return flags & F2FS_OTHER_FLMASK; 2129 } 2130 2131 /* used for f2fs_inode_info->flags */ 2132 enum { 2133 FI_NEW_INODE, /* indicate newly allocated inode */ 2134 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2135 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2136 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2137 FI_INC_LINK, /* need to increment i_nlink */ 2138 FI_ACL_MODE, /* indicate acl mode */ 2139 FI_NO_ALLOC, /* should not allocate any blocks */ 2140 FI_FREE_NID, /* free allocated nide */ 2141 FI_NO_EXTENT, /* not to use the extent cache */ 2142 FI_INLINE_XATTR, /* used for inline xattr */ 2143 FI_INLINE_DATA, /* used for inline data*/ 2144 FI_INLINE_DENTRY, /* used for inline dentry */ 2145 FI_APPEND_WRITE, /* inode has appended data */ 2146 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2147 FI_NEED_IPU, /* used for ipu per file */ 2148 FI_ATOMIC_FILE, /* indicate atomic file */ 2149 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2150 FI_VOLATILE_FILE, /* indicate volatile file */ 2151 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2152 FI_DROP_CACHE, /* drop dirty page cache */ 2153 FI_DATA_EXIST, /* indicate data exists */ 2154 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2155 FI_DO_DEFRAG, /* indicate defragment is running */ 2156 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2157 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2158 FI_HOT_DATA, /* indicate file is hot */ 2159 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2160 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2161 FI_PIN_FILE, /* indicate file should not be gced */ 2162 }; 2163 2164 static inline void __mark_inode_dirty_flag(struct inode *inode, 2165 int flag, bool set) 2166 { 2167 switch (flag) { 2168 case FI_INLINE_XATTR: 2169 case FI_INLINE_DATA: 2170 case FI_INLINE_DENTRY: 2171 case FI_NEW_INODE: 2172 if (set) 2173 return; 2174 case FI_DATA_EXIST: 2175 case FI_INLINE_DOTS: 2176 case FI_PIN_FILE: 2177 f2fs_mark_inode_dirty_sync(inode, true); 2178 } 2179 } 2180 2181 static inline void set_inode_flag(struct inode *inode, int flag) 2182 { 2183 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2184 set_bit(flag, &F2FS_I(inode)->flags); 2185 __mark_inode_dirty_flag(inode, flag, true); 2186 } 2187 2188 static inline int is_inode_flag_set(struct inode *inode, int flag) 2189 { 2190 return test_bit(flag, &F2FS_I(inode)->flags); 2191 } 2192 2193 static inline void clear_inode_flag(struct inode *inode, int flag) 2194 { 2195 if (test_bit(flag, &F2FS_I(inode)->flags)) 2196 clear_bit(flag, &F2FS_I(inode)->flags); 2197 __mark_inode_dirty_flag(inode, flag, false); 2198 } 2199 2200 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2201 { 2202 F2FS_I(inode)->i_acl_mode = mode; 2203 set_inode_flag(inode, FI_ACL_MODE); 2204 f2fs_mark_inode_dirty_sync(inode, false); 2205 } 2206 2207 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2208 { 2209 if (inc) 2210 inc_nlink(inode); 2211 else 2212 drop_nlink(inode); 2213 f2fs_mark_inode_dirty_sync(inode, true); 2214 } 2215 2216 static inline void f2fs_i_blocks_write(struct inode *inode, 2217 block_t diff, bool add, bool claim) 2218 { 2219 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2220 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2221 2222 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2223 if (add) { 2224 if (claim) 2225 dquot_claim_block(inode, diff); 2226 else 2227 dquot_alloc_block_nofail(inode, diff); 2228 } else { 2229 dquot_free_block(inode, diff); 2230 } 2231 2232 f2fs_mark_inode_dirty_sync(inode, true); 2233 if (clean || recover) 2234 set_inode_flag(inode, FI_AUTO_RECOVER); 2235 } 2236 2237 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2238 { 2239 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2240 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2241 2242 if (i_size_read(inode) == i_size) 2243 return; 2244 2245 i_size_write(inode, i_size); 2246 f2fs_mark_inode_dirty_sync(inode, true); 2247 if (clean || recover) 2248 set_inode_flag(inode, FI_AUTO_RECOVER); 2249 } 2250 2251 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2252 { 2253 F2FS_I(inode)->i_current_depth = depth; 2254 f2fs_mark_inode_dirty_sync(inode, true); 2255 } 2256 2257 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2258 unsigned int count) 2259 { 2260 F2FS_I(inode)->i_gc_failures = count; 2261 f2fs_mark_inode_dirty_sync(inode, true); 2262 } 2263 2264 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2265 { 2266 F2FS_I(inode)->i_xattr_nid = xnid; 2267 f2fs_mark_inode_dirty_sync(inode, true); 2268 } 2269 2270 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2271 { 2272 F2FS_I(inode)->i_pino = pino; 2273 f2fs_mark_inode_dirty_sync(inode, true); 2274 } 2275 2276 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2277 { 2278 struct f2fs_inode_info *fi = F2FS_I(inode); 2279 2280 if (ri->i_inline & F2FS_INLINE_XATTR) 2281 set_bit(FI_INLINE_XATTR, &fi->flags); 2282 if (ri->i_inline & F2FS_INLINE_DATA) 2283 set_bit(FI_INLINE_DATA, &fi->flags); 2284 if (ri->i_inline & F2FS_INLINE_DENTRY) 2285 set_bit(FI_INLINE_DENTRY, &fi->flags); 2286 if (ri->i_inline & F2FS_DATA_EXIST) 2287 set_bit(FI_DATA_EXIST, &fi->flags); 2288 if (ri->i_inline & F2FS_INLINE_DOTS) 2289 set_bit(FI_INLINE_DOTS, &fi->flags); 2290 if (ri->i_inline & F2FS_EXTRA_ATTR) 2291 set_bit(FI_EXTRA_ATTR, &fi->flags); 2292 if (ri->i_inline & F2FS_PIN_FILE) 2293 set_bit(FI_PIN_FILE, &fi->flags); 2294 } 2295 2296 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2297 { 2298 ri->i_inline = 0; 2299 2300 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2301 ri->i_inline |= F2FS_INLINE_XATTR; 2302 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2303 ri->i_inline |= F2FS_INLINE_DATA; 2304 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2305 ri->i_inline |= F2FS_INLINE_DENTRY; 2306 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2307 ri->i_inline |= F2FS_DATA_EXIST; 2308 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2309 ri->i_inline |= F2FS_INLINE_DOTS; 2310 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2311 ri->i_inline |= F2FS_EXTRA_ATTR; 2312 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2313 ri->i_inline |= F2FS_PIN_FILE; 2314 } 2315 2316 static inline int f2fs_has_extra_attr(struct inode *inode) 2317 { 2318 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2319 } 2320 2321 static inline int f2fs_has_inline_xattr(struct inode *inode) 2322 { 2323 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2324 } 2325 2326 static inline unsigned int addrs_per_inode(struct inode *inode) 2327 { 2328 return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode); 2329 } 2330 2331 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2332 { 2333 struct f2fs_inode *ri = F2FS_INODE(page); 2334 2335 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2336 get_inline_xattr_addrs(inode)]); 2337 } 2338 2339 static inline int inline_xattr_size(struct inode *inode) 2340 { 2341 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2342 } 2343 2344 static inline int f2fs_has_inline_data(struct inode *inode) 2345 { 2346 return is_inode_flag_set(inode, FI_INLINE_DATA); 2347 } 2348 2349 static inline int f2fs_exist_data(struct inode *inode) 2350 { 2351 return is_inode_flag_set(inode, FI_DATA_EXIST); 2352 } 2353 2354 static inline int f2fs_has_inline_dots(struct inode *inode) 2355 { 2356 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2357 } 2358 2359 static inline bool f2fs_is_pinned_file(struct inode *inode) 2360 { 2361 return is_inode_flag_set(inode, FI_PIN_FILE); 2362 } 2363 2364 static inline bool f2fs_is_atomic_file(struct inode *inode) 2365 { 2366 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2367 } 2368 2369 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2370 { 2371 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2372 } 2373 2374 static inline bool f2fs_is_volatile_file(struct inode *inode) 2375 { 2376 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2377 } 2378 2379 static inline bool f2fs_is_first_block_written(struct inode *inode) 2380 { 2381 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2382 } 2383 2384 static inline bool f2fs_is_drop_cache(struct inode *inode) 2385 { 2386 return is_inode_flag_set(inode, FI_DROP_CACHE); 2387 } 2388 2389 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2390 { 2391 struct f2fs_inode *ri = F2FS_INODE(page); 2392 int extra_size = get_extra_isize(inode); 2393 2394 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2395 } 2396 2397 static inline int f2fs_has_inline_dentry(struct inode *inode) 2398 { 2399 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2400 } 2401 2402 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 2403 { 2404 if (!f2fs_has_inline_dentry(dir)) 2405 kunmap(page); 2406 } 2407 2408 static inline int is_file(struct inode *inode, int type) 2409 { 2410 return F2FS_I(inode)->i_advise & type; 2411 } 2412 2413 static inline void set_file(struct inode *inode, int type) 2414 { 2415 F2FS_I(inode)->i_advise |= type; 2416 f2fs_mark_inode_dirty_sync(inode, true); 2417 } 2418 2419 static inline void clear_file(struct inode *inode, int type) 2420 { 2421 F2FS_I(inode)->i_advise &= ~type; 2422 f2fs_mark_inode_dirty_sync(inode, true); 2423 } 2424 2425 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2426 { 2427 bool ret; 2428 2429 if (dsync) { 2430 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2431 2432 spin_lock(&sbi->inode_lock[DIRTY_META]); 2433 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2434 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2435 return ret; 2436 } 2437 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2438 file_keep_isize(inode) || 2439 i_size_read(inode) & PAGE_MASK) 2440 return false; 2441 2442 down_read(&F2FS_I(inode)->i_sem); 2443 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2444 up_read(&F2FS_I(inode)->i_sem); 2445 2446 return ret; 2447 } 2448 2449 static inline int f2fs_readonly(struct super_block *sb) 2450 { 2451 return sb->s_flags & SB_RDONLY; 2452 } 2453 2454 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2455 { 2456 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2457 } 2458 2459 static inline bool is_dot_dotdot(const struct qstr *str) 2460 { 2461 if (str->len == 1 && str->name[0] == '.') 2462 return true; 2463 2464 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2465 return true; 2466 2467 return false; 2468 } 2469 2470 static inline bool f2fs_may_extent_tree(struct inode *inode) 2471 { 2472 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) || 2473 is_inode_flag_set(inode, FI_NO_EXTENT)) 2474 return false; 2475 2476 return S_ISREG(inode->i_mode); 2477 } 2478 2479 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2480 size_t size, gfp_t flags) 2481 { 2482 #ifdef CONFIG_F2FS_FAULT_INJECTION 2483 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2484 f2fs_show_injection_info(FAULT_KMALLOC); 2485 return NULL; 2486 } 2487 #endif 2488 return kmalloc(size, flags); 2489 } 2490 2491 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2492 size_t size, gfp_t flags) 2493 { 2494 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2495 } 2496 2497 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2498 size_t size, gfp_t flags) 2499 { 2500 #ifdef CONFIG_F2FS_FAULT_INJECTION 2501 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2502 f2fs_show_injection_info(FAULT_KVMALLOC); 2503 return NULL; 2504 } 2505 #endif 2506 return kvmalloc(size, flags); 2507 } 2508 2509 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2510 size_t size, gfp_t flags) 2511 { 2512 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2513 } 2514 2515 static inline int get_extra_isize(struct inode *inode) 2516 { 2517 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2518 } 2519 2520 static inline int get_inline_xattr_addrs(struct inode *inode) 2521 { 2522 return F2FS_I(inode)->i_inline_xattr_size; 2523 } 2524 2525 #define get_inode_mode(i) \ 2526 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2527 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2528 2529 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2530 (offsetof(struct f2fs_inode, i_extra_end) - \ 2531 offsetof(struct f2fs_inode, i_extra_isize)) \ 2532 2533 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2534 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2535 ((offsetof(typeof(*f2fs_inode), field) + \ 2536 sizeof((f2fs_inode)->field)) \ 2537 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \ 2538 2539 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2540 { 2541 int i; 2542 2543 spin_lock(&sbi->iostat_lock); 2544 for (i = 0; i < NR_IO_TYPE; i++) 2545 sbi->write_iostat[i] = 0; 2546 spin_unlock(&sbi->iostat_lock); 2547 } 2548 2549 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2550 enum iostat_type type, unsigned long long io_bytes) 2551 { 2552 if (!sbi->iostat_enable) 2553 return; 2554 spin_lock(&sbi->iostat_lock); 2555 sbi->write_iostat[type] += io_bytes; 2556 2557 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2558 sbi->write_iostat[APP_BUFFERED_IO] = 2559 sbi->write_iostat[APP_WRITE_IO] - 2560 sbi->write_iostat[APP_DIRECT_IO]; 2561 spin_unlock(&sbi->iostat_lock); 2562 } 2563 2564 /* 2565 * file.c 2566 */ 2567 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 2568 void truncate_data_blocks(struct dnode_of_data *dn); 2569 int truncate_blocks(struct inode *inode, u64 from, bool lock); 2570 int f2fs_truncate(struct inode *inode); 2571 int f2fs_getattr(const struct path *path, struct kstat *stat, 2572 u32 request_mask, unsigned int flags); 2573 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 2574 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 2575 void truncate_data_blocks_range(struct dnode_of_data *dn, int count); 2576 int f2fs_precache_extents(struct inode *inode); 2577 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 2578 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 2579 int f2fs_pin_file_control(struct inode *inode, bool inc); 2580 2581 /* 2582 * inode.c 2583 */ 2584 void f2fs_set_inode_flags(struct inode *inode); 2585 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 2586 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 2587 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 2588 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 2589 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 2590 void update_inode(struct inode *inode, struct page *node_page); 2591 void update_inode_page(struct inode *inode); 2592 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 2593 void f2fs_evict_inode(struct inode *inode); 2594 void handle_failed_inode(struct inode *inode); 2595 2596 /* 2597 * namei.c 2598 */ 2599 struct dentry *f2fs_get_parent(struct dentry *child); 2600 2601 /* 2602 * dir.c 2603 */ 2604 void set_de_type(struct f2fs_dir_entry *de, umode_t mode); 2605 unsigned char get_de_type(struct f2fs_dir_entry *de); 2606 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname, 2607 f2fs_hash_t namehash, int *max_slots, 2608 struct f2fs_dentry_ptr *d); 2609 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 2610 unsigned int start_pos, struct fscrypt_str *fstr); 2611 void do_make_empty_dir(struct inode *inode, struct inode *parent, 2612 struct f2fs_dentry_ptr *d); 2613 struct page *init_inode_metadata(struct inode *inode, struct inode *dir, 2614 const struct qstr *new_name, 2615 const struct qstr *orig_name, struct page *dpage); 2616 void update_parent_metadata(struct inode *dir, struct inode *inode, 2617 unsigned int current_depth); 2618 int room_for_filename(const void *bitmap, int slots, int max_slots); 2619 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 2620 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 2621 struct fscrypt_name *fname, struct page **res_page); 2622 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 2623 const struct qstr *child, struct page **res_page); 2624 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 2625 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 2626 struct page **page); 2627 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 2628 struct page *page, struct inode *inode); 2629 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 2630 const struct qstr *name, f2fs_hash_t name_hash, 2631 unsigned int bit_pos); 2632 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 2633 const struct qstr *orig_name, 2634 struct inode *inode, nid_t ino, umode_t mode); 2635 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname, 2636 struct inode *inode, nid_t ino, umode_t mode); 2637 int __f2fs_add_link(struct inode *dir, const struct qstr *name, 2638 struct inode *inode, nid_t ino, umode_t mode); 2639 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 2640 struct inode *dir, struct inode *inode); 2641 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 2642 bool f2fs_empty_dir(struct inode *dir); 2643 2644 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 2645 { 2646 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 2647 inode, inode->i_ino, inode->i_mode); 2648 } 2649 2650 /* 2651 * super.c 2652 */ 2653 int f2fs_inode_dirtied(struct inode *inode, bool sync); 2654 void f2fs_inode_synced(struct inode *inode); 2655 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 2656 void f2fs_quota_off_umount(struct super_block *sb); 2657 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 2658 int f2fs_sync_fs(struct super_block *sb, int sync); 2659 extern __printf(3, 4) 2660 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...); 2661 int sanity_check_ckpt(struct f2fs_sb_info *sbi); 2662 2663 /* 2664 * hash.c 2665 */ 2666 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info, 2667 struct fscrypt_name *fname); 2668 2669 /* 2670 * node.c 2671 */ 2672 struct dnode_of_data; 2673 struct node_info; 2674 2675 bool available_free_memory(struct f2fs_sb_info *sbi, int type); 2676 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 2677 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 2678 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 2679 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni); 2680 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 2681 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 2682 int truncate_inode_blocks(struct inode *inode, pgoff_t from); 2683 int truncate_xattr_node(struct inode *inode); 2684 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino); 2685 int remove_inode_page(struct inode *inode); 2686 struct page *new_inode_page(struct inode *inode); 2687 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs); 2688 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 2689 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 2690 struct page *get_node_page_ra(struct page *parent, int start); 2691 void move_node_page(struct page *node_page, int gc_type); 2692 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 2693 struct writeback_control *wbc, bool atomic); 2694 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc, 2695 bool do_balance, enum iostat_type io_type); 2696 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 2697 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 2698 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 2699 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 2700 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 2701 void recover_inline_xattr(struct inode *inode, struct page *page); 2702 int recover_xattr_data(struct inode *inode, struct page *page); 2703 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 2704 void restore_node_summary(struct f2fs_sb_info *sbi, 2705 unsigned int segno, struct f2fs_summary_block *sum); 2706 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2707 int build_node_manager(struct f2fs_sb_info *sbi); 2708 void destroy_node_manager(struct f2fs_sb_info *sbi); 2709 int __init create_node_manager_caches(void); 2710 void destroy_node_manager_caches(void); 2711 2712 /* 2713 * segment.c 2714 */ 2715 bool need_SSR(struct f2fs_sb_info *sbi); 2716 void register_inmem_page(struct inode *inode, struct page *page); 2717 void drop_inmem_pages_all(struct f2fs_sb_info *sbi); 2718 void drop_inmem_pages(struct inode *inode); 2719 void drop_inmem_page(struct inode *inode, struct page *page); 2720 int commit_inmem_pages(struct inode *inode); 2721 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 2722 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 2723 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 2724 int create_flush_cmd_control(struct f2fs_sb_info *sbi); 2725 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 2726 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 2727 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 2728 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 2729 void init_discard_policy(struct discard_policy *dpolicy, int discard_type, 2730 unsigned int granularity); 2731 void drop_discard_cmd(struct f2fs_sb_info *sbi); 2732 void stop_discard_thread(struct f2fs_sb_info *sbi); 2733 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi); 2734 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2735 void release_discard_addrs(struct f2fs_sb_info *sbi); 2736 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 2737 void allocate_new_segments(struct f2fs_sb_info *sbi); 2738 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 2739 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2740 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 2741 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr); 2742 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2743 enum iostat_type io_type); 2744 void write_node_page(unsigned int nid, struct f2fs_io_info *fio); 2745 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio); 2746 int rewrite_data_page(struct f2fs_io_info *fio); 2747 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2748 block_t old_blkaddr, block_t new_blkaddr, 2749 bool recover_curseg, bool recover_newaddr); 2750 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2751 block_t old_addr, block_t new_addr, 2752 unsigned char version, bool recover_curseg, 2753 bool recover_newaddr); 2754 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2755 block_t old_blkaddr, block_t *new_blkaddr, 2756 struct f2fs_summary *sum, int type, 2757 struct f2fs_io_info *fio, bool add_list); 2758 void f2fs_wait_on_page_writeback(struct page *page, 2759 enum page_type type, bool ordered); 2760 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr); 2761 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2762 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 2763 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2764 unsigned int val, int alloc); 2765 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2766 int build_segment_manager(struct f2fs_sb_info *sbi); 2767 void destroy_segment_manager(struct f2fs_sb_info *sbi); 2768 int __init create_segment_manager_caches(void); 2769 void destroy_segment_manager_caches(void); 2770 int rw_hint_to_seg_type(enum rw_hint hint); 2771 2772 /* 2773 * checkpoint.c 2774 */ 2775 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 2776 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2777 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 2778 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 2779 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type); 2780 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 2781 int type, bool sync); 2782 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 2783 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 2784 long nr_to_write, enum iostat_type io_type); 2785 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2786 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 2787 void release_ino_entry(struct f2fs_sb_info *sbi, bool all); 2788 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 2789 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2790 unsigned int devidx, int type); 2791 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 2792 unsigned int devidx, int type); 2793 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 2794 int acquire_orphan_inode(struct f2fs_sb_info *sbi); 2795 void release_orphan_inode(struct f2fs_sb_info *sbi); 2796 void add_orphan_inode(struct inode *inode); 2797 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 2798 int recover_orphan_inodes(struct f2fs_sb_info *sbi); 2799 int get_valid_checkpoint(struct f2fs_sb_info *sbi); 2800 void update_dirty_page(struct inode *inode, struct page *page); 2801 void remove_dirty_inode(struct inode *inode); 2802 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 2803 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 2804 void init_ino_entry_info(struct f2fs_sb_info *sbi); 2805 int __init create_checkpoint_caches(void); 2806 void destroy_checkpoint_caches(void); 2807 2808 /* 2809 * data.c 2810 */ 2811 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 2812 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 2813 struct inode *inode, nid_t ino, pgoff_t idx, 2814 enum page_type type); 2815 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 2816 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 2817 int f2fs_submit_page_write(struct f2fs_io_info *fio); 2818 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 2819 block_t blk_addr, struct bio *bio); 2820 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 2821 void set_data_blkaddr(struct dnode_of_data *dn); 2822 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 2823 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 2824 int reserve_new_block(struct dnode_of_data *dn); 2825 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 2826 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 2827 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 2828 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 2829 int op_flags, bool for_write); 2830 struct page *find_data_page(struct inode *inode, pgoff_t index); 2831 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 2832 bool for_write); 2833 struct page *get_new_data_page(struct inode *inode, 2834 struct page *ipage, pgoff_t index, bool new_i_size); 2835 int do_write_data_page(struct f2fs_io_info *fio); 2836 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 2837 int create, int flag); 2838 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2839 u64 start, u64 len); 2840 bool should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 2841 bool should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 2842 void f2fs_set_page_dirty_nobuffers(struct page *page); 2843 int __f2fs_write_data_pages(struct address_space *mapping, 2844 struct writeback_control *wbc, 2845 enum iostat_type io_type); 2846 void f2fs_invalidate_page(struct page *page, unsigned int offset, 2847 unsigned int length); 2848 int f2fs_release_page(struct page *page, gfp_t wait); 2849 #ifdef CONFIG_MIGRATION 2850 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 2851 struct page *page, enum migrate_mode mode); 2852 #endif 2853 2854 /* 2855 * gc.c 2856 */ 2857 int start_gc_thread(struct f2fs_sb_info *sbi); 2858 void stop_gc_thread(struct f2fs_sb_info *sbi); 2859 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 2860 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 2861 unsigned int segno); 2862 void build_gc_manager(struct f2fs_sb_info *sbi); 2863 2864 /* 2865 * recovery.c 2866 */ 2867 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 2868 bool space_for_roll_forward(struct f2fs_sb_info *sbi); 2869 2870 /* 2871 * debug.c 2872 */ 2873 #ifdef CONFIG_F2FS_STAT_FS 2874 struct f2fs_stat_info { 2875 struct list_head stat_list; 2876 struct f2fs_sb_info *sbi; 2877 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 2878 int main_area_segs, main_area_sections, main_area_zones; 2879 unsigned long long hit_largest, hit_cached, hit_rbtree; 2880 unsigned long long hit_total, total_ext; 2881 int ext_tree, zombie_tree, ext_node; 2882 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 2883 int ndirty_data, ndirty_qdata; 2884 int inmem_pages; 2885 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 2886 int nats, dirty_nats, sits, dirty_sits; 2887 int free_nids, avail_nids, alloc_nids; 2888 int total_count, utilization; 2889 int bg_gc, nr_wb_cp_data, nr_wb_data; 2890 int nr_flushing, nr_flushed, flush_list_empty; 2891 int nr_discarding, nr_discarded; 2892 int nr_discard_cmd; 2893 unsigned int undiscard_blks; 2894 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 2895 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 2896 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 2897 unsigned int bimodal, avg_vblocks; 2898 int util_free, util_valid, util_invalid; 2899 int rsvd_segs, overp_segs; 2900 int dirty_count, node_pages, meta_pages; 2901 int prefree_count, call_count, cp_count, bg_cp_count; 2902 int tot_segs, node_segs, data_segs, free_segs, free_secs; 2903 int bg_node_segs, bg_data_segs; 2904 int tot_blks, data_blks, node_blks; 2905 int bg_data_blks, bg_node_blks; 2906 int curseg[NR_CURSEG_TYPE]; 2907 int cursec[NR_CURSEG_TYPE]; 2908 int curzone[NR_CURSEG_TYPE]; 2909 2910 unsigned int segment_count[2]; 2911 unsigned int block_count[2]; 2912 unsigned int inplace_count; 2913 unsigned long long base_mem, cache_mem, page_mem; 2914 }; 2915 2916 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 2917 { 2918 return (struct f2fs_stat_info *)sbi->stat_info; 2919 } 2920 2921 #define stat_inc_cp_count(si) ((si)->cp_count++) 2922 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 2923 #define stat_inc_call_count(si) ((si)->call_count++) 2924 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 2925 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 2926 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 2927 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 2928 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 2929 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 2930 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 2931 #define stat_inc_inline_xattr(inode) \ 2932 do { \ 2933 if (f2fs_has_inline_xattr(inode)) \ 2934 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 2935 } while (0) 2936 #define stat_dec_inline_xattr(inode) \ 2937 do { \ 2938 if (f2fs_has_inline_xattr(inode)) \ 2939 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 2940 } while (0) 2941 #define stat_inc_inline_inode(inode) \ 2942 do { \ 2943 if (f2fs_has_inline_data(inode)) \ 2944 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 2945 } while (0) 2946 #define stat_dec_inline_inode(inode) \ 2947 do { \ 2948 if (f2fs_has_inline_data(inode)) \ 2949 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 2950 } while (0) 2951 #define stat_inc_inline_dir(inode) \ 2952 do { \ 2953 if (f2fs_has_inline_dentry(inode)) \ 2954 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 2955 } while (0) 2956 #define stat_dec_inline_dir(inode) \ 2957 do { \ 2958 if (f2fs_has_inline_dentry(inode)) \ 2959 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 2960 } while (0) 2961 #define stat_inc_seg_type(sbi, curseg) \ 2962 ((sbi)->segment_count[(curseg)->alloc_type]++) 2963 #define stat_inc_block_count(sbi, curseg) \ 2964 ((sbi)->block_count[(curseg)->alloc_type]++) 2965 #define stat_inc_inplace_blocks(sbi) \ 2966 (atomic_inc(&(sbi)->inplace_count)) 2967 #define stat_inc_atomic_write(inode) \ 2968 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt)) 2969 #define stat_dec_atomic_write(inode) \ 2970 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt)) 2971 #define stat_update_max_atomic_write(inode) \ 2972 do { \ 2973 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \ 2974 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 2975 if (cur > max) \ 2976 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 2977 } while (0) 2978 #define stat_inc_volatile_write(inode) \ 2979 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 2980 #define stat_dec_volatile_write(inode) \ 2981 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 2982 #define stat_update_max_volatile_write(inode) \ 2983 do { \ 2984 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 2985 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 2986 if (cur > max) \ 2987 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 2988 } while (0) 2989 #define stat_inc_seg_count(sbi, type, gc_type) \ 2990 do { \ 2991 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 2992 si->tot_segs++; \ 2993 if ((type) == SUM_TYPE_DATA) { \ 2994 si->data_segs++; \ 2995 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 2996 } else { \ 2997 si->node_segs++; \ 2998 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 2999 } \ 3000 } while (0) 3001 3002 #define stat_inc_tot_blk_count(si, blks) \ 3003 ((si)->tot_blks += (blks)) 3004 3005 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3006 do { \ 3007 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3008 stat_inc_tot_blk_count(si, blks); \ 3009 si->data_blks += (blks); \ 3010 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3011 } while (0) 3012 3013 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3014 do { \ 3015 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3016 stat_inc_tot_blk_count(si, blks); \ 3017 si->node_blks += (blks); \ 3018 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3019 } while (0) 3020 3021 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3022 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3023 int __init f2fs_create_root_stats(void); 3024 void f2fs_destroy_root_stats(void); 3025 #else 3026 #define stat_inc_cp_count(si) do { } while (0) 3027 #define stat_inc_bg_cp_count(si) do { } while (0) 3028 #define stat_inc_call_count(si) do { } while (0) 3029 #define stat_inc_bggc_count(si) do { } while (0) 3030 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3031 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3032 #define stat_inc_total_hit(sb) do { } while (0) 3033 #define stat_inc_rbtree_node_hit(sb) do { } while (0) 3034 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3035 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3036 #define stat_inc_inline_xattr(inode) do { } while (0) 3037 #define stat_dec_inline_xattr(inode) do { } while (0) 3038 #define stat_inc_inline_inode(inode) do { } while (0) 3039 #define stat_dec_inline_inode(inode) do { } while (0) 3040 #define stat_inc_inline_dir(inode) do { } while (0) 3041 #define stat_dec_inline_dir(inode) do { } while (0) 3042 #define stat_inc_atomic_write(inode) do { } while (0) 3043 #define stat_dec_atomic_write(inode) do { } while (0) 3044 #define stat_update_max_atomic_write(inode) do { } while (0) 3045 #define stat_inc_volatile_write(inode) do { } while (0) 3046 #define stat_dec_volatile_write(inode) do { } while (0) 3047 #define stat_update_max_volatile_write(inode) do { } while (0) 3048 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3049 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3050 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3051 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3052 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3053 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3054 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3055 3056 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3057 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3058 static inline int __init f2fs_create_root_stats(void) { return 0; } 3059 static inline void f2fs_destroy_root_stats(void) { } 3060 #endif 3061 3062 extern const struct file_operations f2fs_dir_operations; 3063 extern const struct file_operations f2fs_file_operations; 3064 extern const struct inode_operations f2fs_file_inode_operations; 3065 extern const struct address_space_operations f2fs_dblock_aops; 3066 extern const struct address_space_operations f2fs_node_aops; 3067 extern const struct address_space_operations f2fs_meta_aops; 3068 extern const struct inode_operations f2fs_dir_inode_operations; 3069 extern const struct inode_operations f2fs_symlink_inode_operations; 3070 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3071 extern const struct inode_operations f2fs_special_inode_operations; 3072 extern struct kmem_cache *inode_entry_slab; 3073 3074 /* 3075 * inline.c 3076 */ 3077 bool f2fs_may_inline_data(struct inode *inode); 3078 bool f2fs_may_inline_dentry(struct inode *inode); 3079 void read_inline_data(struct page *page, struct page *ipage); 3080 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from); 3081 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3082 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3083 int f2fs_convert_inline_inode(struct inode *inode); 3084 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3085 bool recover_inline_data(struct inode *inode, struct page *npage); 3086 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir, 3087 struct fscrypt_name *fname, struct page **res_page); 3088 int make_empty_inline_dir(struct inode *inode, struct inode *parent, 3089 struct page *ipage); 3090 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3091 const struct qstr *orig_name, 3092 struct inode *inode, nid_t ino, umode_t mode); 3093 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page, 3094 struct inode *dir, struct inode *inode); 3095 bool f2fs_empty_inline_dir(struct inode *dir); 3096 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3097 struct fscrypt_str *fstr); 3098 int f2fs_inline_data_fiemap(struct inode *inode, 3099 struct fiemap_extent_info *fieinfo, 3100 __u64 start, __u64 len); 3101 3102 /* 3103 * shrinker.c 3104 */ 3105 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3106 struct shrink_control *sc); 3107 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3108 struct shrink_control *sc); 3109 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3110 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3111 3112 /* 3113 * extent_cache.c 3114 */ 3115 struct rb_entry *__lookup_rb_tree(struct rb_root *root, 3116 struct rb_entry *cached_re, unsigned int ofs); 3117 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3118 struct rb_root *root, struct rb_node **parent, 3119 unsigned int ofs); 3120 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root, 3121 struct rb_entry *cached_re, unsigned int ofs, 3122 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3123 struct rb_node ***insert_p, struct rb_node **insert_parent, 3124 bool force); 3125 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3126 struct rb_root *root); 3127 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3128 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3129 void f2fs_drop_extent_tree(struct inode *inode); 3130 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3131 void f2fs_destroy_extent_tree(struct inode *inode); 3132 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3133 struct extent_info *ei); 3134 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3135 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3136 pgoff_t fofs, block_t blkaddr, unsigned int len); 3137 void init_extent_cache_info(struct f2fs_sb_info *sbi); 3138 int __init create_extent_cache(void); 3139 void destroy_extent_cache(void); 3140 3141 /* 3142 * sysfs.c 3143 */ 3144 int __init f2fs_init_sysfs(void); 3145 void f2fs_exit_sysfs(void); 3146 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3147 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3148 3149 /* 3150 * crypto support 3151 */ 3152 static inline bool f2fs_encrypted_inode(struct inode *inode) 3153 { 3154 return file_is_encrypt(inode); 3155 } 3156 3157 static inline bool f2fs_encrypted_file(struct inode *inode) 3158 { 3159 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode); 3160 } 3161 3162 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3163 { 3164 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3165 file_set_encrypt(inode); 3166 inode->i_flags |= S_ENCRYPTED; 3167 #endif 3168 } 3169 3170 static inline bool f2fs_bio_encrypted(struct bio *bio) 3171 { 3172 return bio->bi_private != NULL; 3173 } 3174 3175 static inline int f2fs_sb_has_crypto(struct super_block *sb) 3176 { 3177 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 3178 } 3179 3180 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb) 3181 { 3182 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED); 3183 } 3184 3185 static inline int f2fs_sb_has_extra_attr(struct super_block *sb) 3186 { 3187 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR); 3188 } 3189 3190 static inline int f2fs_sb_has_project_quota(struct super_block *sb) 3191 { 3192 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA); 3193 } 3194 3195 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb) 3196 { 3197 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM); 3198 } 3199 3200 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb) 3201 { 3202 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR); 3203 } 3204 3205 static inline int f2fs_sb_has_quota_ino(struct super_block *sb) 3206 { 3207 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO); 3208 } 3209 3210 static inline int f2fs_sb_has_inode_crtime(struct super_block *sb) 3211 { 3212 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CRTIME); 3213 } 3214 3215 #ifdef CONFIG_BLK_DEV_ZONED 3216 static inline int get_blkz_type(struct f2fs_sb_info *sbi, 3217 struct block_device *bdev, block_t blkaddr) 3218 { 3219 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3220 int i; 3221 3222 for (i = 0; i < sbi->s_ndevs; i++) 3223 if (FDEV(i).bdev == bdev) 3224 return FDEV(i).blkz_type[zno]; 3225 return -EINVAL; 3226 } 3227 #endif 3228 3229 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi) 3230 { 3231 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev); 3232 3233 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb); 3234 } 3235 3236 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3237 { 3238 clear_opt(sbi, ADAPTIVE); 3239 clear_opt(sbi, LFS); 3240 3241 switch (mt) { 3242 case F2FS_MOUNT_ADAPTIVE: 3243 set_opt(sbi, ADAPTIVE); 3244 break; 3245 case F2FS_MOUNT_LFS: 3246 set_opt(sbi, LFS); 3247 break; 3248 } 3249 } 3250 3251 static inline bool f2fs_may_encrypt(struct inode *inode) 3252 { 3253 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3254 umode_t mode = inode->i_mode; 3255 3256 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3257 #else 3258 return 0; 3259 #endif 3260 } 3261 3262 #endif 3263