1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <linux/part_stat.h> 26 #include <crypto/hash.h> 27 28 #include <linux/fscrypt.h> 29 #include <linux/fsverity.h> 30 31 #ifdef CONFIG_F2FS_CHECK_FS 32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 33 #else 34 #define f2fs_bug_on(sbi, condition) \ 35 do { \ 36 if (WARN_ON(condition)) \ 37 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 38 } while (0) 39 #endif 40 41 enum { 42 FAULT_KMALLOC, 43 FAULT_KVMALLOC, 44 FAULT_PAGE_ALLOC, 45 FAULT_PAGE_GET, 46 FAULT_ALLOC_NID, 47 FAULT_ORPHAN, 48 FAULT_BLOCK, 49 FAULT_DIR_DEPTH, 50 FAULT_EVICT_INODE, 51 FAULT_TRUNCATE, 52 FAULT_READ_IO, 53 FAULT_CHECKPOINT, 54 FAULT_DISCARD, 55 FAULT_WRITE_IO, 56 FAULT_MAX, 57 }; 58 59 #ifdef CONFIG_F2FS_FAULT_INJECTION 60 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 61 62 struct f2fs_fault_info { 63 atomic_t inject_ops; 64 unsigned int inject_rate; 65 unsigned int inject_type; 66 }; 67 68 extern const char *f2fs_fault_name[FAULT_MAX]; 69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 70 #endif 71 72 /* 73 * For mount options 74 */ 75 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 76 #define F2FS_MOUNT_DISCARD 0x00000004 77 #define F2FS_MOUNT_NOHEAP 0x00000008 78 #define F2FS_MOUNT_XATTR_USER 0x00000010 79 #define F2FS_MOUNT_POSIX_ACL 0x00000020 80 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 81 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 82 #define F2FS_MOUNT_INLINE_DATA 0x00000100 83 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 84 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 85 #define F2FS_MOUNT_NOBARRIER 0x00000800 86 #define F2FS_MOUNT_FASTBOOT 0x00001000 87 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 90 #define F2FS_MOUNT_USRQUOTA 0x00080000 91 #define F2FS_MOUNT_GRPQUOTA 0x00100000 92 #define F2FS_MOUNT_PRJQUOTA 0x00200000 93 #define F2FS_MOUNT_QUOTA 0x00400000 94 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 95 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 96 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 97 #define F2FS_MOUNT_NORECOVERY 0x04000000 98 #define F2FS_MOUNT_ATGC 0x08000000 99 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000 100 #define F2FS_MOUNT_GC_MERGE 0x20000000 101 102 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 103 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 104 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 105 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 106 107 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 108 typecheck(unsigned long long, b) && \ 109 ((long long)((a) - (b)) > 0)) 110 111 typedef u32 block_t; /* 112 * should not change u32, since it is the on-disk block 113 * address format, __le32. 114 */ 115 typedef u32 nid_t; 116 117 #define COMPRESS_EXT_NUM 16 118 119 struct f2fs_mount_info { 120 unsigned int opt; 121 int write_io_size_bits; /* Write IO size bits */ 122 block_t root_reserved_blocks; /* root reserved blocks */ 123 kuid_t s_resuid; /* reserved blocks for uid */ 124 kgid_t s_resgid; /* reserved blocks for gid */ 125 int active_logs; /* # of active logs */ 126 int inline_xattr_size; /* inline xattr size */ 127 #ifdef CONFIG_F2FS_FAULT_INJECTION 128 struct f2fs_fault_info fault_info; /* For fault injection */ 129 #endif 130 #ifdef CONFIG_QUOTA 131 /* Names of quota files with journalled quota */ 132 char *s_qf_names[MAXQUOTAS]; 133 int s_jquota_fmt; /* Format of quota to use */ 134 #endif 135 /* For which write hints are passed down to block layer */ 136 int whint_mode; 137 int alloc_mode; /* segment allocation policy */ 138 int fsync_mode; /* fsync policy */ 139 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 140 int bggc_mode; /* bggc mode: off, on or sync */ 141 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 142 block_t unusable_cap_perc; /* percentage for cap */ 143 block_t unusable_cap; /* Amount of space allowed to be 144 * unusable when disabling checkpoint 145 */ 146 147 /* For compression */ 148 unsigned char compress_algorithm; /* algorithm type */ 149 unsigned char compress_log_size; /* cluster log size */ 150 unsigned char compress_level; /* compress level */ 151 bool compress_chksum; /* compressed data chksum */ 152 unsigned char compress_ext_cnt; /* extension count */ 153 int compress_mode; /* compression mode */ 154 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 155 }; 156 157 #define F2FS_FEATURE_ENCRYPT 0x0001 158 #define F2FS_FEATURE_BLKZONED 0x0002 159 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 160 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 161 #define F2FS_FEATURE_PRJQUOTA 0x0010 162 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 163 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 164 #define F2FS_FEATURE_QUOTA_INO 0x0080 165 #define F2FS_FEATURE_INODE_CRTIME 0x0100 166 #define F2FS_FEATURE_LOST_FOUND 0x0200 167 #define F2FS_FEATURE_VERITY 0x0400 168 #define F2FS_FEATURE_SB_CHKSUM 0x0800 169 #define F2FS_FEATURE_CASEFOLD 0x1000 170 #define F2FS_FEATURE_COMPRESSION 0x2000 171 172 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 173 ((raw_super->feature & cpu_to_le32(mask)) != 0) 174 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 175 #define F2FS_SET_FEATURE(sbi, mask) \ 176 (sbi->raw_super->feature |= cpu_to_le32(mask)) 177 #define F2FS_CLEAR_FEATURE(sbi, mask) \ 178 (sbi->raw_super->feature &= ~cpu_to_le32(mask)) 179 180 /* 181 * Default values for user and/or group using reserved blocks 182 */ 183 #define F2FS_DEF_RESUID 0 184 #define F2FS_DEF_RESGID 0 185 186 /* 187 * For checkpoint manager 188 */ 189 enum { 190 NAT_BITMAP, 191 SIT_BITMAP 192 }; 193 194 #define CP_UMOUNT 0x00000001 195 #define CP_FASTBOOT 0x00000002 196 #define CP_SYNC 0x00000004 197 #define CP_RECOVERY 0x00000008 198 #define CP_DISCARD 0x00000010 199 #define CP_TRIMMED 0x00000020 200 #define CP_PAUSE 0x00000040 201 #define CP_RESIZE 0x00000080 202 203 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 204 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 205 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 206 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 207 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 208 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 209 #define DEF_CP_INTERVAL 60 /* 60 secs */ 210 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 211 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 212 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 213 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 214 215 struct cp_control { 216 int reason; 217 __u64 trim_start; 218 __u64 trim_end; 219 __u64 trim_minlen; 220 }; 221 222 /* 223 * indicate meta/data type 224 */ 225 enum { 226 META_CP, 227 META_NAT, 228 META_SIT, 229 META_SSA, 230 META_MAX, 231 META_POR, 232 DATA_GENERIC, /* check range only */ 233 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 234 DATA_GENERIC_ENHANCE_READ, /* 235 * strong check on range and segment 236 * bitmap but no warning due to race 237 * condition of read on truncated area 238 * by extent_cache 239 */ 240 META_GENERIC, 241 }; 242 243 /* for the list of ino */ 244 enum { 245 ORPHAN_INO, /* for orphan ino list */ 246 APPEND_INO, /* for append ino list */ 247 UPDATE_INO, /* for update ino list */ 248 TRANS_DIR_INO, /* for trasactions dir ino list */ 249 FLUSH_INO, /* for multiple device flushing */ 250 MAX_INO_ENTRY, /* max. list */ 251 }; 252 253 struct ino_entry { 254 struct list_head list; /* list head */ 255 nid_t ino; /* inode number */ 256 unsigned int dirty_device; /* dirty device bitmap */ 257 }; 258 259 /* for the list of inodes to be GCed */ 260 struct inode_entry { 261 struct list_head list; /* list head */ 262 struct inode *inode; /* vfs inode pointer */ 263 }; 264 265 struct fsync_node_entry { 266 struct list_head list; /* list head */ 267 struct page *page; /* warm node page pointer */ 268 unsigned int seq_id; /* sequence id */ 269 }; 270 271 struct ckpt_req { 272 struct completion wait; /* completion for checkpoint done */ 273 struct llist_node llnode; /* llist_node to be linked in wait queue */ 274 int ret; /* return code of checkpoint */ 275 ktime_t queue_time; /* request queued time */ 276 }; 277 278 struct ckpt_req_control { 279 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 280 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 281 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 282 atomic_t issued_ckpt; /* # of actually issued ckpts */ 283 atomic_t total_ckpt; /* # of total ckpts */ 284 atomic_t queued_ckpt; /* # of queued ckpts */ 285 struct llist_head issue_list; /* list for command issue */ 286 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 287 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 288 unsigned int peak_time; /* peak wait time in msec until now */ 289 }; 290 291 /* for the bitmap indicate blocks to be discarded */ 292 struct discard_entry { 293 struct list_head list; /* list head */ 294 block_t start_blkaddr; /* start blockaddr of current segment */ 295 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 296 }; 297 298 /* default discard granularity of inner discard thread, unit: block count */ 299 #define DEFAULT_DISCARD_GRANULARITY 16 300 301 /* max discard pend list number */ 302 #define MAX_PLIST_NUM 512 303 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 304 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 305 306 enum { 307 D_PREP, /* initial */ 308 D_PARTIAL, /* partially submitted */ 309 D_SUBMIT, /* all submitted */ 310 D_DONE, /* finished */ 311 }; 312 313 struct discard_info { 314 block_t lstart; /* logical start address */ 315 block_t len; /* length */ 316 block_t start; /* actual start address in dev */ 317 }; 318 319 struct discard_cmd { 320 struct rb_node rb_node; /* rb node located in rb-tree */ 321 union { 322 struct { 323 block_t lstart; /* logical start address */ 324 block_t len; /* length */ 325 block_t start; /* actual start address in dev */ 326 }; 327 struct discard_info di; /* discard info */ 328 329 }; 330 struct list_head list; /* command list */ 331 struct completion wait; /* compleation */ 332 struct block_device *bdev; /* bdev */ 333 unsigned short ref; /* reference count */ 334 unsigned char state; /* state */ 335 unsigned char queued; /* queued discard */ 336 int error; /* bio error */ 337 spinlock_t lock; /* for state/bio_ref updating */ 338 unsigned short bio_ref; /* bio reference count */ 339 }; 340 341 enum { 342 DPOLICY_BG, 343 DPOLICY_FORCE, 344 DPOLICY_FSTRIM, 345 DPOLICY_UMOUNT, 346 MAX_DPOLICY, 347 }; 348 349 struct discard_policy { 350 int type; /* type of discard */ 351 unsigned int min_interval; /* used for candidates exist */ 352 unsigned int mid_interval; /* used for device busy */ 353 unsigned int max_interval; /* used for candidates not exist */ 354 unsigned int max_requests; /* # of discards issued per round */ 355 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 356 bool io_aware; /* issue discard in idle time */ 357 bool sync; /* submit discard with REQ_SYNC flag */ 358 bool ordered; /* issue discard by lba order */ 359 bool timeout; /* discard timeout for put_super */ 360 unsigned int granularity; /* discard granularity */ 361 }; 362 363 struct discard_cmd_control { 364 struct task_struct *f2fs_issue_discard; /* discard thread */ 365 struct list_head entry_list; /* 4KB discard entry list */ 366 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 367 struct list_head wait_list; /* store on-flushing entries */ 368 struct list_head fstrim_list; /* in-flight discard from fstrim */ 369 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 370 unsigned int discard_wake; /* to wake up discard thread */ 371 struct mutex cmd_lock; 372 unsigned int nr_discards; /* # of discards in the list */ 373 unsigned int max_discards; /* max. discards to be issued */ 374 unsigned int discard_granularity; /* discard granularity */ 375 unsigned int undiscard_blks; /* # of undiscard blocks */ 376 unsigned int next_pos; /* next discard position */ 377 atomic_t issued_discard; /* # of issued discard */ 378 atomic_t queued_discard; /* # of queued discard */ 379 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 380 struct rb_root_cached root; /* root of discard rb-tree */ 381 bool rbtree_check; /* config for consistence check */ 382 }; 383 384 /* for the list of fsync inodes, used only during recovery */ 385 struct fsync_inode_entry { 386 struct list_head list; /* list head */ 387 struct inode *inode; /* vfs inode pointer */ 388 block_t blkaddr; /* block address locating the last fsync */ 389 block_t last_dentry; /* block address locating the last dentry */ 390 }; 391 392 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 393 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 394 395 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 396 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 397 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 398 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 399 400 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 401 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 402 403 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 404 { 405 int before = nats_in_cursum(journal); 406 407 journal->n_nats = cpu_to_le16(before + i); 408 return before; 409 } 410 411 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 412 { 413 int before = sits_in_cursum(journal); 414 415 journal->n_sits = cpu_to_le16(before + i); 416 return before; 417 } 418 419 static inline bool __has_cursum_space(struct f2fs_journal *journal, 420 int size, int type) 421 { 422 if (type == NAT_JOURNAL) 423 return size <= MAX_NAT_JENTRIES(journal); 424 return size <= MAX_SIT_JENTRIES(journal); 425 } 426 427 /* for inline stuff */ 428 #define DEF_INLINE_RESERVED_SIZE 1 429 static inline int get_extra_isize(struct inode *inode); 430 static inline int get_inline_xattr_addrs(struct inode *inode); 431 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 432 (CUR_ADDRS_PER_INODE(inode) - \ 433 get_inline_xattr_addrs(inode) - \ 434 DEF_INLINE_RESERVED_SIZE)) 435 436 /* for inline dir */ 437 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 438 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 439 BITS_PER_BYTE + 1)) 440 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 441 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 442 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 443 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 444 NR_INLINE_DENTRY(inode) + \ 445 INLINE_DENTRY_BITMAP_SIZE(inode))) 446 447 /* 448 * For INODE and NODE manager 449 */ 450 /* for directory operations */ 451 452 struct f2fs_filename { 453 /* 454 * The filename the user specified. This is NULL for some 455 * filesystem-internal operations, e.g. converting an inline directory 456 * to a non-inline one, or roll-forward recovering an encrypted dentry. 457 */ 458 const struct qstr *usr_fname; 459 460 /* 461 * The on-disk filename. For encrypted directories, this is encrypted. 462 * This may be NULL for lookups in an encrypted dir without the key. 463 */ 464 struct fscrypt_str disk_name; 465 466 /* The dirhash of this filename */ 467 f2fs_hash_t hash; 468 469 #ifdef CONFIG_FS_ENCRYPTION 470 /* 471 * For lookups in encrypted directories: either the buffer backing 472 * disk_name, or a buffer that holds the decoded no-key name. 473 */ 474 struct fscrypt_str crypto_buf; 475 #endif 476 #ifdef CONFIG_UNICODE 477 /* 478 * For casefolded directories: the casefolded name, but it's left NULL 479 * if the original name is not valid Unicode, if the directory is both 480 * casefolded and encrypted and its encryption key is unavailable, or if 481 * the filesystem is doing an internal operation where usr_fname is also 482 * NULL. In all these cases we fall back to treating the name as an 483 * opaque byte sequence. 484 */ 485 struct fscrypt_str cf_name; 486 #endif 487 }; 488 489 struct f2fs_dentry_ptr { 490 struct inode *inode; 491 void *bitmap; 492 struct f2fs_dir_entry *dentry; 493 __u8 (*filename)[F2FS_SLOT_LEN]; 494 int max; 495 int nr_bitmap; 496 }; 497 498 static inline void make_dentry_ptr_block(struct inode *inode, 499 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 500 { 501 d->inode = inode; 502 d->max = NR_DENTRY_IN_BLOCK; 503 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 504 d->bitmap = t->dentry_bitmap; 505 d->dentry = t->dentry; 506 d->filename = t->filename; 507 } 508 509 static inline void make_dentry_ptr_inline(struct inode *inode, 510 struct f2fs_dentry_ptr *d, void *t) 511 { 512 int entry_cnt = NR_INLINE_DENTRY(inode); 513 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 514 int reserved_size = INLINE_RESERVED_SIZE(inode); 515 516 d->inode = inode; 517 d->max = entry_cnt; 518 d->nr_bitmap = bitmap_size; 519 d->bitmap = t; 520 d->dentry = t + bitmap_size + reserved_size; 521 d->filename = t + bitmap_size + reserved_size + 522 SIZE_OF_DIR_ENTRY * entry_cnt; 523 } 524 525 /* 526 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 527 * as its node offset to distinguish from index node blocks. 528 * But some bits are used to mark the node block. 529 */ 530 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 531 >> OFFSET_BIT_SHIFT) 532 enum { 533 ALLOC_NODE, /* allocate a new node page if needed */ 534 LOOKUP_NODE, /* look up a node without readahead */ 535 LOOKUP_NODE_RA, /* 536 * look up a node with readahead called 537 * by get_data_block. 538 */ 539 }; 540 541 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */ 542 543 /* congestion wait timeout value, default: 20ms */ 544 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 545 546 /* maximum retry quota flush count */ 547 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 548 549 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 550 551 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 552 553 /* for in-memory extent cache entry */ 554 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 555 556 /* number of extent info in extent cache we try to shrink */ 557 #define EXTENT_CACHE_SHRINK_NUMBER 128 558 559 struct rb_entry { 560 struct rb_node rb_node; /* rb node located in rb-tree */ 561 union { 562 struct { 563 unsigned int ofs; /* start offset of the entry */ 564 unsigned int len; /* length of the entry */ 565 }; 566 unsigned long long key; /* 64-bits key */ 567 } __packed; 568 }; 569 570 struct extent_info { 571 unsigned int fofs; /* start offset in a file */ 572 unsigned int len; /* length of the extent */ 573 u32 blk; /* start block address of the extent */ 574 }; 575 576 struct extent_node { 577 struct rb_node rb_node; /* rb node located in rb-tree */ 578 struct extent_info ei; /* extent info */ 579 struct list_head list; /* node in global extent list of sbi */ 580 struct extent_tree *et; /* extent tree pointer */ 581 }; 582 583 struct extent_tree { 584 nid_t ino; /* inode number */ 585 struct rb_root_cached root; /* root of extent info rb-tree */ 586 struct extent_node *cached_en; /* recently accessed extent node */ 587 struct extent_info largest; /* largested extent info */ 588 struct list_head list; /* to be used by sbi->zombie_list */ 589 rwlock_t lock; /* protect extent info rb-tree */ 590 atomic_t node_cnt; /* # of extent node in rb-tree*/ 591 bool largest_updated; /* largest extent updated */ 592 }; 593 594 /* 595 * This structure is taken from ext4_map_blocks. 596 * 597 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 598 */ 599 #define F2FS_MAP_NEW (1 << BH_New) 600 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 601 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 602 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 603 F2FS_MAP_UNWRITTEN) 604 605 struct f2fs_map_blocks { 606 block_t m_pblk; 607 block_t m_lblk; 608 unsigned int m_len; 609 unsigned int m_flags; 610 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 611 pgoff_t *m_next_extent; /* point to next possible extent */ 612 int m_seg_type; 613 bool m_may_create; /* indicate it is from write path */ 614 }; 615 616 /* for flag in get_data_block */ 617 enum { 618 F2FS_GET_BLOCK_DEFAULT, 619 F2FS_GET_BLOCK_FIEMAP, 620 F2FS_GET_BLOCK_BMAP, 621 F2FS_GET_BLOCK_DIO, 622 F2FS_GET_BLOCK_PRE_DIO, 623 F2FS_GET_BLOCK_PRE_AIO, 624 F2FS_GET_BLOCK_PRECACHE, 625 }; 626 627 /* 628 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 629 */ 630 #define FADVISE_COLD_BIT 0x01 631 #define FADVISE_LOST_PINO_BIT 0x02 632 #define FADVISE_ENCRYPT_BIT 0x04 633 #define FADVISE_ENC_NAME_BIT 0x08 634 #define FADVISE_KEEP_SIZE_BIT 0x10 635 #define FADVISE_HOT_BIT 0x20 636 #define FADVISE_VERITY_BIT 0x40 637 638 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 639 640 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 641 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 642 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 643 644 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 645 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 646 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 647 648 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 649 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 650 651 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 652 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 653 654 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 655 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 656 657 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 658 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 659 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 660 661 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 662 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 663 664 #define DEF_DIR_LEVEL 0 665 666 enum { 667 GC_FAILURE_PIN, 668 GC_FAILURE_ATOMIC, 669 MAX_GC_FAILURE 670 }; 671 672 /* used for f2fs_inode_info->flags */ 673 enum { 674 FI_NEW_INODE, /* indicate newly allocated inode */ 675 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 676 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 677 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 678 FI_INC_LINK, /* need to increment i_nlink */ 679 FI_ACL_MODE, /* indicate acl mode */ 680 FI_NO_ALLOC, /* should not allocate any blocks */ 681 FI_FREE_NID, /* free allocated nide */ 682 FI_NO_EXTENT, /* not to use the extent cache */ 683 FI_INLINE_XATTR, /* used for inline xattr */ 684 FI_INLINE_DATA, /* used for inline data*/ 685 FI_INLINE_DENTRY, /* used for inline dentry */ 686 FI_APPEND_WRITE, /* inode has appended data */ 687 FI_UPDATE_WRITE, /* inode has in-place-update data */ 688 FI_NEED_IPU, /* used for ipu per file */ 689 FI_ATOMIC_FILE, /* indicate atomic file */ 690 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 691 FI_VOLATILE_FILE, /* indicate volatile file */ 692 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 693 FI_DROP_CACHE, /* drop dirty page cache */ 694 FI_DATA_EXIST, /* indicate data exists */ 695 FI_INLINE_DOTS, /* indicate inline dot dentries */ 696 FI_DO_DEFRAG, /* indicate defragment is running */ 697 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 698 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 699 FI_HOT_DATA, /* indicate file is hot */ 700 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 701 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 702 FI_PIN_FILE, /* indicate file should not be gced */ 703 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 704 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 705 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 706 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 707 FI_MMAP_FILE, /* indicate file was mmapped */ 708 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 709 FI_MAX, /* max flag, never be used */ 710 }; 711 712 struct f2fs_inode_info { 713 struct inode vfs_inode; /* serve a vfs inode */ 714 unsigned long i_flags; /* keep an inode flags for ioctl */ 715 unsigned char i_advise; /* use to give file attribute hints */ 716 unsigned char i_dir_level; /* use for dentry level for large dir */ 717 unsigned int i_current_depth; /* only for directory depth */ 718 /* for gc failure statistic */ 719 unsigned int i_gc_failures[MAX_GC_FAILURE]; 720 unsigned int i_pino; /* parent inode number */ 721 umode_t i_acl_mode; /* keep file acl mode temporarily */ 722 723 /* Use below internally in f2fs*/ 724 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 725 struct rw_semaphore i_sem; /* protect fi info */ 726 atomic_t dirty_pages; /* # of dirty pages */ 727 f2fs_hash_t chash; /* hash value of given file name */ 728 unsigned int clevel; /* maximum level of given file name */ 729 struct task_struct *task; /* lookup and create consistency */ 730 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 731 nid_t i_xattr_nid; /* node id that contains xattrs */ 732 loff_t last_disk_size; /* lastly written file size */ 733 spinlock_t i_size_lock; /* protect last_disk_size */ 734 735 #ifdef CONFIG_QUOTA 736 struct dquot *i_dquot[MAXQUOTAS]; 737 738 /* quota space reservation, managed internally by quota code */ 739 qsize_t i_reserved_quota; 740 #endif 741 struct list_head dirty_list; /* dirty list for dirs and files */ 742 struct list_head gdirty_list; /* linked in global dirty list */ 743 struct list_head inmem_ilist; /* list for inmem inodes */ 744 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 745 struct task_struct *inmem_task; /* store inmemory task */ 746 struct mutex inmem_lock; /* lock for inmemory pages */ 747 struct extent_tree *extent_tree; /* cached extent_tree entry */ 748 749 /* avoid racing between foreground op and gc */ 750 struct rw_semaphore i_gc_rwsem[2]; 751 struct rw_semaphore i_mmap_sem; 752 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 753 754 int i_extra_isize; /* size of extra space located in i_addr */ 755 kprojid_t i_projid; /* id for project quota */ 756 int i_inline_xattr_size; /* inline xattr size */ 757 struct timespec64 i_crtime; /* inode creation time */ 758 struct timespec64 i_disk_time[4];/* inode disk times */ 759 760 /* for file compress */ 761 atomic_t i_compr_blocks; /* # of compressed blocks */ 762 unsigned char i_compress_algorithm; /* algorithm type */ 763 unsigned char i_log_cluster_size; /* log of cluster size */ 764 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 765 unsigned short i_compress_flag; /* compress flag */ 766 unsigned int i_cluster_size; /* cluster size */ 767 }; 768 769 static inline void get_extent_info(struct extent_info *ext, 770 struct f2fs_extent *i_ext) 771 { 772 ext->fofs = le32_to_cpu(i_ext->fofs); 773 ext->blk = le32_to_cpu(i_ext->blk); 774 ext->len = le32_to_cpu(i_ext->len); 775 } 776 777 static inline void set_raw_extent(struct extent_info *ext, 778 struct f2fs_extent *i_ext) 779 { 780 i_ext->fofs = cpu_to_le32(ext->fofs); 781 i_ext->blk = cpu_to_le32(ext->blk); 782 i_ext->len = cpu_to_le32(ext->len); 783 } 784 785 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 786 u32 blk, unsigned int len) 787 { 788 ei->fofs = fofs; 789 ei->blk = blk; 790 ei->len = len; 791 } 792 793 static inline bool __is_discard_mergeable(struct discard_info *back, 794 struct discard_info *front, unsigned int max_len) 795 { 796 return (back->lstart + back->len == front->lstart) && 797 (back->len + front->len <= max_len); 798 } 799 800 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 801 struct discard_info *back, unsigned int max_len) 802 { 803 return __is_discard_mergeable(back, cur, max_len); 804 } 805 806 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 807 struct discard_info *front, unsigned int max_len) 808 { 809 return __is_discard_mergeable(cur, front, max_len); 810 } 811 812 static inline bool __is_extent_mergeable(struct extent_info *back, 813 struct extent_info *front) 814 { 815 return (back->fofs + back->len == front->fofs && 816 back->blk + back->len == front->blk); 817 } 818 819 static inline bool __is_back_mergeable(struct extent_info *cur, 820 struct extent_info *back) 821 { 822 return __is_extent_mergeable(back, cur); 823 } 824 825 static inline bool __is_front_mergeable(struct extent_info *cur, 826 struct extent_info *front) 827 { 828 return __is_extent_mergeable(cur, front); 829 } 830 831 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 832 static inline void __try_update_largest_extent(struct extent_tree *et, 833 struct extent_node *en) 834 { 835 if (en->ei.len > et->largest.len) { 836 et->largest = en->ei; 837 et->largest_updated = true; 838 } 839 } 840 841 /* 842 * For free nid management 843 */ 844 enum nid_state { 845 FREE_NID, /* newly added to free nid list */ 846 PREALLOC_NID, /* it is preallocated */ 847 MAX_NID_STATE, 848 }; 849 850 enum nat_state { 851 TOTAL_NAT, 852 DIRTY_NAT, 853 RECLAIMABLE_NAT, 854 MAX_NAT_STATE, 855 }; 856 857 struct f2fs_nm_info { 858 block_t nat_blkaddr; /* base disk address of NAT */ 859 nid_t max_nid; /* maximum possible node ids */ 860 nid_t available_nids; /* # of available node ids */ 861 nid_t next_scan_nid; /* the next nid to be scanned */ 862 unsigned int ram_thresh; /* control the memory footprint */ 863 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 864 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 865 866 /* NAT cache management */ 867 struct radix_tree_root nat_root;/* root of the nat entry cache */ 868 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 869 struct rw_semaphore nat_tree_lock; /* protect nat entry tree */ 870 struct list_head nat_entries; /* cached nat entry list (clean) */ 871 spinlock_t nat_list_lock; /* protect clean nat entry list */ 872 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 873 unsigned int nat_blocks; /* # of nat blocks */ 874 875 /* free node ids management */ 876 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 877 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 878 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 879 spinlock_t nid_list_lock; /* protect nid lists ops */ 880 struct mutex build_lock; /* lock for build free nids */ 881 unsigned char **free_nid_bitmap; 882 unsigned char *nat_block_bitmap; 883 unsigned short *free_nid_count; /* free nid count of NAT block */ 884 885 /* for checkpoint */ 886 char *nat_bitmap; /* NAT bitmap pointer */ 887 888 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 889 unsigned char *nat_bits; /* NAT bits blocks */ 890 unsigned char *full_nat_bits; /* full NAT pages */ 891 unsigned char *empty_nat_bits; /* empty NAT pages */ 892 #ifdef CONFIG_F2FS_CHECK_FS 893 char *nat_bitmap_mir; /* NAT bitmap mirror */ 894 #endif 895 int bitmap_size; /* bitmap size */ 896 }; 897 898 /* 899 * this structure is used as one of function parameters. 900 * all the information are dedicated to a given direct node block determined 901 * by the data offset in a file. 902 */ 903 struct dnode_of_data { 904 struct inode *inode; /* vfs inode pointer */ 905 struct page *inode_page; /* its inode page, NULL is possible */ 906 struct page *node_page; /* cached direct node page */ 907 nid_t nid; /* node id of the direct node block */ 908 unsigned int ofs_in_node; /* data offset in the node page */ 909 bool inode_page_locked; /* inode page is locked or not */ 910 bool node_changed; /* is node block changed */ 911 char cur_level; /* level of hole node page */ 912 char max_level; /* level of current page located */ 913 block_t data_blkaddr; /* block address of the node block */ 914 }; 915 916 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 917 struct page *ipage, struct page *npage, nid_t nid) 918 { 919 memset(dn, 0, sizeof(*dn)); 920 dn->inode = inode; 921 dn->inode_page = ipage; 922 dn->node_page = npage; 923 dn->nid = nid; 924 } 925 926 /* 927 * For SIT manager 928 * 929 * By default, there are 6 active log areas across the whole main area. 930 * When considering hot and cold data separation to reduce cleaning overhead, 931 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 932 * respectively. 933 * In the current design, you should not change the numbers intentionally. 934 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 935 * logs individually according to the underlying devices. (default: 6) 936 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 937 * data and 8 for node logs. 938 */ 939 #define NR_CURSEG_DATA_TYPE (3) 940 #define NR_CURSEG_NODE_TYPE (3) 941 #define NR_CURSEG_INMEM_TYPE (2) 942 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 943 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 944 945 enum { 946 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 947 CURSEG_WARM_DATA, /* data blocks */ 948 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 949 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 950 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 951 CURSEG_COLD_NODE, /* indirect node blocks */ 952 NR_PERSISTENT_LOG, /* number of persistent log */ 953 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 954 /* pinned file that needs consecutive block address */ 955 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 956 NO_CHECK_TYPE, /* number of persistent & inmem log */ 957 }; 958 959 struct flush_cmd { 960 struct completion wait; 961 struct llist_node llnode; 962 nid_t ino; 963 int ret; 964 }; 965 966 struct flush_cmd_control { 967 struct task_struct *f2fs_issue_flush; /* flush thread */ 968 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 969 atomic_t issued_flush; /* # of issued flushes */ 970 atomic_t queued_flush; /* # of queued flushes */ 971 struct llist_head issue_list; /* list for command issue */ 972 struct llist_node *dispatch_list; /* list for command dispatch */ 973 }; 974 975 struct f2fs_sm_info { 976 struct sit_info *sit_info; /* whole segment information */ 977 struct free_segmap_info *free_info; /* free segment information */ 978 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 979 struct curseg_info *curseg_array; /* active segment information */ 980 981 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 982 983 block_t seg0_blkaddr; /* block address of 0'th segment */ 984 block_t main_blkaddr; /* start block address of main area */ 985 block_t ssa_blkaddr; /* start block address of SSA area */ 986 987 unsigned int segment_count; /* total # of segments */ 988 unsigned int main_segments; /* # of segments in main area */ 989 unsigned int reserved_segments; /* # of reserved segments */ 990 unsigned int ovp_segments; /* # of overprovision segments */ 991 992 /* a threshold to reclaim prefree segments */ 993 unsigned int rec_prefree_segments; 994 995 /* for batched trimming */ 996 unsigned int trim_sections; /* # of sections to trim */ 997 998 struct list_head sit_entry_set; /* sit entry set list */ 999 1000 unsigned int ipu_policy; /* in-place-update policy */ 1001 unsigned int min_ipu_util; /* in-place-update threshold */ 1002 unsigned int min_fsync_blocks; /* threshold for fsync */ 1003 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1004 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1005 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1006 1007 /* for flush command control */ 1008 struct flush_cmd_control *fcc_info; 1009 1010 /* for discard command control */ 1011 struct discard_cmd_control *dcc_info; 1012 }; 1013 1014 /* 1015 * For superblock 1016 */ 1017 /* 1018 * COUNT_TYPE for monitoring 1019 * 1020 * f2fs monitors the number of several block types such as on-writeback, 1021 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1022 */ 1023 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1024 enum count_type { 1025 F2FS_DIRTY_DENTS, 1026 F2FS_DIRTY_DATA, 1027 F2FS_DIRTY_QDATA, 1028 F2FS_DIRTY_NODES, 1029 F2FS_DIRTY_META, 1030 F2FS_INMEM_PAGES, 1031 F2FS_DIRTY_IMETA, 1032 F2FS_WB_CP_DATA, 1033 F2FS_WB_DATA, 1034 F2FS_RD_DATA, 1035 F2FS_RD_NODE, 1036 F2FS_RD_META, 1037 F2FS_DIO_WRITE, 1038 F2FS_DIO_READ, 1039 NR_COUNT_TYPE, 1040 }; 1041 1042 /* 1043 * The below are the page types of bios used in submit_bio(). 1044 * The available types are: 1045 * DATA User data pages. It operates as async mode. 1046 * NODE Node pages. It operates as async mode. 1047 * META FS metadata pages such as SIT, NAT, CP. 1048 * NR_PAGE_TYPE The number of page types. 1049 * META_FLUSH Make sure the previous pages are written 1050 * with waiting the bio's completion 1051 * ... Only can be used with META. 1052 */ 1053 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1054 enum page_type { 1055 DATA, 1056 NODE, 1057 META, 1058 NR_PAGE_TYPE, 1059 META_FLUSH, 1060 INMEM, /* the below types are used by tracepoints only. */ 1061 INMEM_DROP, 1062 INMEM_INVALIDATE, 1063 INMEM_REVOKE, 1064 IPU, 1065 OPU, 1066 }; 1067 1068 enum temp_type { 1069 HOT = 0, /* must be zero for meta bio */ 1070 WARM, 1071 COLD, 1072 NR_TEMP_TYPE, 1073 }; 1074 1075 enum need_lock_type { 1076 LOCK_REQ = 0, 1077 LOCK_DONE, 1078 LOCK_RETRY, 1079 }; 1080 1081 enum cp_reason_type { 1082 CP_NO_NEEDED, 1083 CP_NON_REGULAR, 1084 CP_COMPRESSED, 1085 CP_HARDLINK, 1086 CP_SB_NEED_CP, 1087 CP_WRONG_PINO, 1088 CP_NO_SPC_ROLL, 1089 CP_NODE_NEED_CP, 1090 CP_FASTBOOT_MODE, 1091 CP_SPEC_LOG_NUM, 1092 CP_RECOVER_DIR, 1093 }; 1094 1095 enum iostat_type { 1096 /* WRITE IO */ 1097 APP_DIRECT_IO, /* app direct write IOs */ 1098 APP_BUFFERED_IO, /* app buffered write IOs */ 1099 APP_WRITE_IO, /* app write IOs */ 1100 APP_MAPPED_IO, /* app mapped IOs */ 1101 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1102 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1103 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1104 FS_GC_DATA_IO, /* data IOs from forground gc */ 1105 FS_GC_NODE_IO, /* node IOs from forground gc */ 1106 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1107 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1108 FS_CP_META_IO, /* meta IOs from checkpoint */ 1109 1110 /* READ IO */ 1111 APP_DIRECT_READ_IO, /* app direct read IOs */ 1112 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1113 APP_READ_IO, /* app read IOs */ 1114 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1115 FS_DATA_READ_IO, /* data read IOs */ 1116 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1117 FS_CDATA_READ_IO, /* compressed data read IOs */ 1118 FS_NODE_READ_IO, /* node read IOs */ 1119 FS_META_READ_IO, /* meta read IOs */ 1120 1121 /* other */ 1122 FS_DISCARD, /* discard */ 1123 NR_IO_TYPE, 1124 }; 1125 1126 struct f2fs_io_info { 1127 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1128 nid_t ino; /* inode number */ 1129 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1130 enum temp_type temp; /* contains HOT/WARM/COLD */ 1131 int op; /* contains REQ_OP_ */ 1132 int op_flags; /* req_flag_bits */ 1133 block_t new_blkaddr; /* new block address to be written */ 1134 block_t old_blkaddr; /* old block address before Cow */ 1135 struct page *page; /* page to be written */ 1136 struct page *encrypted_page; /* encrypted page */ 1137 struct page *compressed_page; /* compressed page */ 1138 struct list_head list; /* serialize IOs */ 1139 bool submitted; /* indicate IO submission */ 1140 int need_lock; /* indicate we need to lock cp_rwsem */ 1141 bool in_list; /* indicate fio is in io_list */ 1142 bool is_por; /* indicate IO is from recovery or not */ 1143 bool retry; /* need to reallocate block address */ 1144 int compr_blocks; /* # of compressed block addresses */ 1145 bool encrypted; /* indicate file is encrypted */ 1146 enum iostat_type io_type; /* io type */ 1147 struct writeback_control *io_wbc; /* writeback control */ 1148 struct bio **bio; /* bio for ipu */ 1149 sector_t *last_block; /* last block number in bio */ 1150 unsigned char version; /* version of the node */ 1151 }; 1152 1153 struct bio_entry { 1154 struct bio *bio; 1155 struct list_head list; 1156 }; 1157 1158 #define is_read_io(rw) ((rw) == READ) 1159 struct f2fs_bio_info { 1160 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1161 struct bio *bio; /* bios to merge */ 1162 sector_t last_block_in_bio; /* last block number */ 1163 struct f2fs_io_info fio; /* store buffered io info. */ 1164 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1165 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1166 struct list_head io_list; /* track fios */ 1167 struct list_head bio_list; /* bio entry list head */ 1168 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */ 1169 }; 1170 1171 #define FDEV(i) (sbi->devs[i]) 1172 #define RDEV(i) (raw_super->devs[i]) 1173 struct f2fs_dev_info { 1174 struct block_device *bdev; 1175 char path[MAX_PATH_LEN]; 1176 unsigned int total_segments; 1177 block_t start_blk; 1178 block_t end_blk; 1179 #ifdef CONFIG_BLK_DEV_ZONED 1180 unsigned int nr_blkz; /* Total number of zones */ 1181 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1182 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */ 1183 #endif 1184 }; 1185 1186 enum inode_type { 1187 DIR_INODE, /* for dirty dir inode */ 1188 FILE_INODE, /* for dirty regular/symlink inode */ 1189 DIRTY_META, /* for all dirtied inode metadata */ 1190 ATOMIC_FILE, /* for all atomic files */ 1191 NR_INODE_TYPE, 1192 }; 1193 1194 /* for inner inode cache management */ 1195 struct inode_management { 1196 struct radix_tree_root ino_root; /* ino entry array */ 1197 spinlock_t ino_lock; /* for ino entry lock */ 1198 struct list_head ino_list; /* inode list head */ 1199 unsigned long ino_num; /* number of entries */ 1200 }; 1201 1202 /* for GC_AT */ 1203 struct atgc_management { 1204 bool atgc_enabled; /* ATGC is enabled or not */ 1205 struct rb_root_cached root; /* root of victim rb-tree */ 1206 struct list_head victim_list; /* linked with all victim entries */ 1207 unsigned int victim_count; /* victim count in rb-tree */ 1208 unsigned int candidate_ratio; /* candidate ratio */ 1209 unsigned int max_candidate_count; /* max candidate count */ 1210 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1211 unsigned long long age_threshold; /* age threshold */ 1212 }; 1213 1214 /* For s_flag in struct f2fs_sb_info */ 1215 enum { 1216 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1217 SBI_IS_CLOSE, /* specify unmounting */ 1218 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1219 SBI_POR_DOING, /* recovery is doing or not */ 1220 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1221 SBI_NEED_CP, /* need to checkpoint */ 1222 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1223 SBI_IS_RECOVERED, /* recovered orphan/data */ 1224 SBI_CP_DISABLED, /* CP was disabled last mount */ 1225 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1226 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1227 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1228 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1229 SBI_IS_RESIZEFS, /* resizefs is in process */ 1230 }; 1231 1232 enum { 1233 CP_TIME, 1234 REQ_TIME, 1235 DISCARD_TIME, 1236 GC_TIME, 1237 DISABLE_TIME, 1238 UMOUNT_DISCARD_TIMEOUT, 1239 MAX_TIME, 1240 }; 1241 1242 enum { 1243 GC_NORMAL, 1244 GC_IDLE_CB, 1245 GC_IDLE_GREEDY, 1246 GC_IDLE_AT, 1247 GC_URGENT_HIGH, 1248 GC_URGENT_LOW, 1249 }; 1250 1251 enum { 1252 BGGC_MODE_ON, /* background gc is on */ 1253 BGGC_MODE_OFF, /* background gc is off */ 1254 BGGC_MODE_SYNC, /* 1255 * background gc is on, migrating blocks 1256 * like foreground gc 1257 */ 1258 }; 1259 1260 enum { 1261 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1262 FS_MODE_LFS, /* use lfs allocation only */ 1263 }; 1264 1265 enum { 1266 WHINT_MODE_OFF, /* not pass down write hints */ 1267 WHINT_MODE_USER, /* try to pass down hints given by users */ 1268 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1269 }; 1270 1271 enum { 1272 ALLOC_MODE_DEFAULT, /* stay default */ 1273 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1274 }; 1275 1276 enum fsync_mode { 1277 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1278 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1279 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1280 }; 1281 1282 enum { 1283 COMPR_MODE_FS, /* 1284 * automatically compress compression 1285 * enabled files 1286 */ 1287 COMPR_MODE_USER, /* 1288 * automatical compression is disabled. 1289 * user can control the file compression 1290 * using ioctls 1291 */ 1292 }; 1293 1294 /* 1295 * this value is set in page as a private data which indicate that 1296 * the page is atomically written, and it is in inmem_pages list. 1297 */ 1298 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1) 1299 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2) 1300 1301 #define IS_ATOMIC_WRITTEN_PAGE(page) \ 1302 (page_private(page) == ATOMIC_WRITTEN_PAGE) 1303 #define IS_DUMMY_WRITTEN_PAGE(page) \ 1304 (page_private(page) == DUMMY_WRITTEN_PAGE) 1305 1306 /* For compression */ 1307 enum compress_algorithm_type { 1308 COMPRESS_LZO, 1309 COMPRESS_LZ4, 1310 COMPRESS_ZSTD, 1311 COMPRESS_LZORLE, 1312 COMPRESS_MAX, 1313 }; 1314 1315 enum compress_flag { 1316 COMPRESS_CHKSUM, 1317 COMPRESS_MAX_FLAG, 1318 }; 1319 1320 #define COMPRESS_DATA_RESERVED_SIZE 4 1321 struct compress_data { 1322 __le32 clen; /* compressed data size */ 1323 __le32 chksum; /* compressed data chksum */ 1324 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1325 u8 cdata[]; /* compressed data */ 1326 }; 1327 1328 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1329 1330 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1331 1332 #define COMPRESS_LEVEL_OFFSET 8 1333 1334 /* compress context */ 1335 struct compress_ctx { 1336 struct inode *inode; /* inode the context belong to */ 1337 pgoff_t cluster_idx; /* cluster index number */ 1338 unsigned int cluster_size; /* page count in cluster */ 1339 unsigned int log_cluster_size; /* log of cluster size */ 1340 struct page **rpages; /* pages store raw data in cluster */ 1341 unsigned int nr_rpages; /* total page number in rpages */ 1342 struct page **cpages; /* pages store compressed data in cluster */ 1343 unsigned int nr_cpages; /* total page number in cpages */ 1344 void *rbuf; /* virtual mapped address on rpages */ 1345 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1346 size_t rlen; /* valid data length in rbuf */ 1347 size_t clen; /* valid data length in cbuf */ 1348 void *private; /* payload buffer for specified compression algorithm */ 1349 void *private2; /* extra payload buffer */ 1350 }; 1351 1352 /* compress context for write IO path */ 1353 struct compress_io_ctx { 1354 u32 magic; /* magic number to indicate page is compressed */ 1355 struct inode *inode; /* inode the context belong to */ 1356 struct page **rpages; /* pages store raw data in cluster */ 1357 unsigned int nr_rpages; /* total page number in rpages */ 1358 atomic_t pending_pages; /* in-flight compressed page count */ 1359 }; 1360 1361 /* Context for decompressing one cluster on the read IO path */ 1362 struct decompress_io_ctx { 1363 u32 magic; /* magic number to indicate page is compressed */ 1364 struct inode *inode; /* inode the context belong to */ 1365 pgoff_t cluster_idx; /* cluster index number */ 1366 unsigned int cluster_size; /* page count in cluster */ 1367 unsigned int log_cluster_size; /* log of cluster size */ 1368 struct page **rpages; /* pages store raw data in cluster */ 1369 unsigned int nr_rpages; /* total page number in rpages */ 1370 struct page **cpages; /* pages store compressed data in cluster */ 1371 unsigned int nr_cpages; /* total page number in cpages */ 1372 struct page **tpages; /* temp pages to pad holes in cluster */ 1373 void *rbuf; /* virtual mapped address on rpages */ 1374 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1375 size_t rlen; /* valid data length in rbuf */ 1376 size_t clen; /* valid data length in cbuf */ 1377 1378 /* 1379 * The number of compressed pages remaining to be read in this cluster. 1380 * This is initially nr_cpages. It is decremented by 1 each time a page 1381 * has been read (or failed to be read). When it reaches 0, the cluster 1382 * is decompressed (or an error is reported). 1383 * 1384 * If an error occurs before all the pages have been submitted for I/O, 1385 * then this will never reach 0. In this case the I/O submitter is 1386 * responsible for calling f2fs_decompress_end_io() instead. 1387 */ 1388 atomic_t remaining_pages; 1389 1390 /* 1391 * Number of references to this decompress_io_ctx. 1392 * 1393 * One reference is held for I/O completion. This reference is dropped 1394 * after the pagecache pages are updated and unlocked -- either after 1395 * decompression (and verity if enabled), or after an error. 1396 * 1397 * In addition, each compressed page holds a reference while it is in a 1398 * bio. These references are necessary prevent compressed pages from 1399 * being freed while they are still in a bio. 1400 */ 1401 refcount_t refcnt; 1402 1403 bool failed; /* IO error occurred before decompression? */ 1404 bool need_verity; /* need fs-verity verification after decompression? */ 1405 void *private; /* payload buffer for specified decompression algorithm */ 1406 void *private2; /* extra payload buffer */ 1407 struct work_struct verity_work; /* work to verify the decompressed pages */ 1408 }; 1409 1410 #define NULL_CLUSTER ((unsigned int)(~0)) 1411 #define MIN_COMPRESS_LOG_SIZE 2 1412 #define MAX_COMPRESS_LOG_SIZE 8 1413 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1414 1415 struct f2fs_sb_info { 1416 struct super_block *sb; /* pointer to VFS super block */ 1417 struct proc_dir_entry *s_proc; /* proc entry */ 1418 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1419 struct rw_semaphore sb_lock; /* lock for raw super block */ 1420 int valid_super_block; /* valid super block no */ 1421 unsigned long s_flag; /* flags for sbi */ 1422 struct mutex writepages; /* mutex for writepages() */ 1423 1424 #ifdef CONFIG_BLK_DEV_ZONED 1425 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1426 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1427 #endif 1428 1429 /* for node-related operations */ 1430 struct f2fs_nm_info *nm_info; /* node manager */ 1431 struct inode *node_inode; /* cache node blocks */ 1432 1433 /* for segment-related operations */ 1434 struct f2fs_sm_info *sm_info; /* segment manager */ 1435 1436 /* for bio operations */ 1437 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1438 /* keep migration IO order for LFS mode */ 1439 struct rw_semaphore io_order_lock; 1440 mempool_t *write_io_dummy; /* Dummy pages */ 1441 1442 /* for checkpoint */ 1443 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1444 int cur_cp_pack; /* remain current cp pack */ 1445 spinlock_t cp_lock; /* for flag in ckpt */ 1446 struct inode *meta_inode; /* cache meta blocks */ 1447 struct rw_semaphore cp_global_sem; /* checkpoint procedure lock */ 1448 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1449 struct rw_semaphore node_write; /* locking node writes */ 1450 struct rw_semaphore node_change; /* locking node change */ 1451 wait_queue_head_t cp_wait; 1452 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1453 long interval_time[MAX_TIME]; /* to store thresholds */ 1454 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1455 1456 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1457 1458 spinlock_t fsync_node_lock; /* for node entry lock */ 1459 struct list_head fsync_node_list; /* node list head */ 1460 unsigned int fsync_seg_id; /* sequence id */ 1461 unsigned int fsync_node_num; /* number of node entries */ 1462 1463 /* for orphan inode, use 0'th array */ 1464 unsigned int max_orphans; /* max orphan inodes */ 1465 1466 /* for inode management */ 1467 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1468 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1469 struct mutex flush_lock; /* for flush exclusion */ 1470 1471 /* for extent tree cache */ 1472 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1473 struct mutex extent_tree_lock; /* locking extent radix tree */ 1474 struct list_head extent_list; /* lru list for shrinker */ 1475 spinlock_t extent_lock; /* locking extent lru list */ 1476 atomic_t total_ext_tree; /* extent tree count */ 1477 struct list_head zombie_list; /* extent zombie tree list */ 1478 atomic_t total_zombie_tree; /* extent zombie tree count */ 1479 atomic_t total_ext_node; /* extent info count */ 1480 1481 /* basic filesystem units */ 1482 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1483 unsigned int log_blocksize; /* log2 block size */ 1484 unsigned int blocksize; /* block size */ 1485 unsigned int root_ino_num; /* root inode number*/ 1486 unsigned int node_ino_num; /* node inode number*/ 1487 unsigned int meta_ino_num; /* meta inode number*/ 1488 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1489 unsigned int blocks_per_seg; /* blocks per segment */ 1490 unsigned int segs_per_sec; /* segments per section */ 1491 unsigned int secs_per_zone; /* sections per zone */ 1492 unsigned int total_sections; /* total section count */ 1493 unsigned int total_node_count; /* total node block count */ 1494 unsigned int total_valid_node_count; /* valid node block count */ 1495 int dir_level; /* directory level */ 1496 int readdir_ra; /* readahead inode in readdir */ 1497 u64 max_io_bytes; /* max io bytes to merge IOs */ 1498 1499 block_t user_block_count; /* # of user blocks */ 1500 block_t total_valid_block_count; /* # of valid blocks */ 1501 block_t discard_blks; /* discard command candidats */ 1502 block_t last_valid_block_count; /* for recovery */ 1503 block_t reserved_blocks; /* configurable reserved blocks */ 1504 block_t current_reserved_blocks; /* current reserved blocks */ 1505 1506 /* Additional tracking for no checkpoint mode */ 1507 block_t unusable_block_count; /* # of blocks saved by last cp */ 1508 1509 unsigned int nquota_files; /* # of quota sysfile */ 1510 struct rw_semaphore quota_sem; /* blocking cp for flags */ 1511 1512 /* # of pages, see count_type */ 1513 atomic_t nr_pages[NR_COUNT_TYPE]; 1514 /* # of allocated blocks */ 1515 struct percpu_counter alloc_valid_block_count; 1516 1517 /* writeback control */ 1518 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1519 1520 /* valid inode count */ 1521 struct percpu_counter total_valid_inode_count; 1522 1523 struct f2fs_mount_info mount_opt; /* mount options */ 1524 1525 /* for cleaning operations */ 1526 struct rw_semaphore gc_lock; /* 1527 * semaphore for GC, avoid 1528 * race between GC and GC or CP 1529 */ 1530 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1531 struct atgc_management am; /* atgc management */ 1532 unsigned int cur_victim_sec; /* current victim section num */ 1533 unsigned int gc_mode; /* current GC state */ 1534 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1535 1536 /* for skip statistic */ 1537 unsigned int atomic_files; /* # of opened atomic file */ 1538 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1539 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1540 1541 /* threshold for gc trials on pinned files */ 1542 u64 gc_pin_file_threshold; 1543 struct rw_semaphore pin_sem; 1544 1545 /* maximum # of trials to find a victim segment for SSR and GC */ 1546 unsigned int max_victim_search; 1547 /* migration granularity of garbage collection, unit: segment */ 1548 unsigned int migration_granularity; 1549 1550 /* 1551 * for stat information. 1552 * one is for the LFS mode, and the other is for the SSR mode. 1553 */ 1554 #ifdef CONFIG_F2FS_STAT_FS 1555 struct f2fs_stat_info *stat_info; /* FS status information */ 1556 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1557 unsigned int segment_count[2]; /* # of allocated segments */ 1558 unsigned int block_count[2]; /* # of allocated blocks */ 1559 atomic_t inplace_count; /* # of inplace update */ 1560 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1561 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1562 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1563 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1564 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1565 atomic_t inline_inode; /* # of inline_data inodes */ 1566 atomic_t inline_dir; /* # of inline_dentry inodes */ 1567 atomic_t compr_inode; /* # of compressed inodes */ 1568 atomic64_t compr_blocks; /* # of compressed blocks */ 1569 atomic_t vw_cnt; /* # of volatile writes */ 1570 atomic_t max_aw_cnt; /* max # of atomic writes */ 1571 atomic_t max_vw_cnt; /* max # of volatile writes */ 1572 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1573 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1574 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1575 #endif 1576 spinlock_t stat_lock; /* lock for stat operations */ 1577 1578 /* For app/fs IO statistics */ 1579 spinlock_t iostat_lock; 1580 unsigned long long rw_iostat[NR_IO_TYPE]; 1581 unsigned long long prev_rw_iostat[NR_IO_TYPE]; 1582 bool iostat_enable; 1583 unsigned long iostat_next_period; 1584 unsigned int iostat_period_ms; 1585 1586 /* to attach REQ_META|REQ_FUA flags */ 1587 unsigned int data_io_flag; 1588 unsigned int node_io_flag; 1589 1590 /* For sysfs suppport */ 1591 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1592 struct completion s_kobj_unregister; 1593 1594 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1595 struct completion s_stat_kobj_unregister; 1596 1597 /* For shrinker support */ 1598 struct list_head s_list; 1599 int s_ndevs; /* number of devices */ 1600 struct f2fs_dev_info *devs; /* for device list */ 1601 unsigned int dirty_device; /* for checkpoint data flush */ 1602 spinlock_t dev_lock; /* protect dirty_device */ 1603 struct mutex umount_mutex; 1604 unsigned int shrinker_run_no; 1605 1606 /* For write statistics */ 1607 u64 sectors_written_start; 1608 u64 kbytes_written; 1609 1610 /* Reference to checksum algorithm driver via cryptoapi */ 1611 struct crypto_shash *s_chksum_driver; 1612 1613 /* Precomputed FS UUID checksum for seeding other checksums */ 1614 __u32 s_chksum_seed; 1615 1616 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1617 1618 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1619 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1620 1621 #ifdef CONFIG_F2FS_FS_COMPRESSION 1622 struct kmem_cache *page_array_slab; /* page array entry */ 1623 unsigned int page_array_slab_size; /* default page array slab size */ 1624 1625 /* For runtime compression statistics */ 1626 u64 compr_written_block; 1627 u64 compr_saved_block; 1628 u32 compr_new_inode; 1629 #endif 1630 }; 1631 1632 struct f2fs_private_dio { 1633 struct inode *inode; 1634 void *orig_private; 1635 bio_end_io_t *orig_end_io; 1636 bool write; 1637 }; 1638 1639 #ifdef CONFIG_F2FS_FAULT_INJECTION 1640 #define f2fs_show_injection_info(sbi, type) \ 1641 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \ 1642 KERN_INFO, sbi->sb->s_id, \ 1643 f2fs_fault_name[type], \ 1644 __func__, __builtin_return_address(0)) 1645 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1646 { 1647 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1648 1649 if (!ffi->inject_rate) 1650 return false; 1651 1652 if (!IS_FAULT_SET(ffi, type)) 1653 return false; 1654 1655 atomic_inc(&ffi->inject_ops); 1656 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1657 atomic_set(&ffi->inject_ops, 0); 1658 return true; 1659 } 1660 return false; 1661 } 1662 #else 1663 #define f2fs_show_injection_info(sbi, type) do { } while (0) 1664 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1665 { 1666 return false; 1667 } 1668 #endif 1669 1670 /* 1671 * Test if the mounted volume is a multi-device volume. 1672 * - For a single regular disk volume, sbi->s_ndevs is 0. 1673 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1674 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1675 */ 1676 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1677 { 1678 return sbi->s_ndevs > 1; 1679 } 1680 1681 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1682 { 1683 unsigned long now = jiffies; 1684 1685 sbi->last_time[type] = now; 1686 1687 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1688 if (type == REQ_TIME) { 1689 sbi->last_time[DISCARD_TIME] = now; 1690 sbi->last_time[GC_TIME] = now; 1691 } 1692 } 1693 1694 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1695 { 1696 unsigned long interval = sbi->interval_time[type] * HZ; 1697 1698 return time_after(jiffies, sbi->last_time[type] + interval); 1699 } 1700 1701 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1702 int type) 1703 { 1704 unsigned long interval = sbi->interval_time[type] * HZ; 1705 unsigned int wait_ms = 0; 1706 long delta; 1707 1708 delta = (sbi->last_time[type] + interval) - jiffies; 1709 if (delta > 0) 1710 wait_ms = jiffies_to_msecs(delta); 1711 1712 return wait_ms; 1713 } 1714 1715 /* 1716 * Inline functions 1717 */ 1718 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1719 const void *address, unsigned int length) 1720 { 1721 struct { 1722 struct shash_desc shash; 1723 char ctx[4]; 1724 } desc; 1725 int err; 1726 1727 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1728 1729 desc.shash.tfm = sbi->s_chksum_driver; 1730 *(u32 *)desc.ctx = crc; 1731 1732 err = crypto_shash_update(&desc.shash, address, length); 1733 BUG_ON(err); 1734 1735 return *(u32 *)desc.ctx; 1736 } 1737 1738 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1739 unsigned int length) 1740 { 1741 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1742 } 1743 1744 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1745 void *buf, size_t buf_size) 1746 { 1747 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1748 } 1749 1750 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1751 const void *address, unsigned int length) 1752 { 1753 return __f2fs_crc32(sbi, crc, address, length); 1754 } 1755 1756 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1757 { 1758 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1759 } 1760 1761 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1762 { 1763 return sb->s_fs_info; 1764 } 1765 1766 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1767 { 1768 return F2FS_SB(inode->i_sb); 1769 } 1770 1771 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1772 { 1773 return F2FS_I_SB(mapping->host); 1774 } 1775 1776 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1777 { 1778 return F2FS_M_SB(page_file_mapping(page)); 1779 } 1780 1781 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1782 { 1783 return (struct f2fs_super_block *)(sbi->raw_super); 1784 } 1785 1786 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1787 { 1788 return (struct f2fs_checkpoint *)(sbi->ckpt); 1789 } 1790 1791 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1792 { 1793 return (struct f2fs_node *)page_address(page); 1794 } 1795 1796 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1797 { 1798 return &((struct f2fs_node *)page_address(page))->i; 1799 } 1800 1801 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1802 { 1803 return (struct f2fs_nm_info *)(sbi->nm_info); 1804 } 1805 1806 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1807 { 1808 return (struct f2fs_sm_info *)(sbi->sm_info); 1809 } 1810 1811 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1812 { 1813 return (struct sit_info *)(SM_I(sbi)->sit_info); 1814 } 1815 1816 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1817 { 1818 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1819 } 1820 1821 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1822 { 1823 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1824 } 1825 1826 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1827 { 1828 return sbi->meta_inode->i_mapping; 1829 } 1830 1831 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1832 { 1833 return sbi->node_inode->i_mapping; 1834 } 1835 1836 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1837 { 1838 return test_bit(type, &sbi->s_flag); 1839 } 1840 1841 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1842 { 1843 set_bit(type, &sbi->s_flag); 1844 } 1845 1846 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1847 { 1848 clear_bit(type, &sbi->s_flag); 1849 } 1850 1851 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1852 { 1853 return le64_to_cpu(cp->checkpoint_ver); 1854 } 1855 1856 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1857 { 1858 if (type < F2FS_MAX_QUOTAS) 1859 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1860 return 0; 1861 } 1862 1863 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1864 { 1865 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1866 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1867 } 1868 1869 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1870 { 1871 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1872 1873 return ckpt_flags & f; 1874 } 1875 1876 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1877 { 1878 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1879 } 1880 1881 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1882 { 1883 unsigned int ckpt_flags; 1884 1885 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1886 ckpt_flags |= f; 1887 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1888 } 1889 1890 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1891 { 1892 unsigned long flags; 1893 1894 spin_lock_irqsave(&sbi->cp_lock, flags); 1895 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1896 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1897 } 1898 1899 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1900 { 1901 unsigned int ckpt_flags; 1902 1903 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1904 ckpt_flags &= (~f); 1905 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1906 } 1907 1908 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1909 { 1910 unsigned long flags; 1911 1912 spin_lock_irqsave(&sbi->cp_lock, flags); 1913 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1914 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1915 } 1916 1917 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1918 { 1919 unsigned long flags; 1920 unsigned char *nat_bits; 1921 1922 /* 1923 * In order to re-enable nat_bits we need to call fsck.f2fs by 1924 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost, 1925 * so let's rely on regular fsck or unclean shutdown. 1926 */ 1927 1928 if (lock) 1929 spin_lock_irqsave(&sbi->cp_lock, flags); 1930 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1931 nat_bits = NM_I(sbi)->nat_bits; 1932 NM_I(sbi)->nat_bits = NULL; 1933 if (lock) 1934 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1935 1936 kvfree(nat_bits); 1937 } 1938 1939 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1940 struct cp_control *cpc) 1941 { 1942 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1943 1944 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1945 } 1946 1947 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1948 { 1949 down_read(&sbi->cp_rwsem); 1950 } 1951 1952 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1953 { 1954 return down_read_trylock(&sbi->cp_rwsem); 1955 } 1956 1957 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1958 { 1959 up_read(&sbi->cp_rwsem); 1960 } 1961 1962 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1963 { 1964 down_write(&sbi->cp_rwsem); 1965 } 1966 1967 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1968 { 1969 up_write(&sbi->cp_rwsem); 1970 } 1971 1972 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1973 { 1974 int reason = CP_SYNC; 1975 1976 if (test_opt(sbi, FASTBOOT)) 1977 reason = CP_FASTBOOT; 1978 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1979 reason = CP_UMOUNT; 1980 return reason; 1981 } 1982 1983 static inline bool __remain_node_summaries(int reason) 1984 { 1985 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1986 } 1987 1988 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1989 { 1990 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1991 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1992 } 1993 1994 /* 1995 * Check whether the inode has blocks or not 1996 */ 1997 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1998 { 1999 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2000 2001 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2002 } 2003 2004 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2005 { 2006 return ofs == XATTR_NODE_OFFSET; 2007 } 2008 2009 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2010 struct inode *inode, bool cap) 2011 { 2012 if (!inode) 2013 return true; 2014 if (!test_opt(sbi, RESERVE_ROOT)) 2015 return false; 2016 if (IS_NOQUOTA(inode)) 2017 return true; 2018 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2019 return true; 2020 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2021 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2022 return true; 2023 if (cap && capable(CAP_SYS_RESOURCE)) 2024 return true; 2025 return false; 2026 } 2027 2028 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2029 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2030 struct inode *inode, blkcnt_t *count) 2031 { 2032 blkcnt_t diff = 0, release = 0; 2033 block_t avail_user_block_count; 2034 int ret; 2035 2036 ret = dquot_reserve_block(inode, *count); 2037 if (ret) 2038 return ret; 2039 2040 if (time_to_inject(sbi, FAULT_BLOCK)) { 2041 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2042 release = *count; 2043 goto release_quota; 2044 } 2045 2046 /* 2047 * let's increase this in prior to actual block count change in order 2048 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2049 */ 2050 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2051 2052 spin_lock(&sbi->stat_lock); 2053 sbi->total_valid_block_count += (block_t)(*count); 2054 avail_user_block_count = sbi->user_block_count - 2055 sbi->current_reserved_blocks; 2056 2057 if (!__allow_reserved_blocks(sbi, inode, true)) 2058 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2059 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2060 if (avail_user_block_count > sbi->unusable_block_count) 2061 avail_user_block_count -= sbi->unusable_block_count; 2062 else 2063 avail_user_block_count = 0; 2064 } 2065 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 2066 diff = sbi->total_valid_block_count - avail_user_block_count; 2067 if (diff > *count) 2068 diff = *count; 2069 *count -= diff; 2070 release = diff; 2071 sbi->total_valid_block_count -= diff; 2072 if (!*count) { 2073 spin_unlock(&sbi->stat_lock); 2074 goto enospc; 2075 } 2076 } 2077 spin_unlock(&sbi->stat_lock); 2078 2079 if (unlikely(release)) { 2080 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2081 dquot_release_reservation_block(inode, release); 2082 } 2083 f2fs_i_blocks_write(inode, *count, true, true); 2084 return 0; 2085 2086 enospc: 2087 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2088 release_quota: 2089 dquot_release_reservation_block(inode, release); 2090 return -ENOSPC; 2091 } 2092 2093 __printf(2, 3) 2094 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 2095 2096 #define f2fs_err(sbi, fmt, ...) \ 2097 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 2098 #define f2fs_warn(sbi, fmt, ...) \ 2099 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 2100 #define f2fs_notice(sbi, fmt, ...) \ 2101 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 2102 #define f2fs_info(sbi, fmt, ...) \ 2103 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 2104 #define f2fs_debug(sbi, fmt, ...) \ 2105 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 2106 2107 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2108 struct inode *inode, 2109 block_t count) 2110 { 2111 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2112 2113 spin_lock(&sbi->stat_lock); 2114 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2115 sbi->total_valid_block_count -= (block_t)count; 2116 if (sbi->reserved_blocks && 2117 sbi->current_reserved_blocks < sbi->reserved_blocks) 2118 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2119 sbi->current_reserved_blocks + count); 2120 spin_unlock(&sbi->stat_lock); 2121 if (unlikely(inode->i_blocks < sectors)) { 2122 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2123 inode->i_ino, 2124 (unsigned long long)inode->i_blocks, 2125 (unsigned long long)sectors); 2126 set_sbi_flag(sbi, SBI_NEED_FSCK); 2127 return; 2128 } 2129 f2fs_i_blocks_write(inode, count, false, true); 2130 } 2131 2132 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2133 { 2134 atomic_inc(&sbi->nr_pages[count_type]); 2135 2136 if (count_type == F2FS_DIRTY_DENTS || 2137 count_type == F2FS_DIRTY_NODES || 2138 count_type == F2FS_DIRTY_META || 2139 count_type == F2FS_DIRTY_QDATA || 2140 count_type == F2FS_DIRTY_IMETA) 2141 set_sbi_flag(sbi, SBI_IS_DIRTY); 2142 } 2143 2144 static inline void inode_inc_dirty_pages(struct inode *inode) 2145 { 2146 atomic_inc(&F2FS_I(inode)->dirty_pages); 2147 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2148 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2149 if (IS_NOQUOTA(inode)) 2150 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2151 } 2152 2153 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2154 { 2155 atomic_dec(&sbi->nr_pages[count_type]); 2156 } 2157 2158 static inline void inode_dec_dirty_pages(struct inode *inode) 2159 { 2160 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2161 !S_ISLNK(inode->i_mode)) 2162 return; 2163 2164 atomic_dec(&F2FS_I(inode)->dirty_pages); 2165 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2166 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2167 if (IS_NOQUOTA(inode)) 2168 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2169 } 2170 2171 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2172 { 2173 return atomic_read(&sbi->nr_pages[count_type]); 2174 } 2175 2176 static inline int get_dirty_pages(struct inode *inode) 2177 { 2178 return atomic_read(&F2FS_I(inode)->dirty_pages); 2179 } 2180 2181 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2182 { 2183 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 2184 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 2185 sbi->log_blocks_per_seg; 2186 2187 return segs / sbi->segs_per_sec; 2188 } 2189 2190 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2191 { 2192 return sbi->total_valid_block_count; 2193 } 2194 2195 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2196 { 2197 return sbi->discard_blks; 2198 } 2199 2200 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2201 { 2202 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2203 2204 /* return NAT or SIT bitmap */ 2205 if (flag == NAT_BITMAP) 2206 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2207 else if (flag == SIT_BITMAP) 2208 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2209 2210 return 0; 2211 } 2212 2213 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2214 { 2215 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2216 } 2217 2218 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2219 { 2220 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2221 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2222 int offset; 2223 2224 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2225 offset = (flag == SIT_BITMAP) ? 2226 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2227 /* 2228 * if large_nat_bitmap feature is enabled, leave checksum 2229 * protection for all nat/sit bitmaps. 2230 */ 2231 return tmp_ptr + offset + sizeof(__le32); 2232 } 2233 2234 if (__cp_payload(sbi) > 0) { 2235 if (flag == NAT_BITMAP) 2236 return &ckpt->sit_nat_version_bitmap; 2237 else 2238 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2239 } else { 2240 offset = (flag == NAT_BITMAP) ? 2241 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2242 return tmp_ptr + offset; 2243 } 2244 } 2245 2246 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2247 { 2248 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2249 2250 if (sbi->cur_cp_pack == 2) 2251 start_addr += sbi->blocks_per_seg; 2252 return start_addr; 2253 } 2254 2255 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2256 { 2257 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2258 2259 if (sbi->cur_cp_pack == 1) 2260 start_addr += sbi->blocks_per_seg; 2261 return start_addr; 2262 } 2263 2264 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2265 { 2266 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2267 } 2268 2269 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2270 { 2271 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2272 } 2273 2274 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2275 struct inode *inode, bool is_inode) 2276 { 2277 block_t valid_block_count; 2278 unsigned int valid_node_count, user_block_count; 2279 int err; 2280 2281 if (is_inode) { 2282 if (inode) { 2283 err = dquot_alloc_inode(inode); 2284 if (err) 2285 return err; 2286 } 2287 } else { 2288 err = dquot_reserve_block(inode, 1); 2289 if (err) 2290 return err; 2291 } 2292 2293 if (time_to_inject(sbi, FAULT_BLOCK)) { 2294 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2295 goto enospc; 2296 } 2297 2298 spin_lock(&sbi->stat_lock); 2299 2300 valid_block_count = sbi->total_valid_block_count + 2301 sbi->current_reserved_blocks + 1; 2302 2303 if (!__allow_reserved_blocks(sbi, inode, false)) 2304 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2305 user_block_count = sbi->user_block_count; 2306 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2307 user_block_count -= sbi->unusable_block_count; 2308 2309 if (unlikely(valid_block_count > user_block_count)) { 2310 spin_unlock(&sbi->stat_lock); 2311 goto enospc; 2312 } 2313 2314 valid_node_count = sbi->total_valid_node_count + 1; 2315 if (unlikely(valid_node_count > sbi->total_node_count)) { 2316 spin_unlock(&sbi->stat_lock); 2317 goto enospc; 2318 } 2319 2320 sbi->total_valid_node_count++; 2321 sbi->total_valid_block_count++; 2322 spin_unlock(&sbi->stat_lock); 2323 2324 if (inode) { 2325 if (is_inode) 2326 f2fs_mark_inode_dirty_sync(inode, true); 2327 else 2328 f2fs_i_blocks_write(inode, 1, true, true); 2329 } 2330 2331 percpu_counter_inc(&sbi->alloc_valid_block_count); 2332 return 0; 2333 2334 enospc: 2335 if (is_inode) { 2336 if (inode) 2337 dquot_free_inode(inode); 2338 } else { 2339 dquot_release_reservation_block(inode, 1); 2340 } 2341 return -ENOSPC; 2342 } 2343 2344 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2345 struct inode *inode, bool is_inode) 2346 { 2347 spin_lock(&sbi->stat_lock); 2348 2349 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 2350 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 2351 2352 sbi->total_valid_node_count--; 2353 sbi->total_valid_block_count--; 2354 if (sbi->reserved_blocks && 2355 sbi->current_reserved_blocks < sbi->reserved_blocks) 2356 sbi->current_reserved_blocks++; 2357 2358 spin_unlock(&sbi->stat_lock); 2359 2360 if (is_inode) { 2361 dquot_free_inode(inode); 2362 } else { 2363 if (unlikely(inode->i_blocks == 0)) { 2364 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2365 inode->i_ino, 2366 (unsigned long long)inode->i_blocks); 2367 set_sbi_flag(sbi, SBI_NEED_FSCK); 2368 return; 2369 } 2370 f2fs_i_blocks_write(inode, 1, false, true); 2371 } 2372 } 2373 2374 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2375 { 2376 return sbi->total_valid_node_count; 2377 } 2378 2379 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2380 { 2381 percpu_counter_inc(&sbi->total_valid_inode_count); 2382 } 2383 2384 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2385 { 2386 percpu_counter_dec(&sbi->total_valid_inode_count); 2387 } 2388 2389 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2390 { 2391 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2392 } 2393 2394 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2395 pgoff_t index, bool for_write) 2396 { 2397 struct page *page; 2398 2399 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2400 if (!for_write) 2401 page = find_get_page_flags(mapping, index, 2402 FGP_LOCK | FGP_ACCESSED); 2403 else 2404 page = find_lock_page(mapping, index); 2405 if (page) 2406 return page; 2407 2408 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2409 f2fs_show_injection_info(F2FS_M_SB(mapping), 2410 FAULT_PAGE_ALLOC); 2411 return NULL; 2412 } 2413 } 2414 2415 if (!for_write) 2416 return grab_cache_page(mapping, index); 2417 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 2418 } 2419 2420 static inline struct page *f2fs_pagecache_get_page( 2421 struct address_space *mapping, pgoff_t index, 2422 int fgp_flags, gfp_t gfp_mask) 2423 { 2424 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2425 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET); 2426 return NULL; 2427 } 2428 2429 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2430 } 2431 2432 static inline void f2fs_copy_page(struct page *src, struct page *dst) 2433 { 2434 char *src_kaddr = kmap(src); 2435 char *dst_kaddr = kmap(dst); 2436 2437 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 2438 kunmap(dst); 2439 kunmap(src); 2440 } 2441 2442 static inline void f2fs_put_page(struct page *page, int unlock) 2443 { 2444 if (!page) 2445 return; 2446 2447 if (unlock) { 2448 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2449 unlock_page(page); 2450 } 2451 put_page(page); 2452 } 2453 2454 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2455 { 2456 if (dn->node_page) 2457 f2fs_put_page(dn->node_page, 1); 2458 if (dn->inode_page && dn->node_page != dn->inode_page) 2459 f2fs_put_page(dn->inode_page, 0); 2460 dn->node_page = NULL; 2461 dn->inode_page = NULL; 2462 } 2463 2464 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2465 size_t size) 2466 { 2467 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2468 } 2469 2470 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2471 gfp_t flags) 2472 { 2473 void *entry; 2474 2475 entry = kmem_cache_alloc(cachep, flags); 2476 if (!entry) 2477 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2478 return entry; 2479 } 2480 2481 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2482 { 2483 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2484 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2485 get_pages(sbi, F2FS_WB_CP_DATA) || 2486 get_pages(sbi, F2FS_DIO_READ) || 2487 get_pages(sbi, F2FS_DIO_WRITE)) 2488 return true; 2489 2490 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2491 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2492 return true; 2493 2494 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2495 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2496 return true; 2497 return false; 2498 } 2499 2500 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2501 { 2502 if (sbi->gc_mode == GC_URGENT_HIGH) 2503 return true; 2504 2505 if (is_inflight_io(sbi, type)) 2506 return false; 2507 2508 if (sbi->gc_mode == GC_URGENT_LOW && 2509 (type == DISCARD_TIME || type == GC_TIME)) 2510 return true; 2511 2512 return f2fs_time_over(sbi, type); 2513 } 2514 2515 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2516 unsigned long index, void *item) 2517 { 2518 while (radix_tree_insert(root, index, item)) 2519 cond_resched(); 2520 } 2521 2522 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2523 2524 static inline bool IS_INODE(struct page *page) 2525 { 2526 struct f2fs_node *p = F2FS_NODE(page); 2527 2528 return RAW_IS_INODE(p); 2529 } 2530 2531 static inline int offset_in_addr(struct f2fs_inode *i) 2532 { 2533 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2534 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2535 } 2536 2537 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2538 { 2539 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2540 } 2541 2542 static inline int f2fs_has_extra_attr(struct inode *inode); 2543 static inline block_t data_blkaddr(struct inode *inode, 2544 struct page *node_page, unsigned int offset) 2545 { 2546 struct f2fs_node *raw_node; 2547 __le32 *addr_array; 2548 int base = 0; 2549 bool is_inode = IS_INODE(node_page); 2550 2551 raw_node = F2FS_NODE(node_page); 2552 2553 if (is_inode) { 2554 if (!inode) 2555 /* from GC path only */ 2556 base = offset_in_addr(&raw_node->i); 2557 else if (f2fs_has_extra_attr(inode)) 2558 base = get_extra_isize(inode); 2559 } 2560 2561 addr_array = blkaddr_in_node(raw_node); 2562 return le32_to_cpu(addr_array[base + offset]); 2563 } 2564 2565 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2566 { 2567 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2568 } 2569 2570 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2571 { 2572 int mask; 2573 2574 addr += (nr >> 3); 2575 mask = 1 << (7 - (nr & 0x07)); 2576 return mask & *addr; 2577 } 2578 2579 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2580 { 2581 int mask; 2582 2583 addr += (nr >> 3); 2584 mask = 1 << (7 - (nr & 0x07)); 2585 *addr |= mask; 2586 } 2587 2588 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2589 { 2590 int mask; 2591 2592 addr += (nr >> 3); 2593 mask = 1 << (7 - (nr & 0x07)); 2594 *addr &= ~mask; 2595 } 2596 2597 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2598 { 2599 int mask; 2600 int ret; 2601 2602 addr += (nr >> 3); 2603 mask = 1 << (7 - (nr & 0x07)); 2604 ret = mask & *addr; 2605 *addr |= mask; 2606 return ret; 2607 } 2608 2609 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2610 { 2611 int mask; 2612 int ret; 2613 2614 addr += (nr >> 3); 2615 mask = 1 << (7 - (nr & 0x07)); 2616 ret = mask & *addr; 2617 *addr &= ~mask; 2618 return ret; 2619 } 2620 2621 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2622 { 2623 int mask; 2624 2625 addr += (nr >> 3); 2626 mask = 1 << (7 - (nr & 0x07)); 2627 *addr ^= mask; 2628 } 2629 2630 /* 2631 * On-disk inode flags (f2fs_inode::i_flags) 2632 */ 2633 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2634 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2635 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2636 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2637 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2638 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2639 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2640 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2641 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2642 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2643 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2644 2645 /* Flags that should be inherited by new inodes from their parent. */ 2646 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2647 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2648 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL) 2649 2650 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2651 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2652 F2FS_CASEFOLD_FL)) 2653 2654 /* Flags that are appropriate for non-directories/regular files. */ 2655 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2656 2657 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2658 { 2659 if (S_ISDIR(mode)) 2660 return flags; 2661 else if (S_ISREG(mode)) 2662 return flags & F2FS_REG_FLMASK; 2663 else 2664 return flags & F2FS_OTHER_FLMASK; 2665 } 2666 2667 static inline void __mark_inode_dirty_flag(struct inode *inode, 2668 int flag, bool set) 2669 { 2670 switch (flag) { 2671 case FI_INLINE_XATTR: 2672 case FI_INLINE_DATA: 2673 case FI_INLINE_DENTRY: 2674 case FI_NEW_INODE: 2675 if (set) 2676 return; 2677 fallthrough; 2678 case FI_DATA_EXIST: 2679 case FI_INLINE_DOTS: 2680 case FI_PIN_FILE: 2681 f2fs_mark_inode_dirty_sync(inode, true); 2682 } 2683 } 2684 2685 static inline void set_inode_flag(struct inode *inode, int flag) 2686 { 2687 set_bit(flag, F2FS_I(inode)->flags); 2688 __mark_inode_dirty_flag(inode, flag, true); 2689 } 2690 2691 static inline int is_inode_flag_set(struct inode *inode, int flag) 2692 { 2693 return test_bit(flag, F2FS_I(inode)->flags); 2694 } 2695 2696 static inline void clear_inode_flag(struct inode *inode, int flag) 2697 { 2698 clear_bit(flag, F2FS_I(inode)->flags); 2699 __mark_inode_dirty_flag(inode, flag, false); 2700 } 2701 2702 static inline bool f2fs_verity_in_progress(struct inode *inode) 2703 { 2704 return IS_ENABLED(CONFIG_FS_VERITY) && 2705 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 2706 } 2707 2708 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2709 { 2710 F2FS_I(inode)->i_acl_mode = mode; 2711 set_inode_flag(inode, FI_ACL_MODE); 2712 f2fs_mark_inode_dirty_sync(inode, false); 2713 } 2714 2715 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2716 { 2717 if (inc) 2718 inc_nlink(inode); 2719 else 2720 drop_nlink(inode); 2721 f2fs_mark_inode_dirty_sync(inode, true); 2722 } 2723 2724 static inline void f2fs_i_blocks_write(struct inode *inode, 2725 block_t diff, bool add, bool claim) 2726 { 2727 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2728 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2729 2730 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2731 if (add) { 2732 if (claim) 2733 dquot_claim_block(inode, diff); 2734 else 2735 dquot_alloc_block_nofail(inode, diff); 2736 } else { 2737 dquot_free_block(inode, diff); 2738 } 2739 2740 f2fs_mark_inode_dirty_sync(inode, true); 2741 if (clean || recover) 2742 set_inode_flag(inode, FI_AUTO_RECOVER); 2743 } 2744 2745 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2746 { 2747 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2748 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2749 2750 if (i_size_read(inode) == i_size) 2751 return; 2752 2753 i_size_write(inode, i_size); 2754 f2fs_mark_inode_dirty_sync(inode, true); 2755 if (clean || recover) 2756 set_inode_flag(inode, FI_AUTO_RECOVER); 2757 } 2758 2759 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2760 { 2761 F2FS_I(inode)->i_current_depth = depth; 2762 f2fs_mark_inode_dirty_sync(inode, true); 2763 } 2764 2765 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2766 unsigned int count) 2767 { 2768 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2769 f2fs_mark_inode_dirty_sync(inode, true); 2770 } 2771 2772 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2773 { 2774 F2FS_I(inode)->i_xattr_nid = xnid; 2775 f2fs_mark_inode_dirty_sync(inode, true); 2776 } 2777 2778 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2779 { 2780 F2FS_I(inode)->i_pino = pino; 2781 f2fs_mark_inode_dirty_sync(inode, true); 2782 } 2783 2784 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2785 { 2786 struct f2fs_inode_info *fi = F2FS_I(inode); 2787 2788 if (ri->i_inline & F2FS_INLINE_XATTR) 2789 set_bit(FI_INLINE_XATTR, fi->flags); 2790 if (ri->i_inline & F2FS_INLINE_DATA) 2791 set_bit(FI_INLINE_DATA, fi->flags); 2792 if (ri->i_inline & F2FS_INLINE_DENTRY) 2793 set_bit(FI_INLINE_DENTRY, fi->flags); 2794 if (ri->i_inline & F2FS_DATA_EXIST) 2795 set_bit(FI_DATA_EXIST, fi->flags); 2796 if (ri->i_inline & F2FS_INLINE_DOTS) 2797 set_bit(FI_INLINE_DOTS, fi->flags); 2798 if (ri->i_inline & F2FS_EXTRA_ATTR) 2799 set_bit(FI_EXTRA_ATTR, fi->flags); 2800 if (ri->i_inline & F2FS_PIN_FILE) 2801 set_bit(FI_PIN_FILE, fi->flags); 2802 } 2803 2804 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2805 { 2806 ri->i_inline = 0; 2807 2808 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2809 ri->i_inline |= F2FS_INLINE_XATTR; 2810 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2811 ri->i_inline |= F2FS_INLINE_DATA; 2812 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2813 ri->i_inline |= F2FS_INLINE_DENTRY; 2814 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2815 ri->i_inline |= F2FS_DATA_EXIST; 2816 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2817 ri->i_inline |= F2FS_INLINE_DOTS; 2818 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2819 ri->i_inline |= F2FS_EXTRA_ATTR; 2820 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2821 ri->i_inline |= F2FS_PIN_FILE; 2822 } 2823 2824 static inline int f2fs_has_extra_attr(struct inode *inode) 2825 { 2826 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2827 } 2828 2829 static inline int f2fs_has_inline_xattr(struct inode *inode) 2830 { 2831 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2832 } 2833 2834 static inline int f2fs_compressed_file(struct inode *inode) 2835 { 2836 return S_ISREG(inode->i_mode) && 2837 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 2838 } 2839 2840 static inline bool f2fs_need_compress_data(struct inode *inode) 2841 { 2842 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 2843 2844 if (!f2fs_compressed_file(inode)) 2845 return false; 2846 2847 if (compress_mode == COMPR_MODE_FS) 2848 return true; 2849 else if (compress_mode == COMPR_MODE_USER && 2850 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 2851 return true; 2852 2853 return false; 2854 } 2855 2856 static inline unsigned int addrs_per_inode(struct inode *inode) 2857 { 2858 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 2859 get_inline_xattr_addrs(inode); 2860 2861 if (!f2fs_compressed_file(inode)) 2862 return addrs; 2863 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 2864 } 2865 2866 static inline unsigned int addrs_per_block(struct inode *inode) 2867 { 2868 if (!f2fs_compressed_file(inode)) 2869 return DEF_ADDRS_PER_BLOCK; 2870 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 2871 } 2872 2873 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2874 { 2875 struct f2fs_inode *ri = F2FS_INODE(page); 2876 2877 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2878 get_inline_xattr_addrs(inode)]); 2879 } 2880 2881 static inline int inline_xattr_size(struct inode *inode) 2882 { 2883 if (f2fs_has_inline_xattr(inode)) 2884 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2885 return 0; 2886 } 2887 2888 static inline int f2fs_has_inline_data(struct inode *inode) 2889 { 2890 return is_inode_flag_set(inode, FI_INLINE_DATA); 2891 } 2892 2893 static inline int f2fs_exist_data(struct inode *inode) 2894 { 2895 return is_inode_flag_set(inode, FI_DATA_EXIST); 2896 } 2897 2898 static inline int f2fs_has_inline_dots(struct inode *inode) 2899 { 2900 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2901 } 2902 2903 static inline int f2fs_is_mmap_file(struct inode *inode) 2904 { 2905 return is_inode_flag_set(inode, FI_MMAP_FILE); 2906 } 2907 2908 static inline bool f2fs_is_pinned_file(struct inode *inode) 2909 { 2910 return is_inode_flag_set(inode, FI_PIN_FILE); 2911 } 2912 2913 static inline bool f2fs_is_atomic_file(struct inode *inode) 2914 { 2915 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2916 } 2917 2918 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2919 { 2920 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2921 } 2922 2923 static inline bool f2fs_is_volatile_file(struct inode *inode) 2924 { 2925 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2926 } 2927 2928 static inline bool f2fs_is_first_block_written(struct inode *inode) 2929 { 2930 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2931 } 2932 2933 static inline bool f2fs_is_drop_cache(struct inode *inode) 2934 { 2935 return is_inode_flag_set(inode, FI_DROP_CACHE); 2936 } 2937 2938 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2939 { 2940 struct f2fs_inode *ri = F2FS_INODE(page); 2941 int extra_size = get_extra_isize(inode); 2942 2943 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2944 } 2945 2946 static inline int f2fs_has_inline_dentry(struct inode *inode) 2947 { 2948 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2949 } 2950 2951 static inline int is_file(struct inode *inode, int type) 2952 { 2953 return F2FS_I(inode)->i_advise & type; 2954 } 2955 2956 static inline void set_file(struct inode *inode, int type) 2957 { 2958 F2FS_I(inode)->i_advise |= type; 2959 f2fs_mark_inode_dirty_sync(inode, true); 2960 } 2961 2962 static inline void clear_file(struct inode *inode, int type) 2963 { 2964 F2FS_I(inode)->i_advise &= ~type; 2965 f2fs_mark_inode_dirty_sync(inode, true); 2966 } 2967 2968 static inline bool f2fs_is_time_consistent(struct inode *inode) 2969 { 2970 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 2971 return false; 2972 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 2973 return false; 2974 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 2975 return false; 2976 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 2977 &F2FS_I(inode)->i_crtime)) 2978 return false; 2979 return true; 2980 } 2981 2982 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2983 { 2984 bool ret; 2985 2986 if (dsync) { 2987 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2988 2989 spin_lock(&sbi->inode_lock[DIRTY_META]); 2990 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2991 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2992 return ret; 2993 } 2994 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2995 file_keep_isize(inode) || 2996 i_size_read(inode) & ~PAGE_MASK) 2997 return false; 2998 2999 if (!f2fs_is_time_consistent(inode)) 3000 return false; 3001 3002 spin_lock(&F2FS_I(inode)->i_size_lock); 3003 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3004 spin_unlock(&F2FS_I(inode)->i_size_lock); 3005 3006 return ret; 3007 } 3008 3009 static inline bool f2fs_readonly(struct super_block *sb) 3010 { 3011 return sb_rdonly(sb); 3012 } 3013 3014 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3015 { 3016 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3017 } 3018 3019 static inline bool is_dot_dotdot(const u8 *name, size_t len) 3020 { 3021 if (len == 1 && name[0] == '.') 3022 return true; 3023 3024 if (len == 2 && name[0] == '.' && name[1] == '.') 3025 return true; 3026 3027 return false; 3028 } 3029 3030 static inline bool f2fs_may_extent_tree(struct inode *inode) 3031 { 3032 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3033 3034 if (!test_opt(sbi, EXTENT_CACHE) || 3035 is_inode_flag_set(inode, FI_NO_EXTENT) || 3036 is_inode_flag_set(inode, FI_COMPRESSED_FILE)) 3037 return false; 3038 3039 /* 3040 * for recovered files during mount do not create extents 3041 * if shrinker is not registered. 3042 */ 3043 if (list_empty(&sbi->s_list)) 3044 return false; 3045 3046 return S_ISREG(inode->i_mode); 3047 } 3048 3049 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3050 size_t size, gfp_t flags) 3051 { 3052 if (time_to_inject(sbi, FAULT_KMALLOC)) { 3053 f2fs_show_injection_info(sbi, FAULT_KMALLOC); 3054 return NULL; 3055 } 3056 3057 return kmalloc(size, flags); 3058 } 3059 3060 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3061 size_t size, gfp_t flags) 3062 { 3063 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3064 } 3065 3066 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3067 size_t size, gfp_t flags) 3068 { 3069 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 3070 f2fs_show_injection_info(sbi, FAULT_KVMALLOC); 3071 return NULL; 3072 } 3073 3074 return kvmalloc(size, flags); 3075 } 3076 3077 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3078 size_t size, gfp_t flags) 3079 { 3080 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3081 } 3082 3083 static inline int get_extra_isize(struct inode *inode) 3084 { 3085 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3086 } 3087 3088 static inline int get_inline_xattr_addrs(struct inode *inode) 3089 { 3090 return F2FS_I(inode)->i_inline_xattr_size; 3091 } 3092 3093 #define f2fs_get_inode_mode(i) \ 3094 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3095 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3096 3097 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3098 (offsetof(struct f2fs_inode, i_extra_end) - \ 3099 offsetof(struct f2fs_inode, i_extra_isize)) \ 3100 3101 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3102 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3103 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3104 sizeof((f2fs_inode)->field)) \ 3105 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3106 3107 #define DEFAULT_IOSTAT_PERIOD_MS 3000 3108 #define MIN_IOSTAT_PERIOD_MS 100 3109 /* maximum period of iostat tracing is 1 day */ 3110 #define MAX_IOSTAT_PERIOD_MS 8640000 3111 3112 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 3113 { 3114 int i; 3115 3116 spin_lock(&sbi->iostat_lock); 3117 for (i = 0; i < NR_IO_TYPE; i++) { 3118 sbi->rw_iostat[i] = 0; 3119 sbi->prev_rw_iostat[i] = 0; 3120 } 3121 spin_unlock(&sbi->iostat_lock); 3122 } 3123 3124 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi); 3125 3126 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 3127 enum iostat_type type, unsigned long long io_bytes) 3128 { 3129 if (!sbi->iostat_enable) 3130 return; 3131 spin_lock(&sbi->iostat_lock); 3132 sbi->rw_iostat[type] += io_bytes; 3133 3134 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 3135 sbi->rw_iostat[APP_BUFFERED_IO] = 3136 sbi->rw_iostat[APP_WRITE_IO] - 3137 sbi->rw_iostat[APP_DIRECT_IO]; 3138 3139 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO) 3140 sbi->rw_iostat[APP_BUFFERED_READ_IO] = 3141 sbi->rw_iostat[APP_READ_IO] - 3142 sbi->rw_iostat[APP_DIRECT_READ_IO]; 3143 spin_unlock(&sbi->iostat_lock); 3144 3145 f2fs_record_iostat(sbi); 3146 } 3147 3148 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 3149 3150 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3151 3152 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3153 block_t blkaddr, int type); 3154 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3155 block_t blkaddr, int type) 3156 { 3157 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 3158 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3159 blkaddr, type); 3160 f2fs_bug_on(sbi, 1); 3161 } 3162 } 3163 3164 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3165 { 3166 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3167 blkaddr == COMPRESS_ADDR) 3168 return false; 3169 return true; 3170 } 3171 3172 static inline void f2fs_set_page_private(struct page *page, 3173 unsigned long data) 3174 { 3175 if (PagePrivate(page)) 3176 return; 3177 3178 attach_page_private(page, (void *)data); 3179 } 3180 3181 static inline void f2fs_clear_page_private(struct page *page) 3182 { 3183 detach_page_private(page); 3184 } 3185 3186 /* 3187 * file.c 3188 */ 3189 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3190 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 3191 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3192 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3193 int f2fs_truncate(struct inode *inode); 3194 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 3195 struct kstat *stat, u32 request_mask, unsigned int flags); 3196 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 3197 struct iattr *attr); 3198 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3199 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3200 int f2fs_precache_extents(struct inode *inode); 3201 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3202 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3203 struct dentry *dentry, struct fileattr *fa); 3204 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3205 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3206 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3207 int f2fs_pin_file_control(struct inode *inode, bool inc); 3208 3209 /* 3210 * inode.c 3211 */ 3212 void f2fs_set_inode_flags(struct inode *inode); 3213 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3214 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3215 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3216 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3217 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3218 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3219 void f2fs_update_inode_page(struct inode *inode); 3220 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3221 void f2fs_evict_inode(struct inode *inode); 3222 void f2fs_handle_failed_inode(struct inode *inode); 3223 3224 /* 3225 * namei.c 3226 */ 3227 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3228 bool hot, bool set); 3229 struct dentry *f2fs_get_parent(struct dentry *child); 3230 3231 /* 3232 * dir.c 3233 */ 3234 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 3235 int f2fs_init_casefolded_name(const struct inode *dir, 3236 struct f2fs_filename *fname); 3237 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3238 int lookup, struct f2fs_filename *fname); 3239 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3240 struct f2fs_filename *fname); 3241 void f2fs_free_filename(struct f2fs_filename *fname); 3242 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3243 const struct f2fs_filename *fname, int *max_slots); 3244 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3245 unsigned int start_pos, struct fscrypt_str *fstr); 3246 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3247 struct f2fs_dentry_ptr *d); 3248 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3249 const struct f2fs_filename *fname, struct page *dpage); 3250 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3251 unsigned int current_depth); 3252 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3253 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3254 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3255 const struct f2fs_filename *fname, 3256 struct page **res_page); 3257 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3258 const struct qstr *child, struct page **res_page); 3259 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3260 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3261 struct page **page); 3262 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3263 struct page *page, struct inode *inode); 3264 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3265 const struct f2fs_filename *fname); 3266 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3267 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3268 unsigned int bit_pos); 3269 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3270 struct inode *inode, nid_t ino, umode_t mode); 3271 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3272 struct inode *inode, nid_t ino, umode_t mode); 3273 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3274 struct inode *inode, nid_t ino, umode_t mode); 3275 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3276 struct inode *dir, struct inode *inode); 3277 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 3278 bool f2fs_empty_dir(struct inode *dir); 3279 3280 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3281 { 3282 if (fscrypt_is_nokey_name(dentry)) 3283 return -ENOKEY; 3284 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3285 inode, inode->i_ino, inode->i_mode); 3286 } 3287 3288 /* 3289 * super.c 3290 */ 3291 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3292 void f2fs_inode_synced(struct inode *inode); 3293 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3294 int f2fs_quota_sync(struct super_block *sb, int type); 3295 loff_t max_file_blocks(struct inode *inode); 3296 void f2fs_quota_off_umount(struct super_block *sb); 3297 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3298 int f2fs_sync_fs(struct super_block *sb, int sync); 3299 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3300 3301 /* 3302 * hash.c 3303 */ 3304 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3305 3306 /* 3307 * node.c 3308 */ 3309 struct node_info; 3310 3311 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3312 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3313 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3314 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3315 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3316 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3317 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3318 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3319 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3320 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3321 struct node_info *ni); 3322 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3323 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3324 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3325 int f2fs_truncate_xattr_node(struct inode *inode); 3326 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3327 unsigned int seq_id); 3328 int f2fs_remove_inode_page(struct inode *inode); 3329 struct page *f2fs_new_inode_page(struct inode *inode); 3330 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3331 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3332 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3333 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3334 int f2fs_move_node_page(struct page *node_page, int gc_type); 3335 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3336 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3337 struct writeback_control *wbc, bool atomic, 3338 unsigned int *seq_id); 3339 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3340 struct writeback_control *wbc, 3341 bool do_balance, enum iostat_type io_type); 3342 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3343 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3344 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3345 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3346 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3347 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3348 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3349 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3350 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3351 unsigned int segno, struct f2fs_summary_block *sum); 3352 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3353 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3354 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3355 int __init f2fs_create_node_manager_caches(void); 3356 void f2fs_destroy_node_manager_caches(void); 3357 3358 /* 3359 * segment.c 3360 */ 3361 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3362 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 3363 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 3364 void f2fs_drop_inmem_pages(struct inode *inode); 3365 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 3366 int f2fs_commit_inmem_pages(struct inode *inode); 3367 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3368 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3369 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3370 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3371 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3372 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3373 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3374 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3375 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3376 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3377 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3378 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3379 struct cp_control *cpc); 3380 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3381 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3382 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3383 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3384 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3385 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3386 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3387 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3388 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3389 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3390 unsigned int *newseg, bool new_sec, int dir); 3391 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3392 unsigned int start, unsigned int end); 3393 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3394 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3395 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3396 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3397 struct cp_control *cpc); 3398 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3399 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3400 block_t blk_addr); 3401 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3402 enum iostat_type io_type); 3403 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3404 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3405 struct f2fs_io_info *fio); 3406 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3407 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3408 block_t old_blkaddr, block_t new_blkaddr, 3409 bool recover_curseg, bool recover_newaddr, 3410 bool from_gc); 3411 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3412 block_t old_addr, block_t new_addr, 3413 unsigned char version, bool recover_curseg, 3414 bool recover_newaddr); 3415 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3416 block_t old_blkaddr, block_t *new_blkaddr, 3417 struct f2fs_summary *sum, int type, 3418 struct f2fs_io_info *fio); 3419 void f2fs_wait_on_page_writeback(struct page *page, 3420 enum page_type type, bool ordered, bool locked); 3421 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3422 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3423 block_t len); 3424 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3425 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3426 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3427 unsigned int val, int alloc); 3428 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3429 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3430 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3431 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3432 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3433 int __init f2fs_create_segment_manager_caches(void); 3434 void f2fs_destroy_segment_manager_caches(void); 3435 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3436 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3437 enum page_type type, enum temp_type temp); 3438 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3439 unsigned int segno); 3440 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3441 unsigned int segno); 3442 3443 /* 3444 * checkpoint.c 3445 */ 3446 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 3447 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3448 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3449 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3450 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3451 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3452 block_t blkaddr, int type); 3453 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3454 int type, bool sync); 3455 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 3456 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3457 long nr_to_write, enum iostat_type io_type); 3458 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3459 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3460 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3461 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3462 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3463 unsigned int devidx, int type); 3464 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3465 unsigned int devidx, int type); 3466 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3467 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3468 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3469 void f2fs_add_orphan_inode(struct inode *inode); 3470 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3471 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3472 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3473 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 3474 void f2fs_remove_dirty_inode(struct inode *inode); 3475 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 3476 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3477 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3478 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3479 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3480 int __init f2fs_create_checkpoint_caches(void); 3481 void f2fs_destroy_checkpoint_caches(void); 3482 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3483 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3484 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3485 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3486 3487 /* 3488 * data.c 3489 */ 3490 int __init f2fs_init_bioset(void); 3491 void f2fs_destroy_bioset(void); 3492 int f2fs_init_bio_entry_cache(void); 3493 void f2fs_destroy_bio_entry_cache(void); 3494 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 3495 struct bio *bio, enum page_type type); 3496 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3497 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3498 struct inode *inode, struct page *page, 3499 nid_t ino, enum page_type type); 3500 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3501 struct bio **bio, struct page *page); 3502 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3503 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3504 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3505 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3506 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3507 block_t blk_addr, struct bio *bio); 3508 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3509 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3510 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3511 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3512 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3513 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3514 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 3515 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3516 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3517 int op_flags, bool for_write); 3518 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 3519 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3520 bool for_write); 3521 struct page *f2fs_get_new_data_page(struct inode *inode, 3522 struct page *ipage, pgoff_t index, bool new_i_size); 3523 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3524 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock); 3525 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3526 int create, int flag); 3527 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3528 u64 start, u64 len); 3529 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3530 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3531 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3532 int f2fs_write_single_data_page(struct page *page, int *submitted, 3533 struct bio **bio, sector_t *last_block, 3534 struct writeback_control *wbc, 3535 enum iostat_type io_type, 3536 int compr_blocks, bool allow_balance); 3537 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3538 unsigned int length); 3539 int f2fs_release_page(struct page *page, gfp_t wait); 3540 #ifdef CONFIG_MIGRATION 3541 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 3542 struct page *page, enum migrate_mode mode); 3543 #endif 3544 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3545 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3546 int f2fs_init_post_read_processing(void); 3547 void f2fs_destroy_post_read_processing(void); 3548 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3549 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3550 3551 /* 3552 * gc.c 3553 */ 3554 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3555 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3556 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3557 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force, 3558 unsigned int segno); 3559 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3560 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3561 int __init f2fs_create_garbage_collection_cache(void); 3562 void f2fs_destroy_garbage_collection_cache(void); 3563 3564 /* 3565 * recovery.c 3566 */ 3567 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3568 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3569 3570 /* 3571 * debug.c 3572 */ 3573 #ifdef CONFIG_F2FS_STAT_FS 3574 struct f2fs_stat_info { 3575 struct list_head stat_list; 3576 struct f2fs_sb_info *sbi; 3577 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3578 int main_area_segs, main_area_sections, main_area_zones; 3579 unsigned long long hit_largest, hit_cached, hit_rbtree; 3580 unsigned long long hit_total, total_ext; 3581 int ext_tree, zombie_tree, ext_node; 3582 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3583 int ndirty_data, ndirty_qdata; 3584 int inmem_pages; 3585 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3586 int nats, dirty_nats, sits, dirty_sits; 3587 int free_nids, avail_nids, alloc_nids; 3588 int total_count, utilization; 3589 int bg_gc, nr_wb_cp_data, nr_wb_data; 3590 int nr_rd_data, nr_rd_node, nr_rd_meta; 3591 int nr_dio_read, nr_dio_write; 3592 unsigned int io_skip_bggc, other_skip_bggc; 3593 int nr_flushing, nr_flushed, flush_list_empty; 3594 int nr_discarding, nr_discarded; 3595 int nr_discard_cmd; 3596 unsigned int undiscard_blks; 3597 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3598 unsigned int cur_ckpt_time, peak_ckpt_time; 3599 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3600 int compr_inode; 3601 unsigned long long compr_blocks; 3602 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3603 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3604 unsigned int bimodal, avg_vblocks; 3605 int util_free, util_valid, util_invalid; 3606 int rsvd_segs, overp_segs; 3607 int dirty_count, node_pages, meta_pages; 3608 int prefree_count, call_count, cp_count, bg_cp_count; 3609 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3610 int bg_node_segs, bg_data_segs; 3611 int tot_blks, data_blks, node_blks; 3612 int bg_data_blks, bg_node_blks; 3613 unsigned long long skipped_atomic_files[2]; 3614 int curseg[NR_CURSEG_TYPE]; 3615 int cursec[NR_CURSEG_TYPE]; 3616 int curzone[NR_CURSEG_TYPE]; 3617 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3618 unsigned int full_seg[NR_CURSEG_TYPE]; 3619 unsigned int valid_blks[NR_CURSEG_TYPE]; 3620 3621 unsigned int meta_count[META_MAX]; 3622 unsigned int segment_count[2]; 3623 unsigned int block_count[2]; 3624 unsigned int inplace_count; 3625 unsigned long long base_mem, cache_mem, page_mem; 3626 }; 3627 3628 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3629 { 3630 return (struct f2fs_stat_info *)sbi->stat_info; 3631 } 3632 3633 #define stat_inc_cp_count(si) ((si)->cp_count++) 3634 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3635 #define stat_inc_call_count(si) ((si)->call_count++) 3636 #define stat_inc_bggc_count(si) ((si)->bg_gc++) 3637 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3638 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3639 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3640 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3641 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3642 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3643 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3644 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3645 #define stat_inc_inline_xattr(inode) \ 3646 do { \ 3647 if (f2fs_has_inline_xattr(inode)) \ 3648 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3649 } while (0) 3650 #define stat_dec_inline_xattr(inode) \ 3651 do { \ 3652 if (f2fs_has_inline_xattr(inode)) \ 3653 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3654 } while (0) 3655 #define stat_inc_inline_inode(inode) \ 3656 do { \ 3657 if (f2fs_has_inline_data(inode)) \ 3658 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3659 } while (0) 3660 #define stat_dec_inline_inode(inode) \ 3661 do { \ 3662 if (f2fs_has_inline_data(inode)) \ 3663 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3664 } while (0) 3665 #define stat_inc_inline_dir(inode) \ 3666 do { \ 3667 if (f2fs_has_inline_dentry(inode)) \ 3668 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3669 } while (0) 3670 #define stat_dec_inline_dir(inode) \ 3671 do { \ 3672 if (f2fs_has_inline_dentry(inode)) \ 3673 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3674 } while (0) 3675 #define stat_inc_compr_inode(inode) \ 3676 do { \ 3677 if (f2fs_compressed_file(inode)) \ 3678 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 3679 } while (0) 3680 #define stat_dec_compr_inode(inode) \ 3681 do { \ 3682 if (f2fs_compressed_file(inode)) \ 3683 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 3684 } while (0) 3685 #define stat_add_compr_blocks(inode, blocks) \ 3686 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3687 #define stat_sub_compr_blocks(inode, blocks) \ 3688 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3689 #define stat_inc_meta_count(sbi, blkaddr) \ 3690 do { \ 3691 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3692 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3693 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3694 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3695 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3696 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3697 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3698 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3699 } while (0) 3700 #define stat_inc_seg_type(sbi, curseg) \ 3701 ((sbi)->segment_count[(curseg)->alloc_type]++) 3702 #define stat_inc_block_count(sbi, curseg) \ 3703 ((sbi)->block_count[(curseg)->alloc_type]++) 3704 #define stat_inc_inplace_blocks(sbi) \ 3705 (atomic_inc(&(sbi)->inplace_count)) 3706 #define stat_update_max_atomic_write(inode) \ 3707 do { \ 3708 int cur = F2FS_I_SB(inode)->atomic_files; \ 3709 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3710 if (cur > max) \ 3711 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3712 } while (0) 3713 #define stat_inc_volatile_write(inode) \ 3714 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3715 #define stat_dec_volatile_write(inode) \ 3716 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3717 #define stat_update_max_volatile_write(inode) \ 3718 do { \ 3719 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3720 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3721 if (cur > max) \ 3722 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3723 } while (0) 3724 #define stat_inc_seg_count(sbi, type, gc_type) \ 3725 do { \ 3726 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3727 si->tot_segs++; \ 3728 if ((type) == SUM_TYPE_DATA) { \ 3729 si->data_segs++; \ 3730 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3731 } else { \ 3732 si->node_segs++; \ 3733 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3734 } \ 3735 } while (0) 3736 3737 #define stat_inc_tot_blk_count(si, blks) \ 3738 ((si)->tot_blks += (blks)) 3739 3740 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3741 do { \ 3742 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3743 stat_inc_tot_blk_count(si, blks); \ 3744 si->data_blks += (blks); \ 3745 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3746 } while (0) 3747 3748 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3749 do { \ 3750 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3751 stat_inc_tot_blk_count(si, blks); \ 3752 si->node_blks += (blks); \ 3753 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3754 } while (0) 3755 3756 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3757 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3758 void __init f2fs_create_root_stats(void); 3759 void f2fs_destroy_root_stats(void); 3760 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 3761 #else 3762 #define stat_inc_cp_count(si) do { } while (0) 3763 #define stat_inc_bg_cp_count(si) do { } while (0) 3764 #define stat_inc_call_count(si) do { } while (0) 3765 #define stat_inc_bggc_count(si) do { } while (0) 3766 #define stat_io_skip_bggc_count(sbi) do { } while (0) 3767 #define stat_other_skip_bggc_count(sbi) do { } while (0) 3768 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3769 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3770 #define stat_inc_total_hit(sbi) do { } while (0) 3771 #define stat_inc_rbtree_node_hit(sbi) do { } while (0) 3772 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3773 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3774 #define stat_inc_inline_xattr(inode) do { } while (0) 3775 #define stat_dec_inline_xattr(inode) do { } while (0) 3776 #define stat_inc_inline_inode(inode) do { } while (0) 3777 #define stat_dec_inline_inode(inode) do { } while (0) 3778 #define stat_inc_inline_dir(inode) do { } while (0) 3779 #define stat_dec_inline_dir(inode) do { } while (0) 3780 #define stat_inc_compr_inode(inode) do { } while (0) 3781 #define stat_dec_compr_inode(inode) do { } while (0) 3782 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 3783 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 3784 #define stat_update_max_atomic_write(inode) do { } while (0) 3785 #define stat_inc_volatile_write(inode) do { } while (0) 3786 #define stat_dec_volatile_write(inode) do { } while (0) 3787 #define stat_update_max_volatile_write(inode) do { } while (0) 3788 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 3789 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3790 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3791 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3792 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3793 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3794 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3795 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3796 3797 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3798 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3799 static inline void __init f2fs_create_root_stats(void) { } 3800 static inline void f2fs_destroy_root_stats(void) { } 3801 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 3802 #endif 3803 3804 extern const struct file_operations f2fs_dir_operations; 3805 extern const struct file_operations f2fs_file_operations; 3806 extern const struct inode_operations f2fs_file_inode_operations; 3807 extern const struct address_space_operations f2fs_dblock_aops; 3808 extern const struct address_space_operations f2fs_node_aops; 3809 extern const struct address_space_operations f2fs_meta_aops; 3810 extern const struct inode_operations f2fs_dir_inode_operations; 3811 extern const struct inode_operations f2fs_symlink_inode_operations; 3812 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3813 extern const struct inode_operations f2fs_special_inode_operations; 3814 extern struct kmem_cache *f2fs_inode_entry_slab; 3815 3816 /* 3817 * inline.c 3818 */ 3819 bool f2fs_may_inline_data(struct inode *inode); 3820 bool f2fs_may_inline_dentry(struct inode *inode); 3821 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3822 void f2fs_truncate_inline_inode(struct inode *inode, 3823 struct page *ipage, u64 from); 3824 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3825 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3826 int f2fs_convert_inline_inode(struct inode *inode); 3827 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 3828 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3829 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3830 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3831 const struct f2fs_filename *fname, 3832 struct page **res_page); 3833 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3834 struct page *ipage); 3835 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 3836 struct inode *inode, nid_t ino, umode_t mode); 3837 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3838 struct page *page, struct inode *dir, 3839 struct inode *inode); 3840 bool f2fs_empty_inline_dir(struct inode *dir); 3841 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3842 struct fscrypt_str *fstr); 3843 int f2fs_inline_data_fiemap(struct inode *inode, 3844 struct fiemap_extent_info *fieinfo, 3845 __u64 start, __u64 len); 3846 3847 /* 3848 * shrinker.c 3849 */ 3850 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3851 struct shrink_control *sc); 3852 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3853 struct shrink_control *sc); 3854 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3855 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3856 3857 /* 3858 * extent_cache.c 3859 */ 3860 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 3861 struct rb_entry *cached_re, unsigned int ofs); 3862 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi, 3863 struct rb_root_cached *root, 3864 struct rb_node **parent, 3865 unsigned long long key, bool *left_most); 3866 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3867 struct rb_root_cached *root, 3868 struct rb_node **parent, 3869 unsigned int ofs, bool *leftmost); 3870 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 3871 struct rb_entry *cached_re, unsigned int ofs, 3872 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3873 struct rb_node ***insert_p, struct rb_node **insert_parent, 3874 bool force, bool *leftmost); 3875 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3876 struct rb_root_cached *root, bool check_key); 3877 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3878 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage); 3879 void f2fs_drop_extent_tree(struct inode *inode); 3880 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3881 void f2fs_destroy_extent_tree(struct inode *inode); 3882 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3883 struct extent_info *ei); 3884 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3885 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3886 pgoff_t fofs, block_t blkaddr, unsigned int len); 3887 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3888 int __init f2fs_create_extent_cache(void); 3889 void f2fs_destroy_extent_cache(void); 3890 3891 /* 3892 * sysfs.c 3893 */ 3894 int __init f2fs_init_sysfs(void); 3895 void f2fs_exit_sysfs(void); 3896 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3897 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3898 3899 /* verity.c */ 3900 extern const struct fsverity_operations f2fs_verityops; 3901 3902 /* 3903 * crypto support 3904 */ 3905 static inline bool f2fs_encrypted_file(struct inode *inode) 3906 { 3907 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 3908 } 3909 3910 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3911 { 3912 #ifdef CONFIG_FS_ENCRYPTION 3913 file_set_encrypt(inode); 3914 f2fs_set_inode_flags(inode); 3915 #endif 3916 } 3917 3918 /* 3919 * Returns true if the reads of the inode's data need to undergo some 3920 * postprocessing step, like decryption or authenticity verification. 3921 */ 3922 static inline bool f2fs_post_read_required(struct inode *inode) 3923 { 3924 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 3925 f2fs_compressed_file(inode); 3926 } 3927 3928 /* 3929 * compress.c 3930 */ 3931 #ifdef CONFIG_F2FS_FS_COMPRESSION 3932 bool f2fs_is_compressed_page(struct page *page); 3933 struct page *f2fs_compress_control_page(struct page *page); 3934 int f2fs_prepare_compress_overwrite(struct inode *inode, 3935 struct page **pagep, pgoff_t index, void **fsdata); 3936 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 3937 pgoff_t index, unsigned copied); 3938 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 3939 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 3940 bool f2fs_is_compress_backend_ready(struct inode *inode); 3941 int f2fs_init_compress_mempool(void); 3942 void f2fs_destroy_compress_mempool(void); 3943 void f2fs_end_read_compressed_page(struct page *page, bool failed); 3944 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 3945 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 3946 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 3947 int f2fs_write_multi_pages(struct compress_ctx *cc, 3948 int *submitted, 3949 struct writeback_control *wbc, 3950 enum iostat_type io_type); 3951 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 3952 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 3953 unsigned nr_pages, sector_t *last_block_in_bio, 3954 bool is_readahead, bool for_write); 3955 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 3956 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed); 3957 void f2fs_put_page_dic(struct page *page); 3958 int f2fs_init_compress_ctx(struct compress_ctx *cc); 3959 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 3960 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 3961 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 3962 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 3963 int __init f2fs_init_compress_cache(void); 3964 void f2fs_destroy_compress_cache(void); 3965 #define inc_compr_inode_stat(inode) \ 3966 do { \ 3967 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 3968 sbi->compr_new_inode++; \ 3969 } while (0) 3970 #define add_compr_block_stat(inode, blocks) \ 3971 do { \ 3972 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 3973 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 3974 sbi->compr_written_block += blocks; \ 3975 sbi->compr_saved_block += diff; \ 3976 } while (0) 3977 #else 3978 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 3979 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 3980 { 3981 if (!f2fs_compressed_file(inode)) 3982 return true; 3983 /* not support compression */ 3984 return false; 3985 } 3986 static inline struct page *f2fs_compress_control_page(struct page *page) 3987 { 3988 WARN_ON_ONCE(1); 3989 return ERR_PTR(-EINVAL); 3990 } 3991 static inline int f2fs_init_compress_mempool(void) { return 0; } 3992 static inline void f2fs_destroy_compress_mempool(void) { } 3993 static inline void f2fs_end_read_compressed_page(struct page *page, bool failed) 3994 { 3995 WARN_ON_ONCE(1); 3996 } 3997 static inline void f2fs_put_page_dic(struct page *page) 3998 { 3999 WARN_ON_ONCE(1); 4000 } 4001 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4002 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4003 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4004 static inline void f2fs_destroy_compress_cache(void) { } 4005 #define inc_compr_inode_stat(inode) do { } while (0) 4006 #endif 4007 4008 static inline void set_compress_context(struct inode *inode) 4009 { 4010 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4011 4012 F2FS_I(inode)->i_compress_algorithm = 4013 F2FS_OPTION(sbi).compress_algorithm; 4014 F2FS_I(inode)->i_log_cluster_size = 4015 F2FS_OPTION(sbi).compress_log_size; 4016 F2FS_I(inode)->i_compress_flag = 4017 F2FS_OPTION(sbi).compress_chksum ? 4018 1 << COMPRESS_CHKSUM : 0; 4019 F2FS_I(inode)->i_cluster_size = 4020 1 << F2FS_I(inode)->i_log_cluster_size; 4021 if (F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 && 4022 F2FS_OPTION(sbi).compress_level) 4023 F2FS_I(inode)->i_compress_flag |= 4024 F2FS_OPTION(sbi).compress_level << 4025 COMPRESS_LEVEL_OFFSET; 4026 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4027 set_inode_flag(inode, FI_COMPRESSED_FILE); 4028 stat_inc_compr_inode(inode); 4029 inc_compr_inode_stat(inode); 4030 f2fs_mark_inode_dirty_sync(inode, true); 4031 } 4032 4033 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4034 { 4035 struct f2fs_inode_info *fi = F2FS_I(inode); 4036 4037 if (!f2fs_compressed_file(inode)) 4038 return true; 4039 if (S_ISREG(inode->i_mode) && 4040 (get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks))) 4041 return false; 4042 4043 fi->i_flags &= ~F2FS_COMPR_FL; 4044 stat_dec_compr_inode(inode); 4045 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4046 f2fs_mark_inode_dirty_sync(inode, true); 4047 return true; 4048 } 4049 4050 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4051 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4052 { \ 4053 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4054 } 4055 4056 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4057 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4058 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4059 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4060 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4061 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4062 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4063 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4064 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4065 F2FS_FEATURE_FUNCS(verity, VERITY); 4066 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4067 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4068 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4069 4070 #ifdef CONFIG_BLK_DEV_ZONED 4071 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4072 block_t blkaddr) 4073 { 4074 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 4075 4076 return test_bit(zno, FDEV(devi).blkz_seq); 4077 } 4078 #endif 4079 4080 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4081 { 4082 return f2fs_sb_has_blkzoned(sbi); 4083 } 4084 4085 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4086 { 4087 return blk_queue_discard(bdev_get_queue(bdev)) || 4088 bdev_is_zoned(bdev); 4089 } 4090 4091 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4092 { 4093 int i; 4094 4095 if (!f2fs_is_multi_device(sbi)) 4096 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4097 4098 for (i = 0; i < sbi->s_ndevs; i++) 4099 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4100 return true; 4101 return false; 4102 } 4103 4104 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4105 { 4106 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4107 f2fs_hw_should_discard(sbi); 4108 } 4109 4110 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4111 { 4112 int i; 4113 4114 if (!f2fs_is_multi_device(sbi)) 4115 return bdev_read_only(sbi->sb->s_bdev); 4116 4117 for (i = 0; i < sbi->s_ndevs; i++) 4118 if (bdev_read_only(FDEV(i).bdev)) 4119 return true; 4120 return false; 4121 } 4122 4123 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4124 { 4125 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4126 } 4127 4128 static inline bool f2fs_may_compress(struct inode *inode) 4129 { 4130 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4131 f2fs_is_atomic_file(inode) || 4132 f2fs_is_volatile_file(inode)) 4133 return false; 4134 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4135 } 4136 4137 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4138 u64 blocks, bool add) 4139 { 4140 int diff = F2FS_I(inode)->i_cluster_size - blocks; 4141 struct f2fs_inode_info *fi = F2FS_I(inode); 4142 4143 /* don't update i_compr_blocks if saved blocks were released */ 4144 if (!add && !atomic_read(&fi->i_compr_blocks)) 4145 return; 4146 4147 if (add) { 4148 atomic_add(diff, &fi->i_compr_blocks); 4149 stat_add_compr_blocks(inode, diff); 4150 } else { 4151 atomic_sub(diff, &fi->i_compr_blocks); 4152 stat_sub_compr_blocks(inode, diff); 4153 } 4154 f2fs_mark_inode_dirty_sync(inode, true); 4155 } 4156 4157 static inline int block_unaligned_IO(struct inode *inode, 4158 struct kiocb *iocb, struct iov_iter *iter) 4159 { 4160 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits); 4161 unsigned int blocksize_mask = (1 << i_blkbits) - 1; 4162 loff_t offset = iocb->ki_pos; 4163 unsigned long align = offset | iov_iter_alignment(iter); 4164 4165 return align & blocksize_mask; 4166 } 4167 4168 static inline int allow_outplace_dio(struct inode *inode, 4169 struct kiocb *iocb, struct iov_iter *iter) 4170 { 4171 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4172 int rw = iov_iter_rw(iter); 4173 4174 return (f2fs_lfs_mode(sbi) && (rw == WRITE) && 4175 !block_unaligned_IO(inode, iocb, iter)); 4176 } 4177 4178 static inline bool f2fs_force_buffered_io(struct inode *inode, 4179 struct kiocb *iocb, struct iov_iter *iter) 4180 { 4181 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4182 int rw = iov_iter_rw(iter); 4183 4184 if (f2fs_post_read_required(inode)) 4185 return true; 4186 if (f2fs_is_multi_device(sbi)) 4187 return true; 4188 /* 4189 * for blkzoned device, fallback direct IO to buffered IO, so 4190 * all IOs can be serialized by log-structured write. 4191 */ 4192 if (f2fs_sb_has_blkzoned(sbi)) 4193 return true; 4194 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) { 4195 if (block_unaligned_IO(inode, iocb, iter)) 4196 return true; 4197 if (F2FS_IO_ALIGNED(sbi)) 4198 return true; 4199 } 4200 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED)) 4201 return true; 4202 4203 return false; 4204 } 4205 4206 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4207 { 4208 return fsverity_active(inode) && 4209 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4210 } 4211 4212 #ifdef CONFIG_F2FS_FAULT_INJECTION 4213 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 4214 unsigned int type); 4215 #else 4216 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 4217 #endif 4218 4219 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4220 { 4221 #ifdef CONFIG_QUOTA 4222 if (f2fs_sb_has_quota_ino(sbi)) 4223 return true; 4224 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4225 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4226 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4227 return true; 4228 #endif 4229 return false; 4230 } 4231 4232 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4233 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4234 4235 #endif /* _LINUX_F2FS_H */ 4236