1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/sched/mm.h> 22 #include <linux/vmalloc.h> 23 #include <linux/bio.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/part_stat.h> 27 #include <linux/rw_hint.h> 28 #include <crypto/hash.h> 29 30 #include <linux/fscrypt.h> 31 #include <linux/fsverity.h> 32 33 struct pagevec; 34 35 #ifdef CONFIG_F2FS_CHECK_FS 36 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 37 #else 38 #define f2fs_bug_on(sbi, condition) \ 39 do { \ 40 if (WARN_ON(condition)) \ 41 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 42 } while (0) 43 #endif 44 45 enum { 46 FAULT_KMALLOC, 47 FAULT_KVMALLOC, 48 FAULT_PAGE_ALLOC, 49 FAULT_PAGE_GET, 50 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 51 FAULT_ALLOC_NID, 52 FAULT_ORPHAN, 53 FAULT_BLOCK, 54 FAULT_DIR_DEPTH, 55 FAULT_EVICT_INODE, 56 FAULT_TRUNCATE, 57 FAULT_READ_IO, 58 FAULT_CHECKPOINT, 59 FAULT_DISCARD, 60 FAULT_WRITE_IO, 61 FAULT_SLAB_ALLOC, 62 FAULT_DQUOT_INIT, 63 FAULT_LOCK_OP, 64 FAULT_BLKADDR_VALIDITY, 65 FAULT_BLKADDR_CONSISTENCE, 66 FAULT_NO_SEGMENT, 67 FAULT_MAX, 68 }; 69 70 #ifdef CONFIG_F2FS_FAULT_INJECTION 71 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0)) 72 73 struct f2fs_fault_info { 74 atomic_t inject_ops; 75 int inject_rate; 76 unsigned int inject_type; 77 }; 78 79 extern const char *f2fs_fault_name[FAULT_MAX]; 80 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type)) 81 82 /* maximum retry count for injected failure */ 83 #define DEFAULT_FAILURE_RETRY_COUNT 8 84 #else 85 #define DEFAULT_FAILURE_RETRY_COUNT 1 86 #endif 87 88 /* 89 * For mount options 90 */ 91 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001 92 #define F2FS_MOUNT_DISCARD 0x00000002 93 #define F2FS_MOUNT_NOHEAP 0x00000004 94 #define F2FS_MOUNT_XATTR_USER 0x00000008 95 #define F2FS_MOUNT_POSIX_ACL 0x00000010 96 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020 97 #define F2FS_MOUNT_INLINE_XATTR 0x00000040 98 #define F2FS_MOUNT_INLINE_DATA 0x00000080 99 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100 100 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200 101 #define F2FS_MOUNT_NOBARRIER 0x00000400 102 #define F2FS_MOUNT_FASTBOOT 0x00000800 103 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000 104 #define F2FS_MOUNT_DATA_FLUSH 0x00002000 105 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000 106 #define F2FS_MOUNT_USRQUOTA 0x00008000 107 #define F2FS_MOUNT_GRPQUOTA 0x00010000 108 #define F2FS_MOUNT_PRJQUOTA 0x00020000 109 #define F2FS_MOUNT_QUOTA 0x00040000 110 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000 111 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000 112 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000 113 #define F2FS_MOUNT_NORECOVERY 0x00400000 114 #define F2FS_MOUNT_ATGC 0x00800000 115 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000 116 #define F2FS_MOUNT_GC_MERGE 0x02000000 117 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000 118 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000 119 120 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 121 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 122 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 123 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 124 125 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 126 typecheck(unsigned long long, b) && \ 127 ((long long)((a) - (b)) > 0)) 128 129 typedef u32 block_t; /* 130 * should not change u32, since it is the on-disk block 131 * address format, __le32. 132 */ 133 typedef u32 nid_t; 134 135 #define COMPRESS_EXT_NUM 16 136 137 /* 138 * An implementation of an rwsem that is explicitly unfair to readers. This 139 * prevents priority inversion when a low-priority reader acquires the read lock 140 * while sleeping on the write lock but the write lock is needed by 141 * higher-priority clients. 142 */ 143 144 struct f2fs_rwsem { 145 struct rw_semaphore internal_rwsem; 146 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 147 wait_queue_head_t read_waiters; 148 #endif 149 }; 150 151 struct f2fs_mount_info { 152 unsigned int opt; 153 block_t root_reserved_blocks; /* root reserved blocks */ 154 kuid_t s_resuid; /* reserved blocks for uid */ 155 kgid_t s_resgid; /* reserved blocks for gid */ 156 int active_logs; /* # of active logs */ 157 int inline_xattr_size; /* inline xattr size */ 158 #ifdef CONFIG_F2FS_FAULT_INJECTION 159 struct f2fs_fault_info fault_info; /* For fault injection */ 160 #endif 161 #ifdef CONFIG_QUOTA 162 /* Names of quota files with journalled quota */ 163 char *s_qf_names[MAXQUOTAS]; 164 int s_jquota_fmt; /* Format of quota to use */ 165 #endif 166 /* For which write hints are passed down to block layer */ 167 int alloc_mode; /* segment allocation policy */ 168 int fsync_mode; /* fsync policy */ 169 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 170 int bggc_mode; /* bggc mode: off, on or sync */ 171 int memory_mode; /* memory mode */ 172 int errors; /* errors parameter */ 173 int discard_unit; /* 174 * discard command's offset/size should 175 * be aligned to this unit: block, 176 * segment or section 177 */ 178 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 179 block_t unusable_cap_perc; /* percentage for cap */ 180 block_t unusable_cap; /* Amount of space allowed to be 181 * unusable when disabling checkpoint 182 */ 183 184 /* For compression */ 185 unsigned char compress_algorithm; /* algorithm type */ 186 unsigned char compress_log_size; /* cluster log size */ 187 unsigned char compress_level; /* compress level */ 188 bool compress_chksum; /* compressed data chksum */ 189 unsigned char compress_ext_cnt; /* extension count */ 190 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 191 int compress_mode; /* compression mode */ 192 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 193 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 194 }; 195 196 #define F2FS_FEATURE_ENCRYPT 0x00000001 197 #define F2FS_FEATURE_BLKZONED 0x00000002 198 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004 199 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008 200 #define F2FS_FEATURE_PRJQUOTA 0x00000010 201 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020 202 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040 203 #define F2FS_FEATURE_QUOTA_INO 0x00000080 204 #define F2FS_FEATURE_INODE_CRTIME 0x00000100 205 #define F2FS_FEATURE_LOST_FOUND 0x00000200 206 #define F2FS_FEATURE_VERITY 0x00000400 207 #define F2FS_FEATURE_SB_CHKSUM 0x00000800 208 #define F2FS_FEATURE_CASEFOLD 0x00001000 209 #define F2FS_FEATURE_COMPRESSION 0x00002000 210 #define F2FS_FEATURE_RO 0x00004000 211 212 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 213 ((raw_super->feature & cpu_to_le32(mask)) != 0) 214 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 215 216 /* 217 * Default values for user and/or group using reserved blocks 218 */ 219 #define F2FS_DEF_RESUID 0 220 #define F2FS_DEF_RESGID 0 221 222 /* 223 * For checkpoint manager 224 */ 225 enum { 226 NAT_BITMAP, 227 SIT_BITMAP 228 }; 229 230 #define CP_UMOUNT 0x00000001 231 #define CP_FASTBOOT 0x00000002 232 #define CP_SYNC 0x00000004 233 #define CP_RECOVERY 0x00000008 234 #define CP_DISCARD 0x00000010 235 #define CP_TRIMMED 0x00000020 236 #define CP_PAUSE 0x00000040 237 #define CP_RESIZE 0x00000080 238 239 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 240 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 241 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 242 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 243 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 244 #define DEF_CP_INTERVAL 60 /* 60 secs */ 245 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 246 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 247 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 248 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 249 250 struct cp_control { 251 int reason; 252 __u64 trim_start; 253 __u64 trim_end; 254 __u64 trim_minlen; 255 }; 256 257 /* 258 * indicate meta/data type 259 */ 260 enum { 261 META_CP, 262 META_NAT, 263 META_SIT, 264 META_SSA, 265 META_MAX, 266 META_POR, 267 DATA_GENERIC, /* check range only */ 268 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 269 DATA_GENERIC_ENHANCE_READ, /* 270 * strong check on range and segment 271 * bitmap but no warning due to race 272 * condition of read on truncated area 273 * by extent_cache 274 */ 275 DATA_GENERIC_ENHANCE_UPDATE, /* 276 * strong check on range and segment 277 * bitmap for update case 278 */ 279 META_GENERIC, 280 }; 281 282 /* for the list of ino */ 283 enum { 284 ORPHAN_INO, /* for orphan ino list */ 285 APPEND_INO, /* for append ino list */ 286 UPDATE_INO, /* for update ino list */ 287 TRANS_DIR_INO, /* for transactions dir ino list */ 288 FLUSH_INO, /* for multiple device flushing */ 289 MAX_INO_ENTRY, /* max. list */ 290 }; 291 292 struct ino_entry { 293 struct list_head list; /* list head */ 294 nid_t ino; /* inode number */ 295 unsigned int dirty_device; /* dirty device bitmap */ 296 }; 297 298 /* for the list of inodes to be GCed */ 299 struct inode_entry { 300 struct list_head list; /* list head */ 301 struct inode *inode; /* vfs inode pointer */ 302 }; 303 304 struct fsync_node_entry { 305 struct list_head list; /* list head */ 306 struct page *page; /* warm node page pointer */ 307 unsigned int seq_id; /* sequence id */ 308 }; 309 310 struct ckpt_req { 311 struct completion wait; /* completion for checkpoint done */ 312 struct llist_node llnode; /* llist_node to be linked in wait queue */ 313 int ret; /* return code of checkpoint */ 314 ktime_t queue_time; /* request queued time */ 315 }; 316 317 struct ckpt_req_control { 318 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 319 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 320 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 321 atomic_t issued_ckpt; /* # of actually issued ckpts */ 322 atomic_t total_ckpt; /* # of total ckpts */ 323 atomic_t queued_ckpt; /* # of queued ckpts */ 324 struct llist_head issue_list; /* list for command issue */ 325 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 326 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 327 unsigned int peak_time; /* peak wait time in msec until now */ 328 }; 329 330 /* for the bitmap indicate blocks to be discarded */ 331 struct discard_entry { 332 struct list_head list; /* list head */ 333 block_t start_blkaddr; /* start blockaddr of current segment */ 334 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 335 }; 336 337 /* minimum discard granularity, unit: block count */ 338 #define MIN_DISCARD_GRANULARITY 1 339 /* default discard granularity of inner discard thread, unit: block count */ 340 #define DEFAULT_DISCARD_GRANULARITY 16 341 /* default maximum discard granularity of ordered discard, unit: block count */ 342 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 343 344 /* max discard pend list number */ 345 #define MAX_PLIST_NUM 512 346 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 347 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 348 349 enum { 350 D_PREP, /* initial */ 351 D_PARTIAL, /* partially submitted */ 352 D_SUBMIT, /* all submitted */ 353 D_DONE, /* finished */ 354 }; 355 356 struct discard_info { 357 block_t lstart; /* logical start address */ 358 block_t len; /* length */ 359 block_t start; /* actual start address in dev */ 360 }; 361 362 struct discard_cmd { 363 struct rb_node rb_node; /* rb node located in rb-tree */ 364 struct discard_info di; /* discard info */ 365 struct list_head list; /* command list */ 366 struct completion wait; /* compleation */ 367 struct block_device *bdev; /* bdev */ 368 unsigned short ref; /* reference count */ 369 unsigned char state; /* state */ 370 unsigned char queued; /* queued discard */ 371 int error; /* bio error */ 372 spinlock_t lock; /* for state/bio_ref updating */ 373 unsigned short bio_ref; /* bio reference count */ 374 }; 375 376 enum { 377 DPOLICY_BG, 378 DPOLICY_FORCE, 379 DPOLICY_FSTRIM, 380 DPOLICY_UMOUNT, 381 MAX_DPOLICY, 382 }; 383 384 enum { 385 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */ 386 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */ 387 DPOLICY_IO_AWARE_MAX, 388 }; 389 390 struct discard_policy { 391 int type; /* type of discard */ 392 unsigned int min_interval; /* used for candidates exist */ 393 unsigned int mid_interval; /* used for device busy */ 394 unsigned int max_interval; /* used for candidates not exist */ 395 unsigned int max_requests; /* # of discards issued per round */ 396 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 397 bool io_aware; /* issue discard in idle time */ 398 bool sync; /* submit discard with REQ_SYNC flag */ 399 bool ordered; /* issue discard by lba order */ 400 bool timeout; /* discard timeout for put_super */ 401 unsigned int granularity; /* discard granularity */ 402 }; 403 404 struct discard_cmd_control { 405 struct task_struct *f2fs_issue_discard; /* discard thread */ 406 struct list_head entry_list; /* 4KB discard entry list */ 407 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 408 struct list_head wait_list; /* store on-flushing entries */ 409 struct list_head fstrim_list; /* in-flight discard from fstrim */ 410 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 411 struct mutex cmd_lock; 412 unsigned int nr_discards; /* # of discards in the list */ 413 unsigned int max_discards; /* max. discards to be issued */ 414 unsigned int max_discard_request; /* max. discard request per round */ 415 unsigned int min_discard_issue_time; /* min. interval between discard issue */ 416 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ 417 unsigned int max_discard_issue_time; /* max. interval between discard issue */ 418 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */ 419 unsigned int discard_urgent_util; /* utilization which issue discard proactively */ 420 unsigned int discard_granularity; /* discard granularity */ 421 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ 422 unsigned int discard_io_aware; /* io_aware policy */ 423 unsigned int undiscard_blks; /* # of undiscard blocks */ 424 unsigned int next_pos; /* next discard position */ 425 atomic_t issued_discard; /* # of issued discard */ 426 atomic_t queued_discard; /* # of queued discard */ 427 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 428 struct rb_root_cached root; /* root of discard rb-tree */ 429 bool rbtree_check; /* config for consistence check */ 430 bool discard_wake; /* to wake up discard thread */ 431 }; 432 433 /* for the list of fsync inodes, used only during recovery */ 434 struct fsync_inode_entry { 435 struct list_head list; /* list head */ 436 struct inode *inode; /* vfs inode pointer */ 437 block_t blkaddr; /* block address locating the last fsync */ 438 block_t last_dentry; /* block address locating the last dentry */ 439 }; 440 441 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 442 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 443 444 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 445 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 446 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 447 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 448 449 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 450 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 451 452 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 453 { 454 int before = nats_in_cursum(journal); 455 456 journal->n_nats = cpu_to_le16(before + i); 457 return before; 458 } 459 460 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 461 { 462 int before = sits_in_cursum(journal); 463 464 journal->n_sits = cpu_to_le16(before + i); 465 return before; 466 } 467 468 static inline bool __has_cursum_space(struct f2fs_journal *journal, 469 int size, int type) 470 { 471 if (type == NAT_JOURNAL) 472 return size <= MAX_NAT_JENTRIES(journal); 473 return size <= MAX_SIT_JENTRIES(journal); 474 } 475 476 /* for inline stuff */ 477 #define DEF_INLINE_RESERVED_SIZE 1 478 static inline int get_extra_isize(struct inode *inode); 479 static inline int get_inline_xattr_addrs(struct inode *inode); 480 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 481 (CUR_ADDRS_PER_INODE(inode) - \ 482 get_inline_xattr_addrs(inode) - \ 483 DEF_INLINE_RESERVED_SIZE)) 484 485 /* for inline dir */ 486 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 487 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 488 BITS_PER_BYTE + 1)) 489 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 490 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 491 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 492 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 493 NR_INLINE_DENTRY(inode) + \ 494 INLINE_DENTRY_BITMAP_SIZE(inode))) 495 496 /* 497 * For INODE and NODE manager 498 */ 499 /* for directory operations */ 500 501 struct f2fs_filename { 502 /* 503 * The filename the user specified. This is NULL for some 504 * filesystem-internal operations, e.g. converting an inline directory 505 * to a non-inline one, or roll-forward recovering an encrypted dentry. 506 */ 507 const struct qstr *usr_fname; 508 509 /* 510 * The on-disk filename. For encrypted directories, this is encrypted. 511 * This may be NULL for lookups in an encrypted dir without the key. 512 */ 513 struct fscrypt_str disk_name; 514 515 /* The dirhash of this filename */ 516 f2fs_hash_t hash; 517 518 #ifdef CONFIG_FS_ENCRYPTION 519 /* 520 * For lookups in encrypted directories: either the buffer backing 521 * disk_name, or a buffer that holds the decoded no-key name. 522 */ 523 struct fscrypt_str crypto_buf; 524 #endif 525 #if IS_ENABLED(CONFIG_UNICODE) 526 /* 527 * For casefolded directories: the casefolded name, but it's left NULL 528 * if the original name is not valid Unicode, if the original name is 529 * "." or "..", if the directory is both casefolded and encrypted and 530 * its encryption key is unavailable, or if the filesystem is doing an 531 * internal operation where usr_fname is also NULL. In all these cases 532 * we fall back to treating the name as an opaque byte sequence. 533 */ 534 struct qstr cf_name; 535 #endif 536 }; 537 538 struct f2fs_dentry_ptr { 539 struct inode *inode; 540 void *bitmap; 541 struct f2fs_dir_entry *dentry; 542 __u8 (*filename)[F2FS_SLOT_LEN]; 543 int max; 544 int nr_bitmap; 545 }; 546 547 static inline void make_dentry_ptr_block(struct inode *inode, 548 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 549 { 550 d->inode = inode; 551 d->max = NR_DENTRY_IN_BLOCK; 552 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 553 d->bitmap = t->dentry_bitmap; 554 d->dentry = t->dentry; 555 d->filename = t->filename; 556 } 557 558 static inline void make_dentry_ptr_inline(struct inode *inode, 559 struct f2fs_dentry_ptr *d, void *t) 560 { 561 int entry_cnt = NR_INLINE_DENTRY(inode); 562 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 563 int reserved_size = INLINE_RESERVED_SIZE(inode); 564 565 d->inode = inode; 566 d->max = entry_cnt; 567 d->nr_bitmap = bitmap_size; 568 d->bitmap = t; 569 d->dentry = t + bitmap_size + reserved_size; 570 d->filename = t + bitmap_size + reserved_size + 571 SIZE_OF_DIR_ENTRY * entry_cnt; 572 } 573 574 /* 575 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 576 * as its node offset to distinguish from index node blocks. 577 * But some bits are used to mark the node block. 578 */ 579 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 580 >> OFFSET_BIT_SHIFT) 581 enum { 582 ALLOC_NODE, /* allocate a new node page if needed */ 583 LOOKUP_NODE, /* look up a node without readahead */ 584 LOOKUP_NODE_RA, /* 585 * look up a node with readahead called 586 * by get_data_block. 587 */ 588 }; 589 590 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 591 592 /* congestion wait timeout value, default: 20ms */ 593 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 594 595 /* maximum retry quota flush count */ 596 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 597 598 /* maximum retry of EIO'ed page */ 599 #define MAX_RETRY_PAGE_EIO 100 600 601 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 602 603 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 604 605 /* dirty segments threshold for triggering CP */ 606 #define DEFAULT_DIRTY_THRESHOLD 4 607 608 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS 609 #define RECOVERY_MIN_RA_BLOCKS 1 610 611 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ 612 613 /* for in-memory extent cache entry */ 614 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 615 616 /* number of extent info in extent cache we try to shrink */ 617 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 618 619 /* number of age extent info in extent cache we try to shrink */ 620 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 621 #define LAST_AGE_WEIGHT 30 622 #define SAME_AGE_REGION 1024 623 624 /* 625 * Define data block with age less than 1GB as hot data 626 * define data block with age less than 10GB but more than 1GB as warm data 627 */ 628 #define DEF_HOT_DATA_AGE_THRESHOLD 262144 629 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 630 631 /* extent cache type */ 632 enum extent_type { 633 EX_READ, 634 EX_BLOCK_AGE, 635 NR_EXTENT_CACHES, 636 }; 637 638 struct extent_info { 639 unsigned int fofs; /* start offset in a file */ 640 unsigned int len; /* length of the extent */ 641 union { 642 /* read extent_cache */ 643 struct { 644 /* start block address of the extent */ 645 block_t blk; 646 #ifdef CONFIG_F2FS_FS_COMPRESSION 647 /* physical extent length of compressed blocks */ 648 unsigned int c_len; 649 #endif 650 }; 651 /* block age extent_cache */ 652 struct { 653 /* block age of the extent */ 654 unsigned long long age; 655 /* last total blocks allocated */ 656 unsigned long long last_blocks; 657 }; 658 }; 659 }; 660 661 struct extent_node { 662 struct rb_node rb_node; /* rb node located in rb-tree */ 663 struct extent_info ei; /* extent info */ 664 struct list_head list; /* node in global extent list of sbi */ 665 struct extent_tree *et; /* extent tree pointer */ 666 }; 667 668 struct extent_tree { 669 nid_t ino; /* inode number */ 670 enum extent_type type; /* keep the extent tree type */ 671 struct rb_root_cached root; /* root of extent info rb-tree */ 672 struct extent_node *cached_en; /* recently accessed extent node */ 673 struct list_head list; /* to be used by sbi->zombie_list */ 674 rwlock_t lock; /* protect extent info rb-tree */ 675 atomic_t node_cnt; /* # of extent node in rb-tree*/ 676 bool largest_updated; /* largest extent updated */ 677 struct extent_info largest; /* largest cached extent for EX_READ */ 678 }; 679 680 struct extent_tree_info { 681 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 682 struct mutex extent_tree_lock; /* locking extent radix tree */ 683 struct list_head extent_list; /* lru list for shrinker */ 684 spinlock_t extent_lock; /* locking extent lru list */ 685 atomic_t total_ext_tree; /* extent tree count */ 686 struct list_head zombie_list; /* extent zombie tree list */ 687 atomic_t total_zombie_tree; /* extent zombie tree count */ 688 atomic_t total_ext_node; /* extent info count */ 689 }; 690 691 /* 692 * State of block returned by f2fs_map_blocks. 693 */ 694 #define F2FS_MAP_NEW (1U << 0) 695 #define F2FS_MAP_MAPPED (1U << 1) 696 #define F2FS_MAP_DELALLOC (1U << 2) 697 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 698 F2FS_MAP_DELALLOC) 699 700 struct f2fs_map_blocks { 701 struct block_device *m_bdev; /* for multi-device dio */ 702 block_t m_pblk; 703 block_t m_lblk; 704 unsigned int m_len; 705 unsigned int m_flags; 706 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 707 pgoff_t *m_next_extent; /* point to next possible extent */ 708 int m_seg_type; 709 bool m_may_create; /* indicate it is from write path */ 710 bool m_multidev_dio; /* indicate it allows multi-device dio */ 711 }; 712 713 /* for flag in get_data_block */ 714 enum { 715 F2FS_GET_BLOCK_DEFAULT, 716 F2FS_GET_BLOCK_FIEMAP, 717 F2FS_GET_BLOCK_BMAP, 718 F2FS_GET_BLOCK_DIO, 719 F2FS_GET_BLOCK_PRE_DIO, 720 F2FS_GET_BLOCK_PRE_AIO, 721 F2FS_GET_BLOCK_PRECACHE, 722 }; 723 724 /* 725 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 726 */ 727 #define FADVISE_COLD_BIT 0x01 728 #define FADVISE_LOST_PINO_BIT 0x02 729 #define FADVISE_ENCRYPT_BIT 0x04 730 #define FADVISE_ENC_NAME_BIT 0x08 731 #define FADVISE_KEEP_SIZE_BIT 0x10 732 #define FADVISE_HOT_BIT 0x20 733 #define FADVISE_VERITY_BIT 0x40 734 #define FADVISE_TRUNC_BIT 0x80 735 736 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 737 738 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 739 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 740 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 741 742 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 743 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 744 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 745 746 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 747 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 748 749 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 750 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 751 752 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 753 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 754 755 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 756 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 757 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 758 759 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 760 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 761 762 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) 763 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) 764 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) 765 766 #define DEF_DIR_LEVEL 0 767 768 /* used for f2fs_inode_info->flags */ 769 enum { 770 FI_NEW_INODE, /* indicate newly allocated inode */ 771 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 772 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 773 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 774 FI_INC_LINK, /* need to increment i_nlink */ 775 FI_ACL_MODE, /* indicate acl mode */ 776 FI_NO_ALLOC, /* should not allocate any blocks */ 777 FI_FREE_NID, /* free allocated nide */ 778 FI_NO_EXTENT, /* not to use the extent cache */ 779 FI_INLINE_XATTR, /* used for inline xattr */ 780 FI_INLINE_DATA, /* used for inline data*/ 781 FI_INLINE_DENTRY, /* used for inline dentry */ 782 FI_APPEND_WRITE, /* inode has appended data */ 783 FI_UPDATE_WRITE, /* inode has in-place-update data */ 784 FI_NEED_IPU, /* used for ipu per file */ 785 FI_ATOMIC_FILE, /* indicate atomic file */ 786 FI_DATA_EXIST, /* indicate data exists */ 787 FI_INLINE_DOTS, /* indicate inline dot dentries */ 788 FI_SKIP_WRITES, /* should skip data page writeback */ 789 FI_OPU_WRITE, /* used for opu per file */ 790 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 791 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ 792 FI_HOT_DATA, /* indicate file is hot */ 793 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 794 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 795 FI_PIN_FILE, /* indicate file should not be gced */ 796 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 797 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 798 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 799 FI_MMAP_FILE, /* indicate file was mmapped */ 800 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 801 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 802 FI_ALIGNED_WRITE, /* enable aligned write */ 803 FI_COW_FILE, /* indicate COW file */ 804 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ 805 FI_ATOMIC_REPLACE, /* indicate atomic replace */ 806 FI_OPENED_FILE, /* indicate file has been opened */ 807 FI_MAX, /* max flag, never be used */ 808 }; 809 810 struct f2fs_inode_info { 811 struct inode vfs_inode; /* serve a vfs inode */ 812 unsigned long i_flags; /* keep an inode flags for ioctl */ 813 unsigned char i_advise; /* use to give file attribute hints */ 814 unsigned char i_dir_level; /* use for dentry level for large dir */ 815 union { 816 unsigned int i_current_depth; /* only for directory depth */ 817 unsigned short i_gc_failures; /* for gc failure statistic */ 818 }; 819 unsigned int i_pino; /* parent inode number */ 820 umode_t i_acl_mode; /* keep file acl mode temporarily */ 821 822 /* Use below internally in f2fs*/ 823 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 824 struct f2fs_rwsem i_sem; /* protect fi info */ 825 atomic_t dirty_pages; /* # of dirty pages */ 826 f2fs_hash_t chash; /* hash value of given file name */ 827 unsigned int clevel; /* maximum level of given file name */ 828 struct task_struct *task; /* lookup and create consistency */ 829 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 830 struct task_struct *wb_task; /* indicate inode is in context of writeback */ 831 nid_t i_xattr_nid; /* node id that contains xattrs */ 832 loff_t last_disk_size; /* lastly written file size */ 833 spinlock_t i_size_lock; /* protect last_disk_size */ 834 835 #ifdef CONFIG_QUOTA 836 struct dquot __rcu *i_dquot[MAXQUOTAS]; 837 838 /* quota space reservation, managed internally by quota code */ 839 qsize_t i_reserved_quota; 840 #endif 841 struct list_head dirty_list; /* dirty list for dirs and files */ 842 struct list_head gdirty_list; /* linked in global dirty list */ 843 struct task_struct *atomic_write_task; /* store atomic write task */ 844 struct extent_tree *extent_tree[NR_EXTENT_CACHES]; 845 /* cached extent_tree entry */ 846 union { 847 struct inode *cow_inode; /* copy-on-write inode for atomic write */ 848 struct inode *atomic_inode; 849 /* point to atomic_inode, available only for cow_inode */ 850 }; 851 852 /* avoid racing between foreground op and gc */ 853 struct f2fs_rwsem i_gc_rwsem[2]; 854 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ 855 856 int i_extra_isize; /* size of extra space located in i_addr */ 857 kprojid_t i_projid; /* id for project quota */ 858 int i_inline_xattr_size; /* inline xattr size */ 859 struct timespec64 i_crtime; /* inode creation time */ 860 struct timespec64 i_disk_time[3];/* inode disk times */ 861 862 /* for file compress */ 863 atomic_t i_compr_blocks; /* # of compressed blocks */ 864 unsigned char i_compress_algorithm; /* algorithm type */ 865 unsigned char i_log_cluster_size; /* log of cluster size */ 866 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 867 unsigned char i_compress_flag; /* compress flag */ 868 unsigned int i_cluster_size; /* cluster size */ 869 870 unsigned int atomic_write_cnt; 871 loff_t original_i_size; /* original i_size before atomic write */ 872 }; 873 874 static inline void get_read_extent_info(struct extent_info *ext, 875 struct f2fs_extent *i_ext) 876 { 877 ext->fofs = le32_to_cpu(i_ext->fofs); 878 ext->blk = le32_to_cpu(i_ext->blk); 879 ext->len = le32_to_cpu(i_ext->len); 880 } 881 882 static inline void set_raw_read_extent(struct extent_info *ext, 883 struct f2fs_extent *i_ext) 884 { 885 i_ext->fofs = cpu_to_le32(ext->fofs); 886 i_ext->blk = cpu_to_le32(ext->blk); 887 i_ext->len = cpu_to_le32(ext->len); 888 } 889 890 static inline bool __is_discard_mergeable(struct discard_info *back, 891 struct discard_info *front, unsigned int max_len) 892 { 893 return (back->lstart + back->len == front->lstart) && 894 (back->len + front->len <= max_len); 895 } 896 897 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 898 struct discard_info *back, unsigned int max_len) 899 { 900 return __is_discard_mergeable(back, cur, max_len); 901 } 902 903 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 904 struct discard_info *front, unsigned int max_len) 905 { 906 return __is_discard_mergeable(cur, front, max_len); 907 } 908 909 /* 910 * For free nid management 911 */ 912 enum nid_state { 913 FREE_NID, /* newly added to free nid list */ 914 PREALLOC_NID, /* it is preallocated */ 915 MAX_NID_STATE, 916 }; 917 918 enum nat_state { 919 TOTAL_NAT, 920 DIRTY_NAT, 921 RECLAIMABLE_NAT, 922 MAX_NAT_STATE, 923 }; 924 925 struct f2fs_nm_info { 926 block_t nat_blkaddr; /* base disk address of NAT */ 927 nid_t max_nid; /* maximum possible node ids */ 928 nid_t available_nids; /* # of available node ids */ 929 nid_t next_scan_nid; /* the next nid to be scanned */ 930 nid_t max_rf_node_blocks; /* max # of nodes for recovery */ 931 unsigned int ram_thresh; /* control the memory footprint */ 932 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 933 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 934 935 /* NAT cache management */ 936 struct radix_tree_root nat_root;/* root of the nat entry cache */ 937 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 938 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ 939 struct list_head nat_entries; /* cached nat entry list (clean) */ 940 spinlock_t nat_list_lock; /* protect clean nat entry list */ 941 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 942 unsigned int nat_blocks; /* # of nat blocks */ 943 944 /* free node ids management */ 945 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 946 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 947 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 948 spinlock_t nid_list_lock; /* protect nid lists ops */ 949 struct mutex build_lock; /* lock for build free nids */ 950 unsigned char **free_nid_bitmap; 951 unsigned char *nat_block_bitmap; 952 unsigned short *free_nid_count; /* free nid count of NAT block */ 953 954 /* for checkpoint */ 955 char *nat_bitmap; /* NAT bitmap pointer */ 956 957 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 958 unsigned char *nat_bits; /* NAT bits blocks */ 959 unsigned char *full_nat_bits; /* full NAT pages */ 960 unsigned char *empty_nat_bits; /* empty NAT pages */ 961 #ifdef CONFIG_F2FS_CHECK_FS 962 char *nat_bitmap_mir; /* NAT bitmap mirror */ 963 #endif 964 int bitmap_size; /* bitmap size */ 965 }; 966 967 /* 968 * this structure is used as one of function parameters. 969 * all the information are dedicated to a given direct node block determined 970 * by the data offset in a file. 971 */ 972 struct dnode_of_data { 973 struct inode *inode; /* vfs inode pointer */ 974 struct page *inode_page; /* its inode page, NULL is possible */ 975 struct page *node_page; /* cached direct node page */ 976 nid_t nid; /* node id of the direct node block */ 977 unsigned int ofs_in_node; /* data offset in the node page */ 978 bool inode_page_locked; /* inode page is locked or not */ 979 bool node_changed; /* is node block changed */ 980 char cur_level; /* level of hole node page */ 981 char max_level; /* level of current page located */ 982 block_t data_blkaddr; /* block address of the node block */ 983 }; 984 985 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 986 struct page *ipage, struct page *npage, nid_t nid) 987 { 988 memset(dn, 0, sizeof(*dn)); 989 dn->inode = inode; 990 dn->inode_page = ipage; 991 dn->node_page = npage; 992 dn->nid = nid; 993 } 994 995 /* 996 * For SIT manager 997 * 998 * By default, there are 6 active log areas across the whole main area. 999 * When considering hot and cold data separation to reduce cleaning overhead, 1000 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 1001 * respectively. 1002 * In the current design, you should not change the numbers intentionally. 1003 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 1004 * logs individually according to the underlying devices. (default: 6) 1005 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 1006 * data and 8 for node logs. 1007 */ 1008 #define NR_CURSEG_DATA_TYPE (3) 1009 #define NR_CURSEG_NODE_TYPE (3) 1010 #define NR_CURSEG_INMEM_TYPE (2) 1011 #define NR_CURSEG_RO_TYPE (2) 1012 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 1013 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 1014 1015 enum { 1016 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 1017 CURSEG_WARM_DATA, /* data blocks */ 1018 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 1019 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 1020 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 1021 CURSEG_COLD_NODE, /* indirect node blocks */ 1022 NR_PERSISTENT_LOG, /* number of persistent log */ 1023 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 1024 /* pinned file that needs consecutive block address */ 1025 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 1026 NO_CHECK_TYPE, /* number of persistent & inmem log */ 1027 }; 1028 1029 struct flush_cmd { 1030 struct completion wait; 1031 struct llist_node llnode; 1032 nid_t ino; 1033 int ret; 1034 }; 1035 1036 struct flush_cmd_control { 1037 struct task_struct *f2fs_issue_flush; /* flush thread */ 1038 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 1039 atomic_t issued_flush; /* # of issued flushes */ 1040 atomic_t queued_flush; /* # of queued flushes */ 1041 struct llist_head issue_list; /* list for command issue */ 1042 struct llist_node *dispatch_list; /* list for command dispatch */ 1043 }; 1044 1045 struct f2fs_sm_info { 1046 struct sit_info *sit_info; /* whole segment information */ 1047 struct free_segmap_info *free_info; /* free segment information */ 1048 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1049 struct curseg_info *curseg_array; /* active segment information */ 1050 1051 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ 1052 1053 block_t seg0_blkaddr; /* block address of 0'th segment */ 1054 block_t main_blkaddr; /* start block address of main area */ 1055 block_t ssa_blkaddr; /* start block address of SSA area */ 1056 1057 unsigned int segment_count; /* total # of segments */ 1058 unsigned int main_segments; /* # of segments in main area */ 1059 unsigned int reserved_segments; /* # of reserved segments */ 1060 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */ 1061 unsigned int ovp_segments; /* # of overprovision segments */ 1062 1063 /* a threshold to reclaim prefree segments */ 1064 unsigned int rec_prefree_segments; 1065 1066 struct list_head sit_entry_set; /* sit entry set list */ 1067 1068 unsigned int ipu_policy; /* in-place-update policy */ 1069 unsigned int min_ipu_util; /* in-place-update threshold */ 1070 unsigned int min_fsync_blocks; /* threshold for fsync */ 1071 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1072 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1073 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1074 1075 /* for flush command control */ 1076 struct flush_cmd_control *fcc_info; 1077 1078 /* for discard command control */ 1079 struct discard_cmd_control *dcc_info; 1080 }; 1081 1082 /* 1083 * For superblock 1084 */ 1085 /* 1086 * COUNT_TYPE for monitoring 1087 * 1088 * f2fs monitors the number of several block types such as on-writeback, 1089 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1090 */ 1091 #define WB_DATA_TYPE(p, f) \ 1092 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1093 enum count_type { 1094 F2FS_DIRTY_DENTS, 1095 F2FS_DIRTY_DATA, 1096 F2FS_DIRTY_QDATA, 1097 F2FS_DIRTY_NODES, 1098 F2FS_DIRTY_META, 1099 F2FS_DIRTY_IMETA, 1100 F2FS_WB_CP_DATA, 1101 F2FS_WB_DATA, 1102 F2FS_RD_DATA, 1103 F2FS_RD_NODE, 1104 F2FS_RD_META, 1105 F2FS_DIO_WRITE, 1106 F2FS_DIO_READ, 1107 NR_COUNT_TYPE, 1108 }; 1109 1110 /* 1111 * The below are the page types of bios used in submit_bio(). 1112 * The available types are: 1113 * DATA User data pages. It operates as async mode. 1114 * NODE Node pages. It operates as async mode. 1115 * META FS metadata pages such as SIT, NAT, CP. 1116 * NR_PAGE_TYPE The number of page types. 1117 * META_FLUSH Make sure the previous pages are written 1118 * with waiting the bio's completion 1119 * ... Only can be used with META. 1120 */ 1121 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1122 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE) 1123 enum page_type { 1124 DATA = 0, 1125 NODE = 1, /* should not change this */ 1126 META, 1127 NR_PAGE_TYPE, 1128 META_FLUSH, 1129 IPU, /* the below types are used by tracepoints only. */ 1130 OPU, 1131 }; 1132 1133 enum temp_type { 1134 HOT = 0, /* must be zero for meta bio */ 1135 WARM, 1136 COLD, 1137 NR_TEMP_TYPE, 1138 }; 1139 1140 enum need_lock_type { 1141 LOCK_REQ = 0, 1142 LOCK_DONE, 1143 LOCK_RETRY, 1144 }; 1145 1146 enum cp_reason_type { 1147 CP_NO_NEEDED, 1148 CP_NON_REGULAR, 1149 CP_COMPRESSED, 1150 CP_HARDLINK, 1151 CP_SB_NEED_CP, 1152 CP_WRONG_PINO, 1153 CP_NO_SPC_ROLL, 1154 CP_NODE_NEED_CP, 1155 CP_FASTBOOT_MODE, 1156 CP_SPEC_LOG_NUM, 1157 CP_RECOVER_DIR, 1158 }; 1159 1160 enum iostat_type { 1161 /* WRITE IO */ 1162 APP_DIRECT_IO, /* app direct write IOs */ 1163 APP_BUFFERED_IO, /* app buffered write IOs */ 1164 APP_WRITE_IO, /* app write IOs */ 1165 APP_MAPPED_IO, /* app mapped IOs */ 1166 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ 1167 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ 1168 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1169 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ 1170 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1171 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1172 FS_GC_DATA_IO, /* data IOs from forground gc */ 1173 FS_GC_NODE_IO, /* node IOs from forground gc */ 1174 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1175 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1176 FS_CP_META_IO, /* meta IOs from checkpoint */ 1177 1178 /* READ IO */ 1179 APP_DIRECT_READ_IO, /* app direct read IOs */ 1180 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1181 APP_READ_IO, /* app read IOs */ 1182 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1183 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ 1184 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ 1185 FS_DATA_READ_IO, /* data read IOs */ 1186 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1187 FS_CDATA_READ_IO, /* compressed data read IOs */ 1188 FS_NODE_READ_IO, /* node read IOs */ 1189 FS_META_READ_IO, /* meta read IOs */ 1190 1191 /* other */ 1192 FS_DISCARD_IO, /* discard */ 1193 FS_FLUSH_IO, /* flush */ 1194 FS_ZONE_RESET_IO, /* zone reset */ 1195 NR_IO_TYPE, 1196 }; 1197 1198 struct f2fs_io_info { 1199 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1200 nid_t ino; /* inode number */ 1201 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1202 enum temp_type temp; /* contains HOT/WARM/COLD */ 1203 enum req_op op; /* contains REQ_OP_ */ 1204 blk_opf_t op_flags; /* req_flag_bits */ 1205 block_t new_blkaddr; /* new block address to be written */ 1206 block_t old_blkaddr; /* old block address before Cow */ 1207 struct page *page; /* page to be written */ 1208 struct page *encrypted_page; /* encrypted page */ 1209 struct page *compressed_page; /* compressed page */ 1210 struct list_head list; /* serialize IOs */ 1211 unsigned int compr_blocks; /* # of compressed block addresses */ 1212 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */ 1213 unsigned int version:8; /* version of the node */ 1214 unsigned int submitted:1; /* indicate IO submission */ 1215 unsigned int in_list:1; /* indicate fio is in io_list */ 1216 unsigned int is_por:1; /* indicate IO is from recovery or not */ 1217 unsigned int encrypted:1; /* indicate file is encrypted */ 1218 unsigned int meta_gc:1; /* require meta inode GC */ 1219 enum iostat_type io_type; /* io type */ 1220 struct writeback_control *io_wbc; /* writeback control */ 1221 struct bio **bio; /* bio for ipu */ 1222 sector_t *last_block; /* last block number in bio */ 1223 }; 1224 1225 struct bio_entry { 1226 struct bio *bio; 1227 struct list_head list; 1228 }; 1229 1230 #define is_read_io(rw) ((rw) == READ) 1231 struct f2fs_bio_info { 1232 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1233 struct bio *bio; /* bios to merge */ 1234 sector_t last_block_in_bio; /* last block number */ 1235 struct f2fs_io_info fio; /* store buffered io info. */ 1236 #ifdef CONFIG_BLK_DEV_ZONED 1237 struct completion zone_wait; /* condition value for the previous open zone to close */ 1238 struct bio *zone_pending_bio; /* pending bio for the previous zone */ 1239 void *bi_private; /* previous bi_private for pending bio */ 1240 #endif 1241 struct f2fs_rwsem io_rwsem; /* blocking op for bio */ 1242 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1243 struct list_head io_list; /* track fios */ 1244 struct list_head bio_list; /* bio entry list head */ 1245 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ 1246 }; 1247 1248 #define FDEV(i) (sbi->devs[i]) 1249 #define RDEV(i) (raw_super->devs[i]) 1250 struct f2fs_dev_info { 1251 struct file *bdev_file; 1252 struct block_device *bdev; 1253 char path[MAX_PATH_LEN]; 1254 unsigned int total_segments; 1255 block_t start_blk; 1256 block_t end_blk; 1257 #ifdef CONFIG_BLK_DEV_ZONED 1258 unsigned int nr_blkz; /* Total number of zones */ 1259 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1260 #endif 1261 }; 1262 1263 enum inode_type { 1264 DIR_INODE, /* for dirty dir inode */ 1265 FILE_INODE, /* for dirty regular/symlink inode */ 1266 DIRTY_META, /* for all dirtied inode metadata */ 1267 NR_INODE_TYPE, 1268 }; 1269 1270 /* for inner inode cache management */ 1271 struct inode_management { 1272 struct radix_tree_root ino_root; /* ino entry array */ 1273 spinlock_t ino_lock; /* for ino entry lock */ 1274 struct list_head ino_list; /* inode list head */ 1275 unsigned long ino_num; /* number of entries */ 1276 }; 1277 1278 /* for GC_AT */ 1279 struct atgc_management { 1280 bool atgc_enabled; /* ATGC is enabled or not */ 1281 struct rb_root_cached root; /* root of victim rb-tree */ 1282 struct list_head victim_list; /* linked with all victim entries */ 1283 unsigned int victim_count; /* victim count in rb-tree */ 1284 unsigned int candidate_ratio; /* candidate ratio */ 1285 unsigned int max_candidate_count; /* max candidate count */ 1286 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1287 unsigned long long age_threshold; /* age threshold */ 1288 }; 1289 1290 struct f2fs_gc_control { 1291 unsigned int victim_segno; /* target victim segment number */ 1292 int init_gc_type; /* FG_GC or BG_GC */ 1293 bool no_bg_gc; /* check the space and stop bg_gc */ 1294 bool should_migrate_blocks; /* should migrate blocks */ 1295 bool err_gc_skipped; /* return EAGAIN if GC skipped */ 1296 unsigned int nr_free_secs; /* # of free sections to do GC */ 1297 }; 1298 1299 /* 1300 * For s_flag in struct f2fs_sb_info 1301 * Modification on enum should be synchronized with s_flag array 1302 */ 1303 enum { 1304 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1305 SBI_IS_CLOSE, /* specify unmounting */ 1306 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1307 SBI_POR_DOING, /* recovery is doing or not */ 1308 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1309 SBI_NEED_CP, /* need to checkpoint */ 1310 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1311 SBI_IS_RECOVERED, /* recovered orphan/data */ 1312 SBI_CP_DISABLED, /* CP was disabled last mount */ 1313 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1314 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1315 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1316 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1317 SBI_IS_RESIZEFS, /* resizefs is in process */ 1318 SBI_IS_FREEZING, /* freezefs is in process */ 1319 SBI_IS_WRITABLE, /* remove ro mountoption transiently */ 1320 MAX_SBI_FLAG, 1321 }; 1322 1323 enum { 1324 CP_TIME, 1325 REQ_TIME, 1326 DISCARD_TIME, 1327 GC_TIME, 1328 DISABLE_TIME, 1329 UMOUNT_DISCARD_TIMEOUT, 1330 MAX_TIME, 1331 }; 1332 1333 /* Note that you need to keep synchronization with this gc_mode_names array */ 1334 enum { 1335 GC_NORMAL, 1336 GC_IDLE_CB, 1337 GC_IDLE_GREEDY, 1338 GC_IDLE_AT, 1339 GC_URGENT_HIGH, 1340 GC_URGENT_LOW, 1341 GC_URGENT_MID, 1342 MAX_GC_MODE, 1343 }; 1344 1345 enum { 1346 BGGC_MODE_ON, /* background gc is on */ 1347 BGGC_MODE_OFF, /* background gc is off */ 1348 BGGC_MODE_SYNC, /* 1349 * background gc is on, migrating blocks 1350 * like foreground gc 1351 */ 1352 }; 1353 1354 enum { 1355 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1356 FS_MODE_LFS, /* use lfs allocation only */ 1357 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1358 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1359 }; 1360 1361 enum { 1362 ALLOC_MODE_DEFAULT, /* stay default */ 1363 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1364 }; 1365 1366 enum fsync_mode { 1367 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1368 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1369 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1370 }; 1371 1372 enum { 1373 COMPR_MODE_FS, /* 1374 * automatically compress compression 1375 * enabled files 1376 */ 1377 COMPR_MODE_USER, /* 1378 * automatical compression is disabled. 1379 * user can control the file compression 1380 * using ioctls 1381 */ 1382 }; 1383 1384 enum { 1385 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1386 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1387 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1388 }; 1389 1390 enum { 1391 MEMORY_MODE_NORMAL, /* memory mode for normal devices */ 1392 MEMORY_MODE_LOW, /* memory mode for low memry devices */ 1393 }; 1394 1395 enum errors_option { 1396 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */ 1397 MOUNT_ERRORS_CONTINUE, /* continue on errors */ 1398 MOUNT_ERRORS_PANIC, /* panic on errors */ 1399 }; 1400 1401 enum { 1402 BACKGROUND, 1403 FOREGROUND, 1404 MAX_CALL_TYPE, 1405 TOTAL_CALL = FOREGROUND, 1406 }; 1407 1408 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1409 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1410 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1411 1412 /* 1413 * Layout of f2fs page.private: 1414 * 1415 * Layout A: lowest bit should be 1 1416 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1417 * bit 0 PAGE_PRIVATE_NOT_POINTER 1418 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION 1419 * bit 2 PAGE_PRIVATE_INLINE_INODE 1420 * bit 3 PAGE_PRIVATE_REF_RESOURCE 1421 * bit 4- f2fs private data 1422 * 1423 * Layout B: lowest bit should be 0 1424 * page.private is a wrapped pointer. 1425 */ 1426 enum { 1427 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1428 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1429 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1430 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1431 PAGE_PRIVATE_MAX 1432 }; 1433 1434 /* For compression */ 1435 enum compress_algorithm_type { 1436 COMPRESS_LZO, 1437 COMPRESS_LZ4, 1438 COMPRESS_ZSTD, 1439 COMPRESS_LZORLE, 1440 COMPRESS_MAX, 1441 }; 1442 1443 enum compress_flag { 1444 COMPRESS_CHKSUM, 1445 COMPRESS_MAX_FLAG, 1446 }; 1447 1448 #define COMPRESS_WATERMARK 20 1449 #define COMPRESS_PERCENT 20 1450 1451 #define COMPRESS_DATA_RESERVED_SIZE 4 1452 struct compress_data { 1453 __le32 clen; /* compressed data size */ 1454 __le32 chksum; /* compressed data chksum */ 1455 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1456 u8 cdata[]; /* compressed data */ 1457 }; 1458 1459 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1460 1461 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1462 1463 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 1464 1465 #define COMPRESS_LEVEL_OFFSET 8 1466 1467 /* compress context */ 1468 struct compress_ctx { 1469 struct inode *inode; /* inode the context belong to */ 1470 pgoff_t cluster_idx; /* cluster index number */ 1471 unsigned int cluster_size; /* page count in cluster */ 1472 unsigned int log_cluster_size; /* log of cluster size */ 1473 struct page **rpages; /* pages store raw data in cluster */ 1474 unsigned int nr_rpages; /* total page number in rpages */ 1475 struct page **cpages; /* pages store compressed data in cluster */ 1476 unsigned int nr_cpages; /* total page number in cpages */ 1477 unsigned int valid_nr_cpages; /* valid page number in cpages */ 1478 void *rbuf; /* virtual mapped address on rpages */ 1479 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1480 size_t rlen; /* valid data length in rbuf */ 1481 size_t clen; /* valid data length in cbuf */ 1482 void *private; /* payload buffer for specified compression algorithm */ 1483 void *private2; /* extra payload buffer */ 1484 }; 1485 1486 /* compress context for write IO path */ 1487 struct compress_io_ctx { 1488 u32 magic; /* magic number to indicate page is compressed */ 1489 struct inode *inode; /* inode the context belong to */ 1490 struct page **rpages; /* pages store raw data in cluster */ 1491 unsigned int nr_rpages; /* total page number in rpages */ 1492 atomic_t pending_pages; /* in-flight compressed page count */ 1493 }; 1494 1495 /* Context for decompressing one cluster on the read IO path */ 1496 struct decompress_io_ctx { 1497 u32 magic; /* magic number to indicate page is compressed */ 1498 struct inode *inode; /* inode the context belong to */ 1499 pgoff_t cluster_idx; /* cluster index number */ 1500 unsigned int cluster_size; /* page count in cluster */ 1501 unsigned int log_cluster_size; /* log of cluster size */ 1502 struct page **rpages; /* pages store raw data in cluster */ 1503 unsigned int nr_rpages; /* total page number in rpages */ 1504 struct page **cpages; /* pages store compressed data in cluster */ 1505 unsigned int nr_cpages; /* total page number in cpages */ 1506 struct page **tpages; /* temp pages to pad holes in cluster */ 1507 void *rbuf; /* virtual mapped address on rpages */ 1508 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1509 size_t rlen; /* valid data length in rbuf */ 1510 size_t clen; /* valid data length in cbuf */ 1511 1512 /* 1513 * The number of compressed pages remaining to be read in this cluster. 1514 * This is initially nr_cpages. It is decremented by 1 each time a page 1515 * has been read (or failed to be read). When it reaches 0, the cluster 1516 * is decompressed (or an error is reported). 1517 * 1518 * If an error occurs before all the pages have been submitted for I/O, 1519 * then this will never reach 0. In this case the I/O submitter is 1520 * responsible for calling f2fs_decompress_end_io() instead. 1521 */ 1522 atomic_t remaining_pages; 1523 1524 /* 1525 * Number of references to this decompress_io_ctx. 1526 * 1527 * One reference is held for I/O completion. This reference is dropped 1528 * after the pagecache pages are updated and unlocked -- either after 1529 * decompression (and verity if enabled), or after an error. 1530 * 1531 * In addition, each compressed page holds a reference while it is in a 1532 * bio. These references are necessary prevent compressed pages from 1533 * being freed while they are still in a bio. 1534 */ 1535 refcount_t refcnt; 1536 1537 bool failed; /* IO error occurred before decompression? */ 1538 bool need_verity; /* need fs-verity verification after decompression? */ 1539 void *private; /* payload buffer for specified decompression algorithm */ 1540 void *private2; /* extra payload buffer */ 1541 struct work_struct verity_work; /* work to verify the decompressed pages */ 1542 struct work_struct free_work; /* work for late free this structure itself */ 1543 }; 1544 1545 #define NULL_CLUSTER ((unsigned int)(~0)) 1546 #define MIN_COMPRESS_LOG_SIZE 2 1547 #define MAX_COMPRESS_LOG_SIZE 8 1548 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1549 1550 struct f2fs_sb_info { 1551 struct super_block *sb; /* pointer to VFS super block */ 1552 struct proc_dir_entry *s_proc; /* proc entry */ 1553 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1554 struct f2fs_rwsem sb_lock; /* lock for raw super block */ 1555 int valid_super_block; /* valid super block no */ 1556 unsigned long s_flag; /* flags for sbi */ 1557 struct mutex writepages; /* mutex for writepages() */ 1558 1559 #ifdef CONFIG_BLK_DEV_ZONED 1560 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1561 unsigned int max_open_zones; /* max open zone resources of the zoned device */ 1562 #endif 1563 1564 /* for node-related operations */ 1565 struct f2fs_nm_info *nm_info; /* node manager */ 1566 struct inode *node_inode; /* cache node blocks */ 1567 1568 /* for segment-related operations */ 1569 struct f2fs_sm_info *sm_info; /* segment manager */ 1570 1571 /* for bio operations */ 1572 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1573 /* keep migration IO order for LFS mode */ 1574 struct f2fs_rwsem io_order_lock; 1575 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ 1576 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ 1577 1578 /* for checkpoint */ 1579 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1580 int cur_cp_pack; /* remain current cp pack */ 1581 spinlock_t cp_lock; /* for flag in ckpt */ 1582 struct inode *meta_inode; /* cache meta blocks */ 1583 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ 1584 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ 1585 struct f2fs_rwsem node_write; /* locking node writes */ 1586 struct f2fs_rwsem node_change; /* locking node change */ 1587 wait_queue_head_t cp_wait; 1588 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1589 long interval_time[MAX_TIME]; /* to store thresholds */ 1590 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1591 1592 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1593 1594 spinlock_t fsync_node_lock; /* for node entry lock */ 1595 struct list_head fsync_node_list; /* node list head */ 1596 unsigned int fsync_seg_id; /* sequence id */ 1597 unsigned int fsync_node_num; /* number of node entries */ 1598 1599 /* for orphan inode, use 0'th array */ 1600 unsigned int max_orphans; /* max orphan inodes */ 1601 1602 /* for inode management */ 1603 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1604 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1605 struct mutex flush_lock; /* for flush exclusion */ 1606 1607 /* for extent tree cache */ 1608 struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; 1609 atomic64_t allocated_data_blocks; /* for block age extent_cache */ 1610 1611 /* The threshold used for hot and warm data seperation*/ 1612 unsigned int hot_data_age_threshold; 1613 unsigned int warm_data_age_threshold; 1614 unsigned int last_age_weight; 1615 1616 /* basic filesystem units */ 1617 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1618 unsigned int log_blocksize; /* log2 block size */ 1619 unsigned int blocksize; /* block size */ 1620 unsigned int root_ino_num; /* root inode number*/ 1621 unsigned int node_ino_num; /* node inode number*/ 1622 unsigned int meta_ino_num; /* meta inode number*/ 1623 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1624 unsigned int blocks_per_seg; /* blocks per segment */ 1625 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ 1626 unsigned int segs_per_sec; /* segments per section */ 1627 unsigned int secs_per_zone; /* sections per zone */ 1628 unsigned int total_sections; /* total section count */ 1629 unsigned int total_node_count; /* total node block count */ 1630 unsigned int total_valid_node_count; /* valid node block count */ 1631 int dir_level; /* directory level */ 1632 bool readdir_ra; /* readahead inode in readdir */ 1633 u64 max_io_bytes; /* max io bytes to merge IOs */ 1634 1635 block_t user_block_count; /* # of user blocks */ 1636 block_t total_valid_block_count; /* # of valid blocks */ 1637 block_t discard_blks; /* discard command candidats */ 1638 block_t last_valid_block_count; /* for recovery */ 1639 block_t reserved_blocks; /* configurable reserved blocks */ 1640 block_t current_reserved_blocks; /* current reserved blocks */ 1641 1642 /* Additional tracking for no checkpoint mode */ 1643 block_t unusable_block_count; /* # of blocks saved by last cp */ 1644 1645 unsigned int nquota_files; /* # of quota sysfile */ 1646 struct f2fs_rwsem quota_sem; /* blocking cp for flags */ 1647 1648 /* # of pages, see count_type */ 1649 atomic_t nr_pages[NR_COUNT_TYPE]; 1650 /* # of allocated blocks */ 1651 struct percpu_counter alloc_valid_block_count; 1652 /* # of node block writes as roll forward recovery */ 1653 struct percpu_counter rf_node_block_count; 1654 1655 /* writeback control */ 1656 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1657 1658 /* valid inode count */ 1659 struct percpu_counter total_valid_inode_count; 1660 1661 struct f2fs_mount_info mount_opt; /* mount options */ 1662 1663 /* for cleaning operations */ 1664 struct f2fs_rwsem gc_lock; /* 1665 * semaphore for GC, avoid 1666 * race between GC and GC or CP 1667 */ 1668 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1669 struct atgc_management am; /* atgc management */ 1670 unsigned int cur_victim_sec; /* current victim section num */ 1671 unsigned int gc_mode; /* current GC state */ 1672 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1673 spinlock_t gc_remaining_trials_lock; 1674 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ 1675 unsigned int gc_remaining_trials; 1676 1677 /* for skip statistic */ 1678 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1679 1680 /* threshold for gc trials on pinned files */ 1681 unsigned short gc_pin_file_threshold; 1682 struct f2fs_rwsem pin_sem; 1683 1684 /* maximum # of trials to find a victim segment for SSR and GC */ 1685 unsigned int max_victim_search; 1686 /* migration granularity of garbage collection, unit: segment */ 1687 unsigned int migration_granularity; 1688 1689 /* 1690 * for stat information. 1691 * one is for the LFS mode, and the other is for the SSR mode. 1692 */ 1693 #ifdef CONFIG_F2FS_STAT_FS 1694 struct f2fs_stat_info *stat_info; /* FS status information */ 1695 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1696 unsigned int segment_count[2]; /* # of allocated segments */ 1697 unsigned int block_count[2]; /* # of allocated blocks */ 1698 atomic_t inplace_count; /* # of inplace update */ 1699 /* # of lookup extent cache */ 1700 atomic64_t total_hit_ext[NR_EXTENT_CACHES]; 1701 /* # of hit rbtree extent node */ 1702 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; 1703 /* # of hit cached extent node */ 1704 atomic64_t read_hit_cached[NR_EXTENT_CACHES]; 1705 /* # of hit largest extent node in read extent cache */ 1706 atomic64_t read_hit_largest; 1707 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1708 atomic_t inline_inode; /* # of inline_data inodes */ 1709 atomic_t inline_dir; /* # of inline_dentry inodes */ 1710 atomic_t compr_inode; /* # of compressed inodes */ 1711 atomic64_t compr_blocks; /* # of compressed blocks */ 1712 atomic_t swapfile_inode; /* # of swapfile inodes */ 1713 atomic_t atomic_files; /* # of opened atomic file */ 1714 atomic_t max_aw_cnt; /* max # of atomic writes */ 1715 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1716 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1717 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1718 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */ 1719 #endif 1720 spinlock_t stat_lock; /* lock for stat operations */ 1721 1722 /* to attach REQ_META|REQ_FUA flags */ 1723 unsigned int data_io_flag; 1724 unsigned int node_io_flag; 1725 1726 /* For sysfs support */ 1727 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1728 struct completion s_kobj_unregister; 1729 1730 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1731 struct completion s_stat_kobj_unregister; 1732 1733 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1734 struct completion s_feature_list_kobj_unregister; 1735 1736 /* For shrinker support */ 1737 struct list_head s_list; 1738 struct mutex umount_mutex; 1739 unsigned int shrinker_run_no; 1740 1741 /* For multi devices */ 1742 int s_ndevs; /* number of devices */ 1743 struct f2fs_dev_info *devs; /* for device list */ 1744 unsigned int dirty_device; /* for checkpoint data flush */ 1745 spinlock_t dev_lock; /* protect dirty_device */ 1746 bool aligned_blksize; /* all devices has the same logical blksize */ 1747 1748 /* For write statistics */ 1749 u64 sectors_written_start; 1750 u64 kbytes_written; 1751 1752 /* Reference to checksum algorithm driver via cryptoapi */ 1753 struct crypto_shash *s_chksum_driver; 1754 1755 /* Precomputed FS UUID checksum for seeding other checksums */ 1756 __u32 s_chksum_seed; 1757 1758 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1759 1760 /* 1761 * If we are in irq context, let's update error information into 1762 * on-disk superblock in the work. 1763 */ 1764 struct work_struct s_error_work; 1765 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ 1766 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */ 1767 spinlock_t error_lock; /* protect errors/stop_reason array */ 1768 bool error_dirty; /* errors of sb is dirty */ 1769 1770 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1771 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1772 1773 /* For reclaimed segs statistics per each GC mode */ 1774 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1775 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1776 1777 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1778 1779 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1780 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1781 1782 /* For atomic write statistics */ 1783 atomic64_t current_atomic_write; 1784 s64 peak_atomic_write; 1785 u64 committed_atomic_block; 1786 u64 revoked_atomic_block; 1787 1788 #ifdef CONFIG_F2FS_FS_COMPRESSION 1789 struct kmem_cache *page_array_slab; /* page array entry */ 1790 unsigned int page_array_slab_size; /* default page array slab size */ 1791 1792 /* For runtime compression statistics */ 1793 u64 compr_written_block; 1794 u64 compr_saved_block; 1795 u32 compr_new_inode; 1796 1797 /* For compressed block cache */ 1798 struct inode *compress_inode; /* cache compressed blocks */ 1799 unsigned int compress_percent; /* cache page percentage */ 1800 unsigned int compress_watermark; /* cache page watermark */ 1801 atomic_t compress_page_hit; /* cache hit count */ 1802 #endif 1803 1804 #ifdef CONFIG_F2FS_IOSTAT 1805 /* For app/fs IO statistics */ 1806 spinlock_t iostat_lock; 1807 unsigned long long iostat_count[NR_IO_TYPE]; 1808 unsigned long long iostat_bytes[NR_IO_TYPE]; 1809 unsigned long long prev_iostat_bytes[NR_IO_TYPE]; 1810 bool iostat_enable; 1811 unsigned long iostat_next_period; 1812 unsigned int iostat_period_ms; 1813 1814 /* For io latency related statistics info in one iostat period */ 1815 spinlock_t iostat_lat_lock; 1816 struct iostat_lat_info *iostat_io_lat; 1817 #endif 1818 }; 1819 1820 /* Definitions to access f2fs_sb_info */ 1821 #define SEGS_TO_BLKS(sbi, segs) \ 1822 ((segs) << (sbi)->log_blocks_per_seg) 1823 #define BLKS_TO_SEGS(sbi, blks) \ 1824 ((blks) >> (sbi)->log_blocks_per_seg) 1825 1826 #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg) 1827 #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec)) 1828 #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec) 1829 1830 __printf(3, 4) 1831 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...); 1832 1833 #define f2fs_err(sbi, fmt, ...) \ 1834 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__) 1835 #define f2fs_warn(sbi, fmt, ...) \ 1836 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__) 1837 #define f2fs_notice(sbi, fmt, ...) \ 1838 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__) 1839 #define f2fs_info(sbi, fmt, ...) \ 1840 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__) 1841 #define f2fs_debug(sbi, fmt, ...) \ 1842 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__) 1843 1844 #define f2fs_err_ratelimited(sbi, fmt, ...) \ 1845 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__) 1846 #define f2fs_warn_ratelimited(sbi, fmt, ...) \ 1847 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__) 1848 #define f2fs_info_ratelimited(sbi, fmt, ...) \ 1849 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__) 1850 1851 #ifdef CONFIG_F2FS_FAULT_INJECTION 1852 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \ 1853 __builtin_return_address(0)) 1854 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type, 1855 const char *func, const char *parent_func) 1856 { 1857 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1858 1859 if (!ffi->inject_rate) 1860 return false; 1861 1862 if (!IS_FAULT_SET(ffi, type)) 1863 return false; 1864 1865 atomic_inc(&ffi->inject_ops); 1866 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1867 atomic_set(&ffi->inject_ops, 0); 1868 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS", 1869 f2fs_fault_name[type], func, parent_func); 1870 return true; 1871 } 1872 return false; 1873 } 1874 #else 1875 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1876 { 1877 return false; 1878 } 1879 #endif 1880 1881 /* 1882 * Test if the mounted volume is a multi-device volume. 1883 * - For a single regular disk volume, sbi->s_ndevs is 0. 1884 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1885 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1886 */ 1887 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1888 { 1889 return sbi->s_ndevs > 1; 1890 } 1891 1892 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1893 { 1894 unsigned long now = jiffies; 1895 1896 sbi->last_time[type] = now; 1897 1898 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1899 if (type == REQ_TIME) { 1900 sbi->last_time[DISCARD_TIME] = now; 1901 sbi->last_time[GC_TIME] = now; 1902 } 1903 } 1904 1905 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1906 { 1907 unsigned long interval = sbi->interval_time[type] * HZ; 1908 1909 return time_after(jiffies, sbi->last_time[type] + interval); 1910 } 1911 1912 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1913 int type) 1914 { 1915 unsigned long interval = sbi->interval_time[type] * HZ; 1916 unsigned int wait_ms = 0; 1917 long delta; 1918 1919 delta = (sbi->last_time[type] + interval) - jiffies; 1920 if (delta > 0) 1921 wait_ms = jiffies_to_msecs(delta); 1922 1923 return wait_ms; 1924 } 1925 1926 /* 1927 * Inline functions 1928 */ 1929 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1930 const void *address, unsigned int length) 1931 { 1932 struct { 1933 struct shash_desc shash; 1934 char ctx[4]; 1935 } desc; 1936 int err; 1937 1938 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1939 1940 desc.shash.tfm = sbi->s_chksum_driver; 1941 *(u32 *)desc.ctx = crc; 1942 1943 err = crypto_shash_update(&desc.shash, address, length); 1944 BUG_ON(err); 1945 1946 return *(u32 *)desc.ctx; 1947 } 1948 1949 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1950 unsigned int length) 1951 { 1952 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1953 } 1954 1955 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1956 void *buf, size_t buf_size) 1957 { 1958 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1959 } 1960 1961 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1962 const void *address, unsigned int length) 1963 { 1964 return __f2fs_crc32(sbi, crc, address, length); 1965 } 1966 1967 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1968 { 1969 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1970 } 1971 1972 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1973 { 1974 return sb->s_fs_info; 1975 } 1976 1977 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1978 { 1979 return F2FS_SB(inode->i_sb); 1980 } 1981 1982 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1983 { 1984 return F2FS_I_SB(mapping->host); 1985 } 1986 1987 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1988 { 1989 return F2FS_M_SB(page_file_mapping(page)); 1990 } 1991 1992 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1993 { 1994 return (struct f2fs_super_block *)(sbi->raw_super); 1995 } 1996 1997 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1998 { 1999 return (struct f2fs_checkpoint *)(sbi->ckpt); 2000 } 2001 2002 static inline struct f2fs_node *F2FS_NODE(struct page *page) 2003 { 2004 return (struct f2fs_node *)page_address(page); 2005 } 2006 2007 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 2008 { 2009 return &((struct f2fs_node *)page_address(page))->i; 2010 } 2011 2012 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 2013 { 2014 return (struct f2fs_nm_info *)(sbi->nm_info); 2015 } 2016 2017 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 2018 { 2019 return (struct f2fs_sm_info *)(sbi->sm_info); 2020 } 2021 2022 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 2023 { 2024 return (struct sit_info *)(SM_I(sbi)->sit_info); 2025 } 2026 2027 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 2028 { 2029 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 2030 } 2031 2032 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 2033 { 2034 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 2035 } 2036 2037 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 2038 { 2039 return sbi->meta_inode->i_mapping; 2040 } 2041 2042 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 2043 { 2044 return sbi->node_inode->i_mapping; 2045 } 2046 2047 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 2048 { 2049 return test_bit(type, &sbi->s_flag); 2050 } 2051 2052 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2053 { 2054 set_bit(type, &sbi->s_flag); 2055 } 2056 2057 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2058 { 2059 clear_bit(type, &sbi->s_flag); 2060 } 2061 2062 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2063 { 2064 return le64_to_cpu(cp->checkpoint_ver); 2065 } 2066 2067 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2068 { 2069 if (type < F2FS_MAX_QUOTAS) 2070 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2071 return 0; 2072 } 2073 2074 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2075 { 2076 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2077 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2078 } 2079 2080 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2081 { 2082 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2083 2084 return ckpt_flags & f; 2085 } 2086 2087 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2088 { 2089 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2090 } 2091 2092 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2093 { 2094 unsigned int ckpt_flags; 2095 2096 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2097 ckpt_flags |= f; 2098 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2099 } 2100 2101 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2102 { 2103 unsigned long flags; 2104 2105 spin_lock_irqsave(&sbi->cp_lock, flags); 2106 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2107 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2108 } 2109 2110 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2111 { 2112 unsigned int ckpt_flags; 2113 2114 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2115 ckpt_flags &= (~f); 2116 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2117 } 2118 2119 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2120 { 2121 unsigned long flags; 2122 2123 spin_lock_irqsave(&sbi->cp_lock, flags); 2124 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2125 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2126 } 2127 2128 #define init_f2fs_rwsem(sem) \ 2129 do { \ 2130 static struct lock_class_key __key; \ 2131 \ 2132 __init_f2fs_rwsem((sem), #sem, &__key); \ 2133 } while (0) 2134 2135 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, 2136 const char *sem_name, struct lock_class_key *key) 2137 { 2138 __init_rwsem(&sem->internal_rwsem, sem_name, key); 2139 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2140 init_waitqueue_head(&sem->read_waiters); 2141 #endif 2142 } 2143 2144 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) 2145 { 2146 return rwsem_is_locked(&sem->internal_rwsem); 2147 } 2148 2149 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) 2150 { 2151 return rwsem_is_contended(&sem->internal_rwsem); 2152 } 2153 2154 static inline void f2fs_down_read(struct f2fs_rwsem *sem) 2155 { 2156 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2157 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); 2158 #else 2159 down_read(&sem->internal_rwsem); 2160 #endif 2161 } 2162 2163 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) 2164 { 2165 return down_read_trylock(&sem->internal_rwsem); 2166 } 2167 2168 static inline void f2fs_up_read(struct f2fs_rwsem *sem) 2169 { 2170 up_read(&sem->internal_rwsem); 2171 } 2172 2173 static inline void f2fs_down_write(struct f2fs_rwsem *sem) 2174 { 2175 down_write(&sem->internal_rwsem); 2176 } 2177 2178 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2179 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) 2180 { 2181 down_read_nested(&sem->internal_rwsem, subclass); 2182 } 2183 2184 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass) 2185 { 2186 down_write_nested(&sem->internal_rwsem, subclass); 2187 } 2188 #else 2189 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) 2190 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem) 2191 #endif 2192 2193 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) 2194 { 2195 return down_write_trylock(&sem->internal_rwsem); 2196 } 2197 2198 static inline void f2fs_up_write(struct f2fs_rwsem *sem) 2199 { 2200 up_write(&sem->internal_rwsem); 2201 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2202 wake_up_all(&sem->read_waiters); 2203 #endif 2204 } 2205 2206 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2207 { 2208 f2fs_down_read(&sbi->cp_rwsem); 2209 } 2210 2211 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2212 { 2213 if (time_to_inject(sbi, FAULT_LOCK_OP)) 2214 return 0; 2215 return f2fs_down_read_trylock(&sbi->cp_rwsem); 2216 } 2217 2218 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2219 { 2220 f2fs_up_read(&sbi->cp_rwsem); 2221 } 2222 2223 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2224 { 2225 f2fs_down_write(&sbi->cp_rwsem); 2226 } 2227 2228 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2229 { 2230 f2fs_up_write(&sbi->cp_rwsem); 2231 } 2232 2233 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2234 { 2235 int reason = CP_SYNC; 2236 2237 if (test_opt(sbi, FASTBOOT)) 2238 reason = CP_FASTBOOT; 2239 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2240 reason = CP_UMOUNT; 2241 return reason; 2242 } 2243 2244 static inline bool __remain_node_summaries(int reason) 2245 { 2246 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2247 } 2248 2249 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2250 { 2251 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2252 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2253 } 2254 2255 /* 2256 * Check whether the inode has blocks or not 2257 */ 2258 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2259 { 2260 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2261 2262 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2263 } 2264 2265 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2266 { 2267 return ofs == XATTR_NODE_OFFSET; 2268 } 2269 2270 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2271 struct inode *inode, bool cap) 2272 { 2273 if (!inode) 2274 return true; 2275 if (!test_opt(sbi, RESERVE_ROOT)) 2276 return false; 2277 if (IS_NOQUOTA(inode)) 2278 return true; 2279 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2280 return true; 2281 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2282 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2283 return true; 2284 if (cap && capable(CAP_SYS_RESOURCE)) 2285 return true; 2286 return false; 2287 } 2288 2289 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi, 2290 struct inode *inode, bool cap) 2291 { 2292 block_t avail_user_block_count; 2293 2294 avail_user_block_count = sbi->user_block_count - 2295 sbi->current_reserved_blocks; 2296 2297 if (!__allow_reserved_blocks(sbi, inode, cap)) 2298 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2299 2300 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2301 if (avail_user_block_count > sbi->unusable_block_count) 2302 avail_user_block_count -= sbi->unusable_block_count; 2303 else 2304 avail_user_block_count = 0; 2305 } 2306 2307 return avail_user_block_count; 2308 } 2309 2310 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2311 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2312 struct inode *inode, blkcnt_t *count, bool partial) 2313 { 2314 long long diff = 0, release = 0; 2315 block_t avail_user_block_count; 2316 int ret; 2317 2318 ret = dquot_reserve_block(inode, *count); 2319 if (ret) 2320 return ret; 2321 2322 if (time_to_inject(sbi, FAULT_BLOCK)) { 2323 release = *count; 2324 goto release_quota; 2325 } 2326 2327 /* 2328 * let's increase this in prior to actual block count change in order 2329 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2330 */ 2331 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2332 2333 spin_lock(&sbi->stat_lock); 2334 2335 avail_user_block_count = get_available_block_count(sbi, inode, true); 2336 diff = (long long)sbi->total_valid_block_count + *count - 2337 avail_user_block_count; 2338 if (unlikely(diff > 0)) { 2339 if (!partial) { 2340 spin_unlock(&sbi->stat_lock); 2341 release = *count; 2342 goto enospc; 2343 } 2344 if (diff > *count) 2345 diff = *count; 2346 *count -= diff; 2347 release = diff; 2348 if (!*count) { 2349 spin_unlock(&sbi->stat_lock); 2350 goto enospc; 2351 } 2352 } 2353 sbi->total_valid_block_count += (block_t)(*count); 2354 2355 spin_unlock(&sbi->stat_lock); 2356 2357 if (unlikely(release)) { 2358 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2359 dquot_release_reservation_block(inode, release); 2360 } 2361 f2fs_i_blocks_write(inode, *count, true, true); 2362 return 0; 2363 2364 enospc: 2365 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2366 release_quota: 2367 dquot_release_reservation_block(inode, release); 2368 return -ENOSPC; 2369 } 2370 2371 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 2372 static inline bool page_private_##name(struct page *page) \ 2373 { \ 2374 return PagePrivate(page) && \ 2375 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 2376 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2377 } 2378 2379 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 2380 static inline void set_page_private_##name(struct page *page) \ 2381 { \ 2382 if (!PagePrivate(page)) \ 2383 attach_page_private(page, (void *)0); \ 2384 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 2385 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2386 } 2387 2388 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 2389 static inline void clear_page_private_##name(struct page *page) \ 2390 { \ 2391 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2392 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \ 2393 detach_page_private(page); \ 2394 } 2395 2396 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 2397 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 2398 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 2399 2400 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 2401 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 2402 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 2403 2404 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 2405 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 2406 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 2407 2408 static inline unsigned long get_page_private_data(struct page *page) 2409 { 2410 unsigned long data = page_private(page); 2411 2412 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 2413 return 0; 2414 return data >> PAGE_PRIVATE_MAX; 2415 } 2416 2417 static inline void set_page_private_data(struct page *page, unsigned long data) 2418 { 2419 if (!PagePrivate(page)) 2420 attach_page_private(page, (void *)0); 2421 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 2422 page_private(page) |= data << PAGE_PRIVATE_MAX; 2423 } 2424 2425 static inline void clear_page_private_data(struct page *page) 2426 { 2427 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0); 2428 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) 2429 detach_page_private(page); 2430 } 2431 2432 static inline void clear_page_private_all(struct page *page) 2433 { 2434 clear_page_private_data(page); 2435 clear_page_private_reference(page); 2436 clear_page_private_gcing(page); 2437 clear_page_private_inline(page); 2438 2439 f2fs_bug_on(F2FS_P_SB(page), page_private(page)); 2440 } 2441 2442 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2443 struct inode *inode, 2444 block_t count) 2445 { 2446 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2447 2448 spin_lock(&sbi->stat_lock); 2449 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2450 sbi->total_valid_block_count -= (block_t)count; 2451 if (sbi->reserved_blocks && 2452 sbi->current_reserved_blocks < sbi->reserved_blocks) 2453 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2454 sbi->current_reserved_blocks + count); 2455 spin_unlock(&sbi->stat_lock); 2456 if (unlikely(inode->i_blocks < sectors)) { 2457 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2458 inode->i_ino, 2459 (unsigned long long)inode->i_blocks, 2460 (unsigned long long)sectors); 2461 set_sbi_flag(sbi, SBI_NEED_FSCK); 2462 return; 2463 } 2464 f2fs_i_blocks_write(inode, count, false, true); 2465 } 2466 2467 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2468 { 2469 atomic_inc(&sbi->nr_pages[count_type]); 2470 2471 if (count_type == F2FS_DIRTY_DENTS || 2472 count_type == F2FS_DIRTY_NODES || 2473 count_type == F2FS_DIRTY_META || 2474 count_type == F2FS_DIRTY_QDATA || 2475 count_type == F2FS_DIRTY_IMETA) 2476 set_sbi_flag(sbi, SBI_IS_DIRTY); 2477 } 2478 2479 static inline void inode_inc_dirty_pages(struct inode *inode) 2480 { 2481 atomic_inc(&F2FS_I(inode)->dirty_pages); 2482 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2483 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2484 if (IS_NOQUOTA(inode)) 2485 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2486 } 2487 2488 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2489 { 2490 atomic_dec(&sbi->nr_pages[count_type]); 2491 } 2492 2493 static inline void inode_dec_dirty_pages(struct inode *inode) 2494 { 2495 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2496 !S_ISLNK(inode->i_mode)) 2497 return; 2498 2499 atomic_dec(&F2FS_I(inode)->dirty_pages); 2500 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2501 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2502 if (IS_NOQUOTA(inode)) 2503 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2504 } 2505 2506 static inline void inc_atomic_write_cnt(struct inode *inode) 2507 { 2508 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2509 struct f2fs_inode_info *fi = F2FS_I(inode); 2510 u64 current_write; 2511 2512 fi->atomic_write_cnt++; 2513 atomic64_inc(&sbi->current_atomic_write); 2514 current_write = atomic64_read(&sbi->current_atomic_write); 2515 if (current_write > sbi->peak_atomic_write) 2516 sbi->peak_atomic_write = current_write; 2517 } 2518 2519 static inline void release_atomic_write_cnt(struct inode *inode) 2520 { 2521 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2522 struct f2fs_inode_info *fi = F2FS_I(inode); 2523 2524 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); 2525 fi->atomic_write_cnt = 0; 2526 } 2527 2528 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2529 { 2530 return atomic_read(&sbi->nr_pages[count_type]); 2531 } 2532 2533 static inline int get_dirty_pages(struct inode *inode) 2534 { 2535 return atomic_read(&F2FS_I(inode)->dirty_pages); 2536 } 2537 2538 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2539 { 2540 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1, 2541 BLKS_PER_SEC(sbi)); 2542 } 2543 2544 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2545 { 2546 return sbi->total_valid_block_count; 2547 } 2548 2549 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2550 { 2551 return sbi->discard_blks; 2552 } 2553 2554 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2555 { 2556 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2557 2558 /* return NAT or SIT bitmap */ 2559 if (flag == NAT_BITMAP) 2560 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2561 else if (flag == SIT_BITMAP) 2562 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2563 2564 return 0; 2565 } 2566 2567 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2568 { 2569 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2570 } 2571 2572 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2573 { 2574 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2575 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2576 int offset; 2577 2578 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2579 offset = (flag == SIT_BITMAP) ? 2580 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2581 /* 2582 * if large_nat_bitmap feature is enabled, leave checksum 2583 * protection for all nat/sit bitmaps. 2584 */ 2585 return tmp_ptr + offset + sizeof(__le32); 2586 } 2587 2588 if (__cp_payload(sbi) > 0) { 2589 if (flag == NAT_BITMAP) 2590 return tmp_ptr; 2591 else 2592 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2593 } else { 2594 offset = (flag == NAT_BITMAP) ? 2595 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2596 return tmp_ptr + offset; 2597 } 2598 } 2599 2600 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2601 { 2602 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2603 2604 if (sbi->cur_cp_pack == 2) 2605 start_addr += BLKS_PER_SEG(sbi); 2606 return start_addr; 2607 } 2608 2609 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2610 { 2611 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2612 2613 if (sbi->cur_cp_pack == 1) 2614 start_addr += BLKS_PER_SEG(sbi); 2615 return start_addr; 2616 } 2617 2618 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2619 { 2620 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2621 } 2622 2623 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2624 { 2625 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2626 } 2627 2628 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 2629 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2630 struct inode *inode, bool is_inode) 2631 { 2632 block_t valid_block_count; 2633 unsigned int valid_node_count; 2634 unsigned int avail_user_block_count; 2635 int err; 2636 2637 if (is_inode) { 2638 if (inode) { 2639 err = dquot_alloc_inode(inode); 2640 if (err) 2641 return err; 2642 } 2643 } else { 2644 err = dquot_reserve_block(inode, 1); 2645 if (err) 2646 return err; 2647 } 2648 2649 if (time_to_inject(sbi, FAULT_BLOCK)) 2650 goto enospc; 2651 2652 spin_lock(&sbi->stat_lock); 2653 2654 valid_block_count = sbi->total_valid_block_count + 1; 2655 avail_user_block_count = get_available_block_count(sbi, inode, false); 2656 2657 if (unlikely(valid_block_count > avail_user_block_count)) { 2658 spin_unlock(&sbi->stat_lock); 2659 goto enospc; 2660 } 2661 2662 valid_node_count = sbi->total_valid_node_count + 1; 2663 if (unlikely(valid_node_count > sbi->total_node_count)) { 2664 spin_unlock(&sbi->stat_lock); 2665 goto enospc; 2666 } 2667 2668 sbi->total_valid_node_count++; 2669 sbi->total_valid_block_count++; 2670 spin_unlock(&sbi->stat_lock); 2671 2672 if (inode) { 2673 if (is_inode) 2674 f2fs_mark_inode_dirty_sync(inode, true); 2675 else 2676 f2fs_i_blocks_write(inode, 1, true, true); 2677 } 2678 2679 percpu_counter_inc(&sbi->alloc_valid_block_count); 2680 return 0; 2681 2682 enospc: 2683 if (is_inode) { 2684 if (inode) 2685 dquot_free_inode(inode); 2686 } else { 2687 dquot_release_reservation_block(inode, 1); 2688 } 2689 return -ENOSPC; 2690 } 2691 2692 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2693 struct inode *inode, bool is_inode) 2694 { 2695 spin_lock(&sbi->stat_lock); 2696 2697 if (unlikely(!sbi->total_valid_block_count || 2698 !sbi->total_valid_node_count)) { 2699 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", 2700 sbi->total_valid_block_count, 2701 sbi->total_valid_node_count); 2702 set_sbi_flag(sbi, SBI_NEED_FSCK); 2703 } else { 2704 sbi->total_valid_block_count--; 2705 sbi->total_valid_node_count--; 2706 } 2707 2708 if (sbi->reserved_blocks && 2709 sbi->current_reserved_blocks < sbi->reserved_blocks) 2710 sbi->current_reserved_blocks++; 2711 2712 spin_unlock(&sbi->stat_lock); 2713 2714 if (is_inode) { 2715 dquot_free_inode(inode); 2716 } else { 2717 if (unlikely(inode->i_blocks == 0)) { 2718 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2719 inode->i_ino, 2720 (unsigned long long)inode->i_blocks); 2721 set_sbi_flag(sbi, SBI_NEED_FSCK); 2722 return; 2723 } 2724 f2fs_i_blocks_write(inode, 1, false, true); 2725 } 2726 } 2727 2728 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2729 { 2730 return sbi->total_valid_node_count; 2731 } 2732 2733 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2734 { 2735 percpu_counter_inc(&sbi->total_valid_inode_count); 2736 } 2737 2738 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2739 { 2740 percpu_counter_dec(&sbi->total_valid_inode_count); 2741 } 2742 2743 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2744 { 2745 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2746 } 2747 2748 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2749 pgoff_t index, bool for_write) 2750 { 2751 struct page *page; 2752 unsigned int flags; 2753 2754 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2755 if (!for_write) 2756 page = find_get_page_flags(mapping, index, 2757 FGP_LOCK | FGP_ACCESSED); 2758 else 2759 page = find_lock_page(mapping, index); 2760 if (page) 2761 return page; 2762 2763 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 2764 return NULL; 2765 } 2766 2767 if (!for_write) 2768 return grab_cache_page(mapping, index); 2769 2770 flags = memalloc_nofs_save(); 2771 page = grab_cache_page_write_begin(mapping, index); 2772 memalloc_nofs_restore(flags); 2773 2774 return page; 2775 } 2776 2777 static inline struct page *f2fs_pagecache_get_page( 2778 struct address_space *mapping, pgoff_t index, 2779 fgf_t fgp_flags, gfp_t gfp_mask) 2780 { 2781 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) 2782 return NULL; 2783 2784 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2785 } 2786 2787 static inline void f2fs_put_page(struct page *page, int unlock) 2788 { 2789 if (!page) 2790 return; 2791 2792 if (unlock) { 2793 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2794 unlock_page(page); 2795 } 2796 put_page(page); 2797 } 2798 2799 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2800 { 2801 if (dn->node_page) 2802 f2fs_put_page(dn->node_page, 1); 2803 if (dn->inode_page && dn->node_page != dn->inode_page) 2804 f2fs_put_page(dn->inode_page, 0); 2805 dn->node_page = NULL; 2806 dn->inode_page = NULL; 2807 } 2808 2809 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2810 size_t size) 2811 { 2812 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2813 } 2814 2815 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2816 gfp_t flags) 2817 { 2818 void *entry; 2819 2820 entry = kmem_cache_alloc(cachep, flags); 2821 if (!entry) 2822 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2823 return entry; 2824 } 2825 2826 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2827 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2828 { 2829 if (nofail) 2830 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2831 2832 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) 2833 return NULL; 2834 2835 return kmem_cache_alloc(cachep, flags); 2836 } 2837 2838 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2839 { 2840 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2841 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2842 get_pages(sbi, F2FS_WB_CP_DATA) || 2843 get_pages(sbi, F2FS_DIO_READ) || 2844 get_pages(sbi, F2FS_DIO_WRITE)) 2845 return true; 2846 2847 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2848 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2849 return true; 2850 2851 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2852 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2853 return true; 2854 return false; 2855 } 2856 2857 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2858 { 2859 if (sbi->gc_mode == GC_URGENT_HIGH) 2860 return true; 2861 2862 if (is_inflight_io(sbi, type)) 2863 return false; 2864 2865 if (sbi->gc_mode == GC_URGENT_MID) 2866 return true; 2867 2868 if (sbi->gc_mode == GC_URGENT_LOW && 2869 (type == DISCARD_TIME || type == GC_TIME)) 2870 return true; 2871 2872 return f2fs_time_over(sbi, type); 2873 } 2874 2875 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2876 unsigned long index, void *item) 2877 { 2878 while (radix_tree_insert(root, index, item)) 2879 cond_resched(); 2880 } 2881 2882 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2883 2884 static inline bool IS_INODE(struct page *page) 2885 { 2886 struct f2fs_node *p = F2FS_NODE(page); 2887 2888 return RAW_IS_INODE(p); 2889 } 2890 2891 static inline int offset_in_addr(struct f2fs_inode *i) 2892 { 2893 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2894 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2895 } 2896 2897 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2898 { 2899 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2900 } 2901 2902 static inline int f2fs_has_extra_attr(struct inode *inode); 2903 static inline block_t data_blkaddr(struct inode *inode, 2904 struct page *node_page, unsigned int offset) 2905 { 2906 struct f2fs_node *raw_node; 2907 __le32 *addr_array; 2908 int base = 0; 2909 bool is_inode = IS_INODE(node_page); 2910 2911 raw_node = F2FS_NODE(node_page); 2912 2913 if (is_inode) { 2914 if (!inode) 2915 /* from GC path only */ 2916 base = offset_in_addr(&raw_node->i); 2917 else if (f2fs_has_extra_attr(inode)) 2918 base = get_extra_isize(inode); 2919 } 2920 2921 addr_array = blkaddr_in_node(raw_node); 2922 return le32_to_cpu(addr_array[base + offset]); 2923 } 2924 2925 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2926 { 2927 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2928 } 2929 2930 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2931 { 2932 int mask; 2933 2934 addr += (nr >> 3); 2935 mask = BIT(7 - (nr & 0x07)); 2936 return mask & *addr; 2937 } 2938 2939 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2940 { 2941 int mask; 2942 2943 addr += (nr >> 3); 2944 mask = BIT(7 - (nr & 0x07)); 2945 *addr |= mask; 2946 } 2947 2948 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2949 { 2950 int mask; 2951 2952 addr += (nr >> 3); 2953 mask = BIT(7 - (nr & 0x07)); 2954 *addr &= ~mask; 2955 } 2956 2957 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2958 { 2959 int mask; 2960 int ret; 2961 2962 addr += (nr >> 3); 2963 mask = BIT(7 - (nr & 0x07)); 2964 ret = mask & *addr; 2965 *addr |= mask; 2966 return ret; 2967 } 2968 2969 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2970 { 2971 int mask; 2972 int ret; 2973 2974 addr += (nr >> 3); 2975 mask = BIT(7 - (nr & 0x07)); 2976 ret = mask & *addr; 2977 *addr &= ~mask; 2978 return ret; 2979 } 2980 2981 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2982 { 2983 int mask; 2984 2985 addr += (nr >> 3); 2986 mask = BIT(7 - (nr & 0x07)); 2987 *addr ^= mask; 2988 } 2989 2990 /* 2991 * On-disk inode flags (f2fs_inode::i_flags) 2992 */ 2993 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2994 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2995 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2996 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2997 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2998 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2999 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 3000 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 3001 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 3002 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 3003 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 3004 3005 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL) 3006 3007 /* Flags that should be inherited by new inodes from their parent. */ 3008 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 3009 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 3010 F2FS_CASEFOLD_FL) 3011 3012 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 3013 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 3014 F2FS_CASEFOLD_FL)) 3015 3016 /* Flags that are appropriate for non-directories/regular files. */ 3017 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 3018 3019 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 3020 { 3021 if (S_ISDIR(mode)) 3022 return flags; 3023 else if (S_ISREG(mode)) 3024 return flags & F2FS_REG_FLMASK; 3025 else 3026 return flags & F2FS_OTHER_FLMASK; 3027 } 3028 3029 static inline void __mark_inode_dirty_flag(struct inode *inode, 3030 int flag, bool set) 3031 { 3032 switch (flag) { 3033 case FI_INLINE_XATTR: 3034 case FI_INLINE_DATA: 3035 case FI_INLINE_DENTRY: 3036 case FI_NEW_INODE: 3037 if (set) 3038 return; 3039 fallthrough; 3040 case FI_DATA_EXIST: 3041 case FI_INLINE_DOTS: 3042 case FI_PIN_FILE: 3043 case FI_COMPRESS_RELEASED: 3044 case FI_ATOMIC_COMMITTED: 3045 f2fs_mark_inode_dirty_sync(inode, true); 3046 } 3047 } 3048 3049 static inline void set_inode_flag(struct inode *inode, int flag) 3050 { 3051 set_bit(flag, F2FS_I(inode)->flags); 3052 __mark_inode_dirty_flag(inode, flag, true); 3053 } 3054 3055 static inline int is_inode_flag_set(struct inode *inode, int flag) 3056 { 3057 return test_bit(flag, F2FS_I(inode)->flags); 3058 } 3059 3060 static inline void clear_inode_flag(struct inode *inode, int flag) 3061 { 3062 clear_bit(flag, F2FS_I(inode)->flags); 3063 __mark_inode_dirty_flag(inode, flag, false); 3064 } 3065 3066 static inline bool f2fs_verity_in_progress(struct inode *inode) 3067 { 3068 return IS_ENABLED(CONFIG_FS_VERITY) && 3069 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 3070 } 3071 3072 static inline void set_acl_inode(struct inode *inode, umode_t mode) 3073 { 3074 F2FS_I(inode)->i_acl_mode = mode; 3075 set_inode_flag(inode, FI_ACL_MODE); 3076 f2fs_mark_inode_dirty_sync(inode, false); 3077 } 3078 3079 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 3080 { 3081 if (inc) 3082 inc_nlink(inode); 3083 else 3084 drop_nlink(inode); 3085 f2fs_mark_inode_dirty_sync(inode, true); 3086 } 3087 3088 static inline void f2fs_i_blocks_write(struct inode *inode, 3089 block_t diff, bool add, bool claim) 3090 { 3091 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3092 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3093 3094 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 3095 if (add) { 3096 if (claim) 3097 dquot_claim_block(inode, diff); 3098 else 3099 dquot_alloc_block_nofail(inode, diff); 3100 } else { 3101 dquot_free_block(inode, diff); 3102 } 3103 3104 f2fs_mark_inode_dirty_sync(inode, true); 3105 if (clean || recover) 3106 set_inode_flag(inode, FI_AUTO_RECOVER); 3107 } 3108 3109 static inline bool f2fs_is_atomic_file(struct inode *inode); 3110 3111 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 3112 { 3113 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3114 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3115 3116 if (i_size_read(inode) == i_size) 3117 return; 3118 3119 i_size_write(inode, i_size); 3120 3121 if (f2fs_is_atomic_file(inode)) 3122 return; 3123 3124 f2fs_mark_inode_dirty_sync(inode, true); 3125 if (clean || recover) 3126 set_inode_flag(inode, FI_AUTO_RECOVER); 3127 } 3128 3129 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 3130 { 3131 F2FS_I(inode)->i_current_depth = depth; 3132 f2fs_mark_inode_dirty_sync(inode, true); 3133 } 3134 3135 static inline void f2fs_i_gc_failures_write(struct inode *inode, 3136 unsigned int count) 3137 { 3138 F2FS_I(inode)->i_gc_failures = count; 3139 f2fs_mark_inode_dirty_sync(inode, true); 3140 } 3141 3142 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 3143 { 3144 F2FS_I(inode)->i_xattr_nid = xnid; 3145 f2fs_mark_inode_dirty_sync(inode, true); 3146 } 3147 3148 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 3149 { 3150 F2FS_I(inode)->i_pino = pino; 3151 f2fs_mark_inode_dirty_sync(inode, true); 3152 } 3153 3154 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 3155 { 3156 struct f2fs_inode_info *fi = F2FS_I(inode); 3157 3158 if (ri->i_inline & F2FS_INLINE_XATTR) 3159 set_bit(FI_INLINE_XATTR, fi->flags); 3160 if (ri->i_inline & F2FS_INLINE_DATA) 3161 set_bit(FI_INLINE_DATA, fi->flags); 3162 if (ri->i_inline & F2FS_INLINE_DENTRY) 3163 set_bit(FI_INLINE_DENTRY, fi->flags); 3164 if (ri->i_inline & F2FS_DATA_EXIST) 3165 set_bit(FI_DATA_EXIST, fi->flags); 3166 if (ri->i_inline & F2FS_INLINE_DOTS) 3167 set_bit(FI_INLINE_DOTS, fi->flags); 3168 if (ri->i_inline & F2FS_EXTRA_ATTR) 3169 set_bit(FI_EXTRA_ATTR, fi->flags); 3170 if (ri->i_inline & F2FS_PIN_FILE) 3171 set_bit(FI_PIN_FILE, fi->flags); 3172 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 3173 set_bit(FI_COMPRESS_RELEASED, fi->flags); 3174 } 3175 3176 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 3177 { 3178 ri->i_inline = 0; 3179 3180 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 3181 ri->i_inline |= F2FS_INLINE_XATTR; 3182 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 3183 ri->i_inline |= F2FS_INLINE_DATA; 3184 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 3185 ri->i_inline |= F2FS_INLINE_DENTRY; 3186 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 3187 ri->i_inline |= F2FS_DATA_EXIST; 3188 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 3189 ri->i_inline |= F2FS_INLINE_DOTS; 3190 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 3191 ri->i_inline |= F2FS_EXTRA_ATTR; 3192 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3193 ri->i_inline |= F2FS_PIN_FILE; 3194 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 3195 ri->i_inline |= F2FS_COMPRESS_RELEASED; 3196 } 3197 3198 static inline int f2fs_has_extra_attr(struct inode *inode) 3199 { 3200 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 3201 } 3202 3203 static inline int f2fs_has_inline_xattr(struct inode *inode) 3204 { 3205 return is_inode_flag_set(inode, FI_INLINE_XATTR); 3206 } 3207 3208 static inline int f2fs_compressed_file(struct inode *inode) 3209 { 3210 return S_ISREG(inode->i_mode) && 3211 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 3212 } 3213 3214 static inline bool f2fs_need_compress_data(struct inode *inode) 3215 { 3216 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3217 3218 if (!f2fs_compressed_file(inode)) 3219 return false; 3220 3221 if (compress_mode == COMPR_MODE_FS) 3222 return true; 3223 else if (compress_mode == COMPR_MODE_USER && 3224 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3225 return true; 3226 3227 return false; 3228 } 3229 3230 static inline unsigned int addrs_per_page(struct inode *inode, 3231 bool is_inode) 3232 { 3233 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) - 3234 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK; 3235 3236 if (f2fs_compressed_file(inode)) 3237 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3238 return addrs; 3239 } 3240 3241 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3242 { 3243 struct f2fs_inode *ri = F2FS_INODE(page); 3244 3245 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3246 get_inline_xattr_addrs(inode)]); 3247 } 3248 3249 static inline int inline_xattr_size(struct inode *inode) 3250 { 3251 if (f2fs_has_inline_xattr(inode)) 3252 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3253 return 0; 3254 } 3255 3256 /* 3257 * Notice: check inline_data flag without inode page lock is unsafe. 3258 * It could change at any time by f2fs_convert_inline_page(). 3259 */ 3260 static inline int f2fs_has_inline_data(struct inode *inode) 3261 { 3262 return is_inode_flag_set(inode, FI_INLINE_DATA); 3263 } 3264 3265 static inline int f2fs_exist_data(struct inode *inode) 3266 { 3267 return is_inode_flag_set(inode, FI_DATA_EXIST); 3268 } 3269 3270 static inline int f2fs_has_inline_dots(struct inode *inode) 3271 { 3272 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3273 } 3274 3275 static inline int f2fs_is_mmap_file(struct inode *inode) 3276 { 3277 return is_inode_flag_set(inode, FI_MMAP_FILE); 3278 } 3279 3280 static inline bool f2fs_is_pinned_file(struct inode *inode) 3281 { 3282 return is_inode_flag_set(inode, FI_PIN_FILE); 3283 } 3284 3285 static inline bool f2fs_is_atomic_file(struct inode *inode) 3286 { 3287 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3288 } 3289 3290 static inline bool f2fs_is_cow_file(struct inode *inode) 3291 { 3292 return is_inode_flag_set(inode, FI_COW_FILE); 3293 } 3294 3295 static inline __le32 *get_dnode_addr(struct inode *inode, 3296 struct page *node_page); 3297 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3298 { 3299 __le32 *addr = get_dnode_addr(inode, page); 3300 3301 return (void *)(addr + DEF_INLINE_RESERVED_SIZE); 3302 } 3303 3304 static inline int f2fs_has_inline_dentry(struct inode *inode) 3305 { 3306 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3307 } 3308 3309 static inline int is_file(struct inode *inode, int type) 3310 { 3311 return F2FS_I(inode)->i_advise & type; 3312 } 3313 3314 static inline void set_file(struct inode *inode, int type) 3315 { 3316 if (is_file(inode, type)) 3317 return; 3318 F2FS_I(inode)->i_advise |= type; 3319 f2fs_mark_inode_dirty_sync(inode, true); 3320 } 3321 3322 static inline void clear_file(struct inode *inode, int type) 3323 { 3324 if (!is_file(inode, type)) 3325 return; 3326 F2FS_I(inode)->i_advise &= ~type; 3327 f2fs_mark_inode_dirty_sync(inode, true); 3328 } 3329 3330 static inline bool f2fs_is_time_consistent(struct inode *inode) 3331 { 3332 struct timespec64 ts = inode_get_atime(inode); 3333 3334 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts)) 3335 return false; 3336 ts = inode_get_ctime(inode); 3337 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts)) 3338 return false; 3339 ts = inode_get_mtime(inode); 3340 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts)) 3341 return false; 3342 return true; 3343 } 3344 3345 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3346 { 3347 bool ret; 3348 3349 if (dsync) { 3350 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3351 3352 spin_lock(&sbi->inode_lock[DIRTY_META]); 3353 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3354 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3355 return ret; 3356 } 3357 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3358 file_keep_isize(inode) || 3359 i_size_read(inode) & ~PAGE_MASK) 3360 return false; 3361 3362 if (!f2fs_is_time_consistent(inode)) 3363 return false; 3364 3365 spin_lock(&F2FS_I(inode)->i_size_lock); 3366 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3367 spin_unlock(&F2FS_I(inode)->i_size_lock); 3368 3369 return ret; 3370 } 3371 3372 static inline bool f2fs_readonly(struct super_block *sb) 3373 { 3374 return sb_rdonly(sb); 3375 } 3376 3377 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3378 { 3379 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3380 } 3381 3382 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3383 size_t size, gfp_t flags) 3384 { 3385 if (time_to_inject(sbi, FAULT_KMALLOC)) 3386 return NULL; 3387 3388 return kmalloc(size, flags); 3389 } 3390 3391 static inline void *f2fs_getname(struct f2fs_sb_info *sbi) 3392 { 3393 if (time_to_inject(sbi, FAULT_KMALLOC)) 3394 return NULL; 3395 3396 return __getname(); 3397 } 3398 3399 static inline void f2fs_putname(char *buf) 3400 { 3401 __putname(buf); 3402 } 3403 3404 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3405 size_t size, gfp_t flags) 3406 { 3407 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3408 } 3409 3410 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3411 size_t size, gfp_t flags) 3412 { 3413 if (time_to_inject(sbi, FAULT_KVMALLOC)) 3414 return NULL; 3415 3416 return kvmalloc(size, flags); 3417 } 3418 3419 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3420 size_t size, gfp_t flags) 3421 { 3422 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3423 } 3424 3425 static inline int get_extra_isize(struct inode *inode) 3426 { 3427 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3428 } 3429 3430 static inline int get_inline_xattr_addrs(struct inode *inode) 3431 { 3432 return F2FS_I(inode)->i_inline_xattr_size; 3433 } 3434 3435 static inline __le32 *get_dnode_addr(struct inode *inode, 3436 struct page *node_page) 3437 { 3438 int base = 0; 3439 3440 if (IS_INODE(node_page) && f2fs_has_extra_attr(inode)) 3441 base = get_extra_isize(inode); 3442 3443 return blkaddr_in_node(F2FS_NODE(node_page)) + base; 3444 } 3445 3446 #define f2fs_get_inode_mode(i) \ 3447 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3448 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3449 3450 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32)) 3451 3452 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3453 (offsetof(struct f2fs_inode, i_extra_end) - \ 3454 offsetof(struct f2fs_inode, i_extra_isize)) \ 3455 3456 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3457 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3458 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3459 sizeof((f2fs_inode)->field)) \ 3460 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3461 3462 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1) 3463 3464 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3465 3466 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3467 block_t blkaddr, int type); 3468 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3469 block_t blkaddr, int type) 3470 { 3471 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) 3472 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3473 blkaddr, type); 3474 } 3475 3476 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3477 { 3478 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3479 blkaddr == COMPRESS_ADDR) 3480 return false; 3481 return true; 3482 } 3483 3484 /* 3485 * file.c 3486 */ 3487 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3488 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3489 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3490 int f2fs_truncate(struct inode *inode); 3491 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 3492 struct kstat *stat, u32 request_mask, unsigned int flags); 3493 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3494 struct iattr *attr); 3495 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3496 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3497 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag, 3498 bool readonly); 3499 int f2fs_precache_extents(struct inode *inode); 3500 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3501 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3502 struct dentry *dentry, struct fileattr *fa); 3503 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3504 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3505 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3506 int f2fs_pin_file_control(struct inode *inode, bool inc); 3507 3508 /* 3509 * inode.c 3510 */ 3511 void f2fs_set_inode_flags(struct inode *inode); 3512 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3513 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3514 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3515 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3516 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3517 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3518 void f2fs_update_inode_page(struct inode *inode); 3519 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3520 void f2fs_evict_inode(struct inode *inode); 3521 void f2fs_handle_failed_inode(struct inode *inode); 3522 3523 /* 3524 * namei.c 3525 */ 3526 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3527 bool hot, bool set); 3528 struct dentry *f2fs_get_parent(struct dentry *child); 3529 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3530 struct inode **new_inode); 3531 3532 /* 3533 * dir.c 3534 */ 3535 #if IS_ENABLED(CONFIG_UNICODE) 3536 int f2fs_init_casefolded_name(const struct inode *dir, 3537 struct f2fs_filename *fname); 3538 void f2fs_free_casefolded_name(struct f2fs_filename *fname); 3539 #else 3540 static inline int f2fs_init_casefolded_name(const struct inode *dir, 3541 struct f2fs_filename *fname) 3542 { 3543 return 0; 3544 } 3545 3546 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname) 3547 { 3548 } 3549 #endif /* CONFIG_UNICODE */ 3550 3551 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3552 int lookup, struct f2fs_filename *fname); 3553 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3554 struct f2fs_filename *fname); 3555 void f2fs_free_filename(struct f2fs_filename *fname); 3556 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3557 const struct f2fs_filename *fname, int *max_slots); 3558 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3559 unsigned int start_pos, struct fscrypt_str *fstr); 3560 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3561 struct f2fs_dentry_ptr *d); 3562 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3563 const struct f2fs_filename *fname, struct page *dpage); 3564 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3565 unsigned int current_depth); 3566 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3567 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3568 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3569 const struct f2fs_filename *fname, 3570 struct page **res_page); 3571 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3572 const struct qstr *child, struct page **res_page); 3573 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3574 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3575 struct page **page); 3576 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3577 struct page *page, struct inode *inode); 3578 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3579 const struct f2fs_filename *fname); 3580 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3581 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3582 unsigned int bit_pos); 3583 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3584 struct inode *inode, nid_t ino, umode_t mode); 3585 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3586 struct inode *inode, nid_t ino, umode_t mode); 3587 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3588 struct inode *inode, nid_t ino, umode_t mode); 3589 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3590 struct inode *dir, struct inode *inode); 3591 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir, 3592 struct f2fs_filename *fname); 3593 bool f2fs_empty_dir(struct inode *dir); 3594 3595 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3596 { 3597 if (fscrypt_is_nokey_name(dentry)) 3598 return -ENOKEY; 3599 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3600 inode, inode->i_ino, inode->i_mode); 3601 } 3602 3603 /* 3604 * super.c 3605 */ 3606 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3607 void f2fs_inode_synced(struct inode *inode); 3608 int f2fs_dquot_initialize(struct inode *inode); 3609 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3610 int f2fs_quota_sync(struct super_block *sb, int type); 3611 loff_t max_file_blocks(struct inode *inode); 3612 void f2fs_quota_off_umount(struct super_block *sb); 3613 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag); 3614 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 3615 bool irq_context); 3616 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); 3617 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error); 3618 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3619 int f2fs_sync_fs(struct super_block *sb, int sync); 3620 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3621 3622 /* 3623 * hash.c 3624 */ 3625 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3626 3627 /* 3628 * node.c 3629 */ 3630 struct node_info; 3631 3632 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3633 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3634 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3635 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3636 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3637 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3638 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3639 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3640 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3641 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3642 struct node_info *ni, bool checkpoint_context); 3643 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3644 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3645 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3646 int f2fs_truncate_xattr_node(struct inode *inode); 3647 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3648 unsigned int seq_id); 3649 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3650 int f2fs_remove_inode_page(struct inode *inode); 3651 struct page *f2fs_new_inode_page(struct inode *inode); 3652 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3653 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3654 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3655 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3656 int f2fs_move_node_page(struct page *node_page, int gc_type); 3657 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3658 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3659 struct writeback_control *wbc, bool atomic, 3660 unsigned int *seq_id); 3661 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3662 struct writeback_control *wbc, 3663 bool do_balance, enum iostat_type io_type); 3664 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3665 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3666 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3667 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3668 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3669 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3670 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3671 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3672 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3673 unsigned int segno, struct f2fs_summary_block *sum); 3674 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3675 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3676 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3677 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3678 int __init f2fs_create_node_manager_caches(void); 3679 void f2fs_destroy_node_manager_caches(void); 3680 3681 /* 3682 * segment.c 3683 */ 3684 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3685 int f2fs_commit_atomic_write(struct inode *inode); 3686 void f2fs_abort_atomic_write(struct inode *inode, bool clean); 3687 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3688 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3689 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3690 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3691 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3692 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3693 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3694 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3695 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3696 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3697 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3698 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3699 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3700 struct cp_control *cpc); 3701 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3702 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3703 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3704 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3705 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3706 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3707 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3708 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi); 3709 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3710 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3711 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3712 unsigned int start, unsigned int end); 3713 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3714 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi); 3715 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3716 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3717 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3718 struct cp_control *cpc); 3719 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3720 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3721 block_t blk_addr); 3722 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3723 enum iostat_type io_type); 3724 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3725 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3726 struct f2fs_io_info *fio); 3727 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3728 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3729 block_t old_blkaddr, block_t new_blkaddr, 3730 bool recover_curseg, bool recover_newaddr, 3731 bool from_gc); 3732 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3733 block_t old_addr, block_t new_addr, 3734 unsigned char version, bool recover_curseg, 3735 bool recover_newaddr); 3736 int f2fs_get_segment_temp(int seg_type); 3737 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3738 block_t old_blkaddr, block_t *new_blkaddr, 3739 struct f2fs_summary *sum, int type, 3740 struct f2fs_io_info *fio); 3741 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3742 block_t blkaddr, unsigned int blkcnt); 3743 void f2fs_wait_on_page_writeback(struct page *page, 3744 enum page_type type, bool ordered, bool locked); 3745 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3746 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3747 block_t len); 3748 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3749 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3750 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3751 unsigned int val, int alloc); 3752 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3753 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3754 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3755 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3756 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3757 int __init f2fs_create_segment_manager_caches(void); 3758 void f2fs_destroy_segment_manager_caches(void); 3759 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint); 3760 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3761 enum page_type type, enum temp_type temp); 3762 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3763 unsigned int segno); 3764 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3765 unsigned int segno); 3766 3767 #define DEF_FRAGMENT_SIZE 4 3768 #define MIN_FRAGMENT_SIZE 1 3769 #define MAX_FRAGMENT_SIZE 512 3770 3771 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3772 { 3773 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3774 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3775 } 3776 3777 /* 3778 * checkpoint.c 3779 */ 3780 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 3781 unsigned char reason); 3782 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); 3783 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3784 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3785 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3786 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3787 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3788 block_t blkaddr, int type); 3789 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi, 3790 block_t blkaddr, int type); 3791 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3792 int type, bool sync); 3793 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 3794 unsigned int ra_blocks); 3795 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3796 long nr_to_write, enum iostat_type io_type); 3797 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3798 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3799 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3800 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3801 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3802 unsigned int devidx, int type); 3803 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3804 unsigned int devidx, int type); 3805 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3806 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3807 void f2fs_add_orphan_inode(struct inode *inode); 3808 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3809 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3810 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3811 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); 3812 void f2fs_remove_dirty_inode(struct inode *inode); 3813 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 3814 bool from_cp); 3815 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3816 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3817 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3818 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3819 int __init f2fs_create_checkpoint_caches(void); 3820 void f2fs_destroy_checkpoint_caches(void); 3821 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3822 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3823 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3824 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3825 3826 /* 3827 * data.c 3828 */ 3829 int __init f2fs_init_bioset(void); 3830 void f2fs_destroy_bioset(void); 3831 bool f2fs_is_cp_guaranteed(struct page *page); 3832 int f2fs_init_bio_entry_cache(void); 3833 void f2fs_destroy_bio_entry_cache(void); 3834 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 3835 enum page_type type); 3836 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); 3837 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3838 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3839 struct inode *inode, struct page *page, 3840 nid_t ino, enum page_type type); 3841 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3842 struct bio **bio, struct page *page); 3843 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3844 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3845 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3846 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3847 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3848 block_t blk_addr, sector_t *sector); 3849 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3850 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3851 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3852 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3853 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3854 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index); 3855 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3856 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3857 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); 3858 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 3859 pgoff_t *next_pgofs); 3860 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3861 bool for_write); 3862 struct page *f2fs_get_new_data_page(struct inode *inode, 3863 struct page *ipage, pgoff_t index, bool new_i_size); 3864 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3865 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag); 3866 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3867 u64 start, u64 len); 3868 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3869 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3870 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3871 int f2fs_write_single_data_page(struct page *page, int *submitted, 3872 struct bio **bio, sector_t *last_block, 3873 struct writeback_control *wbc, 3874 enum iostat_type io_type, 3875 int compr_blocks, bool allow_balance); 3876 void f2fs_write_failed(struct inode *inode, loff_t to); 3877 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); 3878 bool f2fs_release_folio(struct folio *folio, gfp_t wait); 3879 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3880 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3881 int f2fs_init_post_read_processing(void); 3882 void f2fs_destroy_post_read_processing(void); 3883 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3884 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3885 extern const struct iomap_ops f2fs_iomap_ops; 3886 3887 /* 3888 * gc.c 3889 */ 3890 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3891 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3892 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3893 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); 3894 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3895 int f2fs_gc_range(struct f2fs_sb_info *sbi, 3896 unsigned int start_seg, unsigned int end_seg, 3897 bool dry_run, unsigned int dry_run_sections); 3898 int f2fs_resize_fs(struct file *filp, __u64 block_count); 3899 int __init f2fs_create_garbage_collection_cache(void); 3900 void f2fs_destroy_garbage_collection_cache(void); 3901 /* victim selection function for cleaning and SSR */ 3902 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 3903 int gc_type, int type, char alloc_mode, 3904 unsigned long long age); 3905 3906 /* 3907 * recovery.c 3908 */ 3909 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3910 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3911 int __init f2fs_create_recovery_cache(void); 3912 void f2fs_destroy_recovery_cache(void); 3913 3914 /* 3915 * debug.c 3916 */ 3917 #ifdef CONFIG_F2FS_STAT_FS 3918 struct f2fs_stat_info { 3919 struct list_head stat_list; 3920 struct f2fs_sb_info *sbi; 3921 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3922 int main_area_segs, main_area_sections, main_area_zones; 3923 unsigned long long hit_cached[NR_EXTENT_CACHES]; 3924 unsigned long long hit_rbtree[NR_EXTENT_CACHES]; 3925 unsigned long long total_ext[NR_EXTENT_CACHES]; 3926 unsigned long long hit_total[NR_EXTENT_CACHES]; 3927 int ext_tree[NR_EXTENT_CACHES]; 3928 int zombie_tree[NR_EXTENT_CACHES]; 3929 int ext_node[NR_EXTENT_CACHES]; 3930 /* to count memory footprint */ 3931 unsigned long long ext_mem[NR_EXTENT_CACHES]; 3932 /* for read extent cache */ 3933 unsigned long long hit_largest; 3934 /* for block age extent cache */ 3935 unsigned long long allocated_data_blocks; 3936 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3937 int ndirty_data, ndirty_qdata; 3938 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3939 int nats, dirty_nats, sits, dirty_sits; 3940 int free_nids, avail_nids, alloc_nids; 3941 int total_count, utilization; 3942 int nr_wb_cp_data, nr_wb_data; 3943 int nr_rd_data, nr_rd_node, nr_rd_meta; 3944 int nr_dio_read, nr_dio_write; 3945 unsigned int io_skip_bggc, other_skip_bggc; 3946 int nr_flushing, nr_flushed, flush_list_empty; 3947 int nr_discarding, nr_discarded; 3948 int nr_discard_cmd; 3949 unsigned int undiscard_blks; 3950 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3951 unsigned int cur_ckpt_time, peak_ckpt_time; 3952 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3953 int compr_inode, swapfile_inode; 3954 unsigned long long compr_blocks; 3955 int aw_cnt, max_aw_cnt; 3956 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3957 unsigned int bimodal, avg_vblocks; 3958 int util_free, util_valid, util_invalid; 3959 int rsvd_segs, overp_segs; 3960 int dirty_count, node_pages, meta_pages, compress_pages; 3961 int compress_page_hit; 3962 int prefree_count, free_segs, free_secs; 3963 int cp_call_count[MAX_CALL_TYPE], cp_count; 3964 int gc_call_count[MAX_CALL_TYPE]; 3965 int gc_segs[2][2]; 3966 int gc_secs[2][2]; 3967 int tot_blks, data_blks, node_blks; 3968 int bg_data_blks, bg_node_blks; 3969 int curseg[NR_CURSEG_TYPE]; 3970 int cursec[NR_CURSEG_TYPE]; 3971 int curzone[NR_CURSEG_TYPE]; 3972 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3973 unsigned int full_seg[NR_CURSEG_TYPE]; 3974 unsigned int valid_blks[NR_CURSEG_TYPE]; 3975 3976 unsigned int meta_count[META_MAX]; 3977 unsigned int segment_count[2]; 3978 unsigned int block_count[2]; 3979 unsigned int inplace_count; 3980 unsigned long long base_mem, cache_mem, page_mem; 3981 }; 3982 3983 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3984 { 3985 return (struct f2fs_stat_info *)sbi->stat_info; 3986 } 3987 3988 #define stat_inc_cp_call_count(sbi, foreground) \ 3989 atomic_inc(&sbi->cp_call_count[(foreground)]) 3990 #define stat_inc_cp_count(si) (F2FS_STAT(sbi)->cp_count++) 3991 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3992 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3993 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3994 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3995 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) 3996 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) 3997 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3998 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) 3999 #define stat_inc_inline_xattr(inode) \ 4000 do { \ 4001 if (f2fs_has_inline_xattr(inode)) \ 4002 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 4003 } while (0) 4004 #define stat_dec_inline_xattr(inode) \ 4005 do { \ 4006 if (f2fs_has_inline_xattr(inode)) \ 4007 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 4008 } while (0) 4009 #define stat_inc_inline_inode(inode) \ 4010 do { \ 4011 if (f2fs_has_inline_data(inode)) \ 4012 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 4013 } while (0) 4014 #define stat_dec_inline_inode(inode) \ 4015 do { \ 4016 if (f2fs_has_inline_data(inode)) \ 4017 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 4018 } while (0) 4019 #define stat_inc_inline_dir(inode) \ 4020 do { \ 4021 if (f2fs_has_inline_dentry(inode)) \ 4022 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 4023 } while (0) 4024 #define stat_dec_inline_dir(inode) \ 4025 do { \ 4026 if (f2fs_has_inline_dentry(inode)) \ 4027 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 4028 } while (0) 4029 #define stat_inc_compr_inode(inode) \ 4030 do { \ 4031 if (f2fs_compressed_file(inode)) \ 4032 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 4033 } while (0) 4034 #define stat_dec_compr_inode(inode) \ 4035 do { \ 4036 if (f2fs_compressed_file(inode)) \ 4037 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 4038 } while (0) 4039 #define stat_add_compr_blocks(inode, blocks) \ 4040 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4041 #define stat_sub_compr_blocks(inode, blocks) \ 4042 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4043 #define stat_inc_swapfile_inode(inode) \ 4044 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) 4045 #define stat_dec_swapfile_inode(inode) \ 4046 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) 4047 #define stat_inc_atomic_inode(inode) \ 4048 (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) 4049 #define stat_dec_atomic_inode(inode) \ 4050 (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) 4051 #define stat_inc_meta_count(sbi, blkaddr) \ 4052 do { \ 4053 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 4054 atomic_inc(&(sbi)->meta_count[META_CP]); \ 4055 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 4056 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 4057 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 4058 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 4059 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 4060 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 4061 } while (0) 4062 #define stat_inc_seg_type(sbi, curseg) \ 4063 ((sbi)->segment_count[(curseg)->alloc_type]++) 4064 #define stat_inc_block_count(sbi, curseg) \ 4065 ((sbi)->block_count[(curseg)->alloc_type]++) 4066 #define stat_inc_inplace_blocks(sbi) \ 4067 (atomic_inc(&(sbi)->inplace_count)) 4068 #define stat_update_max_atomic_write(inode) \ 4069 do { \ 4070 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ 4071 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 4072 if (cur > max) \ 4073 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 4074 } while (0) 4075 #define stat_inc_gc_call_count(sbi, foreground) \ 4076 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++) 4077 #define stat_inc_gc_sec_count(sbi, type, gc_type) \ 4078 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++) 4079 #define stat_inc_gc_seg_count(sbi, type, gc_type) \ 4080 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++) 4081 4082 #define stat_inc_tot_blk_count(si, blks) \ 4083 ((si)->tot_blks += (blks)) 4084 4085 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 4086 do { \ 4087 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4088 stat_inc_tot_blk_count(si, blks); \ 4089 si->data_blks += (blks); \ 4090 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4091 } while (0) 4092 4093 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 4094 do { \ 4095 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4096 stat_inc_tot_blk_count(si, blks); \ 4097 si->node_blks += (blks); \ 4098 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4099 } while (0) 4100 4101 int f2fs_build_stats(struct f2fs_sb_info *sbi); 4102 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 4103 void __init f2fs_create_root_stats(void); 4104 void f2fs_destroy_root_stats(void); 4105 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 4106 #else 4107 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0) 4108 #define stat_inc_cp_count(sbi) do { } while (0) 4109 #define stat_io_skip_bggc_count(sbi) do { } while (0) 4110 #define stat_other_skip_bggc_count(sbi) do { } while (0) 4111 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 4112 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 4113 #define stat_inc_total_hit(sbi, type) do { } while (0) 4114 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) 4115 #define stat_inc_largest_node_hit(sbi) do { } while (0) 4116 #define stat_inc_cached_node_hit(sbi, type) do { } while (0) 4117 #define stat_inc_inline_xattr(inode) do { } while (0) 4118 #define stat_dec_inline_xattr(inode) do { } while (0) 4119 #define stat_inc_inline_inode(inode) do { } while (0) 4120 #define stat_dec_inline_inode(inode) do { } while (0) 4121 #define stat_inc_inline_dir(inode) do { } while (0) 4122 #define stat_dec_inline_dir(inode) do { } while (0) 4123 #define stat_inc_compr_inode(inode) do { } while (0) 4124 #define stat_dec_compr_inode(inode) do { } while (0) 4125 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 4126 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 4127 #define stat_inc_swapfile_inode(inode) do { } while (0) 4128 #define stat_dec_swapfile_inode(inode) do { } while (0) 4129 #define stat_inc_atomic_inode(inode) do { } while (0) 4130 #define stat_dec_atomic_inode(inode) do { } while (0) 4131 #define stat_update_max_atomic_write(inode) do { } while (0) 4132 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 4133 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 4134 #define stat_inc_block_count(sbi, curseg) do { } while (0) 4135 #define stat_inc_inplace_blocks(sbi) do { } while (0) 4136 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0) 4137 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0) 4138 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0) 4139 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 4140 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 4141 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 4142 4143 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 4144 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 4145 static inline void __init f2fs_create_root_stats(void) { } 4146 static inline void f2fs_destroy_root_stats(void) { } 4147 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 4148 #endif 4149 4150 extern const struct file_operations f2fs_dir_operations; 4151 extern const struct file_operations f2fs_file_operations; 4152 extern const struct inode_operations f2fs_file_inode_operations; 4153 extern const struct address_space_operations f2fs_dblock_aops; 4154 extern const struct address_space_operations f2fs_node_aops; 4155 extern const struct address_space_operations f2fs_meta_aops; 4156 extern const struct inode_operations f2fs_dir_inode_operations; 4157 extern const struct inode_operations f2fs_symlink_inode_operations; 4158 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 4159 extern const struct inode_operations f2fs_special_inode_operations; 4160 extern struct kmem_cache *f2fs_inode_entry_slab; 4161 4162 /* 4163 * inline.c 4164 */ 4165 bool f2fs_may_inline_data(struct inode *inode); 4166 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage); 4167 bool f2fs_may_inline_dentry(struct inode *inode); 4168 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage); 4169 void f2fs_truncate_inline_inode(struct inode *inode, 4170 struct page *ipage, u64 from); 4171 int f2fs_read_inline_data(struct inode *inode, struct folio *folio); 4172 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 4173 int f2fs_convert_inline_inode(struct inode *inode); 4174 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 4175 int f2fs_write_inline_data(struct inode *inode, struct page *page); 4176 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 4177 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 4178 const struct f2fs_filename *fname, 4179 struct page **res_page); 4180 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 4181 struct page *ipage); 4182 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 4183 struct inode *inode, nid_t ino, umode_t mode); 4184 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 4185 struct page *page, struct inode *dir, 4186 struct inode *inode); 4187 bool f2fs_empty_inline_dir(struct inode *dir); 4188 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 4189 struct fscrypt_str *fstr); 4190 int f2fs_inline_data_fiemap(struct inode *inode, 4191 struct fiemap_extent_info *fieinfo, 4192 __u64 start, __u64 len); 4193 4194 /* 4195 * shrinker.c 4196 */ 4197 unsigned long f2fs_shrink_count(struct shrinker *shrink, 4198 struct shrink_control *sc); 4199 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 4200 struct shrink_control *sc); 4201 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 4202 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 4203 4204 /* 4205 * extent_cache.c 4206 */ 4207 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage); 4208 void f2fs_init_extent_tree(struct inode *inode); 4209 void f2fs_drop_extent_tree(struct inode *inode); 4210 void f2fs_destroy_extent_node(struct inode *inode); 4211 void f2fs_destroy_extent_tree(struct inode *inode); 4212 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 4213 int __init f2fs_create_extent_cache(void); 4214 void f2fs_destroy_extent_cache(void); 4215 4216 /* read extent cache ops */ 4217 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); 4218 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 4219 struct extent_info *ei); 4220 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, 4221 block_t *blkaddr); 4222 void f2fs_update_read_extent_cache(struct dnode_of_data *dn); 4223 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 4224 pgoff_t fofs, block_t blkaddr, unsigned int len); 4225 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, 4226 int nr_shrink); 4227 4228 /* block age extent cache ops */ 4229 void f2fs_init_age_extent_tree(struct inode *inode); 4230 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 4231 struct extent_info *ei); 4232 void f2fs_update_age_extent_cache(struct dnode_of_data *dn); 4233 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 4234 pgoff_t fofs, unsigned int len); 4235 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, 4236 int nr_shrink); 4237 4238 /* 4239 * sysfs.c 4240 */ 4241 #define MIN_RA_MUL 2 4242 #define MAX_RA_MUL 256 4243 4244 int __init f2fs_init_sysfs(void); 4245 void f2fs_exit_sysfs(void); 4246 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4247 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4248 4249 /* verity.c */ 4250 extern const struct fsverity_operations f2fs_verityops; 4251 4252 /* 4253 * crypto support 4254 */ 4255 static inline bool f2fs_encrypted_file(struct inode *inode) 4256 { 4257 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4258 } 4259 4260 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4261 { 4262 #ifdef CONFIG_FS_ENCRYPTION 4263 file_set_encrypt(inode); 4264 f2fs_set_inode_flags(inode); 4265 #endif 4266 } 4267 4268 /* 4269 * Returns true if the reads of the inode's data need to undergo some 4270 * postprocessing step, like decryption or authenticity verification. 4271 */ 4272 static inline bool f2fs_post_read_required(struct inode *inode) 4273 { 4274 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4275 f2fs_compressed_file(inode); 4276 } 4277 4278 static inline bool f2fs_used_in_atomic_write(struct inode *inode) 4279 { 4280 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode); 4281 } 4282 4283 static inline bool f2fs_meta_inode_gc_required(struct inode *inode) 4284 { 4285 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode); 4286 } 4287 4288 /* 4289 * compress.c 4290 */ 4291 #ifdef CONFIG_F2FS_FS_COMPRESSION 4292 bool f2fs_is_compressed_page(struct page *page); 4293 struct page *f2fs_compress_control_page(struct page *page); 4294 int f2fs_prepare_compress_overwrite(struct inode *inode, 4295 struct page **pagep, pgoff_t index, void **fsdata); 4296 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4297 pgoff_t index, unsigned copied); 4298 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4299 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4300 bool f2fs_is_compress_backend_ready(struct inode *inode); 4301 bool f2fs_is_compress_level_valid(int alg, int lvl); 4302 int __init f2fs_init_compress_mempool(void); 4303 void f2fs_destroy_compress_mempool(void); 4304 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); 4305 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4306 block_t blkaddr, bool in_task); 4307 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4308 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4309 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 4310 int index, int nr_pages, bool uptodate); 4311 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4312 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4313 int f2fs_write_multi_pages(struct compress_ctx *cc, 4314 int *submitted, 4315 struct writeback_control *wbc, 4316 enum iostat_type io_type); 4317 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4318 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 4319 pgoff_t fofs, block_t blkaddr, 4320 unsigned int llen, unsigned int c_len); 4321 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4322 unsigned nr_pages, sector_t *last_block_in_bio, 4323 struct readahead_control *rac, bool for_write); 4324 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4325 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 4326 bool in_task); 4327 void f2fs_put_page_dic(struct page *page, bool in_task); 4328 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn, 4329 unsigned int ofs_in_node); 4330 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4331 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4332 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4333 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4334 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4335 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4336 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4337 int __init f2fs_init_compress_cache(void); 4338 void f2fs_destroy_compress_cache(void); 4339 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4340 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4341 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4342 nid_t ino, block_t blkaddr); 4343 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4344 block_t blkaddr); 4345 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4346 #define inc_compr_inode_stat(inode) \ 4347 do { \ 4348 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4349 sbi->compr_new_inode++; \ 4350 } while (0) 4351 #define add_compr_block_stat(inode, blocks) \ 4352 do { \ 4353 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4354 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4355 sbi->compr_written_block += blocks; \ 4356 sbi->compr_saved_block += diff; \ 4357 } while (0) 4358 #else 4359 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4360 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4361 { 4362 if (!f2fs_compressed_file(inode)) 4363 return true; 4364 /* not support compression */ 4365 return false; 4366 } 4367 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; } 4368 static inline struct page *f2fs_compress_control_page(struct page *page) 4369 { 4370 WARN_ON_ONCE(1); 4371 return ERR_PTR(-EINVAL); 4372 } 4373 static inline int __init f2fs_init_compress_mempool(void) { return 0; } 4374 static inline void f2fs_destroy_compress_mempool(void) { } 4375 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, 4376 bool in_task) { } 4377 static inline void f2fs_end_read_compressed_page(struct page *page, 4378 bool failed, block_t blkaddr, bool in_task) 4379 { 4380 WARN_ON_ONCE(1); 4381 } 4382 static inline void f2fs_put_page_dic(struct page *page, bool in_task) 4383 { 4384 WARN_ON_ONCE(1); 4385 } 4386 static inline unsigned int f2fs_cluster_blocks_are_contiguous( 4387 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; } 4388 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4389 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4390 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4391 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4392 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4393 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4394 static inline void f2fs_destroy_compress_cache(void) { } 4395 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4396 block_t blkaddr) { } 4397 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4398 struct page *page, nid_t ino, block_t blkaddr) { } 4399 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4400 struct page *page, block_t blkaddr) { return false; } 4401 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4402 nid_t ino) { } 4403 #define inc_compr_inode_stat(inode) do { } while (0) 4404 static inline void f2fs_update_read_extent_tree_range_compressed( 4405 struct inode *inode, 4406 pgoff_t fofs, block_t blkaddr, 4407 unsigned int llen, unsigned int c_len) { } 4408 #endif 4409 4410 static inline int set_compress_context(struct inode *inode) 4411 { 4412 #ifdef CONFIG_F2FS_FS_COMPRESSION 4413 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4414 struct f2fs_inode_info *fi = F2FS_I(inode); 4415 4416 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm; 4417 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size; 4418 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ? 4419 BIT(COMPRESS_CHKSUM) : 0; 4420 fi->i_cluster_size = BIT(fi->i_log_cluster_size); 4421 if ((fi->i_compress_algorithm == COMPRESS_LZ4 || 4422 fi->i_compress_algorithm == COMPRESS_ZSTD) && 4423 F2FS_OPTION(sbi).compress_level) 4424 fi->i_compress_level = F2FS_OPTION(sbi).compress_level; 4425 fi->i_flags |= F2FS_COMPR_FL; 4426 set_inode_flag(inode, FI_COMPRESSED_FILE); 4427 stat_inc_compr_inode(inode); 4428 inc_compr_inode_stat(inode); 4429 f2fs_mark_inode_dirty_sync(inode, true); 4430 return 0; 4431 #else 4432 return -EOPNOTSUPP; 4433 #endif 4434 } 4435 4436 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4437 { 4438 struct f2fs_inode_info *fi = F2FS_I(inode); 4439 4440 f2fs_down_write(&fi->i_sem); 4441 4442 if (!f2fs_compressed_file(inode)) { 4443 f2fs_up_write(&fi->i_sem); 4444 return true; 4445 } 4446 if (f2fs_is_mmap_file(inode) || 4447 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) { 4448 f2fs_up_write(&fi->i_sem); 4449 return false; 4450 } 4451 4452 fi->i_flags &= ~F2FS_COMPR_FL; 4453 stat_dec_compr_inode(inode); 4454 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4455 f2fs_mark_inode_dirty_sync(inode, true); 4456 4457 f2fs_up_write(&fi->i_sem); 4458 return true; 4459 } 4460 4461 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4462 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4463 { \ 4464 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4465 } 4466 4467 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4468 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4469 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4470 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4471 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4472 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4473 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4474 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4475 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4476 F2FS_FEATURE_FUNCS(verity, VERITY); 4477 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4478 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4479 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4480 F2FS_FEATURE_FUNCS(readonly, RO); 4481 4482 #ifdef CONFIG_BLK_DEV_ZONED 4483 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4484 block_t blkaddr) 4485 { 4486 unsigned int zno = blkaddr / sbi->blocks_per_blkz; 4487 4488 return test_bit(zno, FDEV(devi).blkz_seq); 4489 } 4490 #endif 4491 4492 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi, 4493 struct block_device *bdev) 4494 { 4495 int i; 4496 4497 if (!f2fs_is_multi_device(sbi)) 4498 return 0; 4499 4500 for (i = 0; i < sbi->s_ndevs; i++) 4501 if (FDEV(i).bdev == bdev) 4502 return i; 4503 4504 WARN_ON(1); 4505 return -1; 4506 } 4507 4508 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4509 { 4510 return f2fs_sb_has_blkzoned(sbi); 4511 } 4512 4513 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4514 { 4515 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); 4516 } 4517 4518 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4519 { 4520 int i; 4521 4522 if (!f2fs_is_multi_device(sbi)) 4523 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4524 4525 for (i = 0; i < sbi->s_ndevs; i++) 4526 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4527 return true; 4528 return false; 4529 } 4530 4531 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4532 { 4533 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4534 f2fs_hw_should_discard(sbi); 4535 } 4536 4537 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4538 { 4539 int i; 4540 4541 if (!f2fs_is_multi_device(sbi)) 4542 return bdev_read_only(sbi->sb->s_bdev); 4543 4544 for (i = 0; i < sbi->s_ndevs; i++) 4545 if (bdev_read_only(FDEV(i).bdev)) 4546 return true; 4547 return false; 4548 } 4549 4550 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi) 4551 { 4552 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi); 4553 } 4554 4555 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4556 { 4557 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4558 } 4559 4560 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi, 4561 block_t blkaddr) 4562 { 4563 if (f2fs_sb_has_blkzoned(sbi)) { 4564 int devi = f2fs_target_device_index(sbi, blkaddr); 4565 4566 return !bdev_is_zoned(FDEV(devi).bdev); 4567 } 4568 return true; 4569 } 4570 4571 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) 4572 { 4573 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; 4574 } 4575 4576 static inline bool f2fs_may_compress(struct inode *inode) 4577 { 4578 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4579 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) || 4580 f2fs_is_mmap_file(inode)) 4581 return false; 4582 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4583 } 4584 4585 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4586 u64 blocks, bool add) 4587 { 4588 struct f2fs_inode_info *fi = F2FS_I(inode); 4589 int diff = fi->i_cluster_size - blocks; 4590 4591 /* don't update i_compr_blocks if saved blocks were released */ 4592 if (!add && !atomic_read(&fi->i_compr_blocks)) 4593 return; 4594 4595 if (add) { 4596 atomic_add(diff, &fi->i_compr_blocks); 4597 stat_add_compr_blocks(inode, diff); 4598 } else { 4599 atomic_sub(diff, &fi->i_compr_blocks); 4600 stat_sub_compr_blocks(inode, diff); 4601 } 4602 f2fs_mark_inode_dirty_sync(inode, true); 4603 } 4604 4605 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4606 int flag) 4607 { 4608 if (!f2fs_is_multi_device(sbi)) 4609 return false; 4610 if (flag != F2FS_GET_BLOCK_DIO) 4611 return false; 4612 return sbi->aligned_blksize; 4613 } 4614 4615 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4616 { 4617 return fsverity_active(inode) && 4618 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4619 } 4620 4621 #ifdef CONFIG_F2FS_FAULT_INJECTION 4622 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 4623 unsigned long type); 4624 #else 4625 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 4626 unsigned long rate, unsigned long type) 4627 { 4628 return 0; 4629 } 4630 #endif 4631 4632 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4633 { 4634 #ifdef CONFIG_QUOTA 4635 if (f2fs_sb_has_quota_ino(sbi)) 4636 return true; 4637 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4638 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4639 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4640 return true; 4641 #endif 4642 return false; 4643 } 4644 4645 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4646 { 4647 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4648 } 4649 4650 static inline void f2fs_io_schedule_timeout(long timeout) 4651 { 4652 set_current_state(TASK_UNINTERRUPTIBLE); 4653 io_schedule_timeout(timeout); 4654 } 4655 4656 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs, 4657 enum page_type type) 4658 { 4659 if (unlikely(f2fs_cp_error(sbi))) 4660 return; 4661 4662 if (ofs == sbi->page_eio_ofs[type]) { 4663 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) 4664 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4665 } else { 4666 sbi->page_eio_ofs[type] = ofs; 4667 sbi->page_eio_cnt[type] = 0; 4668 } 4669 } 4670 4671 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) 4672 { 4673 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); 4674 } 4675 4676 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi, 4677 block_t blkaddr, unsigned int cnt) 4678 { 4679 bool need_submit = false; 4680 int i = 0; 4681 4682 do { 4683 struct page *page; 4684 4685 page = find_get_page(META_MAPPING(sbi), blkaddr + i); 4686 if (page) { 4687 if (folio_test_writeback(page_folio(page))) 4688 need_submit = true; 4689 f2fs_put_page(page, 0); 4690 } 4691 } while (++i < cnt && !need_submit); 4692 4693 if (need_submit) 4694 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode, 4695 NULL, 0, DATA); 4696 4697 truncate_inode_pages_range(META_MAPPING(sbi), 4698 F2FS_BLK_TO_BYTES((loff_t)blkaddr), 4699 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1))); 4700 } 4701 4702 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi, 4703 block_t blkaddr) 4704 { 4705 f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1); 4706 f2fs_invalidate_compress_page(sbi, blkaddr); 4707 } 4708 4709 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4710 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4711 4712 #endif /* _LINUX_F2FS_H */ 4713