1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <linux/part_stat.h> 26 #include <crypto/hash.h> 27 28 #include <linux/fscrypt.h> 29 #include <linux/fsverity.h> 30 31 #ifdef CONFIG_F2FS_CHECK_FS 32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 33 #else 34 #define f2fs_bug_on(sbi, condition) \ 35 do { \ 36 if (WARN_ON(condition)) \ 37 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 38 } while (0) 39 #endif 40 41 enum { 42 FAULT_KMALLOC, 43 FAULT_KVMALLOC, 44 FAULT_PAGE_ALLOC, 45 FAULT_PAGE_GET, 46 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 47 FAULT_ALLOC_NID, 48 FAULT_ORPHAN, 49 FAULT_BLOCK, 50 FAULT_DIR_DEPTH, 51 FAULT_EVICT_INODE, 52 FAULT_TRUNCATE, 53 FAULT_READ_IO, 54 FAULT_CHECKPOINT, 55 FAULT_DISCARD, 56 FAULT_WRITE_IO, 57 FAULT_SLAB_ALLOC, 58 FAULT_MAX, 59 }; 60 61 #ifdef CONFIG_F2FS_FAULT_INJECTION 62 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 63 64 struct f2fs_fault_info { 65 atomic_t inject_ops; 66 unsigned int inject_rate; 67 unsigned int inject_type; 68 }; 69 70 extern const char *f2fs_fault_name[FAULT_MAX]; 71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 72 #endif 73 74 /* 75 * For mount options 76 */ 77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 78 #define F2FS_MOUNT_DISCARD 0x00000004 79 #define F2FS_MOUNT_NOHEAP 0x00000008 80 #define F2FS_MOUNT_XATTR_USER 0x00000010 81 #define F2FS_MOUNT_POSIX_ACL 0x00000020 82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 83 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 84 #define F2FS_MOUNT_INLINE_DATA 0x00000100 85 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 86 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 87 #define F2FS_MOUNT_NOBARRIER 0x00000800 88 #define F2FS_MOUNT_FASTBOOT 0x00001000 89 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 92 #define F2FS_MOUNT_USRQUOTA 0x00080000 93 #define F2FS_MOUNT_GRPQUOTA 0x00100000 94 #define F2FS_MOUNT_PRJQUOTA 0x00200000 95 #define F2FS_MOUNT_QUOTA 0x00400000 96 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 97 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 98 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 99 #define F2FS_MOUNT_NORECOVERY 0x04000000 100 #define F2FS_MOUNT_ATGC 0x08000000 101 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000 102 #define F2FS_MOUNT_GC_MERGE 0x20000000 103 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000 104 105 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 106 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 107 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 108 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 109 110 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 111 typecheck(unsigned long long, b) && \ 112 ((long long)((a) - (b)) > 0)) 113 114 typedef u32 block_t; /* 115 * should not change u32, since it is the on-disk block 116 * address format, __le32. 117 */ 118 typedef u32 nid_t; 119 120 #define COMPRESS_EXT_NUM 16 121 122 struct f2fs_mount_info { 123 unsigned int opt; 124 int write_io_size_bits; /* Write IO size bits */ 125 block_t root_reserved_blocks; /* root reserved blocks */ 126 kuid_t s_resuid; /* reserved blocks for uid */ 127 kgid_t s_resgid; /* reserved blocks for gid */ 128 int active_logs; /* # of active logs */ 129 int inline_xattr_size; /* inline xattr size */ 130 #ifdef CONFIG_F2FS_FAULT_INJECTION 131 struct f2fs_fault_info fault_info; /* For fault injection */ 132 #endif 133 #ifdef CONFIG_QUOTA 134 /* Names of quota files with journalled quota */ 135 char *s_qf_names[MAXQUOTAS]; 136 int s_jquota_fmt; /* Format of quota to use */ 137 #endif 138 /* For which write hints are passed down to block layer */ 139 int whint_mode; 140 int alloc_mode; /* segment allocation policy */ 141 int fsync_mode; /* fsync policy */ 142 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 143 int bggc_mode; /* bggc mode: off, on or sync */ 144 int discard_unit; /* 145 * discard command's offset/size should 146 * be aligned to this unit: block, 147 * segment or section 148 */ 149 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 150 block_t unusable_cap_perc; /* percentage for cap */ 151 block_t unusable_cap; /* Amount of space allowed to be 152 * unusable when disabling checkpoint 153 */ 154 155 /* For compression */ 156 unsigned char compress_algorithm; /* algorithm type */ 157 unsigned char compress_log_size; /* cluster log size */ 158 unsigned char compress_level; /* compress level */ 159 bool compress_chksum; /* compressed data chksum */ 160 unsigned char compress_ext_cnt; /* extension count */ 161 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 162 int compress_mode; /* compression mode */ 163 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 164 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 165 }; 166 167 #define F2FS_FEATURE_ENCRYPT 0x0001 168 #define F2FS_FEATURE_BLKZONED 0x0002 169 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 170 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 171 #define F2FS_FEATURE_PRJQUOTA 0x0010 172 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 173 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 174 #define F2FS_FEATURE_QUOTA_INO 0x0080 175 #define F2FS_FEATURE_INODE_CRTIME 0x0100 176 #define F2FS_FEATURE_LOST_FOUND 0x0200 177 #define F2FS_FEATURE_VERITY 0x0400 178 #define F2FS_FEATURE_SB_CHKSUM 0x0800 179 #define F2FS_FEATURE_CASEFOLD 0x1000 180 #define F2FS_FEATURE_COMPRESSION 0x2000 181 #define F2FS_FEATURE_RO 0x4000 182 183 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 184 ((raw_super->feature & cpu_to_le32(mask)) != 0) 185 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 186 #define F2FS_SET_FEATURE(sbi, mask) \ 187 (sbi->raw_super->feature |= cpu_to_le32(mask)) 188 #define F2FS_CLEAR_FEATURE(sbi, mask) \ 189 (sbi->raw_super->feature &= ~cpu_to_le32(mask)) 190 191 /* 192 * Default values for user and/or group using reserved blocks 193 */ 194 #define F2FS_DEF_RESUID 0 195 #define F2FS_DEF_RESGID 0 196 197 /* 198 * For checkpoint manager 199 */ 200 enum { 201 NAT_BITMAP, 202 SIT_BITMAP 203 }; 204 205 #define CP_UMOUNT 0x00000001 206 #define CP_FASTBOOT 0x00000002 207 #define CP_SYNC 0x00000004 208 #define CP_RECOVERY 0x00000008 209 #define CP_DISCARD 0x00000010 210 #define CP_TRIMMED 0x00000020 211 #define CP_PAUSE 0x00000040 212 #define CP_RESIZE 0x00000080 213 214 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 215 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 216 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 217 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 218 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 219 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 220 #define DEF_CP_INTERVAL 60 /* 60 secs */ 221 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 222 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 223 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 224 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 225 226 struct cp_control { 227 int reason; 228 __u64 trim_start; 229 __u64 trim_end; 230 __u64 trim_minlen; 231 }; 232 233 /* 234 * indicate meta/data type 235 */ 236 enum { 237 META_CP, 238 META_NAT, 239 META_SIT, 240 META_SSA, 241 META_MAX, 242 META_POR, 243 DATA_GENERIC, /* check range only */ 244 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 245 DATA_GENERIC_ENHANCE_READ, /* 246 * strong check on range and segment 247 * bitmap but no warning due to race 248 * condition of read on truncated area 249 * by extent_cache 250 */ 251 META_GENERIC, 252 }; 253 254 /* for the list of ino */ 255 enum { 256 ORPHAN_INO, /* for orphan ino list */ 257 APPEND_INO, /* for append ino list */ 258 UPDATE_INO, /* for update ino list */ 259 TRANS_DIR_INO, /* for trasactions dir ino list */ 260 FLUSH_INO, /* for multiple device flushing */ 261 MAX_INO_ENTRY, /* max. list */ 262 }; 263 264 struct ino_entry { 265 struct list_head list; /* list head */ 266 nid_t ino; /* inode number */ 267 unsigned int dirty_device; /* dirty device bitmap */ 268 }; 269 270 /* for the list of inodes to be GCed */ 271 struct inode_entry { 272 struct list_head list; /* list head */ 273 struct inode *inode; /* vfs inode pointer */ 274 }; 275 276 struct fsync_node_entry { 277 struct list_head list; /* list head */ 278 struct page *page; /* warm node page pointer */ 279 unsigned int seq_id; /* sequence id */ 280 }; 281 282 struct ckpt_req { 283 struct completion wait; /* completion for checkpoint done */ 284 struct llist_node llnode; /* llist_node to be linked in wait queue */ 285 int ret; /* return code of checkpoint */ 286 ktime_t queue_time; /* request queued time */ 287 }; 288 289 struct ckpt_req_control { 290 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 291 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 292 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 293 atomic_t issued_ckpt; /* # of actually issued ckpts */ 294 atomic_t total_ckpt; /* # of total ckpts */ 295 atomic_t queued_ckpt; /* # of queued ckpts */ 296 struct llist_head issue_list; /* list for command issue */ 297 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 298 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 299 unsigned int peak_time; /* peak wait time in msec until now */ 300 }; 301 302 /* for the bitmap indicate blocks to be discarded */ 303 struct discard_entry { 304 struct list_head list; /* list head */ 305 block_t start_blkaddr; /* start blockaddr of current segment */ 306 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 307 }; 308 309 /* default discard granularity of inner discard thread, unit: block count */ 310 #define DEFAULT_DISCARD_GRANULARITY 16 311 312 /* max discard pend list number */ 313 #define MAX_PLIST_NUM 512 314 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 315 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 316 317 enum { 318 D_PREP, /* initial */ 319 D_PARTIAL, /* partially submitted */ 320 D_SUBMIT, /* all submitted */ 321 D_DONE, /* finished */ 322 }; 323 324 struct discard_info { 325 block_t lstart; /* logical start address */ 326 block_t len; /* length */ 327 block_t start; /* actual start address in dev */ 328 }; 329 330 struct discard_cmd { 331 struct rb_node rb_node; /* rb node located in rb-tree */ 332 union { 333 struct { 334 block_t lstart; /* logical start address */ 335 block_t len; /* length */ 336 block_t start; /* actual start address in dev */ 337 }; 338 struct discard_info di; /* discard info */ 339 340 }; 341 struct list_head list; /* command list */ 342 struct completion wait; /* compleation */ 343 struct block_device *bdev; /* bdev */ 344 unsigned short ref; /* reference count */ 345 unsigned char state; /* state */ 346 unsigned char queued; /* queued discard */ 347 int error; /* bio error */ 348 spinlock_t lock; /* for state/bio_ref updating */ 349 unsigned short bio_ref; /* bio reference count */ 350 }; 351 352 enum { 353 DPOLICY_BG, 354 DPOLICY_FORCE, 355 DPOLICY_FSTRIM, 356 DPOLICY_UMOUNT, 357 MAX_DPOLICY, 358 }; 359 360 struct discard_policy { 361 int type; /* type of discard */ 362 unsigned int min_interval; /* used for candidates exist */ 363 unsigned int mid_interval; /* used for device busy */ 364 unsigned int max_interval; /* used for candidates not exist */ 365 unsigned int max_requests; /* # of discards issued per round */ 366 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 367 bool io_aware; /* issue discard in idle time */ 368 bool sync; /* submit discard with REQ_SYNC flag */ 369 bool ordered; /* issue discard by lba order */ 370 bool timeout; /* discard timeout for put_super */ 371 unsigned int granularity; /* discard granularity */ 372 }; 373 374 struct discard_cmd_control { 375 struct task_struct *f2fs_issue_discard; /* discard thread */ 376 struct list_head entry_list; /* 4KB discard entry list */ 377 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 378 struct list_head wait_list; /* store on-flushing entries */ 379 struct list_head fstrim_list; /* in-flight discard from fstrim */ 380 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 381 unsigned int discard_wake; /* to wake up discard thread */ 382 struct mutex cmd_lock; 383 unsigned int nr_discards; /* # of discards in the list */ 384 unsigned int max_discards; /* max. discards to be issued */ 385 unsigned int discard_granularity; /* discard granularity */ 386 unsigned int undiscard_blks; /* # of undiscard blocks */ 387 unsigned int next_pos; /* next discard position */ 388 atomic_t issued_discard; /* # of issued discard */ 389 atomic_t queued_discard; /* # of queued discard */ 390 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 391 struct rb_root_cached root; /* root of discard rb-tree */ 392 bool rbtree_check; /* config for consistence check */ 393 }; 394 395 /* for the list of fsync inodes, used only during recovery */ 396 struct fsync_inode_entry { 397 struct list_head list; /* list head */ 398 struct inode *inode; /* vfs inode pointer */ 399 block_t blkaddr; /* block address locating the last fsync */ 400 block_t last_dentry; /* block address locating the last dentry */ 401 }; 402 403 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 404 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 405 406 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 407 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 408 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 409 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 410 411 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 412 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 413 414 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 415 { 416 int before = nats_in_cursum(journal); 417 418 journal->n_nats = cpu_to_le16(before + i); 419 return before; 420 } 421 422 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 423 { 424 int before = sits_in_cursum(journal); 425 426 journal->n_sits = cpu_to_le16(before + i); 427 return before; 428 } 429 430 static inline bool __has_cursum_space(struct f2fs_journal *journal, 431 int size, int type) 432 { 433 if (type == NAT_JOURNAL) 434 return size <= MAX_NAT_JENTRIES(journal); 435 return size <= MAX_SIT_JENTRIES(journal); 436 } 437 438 /* for inline stuff */ 439 #define DEF_INLINE_RESERVED_SIZE 1 440 static inline int get_extra_isize(struct inode *inode); 441 static inline int get_inline_xattr_addrs(struct inode *inode); 442 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 443 (CUR_ADDRS_PER_INODE(inode) - \ 444 get_inline_xattr_addrs(inode) - \ 445 DEF_INLINE_RESERVED_SIZE)) 446 447 /* for inline dir */ 448 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 449 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 450 BITS_PER_BYTE + 1)) 451 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 452 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 453 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 454 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 455 NR_INLINE_DENTRY(inode) + \ 456 INLINE_DENTRY_BITMAP_SIZE(inode))) 457 458 /* 459 * For INODE and NODE manager 460 */ 461 /* for directory operations */ 462 463 struct f2fs_filename { 464 /* 465 * The filename the user specified. This is NULL for some 466 * filesystem-internal operations, e.g. converting an inline directory 467 * to a non-inline one, or roll-forward recovering an encrypted dentry. 468 */ 469 const struct qstr *usr_fname; 470 471 /* 472 * The on-disk filename. For encrypted directories, this is encrypted. 473 * This may be NULL for lookups in an encrypted dir without the key. 474 */ 475 struct fscrypt_str disk_name; 476 477 /* The dirhash of this filename */ 478 f2fs_hash_t hash; 479 480 #ifdef CONFIG_FS_ENCRYPTION 481 /* 482 * For lookups in encrypted directories: either the buffer backing 483 * disk_name, or a buffer that holds the decoded no-key name. 484 */ 485 struct fscrypt_str crypto_buf; 486 #endif 487 #ifdef CONFIG_UNICODE 488 /* 489 * For casefolded directories: the casefolded name, but it's left NULL 490 * if the original name is not valid Unicode, if the directory is both 491 * casefolded and encrypted and its encryption key is unavailable, or if 492 * the filesystem is doing an internal operation where usr_fname is also 493 * NULL. In all these cases we fall back to treating the name as an 494 * opaque byte sequence. 495 */ 496 struct fscrypt_str cf_name; 497 #endif 498 }; 499 500 struct f2fs_dentry_ptr { 501 struct inode *inode; 502 void *bitmap; 503 struct f2fs_dir_entry *dentry; 504 __u8 (*filename)[F2FS_SLOT_LEN]; 505 int max; 506 int nr_bitmap; 507 }; 508 509 static inline void make_dentry_ptr_block(struct inode *inode, 510 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 511 { 512 d->inode = inode; 513 d->max = NR_DENTRY_IN_BLOCK; 514 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 515 d->bitmap = t->dentry_bitmap; 516 d->dentry = t->dentry; 517 d->filename = t->filename; 518 } 519 520 static inline void make_dentry_ptr_inline(struct inode *inode, 521 struct f2fs_dentry_ptr *d, void *t) 522 { 523 int entry_cnt = NR_INLINE_DENTRY(inode); 524 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 525 int reserved_size = INLINE_RESERVED_SIZE(inode); 526 527 d->inode = inode; 528 d->max = entry_cnt; 529 d->nr_bitmap = bitmap_size; 530 d->bitmap = t; 531 d->dentry = t + bitmap_size + reserved_size; 532 d->filename = t + bitmap_size + reserved_size + 533 SIZE_OF_DIR_ENTRY * entry_cnt; 534 } 535 536 /* 537 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 538 * as its node offset to distinguish from index node blocks. 539 * But some bits are used to mark the node block. 540 */ 541 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 542 >> OFFSET_BIT_SHIFT) 543 enum { 544 ALLOC_NODE, /* allocate a new node page if needed */ 545 LOOKUP_NODE, /* look up a node without readahead */ 546 LOOKUP_NODE_RA, /* 547 * look up a node with readahead called 548 * by get_data_block. 549 */ 550 }; 551 552 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 553 554 /* congestion wait timeout value, default: 20ms */ 555 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 556 557 /* maximum retry quota flush count */ 558 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 559 560 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 561 562 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 563 564 /* for in-memory extent cache entry */ 565 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 566 567 /* number of extent info in extent cache we try to shrink */ 568 #define EXTENT_CACHE_SHRINK_NUMBER 128 569 570 struct rb_entry { 571 struct rb_node rb_node; /* rb node located in rb-tree */ 572 union { 573 struct { 574 unsigned int ofs; /* start offset of the entry */ 575 unsigned int len; /* length of the entry */ 576 }; 577 unsigned long long key; /* 64-bits key */ 578 } __packed; 579 }; 580 581 struct extent_info { 582 unsigned int fofs; /* start offset in a file */ 583 unsigned int len; /* length of the extent */ 584 u32 blk; /* start block address of the extent */ 585 #ifdef CONFIG_F2FS_FS_COMPRESSION 586 unsigned int c_len; /* physical extent length of compressed blocks */ 587 #endif 588 }; 589 590 struct extent_node { 591 struct rb_node rb_node; /* rb node located in rb-tree */ 592 struct extent_info ei; /* extent info */ 593 struct list_head list; /* node in global extent list of sbi */ 594 struct extent_tree *et; /* extent tree pointer */ 595 }; 596 597 struct extent_tree { 598 nid_t ino; /* inode number */ 599 struct rb_root_cached root; /* root of extent info rb-tree */ 600 struct extent_node *cached_en; /* recently accessed extent node */ 601 struct extent_info largest; /* largested extent info */ 602 struct list_head list; /* to be used by sbi->zombie_list */ 603 rwlock_t lock; /* protect extent info rb-tree */ 604 atomic_t node_cnt; /* # of extent node in rb-tree*/ 605 bool largest_updated; /* largest extent updated */ 606 }; 607 608 /* 609 * This structure is taken from ext4_map_blocks. 610 * 611 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 612 */ 613 #define F2FS_MAP_NEW (1 << BH_New) 614 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 615 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 616 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 617 F2FS_MAP_UNWRITTEN) 618 619 struct f2fs_map_blocks { 620 block_t m_pblk; 621 block_t m_lblk; 622 unsigned int m_len; 623 unsigned int m_flags; 624 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 625 pgoff_t *m_next_extent; /* point to next possible extent */ 626 int m_seg_type; 627 bool m_may_create; /* indicate it is from write path */ 628 }; 629 630 /* for flag in get_data_block */ 631 enum { 632 F2FS_GET_BLOCK_DEFAULT, 633 F2FS_GET_BLOCK_FIEMAP, 634 F2FS_GET_BLOCK_BMAP, 635 F2FS_GET_BLOCK_DIO, 636 F2FS_GET_BLOCK_PRE_DIO, 637 F2FS_GET_BLOCK_PRE_AIO, 638 F2FS_GET_BLOCK_PRECACHE, 639 }; 640 641 /* 642 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 643 */ 644 #define FADVISE_COLD_BIT 0x01 645 #define FADVISE_LOST_PINO_BIT 0x02 646 #define FADVISE_ENCRYPT_BIT 0x04 647 #define FADVISE_ENC_NAME_BIT 0x08 648 #define FADVISE_KEEP_SIZE_BIT 0x10 649 #define FADVISE_HOT_BIT 0x20 650 #define FADVISE_VERITY_BIT 0x40 651 652 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 653 654 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 655 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 656 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 657 658 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 659 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 660 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 661 662 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 663 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 664 665 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 666 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 667 668 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 669 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 670 671 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 672 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 673 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 674 675 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 676 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 677 678 #define DEF_DIR_LEVEL 0 679 680 enum { 681 GC_FAILURE_PIN, 682 GC_FAILURE_ATOMIC, 683 MAX_GC_FAILURE 684 }; 685 686 /* used for f2fs_inode_info->flags */ 687 enum { 688 FI_NEW_INODE, /* indicate newly allocated inode */ 689 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 690 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 691 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 692 FI_INC_LINK, /* need to increment i_nlink */ 693 FI_ACL_MODE, /* indicate acl mode */ 694 FI_NO_ALLOC, /* should not allocate any blocks */ 695 FI_FREE_NID, /* free allocated nide */ 696 FI_NO_EXTENT, /* not to use the extent cache */ 697 FI_INLINE_XATTR, /* used for inline xattr */ 698 FI_INLINE_DATA, /* used for inline data*/ 699 FI_INLINE_DENTRY, /* used for inline dentry */ 700 FI_APPEND_WRITE, /* inode has appended data */ 701 FI_UPDATE_WRITE, /* inode has in-place-update data */ 702 FI_NEED_IPU, /* used for ipu per file */ 703 FI_ATOMIC_FILE, /* indicate atomic file */ 704 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 705 FI_VOLATILE_FILE, /* indicate volatile file */ 706 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 707 FI_DROP_CACHE, /* drop dirty page cache */ 708 FI_DATA_EXIST, /* indicate data exists */ 709 FI_INLINE_DOTS, /* indicate inline dot dentries */ 710 FI_DO_DEFRAG, /* indicate defragment is running */ 711 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 712 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 713 FI_HOT_DATA, /* indicate file is hot */ 714 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 715 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 716 FI_PIN_FILE, /* indicate file should not be gced */ 717 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 718 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 719 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 720 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 721 FI_MMAP_FILE, /* indicate file was mmapped */ 722 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 723 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 724 FI_ALIGNED_WRITE, /* enable aligned write */ 725 FI_MAX, /* max flag, never be used */ 726 }; 727 728 struct f2fs_inode_info { 729 struct inode vfs_inode; /* serve a vfs inode */ 730 unsigned long i_flags; /* keep an inode flags for ioctl */ 731 unsigned char i_advise; /* use to give file attribute hints */ 732 unsigned char i_dir_level; /* use for dentry level for large dir */ 733 unsigned int i_current_depth; /* only for directory depth */ 734 /* for gc failure statistic */ 735 unsigned int i_gc_failures[MAX_GC_FAILURE]; 736 unsigned int i_pino; /* parent inode number */ 737 umode_t i_acl_mode; /* keep file acl mode temporarily */ 738 739 /* Use below internally in f2fs*/ 740 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 741 struct rw_semaphore i_sem; /* protect fi info */ 742 atomic_t dirty_pages; /* # of dirty pages */ 743 f2fs_hash_t chash; /* hash value of given file name */ 744 unsigned int clevel; /* maximum level of given file name */ 745 struct task_struct *task; /* lookup and create consistency */ 746 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 747 nid_t i_xattr_nid; /* node id that contains xattrs */ 748 loff_t last_disk_size; /* lastly written file size */ 749 spinlock_t i_size_lock; /* protect last_disk_size */ 750 751 #ifdef CONFIG_QUOTA 752 struct dquot *i_dquot[MAXQUOTAS]; 753 754 /* quota space reservation, managed internally by quota code */ 755 qsize_t i_reserved_quota; 756 #endif 757 struct list_head dirty_list; /* dirty list for dirs and files */ 758 struct list_head gdirty_list; /* linked in global dirty list */ 759 struct list_head inmem_ilist; /* list for inmem inodes */ 760 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 761 struct task_struct *inmem_task; /* store inmemory task */ 762 struct mutex inmem_lock; /* lock for inmemory pages */ 763 struct extent_tree *extent_tree; /* cached extent_tree entry */ 764 765 /* avoid racing between foreground op and gc */ 766 struct rw_semaphore i_gc_rwsem[2]; 767 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 768 769 int i_extra_isize; /* size of extra space located in i_addr */ 770 kprojid_t i_projid; /* id for project quota */ 771 int i_inline_xattr_size; /* inline xattr size */ 772 struct timespec64 i_crtime; /* inode creation time */ 773 struct timespec64 i_disk_time[4];/* inode disk times */ 774 775 /* for file compress */ 776 atomic_t i_compr_blocks; /* # of compressed blocks */ 777 unsigned char i_compress_algorithm; /* algorithm type */ 778 unsigned char i_log_cluster_size; /* log of cluster size */ 779 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 780 unsigned short i_compress_flag; /* compress flag */ 781 unsigned int i_cluster_size; /* cluster size */ 782 }; 783 784 static inline void get_extent_info(struct extent_info *ext, 785 struct f2fs_extent *i_ext) 786 { 787 ext->fofs = le32_to_cpu(i_ext->fofs); 788 ext->blk = le32_to_cpu(i_ext->blk); 789 ext->len = le32_to_cpu(i_ext->len); 790 } 791 792 static inline void set_raw_extent(struct extent_info *ext, 793 struct f2fs_extent *i_ext) 794 { 795 i_ext->fofs = cpu_to_le32(ext->fofs); 796 i_ext->blk = cpu_to_le32(ext->blk); 797 i_ext->len = cpu_to_le32(ext->len); 798 } 799 800 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 801 u32 blk, unsigned int len) 802 { 803 ei->fofs = fofs; 804 ei->blk = blk; 805 ei->len = len; 806 #ifdef CONFIG_F2FS_FS_COMPRESSION 807 ei->c_len = 0; 808 #endif 809 } 810 811 static inline bool __is_discard_mergeable(struct discard_info *back, 812 struct discard_info *front, unsigned int max_len) 813 { 814 return (back->lstart + back->len == front->lstart) && 815 (back->len + front->len <= max_len); 816 } 817 818 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 819 struct discard_info *back, unsigned int max_len) 820 { 821 return __is_discard_mergeable(back, cur, max_len); 822 } 823 824 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 825 struct discard_info *front, unsigned int max_len) 826 { 827 return __is_discard_mergeable(cur, front, max_len); 828 } 829 830 static inline bool __is_extent_mergeable(struct extent_info *back, 831 struct extent_info *front) 832 { 833 #ifdef CONFIG_F2FS_FS_COMPRESSION 834 if (back->c_len && back->len != back->c_len) 835 return false; 836 if (front->c_len && front->len != front->c_len) 837 return false; 838 #endif 839 return (back->fofs + back->len == front->fofs && 840 back->blk + back->len == front->blk); 841 } 842 843 static inline bool __is_back_mergeable(struct extent_info *cur, 844 struct extent_info *back) 845 { 846 return __is_extent_mergeable(back, cur); 847 } 848 849 static inline bool __is_front_mergeable(struct extent_info *cur, 850 struct extent_info *front) 851 { 852 return __is_extent_mergeable(cur, front); 853 } 854 855 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 856 static inline void __try_update_largest_extent(struct extent_tree *et, 857 struct extent_node *en) 858 { 859 if (en->ei.len > et->largest.len) { 860 et->largest = en->ei; 861 et->largest_updated = true; 862 } 863 } 864 865 /* 866 * For free nid management 867 */ 868 enum nid_state { 869 FREE_NID, /* newly added to free nid list */ 870 PREALLOC_NID, /* it is preallocated */ 871 MAX_NID_STATE, 872 }; 873 874 enum nat_state { 875 TOTAL_NAT, 876 DIRTY_NAT, 877 RECLAIMABLE_NAT, 878 MAX_NAT_STATE, 879 }; 880 881 struct f2fs_nm_info { 882 block_t nat_blkaddr; /* base disk address of NAT */ 883 nid_t max_nid; /* maximum possible node ids */ 884 nid_t available_nids; /* # of available node ids */ 885 nid_t next_scan_nid; /* the next nid to be scanned */ 886 unsigned int ram_thresh; /* control the memory footprint */ 887 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 888 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 889 890 /* NAT cache management */ 891 struct radix_tree_root nat_root;/* root of the nat entry cache */ 892 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 893 struct rw_semaphore nat_tree_lock; /* protect nat entry tree */ 894 struct list_head nat_entries; /* cached nat entry list (clean) */ 895 spinlock_t nat_list_lock; /* protect clean nat entry list */ 896 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 897 unsigned int nat_blocks; /* # of nat blocks */ 898 899 /* free node ids management */ 900 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 901 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 902 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 903 spinlock_t nid_list_lock; /* protect nid lists ops */ 904 struct mutex build_lock; /* lock for build free nids */ 905 unsigned char **free_nid_bitmap; 906 unsigned char *nat_block_bitmap; 907 unsigned short *free_nid_count; /* free nid count of NAT block */ 908 909 /* for checkpoint */ 910 char *nat_bitmap; /* NAT bitmap pointer */ 911 912 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 913 unsigned char *nat_bits; /* NAT bits blocks */ 914 unsigned char *full_nat_bits; /* full NAT pages */ 915 unsigned char *empty_nat_bits; /* empty NAT pages */ 916 #ifdef CONFIG_F2FS_CHECK_FS 917 char *nat_bitmap_mir; /* NAT bitmap mirror */ 918 #endif 919 int bitmap_size; /* bitmap size */ 920 }; 921 922 /* 923 * this structure is used as one of function parameters. 924 * all the information are dedicated to a given direct node block determined 925 * by the data offset in a file. 926 */ 927 struct dnode_of_data { 928 struct inode *inode; /* vfs inode pointer */ 929 struct page *inode_page; /* its inode page, NULL is possible */ 930 struct page *node_page; /* cached direct node page */ 931 nid_t nid; /* node id of the direct node block */ 932 unsigned int ofs_in_node; /* data offset in the node page */ 933 bool inode_page_locked; /* inode page is locked or not */ 934 bool node_changed; /* is node block changed */ 935 char cur_level; /* level of hole node page */ 936 char max_level; /* level of current page located */ 937 block_t data_blkaddr; /* block address of the node block */ 938 }; 939 940 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 941 struct page *ipage, struct page *npage, nid_t nid) 942 { 943 memset(dn, 0, sizeof(*dn)); 944 dn->inode = inode; 945 dn->inode_page = ipage; 946 dn->node_page = npage; 947 dn->nid = nid; 948 } 949 950 /* 951 * For SIT manager 952 * 953 * By default, there are 6 active log areas across the whole main area. 954 * When considering hot and cold data separation to reduce cleaning overhead, 955 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 956 * respectively. 957 * In the current design, you should not change the numbers intentionally. 958 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 959 * logs individually according to the underlying devices. (default: 6) 960 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 961 * data and 8 for node logs. 962 */ 963 #define NR_CURSEG_DATA_TYPE (3) 964 #define NR_CURSEG_NODE_TYPE (3) 965 #define NR_CURSEG_INMEM_TYPE (2) 966 #define NR_CURSEG_RO_TYPE (2) 967 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 968 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 969 970 enum { 971 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 972 CURSEG_WARM_DATA, /* data blocks */ 973 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 974 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 975 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 976 CURSEG_COLD_NODE, /* indirect node blocks */ 977 NR_PERSISTENT_LOG, /* number of persistent log */ 978 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 979 /* pinned file that needs consecutive block address */ 980 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 981 NO_CHECK_TYPE, /* number of persistent & inmem log */ 982 }; 983 984 struct flush_cmd { 985 struct completion wait; 986 struct llist_node llnode; 987 nid_t ino; 988 int ret; 989 }; 990 991 struct flush_cmd_control { 992 struct task_struct *f2fs_issue_flush; /* flush thread */ 993 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 994 atomic_t issued_flush; /* # of issued flushes */ 995 atomic_t queued_flush; /* # of queued flushes */ 996 struct llist_head issue_list; /* list for command issue */ 997 struct llist_node *dispatch_list; /* list for command dispatch */ 998 }; 999 1000 struct f2fs_sm_info { 1001 struct sit_info *sit_info; /* whole segment information */ 1002 struct free_segmap_info *free_info; /* free segment information */ 1003 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1004 struct curseg_info *curseg_array; /* active segment information */ 1005 1006 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 1007 1008 block_t seg0_blkaddr; /* block address of 0'th segment */ 1009 block_t main_blkaddr; /* start block address of main area */ 1010 block_t ssa_blkaddr; /* start block address of SSA area */ 1011 1012 unsigned int segment_count; /* total # of segments */ 1013 unsigned int main_segments; /* # of segments in main area */ 1014 unsigned int reserved_segments; /* # of reserved segments */ 1015 unsigned int ovp_segments; /* # of overprovision segments */ 1016 1017 /* a threshold to reclaim prefree segments */ 1018 unsigned int rec_prefree_segments; 1019 1020 /* for batched trimming */ 1021 unsigned int trim_sections; /* # of sections to trim */ 1022 1023 struct list_head sit_entry_set; /* sit entry set list */ 1024 1025 unsigned int ipu_policy; /* in-place-update policy */ 1026 unsigned int min_ipu_util; /* in-place-update threshold */ 1027 unsigned int min_fsync_blocks; /* threshold for fsync */ 1028 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1029 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1030 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1031 1032 /* for flush command control */ 1033 struct flush_cmd_control *fcc_info; 1034 1035 /* for discard command control */ 1036 struct discard_cmd_control *dcc_info; 1037 }; 1038 1039 /* 1040 * For superblock 1041 */ 1042 /* 1043 * COUNT_TYPE for monitoring 1044 * 1045 * f2fs monitors the number of several block types such as on-writeback, 1046 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1047 */ 1048 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1049 enum count_type { 1050 F2FS_DIRTY_DENTS, 1051 F2FS_DIRTY_DATA, 1052 F2FS_DIRTY_QDATA, 1053 F2FS_DIRTY_NODES, 1054 F2FS_DIRTY_META, 1055 F2FS_INMEM_PAGES, 1056 F2FS_DIRTY_IMETA, 1057 F2FS_WB_CP_DATA, 1058 F2FS_WB_DATA, 1059 F2FS_RD_DATA, 1060 F2FS_RD_NODE, 1061 F2FS_RD_META, 1062 F2FS_DIO_WRITE, 1063 F2FS_DIO_READ, 1064 NR_COUNT_TYPE, 1065 }; 1066 1067 /* 1068 * The below are the page types of bios used in submit_bio(). 1069 * The available types are: 1070 * DATA User data pages. It operates as async mode. 1071 * NODE Node pages. It operates as async mode. 1072 * META FS metadata pages such as SIT, NAT, CP. 1073 * NR_PAGE_TYPE The number of page types. 1074 * META_FLUSH Make sure the previous pages are written 1075 * with waiting the bio's completion 1076 * ... Only can be used with META. 1077 */ 1078 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1079 enum page_type { 1080 DATA, 1081 NODE, 1082 META, 1083 NR_PAGE_TYPE, 1084 META_FLUSH, 1085 INMEM, /* the below types are used by tracepoints only. */ 1086 INMEM_DROP, 1087 INMEM_INVALIDATE, 1088 INMEM_REVOKE, 1089 IPU, 1090 OPU, 1091 }; 1092 1093 enum temp_type { 1094 HOT = 0, /* must be zero for meta bio */ 1095 WARM, 1096 COLD, 1097 NR_TEMP_TYPE, 1098 }; 1099 1100 enum need_lock_type { 1101 LOCK_REQ = 0, 1102 LOCK_DONE, 1103 LOCK_RETRY, 1104 }; 1105 1106 enum cp_reason_type { 1107 CP_NO_NEEDED, 1108 CP_NON_REGULAR, 1109 CP_COMPRESSED, 1110 CP_HARDLINK, 1111 CP_SB_NEED_CP, 1112 CP_WRONG_PINO, 1113 CP_NO_SPC_ROLL, 1114 CP_NODE_NEED_CP, 1115 CP_FASTBOOT_MODE, 1116 CP_SPEC_LOG_NUM, 1117 CP_RECOVER_DIR, 1118 }; 1119 1120 enum iostat_type { 1121 /* WRITE IO */ 1122 APP_DIRECT_IO, /* app direct write IOs */ 1123 APP_BUFFERED_IO, /* app buffered write IOs */ 1124 APP_WRITE_IO, /* app write IOs */ 1125 APP_MAPPED_IO, /* app mapped IOs */ 1126 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1127 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1128 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1129 FS_GC_DATA_IO, /* data IOs from forground gc */ 1130 FS_GC_NODE_IO, /* node IOs from forground gc */ 1131 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1132 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1133 FS_CP_META_IO, /* meta IOs from checkpoint */ 1134 1135 /* READ IO */ 1136 APP_DIRECT_READ_IO, /* app direct read IOs */ 1137 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1138 APP_READ_IO, /* app read IOs */ 1139 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1140 FS_DATA_READ_IO, /* data read IOs */ 1141 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1142 FS_CDATA_READ_IO, /* compressed data read IOs */ 1143 FS_NODE_READ_IO, /* node read IOs */ 1144 FS_META_READ_IO, /* meta read IOs */ 1145 1146 /* other */ 1147 FS_DISCARD, /* discard */ 1148 NR_IO_TYPE, 1149 }; 1150 1151 struct f2fs_io_info { 1152 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1153 nid_t ino; /* inode number */ 1154 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1155 enum temp_type temp; /* contains HOT/WARM/COLD */ 1156 int op; /* contains REQ_OP_ */ 1157 int op_flags; /* req_flag_bits */ 1158 block_t new_blkaddr; /* new block address to be written */ 1159 block_t old_blkaddr; /* old block address before Cow */ 1160 struct page *page; /* page to be written */ 1161 struct page *encrypted_page; /* encrypted page */ 1162 struct page *compressed_page; /* compressed page */ 1163 struct list_head list; /* serialize IOs */ 1164 bool submitted; /* indicate IO submission */ 1165 int need_lock; /* indicate we need to lock cp_rwsem */ 1166 bool in_list; /* indicate fio is in io_list */ 1167 bool is_por; /* indicate IO is from recovery or not */ 1168 bool retry; /* need to reallocate block address */ 1169 int compr_blocks; /* # of compressed block addresses */ 1170 bool encrypted; /* indicate file is encrypted */ 1171 enum iostat_type io_type; /* io type */ 1172 struct writeback_control *io_wbc; /* writeback control */ 1173 struct bio **bio; /* bio for ipu */ 1174 sector_t *last_block; /* last block number in bio */ 1175 unsigned char version; /* version of the node */ 1176 }; 1177 1178 struct bio_entry { 1179 struct bio *bio; 1180 struct list_head list; 1181 }; 1182 1183 #define is_read_io(rw) ((rw) == READ) 1184 struct f2fs_bio_info { 1185 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1186 struct bio *bio; /* bios to merge */ 1187 sector_t last_block_in_bio; /* last block number */ 1188 struct f2fs_io_info fio; /* store buffered io info. */ 1189 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1190 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1191 struct list_head io_list; /* track fios */ 1192 struct list_head bio_list; /* bio entry list head */ 1193 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */ 1194 }; 1195 1196 #define FDEV(i) (sbi->devs[i]) 1197 #define RDEV(i) (raw_super->devs[i]) 1198 struct f2fs_dev_info { 1199 struct block_device *bdev; 1200 char path[MAX_PATH_LEN]; 1201 unsigned int total_segments; 1202 block_t start_blk; 1203 block_t end_blk; 1204 #ifdef CONFIG_BLK_DEV_ZONED 1205 unsigned int nr_blkz; /* Total number of zones */ 1206 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1207 block_t *zone_capacity_blocks; /* Array of zone capacity in blks */ 1208 #endif 1209 }; 1210 1211 enum inode_type { 1212 DIR_INODE, /* for dirty dir inode */ 1213 FILE_INODE, /* for dirty regular/symlink inode */ 1214 DIRTY_META, /* for all dirtied inode metadata */ 1215 ATOMIC_FILE, /* for all atomic files */ 1216 NR_INODE_TYPE, 1217 }; 1218 1219 /* for inner inode cache management */ 1220 struct inode_management { 1221 struct radix_tree_root ino_root; /* ino entry array */ 1222 spinlock_t ino_lock; /* for ino entry lock */ 1223 struct list_head ino_list; /* inode list head */ 1224 unsigned long ino_num; /* number of entries */ 1225 }; 1226 1227 /* for GC_AT */ 1228 struct atgc_management { 1229 bool atgc_enabled; /* ATGC is enabled or not */ 1230 struct rb_root_cached root; /* root of victim rb-tree */ 1231 struct list_head victim_list; /* linked with all victim entries */ 1232 unsigned int victim_count; /* victim count in rb-tree */ 1233 unsigned int candidate_ratio; /* candidate ratio */ 1234 unsigned int max_candidate_count; /* max candidate count */ 1235 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1236 unsigned long long age_threshold; /* age threshold */ 1237 }; 1238 1239 /* For s_flag in struct f2fs_sb_info */ 1240 enum { 1241 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1242 SBI_IS_CLOSE, /* specify unmounting */ 1243 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1244 SBI_POR_DOING, /* recovery is doing or not */ 1245 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1246 SBI_NEED_CP, /* need to checkpoint */ 1247 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1248 SBI_IS_RECOVERED, /* recovered orphan/data */ 1249 SBI_CP_DISABLED, /* CP was disabled last mount */ 1250 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1251 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1252 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1253 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1254 SBI_IS_RESIZEFS, /* resizefs is in process */ 1255 }; 1256 1257 enum { 1258 CP_TIME, 1259 REQ_TIME, 1260 DISCARD_TIME, 1261 GC_TIME, 1262 DISABLE_TIME, 1263 UMOUNT_DISCARD_TIMEOUT, 1264 MAX_TIME, 1265 }; 1266 1267 enum { 1268 GC_NORMAL, 1269 GC_IDLE_CB, 1270 GC_IDLE_GREEDY, 1271 GC_IDLE_AT, 1272 GC_URGENT_HIGH, 1273 GC_URGENT_LOW, 1274 MAX_GC_MODE, 1275 }; 1276 1277 enum { 1278 BGGC_MODE_ON, /* background gc is on */ 1279 BGGC_MODE_OFF, /* background gc is off */ 1280 BGGC_MODE_SYNC, /* 1281 * background gc is on, migrating blocks 1282 * like foreground gc 1283 */ 1284 }; 1285 1286 enum { 1287 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1288 FS_MODE_LFS, /* use lfs allocation only */ 1289 }; 1290 1291 enum { 1292 WHINT_MODE_OFF, /* not pass down write hints */ 1293 WHINT_MODE_USER, /* try to pass down hints given by users */ 1294 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1295 }; 1296 1297 enum { 1298 ALLOC_MODE_DEFAULT, /* stay default */ 1299 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1300 }; 1301 1302 enum fsync_mode { 1303 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1304 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1305 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1306 }; 1307 1308 enum { 1309 COMPR_MODE_FS, /* 1310 * automatically compress compression 1311 * enabled files 1312 */ 1313 COMPR_MODE_USER, /* 1314 * automatical compression is disabled. 1315 * user can control the file compression 1316 * using ioctls 1317 */ 1318 }; 1319 1320 enum { 1321 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1322 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1323 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1324 }; 1325 1326 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1327 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1328 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1329 1330 /* 1331 * Layout of f2fs page.private: 1332 * 1333 * Layout A: lowest bit should be 1 1334 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1335 * bit 0 PAGE_PRIVATE_NOT_POINTER 1336 * bit 1 PAGE_PRIVATE_ATOMIC_WRITE 1337 * bit 2 PAGE_PRIVATE_DUMMY_WRITE 1338 * bit 3 PAGE_PRIVATE_ONGOING_MIGRATION 1339 * bit 4 PAGE_PRIVATE_INLINE_INODE 1340 * bit 5 PAGE_PRIVATE_REF_RESOURCE 1341 * bit 6- f2fs private data 1342 * 1343 * Layout B: lowest bit should be 0 1344 * page.private is a wrapped pointer. 1345 */ 1346 enum { 1347 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1348 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */ 1349 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */ 1350 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1351 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1352 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1353 PAGE_PRIVATE_MAX 1354 }; 1355 1356 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 1357 static inline bool page_private_##name(struct page *page) \ 1358 { \ 1359 return PagePrivate(page) && \ 1360 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 1361 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1362 } 1363 1364 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 1365 static inline void set_page_private_##name(struct page *page) \ 1366 { \ 1367 if (!PagePrivate(page)) { \ 1368 get_page(page); \ 1369 SetPagePrivate(page); \ 1370 set_page_private(page, 0); \ 1371 } \ 1372 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 1373 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1374 } 1375 1376 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 1377 static inline void clear_page_private_##name(struct page *page) \ 1378 { \ 1379 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 1380 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \ 1381 set_page_private(page, 0); \ 1382 if (PagePrivate(page)) { \ 1383 ClearPagePrivate(page); \ 1384 put_page(page); \ 1385 }\ 1386 } \ 1387 } 1388 1389 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 1390 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE); 1391 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 1392 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 1393 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE); 1394 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE); 1395 1396 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 1397 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 1398 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 1399 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE); 1400 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE); 1401 1402 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 1403 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 1404 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 1405 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE); 1406 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE); 1407 1408 static inline unsigned long get_page_private_data(struct page *page) 1409 { 1410 unsigned long data = page_private(page); 1411 1412 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 1413 return 0; 1414 return data >> PAGE_PRIVATE_MAX; 1415 } 1416 1417 static inline void set_page_private_data(struct page *page, unsigned long data) 1418 { 1419 if (!PagePrivate(page)) { 1420 get_page(page); 1421 SetPagePrivate(page); 1422 set_page_private(page, 0); 1423 } 1424 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 1425 page_private(page) |= data << PAGE_PRIVATE_MAX; 1426 } 1427 1428 static inline void clear_page_private_data(struct page *page) 1429 { 1430 page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1; 1431 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { 1432 set_page_private(page, 0); 1433 if (PagePrivate(page)) { 1434 ClearPagePrivate(page); 1435 put_page(page); 1436 } 1437 } 1438 } 1439 1440 /* For compression */ 1441 enum compress_algorithm_type { 1442 COMPRESS_LZO, 1443 COMPRESS_LZ4, 1444 COMPRESS_ZSTD, 1445 COMPRESS_LZORLE, 1446 COMPRESS_MAX, 1447 }; 1448 1449 enum compress_flag { 1450 COMPRESS_CHKSUM, 1451 COMPRESS_MAX_FLAG, 1452 }; 1453 1454 #define COMPRESS_WATERMARK 20 1455 #define COMPRESS_PERCENT 20 1456 1457 #define COMPRESS_DATA_RESERVED_SIZE 4 1458 struct compress_data { 1459 __le32 clen; /* compressed data size */ 1460 __le32 chksum; /* compressed data chksum */ 1461 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1462 u8 cdata[]; /* compressed data */ 1463 }; 1464 1465 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1466 1467 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1468 1469 #define COMPRESS_LEVEL_OFFSET 8 1470 1471 /* compress context */ 1472 struct compress_ctx { 1473 struct inode *inode; /* inode the context belong to */ 1474 pgoff_t cluster_idx; /* cluster index number */ 1475 unsigned int cluster_size; /* page count in cluster */ 1476 unsigned int log_cluster_size; /* log of cluster size */ 1477 struct page **rpages; /* pages store raw data in cluster */ 1478 unsigned int nr_rpages; /* total page number in rpages */ 1479 struct page **cpages; /* pages store compressed data in cluster */ 1480 unsigned int nr_cpages; /* total page number in cpages */ 1481 void *rbuf; /* virtual mapped address on rpages */ 1482 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1483 size_t rlen; /* valid data length in rbuf */ 1484 size_t clen; /* valid data length in cbuf */ 1485 void *private; /* payload buffer for specified compression algorithm */ 1486 void *private2; /* extra payload buffer */ 1487 }; 1488 1489 /* compress context for write IO path */ 1490 struct compress_io_ctx { 1491 u32 magic; /* magic number to indicate page is compressed */ 1492 struct inode *inode; /* inode the context belong to */ 1493 struct page **rpages; /* pages store raw data in cluster */ 1494 unsigned int nr_rpages; /* total page number in rpages */ 1495 atomic_t pending_pages; /* in-flight compressed page count */ 1496 }; 1497 1498 /* Context for decompressing one cluster on the read IO path */ 1499 struct decompress_io_ctx { 1500 u32 magic; /* magic number to indicate page is compressed */ 1501 struct inode *inode; /* inode the context belong to */ 1502 pgoff_t cluster_idx; /* cluster index number */ 1503 unsigned int cluster_size; /* page count in cluster */ 1504 unsigned int log_cluster_size; /* log of cluster size */ 1505 struct page **rpages; /* pages store raw data in cluster */ 1506 unsigned int nr_rpages; /* total page number in rpages */ 1507 struct page **cpages; /* pages store compressed data in cluster */ 1508 unsigned int nr_cpages; /* total page number in cpages */ 1509 struct page **tpages; /* temp pages to pad holes in cluster */ 1510 void *rbuf; /* virtual mapped address on rpages */ 1511 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1512 size_t rlen; /* valid data length in rbuf */ 1513 size_t clen; /* valid data length in cbuf */ 1514 1515 /* 1516 * The number of compressed pages remaining to be read in this cluster. 1517 * This is initially nr_cpages. It is decremented by 1 each time a page 1518 * has been read (or failed to be read). When it reaches 0, the cluster 1519 * is decompressed (or an error is reported). 1520 * 1521 * If an error occurs before all the pages have been submitted for I/O, 1522 * then this will never reach 0. In this case the I/O submitter is 1523 * responsible for calling f2fs_decompress_end_io() instead. 1524 */ 1525 atomic_t remaining_pages; 1526 1527 /* 1528 * Number of references to this decompress_io_ctx. 1529 * 1530 * One reference is held for I/O completion. This reference is dropped 1531 * after the pagecache pages are updated and unlocked -- either after 1532 * decompression (and verity if enabled), or after an error. 1533 * 1534 * In addition, each compressed page holds a reference while it is in a 1535 * bio. These references are necessary prevent compressed pages from 1536 * being freed while they are still in a bio. 1537 */ 1538 refcount_t refcnt; 1539 1540 bool failed; /* IO error occurred before decompression? */ 1541 bool need_verity; /* need fs-verity verification after decompression? */ 1542 void *private; /* payload buffer for specified decompression algorithm */ 1543 void *private2; /* extra payload buffer */ 1544 struct work_struct verity_work; /* work to verify the decompressed pages */ 1545 }; 1546 1547 #define NULL_CLUSTER ((unsigned int)(~0)) 1548 #define MIN_COMPRESS_LOG_SIZE 2 1549 #define MAX_COMPRESS_LOG_SIZE 8 1550 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1551 1552 struct f2fs_sb_info { 1553 struct super_block *sb; /* pointer to VFS super block */ 1554 struct proc_dir_entry *s_proc; /* proc entry */ 1555 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1556 struct rw_semaphore sb_lock; /* lock for raw super block */ 1557 int valid_super_block; /* valid super block no */ 1558 unsigned long s_flag; /* flags for sbi */ 1559 struct mutex writepages; /* mutex for writepages() */ 1560 1561 #ifdef CONFIG_BLK_DEV_ZONED 1562 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1563 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1564 #endif 1565 1566 /* for node-related operations */ 1567 struct f2fs_nm_info *nm_info; /* node manager */ 1568 struct inode *node_inode; /* cache node blocks */ 1569 1570 /* for segment-related operations */ 1571 struct f2fs_sm_info *sm_info; /* segment manager */ 1572 1573 /* for bio operations */ 1574 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1575 /* keep migration IO order for LFS mode */ 1576 struct rw_semaphore io_order_lock; 1577 mempool_t *write_io_dummy; /* Dummy pages */ 1578 1579 /* for checkpoint */ 1580 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1581 int cur_cp_pack; /* remain current cp pack */ 1582 spinlock_t cp_lock; /* for flag in ckpt */ 1583 struct inode *meta_inode; /* cache meta blocks */ 1584 struct rw_semaphore cp_global_sem; /* checkpoint procedure lock */ 1585 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1586 struct rw_semaphore node_write; /* locking node writes */ 1587 struct rw_semaphore node_change; /* locking node change */ 1588 wait_queue_head_t cp_wait; 1589 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1590 long interval_time[MAX_TIME]; /* to store thresholds */ 1591 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1592 1593 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1594 1595 spinlock_t fsync_node_lock; /* for node entry lock */ 1596 struct list_head fsync_node_list; /* node list head */ 1597 unsigned int fsync_seg_id; /* sequence id */ 1598 unsigned int fsync_node_num; /* number of node entries */ 1599 1600 /* for orphan inode, use 0'th array */ 1601 unsigned int max_orphans; /* max orphan inodes */ 1602 1603 /* for inode management */ 1604 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1605 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1606 struct mutex flush_lock; /* for flush exclusion */ 1607 1608 /* for extent tree cache */ 1609 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1610 struct mutex extent_tree_lock; /* locking extent radix tree */ 1611 struct list_head extent_list; /* lru list for shrinker */ 1612 spinlock_t extent_lock; /* locking extent lru list */ 1613 atomic_t total_ext_tree; /* extent tree count */ 1614 struct list_head zombie_list; /* extent zombie tree list */ 1615 atomic_t total_zombie_tree; /* extent zombie tree count */ 1616 atomic_t total_ext_node; /* extent info count */ 1617 1618 /* basic filesystem units */ 1619 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1620 unsigned int log_blocksize; /* log2 block size */ 1621 unsigned int blocksize; /* block size */ 1622 unsigned int root_ino_num; /* root inode number*/ 1623 unsigned int node_ino_num; /* node inode number*/ 1624 unsigned int meta_ino_num; /* meta inode number*/ 1625 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1626 unsigned int blocks_per_seg; /* blocks per segment */ 1627 unsigned int segs_per_sec; /* segments per section */ 1628 unsigned int secs_per_zone; /* sections per zone */ 1629 unsigned int total_sections; /* total section count */ 1630 unsigned int total_node_count; /* total node block count */ 1631 unsigned int total_valid_node_count; /* valid node block count */ 1632 int dir_level; /* directory level */ 1633 int readdir_ra; /* readahead inode in readdir */ 1634 u64 max_io_bytes; /* max io bytes to merge IOs */ 1635 1636 block_t user_block_count; /* # of user blocks */ 1637 block_t total_valid_block_count; /* # of valid blocks */ 1638 block_t discard_blks; /* discard command candidats */ 1639 block_t last_valid_block_count; /* for recovery */ 1640 block_t reserved_blocks; /* configurable reserved blocks */ 1641 block_t current_reserved_blocks; /* current reserved blocks */ 1642 1643 /* Additional tracking for no checkpoint mode */ 1644 block_t unusable_block_count; /* # of blocks saved by last cp */ 1645 1646 unsigned int nquota_files; /* # of quota sysfile */ 1647 struct rw_semaphore quota_sem; /* blocking cp for flags */ 1648 1649 /* # of pages, see count_type */ 1650 atomic_t nr_pages[NR_COUNT_TYPE]; 1651 /* # of allocated blocks */ 1652 struct percpu_counter alloc_valid_block_count; 1653 1654 /* writeback control */ 1655 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1656 1657 /* valid inode count */ 1658 struct percpu_counter total_valid_inode_count; 1659 1660 struct f2fs_mount_info mount_opt; /* mount options */ 1661 1662 /* for cleaning operations */ 1663 struct rw_semaphore gc_lock; /* 1664 * semaphore for GC, avoid 1665 * race between GC and GC or CP 1666 */ 1667 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1668 struct atgc_management am; /* atgc management */ 1669 unsigned int cur_victim_sec; /* current victim section num */ 1670 unsigned int gc_mode; /* current GC state */ 1671 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1672 1673 /* for skip statistic */ 1674 unsigned int atomic_files; /* # of opened atomic file */ 1675 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1676 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1677 1678 /* threshold for gc trials on pinned files */ 1679 u64 gc_pin_file_threshold; 1680 struct rw_semaphore pin_sem; 1681 1682 /* maximum # of trials to find a victim segment for SSR and GC */ 1683 unsigned int max_victim_search; 1684 /* migration granularity of garbage collection, unit: segment */ 1685 unsigned int migration_granularity; 1686 1687 /* 1688 * for stat information. 1689 * one is for the LFS mode, and the other is for the SSR mode. 1690 */ 1691 #ifdef CONFIG_F2FS_STAT_FS 1692 struct f2fs_stat_info *stat_info; /* FS status information */ 1693 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1694 unsigned int segment_count[2]; /* # of allocated segments */ 1695 unsigned int block_count[2]; /* # of allocated blocks */ 1696 atomic_t inplace_count; /* # of inplace update */ 1697 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1698 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1699 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1700 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1701 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1702 atomic_t inline_inode; /* # of inline_data inodes */ 1703 atomic_t inline_dir; /* # of inline_dentry inodes */ 1704 atomic_t compr_inode; /* # of compressed inodes */ 1705 atomic64_t compr_blocks; /* # of compressed blocks */ 1706 atomic_t vw_cnt; /* # of volatile writes */ 1707 atomic_t max_aw_cnt; /* max # of atomic writes */ 1708 atomic_t max_vw_cnt; /* max # of volatile writes */ 1709 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1710 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1711 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1712 #endif 1713 spinlock_t stat_lock; /* lock for stat operations */ 1714 1715 /* to attach REQ_META|REQ_FUA flags */ 1716 unsigned int data_io_flag; 1717 unsigned int node_io_flag; 1718 1719 /* For sysfs suppport */ 1720 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1721 struct completion s_kobj_unregister; 1722 1723 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1724 struct completion s_stat_kobj_unregister; 1725 1726 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1727 struct completion s_feature_list_kobj_unregister; 1728 1729 /* For shrinker support */ 1730 struct list_head s_list; 1731 int s_ndevs; /* number of devices */ 1732 struct f2fs_dev_info *devs; /* for device list */ 1733 unsigned int dirty_device; /* for checkpoint data flush */ 1734 spinlock_t dev_lock; /* protect dirty_device */ 1735 struct mutex umount_mutex; 1736 unsigned int shrinker_run_no; 1737 1738 /* For write statistics */ 1739 u64 sectors_written_start; 1740 u64 kbytes_written; 1741 1742 /* Reference to checksum algorithm driver via cryptoapi */ 1743 struct crypto_shash *s_chksum_driver; 1744 1745 /* Precomputed FS UUID checksum for seeding other checksums */ 1746 __u32 s_chksum_seed; 1747 1748 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1749 1750 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1751 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1752 1753 /* For reclaimed segs statistics per each GC mode */ 1754 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1755 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1756 1757 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1758 1759 #ifdef CONFIG_F2FS_FS_COMPRESSION 1760 struct kmem_cache *page_array_slab; /* page array entry */ 1761 unsigned int page_array_slab_size; /* default page array slab size */ 1762 1763 /* For runtime compression statistics */ 1764 u64 compr_written_block; 1765 u64 compr_saved_block; 1766 u32 compr_new_inode; 1767 1768 /* For compressed block cache */ 1769 struct inode *compress_inode; /* cache compressed blocks */ 1770 unsigned int compress_percent; /* cache page percentage */ 1771 unsigned int compress_watermark; /* cache page watermark */ 1772 atomic_t compress_page_hit; /* cache hit count */ 1773 #endif 1774 1775 #ifdef CONFIG_F2FS_IOSTAT 1776 /* For app/fs IO statistics */ 1777 spinlock_t iostat_lock; 1778 unsigned long long rw_iostat[NR_IO_TYPE]; 1779 unsigned long long prev_rw_iostat[NR_IO_TYPE]; 1780 bool iostat_enable; 1781 unsigned long iostat_next_period; 1782 unsigned int iostat_period_ms; 1783 1784 /* For io latency related statistics info in one iostat period */ 1785 spinlock_t iostat_lat_lock; 1786 struct iostat_lat_info *iostat_io_lat; 1787 #endif 1788 }; 1789 1790 struct f2fs_private_dio { 1791 struct inode *inode; 1792 void *orig_private; 1793 bio_end_io_t *orig_end_io; 1794 bool write; 1795 }; 1796 1797 #ifdef CONFIG_F2FS_FAULT_INJECTION 1798 #define f2fs_show_injection_info(sbi, type) \ 1799 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \ 1800 KERN_INFO, sbi->sb->s_id, \ 1801 f2fs_fault_name[type], \ 1802 __func__, __builtin_return_address(0)) 1803 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1804 { 1805 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1806 1807 if (!ffi->inject_rate) 1808 return false; 1809 1810 if (!IS_FAULT_SET(ffi, type)) 1811 return false; 1812 1813 atomic_inc(&ffi->inject_ops); 1814 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1815 atomic_set(&ffi->inject_ops, 0); 1816 return true; 1817 } 1818 return false; 1819 } 1820 #else 1821 #define f2fs_show_injection_info(sbi, type) do { } while (0) 1822 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1823 { 1824 return false; 1825 } 1826 #endif 1827 1828 /* 1829 * Test if the mounted volume is a multi-device volume. 1830 * - For a single regular disk volume, sbi->s_ndevs is 0. 1831 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1832 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1833 */ 1834 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1835 { 1836 return sbi->s_ndevs > 1; 1837 } 1838 1839 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1840 { 1841 unsigned long now = jiffies; 1842 1843 sbi->last_time[type] = now; 1844 1845 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1846 if (type == REQ_TIME) { 1847 sbi->last_time[DISCARD_TIME] = now; 1848 sbi->last_time[GC_TIME] = now; 1849 } 1850 } 1851 1852 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1853 { 1854 unsigned long interval = sbi->interval_time[type] * HZ; 1855 1856 return time_after(jiffies, sbi->last_time[type] + interval); 1857 } 1858 1859 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1860 int type) 1861 { 1862 unsigned long interval = sbi->interval_time[type] * HZ; 1863 unsigned int wait_ms = 0; 1864 long delta; 1865 1866 delta = (sbi->last_time[type] + interval) - jiffies; 1867 if (delta > 0) 1868 wait_ms = jiffies_to_msecs(delta); 1869 1870 return wait_ms; 1871 } 1872 1873 /* 1874 * Inline functions 1875 */ 1876 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1877 const void *address, unsigned int length) 1878 { 1879 struct { 1880 struct shash_desc shash; 1881 char ctx[4]; 1882 } desc; 1883 int err; 1884 1885 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1886 1887 desc.shash.tfm = sbi->s_chksum_driver; 1888 *(u32 *)desc.ctx = crc; 1889 1890 err = crypto_shash_update(&desc.shash, address, length); 1891 BUG_ON(err); 1892 1893 return *(u32 *)desc.ctx; 1894 } 1895 1896 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1897 unsigned int length) 1898 { 1899 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1900 } 1901 1902 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1903 void *buf, size_t buf_size) 1904 { 1905 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1906 } 1907 1908 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1909 const void *address, unsigned int length) 1910 { 1911 return __f2fs_crc32(sbi, crc, address, length); 1912 } 1913 1914 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1915 { 1916 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1917 } 1918 1919 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1920 { 1921 return sb->s_fs_info; 1922 } 1923 1924 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1925 { 1926 return F2FS_SB(inode->i_sb); 1927 } 1928 1929 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1930 { 1931 return F2FS_I_SB(mapping->host); 1932 } 1933 1934 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1935 { 1936 return F2FS_M_SB(page_file_mapping(page)); 1937 } 1938 1939 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1940 { 1941 return (struct f2fs_super_block *)(sbi->raw_super); 1942 } 1943 1944 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1945 { 1946 return (struct f2fs_checkpoint *)(sbi->ckpt); 1947 } 1948 1949 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1950 { 1951 return (struct f2fs_node *)page_address(page); 1952 } 1953 1954 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1955 { 1956 return &((struct f2fs_node *)page_address(page))->i; 1957 } 1958 1959 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1960 { 1961 return (struct f2fs_nm_info *)(sbi->nm_info); 1962 } 1963 1964 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1965 { 1966 return (struct f2fs_sm_info *)(sbi->sm_info); 1967 } 1968 1969 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1970 { 1971 return (struct sit_info *)(SM_I(sbi)->sit_info); 1972 } 1973 1974 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1975 { 1976 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1977 } 1978 1979 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1980 { 1981 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1982 } 1983 1984 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1985 { 1986 return sbi->meta_inode->i_mapping; 1987 } 1988 1989 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1990 { 1991 return sbi->node_inode->i_mapping; 1992 } 1993 1994 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1995 { 1996 return test_bit(type, &sbi->s_flag); 1997 } 1998 1999 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2000 { 2001 set_bit(type, &sbi->s_flag); 2002 } 2003 2004 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2005 { 2006 clear_bit(type, &sbi->s_flag); 2007 } 2008 2009 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2010 { 2011 return le64_to_cpu(cp->checkpoint_ver); 2012 } 2013 2014 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2015 { 2016 if (type < F2FS_MAX_QUOTAS) 2017 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2018 return 0; 2019 } 2020 2021 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2022 { 2023 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2024 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2025 } 2026 2027 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2028 { 2029 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2030 2031 return ckpt_flags & f; 2032 } 2033 2034 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2035 { 2036 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2037 } 2038 2039 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2040 { 2041 unsigned int ckpt_flags; 2042 2043 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2044 ckpt_flags |= f; 2045 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2046 } 2047 2048 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2049 { 2050 unsigned long flags; 2051 2052 spin_lock_irqsave(&sbi->cp_lock, flags); 2053 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2054 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2055 } 2056 2057 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2058 { 2059 unsigned int ckpt_flags; 2060 2061 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2062 ckpt_flags &= (~f); 2063 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2064 } 2065 2066 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2067 { 2068 unsigned long flags; 2069 2070 spin_lock_irqsave(&sbi->cp_lock, flags); 2071 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2072 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2073 } 2074 2075 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2076 { 2077 down_read(&sbi->cp_rwsem); 2078 } 2079 2080 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2081 { 2082 return down_read_trylock(&sbi->cp_rwsem); 2083 } 2084 2085 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2086 { 2087 up_read(&sbi->cp_rwsem); 2088 } 2089 2090 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2091 { 2092 down_write(&sbi->cp_rwsem); 2093 } 2094 2095 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2096 { 2097 up_write(&sbi->cp_rwsem); 2098 } 2099 2100 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2101 { 2102 int reason = CP_SYNC; 2103 2104 if (test_opt(sbi, FASTBOOT)) 2105 reason = CP_FASTBOOT; 2106 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2107 reason = CP_UMOUNT; 2108 return reason; 2109 } 2110 2111 static inline bool __remain_node_summaries(int reason) 2112 { 2113 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2114 } 2115 2116 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2117 { 2118 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2119 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2120 } 2121 2122 /* 2123 * Check whether the inode has blocks or not 2124 */ 2125 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2126 { 2127 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2128 2129 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2130 } 2131 2132 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2133 { 2134 return ofs == XATTR_NODE_OFFSET; 2135 } 2136 2137 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2138 struct inode *inode, bool cap) 2139 { 2140 if (!inode) 2141 return true; 2142 if (!test_opt(sbi, RESERVE_ROOT)) 2143 return false; 2144 if (IS_NOQUOTA(inode)) 2145 return true; 2146 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2147 return true; 2148 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2149 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2150 return true; 2151 if (cap && capable(CAP_SYS_RESOURCE)) 2152 return true; 2153 return false; 2154 } 2155 2156 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2157 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2158 struct inode *inode, blkcnt_t *count) 2159 { 2160 blkcnt_t diff = 0, release = 0; 2161 block_t avail_user_block_count; 2162 int ret; 2163 2164 ret = dquot_reserve_block(inode, *count); 2165 if (ret) 2166 return ret; 2167 2168 if (time_to_inject(sbi, FAULT_BLOCK)) { 2169 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2170 release = *count; 2171 goto release_quota; 2172 } 2173 2174 /* 2175 * let's increase this in prior to actual block count change in order 2176 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2177 */ 2178 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2179 2180 spin_lock(&sbi->stat_lock); 2181 sbi->total_valid_block_count += (block_t)(*count); 2182 avail_user_block_count = sbi->user_block_count - 2183 sbi->current_reserved_blocks; 2184 2185 if (!__allow_reserved_blocks(sbi, inode, true)) 2186 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2187 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2188 if (avail_user_block_count > sbi->unusable_block_count) 2189 avail_user_block_count -= sbi->unusable_block_count; 2190 else 2191 avail_user_block_count = 0; 2192 } 2193 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 2194 diff = sbi->total_valid_block_count - avail_user_block_count; 2195 if (diff > *count) 2196 diff = *count; 2197 *count -= diff; 2198 release = diff; 2199 sbi->total_valid_block_count -= diff; 2200 if (!*count) { 2201 spin_unlock(&sbi->stat_lock); 2202 goto enospc; 2203 } 2204 } 2205 spin_unlock(&sbi->stat_lock); 2206 2207 if (unlikely(release)) { 2208 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2209 dquot_release_reservation_block(inode, release); 2210 } 2211 f2fs_i_blocks_write(inode, *count, true, true); 2212 return 0; 2213 2214 enospc: 2215 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2216 release_quota: 2217 dquot_release_reservation_block(inode, release); 2218 return -ENOSPC; 2219 } 2220 2221 __printf(2, 3) 2222 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 2223 2224 #define f2fs_err(sbi, fmt, ...) \ 2225 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 2226 #define f2fs_warn(sbi, fmt, ...) \ 2227 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 2228 #define f2fs_notice(sbi, fmt, ...) \ 2229 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 2230 #define f2fs_info(sbi, fmt, ...) \ 2231 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 2232 #define f2fs_debug(sbi, fmt, ...) \ 2233 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 2234 2235 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2236 struct inode *inode, 2237 block_t count) 2238 { 2239 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2240 2241 spin_lock(&sbi->stat_lock); 2242 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2243 sbi->total_valid_block_count -= (block_t)count; 2244 if (sbi->reserved_blocks && 2245 sbi->current_reserved_blocks < sbi->reserved_blocks) 2246 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2247 sbi->current_reserved_blocks + count); 2248 spin_unlock(&sbi->stat_lock); 2249 if (unlikely(inode->i_blocks < sectors)) { 2250 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2251 inode->i_ino, 2252 (unsigned long long)inode->i_blocks, 2253 (unsigned long long)sectors); 2254 set_sbi_flag(sbi, SBI_NEED_FSCK); 2255 return; 2256 } 2257 f2fs_i_blocks_write(inode, count, false, true); 2258 } 2259 2260 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2261 { 2262 atomic_inc(&sbi->nr_pages[count_type]); 2263 2264 if (count_type == F2FS_DIRTY_DENTS || 2265 count_type == F2FS_DIRTY_NODES || 2266 count_type == F2FS_DIRTY_META || 2267 count_type == F2FS_DIRTY_QDATA || 2268 count_type == F2FS_DIRTY_IMETA) 2269 set_sbi_flag(sbi, SBI_IS_DIRTY); 2270 } 2271 2272 static inline void inode_inc_dirty_pages(struct inode *inode) 2273 { 2274 atomic_inc(&F2FS_I(inode)->dirty_pages); 2275 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2276 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2277 if (IS_NOQUOTA(inode)) 2278 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2279 } 2280 2281 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2282 { 2283 atomic_dec(&sbi->nr_pages[count_type]); 2284 } 2285 2286 static inline void inode_dec_dirty_pages(struct inode *inode) 2287 { 2288 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2289 !S_ISLNK(inode->i_mode)) 2290 return; 2291 2292 atomic_dec(&F2FS_I(inode)->dirty_pages); 2293 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2294 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2295 if (IS_NOQUOTA(inode)) 2296 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2297 } 2298 2299 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2300 { 2301 return atomic_read(&sbi->nr_pages[count_type]); 2302 } 2303 2304 static inline int get_dirty_pages(struct inode *inode) 2305 { 2306 return atomic_read(&F2FS_I(inode)->dirty_pages); 2307 } 2308 2309 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2310 { 2311 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 2312 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 2313 sbi->log_blocks_per_seg; 2314 2315 return segs / sbi->segs_per_sec; 2316 } 2317 2318 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2319 { 2320 return sbi->total_valid_block_count; 2321 } 2322 2323 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2324 { 2325 return sbi->discard_blks; 2326 } 2327 2328 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2329 { 2330 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2331 2332 /* return NAT or SIT bitmap */ 2333 if (flag == NAT_BITMAP) 2334 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2335 else if (flag == SIT_BITMAP) 2336 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2337 2338 return 0; 2339 } 2340 2341 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2342 { 2343 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2344 } 2345 2346 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2347 { 2348 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2349 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2350 int offset; 2351 2352 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2353 offset = (flag == SIT_BITMAP) ? 2354 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2355 /* 2356 * if large_nat_bitmap feature is enabled, leave checksum 2357 * protection for all nat/sit bitmaps. 2358 */ 2359 return tmp_ptr + offset + sizeof(__le32); 2360 } 2361 2362 if (__cp_payload(sbi) > 0) { 2363 if (flag == NAT_BITMAP) 2364 return &ckpt->sit_nat_version_bitmap; 2365 else 2366 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2367 } else { 2368 offset = (flag == NAT_BITMAP) ? 2369 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2370 return tmp_ptr + offset; 2371 } 2372 } 2373 2374 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2375 { 2376 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2377 2378 if (sbi->cur_cp_pack == 2) 2379 start_addr += sbi->blocks_per_seg; 2380 return start_addr; 2381 } 2382 2383 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2384 { 2385 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2386 2387 if (sbi->cur_cp_pack == 1) 2388 start_addr += sbi->blocks_per_seg; 2389 return start_addr; 2390 } 2391 2392 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2393 { 2394 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2395 } 2396 2397 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2398 { 2399 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2400 } 2401 2402 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2403 struct inode *inode, bool is_inode) 2404 { 2405 block_t valid_block_count; 2406 unsigned int valid_node_count, user_block_count; 2407 int err; 2408 2409 if (is_inode) { 2410 if (inode) { 2411 err = dquot_alloc_inode(inode); 2412 if (err) 2413 return err; 2414 } 2415 } else { 2416 err = dquot_reserve_block(inode, 1); 2417 if (err) 2418 return err; 2419 } 2420 2421 if (time_to_inject(sbi, FAULT_BLOCK)) { 2422 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2423 goto enospc; 2424 } 2425 2426 spin_lock(&sbi->stat_lock); 2427 2428 valid_block_count = sbi->total_valid_block_count + 2429 sbi->current_reserved_blocks + 1; 2430 2431 if (!__allow_reserved_blocks(sbi, inode, false)) 2432 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2433 user_block_count = sbi->user_block_count; 2434 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2435 user_block_count -= sbi->unusable_block_count; 2436 2437 if (unlikely(valid_block_count > user_block_count)) { 2438 spin_unlock(&sbi->stat_lock); 2439 goto enospc; 2440 } 2441 2442 valid_node_count = sbi->total_valid_node_count + 1; 2443 if (unlikely(valid_node_count > sbi->total_node_count)) { 2444 spin_unlock(&sbi->stat_lock); 2445 goto enospc; 2446 } 2447 2448 sbi->total_valid_node_count++; 2449 sbi->total_valid_block_count++; 2450 spin_unlock(&sbi->stat_lock); 2451 2452 if (inode) { 2453 if (is_inode) 2454 f2fs_mark_inode_dirty_sync(inode, true); 2455 else 2456 f2fs_i_blocks_write(inode, 1, true, true); 2457 } 2458 2459 percpu_counter_inc(&sbi->alloc_valid_block_count); 2460 return 0; 2461 2462 enospc: 2463 if (is_inode) { 2464 if (inode) 2465 dquot_free_inode(inode); 2466 } else { 2467 dquot_release_reservation_block(inode, 1); 2468 } 2469 return -ENOSPC; 2470 } 2471 2472 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2473 struct inode *inode, bool is_inode) 2474 { 2475 spin_lock(&sbi->stat_lock); 2476 2477 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 2478 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 2479 2480 sbi->total_valid_node_count--; 2481 sbi->total_valid_block_count--; 2482 if (sbi->reserved_blocks && 2483 sbi->current_reserved_blocks < sbi->reserved_blocks) 2484 sbi->current_reserved_blocks++; 2485 2486 spin_unlock(&sbi->stat_lock); 2487 2488 if (is_inode) { 2489 dquot_free_inode(inode); 2490 } else { 2491 if (unlikely(inode->i_blocks == 0)) { 2492 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2493 inode->i_ino, 2494 (unsigned long long)inode->i_blocks); 2495 set_sbi_flag(sbi, SBI_NEED_FSCK); 2496 return; 2497 } 2498 f2fs_i_blocks_write(inode, 1, false, true); 2499 } 2500 } 2501 2502 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2503 { 2504 return sbi->total_valid_node_count; 2505 } 2506 2507 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2508 { 2509 percpu_counter_inc(&sbi->total_valid_inode_count); 2510 } 2511 2512 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2513 { 2514 percpu_counter_dec(&sbi->total_valid_inode_count); 2515 } 2516 2517 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2518 { 2519 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2520 } 2521 2522 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2523 pgoff_t index, bool for_write) 2524 { 2525 struct page *page; 2526 2527 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2528 if (!for_write) 2529 page = find_get_page_flags(mapping, index, 2530 FGP_LOCK | FGP_ACCESSED); 2531 else 2532 page = find_lock_page(mapping, index); 2533 if (page) 2534 return page; 2535 2536 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2537 f2fs_show_injection_info(F2FS_M_SB(mapping), 2538 FAULT_PAGE_ALLOC); 2539 return NULL; 2540 } 2541 } 2542 2543 if (!for_write) 2544 return grab_cache_page(mapping, index); 2545 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 2546 } 2547 2548 static inline struct page *f2fs_pagecache_get_page( 2549 struct address_space *mapping, pgoff_t index, 2550 int fgp_flags, gfp_t gfp_mask) 2551 { 2552 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2553 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET); 2554 return NULL; 2555 } 2556 2557 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2558 } 2559 2560 static inline void f2fs_copy_page(struct page *src, struct page *dst) 2561 { 2562 char *src_kaddr = kmap(src); 2563 char *dst_kaddr = kmap(dst); 2564 2565 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 2566 kunmap(dst); 2567 kunmap(src); 2568 } 2569 2570 static inline void f2fs_put_page(struct page *page, int unlock) 2571 { 2572 if (!page) 2573 return; 2574 2575 if (unlock) { 2576 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2577 unlock_page(page); 2578 } 2579 put_page(page); 2580 } 2581 2582 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2583 { 2584 if (dn->node_page) 2585 f2fs_put_page(dn->node_page, 1); 2586 if (dn->inode_page && dn->node_page != dn->inode_page) 2587 f2fs_put_page(dn->inode_page, 0); 2588 dn->node_page = NULL; 2589 dn->inode_page = NULL; 2590 } 2591 2592 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2593 size_t size) 2594 { 2595 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2596 } 2597 2598 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2599 gfp_t flags) 2600 { 2601 void *entry; 2602 2603 entry = kmem_cache_alloc(cachep, flags); 2604 if (!entry) 2605 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2606 return entry; 2607 } 2608 2609 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2610 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2611 { 2612 if (nofail) 2613 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2614 2615 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) { 2616 f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC); 2617 return NULL; 2618 } 2619 2620 return kmem_cache_alloc(cachep, flags); 2621 } 2622 2623 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2624 { 2625 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2626 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2627 get_pages(sbi, F2FS_WB_CP_DATA) || 2628 get_pages(sbi, F2FS_DIO_READ) || 2629 get_pages(sbi, F2FS_DIO_WRITE)) 2630 return true; 2631 2632 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2633 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2634 return true; 2635 2636 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2637 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2638 return true; 2639 return false; 2640 } 2641 2642 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2643 { 2644 if (sbi->gc_mode == GC_URGENT_HIGH) 2645 return true; 2646 2647 if (is_inflight_io(sbi, type)) 2648 return false; 2649 2650 if (sbi->gc_mode == GC_URGENT_LOW && 2651 (type == DISCARD_TIME || type == GC_TIME)) 2652 return true; 2653 2654 return f2fs_time_over(sbi, type); 2655 } 2656 2657 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2658 unsigned long index, void *item) 2659 { 2660 while (radix_tree_insert(root, index, item)) 2661 cond_resched(); 2662 } 2663 2664 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2665 2666 static inline bool IS_INODE(struct page *page) 2667 { 2668 struct f2fs_node *p = F2FS_NODE(page); 2669 2670 return RAW_IS_INODE(p); 2671 } 2672 2673 static inline int offset_in_addr(struct f2fs_inode *i) 2674 { 2675 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2676 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2677 } 2678 2679 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2680 { 2681 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2682 } 2683 2684 static inline int f2fs_has_extra_attr(struct inode *inode); 2685 static inline block_t data_blkaddr(struct inode *inode, 2686 struct page *node_page, unsigned int offset) 2687 { 2688 struct f2fs_node *raw_node; 2689 __le32 *addr_array; 2690 int base = 0; 2691 bool is_inode = IS_INODE(node_page); 2692 2693 raw_node = F2FS_NODE(node_page); 2694 2695 if (is_inode) { 2696 if (!inode) 2697 /* from GC path only */ 2698 base = offset_in_addr(&raw_node->i); 2699 else if (f2fs_has_extra_attr(inode)) 2700 base = get_extra_isize(inode); 2701 } 2702 2703 addr_array = blkaddr_in_node(raw_node); 2704 return le32_to_cpu(addr_array[base + offset]); 2705 } 2706 2707 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2708 { 2709 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2710 } 2711 2712 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2713 { 2714 int mask; 2715 2716 addr += (nr >> 3); 2717 mask = 1 << (7 - (nr & 0x07)); 2718 return mask & *addr; 2719 } 2720 2721 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2722 { 2723 int mask; 2724 2725 addr += (nr >> 3); 2726 mask = 1 << (7 - (nr & 0x07)); 2727 *addr |= mask; 2728 } 2729 2730 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2731 { 2732 int mask; 2733 2734 addr += (nr >> 3); 2735 mask = 1 << (7 - (nr & 0x07)); 2736 *addr &= ~mask; 2737 } 2738 2739 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2740 { 2741 int mask; 2742 int ret; 2743 2744 addr += (nr >> 3); 2745 mask = 1 << (7 - (nr & 0x07)); 2746 ret = mask & *addr; 2747 *addr |= mask; 2748 return ret; 2749 } 2750 2751 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2752 { 2753 int mask; 2754 int ret; 2755 2756 addr += (nr >> 3); 2757 mask = 1 << (7 - (nr & 0x07)); 2758 ret = mask & *addr; 2759 *addr &= ~mask; 2760 return ret; 2761 } 2762 2763 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2764 { 2765 int mask; 2766 2767 addr += (nr >> 3); 2768 mask = 1 << (7 - (nr & 0x07)); 2769 *addr ^= mask; 2770 } 2771 2772 /* 2773 * On-disk inode flags (f2fs_inode::i_flags) 2774 */ 2775 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2776 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2777 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2778 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2779 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2780 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2781 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2782 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2783 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2784 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2785 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2786 2787 /* Flags that should be inherited by new inodes from their parent. */ 2788 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2789 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2790 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL) 2791 2792 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2793 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2794 F2FS_CASEFOLD_FL)) 2795 2796 /* Flags that are appropriate for non-directories/regular files. */ 2797 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2798 2799 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2800 { 2801 if (S_ISDIR(mode)) 2802 return flags; 2803 else if (S_ISREG(mode)) 2804 return flags & F2FS_REG_FLMASK; 2805 else 2806 return flags & F2FS_OTHER_FLMASK; 2807 } 2808 2809 static inline void __mark_inode_dirty_flag(struct inode *inode, 2810 int flag, bool set) 2811 { 2812 switch (flag) { 2813 case FI_INLINE_XATTR: 2814 case FI_INLINE_DATA: 2815 case FI_INLINE_DENTRY: 2816 case FI_NEW_INODE: 2817 if (set) 2818 return; 2819 fallthrough; 2820 case FI_DATA_EXIST: 2821 case FI_INLINE_DOTS: 2822 case FI_PIN_FILE: 2823 case FI_COMPRESS_RELEASED: 2824 f2fs_mark_inode_dirty_sync(inode, true); 2825 } 2826 } 2827 2828 static inline void set_inode_flag(struct inode *inode, int flag) 2829 { 2830 set_bit(flag, F2FS_I(inode)->flags); 2831 __mark_inode_dirty_flag(inode, flag, true); 2832 } 2833 2834 static inline int is_inode_flag_set(struct inode *inode, int flag) 2835 { 2836 return test_bit(flag, F2FS_I(inode)->flags); 2837 } 2838 2839 static inline void clear_inode_flag(struct inode *inode, int flag) 2840 { 2841 clear_bit(flag, F2FS_I(inode)->flags); 2842 __mark_inode_dirty_flag(inode, flag, false); 2843 } 2844 2845 static inline bool f2fs_verity_in_progress(struct inode *inode) 2846 { 2847 return IS_ENABLED(CONFIG_FS_VERITY) && 2848 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 2849 } 2850 2851 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2852 { 2853 F2FS_I(inode)->i_acl_mode = mode; 2854 set_inode_flag(inode, FI_ACL_MODE); 2855 f2fs_mark_inode_dirty_sync(inode, false); 2856 } 2857 2858 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2859 { 2860 if (inc) 2861 inc_nlink(inode); 2862 else 2863 drop_nlink(inode); 2864 f2fs_mark_inode_dirty_sync(inode, true); 2865 } 2866 2867 static inline void f2fs_i_blocks_write(struct inode *inode, 2868 block_t diff, bool add, bool claim) 2869 { 2870 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2871 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2872 2873 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2874 if (add) { 2875 if (claim) 2876 dquot_claim_block(inode, diff); 2877 else 2878 dquot_alloc_block_nofail(inode, diff); 2879 } else { 2880 dquot_free_block(inode, diff); 2881 } 2882 2883 f2fs_mark_inode_dirty_sync(inode, true); 2884 if (clean || recover) 2885 set_inode_flag(inode, FI_AUTO_RECOVER); 2886 } 2887 2888 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2889 { 2890 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2891 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2892 2893 if (i_size_read(inode) == i_size) 2894 return; 2895 2896 i_size_write(inode, i_size); 2897 f2fs_mark_inode_dirty_sync(inode, true); 2898 if (clean || recover) 2899 set_inode_flag(inode, FI_AUTO_RECOVER); 2900 } 2901 2902 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2903 { 2904 F2FS_I(inode)->i_current_depth = depth; 2905 f2fs_mark_inode_dirty_sync(inode, true); 2906 } 2907 2908 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2909 unsigned int count) 2910 { 2911 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2912 f2fs_mark_inode_dirty_sync(inode, true); 2913 } 2914 2915 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2916 { 2917 F2FS_I(inode)->i_xattr_nid = xnid; 2918 f2fs_mark_inode_dirty_sync(inode, true); 2919 } 2920 2921 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2922 { 2923 F2FS_I(inode)->i_pino = pino; 2924 f2fs_mark_inode_dirty_sync(inode, true); 2925 } 2926 2927 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2928 { 2929 struct f2fs_inode_info *fi = F2FS_I(inode); 2930 2931 if (ri->i_inline & F2FS_INLINE_XATTR) 2932 set_bit(FI_INLINE_XATTR, fi->flags); 2933 if (ri->i_inline & F2FS_INLINE_DATA) 2934 set_bit(FI_INLINE_DATA, fi->flags); 2935 if (ri->i_inline & F2FS_INLINE_DENTRY) 2936 set_bit(FI_INLINE_DENTRY, fi->flags); 2937 if (ri->i_inline & F2FS_DATA_EXIST) 2938 set_bit(FI_DATA_EXIST, fi->flags); 2939 if (ri->i_inline & F2FS_INLINE_DOTS) 2940 set_bit(FI_INLINE_DOTS, fi->flags); 2941 if (ri->i_inline & F2FS_EXTRA_ATTR) 2942 set_bit(FI_EXTRA_ATTR, fi->flags); 2943 if (ri->i_inline & F2FS_PIN_FILE) 2944 set_bit(FI_PIN_FILE, fi->flags); 2945 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 2946 set_bit(FI_COMPRESS_RELEASED, fi->flags); 2947 } 2948 2949 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2950 { 2951 ri->i_inline = 0; 2952 2953 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2954 ri->i_inline |= F2FS_INLINE_XATTR; 2955 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2956 ri->i_inline |= F2FS_INLINE_DATA; 2957 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2958 ri->i_inline |= F2FS_INLINE_DENTRY; 2959 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2960 ri->i_inline |= F2FS_DATA_EXIST; 2961 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2962 ri->i_inline |= F2FS_INLINE_DOTS; 2963 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2964 ri->i_inline |= F2FS_EXTRA_ATTR; 2965 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2966 ri->i_inline |= F2FS_PIN_FILE; 2967 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 2968 ri->i_inline |= F2FS_COMPRESS_RELEASED; 2969 } 2970 2971 static inline int f2fs_has_extra_attr(struct inode *inode) 2972 { 2973 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2974 } 2975 2976 static inline int f2fs_has_inline_xattr(struct inode *inode) 2977 { 2978 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2979 } 2980 2981 static inline int f2fs_compressed_file(struct inode *inode) 2982 { 2983 return S_ISREG(inode->i_mode) && 2984 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 2985 } 2986 2987 static inline bool f2fs_need_compress_data(struct inode *inode) 2988 { 2989 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 2990 2991 if (!f2fs_compressed_file(inode)) 2992 return false; 2993 2994 if (compress_mode == COMPR_MODE_FS) 2995 return true; 2996 else if (compress_mode == COMPR_MODE_USER && 2997 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 2998 return true; 2999 3000 return false; 3001 } 3002 3003 static inline unsigned int addrs_per_inode(struct inode *inode) 3004 { 3005 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 3006 get_inline_xattr_addrs(inode); 3007 3008 if (!f2fs_compressed_file(inode)) 3009 return addrs; 3010 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3011 } 3012 3013 static inline unsigned int addrs_per_block(struct inode *inode) 3014 { 3015 if (!f2fs_compressed_file(inode)) 3016 return DEF_ADDRS_PER_BLOCK; 3017 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 3018 } 3019 3020 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3021 { 3022 struct f2fs_inode *ri = F2FS_INODE(page); 3023 3024 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3025 get_inline_xattr_addrs(inode)]); 3026 } 3027 3028 static inline int inline_xattr_size(struct inode *inode) 3029 { 3030 if (f2fs_has_inline_xattr(inode)) 3031 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3032 return 0; 3033 } 3034 3035 static inline int f2fs_has_inline_data(struct inode *inode) 3036 { 3037 return is_inode_flag_set(inode, FI_INLINE_DATA); 3038 } 3039 3040 static inline int f2fs_exist_data(struct inode *inode) 3041 { 3042 return is_inode_flag_set(inode, FI_DATA_EXIST); 3043 } 3044 3045 static inline int f2fs_has_inline_dots(struct inode *inode) 3046 { 3047 return is_inode_flag_set(inode, FI_INLINE_DOTS); 3048 } 3049 3050 static inline int f2fs_is_mmap_file(struct inode *inode) 3051 { 3052 return is_inode_flag_set(inode, FI_MMAP_FILE); 3053 } 3054 3055 static inline bool f2fs_is_pinned_file(struct inode *inode) 3056 { 3057 return is_inode_flag_set(inode, FI_PIN_FILE); 3058 } 3059 3060 static inline bool f2fs_is_atomic_file(struct inode *inode) 3061 { 3062 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3063 } 3064 3065 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 3066 { 3067 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 3068 } 3069 3070 static inline bool f2fs_is_volatile_file(struct inode *inode) 3071 { 3072 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 3073 } 3074 3075 static inline bool f2fs_is_first_block_written(struct inode *inode) 3076 { 3077 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 3078 } 3079 3080 static inline bool f2fs_is_drop_cache(struct inode *inode) 3081 { 3082 return is_inode_flag_set(inode, FI_DROP_CACHE); 3083 } 3084 3085 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3086 { 3087 struct f2fs_inode *ri = F2FS_INODE(page); 3088 int extra_size = get_extra_isize(inode); 3089 3090 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 3091 } 3092 3093 static inline int f2fs_has_inline_dentry(struct inode *inode) 3094 { 3095 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3096 } 3097 3098 static inline int is_file(struct inode *inode, int type) 3099 { 3100 return F2FS_I(inode)->i_advise & type; 3101 } 3102 3103 static inline void set_file(struct inode *inode, int type) 3104 { 3105 F2FS_I(inode)->i_advise |= type; 3106 f2fs_mark_inode_dirty_sync(inode, true); 3107 } 3108 3109 static inline void clear_file(struct inode *inode, int type) 3110 { 3111 F2FS_I(inode)->i_advise &= ~type; 3112 f2fs_mark_inode_dirty_sync(inode, true); 3113 } 3114 3115 static inline bool f2fs_is_time_consistent(struct inode *inode) 3116 { 3117 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 3118 return false; 3119 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 3120 return false; 3121 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 3122 return false; 3123 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 3124 &F2FS_I(inode)->i_crtime)) 3125 return false; 3126 return true; 3127 } 3128 3129 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3130 { 3131 bool ret; 3132 3133 if (dsync) { 3134 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3135 3136 spin_lock(&sbi->inode_lock[DIRTY_META]); 3137 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3138 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3139 return ret; 3140 } 3141 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3142 file_keep_isize(inode) || 3143 i_size_read(inode) & ~PAGE_MASK) 3144 return false; 3145 3146 if (!f2fs_is_time_consistent(inode)) 3147 return false; 3148 3149 spin_lock(&F2FS_I(inode)->i_size_lock); 3150 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3151 spin_unlock(&F2FS_I(inode)->i_size_lock); 3152 3153 return ret; 3154 } 3155 3156 static inline bool f2fs_readonly(struct super_block *sb) 3157 { 3158 return sb_rdonly(sb); 3159 } 3160 3161 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3162 { 3163 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3164 } 3165 3166 static inline bool is_dot_dotdot(const u8 *name, size_t len) 3167 { 3168 if (len == 1 && name[0] == '.') 3169 return true; 3170 3171 if (len == 2 && name[0] == '.' && name[1] == '.') 3172 return true; 3173 3174 return false; 3175 } 3176 3177 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3178 size_t size, gfp_t flags) 3179 { 3180 if (time_to_inject(sbi, FAULT_KMALLOC)) { 3181 f2fs_show_injection_info(sbi, FAULT_KMALLOC); 3182 return NULL; 3183 } 3184 3185 return kmalloc(size, flags); 3186 } 3187 3188 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3189 size_t size, gfp_t flags) 3190 { 3191 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3192 } 3193 3194 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3195 size_t size, gfp_t flags) 3196 { 3197 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 3198 f2fs_show_injection_info(sbi, FAULT_KVMALLOC); 3199 return NULL; 3200 } 3201 3202 return kvmalloc(size, flags); 3203 } 3204 3205 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3206 size_t size, gfp_t flags) 3207 { 3208 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3209 } 3210 3211 static inline int get_extra_isize(struct inode *inode) 3212 { 3213 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3214 } 3215 3216 static inline int get_inline_xattr_addrs(struct inode *inode) 3217 { 3218 return F2FS_I(inode)->i_inline_xattr_size; 3219 } 3220 3221 #define f2fs_get_inode_mode(i) \ 3222 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3223 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3224 3225 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3226 (offsetof(struct f2fs_inode, i_extra_end) - \ 3227 offsetof(struct f2fs_inode, i_extra_isize)) \ 3228 3229 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3230 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3231 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3232 sizeof((f2fs_inode)->field)) \ 3233 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3234 3235 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 3236 3237 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3238 3239 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3240 block_t blkaddr, int type); 3241 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3242 block_t blkaddr, int type) 3243 { 3244 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 3245 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3246 blkaddr, type); 3247 f2fs_bug_on(sbi, 1); 3248 } 3249 } 3250 3251 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3252 { 3253 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3254 blkaddr == COMPRESS_ADDR) 3255 return false; 3256 return true; 3257 } 3258 3259 /* 3260 * file.c 3261 */ 3262 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3263 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 3264 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3265 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3266 int f2fs_truncate(struct inode *inode); 3267 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path, 3268 struct kstat *stat, u32 request_mask, unsigned int flags); 3269 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 3270 struct iattr *attr); 3271 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3272 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3273 int f2fs_precache_extents(struct inode *inode); 3274 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3275 int f2fs_fileattr_set(struct user_namespace *mnt_userns, 3276 struct dentry *dentry, struct fileattr *fa); 3277 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3278 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3279 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3280 int f2fs_pin_file_control(struct inode *inode, bool inc); 3281 3282 /* 3283 * inode.c 3284 */ 3285 void f2fs_set_inode_flags(struct inode *inode); 3286 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3287 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3288 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3289 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3290 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3291 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3292 void f2fs_update_inode_page(struct inode *inode); 3293 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3294 void f2fs_evict_inode(struct inode *inode); 3295 void f2fs_handle_failed_inode(struct inode *inode); 3296 3297 /* 3298 * namei.c 3299 */ 3300 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3301 bool hot, bool set); 3302 struct dentry *f2fs_get_parent(struct dentry *child); 3303 3304 /* 3305 * dir.c 3306 */ 3307 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 3308 int f2fs_init_casefolded_name(const struct inode *dir, 3309 struct f2fs_filename *fname); 3310 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3311 int lookup, struct f2fs_filename *fname); 3312 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3313 struct f2fs_filename *fname); 3314 void f2fs_free_filename(struct f2fs_filename *fname); 3315 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3316 const struct f2fs_filename *fname, int *max_slots); 3317 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3318 unsigned int start_pos, struct fscrypt_str *fstr); 3319 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3320 struct f2fs_dentry_ptr *d); 3321 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3322 const struct f2fs_filename *fname, struct page *dpage); 3323 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3324 unsigned int current_depth); 3325 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3326 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3327 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3328 const struct f2fs_filename *fname, 3329 struct page **res_page); 3330 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3331 const struct qstr *child, struct page **res_page); 3332 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3333 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3334 struct page **page); 3335 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3336 struct page *page, struct inode *inode); 3337 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3338 const struct f2fs_filename *fname); 3339 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3340 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3341 unsigned int bit_pos); 3342 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3343 struct inode *inode, nid_t ino, umode_t mode); 3344 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3345 struct inode *inode, nid_t ino, umode_t mode); 3346 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3347 struct inode *inode, nid_t ino, umode_t mode); 3348 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3349 struct inode *dir, struct inode *inode); 3350 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 3351 bool f2fs_empty_dir(struct inode *dir); 3352 3353 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3354 { 3355 if (fscrypt_is_nokey_name(dentry)) 3356 return -ENOKEY; 3357 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3358 inode, inode->i_ino, inode->i_mode); 3359 } 3360 3361 /* 3362 * super.c 3363 */ 3364 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3365 void f2fs_inode_synced(struct inode *inode); 3366 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3367 int f2fs_quota_sync(struct super_block *sb, int type); 3368 loff_t max_file_blocks(struct inode *inode); 3369 void f2fs_quota_off_umount(struct super_block *sb); 3370 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3371 int f2fs_sync_fs(struct super_block *sb, int sync); 3372 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3373 3374 /* 3375 * hash.c 3376 */ 3377 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3378 3379 /* 3380 * node.c 3381 */ 3382 struct node_info; 3383 3384 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3385 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3386 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3387 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3388 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3389 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3390 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3391 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3392 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3393 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3394 struct node_info *ni); 3395 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3396 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3397 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3398 int f2fs_truncate_xattr_node(struct inode *inode); 3399 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3400 unsigned int seq_id); 3401 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3402 int f2fs_remove_inode_page(struct inode *inode); 3403 struct page *f2fs_new_inode_page(struct inode *inode); 3404 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3405 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3406 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3407 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3408 int f2fs_move_node_page(struct page *node_page, int gc_type); 3409 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3410 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3411 struct writeback_control *wbc, bool atomic, 3412 unsigned int *seq_id); 3413 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3414 struct writeback_control *wbc, 3415 bool do_balance, enum iostat_type io_type); 3416 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3417 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3418 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3419 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3420 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3421 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3422 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3423 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3424 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3425 unsigned int segno, struct f2fs_summary_block *sum); 3426 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3427 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3428 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3429 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3430 int __init f2fs_create_node_manager_caches(void); 3431 void f2fs_destroy_node_manager_caches(void); 3432 3433 /* 3434 * segment.c 3435 */ 3436 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3437 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 3438 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 3439 void f2fs_drop_inmem_pages(struct inode *inode); 3440 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 3441 int f2fs_commit_inmem_pages(struct inode *inode); 3442 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3443 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3444 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3445 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3446 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3447 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3448 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3449 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3450 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3451 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3452 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3453 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3454 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3455 struct cp_control *cpc); 3456 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3457 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3458 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3459 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3460 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3461 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3462 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3463 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3464 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3465 void f2fs_get_new_segment(struct f2fs_sb_info *sbi, 3466 unsigned int *newseg, bool new_sec, int dir); 3467 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3468 unsigned int start, unsigned int end); 3469 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3470 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3471 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3472 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3473 struct cp_control *cpc); 3474 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3475 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3476 block_t blk_addr); 3477 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3478 enum iostat_type io_type); 3479 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3480 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3481 struct f2fs_io_info *fio); 3482 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3483 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3484 block_t old_blkaddr, block_t new_blkaddr, 3485 bool recover_curseg, bool recover_newaddr, 3486 bool from_gc); 3487 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3488 block_t old_addr, block_t new_addr, 3489 unsigned char version, bool recover_curseg, 3490 bool recover_newaddr); 3491 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3492 block_t old_blkaddr, block_t *new_blkaddr, 3493 struct f2fs_summary *sum, int type, 3494 struct f2fs_io_info *fio); 3495 void f2fs_wait_on_page_writeback(struct page *page, 3496 enum page_type type, bool ordered, bool locked); 3497 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3498 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3499 block_t len); 3500 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3501 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3502 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3503 unsigned int val, int alloc); 3504 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3505 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3506 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3507 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3508 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3509 int __init f2fs_create_segment_manager_caches(void); 3510 void f2fs_destroy_segment_manager_caches(void); 3511 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3512 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3513 enum page_type type, enum temp_type temp); 3514 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 3515 unsigned int segno); 3516 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3517 unsigned int segno); 3518 3519 /* 3520 * checkpoint.c 3521 */ 3522 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 3523 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3524 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3525 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3526 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3527 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3528 block_t blkaddr, int type); 3529 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3530 int type, bool sync); 3531 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 3532 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3533 long nr_to_write, enum iostat_type io_type); 3534 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3535 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3536 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3537 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3538 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3539 unsigned int devidx, int type); 3540 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3541 unsigned int devidx, int type); 3542 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3543 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3544 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3545 void f2fs_add_orphan_inode(struct inode *inode); 3546 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3547 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3548 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3549 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 3550 void f2fs_remove_dirty_inode(struct inode *inode); 3551 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 3552 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3553 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3554 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3555 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3556 int __init f2fs_create_checkpoint_caches(void); 3557 void f2fs_destroy_checkpoint_caches(void); 3558 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3559 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3560 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3561 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3562 3563 /* 3564 * data.c 3565 */ 3566 int __init f2fs_init_bioset(void); 3567 void f2fs_destroy_bioset(void); 3568 int f2fs_init_bio_entry_cache(void); 3569 void f2fs_destroy_bio_entry_cache(void); 3570 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 3571 struct bio *bio, enum page_type type); 3572 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3573 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3574 struct inode *inode, struct page *page, 3575 nid_t ino, enum page_type type); 3576 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3577 struct bio **bio, struct page *page); 3578 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3579 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3580 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3581 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3582 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3583 block_t blk_addr, struct bio *bio); 3584 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3585 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3586 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3587 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3588 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3589 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3590 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 3591 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3592 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3593 int op_flags, bool for_write); 3594 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 3595 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3596 bool for_write); 3597 struct page *f2fs_get_new_data_page(struct inode *inode, 3598 struct page *ipage, pgoff_t index, bool new_i_size); 3599 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3600 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock); 3601 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3602 int create, int flag); 3603 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3604 u64 start, u64 len); 3605 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3606 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3607 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3608 int f2fs_write_single_data_page(struct page *page, int *submitted, 3609 struct bio **bio, sector_t *last_block, 3610 struct writeback_control *wbc, 3611 enum iostat_type io_type, 3612 int compr_blocks, bool allow_balance); 3613 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3614 unsigned int length); 3615 int f2fs_release_page(struct page *page, gfp_t wait); 3616 #ifdef CONFIG_MIGRATION 3617 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 3618 struct page *page, enum migrate_mode mode); 3619 #endif 3620 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3621 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3622 int f2fs_init_post_read_processing(void); 3623 void f2fs_destroy_post_read_processing(void); 3624 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3625 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3626 3627 /* 3628 * gc.c 3629 */ 3630 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3631 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3632 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3633 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force, 3634 unsigned int segno); 3635 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3636 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3637 int __init f2fs_create_garbage_collection_cache(void); 3638 void f2fs_destroy_garbage_collection_cache(void); 3639 3640 /* 3641 * recovery.c 3642 */ 3643 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3644 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3645 int __init f2fs_create_recovery_cache(void); 3646 void f2fs_destroy_recovery_cache(void); 3647 3648 /* 3649 * debug.c 3650 */ 3651 #ifdef CONFIG_F2FS_STAT_FS 3652 struct f2fs_stat_info { 3653 struct list_head stat_list; 3654 struct f2fs_sb_info *sbi; 3655 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3656 int main_area_segs, main_area_sections, main_area_zones; 3657 unsigned long long hit_largest, hit_cached, hit_rbtree; 3658 unsigned long long hit_total, total_ext; 3659 int ext_tree, zombie_tree, ext_node; 3660 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3661 int ndirty_data, ndirty_qdata; 3662 int inmem_pages; 3663 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3664 int nats, dirty_nats, sits, dirty_sits; 3665 int free_nids, avail_nids, alloc_nids; 3666 int total_count, utilization; 3667 int bg_gc, nr_wb_cp_data, nr_wb_data; 3668 int nr_rd_data, nr_rd_node, nr_rd_meta; 3669 int nr_dio_read, nr_dio_write; 3670 unsigned int io_skip_bggc, other_skip_bggc; 3671 int nr_flushing, nr_flushed, flush_list_empty; 3672 int nr_discarding, nr_discarded; 3673 int nr_discard_cmd; 3674 unsigned int undiscard_blks; 3675 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3676 unsigned int cur_ckpt_time, peak_ckpt_time; 3677 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3678 int compr_inode; 3679 unsigned long long compr_blocks; 3680 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3681 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3682 unsigned int bimodal, avg_vblocks; 3683 int util_free, util_valid, util_invalid; 3684 int rsvd_segs, overp_segs; 3685 int dirty_count, node_pages, meta_pages, compress_pages; 3686 int compress_page_hit; 3687 int prefree_count, call_count, cp_count, bg_cp_count; 3688 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3689 int bg_node_segs, bg_data_segs; 3690 int tot_blks, data_blks, node_blks; 3691 int bg_data_blks, bg_node_blks; 3692 unsigned long long skipped_atomic_files[2]; 3693 int curseg[NR_CURSEG_TYPE]; 3694 int cursec[NR_CURSEG_TYPE]; 3695 int curzone[NR_CURSEG_TYPE]; 3696 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3697 unsigned int full_seg[NR_CURSEG_TYPE]; 3698 unsigned int valid_blks[NR_CURSEG_TYPE]; 3699 3700 unsigned int meta_count[META_MAX]; 3701 unsigned int segment_count[2]; 3702 unsigned int block_count[2]; 3703 unsigned int inplace_count; 3704 unsigned long long base_mem, cache_mem, page_mem; 3705 }; 3706 3707 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3708 { 3709 return (struct f2fs_stat_info *)sbi->stat_info; 3710 } 3711 3712 #define stat_inc_cp_count(si) ((si)->cp_count++) 3713 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3714 #define stat_inc_call_count(si) ((si)->call_count++) 3715 #define stat_inc_bggc_count(si) ((si)->bg_gc++) 3716 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3717 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3718 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3719 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3720 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3721 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3722 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3723 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3724 #define stat_inc_inline_xattr(inode) \ 3725 do { \ 3726 if (f2fs_has_inline_xattr(inode)) \ 3727 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3728 } while (0) 3729 #define stat_dec_inline_xattr(inode) \ 3730 do { \ 3731 if (f2fs_has_inline_xattr(inode)) \ 3732 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3733 } while (0) 3734 #define stat_inc_inline_inode(inode) \ 3735 do { \ 3736 if (f2fs_has_inline_data(inode)) \ 3737 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3738 } while (0) 3739 #define stat_dec_inline_inode(inode) \ 3740 do { \ 3741 if (f2fs_has_inline_data(inode)) \ 3742 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3743 } while (0) 3744 #define stat_inc_inline_dir(inode) \ 3745 do { \ 3746 if (f2fs_has_inline_dentry(inode)) \ 3747 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3748 } while (0) 3749 #define stat_dec_inline_dir(inode) \ 3750 do { \ 3751 if (f2fs_has_inline_dentry(inode)) \ 3752 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3753 } while (0) 3754 #define stat_inc_compr_inode(inode) \ 3755 do { \ 3756 if (f2fs_compressed_file(inode)) \ 3757 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 3758 } while (0) 3759 #define stat_dec_compr_inode(inode) \ 3760 do { \ 3761 if (f2fs_compressed_file(inode)) \ 3762 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 3763 } while (0) 3764 #define stat_add_compr_blocks(inode, blocks) \ 3765 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3766 #define stat_sub_compr_blocks(inode, blocks) \ 3767 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3768 #define stat_inc_meta_count(sbi, blkaddr) \ 3769 do { \ 3770 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3771 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3772 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3773 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3774 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3775 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3776 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3777 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3778 } while (0) 3779 #define stat_inc_seg_type(sbi, curseg) \ 3780 ((sbi)->segment_count[(curseg)->alloc_type]++) 3781 #define stat_inc_block_count(sbi, curseg) \ 3782 ((sbi)->block_count[(curseg)->alloc_type]++) 3783 #define stat_inc_inplace_blocks(sbi) \ 3784 (atomic_inc(&(sbi)->inplace_count)) 3785 #define stat_update_max_atomic_write(inode) \ 3786 do { \ 3787 int cur = F2FS_I_SB(inode)->atomic_files; \ 3788 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3789 if (cur > max) \ 3790 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3791 } while (0) 3792 #define stat_inc_volatile_write(inode) \ 3793 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3794 #define stat_dec_volatile_write(inode) \ 3795 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3796 #define stat_update_max_volatile_write(inode) \ 3797 do { \ 3798 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3799 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3800 if (cur > max) \ 3801 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3802 } while (0) 3803 #define stat_inc_seg_count(sbi, type, gc_type) \ 3804 do { \ 3805 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3806 si->tot_segs++; \ 3807 if ((type) == SUM_TYPE_DATA) { \ 3808 si->data_segs++; \ 3809 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3810 } else { \ 3811 si->node_segs++; \ 3812 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3813 } \ 3814 } while (0) 3815 3816 #define stat_inc_tot_blk_count(si, blks) \ 3817 ((si)->tot_blks += (blks)) 3818 3819 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3820 do { \ 3821 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3822 stat_inc_tot_blk_count(si, blks); \ 3823 si->data_blks += (blks); \ 3824 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3825 } while (0) 3826 3827 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3828 do { \ 3829 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3830 stat_inc_tot_blk_count(si, blks); \ 3831 si->node_blks += (blks); \ 3832 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3833 } while (0) 3834 3835 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3836 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3837 void __init f2fs_create_root_stats(void); 3838 void f2fs_destroy_root_stats(void); 3839 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 3840 #else 3841 #define stat_inc_cp_count(si) do { } while (0) 3842 #define stat_inc_bg_cp_count(si) do { } while (0) 3843 #define stat_inc_call_count(si) do { } while (0) 3844 #define stat_inc_bggc_count(si) do { } while (0) 3845 #define stat_io_skip_bggc_count(sbi) do { } while (0) 3846 #define stat_other_skip_bggc_count(sbi) do { } while (0) 3847 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3848 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3849 #define stat_inc_total_hit(sbi) do { } while (0) 3850 #define stat_inc_rbtree_node_hit(sbi) do { } while (0) 3851 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3852 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3853 #define stat_inc_inline_xattr(inode) do { } while (0) 3854 #define stat_dec_inline_xattr(inode) do { } while (0) 3855 #define stat_inc_inline_inode(inode) do { } while (0) 3856 #define stat_dec_inline_inode(inode) do { } while (0) 3857 #define stat_inc_inline_dir(inode) do { } while (0) 3858 #define stat_dec_inline_dir(inode) do { } while (0) 3859 #define stat_inc_compr_inode(inode) do { } while (0) 3860 #define stat_dec_compr_inode(inode) do { } while (0) 3861 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 3862 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 3863 #define stat_update_max_atomic_write(inode) do { } while (0) 3864 #define stat_inc_volatile_write(inode) do { } while (0) 3865 #define stat_dec_volatile_write(inode) do { } while (0) 3866 #define stat_update_max_volatile_write(inode) do { } while (0) 3867 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 3868 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3869 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3870 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3871 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3872 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3873 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3874 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3875 3876 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3877 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3878 static inline void __init f2fs_create_root_stats(void) { } 3879 static inline void f2fs_destroy_root_stats(void) { } 3880 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 3881 #endif 3882 3883 extern const struct file_operations f2fs_dir_operations; 3884 extern const struct file_operations f2fs_file_operations; 3885 extern const struct inode_operations f2fs_file_inode_operations; 3886 extern const struct address_space_operations f2fs_dblock_aops; 3887 extern const struct address_space_operations f2fs_node_aops; 3888 extern const struct address_space_operations f2fs_meta_aops; 3889 extern const struct inode_operations f2fs_dir_inode_operations; 3890 extern const struct inode_operations f2fs_symlink_inode_operations; 3891 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3892 extern const struct inode_operations f2fs_special_inode_operations; 3893 extern struct kmem_cache *f2fs_inode_entry_slab; 3894 3895 /* 3896 * inline.c 3897 */ 3898 bool f2fs_may_inline_data(struct inode *inode); 3899 bool f2fs_may_inline_dentry(struct inode *inode); 3900 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3901 void f2fs_truncate_inline_inode(struct inode *inode, 3902 struct page *ipage, u64 from); 3903 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3904 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3905 int f2fs_convert_inline_inode(struct inode *inode); 3906 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 3907 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3908 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3909 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3910 const struct f2fs_filename *fname, 3911 struct page **res_page); 3912 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3913 struct page *ipage); 3914 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 3915 struct inode *inode, nid_t ino, umode_t mode); 3916 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3917 struct page *page, struct inode *dir, 3918 struct inode *inode); 3919 bool f2fs_empty_inline_dir(struct inode *dir); 3920 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3921 struct fscrypt_str *fstr); 3922 int f2fs_inline_data_fiemap(struct inode *inode, 3923 struct fiemap_extent_info *fieinfo, 3924 __u64 start, __u64 len); 3925 3926 /* 3927 * shrinker.c 3928 */ 3929 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3930 struct shrink_control *sc); 3931 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3932 struct shrink_control *sc); 3933 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3934 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3935 3936 /* 3937 * extent_cache.c 3938 */ 3939 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 3940 struct rb_entry *cached_re, unsigned int ofs); 3941 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi, 3942 struct rb_root_cached *root, 3943 struct rb_node **parent, 3944 unsigned long long key, bool *left_most); 3945 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3946 struct rb_root_cached *root, 3947 struct rb_node **parent, 3948 unsigned int ofs, bool *leftmost); 3949 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 3950 struct rb_entry *cached_re, unsigned int ofs, 3951 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3952 struct rb_node ***insert_p, struct rb_node **insert_parent, 3953 bool force, bool *leftmost); 3954 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3955 struct rb_root_cached *root, bool check_key); 3956 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3957 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage); 3958 void f2fs_drop_extent_tree(struct inode *inode); 3959 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3960 void f2fs_destroy_extent_tree(struct inode *inode); 3961 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3962 struct extent_info *ei); 3963 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3964 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3965 pgoff_t fofs, block_t blkaddr, unsigned int len); 3966 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3967 int __init f2fs_create_extent_cache(void); 3968 void f2fs_destroy_extent_cache(void); 3969 3970 /* 3971 * sysfs.c 3972 */ 3973 #define MIN_RA_MUL 2 3974 #define MAX_RA_MUL 256 3975 3976 int __init f2fs_init_sysfs(void); 3977 void f2fs_exit_sysfs(void); 3978 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3979 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3980 3981 /* verity.c */ 3982 extern const struct fsverity_operations f2fs_verityops; 3983 3984 /* 3985 * crypto support 3986 */ 3987 static inline bool f2fs_encrypted_file(struct inode *inode) 3988 { 3989 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 3990 } 3991 3992 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3993 { 3994 #ifdef CONFIG_FS_ENCRYPTION 3995 file_set_encrypt(inode); 3996 f2fs_set_inode_flags(inode); 3997 #endif 3998 } 3999 4000 /* 4001 * Returns true if the reads of the inode's data need to undergo some 4002 * postprocessing step, like decryption or authenticity verification. 4003 */ 4004 static inline bool f2fs_post_read_required(struct inode *inode) 4005 { 4006 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4007 f2fs_compressed_file(inode); 4008 } 4009 4010 /* 4011 * compress.c 4012 */ 4013 #ifdef CONFIG_F2FS_FS_COMPRESSION 4014 bool f2fs_is_compressed_page(struct page *page); 4015 struct page *f2fs_compress_control_page(struct page *page); 4016 int f2fs_prepare_compress_overwrite(struct inode *inode, 4017 struct page **pagep, pgoff_t index, void **fsdata); 4018 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4019 pgoff_t index, unsigned copied); 4020 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4021 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4022 bool f2fs_is_compress_backend_ready(struct inode *inode); 4023 int f2fs_init_compress_mempool(void); 4024 void f2fs_destroy_compress_mempool(void); 4025 void f2fs_decompress_cluster(struct decompress_io_ctx *dic); 4026 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4027 block_t blkaddr); 4028 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4029 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4030 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4031 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 4032 int f2fs_write_multi_pages(struct compress_ctx *cc, 4033 int *submitted, 4034 struct writeback_control *wbc, 4035 enum iostat_type io_type); 4036 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4037 void f2fs_update_extent_tree_range_compressed(struct inode *inode, 4038 pgoff_t fofs, block_t blkaddr, unsigned int llen, 4039 unsigned int c_len); 4040 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4041 unsigned nr_pages, sector_t *last_block_in_bio, 4042 bool is_readahead, bool for_write); 4043 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4044 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed); 4045 void f2fs_put_page_dic(struct page *page); 4046 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn); 4047 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4048 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4049 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4050 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4051 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4052 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4053 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4054 int __init f2fs_init_compress_cache(void); 4055 void f2fs_destroy_compress_cache(void); 4056 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4057 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4058 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4059 nid_t ino, block_t blkaddr); 4060 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4061 block_t blkaddr); 4062 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4063 #define inc_compr_inode_stat(inode) \ 4064 do { \ 4065 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4066 sbi->compr_new_inode++; \ 4067 } while (0) 4068 #define add_compr_block_stat(inode, blocks) \ 4069 do { \ 4070 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4071 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4072 sbi->compr_written_block += blocks; \ 4073 sbi->compr_saved_block += diff; \ 4074 } while (0) 4075 #else 4076 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4077 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4078 { 4079 if (!f2fs_compressed_file(inode)) 4080 return true; 4081 /* not support compression */ 4082 return false; 4083 } 4084 static inline struct page *f2fs_compress_control_page(struct page *page) 4085 { 4086 WARN_ON_ONCE(1); 4087 return ERR_PTR(-EINVAL); 4088 } 4089 static inline int f2fs_init_compress_mempool(void) { return 0; } 4090 static inline void f2fs_destroy_compress_mempool(void) { } 4091 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { } 4092 static inline void f2fs_end_read_compressed_page(struct page *page, 4093 bool failed, block_t blkaddr) 4094 { 4095 WARN_ON_ONCE(1); 4096 } 4097 static inline void f2fs_put_page_dic(struct page *page) 4098 { 4099 WARN_ON_ONCE(1); 4100 } 4101 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; } 4102 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4103 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4104 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4105 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4106 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4107 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4108 static inline void f2fs_destroy_compress_cache(void) { } 4109 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4110 block_t blkaddr) { } 4111 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4112 struct page *page, nid_t ino, block_t blkaddr) { } 4113 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4114 struct page *page, block_t blkaddr) { return false; } 4115 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4116 nid_t ino) { } 4117 #define inc_compr_inode_stat(inode) do { } while (0) 4118 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode, 4119 pgoff_t fofs, block_t blkaddr, unsigned int llen, 4120 unsigned int c_len) { } 4121 #endif 4122 4123 static inline void set_compress_context(struct inode *inode) 4124 { 4125 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4126 4127 F2FS_I(inode)->i_compress_algorithm = 4128 F2FS_OPTION(sbi).compress_algorithm; 4129 F2FS_I(inode)->i_log_cluster_size = 4130 F2FS_OPTION(sbi).compress_log_size; 4131 F2FS_I(inode)->i_compress_flag = 4132 F2FS_OPTION(sbi).compress_chksum ? 4133 1 << COMPRESS_CHKSUM : 0; 4134 F2FS_I(inode)->i_cluster_size = 4135 1 << F2FS_I(inode)->i_log_cluster_size; 4136 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 || 4137 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) && 4138 F2FS_OPTION(sbi).compress_level) 4139 F2FS_I(inode)->i_compress_flag |= 4140 F2FS_OPTION(sbi).compress_level << 4141 COMPRESS_LEVEL_OFFSET; 4142 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 4143 set_inode_flag(inode, FI_COMPRESSED_FILE); 4144 stat_inc_compr_inode(inode); 4145 inc_compr_inode_stat(inode); 4146 f2fs_mark_inode_dirty_sync(inode, true); 4147 } 4148 4149 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4150 { 4151 struct f2fs_inode_info *fi = F2FS_I(inode); 4152 4153 if (!f2fs_compressed_file(inode)) 4154 return true; 4155 if (S_ISREG(inode->i_mode) && 4156 (get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks))) 4157 return false; 4158 4159 fi->i_flags &= ~F2FS_COMPR_FL; 4160 stat_dec_compr_inode(inode); 4161 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4162 f2fs_mark_inode_dirty_sync(inode, true); 4163 return true; 4164 } 4165 4166 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4167 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4168 { \ 4169 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4170 } 4171 4172 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4173 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4174 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4175 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4176 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4177 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4178 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4179 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4180 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4181 F2FS_FEATURE_FUNCS(verity, VERITY); 4182 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4183 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4184 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4185 F2FS_FEATURE_FUNCS(readonly, RO); 4186 4187 static inline bool f2fs_may_extent_tree(struct inode *inode) 4188 { 4189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4190 4191 if (!test_opt(sbi, EXTENT_CACHE) || 4192 is_inode_flag_set(inode, FI_NO_EXTENT) || 4193 (is_inode_flag_set(inode, FI_COMPRESSED_FILE) && 4194 !f2fs_sb_has_readonly(sbi))) 4195 return false; 4196 4197 /* 4198 * for recovered files during mount do not create extents 4199 * if shrinker is not registered. 4200 */ 4201 if (list_empty(&sbi->s_list)) 4202 return false; 4203 4204 return S_ISREG(inode->i_mode); 4205 } 4206 4207 #ifdef CONFIG_BLK_DEV_ZONED 4208 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4209 block_t blkaddr) 4210 { 4211 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 4212 4213 return test_bit(zno, FDEV(devi).blkz_seq); 4214 } 4215 #endif 4216 4217 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4218 { 4219 return f2fs_sb_has_blkzoned(sbi); 4220 } 4221 4222 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4223 { 4224 return blk_queue_discard(bdev_get_queue(bdev)) || 4225 bdev_is_zoned(bdev); 4226 } 4227 4228 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4229 { 4230 int i; 4231 4232 if (!f2fs_is_multi_device(sbi)) 4233 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4234 4235 for (i = 0; i < sbi->s_ndevs; i++) 4236 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4237 return true; 4238 return false; 4239 } 4240 4241 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4242 { 4243 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4244 f2fs_hw_should_discard(sbi); 4245 } 4246 4247 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4248 { 4249 int i; 4250 4251 if (!f2fs_is_multi_device(sbi)) 4252 return bdev_read_only(sbi->sb->s_bdev); 4253 4254 for (i = 0; i < sbi->s_ndevs; i++) 4255 if (bdev_read_only(FDEV(i).bdev)) 4256 return true; 4257 return false; 4258 } 4259 4260 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4261 { 4262 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4263 } 4264 4265 static inline bool f2fs_may_compress(struct inode *inode) 4266 { 4267 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4268 f2fs_is_atomic_file(inode) || 4269 f2fs_is_volatile_file(inode)) 4270 return false; 4271 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4272 } 4273 4274 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4275 u64 blocks, bool add) 4276 { 4277 int diff = F2FS_I(inode)->i_cluster_size - blocks; 4278 struct f2fs_inode_info *fi = F2FS_I(inode); 4279 4280 /* don't update i_compr_blocks if saved blocks were released */ 4281 if (!add && !atomic_read(&fi->i_compr_blocks)) 4282 return; 4283 4284 if (add) { 4285 atomic_add(diff, &fi->i_compr_blocks); 4286 stat_add_compr_blocks(inode, diff); 4287 } else { 4288 atomic_sub(diff, &fi->i_compr_blocks); 4289 stat_sub_compr_blocks(inode, diff); 4290 } 4291 f2fs_mark_inode_dirty_sync(inode, true); 4292 } 4293 4294 static inline int block_unaligned_IO(struct inode *inode, 4295 struct kiocb *iocb, struct iov_iter *iter) 4296 { 4297 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits); 4298 unsigned int blocksize_mask = (1 << i_blkbits) - 1; 4299 loff_t offset = iocb->ki_pos; 4300 unsigned long align = offset | iov_iter_alignment(iter); 4301 4302 return align & blocksize_mask; 4303 } 4304 4305 static inline bool f2fs_force_buffered_io(struct inode *inode, 4306 struct kiocb *iocb, struct iov_iter *iter) 4307 { 4308 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4309 int rw = iov_iter_rw(iter); 4310 4311 if (f2fs_post_read_required(inode)) 4312 return true; 4313 if (f2fs_is_multi_device(sbi)) 4314 return true; 4315 /* 4316 * for blkzoned device, fallback direct IO to buffered IO, so 4317 * all IOs can be serialized by log-structured write. 4318 */ 4319 if (f2fs_sb_has_blkzoned(sbi)) 4320 return true; 4321 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) { 4322 if (block_unaligned_IO(inode, iocb, iter)) 4323 return true; 4324 if (F2FS_IO_ALIGNED(sbi)) 4325 return true; 4326 } 4327 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED)) 4328 return true; 4329 4330 return false; 4331 } 4332 4333 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4334 { 4335 return fsverity_active(inode) && 4336 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4337 } 4338 4339 #ifdef CONFIG_F2FS_FAULT_INJECTION 4340 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 4341 unsigned int type); 4342 #else 4343 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 4344 #endif 4345 4346 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4347 { 4348 #ifdef CONFIG_QUOTA 4349 if (f2fs_sb_has_quota_ino(sbi)) 4350 return true; 4351 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4352 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4353 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4354 return true; 4355 #endif 4356 return false; 4357 } 4358 4359 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4360 { 4361 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4362 } 4363 4364 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4365 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4366 4367 #endif /* _LINUX_F2FS_H */ 4368