xref: /linux/fs/f2fs/f2fs.h (revision 86287543715ac2a6d92d561cc105d79306511457)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (unlikely(condition)) {				\
37 			WARN_ON(1);					\
38 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
39 		}							\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_MAX,
60 };
61 
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
64 
65 struct f2fs_fault_info {
66 	atomic_t inject_ops;
67 	unsigned int inject_rate;
68 	unsigned int inject_type;
69 };
70 
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73 #endif
74 
75 /*
76  * For mount options
77  */
78 #define F2FS_MOUNT_BG_GC		0x00000001
79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
80 #define F2FS_MOUNT_DISCARD		0x00000004
81 #define F2FS_MOUNT_NOHEAP		0x00000008
82 #define F2FS_MOUNT_XATTR_USER		0x00000010
83 #define F2FS_MOUNT_POSIX_ACL		0x00000020
84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
85 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
86 #define F2FS_MOUNT_INLINE_DATA		0x00000100
87 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
88 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
89 #define F2FS_MOUNT_NOBARRIER		0x00000800
90 #define F2FS_MOUNT_FASTBOOT		0x00001000
91 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
92 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
93 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
94 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
95 #define F2FS_MOUNT_ADAPTIVE		0x00020000
96 #define F2FS_MOUNT_LFS			0x00040000
97 #define F2FS_MOUNT_USRQUOTA		0x00080000
98 #define F2FS_MOUNT_GRPQUOTA		0x00100000
99 #define F2FS_MOUNT_PRJQUOTA		0x00200000
100 #define F2FS_MOUNT_QUOTA		0x00400000
101 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
102 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
103 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
104 
105 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
106 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
107 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
108 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
109 
110 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
111 		typecheck(unsigned long long, b) &&			\
112 		((long long)((a) - (b)) > 0))
113 
114 typedef u32 block_t;	/*
115 			 * should not change u32, since it is the on-disk block
116 			 * address format, __le32.
117 			 */
118 typedef u32 nid_t;
119 
120 #define COMPRESS_EXT_NUM		16
121 
122 struct f2fs_mount_info {
123 	unsigned int opt;
124 	int write_io_size_bits;		/* Write IO size bits */
125 	block_t root_reserved_blocks;	/* root reserved blocks */
126 	kuid_t s_resuid;		/* reserved blocks for uid */
127 	kgid_t s_resgid;		/* reserved blocks for gid */
128 	int active_logs;		/* # of active logs */
129 	int inline_xattr_size;		/* inline xattr size */
130 #ifdef CONFIG_F2FS_FAULT_INJECTION
131 	struct f2fs_fault_info fault_info;	/* For fault injection */
132 #endif
133 #ifdef CONFIG_QUOTA
134 	/* Names of quota files with journalled quota */
135 	char *s_qf_names[MAXQUOTAS];
136 	int s_jquota_fmt;			/* Format of quota to use */
137 #endif
138 	/* For which write hints are passed down to block layer */
139 	int whint_mode;
140 	int alloc_mode;			/* segment allocation policy */
141 	int fsync_mode;			/* fsync policy */
142 	bool test_dummy_encryption;	/* test dummy encryption */
143 	block_t unusable_cap;		/* Amount of space allowed to be
144 					 * unusable when disabling checkpoint
145 					 */
146 
147 	/* For compression */
148 	unsigned char compress_algorithm;	/* algorithm type */
149 	unsigned compress_log_size;		/* cluster log size */
150 	unsigned char compress_ext_cnt;		/* extension count */
151 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
152 };
153 
154 #define F2FS_FEATURE_ENCRYPT		0x0001
155 #define F2FS_FEATURE_BLKZONED		0x0002
156 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
157 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
158 #define F2FS_FEATURE_PRJQUOTA		0x0010
159 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
160 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
161 #define F2FS_FEATURE_QUOTA_INO		0x0080
162 #define F2FS_FEATURE_INODE_CRTIME	0x0100
163 #define F2FS_FEATURE_LOST_FOUND		0x0200
164 #define F2FS_FEATURE_VERITY		0x0400
165 #define F2FS_FEATURE_SB_CHKSUM		0x0800
166 #define F2FS_FEATURE_CASEFOLD		0x1000
167 #define F2FS_FEATURE_COMPRESSION	0x2000
168 
169 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
170 	((raw_super->feature & cpu_to_le32(mask)) != 0)
171 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
172 #define F2FS_SET_FEATURE(sbi, mask)					\
173 	(sbi->raw_super->feature |= cpu_to_le32(mask))
174 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
175 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
176 
177 /*
178  * Default values for user and/or group using reserved blocks
179  */
180 #define	F2FS_DEF_RESUID		0
181 #define	F2FS_DEF_RESGID		0
182 
183 /*
184  * For checkpoint manager
185  */
186 enum {
187 	NAT_BITMAP,
188 	SIT_BITMAP
189 };
190 
191 #define	CP_UMOUNT	0x00000001
192 #define	CP_FASTBOOT	0x00000002
193 #define	CP_SYNC		0x00000004
194 #define	CP_RECOVERY	0x00000008
195 #define	CP_DISCARD	0x00000010
196 #define CP_TRIMMED	0x00000020
197 #define CP_PAUSE	0x00000040
198 
199 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
200 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
201 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
202 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
203 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
204 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
205 #define DEF_CP_INTERVAL			60	/* 60 secs */
206 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
207 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
208 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
209 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
210 
211 struct cp_control {
212 	int reason;
213 	__u64 trim_start;
214 	__u64 trim_end;
215 	__u64 trim_minlen;
216 };
217 
218 /*
219  * indicate meta/data type
220  */
221 enum {
222 	META_CP,
223 	META_NAT,
224 	META_SIT,
225 	META_SSA,
226 	META_MAX,
227 	META_POR,
228 	DATA_GENERIC,		/* check range only */
229 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
230 	DATA_GENERIC_ENHANCE_READ,	/*
231 					 * strong check on range and segment
232 					 * bitmap but no warning due to race
233 					 * condition of read on truncated area
234 					 * by extent_cache
235 					 */
236 	META_GENERIC,
237 };
238 
239 /* for the list of ino */
240 enum {
241 	ORPHAN_INO,		/* for orphan ino list */
242 	APPEND_INO,		/* for append ino list */
243 	UPDATE_INO,		/* for update ino list */
244 	TRANS_DIR_INO,		/* for trasactions dir ino list */
245 	FLUSH_INO,		/* for multiple device flushing */
246 	MAX_INO_ENTRY,		/* max. list */
247 };
248 
249 struct ino_entry {
250 	struct list_head list;		/* list head */
251 	nid_t ino;			/* inode number */
252 	unsigned int dirty_device;	/* dirty device bitmap */
253 };
254 
255 /* for the list of inodes to be GCed */
256 struct inode_entry {
257 	struct list_head list;	/* list head */
258 	struct inode *inode;	/* vfs inode pointer */
259 };
260 
261 struct fsync_node_entry {
262 	struct list_head list;	/* list head */
263 	struct page *page;	/* warm node page pointer */
264 	unsigned int seq_id;	/* sequence id */
265 };
266 
267 /* for the bitmap indicate blocks to be discarded */
268 struct discard_entry {
269 	struct list_head list;	/* list head */
270 	block_t start_blkaddr;	/* start blockaddr of current segment */
271 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
272 };
273 
274 /* default discard granularity of inner discard thread, unit: block count */
275 #define DEFAULT_DISCARD_GRANULARITY		16
276 
277 /* max discard pend list number */
278 #define MAX_PLIST_NUM		512
279 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
280 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
281 
282 enum {
283 	D_PREP,			/* initial */
284 	D_PARTIAL,		/* partially submitted */
285 	D_SUBMIT,		/* all submitted */
286 	D_DONE,			/* finished */
287 };
288 
289 struct discard_info {
290 	block_t lstart;			/* logical start address */
291 	block_t len;			/* length */
292 	block_t start;			/* actual start address in dev */
293 };
294 
295 struct discard_cmd {
296 	struct rb_node rb_node;		/* rb node located in rb-tree */
297 	union {
298 		struct {
299 			block_t lstart;	/* logical start address */
300 			block_t len;	/* length */
301 			block_t start;	/* actual start address in dev */
302 		};
303 		struct discard_info di;	/* discard info */
304 
305 	};
306 	struct list_head list;		/* command list */
307 	struct completion wait;		/* compleation */
308 	struct block_device *bdev;	/* bdev */
309 	unsigned short ref;		/* reference count */
310 	unsigned char state;		/* state */
311 	unsigned char queued;		/* queued discard */
312 	int error;			/* bio error */
313 	spinlock_t lock;		/* for state/bio_ref updating */
314 	unsigned short bio_ref;		/* bio reference count */
315 };
316 
317 enum {
318 	DPOLICY_BG,
319 	DPOLICY_FORCE,
320 	DPOLICY_FSTRIM,
321 	DPOLICY_UMOUNT,
322 	MAX_DPOLICY,
323 };
324 
325 struct discard_policy {
326 	int type;			/* type of discard */
327 	unsigned int min_interval;	/* used for candidates exist */
328 	unsigned int mid_interval;	/* used for device busy */
329 	unsigned int max_interval;	/* used for candidates not exist */
330 	unsigned int max_requests;	/* # of discards issued per round */
331 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
332 	bool io_aware;			/* issue discard in idle time */
333 	bool sync;			/* submit discard with REQ_SYNC flag */
334 	bool ordered;			/* issue discard by lba order */
335 	unsigned int granularity;	/* discard granularity */
336 	int timeout;			/* discard timeout for put_super */
337 };
338 
339 struct discard_cmd_control {
340 	struct task_struct *f2fs_issue_discard;	/* discard thread */
341 	struct list_head entry_list;		/* 4KB discard entry list */
342 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
343 	struct list_head wait_list;		/* store on-flushing entries */
344 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
345 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
346 	unsigned int discard_wake;		/* to wake up discard thread */
347 	struct mutex cmd_lock;
348 	unsigned int nr_discards;		/* # of discards in the list */
349 	unsigned int max_discards;		/* max. discards to be issued */
350 	unsigned int discard_granularity;	/* discard granularity */
351 	unsigned int undiscard_blks;		/* # of undiscard blocks */
352 	unsigned int next_pos;			/* next discard position */
353 	atomic_t issued_discard;		/* # of issued discard */
354 	atomic_t queued_discard;		/* # of queued discard */
355 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
356 	struct rb_root_cached root;		/* root of discard rb-tree */
357 	bool rbtree_check;			/* config for consistence check */
358 };
359 
360 /* for the list of fsync inodes, used only during recovery */
361 struct fsync_inode_entry {
362 	struct list_head list;	/* list head */
363 	struct inode *inode;	/* vfs inode pointer */
364 	block_t blkaddr;	/* block address locating the last fsync */
365 	block_t last_dentry;	/* block address locating the last dentry */
366 };
367 
368 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
369 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
370 
371 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
372 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
373 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
374 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
375 
376 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
377 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
378 
379 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
380 {
381 	int before = nats_in_cursum(journal);
382 
383 	journal->n_nats = cpu_to_le16(before + i);
384 	return before;
385 }
386 
387 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
388 {
389 	int before = sits_in_cursum(journal);
390 
391 	journal->n_sits = cpu_to_le16(before + i);
392 	return before;
393 }
394 
395 static inline bool __has_cursum_space(struct f2fs_journal *journal,
396 							int size, int type)
397 {
398 	if (type == NAT_JOURNAL)
399 		return size <= MAX_NAT_JENTRIES(journal);
400 	return size <= MAX_SIT_JENTRIES(journal);
401 }
402 
403 /*
404  * ioctl commands
405  */
406 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
407 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
408 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
409 
410 #define F2FS_IOCTL_MAGIC		0xf5
411 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
412 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
413 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
414 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
415 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
416 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
417 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
418 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
419 						struct f2fs_defragment)
420 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
421 						struct f2fs_move_range)
422 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
423 						struct f2fs_flush_device)
424 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
425 						struct f2fs_gc_range)
426 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
427 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
428 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
429 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
430 #define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
431 
432 #define F2FS_IOC_GET_VOLUME_NAME	FS_IOC_GETFSLABEL
433 #define F2FS_IOC_SET_VOLUME_NAME	FS_IOC_SETFSLABEL
434 
435 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
436 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
437 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
438 
439 /*
440  * should be same as XFS_IOC_GOINGDOWN.
441  * Flags for going down operation used by FS_IOC_GOINGDOWN
442  */
443 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
444 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
445 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
446 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
447 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
448 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
449 
450 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
451 /*
452  * ioctl commands in 32 bit emulation
453  */
454 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
455 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
456 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
457 #endif
458 
459 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
460 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
461 
462 struct f2fs_gc_range {
463 	u32 sync;
464 	u64 start;
465 	u64 len;
466 };
467 
468 struct f2fs_defragment {
469 	u64 start;
470 	u64 len;
471 };
472 
473 struct f2fs_move_range {
474 	u32 dst_fd;		/* destination fd */
475 	u64 pos_in;		/* start position in src_fd */
476 	u64 pos_out;		/* start position in dst_fd */
477 	u64 len;		/* size to move */
478 };
479 
480 struct f2fs_flush_device {
481 	u32 dev_num;		/* device number to flush */
482 	u32 segments;		/* # of segments to flush */
483 };
484 
485 /* for inline stuff */
486 #define DEF_INLINE_RESERVED_SIZE	1
487 static inline int get_extra_isize(struct inode *inode);
488 static inline int get_inline_xattr_addrs(struct inode *inode);
489 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
490 				(CUR_ADDRS_PER_INODE(inode) -		\
491 				get_inline_xattr_addrs(inode) -	\
492 				DEF_INLINE_RESERVED_SIZE))
493 
494 /* for inline dir */
495 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
496 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
497 				BITS_PER_BYTE + 1))
498 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
499 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
500 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
501 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
502 				NR_INLINE_DENTRY(inode) + \
503 				INLINE_DENTRY_BITMAP_SIZE(inode)))
504 
505 /*
506  * For INODE and NODE manager
507  */
508 /* for directory operations */
509 struct f2fs_dentry_ptr {
510 	struct inode *inode;
511 	void *bitmap;
512 	struct f2fs_dir_entry *dentry;
513 	__u8 (*filename)[F2FS_SLOT_LEN];
514 	int max;
515 	int nr_bitmap;
516 };
517 
518 static inline void make_dentry_ptr_block(struct inode *inode,
519 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
520 {
521 	d->inode = inode;
522 	d->max = NR_DENTRY_IN_BLOCK;
523 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
524 	d->bitmap = t->dentry_bitmap;
525 	d->dentry = t->dentry;
526 	d->filename = t->filename;
527 }
528 
529 static inline void make_dentry_ptr_inline(struct inode *inode,
530 					struct f2fs_dentry_ptr *d, void *t)
531 {
532 	int entry_cnt = NR_INLINE_DENTRY(inode);
533 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
534 	int reserved_size = INLINE_RESERVED_SIZE(inode);
535 
536 	d->inode = inode;
537 	d->max = entry_cnt;
538 	d->nr_bitmap = bitmap_size;
539 	d->bitmap = t;
540 	d->dentry = t + bitmap_size + reserved_size;
541 	d->filename = t + bitmap_size + reserved_size +
542 					SIZE_OF_DIR_ENTRY * entry_cnt;
543 }
544 
545 /*
546  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
547  * as its node offset to distinguish from index node blocks.
548  * But some bits are used to mark the node block.
549  */
550 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
551 				>> OFFSET_BIT_SHIFT)
552 enum {
553 	ALLOC_NODE,			/* allocate a new node page if needed */
554 	LOOKUP_NODE,			/* look up a node without readahead */
555 	LOOKUP_NODE_RA,			/*
556 					 * look up a node with readahead called
557 					 * by get_data_block.
558 					 */
559 };
560 
561 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
562 
563 /* maximum retry quota flush count */
564 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
565 
566 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
567 
568 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
569 
570 /* for in-memory extent cache entry */
571 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
572 
573 /* number of extent info in extent cache we try to shrink */
574 #define EXTENT_CACHE_SHRINK_NUMBER	128
575 
576 struct rb_entry {
577 	struct rb_node rb_node;		/* rb node located in rb-tree */
578 	unsigned int ofs;		/* start offset of the entry */
579 	unsigned int len;		/* length of the entry */
580 };
581 
582 struct extent_info {
583 	unsigned int fofs;		/* start offset in a file */
584 	unsigned int len;		/* length of the extent */
585 	u32 blk;			/* start block address of the extent */
586 };
587 
588 struct extent_node {
589 	struct rb_node rb_node;		/* rb node located in rb-tree */
590 	struct extent_info ei;		/* extent info */
591 	struct list_head list;		/* node in global extent list of sbi */
592 	struct extent_tree *et;		/* extent tree pointer */
593 };
594 
595 struct extent_tree {
596 	nid_t ino;			/* inode number */
597 	struct rb_root_cached root;	/* root of extent info rb-tree */
598 	struct extent_node *cached_en;	/* recently accessed extent node */
599 	struct extent_info largest;	/* largested extent info */
600 	struct list_head list;		/* to be used by sbi->zombie_list */
601 	rwlock_t lock;			/* protect extent info rb-tree */
602 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
603 	bool largest_updated;		/* largest extent updated */
604 };
605 
606 /*
607  * This structure is taken from ext4_map_blocks.
608  *
609  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
610  */
611 #define F2FS_MAP_NEW		(1 << BH_New)
612 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
613 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
614 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
615 				F2FS_MAP_UNWRITTEN)
616 
617 struct f2fs_map_blocks {
618 	block_t m_pblk;
619 	block_t m_lblk;
620 	unsigned int m_len;
621 	unsigned int m_flags;
622 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
623 	pgoff_t *m_next_extent;		/* point to next possible extent */
624 	int m_seg_type;
625 	bool m_may_create;		/* indicate it is from write path */
626 };
627 
628 /* for flag in get_data_block */
629 enum {
630 	F2FS_GET_BLOCK_DEFAULT,
631 	F2FS_GET_BLOCK_FIEMAP,
632 	F2FS_GET_BLOCK_BMAP,
633 	F2FS_GET_BLOCK_DIO,
634 	F2FS_GET_BLOCK_PRE_DIO,
635 	F2FS_GET_BLOCK_PRE_AIO,
636 	F2FS_GET_BLOCK_PRECACHE,
637 };
638 
639 /*
640  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
641  */
642 #define FADVISE_COLD_BIT	0x01
643 #define FADVISE_LOST_PINO_BIT	0x02
644 #define FADVISE_ENCRYPT_BIT	0x04
645 #define FADVISE_ENC_NAME_BIT	0x08
646 #define FADVISE_KEEP_SIZE_BIT	0x10
647 #define FADVISE_HOT_BIT		0x20
648 #define FADVISE_VERITY_BIT	0x40
649 
650 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
651 
652 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
653 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
654 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
655 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
656 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
657 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
658 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
659 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
660 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
661 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
662 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
663 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
664 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
665 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
666 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
667 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
668 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
669 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
670 
671 #define DEF_DIR_LEVEL		0
672 
673 enum {
674 	GC_FAILURE_PIN,
675 	GC_FAILURE_ATOMIC,
676 	MAX_GC_FAILURE
677 };
678 
679 struct f2fs_inode_info {
680 	struct inode vfs_inode;		/* serve a vfs inode */
681 	unsigned long i_flags;		/* keep an inode flags for ioctl */
682 	unsigned char i_advise;		/* use to give file attribute hints */
683 	unsigned char i_dir_level;	/* use for dentry level for large dir */
684 	unsigned int i_current_depth;	/* only for directory depth */
685 	/* for gc failure statistic */
686 	unsigned int i_gc_failures[MAX_GC_FAILURE];
687 	unsigned int i_pino;		/* parent inode number */
688 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
689 
690 	/* Use below internally in f2fs*/
691 	unsigned long flags;		/* use to pass per-file flags */
692 	struct rw_semaphore i_sem;	/* protect fi info */
693 	atomic_t dirty_pages;		/* # of dirty pages */
694 	f2fs_hash_t chash;		/* hash value of given file name */
695 	unsigned int clevel;		/* maximum level of given file name */
696 	struct task_struct *task;	/* lookup and create consistency */
697 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
698 	nid_t i_xattr_nid;		/* node id that contains xattrs */
699 	loff_t	last_disk_size;		/* lastly written file size */
700 
701 #ifdef CONFIG_QUOTA
702 	struct dquot *i_dquot[MAXQUOTAS];
703 
704 	/* quota space reservation, managed internally by quota code */
705 	qsize_t i_reserved_quota;
706 #endif
707 	struct list_head dirty_list;	/* dirty list for dirs and files */
708 	struct list_head gdirty_list;	/* linked in global dirty list */
709 	struct list_head inmem_ilist;	/* list for inmem inodes */
710 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
711 	struct task_struct *inmem_task;	/* store inmemory task */
712 	struct mutex inmem_lock;	/* lock for inmemory pages */
713 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
714 
715 	/* avoid racing between foreground op and gc */
716 	struct rw_semaphore i_gc_rwsem[2];
717 	struct rw_semaphore i_mmap_sem;
718 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
719 
720 	int i_extra_isize;		/* size of extra space located in i_addr */
721 	kprojid_t i_projid;		/* id for project quota */
722 	int i_inline_xattr_size;	/* inline xattr size */
723 	struct timespec64 i_crtime;	/* inode creation time */
724 	struct timespec64 i_disk_time[4];/* inode disk times */
725 
726 	/* for file compress */
727 	u64 i_compr_blocks;			/* # of compressed blocks */
728 	unsigned char i_compress_algorithm;	/* algorithm type */
729 	unsigned char i_log_cluster_size;	/* log of cluster size */
730 	unsigned int i_cluster_size;		/* cluster size */
731 };
732 
733 static inline void get_extent_info(struct extent_info *ext,
734 					struct f2fs_extent *i_ext)
735 {
736 	ext->fofs = le32_to_cpu(i_ext->fofs);
737 	ext->blk = le32_to_cpu(i_ext->blk);
738 	ext->len = le32_to_cpu(i_ext->len);
739 }
740 
741 static inline void set_raw_extent(struct extent_info *ext,
742 					struct f2fs_extent *i_ext)
743 {
744 	i_ext->fofs = cpu_to_le32(ext->fofs);
745 	i_ext->blk = cpu_to_le32(ext->blk);
746 	i_ext->len = cpu_to_le32(ext->len);
747 }
748 
749 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
750 						u32 blk, unsigned int len)
751 {
752 	ei->fofs = fofs;
753 	ei->blk = blk;
754 	ei->len = len;
755 }
756 
757 static inline bool __is_discard_mergeable(struct discard_info *back,
758 			struct discard_info *front, unsigned int max_len)
759 {
760 	return (back->lstart + back->len == front->lstart) &&
761 		(back->len + front->len <= max_len);
762 }
763 
764 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
765 			struct discard_info *back, unsigned int max_len)
766 {
767 	return __is_discard_mergeable(back, cur, max_len);
768 }
769 
770 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
771 			struct discard_info *front, unsigned int max_len)
772 {
773 	return __is_discard_mergeable(cur, front, max_len);
774 }
775 
776 static inline bool __is_extent_mergeable(struct extent_info *back,
777 						struct extent_info *front)
778 {
779 	return (back->fofs + back->len == front->fofs &&
780 			back->blk + back->len == front->blk);
781 }
782 
783 static inline bool __is_back_mergeable(struct extent_info *cur,
784 						struct extent_info *back)
785 {
786 	return __is_extent_mergeable(back, cur);
787 }
788 
789 static inline bool __is_front_mergeable(struct extent_info *cur,
790 						struct extent_info *front)
791 {
792 	return __is_extent_mergeable(cur, front);
793 }
794 
795 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
796 static inline void __try_update_largest_extent(struct extent_tree *et,
797 						struct extent_node *en)
798 {
799 	if (en->ei.len > et->largest.len) {
800 		et->largest = en->ei;
801 		et->largest_updated = true;
802 	}
803 }
804 
805 /*
806  * For free nid management
807  */
808 enum nid_state {
809 	FREE_NID,		/* newly added to free nid list */
810 	PREALLOC_NID,		/* it is preallocated */
811 	MAX_NID_STATE,
812 };
813 
814 struct f2fs_nm_info {
815 	block_t nat_blkaddr;		/* base disk address of NAT */
816 	nid_t max_nid;			/* maximum possible node ids */
817 	nid_t available_nids;		/* # of available node ids */
818 	nid_t next_scan_nid;		/* the next nid to be scanned */
819 	unsigned int ram_thresh;	/* control the memory footprint */
820 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
821 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
822 
823 	/* NAT cache management */
824 	struct radix_tree_root nat_root;/* root of the nat entry cache */
825 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
826 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
827 	struct list_head nat_entries;	/* cached nat entry list (clean) */
828 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
829 	unsigned int nat_cnt;		/* the # of cached nat entries */
830 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
831 	unsigned int nat_blocks;	/* # of nat blocks */
832 
833 	/* free node ids management */
834 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
835 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
836 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
837 	spinlock_t nid_list_lock;	/* protect nid lists ops */
838 	struct mutex build_lock;	/* lock for build free nids */
839 	unsigned char **free_nid_bitmap;
840 	unsigned char *nat_block_bitmap;
841 	unsigned short *free_nid_count;	/* free nid count of NAT block */
842 
843 	/* for checkpoint */
844 	char *nat_bitmap;		/* NAT bitmap pointer */
845 
846 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
847 	unsigned char *nat_bits;	/* NAT bits blocks */
848 	unsigned char *full_nat_bits;	/* full NAT pages */
849 	unsigned char *empty_nat_bits;	/* empty NAT pages */
850 #ifdef CONFIG_F2FS_CHECK_FS
851 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
852 #endif
853 	int bitmap_size;		/* bitmap size */
854 };
855 
856 /*
857  * this structure is used as one of function parameters.
858  * all the information are dedicated to a given direct node block determined
859  * by the data offset in a file.
860  */
861 struct dnode_of_data {
862 	struct inode *inode;		/* vfs inode pointer */
863 	struct page *inode_page;	/* its inode page, NULL is possible */
864 	struct page *node_page;		/* cached direct node page */
865 	nid_t nid;			/* node id of the direct node block */
866 	unsigned int ofs_in_node;	/* data offset in the node page */
867 	bool inode_page_locked;		/* inode page is locked or not */
868 	bool node_changed;		/* is node block changed */
869 	char cur_level;			/* level of hole node page */
870 	char max_level;			/* level of current page located */
871 	block_t	data_blkaddr;		/* block address of the node block */
872 };
873 
874 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
875 		struct page *ipage, struct page *npage, nid_t nid)
876 {
877 	memset(dn, 0, sizeof(*dn));
878 	dn->inode = inode;
879 	dn->inode_page = ipage;
880 	dn->node_page = npage;
881 	dn->nid = nid;
882 }
883 
884 /*
885  * For SIT manager
886  *
887  * By default, there are 6 active log areas across the whole main area.
888  * When considering hot and cold data separation to reduce cleaning overhead,
889  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
890  * respectively.
891  * In the current design, you should not change the numbers intentionally.
892  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
893  * logs individually according to the underlying devices. (default: 6)
894  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
895  * data and 8 for node logs.
896  */
897 #define	NR_CURSEG_DATA_TYPE	(3)
898 #define NR_CURSEG_NODE_TYPE	(3)
899 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
900 
901 enum {
902 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
903 	CURSEG_WARM_DATA,	/* data blocks */
904 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
905 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
906 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
907 	CURSEG_COLD_NODE,	/* indirect node blocks */
908 	NO_CHECK_TYPE,
909 	CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */
910 };
911 
912 struct flush_cmd {
913 	struct completion wait;
914 	struct llist_node llnode;
915 	nid_t ino;
916 	int ret;
917 };
918 
919 struct flush_cmd_control {
920 	struct task_struct *f2fs_issue_flush;	/* flush thread */
921 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
922 	atomic_t issued_flush;			/* # of issued flushes */
923 	atomic_t queued_flush;			/* # of queued flushes */
924 	struct llist_head issue_list;		/* list for command issue */
925 	struct llist_node *dispatch_list;	/* list for command dispatch */
926 };
927 
928 struct f2fs_sm_info {
929 	struct sit_info *sit_info;		/* whole segment information */
930 	struct free_segmap_info *free_info;	/* free segment information */
931 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
932 	struct curseg_info *curseg_array;	/* active segment information */
933 
934 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
935 
936 	block_t seg0_blkaddr;		/* block address of 0'th segment */
937 	block_t main_blkaddr;		/* start block address of main area */
938 	block_t ssa_blkaddr;		/* start block address of SSA area */
939 
940 	unsigned int segment_count;	/* total # of segments */
941 	unsigned int main_segments;	/* # of segments in main area */
942 	unsigned int reserved_segments;	/* # of reserved segments */
943 	unsigned int ovp_segments;	/* # of overprovision segments */
944 
945 	/* a threshold to reclaim prefree segments */
946 	unsigned int rec_prefree_segments;
947 
948 	/* for batched trimming */
949 	unsigned int trim_sections;		/* # of sections to trim */
950 
951 	struct list_head sit_entry_set;	/* sit entry set list */
952 
953 	unsigned int ipu_policy;	/* in-place-update policy */
954 	unsigned int min_ipu_util;	/* in-place-update threshold */
955 	unsigned int min_fsync_blocks;	/* threshold for fsync */
956 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
957 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
958 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
959 
960 	/* for flush command control */
961 	struct flush_cmd_control *fcc_info;
962 
963 	/* for discard command control */
964 	struct discard_cmd_control *dcc_info;
965 };
966 
967 /*
968  * For superblock
969  */
970 /*
971  * COUNT_TYPE for monitoring
972  *
973  * f2fs monitors the number of several block types such as on-writeback,
974  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
975  */
976 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
977 enum count_type {
978 	F2FS_DIRTY_DENTS,
979 	F2FS_DIRTY_DATA,
980 	F2FS_DIRTY_QDATA,
981 	F2FS_DIRTY_NODES,
982 	F2FS_DIRTY_META,
983 	F2FS_INMEM_PAGES,
984 	F2FS_DIRTY_IMETA,
985 	F2FS_WB_CP_DATA,
986 	F2FS_WB_DATA,
987 	F2FS_RD_DATA,
988 	F2FS_RD_NODE,
989 	F2FS_RD_META,
990 	F2FS_DIO_WRITE,
991 	F2FS_DIO_READ,
992 	NR_COUNT_TYPE,
993 };
994 
995 /*
996  * The below are the page types of bios used in submit_bio().
997  * The available types are:
998  * DATA			User data pages. It operates as async mode.
999  * NODE			Node pages. It operates as async mode.
1000  * META			FS metadata pages such as SIT, NAT, CP.
1001  * NR_PAGE_TYPE		The number of page types.
1002  * META_FLUSH		Make sure the previous pages are written
1003  *			with waiting the bio's completion
1004  * ...			Only can be used with META.
1005  */
1006 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1007 enum page_type {
1008 	DATA,
1009 	NODE,
1010 	META,
1011 	NR_PAGE_TYPE,
1012 	META_FLUSH,
1013 	INMEM,		/* the below types are used by tracepoints only. */
1014 	INMEM_DROP,
1015 	INMEM_INVALIDATE,
1016 	INMEM_REVOKE,
1017 	IPU,
1018 	OPU,
1019 };
1020 
1021 enum temp_type {
1022 	HOT = 0,	/* must be zero for meta bio */
1023 	WARM,
1024 	COLD,
1025 	NR_TEMP_TYPE,
1026 };
1027 
1028 enum need_lock_type {
1029 	LOCK_REQ = 0,
1030 	LOCK_DONE,
1031 	LOCK_RETRY,
1032 };
1033 
1034 enum cp_reason_type {
1035 	CP_NO_NEEDED,
1036 	CP_NON_REGULAR,
1037 	CP_COMPRESSED,
1038 	CP_HARDLINK,
1039 	CP_SB_NEED_CP,
1040 	CP_WRONG_PINO,
1041 	CP_NO_SPC_ROLL,
1042 	CP_NODE_NEED_CP,
1043 	CP_FASTBOOT_MODE,
1044 	CP_SPEC_LOG_NUM,
1045 	CP_RECOVER_DIR,
1046 };
1047 
1048 enum iostat_type {
1049 	APP_DIRECT_IO,			/* app direct IOs */
1050 	APP_BUFFERED_IO,		/* app buffered IOs */
1051 	APP_WRITE_IO,			/* app write IOs */
1052 	APP_MAPPED_IO,			/* app mapped IOs */
1053 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1054 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1055 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1056 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1057 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1058 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1059 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1060 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1061 	FS_DISCARD,			/* discard */
1062 	NR_IO_TYPE,
1063 };
1064 
1065 struct f2fs_io_info {
1066 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1067 	nid_t ino;		/* inode number */
1068 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1069 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1070 	int op;			/* contains REQ_OP_ */
1071 	int op_flags;		/* req_flag_bits */
1072 	block_t new_blkaddr;	/* new block address to be written */
1073 	block_t old_blkaddr;	/* old block address before Cow */
1074 	struct page *page;	/* page to be written */
1075 	struct page *encrypted_page;	/* encrypted page */
1076 	struct page *compressed_page;	/* compressed page */
1077 	struct list_head list;		/* serialize IOs */
1078 	bool submitted;		/* indicate IO submission */
1079 	int need_lock;		/* indicate we need to lock cp_rwsem */
1080 	bool in_list;		/* indicate fio is in io_list */
1081 	bool is_por;		/* indicate IO is from recovery or not */
1082 	bool retry;		/* need to reallocate block address */
1083 	int compr_blocks;	/* # of compressed block addresses */
1084 	bool encrypted;		/* indicate file is encrypted */
1085 	enum iostat_type io_type;	/* io type */
1086 	struct writeback_control *io_wbc; /* writeback control */
1087 	struct bio **bio;		/* bio for ipu */
1088 	sector_t *last_block;		/* last block number in bio */
1089 	unsigned char version;		/* version of the node */
1090 };
1091 
1092 struct bio_entry {
1093 	struct bio *bio;
1094 	struct list_head list;
1095 };
1096 
1097 #define is_read_io(rw) ((rw) == READ)
1098 struct f2fs_bio_info {
1099 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1100 	struct bio *bio;		/* bios to merge */
1101 	sector_t last_block_in_bio;	/* last block number */
1102 	struct f2fs_io_info fio;	/* store buffered io info. */
1103 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1104 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1105 	struct list_head io_list;	/* track fios */
1106 	struct list_head bio_list;	/* bio entry list head */
1107 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1108 };
1109 
1110 #define FDEV(i)				(sbi->devs[i])
1111 #define RDEV(i)				(raw_super->devs[i])
1112 struct f2fs_dev_info {
1113 	struct block_device *bdev;
1114 	char path[MAX_PATH_LEN];
1115 	unsigned int total_segments;
1116 	block_t start_blk;
1117 	block_t end_blk;
1118 #ifdef CONFIG_BLK_DEV_ZONED
1119 	unsigned int nr_blkz;		/* Total number of zones */
1120 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1121 #endif
1122 };
1123 
1124 enum inode_type {
1125 	DIR_INODE,			/* for dirty dir inode */
1126 	FILE_INODE,			/* for dirty regular/symlink inode */
1127 	DIRTY_META,			/* for all dirtied inode metadata */
1128 	ATOMIC_FILE,			/* for all atomic files */
1129 	NR_INODE_TYPE,
1130 };
1131 
1132 /* for inner inode cache management */
1133 struct inode_management {
1134 	struct radix_tree_root ino_root;	/* ino entry array */
1135 	spinlock_t ino_lock;			/* for ino entry lock */
1136 	struct list_head ino_list;		/* inode list head */
1137 	unsigned long ino_num;			/* number of entries */
1138 };
1139 
1140 /* For s_flag in struct f2fs_sb_info */
1141 enum {
1142 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1143 	SBI_IS_CLOSE,				/* specify unmounting */
1144 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1145 	SBI_POR_DOING,				/* recovery is doing or not */
1146 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1147 	SBI_NEED_CP,				/* need to checkpoint */
1148 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1149 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1150 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1151 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1152 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1153 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1154 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1155 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1156 };
1157 
1158 enum {
1159 	CP_TIME,
1160 	REQ_TIME,
1161 	DISCARD_TIME,
1162 	GC_TIME,
1163 	DISABLE_TIME,
1164 	UMOUNT_DISCARD_TIMEOUT,
1165 	MAX_TIME,
1166 };
1167 
1168 enum {
1169 	GC_NORMAL,
1170 	GC_IDLE_CB,
1171 	GC_IDLE_GREEDY,
1172 	GC_URGENT,
1173 };
1174 
1175 enum {
1176 	WHINT_MODE_OFF,		/* not pass down write hints */
1177 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1178 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1179 };
1180 
1181 enum {
1182 	ALLOC_MODE_DEFAULT,	/* stay default */
1183 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1184 };
1185 
1186 enum fsync_mode {
1187 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1188 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1189 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1190 };
1191 
1192 /*
1193  * this value is set in page as a private data which indicate that
1194  * the page is atomically written, and it is in inmem_pages list.
1195  */
1196 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1197 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1198 
1199 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
1200 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
1201 #define IS_DUMMY_WRITTEN_PAGE(page)			\
1202 		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
1203 
1204 #ifdef CONFIG_FS_ENCRYPTION
1205 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1206 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1207 #else
1208 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1209 #endif
1210 
1211 /* For compression */
1212 enum compress_algorithm_type {
1213 	COMPRESS_LZO,
1214 	COMPRESS_LZ4,
1215 	COMPRESS_MAX,
1216 };
1217 
1218 #define COMPRESS_DATA_RESERVED_SIZE		4
1219 struct compress_data {
1220 	__le32 clen;			/* compressed data size */
1221 	__le32 chksum;			/* checksum of compressed data */
1222 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1223 	u8 cdata[];			/* compressed data */
1224 };
1225 
1226 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1227 
1228 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1229 
1230 /* compress context */
1231 struct compress_ctx {
1232 	struct inode *inode;		/* inode the context belong to */
1233 	pgoff_t cluster_idx;		/* cluster index number */
1234 	unsigned int cluster_size;	/* page count in cluster */
1235 	unsigned int log_cluster_size;	/* log of cluster size */
1236 	struct page **rpages;		/* pages store raw data in cluster */
1237 	unsigned int nr_rpages;		/* total page number in rpages */
1238 	struct page **cpages;		/* pages store compressed data in cluster */
1239 	unsigned int nr_cpages;		/* total page number in cpages */
1240 	void *rbuf;			/* virtual mapped address on rpages */
1241 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1242 	size_t rlen;			/* valid data length in rbuf */
1243 	size_t clen;			/* valid data length in cbuf */
1244 	void *private;			/* payload buffer for specified compression algorithm */
1245 };
1246 
1247 /* compress context for write IO path */
1248 struct compress_io_ctx {
1249 	u32 magic;			/* magic number to indicate page is compressed */
1250 	struct inode *inode;		/* inode the context belong to */
1251 	struct page **rpages;		/* pages store raw data in cluster */
1252 	unsigned int nr_rpages;		/* total page number in rpages */
1253 	refcount_t ref;			/* referrence count of raw page */
1254 };
1255 
1256 /* decompress io context for read IO path */
1257 struct decompress_io_ctx {
1258 	u32 magic;			/* magic number to indicate page is compressed */
1259 	struct inode *inode;		/* inode the context belong to */
1260 	pgoff_t cluster_idx;		/* cluster index number */
1261 	unsigned int cluster_size;	/* page count in cluster */
1262 	unsigned int log_cluster_size;	/* log of cluster size */
1263 	struct page **rpages;		/* pages store raw data in cluster */
1264 	unsigned int nr_rpages;		/* total page number in rpages */
1265 	struct page **cpages;		/* pages store compressed data in cluster */
1266 	unsigned int nr_cpages;		/* total page number in cpages */
1267 	struct page **tpages;		/* temp pages to pad holes in cluster */
1268 	void *rbuf;			/* virtual mapped address on rpages */
1269 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1270 	size_t rlen;			/* valid data length in rbuf */
1271 	size_t clen;			/* valid data length in cbuf */
1272 	refcount_t ref;			/* referrence count of compressed page */
1273 	bool failed;			/* indicate IO error during decompression */
1274 };
1275 
1276 #define NULL_CLUSTER			((unsigned int)(~0))
1277 #define MIN_COMPRESS_LOG_SIZE		2
1278 #define MAX_COMPRESS_LOG_SIZE		8
1279 
1280 struct f2fs_sb_info {
1281 	struct super_block *sb;			/* pointer to VFS super block */
1282 	struct proc_dir_entry *s_proc;		/* proc entry */
1283 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1284 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1285 	int valid_super_block;			/* valid super block no */
1286 	unsigned long s_flag;				/* flags for sbi */
1287 	struct mutex writepages;		/* mutex for writepages() */
1288 #ifdef CONFIG_UNICODE
1289 	struct unicode_map *s_encoding;
1290 	__u16 s_encoding_flags;
1291 #endif
1292 
1293 #ifdef CONFIG_BLK_DEV_ZONED
1294 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1295 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1296 #endif
1297 
1298 	/* for node-related operations */
1299 	struct f2fs_nm_info *nm_info;		/* node manager */
1300 	struct inode *node_inode;		/* cache node blocks */
1301 
1302 	/* for segment-related operations */
1303 	struct f2fs_sm_info *sm_info;		/* segment manager */
1304 
1305 	/* for bio operations */
1306 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1307 	/* keep migration IO order for LFS mode */
1308 	struct rw_semaphore io_order_lock;
1309 	mempool_t *write_io_dummy;		/* Dummy pages */
1310 
1311 	/* for checkpoint */
1312 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1313 	int cur_cp_pack;			/* remain current cp pack */
1314 	spinlock_t cp_lock;			/* for flag in ckpt */
1315 	struct inode *meta_inode;		/* cache meta blocks */
1316 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1317 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1318 	struct rw_semaphore node_write;		/* locking node writes */
1319 	struct rw_semaphore node_change;	/* locking node change */
1320 	wait_queue_head_t cp_wait;
1321 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1322 	long interval_time[MAX_TIME];		/* to store thresholds */
1323 
1324 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1325 
1326 	spinlock_t fsync_node_lock;		/* for node entry lock */
1327 	struct list_head fsync_node_list;	/* node list head */
1328 	unsigned int fsync_seg_id;		/* sequence id */
1329 	unsigned int fsync_node_num;		/* number of node entries */
1330 
1331 	/* for orphan inode, use 0'th array */
1332 	unsigned int max_orphans;		/* max orphan inodes */
1333 
1334 	/* for inode management */
1335 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1336 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1337 	struct mutex flush_lock;		/* for flush exclusion */
1338 
1339 	/* for extent tree cache */
1340 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1341 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1342 	struct list_head extent_list;		/* lru list for shrinker */
1343 	spinlock_t extent_lock;			/* locking extent lru list */
1344 	atomic_t total_ext_tree;		/* extent tree count */
1345 	struct list_head zombie_list;		/* extent zombie tree list */
1346 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1347 	atomic_t total_ext_node;		/* extent info count */
1348 
1349 	/* basic filesystem units */
1350 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1351 	unsigned int log_blocksize;		/* log2 block size */
1352 	unsigned int blocksize;			/* block size */
1353 	unsigned int root_ino_num;		/* root inode number*/
1354 	unsigned int node_ino_num;		/* node inode number*/
1355 	unsigned int meta_ino_num;		/* meta inode number*/
1356 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1357 	unsigned int blocks_per_seg;		/* blocks per segment */
1358 	unsigned int segs_per_sec;		/* segments per section */
1359 	unsigned int secs_per_zone;		/* sections per zone */
1360 	unsigned int total_sections;		/* total section count */
1361 	struct mutex resize_mutex;		/* for resize exclusion */
1362 	unsigned int total_node_count;		/* total node block count */
1363 	unsigned int total_valid_node_count;	/* valid node block count */
1364 	loff_t max_file_blocks;			/* max block index of file */
1365 	int dir_level;				/* directory level */
1366 	int readdir_ra;				/* readahead inode in readdir */
1367 
1368 	block_t user_block_count;		/* # of user blocks */
1369 	block_t total_valid_block_count;	/* # of valid blocks */
1370 	block_t discard_blks;			/* discard command candidats */
1371 	block_t last_valid_block_count;		/* for recovery */
1372 	block_t reserved_blocks;		/* configurable reserved blocks */
1373 	block_t current_reserved_blocks;	/* current reserved blocks */
1374 
1375 	/* Additional tracking for no checkpoint mode */
1376 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1377 
1378 	unsigned int nquota_files;		/* # of quota sysfile */
1379 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1380 
1381 	/* # of pages, see count_type */
1382 	atomic_t nr_pages[NR_COUNT_TYPE];
1383 	/* # of allocated blocks */
1384 	struct percpu_counter alloc_valid_block_count;
1385 
1386 	/* writeback control */
1387 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1388 
1389 	/* valid inode count */
1390 	struct percpu_counter total_valid_inode_count;
1391 
1392 	struct f2fs_mount_info mount_opt;	/* mount options */
1393 
1394 	/* for cleaning operations */
1395 	struct rw_semaphore gc_lock;		/*
1396 						 * semaphore for GC, avoid
1397 						 * race between GC and GC or CP
1398 						 */
1399 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1400 	unsigned int cur_victim_sec;		/* current victim section num */
1401 	unsigned int gc_mode;			/* current GC state */
1402 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1403 	/* for skip statistic */
1404 	unsigned int atomic_files;              /* # of opened atomic file */
1405 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1406 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1407 
1408 	/* threshold for gc trials on pinned files */
1409 	u64 gc_pin_file_threshold;
1410 	struct rw_semaphore pin_sem;
1411 
1412 	/* maximum # of trials to find a victim segment for SSR and GC */
1413 	unsigned int max_victim_search;
1414 	/* migration granularity of garbage collection, unit: segment */
1415 	unsigned int migration_granularity;
1416 
1417 	/*
1418 	 * for stat information.
1419 	 * one is for the LFS mode, and the other is for the SSR mode.
1420 	 */
1421 #ifdef CONFIG_F2FS_STAT_FS
1422 	struct f2fs_stat_info *stat_info;	/* FS status information */
1423 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1424 	unsigned int segment_count[2];		/* # of allocated segments */
1425 	unsigned int block_count[2];		/* # of allocated blocks */
1426 	atomic_t inplace_count;		/* # of inplace update */
1427 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1428 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1429 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1430 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1431 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1432 	atomic_t inline_inode;			/* # of inline_data inodes */
1433 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1434 	atomic_t compr_inode;			/* # of compressed inodes */
1435 	atomic_t compr_blocks;			/* # of compressed blocks */
1436 	atomic_t vw_cnt;			/* # of volatile writes */
1437 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1438 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1439 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1440 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1441 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1442 #endif
1443 	spinlock_t stat_lock;			/* lock for stat operations */
1444 
1445 	/* For app/fs IO statistics */
1446 	spinlock_t iostat_lock;
1447 	unsigned long long write_iostat[NR_IO_TYPE];
1448 	bool iostat_enable;
1449 
1450 	/* For sysfs suppport */
1451 	struct kobject s_kobj;
1452 	struct completion s_kobj_unregister;
1453 
1454 	/* For shrinker support */
1455 	struct list_head s_list;
1456 	int s_ndevs;				/* number of devices */
1457 	struct f2fs_dev_info *devs;		/* for device list */
1458 	unsigned int dirty_device;		/* for checkpoint data flush */
1459 	spinlock_t dev_lock;			/* protect dirty_device */
1460 	struct mutex umount_mutex;
1461 	unsigned int shrinker_run_no;
1462 
1463 	/* For write statistics */
1464 	u64 sectors_written_start;
1465 	u64 kbytes_written;
1466 
1467 	/* Reference to checksum algorithm driver via cryptoapi */
1468 	struct crypto_shash *s_chksum_driver;
1469 
1470 	/* Precomputed FS UUID checksum for seeding other checksums */
1471 	__u32 s_chksum_seed;
1472 
1473 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1474 };
1475 
1476 struct f2fs_private_dio {
1477 	struct inode *inode;
1478 	void *orig_private;
1479 	bio_end_io_t *orig_end_io;
1480 	bool write;
1481 };
1482 
1483 #ifdef CONFIG_F2FS_FAULT_INJECTION
1484 #define f2fs_show_injection_info(sbi, type)					\
1485 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1486 		KERN_INFO, sbi->sb->s_id,				\
1487 		f2fs_fault_name[type],					\
1488 		__func__, __builtin_return_address(0))
1489 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1490 {
1491 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1492 
1493 	if (!ffi->inject_rate)
1494 		return false;
1495 
1496 	if (!IS_FAULT_SET(ffi, type))
1497 		return false;
1498 
1499 	atomic_inc(&ffi->inject_ops);
1500 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1501 		atomic_set(&ffi->inject_ops, 0);
1502 		return true;
1503 	}
1504 	return false;
1505 }
1506 #else
1507 #define f2fs_show_injection_info(sbi, type) do { } while (0)
1508 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1509 {
1510 	return false;
1511 }
1512 #endif
1513 
1514 /*
1515  * Test if the mounted volume is a multi-device volume.
1516  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1517  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1518  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1519  */
1520 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1521 {
1522 	return sbi->s_ndevs > 1;
1523 }
1524 
1525 /* For write statistics. Suppose sector size is 512 bytes,
1526  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1527  */
1528 #define BD_PART_WRITTEN(s)						 \
1529 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1530 		(s)->sectors_written_start) >> 1)
1531 
1532 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1533 {
1534 	unsigned long now = jiffies;
1535 
1536 	sbi->last_time[type] = now;
1537 
1538 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1539 	if (type == REQ_TIME) {
1540 		sbi->last_time[DISCARD_TIME] = now;
1541 		sbi->last_time[GC_TIME] = now;
1542 	}
1543 }
1544 
1545 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1546 {
1547 	unsigned long interval = sbi->interval_time[type] * HZ;
1548 
1549 	return time_after(jiffies, sbi->last_time[type] + interval);
1550 }
1551 
1552 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1553 						int type)
1554 {
1555 	unsigned long interval = sbi->interval_time[type] * HZ;
1556 	unsigned int wait_ms = 0;
1557 	long delta;
1558 
1559 	delta = (sbi->last_time[type] + interval) - jiffies;
1560 	if (delta > 0)
1561 		wait_ms = jiffies_to_msecs(delta);
1562 
1563 	return wait_ms;
1564 }
1565 
1566 /*
1567  * Inline functions
1568  */
1569 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1570 			      const void *address, unsigned int length)
1571 {
1572 	struct {
1573 		struct shash_desc shash;
1574 		char ctx[4];
1575 	} desc;
1576 	int err;
1577 
1578 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1579 
1580 	desc.shash.tfm = sbi->s_chksum_driver;
1581 	*(u32 *)desc.ctx = crc;
1582 
1583 	err = crypto_shash_update(&desc.shash, address, length);
1584 	BUG_ON(err);
1585 
1586 	return *(u32 *)desc.ctx;
1587 }
1588 
1589 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1590 			   unsigned int length)
1591 {
1592 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1593 }
1594 
1595 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1596 				  void *buf, size_t buf_size)
1597 {
1598 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1599 }
1600 
1601 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1602 			      const void *address, unsigned int length)
1603 {
1604 	return __f2fs_crc32(sbi, crc, address, length);
1605 }
1606 
1607 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1608 {
1609 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1610 }
1611 
1612 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1613 {
1614 	return sb->s_fs_info;
1615 }
1616 
1617 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1618 {
1619 	return F2FS_SB(inode->i_sb);
1620 }
1621 
1622 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1623 {
1624 	return F2FS_I_SB(mapping->host);
1625 }
1626 
1627 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1628 {
1629 	return F2FS_M_SB(page_file_mapping(page));
1630 }
1631 
1632 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1633 {
1634 	return (struct f2fs_super_block *)(sbi->raw_super);
1635 }
1636 
1637 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1638 {
1639 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1640 }
1641 
1642 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1643 {
1644 	return (struct f2fs_node *)page_address(page);
1645 }
1646 
1647 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1648 {
1649 	return &((struct f2fs_node *)page_address(page))->i;
1650 }
1651 
1652 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1653 {
1654 	return (struct f2fs_nm_info *)(sbi->nm_info);
1655 }
1656 
1657 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1658 {
1659 	return (struct f2fs_sm_info *)(sbi->sm_info);
1660 }
1661 
1662 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1663 {
1664 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1665 }
1666 
1667 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1668 {
1669 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1670 }
1671 
1672 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1673 {
1674 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1675 }
1676 
1677 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1678 {
1679 	return sbi->meta_inode->i_mapping;
1680 }
1681 
1682 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1683 {
1684 	return sbi->node_inode->i_mapping;
1685 }
1686 
1687 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1688 {
1689 	return test_bit(type, &sbi->s_flag);
1690 }
1691 
1692 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1693 {
1694 	set_bit(type, &sbi->s_flag);
1695 }
1696 
1697 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1698 {
1699 	clear_bit(type, &sbi->s_flag);
1700 }
1701 
1702 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1703 {
1704 	return le64_to_cpu(cp->checkpoint_ver);
1705 }
1706 
1707 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1708 {
1709 	if (type < F2FS_MAX_QUOTAS)
1710 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1711 	return 0;
1712 }
1713 
1714 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1715 {
1716 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1717 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1718 }
1719 
1720 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1721 {
1722 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1723 
1724 	return ckpt_flags & f;
1725 }
1726 
1727 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1728 {
1729 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1730 }
1731 
1732 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1733 {
1734 	unsigned int ckpt_flags;
1735 
1736 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1737 	ckpt_flags |= f;
1738 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1739 }
1740 
1741 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1742 {
1743 	unsigned long flags;
1744 
1745 	spin_lock_irqsave(&sbi->cp_lock, flags);
1746 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1747 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1748 }
1749 
1750 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1751 {
1752 	unsigned int ckpt_flags;
1753 
1754 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1755 	ckpt_flags &= (~f);
1756 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1757 }
1758 
1759 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1760 {
1761 	unsigned long flags;
1762 
1763 	spin_lock_irqsave(&sbi->cp_lock, flags);
1764 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1765 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1766 }
1767 
1768 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1769 {
1770 	unsigned long flags;
1771 	unsigned char *nat_bits;
1772 
1773 	/*
1774 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1775 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1776 	 * so let's rely on regular fsck or unclean shutdown.
1777 	 */
1778 
1779 	if (lock)
1780 		spin_lock_irqsave(&sbi->cp_lock, flags);
1781 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1782 	nat_bits = NM_I(sbi)->nat_bits;
1783 	NM_I(sbi)->nat_bits = NULL;
1784 	if (lock)
1785 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1786 
1787 	kvfree(nat_bits);
1788 }
1789 
1790 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1791 					struct cp_control *cpc)
1792 {
1793 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1794 
1795 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1796 }
1797 
1798 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1799 {
1800 	down_read(&sbi->cp_rwsem);
1801 }
1802 
1803 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1804 {
1805 	return down_read_trylock(&sbi->cp_rwsem);
1806 }
1807 
1808 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1809 {
1810 	up_read(&sbi->cp_rwsem);
1811 }
1812 
1813 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1814 {
1815 	down_write(&sbi->cp_rwsem);
1816 }
1817 
1818 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1819 {
1820 	up_write(&sbi->cp_rwsem);
1821 }
1822 
1823 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1824 {
1825 	int reason = CP_SYNC;
1826 
1827 	if (test_opt(sbi, FASTBOOT))
1828 		reason = CP_FASTBOOT;
1829 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1830 		reason = CP_UMOUNT;
1831 	return reason;
1832 }
1833 
1834 static inline bool __remain_node_summaries(int reason)
1835 {
1836 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1837 }
1838 
1839 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1840 {
1841 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1842 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1843 }
1844 
1845 /*
1846  * Check whether the inode has blocks or not
1847  */
1848 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1849 {
1850 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1851 
1852 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1853 }
1854 
1855 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1856 {
1857 	return ofs == XATTR_NODE_OFFSET;
1858 }
1859 
1860 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1861 					struct inode *inode, bool cap)
1862 {
1863 	if (!inode)
1864 		return true;
1865 	if (!test_opt(sbi, RESERVE_ROOT))
1866 		return false;
1867 	if (IS_NOQUOTA(inode))
1868 		return true;
1869 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1870 		return true;
1871 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1872 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1873 		return true;
1874 	if (cap && capable(CAP_SYS_RESOURCE))
1875 		return true;
1876 	return false;
1877 }
1878 
1879 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1880 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1881 				 struct inode *inode, blkcnt_t *count)
1882 {
1883 	blkcnt_t diff = 0, release = 0;
1884 	block_t avail_user_block_count;
1885 	int ret;
1886 
1887 	ret = dquot_reserve_block(inode, *count);
1888 	if (ret)
1889 		return ret;
1890 
1891 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1892 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
1893 		release = *count;
1894 		goto release_quota;
1895 	}
1896 
1897 	/*
1898 	 * let's increase this in prior to actual block count change in order
1899 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1900 	 */
1901 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1902 
1903 	spin_lock(&sbi->stat_lock);
1904 	sbi->total_valid_block_count += (block_t)(*count);
1905 	avail_user_block_count = sbi->user_block_count -
1906 					sbi->current_reserved_blocks;
1907 
1908 	if (!__allow_reserved_blocks(sbi, inode, true))
1909 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1910 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1911 		if (avail_user_block_count > sbi->unusable_block_count)
1912 			avail_user_block_count -= sbi->unusable_block_count;
1913 		else
1914 			avail_user_block_count = 0;
1915 	}
1916 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1917 		diff = sbi->total_valid_block_count - avail_user_block_count;
1918 		if (diff > *count)
1919 			diff = *count;
1920 		*count -= diff;
1921 		release = diff;
1922 		sbi->total_valid_block_count -= diff;
1923 		if (!*count) {
1924 			spin_unlock(&sbi->stat_lock);
1925 			goto enospc;
1926 		}
1927 	}
1928 	spin_unlock(&sbi->stat_lock);
1929 
1930 	if (unlikely(release)) {
1931 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1932 		dquot_release_reservation_block(inode, release);
1933 	}
1934 	f2fs_i_blocks_write(inode, *count, true, true);
1935 	return 0;
1936 
1937 enospc:
1938 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1939 release_quota:
1940 	dquot_release_reservation_block(inode, release);
1941 	return -ENOSPC;
1942 }
1943 
1944 __printf(2, 3)
1945 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
1946 
1947 #define f2fs_err(sbi, fmt, ...)						\
1948 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
1949 #define f2fs_warn(sbi, fmt, ...)					\
1950 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
1951 #define f2fs_notice(sbi, fmt, ...)					\
1952 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
1953 #define f2fs_info(sbi, fmt, ...)					\
1954 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
1955 #define f2fs_debug(sbi, fmt, ...)					\
1956 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
1957 
1958 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1959 						struct inode *inode,
1960 						block_t count)
1961 {
1962 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1963 
1964 	spin_lock(&sbi->stat_lock);
1965 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1966 	sbi->total_valid_block_count -= (block_t)count;
1967 	if (sbi->reserved_blocks &&
1968 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1969 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1970 					sbi->current_reserved_blocks + count);
1971 	spin_unlock(&sbi->stat_lock);
1972 	if (unlikely(inode->i_blocks < sectors)) {
1973 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1974 			  inode->i_ino,
1975 			  (unsigned long long)inode->i_blocks,
1976 			  (unsigned long long)sectors);
1977 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1978 		return;
1979 	}
1980 	f2fs_i_blocks_write(inode, count, false, true);
1981 }
1982 
1983 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1984 {
1985 	atomic_inc(&sbi->nr_pages[count_type]);
1986 
1987 	if (count_type == F2FS_DIRTY_DENTS ||
1988 			count_type == F2FS_DIRTY_NODES ||
1989 			count_type == F2FS_DIRTY_META ||
1990 			count_type == F2FS_DIRTY_QDATA ||
1991 			count_type == F2FS_DIRTY_IMETA)
1992 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1993 }
1994 
1995 static inline void inode_inc_dirty_pages(struct inode *inode)
1996 {
1997 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1998 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1999 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2000 	if (IS_NOQUOTA(inode))
2001 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2002 }
2003 
2004 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2005 {
2006 	atomic_dec(&sbi->nr_pages[count_type]);
2007 }
2008 
2009 static inline void inode_dec_dirty_pages(struct inode *inode)
2010 {
2011 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2012 			!S_ISLNK(inode->i_mode))
2013 		return;
2014 
2015 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2016 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2017 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2018 	if (IS_NOQUOTA(inode))
2019 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2020 }
2021 
2022 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2023 {
2024 	return atomic_read(&sbi->nr_pages[count_type]);
2025 }
2026 
2027 static inline int get_dirty_pages(struct inode *inode)
2028 {
2029 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2030 }
2031 
2032 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2033 {
2034 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2035 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2036 						sbi->log_blocks_per_seg;
2037 
2038 	return segs / sbi->segs_per_sec;
2039 }
2040 
2041 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2042 {
2043 	return sbi->total_valid_block_count;
2044 }
2045 
2046 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2047 {
2048 	return sbi->discard_blks;
2049 }
2050 
2051 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2052 {
2053 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2054 
2055 	/* return NAT or SIT bitmap */
2056 	if (flag == NAT_BITMAP)
2057 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2058 	else if (flag == SIT_BITMAP)
2059 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2060 
2061 	return 0;
2062 }
2063 
2064 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2065 {
2066 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2067 }
2068 
2069 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2070 {
2071 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2072 	int offset;
2073 
2074 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2075 		offset = (flag == SIT_BITMAP) ?
2076 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2077 		/*
2078 		 * if large_nat_bitmap feature is enabled, leave checksum
2079 		 * protection for all nat/sit bitmaps.
2080 		 */
2081 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2082 	}
2083 
2084 	if (__cp_payload(sbi) > 0) {
2085 		if (flag == NAT_BITMAP)
2086 			return &ckpt->sit_nat_version_bitmap;
2087 		else
2088 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2089 	} else {
2090 		offset = (flag == NAT_BITMAP) ?
2091 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2092 		return &ckpt->sit_nat_version_bitmap + offset;
2093 	}
2094 }
2095 
2096 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2097 {
2098 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2099 
2100 	if (sbi->cur_cp_pack == 2)
2101 		start_addr += sbi->blocks_per_seg;
2102 	return start_addr;
2103 }
2104 
2105 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2106 {
2107 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2108 
2109 	if (sbi->cur_cp_pack == 1)
2110 		start_addr += sbi->blocks_per_seg;
2111 	return start_addr;
2112 }
2113 
2114 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2115 {
2116 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2117 }
2118 
2119 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2120 {
2121 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2122 }
2123 
2124 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2125 					struct inode *inode, bool is_inode)
2126 {
2127 	block_t	valid_block_count;
2128 	unsigned int valid_node_count, user_block_count;
2129 	int err;
2130 
2131 	if (is_inode) {
2132 		if (inode) {
2133 			err = dquot_alloc_inode(inode);
2134 			if (err)
2135 				return err;
2136 		}
2137 	} else {
2138 		err = dquot_reserve_block(inode, 1);
2139 		if (err)
2140 			return err;
2141 	}
2142 
2143 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2144 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2145 		goto enospc;
2146 	}
2147 
2148 	spin_lock(&sbi->stat_lock);
2149 
2150 	valid_block_count = sbi->total_valid_block_count +
2151 					sbi->current_reserved_blocks + 1;
2152 
2153 	if (!__allow_reserved_blocks(sbi, inode, false))
2154 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2155 	user_block_count = sbi->user_block_count;
2156 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2157 		user_block_count -= sbi->unusable_block_count;
2158 
2159 	if (unlikely(valid_block_count > user_block_count)) {
2160 		spin_unlock(&sbi->stat_lock);
2161 		goto enospc;
2162 	}
2163 
2164 	valid_node_count = sbi->total_valid_node_count + 1;
2165 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2166 		spin_unlock(&sbi->stat_lock);
2167 		goto enospc;
2168 	}
2169 
2170 	sbi->total_valid_node_count++;
2171 	sbi->total_valid_block_count++;
2172 	spin_unlock(&sbi->stat_lock);
2173 
2174 	if (inode) {
2175 		if (is_inode)
2176 			f2fs_mark_inode_dirty_sync(inode, true);
2177 		else
2178 			f2fs_i_blocks_write(inode, 1, true, true);
2179 	}
2180 
2181 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2182 	return 0;
2183 
2184 enospc:
2185 	if (is_inode) {
2186 		if (inode)
2187 			dquot_free_inode(inode);
2188 	} else {
2189 		dquot_release_reservation_block(inode, 1);
2190 	}
2191 	return -ENOSPC;
2192 }
2193 
2194 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2195 					struct inode *inode, bool is_inode)
2196 {
2197 	spin_lock(&sbi->stat_lock);
2198 
2199 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2200 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2201 
2202 	sbi->total_valid_node_count--;
2203 	sbi->total_valid_block_count--;
2204 	if (sbi->reserved_blocks &&
2205 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2206 		sbi->current_reserved_blocks++;
2207 
2208 	spin_unlock(&sbi->stat_lock);
2209 
2210 	if (is_inode) {
2211 		dquot_free_inode(inode);
2212 	} else {
2213 		if (unlikely(inode->i_blocks == 0)) {
2214 			f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
2215 				  inode->i_ino,
2216 				  (unsigned long long)inode->i_blocks);
2217 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2218 			return;
2219 		}
2220 		f2fs_i_blocks_write(inode, 1, false, true);
2221 	}
2222 }
2223 
2224 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2225 {
2226 	return sbi->total_valid_node_count;
2227 }
2228 
2229 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2230 {
2231 	percpu_counter_inc(&sbi->total_valid_inode_count);
2232 }
2233 
2234 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2235 {
2236 	percpu_counter_dec(&sbi->total_valid_inode_count);
2237 }
2238 
2239 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2240 {
2241 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2242 }
2243 
2244 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2245 						pgoff_t index, bool for_write)
2246 {
2247 	struct page *page;
2248 
2249 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2250 		if (!for_write)
2251 			page = find_get_page_flags(mapping, index,
2252 							FGP_LOCK | FGP_ACCESSED);
2253 		else
2254 			page = find_lock_page(mapping, index);
2255 		if (page)
2256 			return page;
2257 
2258 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2259 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2260 							FAULT_PAGE_ALLOC);
2261 			return NULL;
2262 		}
2263 	}
2264 
2265 	if (!for_write)
2266 		return grab_cache_page(mapping, index);
2267 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2268 }
2269 
2270 static inline struct page *f2fs_pagecache_get_page(
2271 				struct address_space *mapping, pgoff_t index,
2272 				int fgp_flags, gfp_t gfp_mask)
2273 {
2274 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2275 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2276 		return NULL;
2277 	}
2278 
2279 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2280 }
2281 
2282 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2283 {
2284 	char *src_kaddr = kmap(src);
2285 	char *dst_kaddr = kmap(dst);
2286 
2287 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2288 	kunmap(dst);
2289 	kunmap(src);
2290 }
2291 
2292 static inline void f2fs_put_page(struct page *page, int unlock)
2293 {
2294 	if (!page)
2295 		return;
2296 
2297 	if (unlock) {
2298 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2299 		unlock_page(page);
2300 	}
2301 	put_page(page);
2302 }
2303 
2304 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2305 {
2306 	if (dn->node_page)
2307 		f2fs_put_page(dn->node_page, 1);
2308 	if (dn->inode_page && dn->node_page != dn->inode_page)
2309 		f2fs_put_page(dn->inode_page, 0);
2310 	dn->node_page = NULL;
2311 	dn->inode_page = NULL;
2312 }
2313 
2314 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2315 					size_t size)
2316 {
2317 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2318 }
2319 
2320 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2321 						gfp_t flags)
2322 {
2323 	void *entry;
2324 
2325 	entry = kmem_cache_alloc(cachep, flags);
2326 	if (!entry)
2327 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2328 	return entry;
2329 }
2330 
2331 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2332 {
2333 	if (sbi->gc_mode == GC_URGENT)
2334 		return true;
2335 
2336 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2337 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2338 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2339 		get_pages(sbi, F2FS_DIO_READ) ||
2340 		get_pages(sbi, F2FS_DIO_WRITE))
2341 		return false;
2342 
2343 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2344 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2345 		return false;
2346 
2347 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2348 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2349 		return false;
2350 
2351 	return f2fs_time_over(sbi, type);
2352 }
2353 
2354 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2355 				unsigned long index, void *item)
2356 {
2357 	while (radix_tree_insert(root, index, item))
2358 		cond_resched();
2359 }
2360 
2361 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2362 
2363 static inline bool IS_INODE(struct page *page)
2364 {
2365 	struct f2fs_node *p = F2FS_NODE(page);
2366 
2367 	return RAW_IS_INODE(p);
2368 }
2369 
2370 static inline int offset_in_addr(struct f2fs_inode *i)
2371 {
2372 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2373 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2374 }
2375 
2376 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2377 {
2378 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2379 }
2380 
2381 static inline int f2fs_has_extra_attr(struct inode *inode);
2382 static inline block_t datablock_addr(struct inode *inode,
2383 			struct page *node_page, unsigned int offset)
2384 {
2385 	struct f2fs_node *raw_node;
2386 	__le32 *addr_array;
2387 	int base = 0;
2388 	bool is_inode = IS_INODE(node_page);
2389 
2390 	raw_node = F2FS_NODE(node_page);
2391 
2392 	/* from GC path only */
2393 	if (is_inode) {
2394 		if (!inode)
2395 			base = offset_in_addr(&raw_node->i);
2396 		else if (f2fs_has_extra_attr(inode))
2397 			base = get_extra_isize(inode);
2398 	}
2399 
2400 	addr_array = blkaddr_in_node(raw_node);
2401 	return le32_to_cpu(addr_array[base + offset]);
2402 }
2403 
2404 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2405 {
2406 	int mask;
2407 
2408 	addr += (nr >> 3);
2409 	mask = 1 << (7 - (nr & 0x07));
2410 	return mask & *addr;
2411 }
2412 
2413 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2414 {
2415 	int mask;
2416 
2417 	addr += (nr >> 3);
2418 	mask = 1 << (7 - (nr & 0x07));
2419 	*addr |= mask;
2420 }
2421 
2422 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2423 {
2424 	int mask;
2425 
2426 	addr += (nr >> 3);
2427 	mask = 1 << (7 - (nr & 0x07));
2428 	*addr &= ~mask;
2429 }
2430 
2431 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2432 {
2433 	int mask;
2434 	int ret;
2435 
2436 	addr += (nr >> 3);
2437 	mask = 1 << (7 - (nr & 0x07));
2438 	ret = mask & *addr;
2439 	*addr |= mask;
2440 	return ret;
2441 }
2442 
2443 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2444 {
2445 	int mask;
2446 	int ret;
2447 
2448 	addr += (nr >> 3);
2449 	mask = 1 << (7 - (nr & 0x07));
2450 	ret = mask & *addr;
2451 	*addr &= ~mask;
2452 	return ret;
2453 }
2454 
2455 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2456 {
2457 	int mask;
2458 
2459 	addr += (nr >> 3);
2460 	mask = 1 << (7 - (nr & 0x07));
2461 	*addr ^= mask;
2462 }
2463 
2464 /*
2465  * On-disk inode flags (f2fs_inode::i_flags)
2466  */
2467 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2468 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2469 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2470 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2471 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2472 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2473 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2474 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2475 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2476 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2477 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2478 
2479 /* Flags that should be inherited by new inodes from their parent. */
2480 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2481 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2482 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2483 
2484 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2485 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2486 				F2FS_CASEFOLD_FL))
2487 
2488 /* Flags that are appropriate for non-directories/regular files. */
2489 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2490 
2491 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2492 {
2493 	if (S_ISDIR(mode))
2494 		return flags;
2495 	else if (S_ISREG(mode))
2496 		return flags & F2FS_REG_FLMASK;
2497 	else
2498 		return flags & F2FS_OTHER_FLMASK;
2499 }
2500 
2501 /* used for f2fs_inode_info->flags */
2502 enum {
2503 	FI_NEW_INODE,		/* indicate newly allocated inode */
2504 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2505 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2506 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2507 	FI_INC_LINK,		/* need to increment i_nlink */
2508 	FI_ACL_MODE,		/* indicate acl mode */
2509 	FI_NO_ALLOC,		/* should not allocate any blocks */
2510 	FI_FREE_NID,		/* free allocated nide */
2511 	FI_NO_EXTENT,		/* not to use the extent cache */
2512 	FI_INLINE_XATTR,	/* used for inline xattr */
2513 	FI_INLINE_DATA,		/* used for inline data*/
2514 	FI_INLINE_DENTRY,	/* used for inline dentry */
2515 	FI_APPEND_WRITE,	/* inode has appended data */
2516 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2517 	FI_NEED_IPU,		/* used for ipu per file */
2518 	FI_ATOMIC_FILE,		/* indicate atomic file */
2519 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2520 	FI_VOLATILE_FILE,	/* indicate volatile file */
2521 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2522 	FI_DROP_CACHE,		/* drop dirty page cache */
2523 	FI_DATA_EXIST,		/* indicate data exists */
2524 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2525 	FI_DO_DEFRAG,		/* indicate defragment is running */
2526 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2527 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2528 	FI_HOT_DATA,		/* indicate file is hot */
2529 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2530 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2531 	FI_PIN_FILE,		/* indicate file should not be gced */
2532 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2533 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
2534 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
2535 	FI_MMAP_FILE,		/* indicate file was mmapped */
2536 };
2537 
2538 static inline void __mark_inode_dirty_flag(struct inode *inode,
2539 						int flag, bool set)
2540 {
2541 	switch (flag) {
2542 	case FI_INLINE_XATTR:
2543 	case FI_INLINE_DATA:
2544 	case FI_INLINE_DENTRY:
2545 	case FI_NEW_INODE:
2546 		if (set)
2547 			return;
2548 		/* fall through */
2549 	case FI_DATA_EXIST:
2550 	case FI_INLINE_DOTS:
2551 	case FI_PIN_FILE:
2552 	case FI_COMPRESSED_FILE:
2553 		f2fs_mark_inode_dirty_sync(inode, true);
2554 	}
2555 }
2556 
2557 static inline void set_inode_flag(struct inode *inode, int flag)
2558 {
2559 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2560 		set_bit(flag, &F2FS_I(inode)->flags);
2561 	__mark_inode_dirty_flag(inode, flag, true);
2562 }
2563 
2564 static inline int is_inode_flag_set(struct inode *inode, int flag)
2565 {
2566 	return test_bit(flag, &F2FS_I(inode)->flags);
2567 }
2568 
2569 static inline void clear_inode_flag(struct inode *inode, int flag)
2570 {
2571 	if (test_bit(flag, &F2FS_I(inode)->flags))
2572 		clear_bit(flag, &F2FS_I(inode)->flags);
2573 	__mark_inode_dirty_flag(inode, flag, false);
2574 }
2575 
2576 static inline bool f2fs_verity_in_progress(struct inode *inode)
2577 {
2578 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2579 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2580 }
2581 
2582 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2583 {
2584 	F2FS_I(inode)->i_acl_mode = mode;
2585 	set_inode_flag(inode, FI_ACL_MODE);
2586 	f2fs_mark_inode_dirty_sync(inode, false);
2587 }
2588 
2589 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2590 {
2591 	if (inc)
2592 		inc_nlink(inode);
2593 	else
2594 		drop_nlink(inode);
2595 	f2fs_mark_inode_dirty_sync(inode, true);
2596 }
2597 
2598 static inline void f2fs_i_blocks_write(struct inode *inode,
2599 					block_t diff, bool add, bool claim)
2600 {
2601 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2602 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2603 
2604 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2605 	if (add) {
2606 		if (claim)
2607 			dquot_claim_block(inode, diff);
2608 		else
2609 			dquot_alloc_block_nofail(inode, diff);
2610 	} else {
2611 		dquot_free_block(inode, diff);
2612 	}
2613 
2614 	f2fs_mark_inode_dirty_sync(inode, true);
2615 	if (clean || recover)
2616 		set_inode_flag(inode, FI_AUTO_RECOVER);
2617 }
2618 
2619 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2620 {
2621 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2622 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2623 
2624 	if (i_size_read(inode) == i_size)
2625 		return;
2626 
2627 	i_size_write(inode, i_size);
2628 	f2fs_mark_inode_dirty_sync(inode, true);
2629 	if (clean || recover)
2630 		set_inode_flag(inode, FI_AUTO_RECOVER);
2631 }
2632 
2633 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2634 {
2635 	F2FS_I(inode)->i_current_depth = depth;
2636 	f2fs_mark_inode_dirty_sync(inode, true);
2637 }
2638 
2639 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2640 					unsigned int count)
2641 {
2642 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2643 	f2fs_mark_inode_dirty_sync(inode, true);
2644 }
2645 
2646 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2647 {
2648 	F2FS_I(inode)->i_xattr_nid = xnid;
2649 	f2fs_mark_inode_dirty_sync(inode, true);
2650 }
2651 
2652 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2653 {
2654 	F2FS_I(inode)->i_pino = pino;
2655 	f2fs_mark_inode_dirty_sync(inode, true);
2656 }
2657 
2658 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2659 {
2660 	struct f2fs_inode_info *fi = F2FS_I(inode);
2661 
2662 	if (ri->i_inline & F2FS_INLINE_XATTR)
2663 		set_bit(FI_INLINE_XATTR, &fi->flags);
2664 	if (ri->i_inline & F2FS_INLINE_DATA)
2665 		set_bit(FI_INLINE_DATA, &fi->flags);
2666 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2667 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2668 	if (ri->i_inline & F2FS_DATA_EXIST)
2669 		set_bit(FI_DATA_EXIST, &fi->flags);
2670 	if (ri->i_inline & F2FS_INLINE_DOTS)
2671 		set_bit(FI_INLINE_DOTS, &fi->flags);
2672 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2673 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2674 	if (ri->i_inline & F2FS_PIN_FILE)
2675 		set_bit(FI_PIN_FILE, &fi->flags);
2676 }
2677 
2678 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2679 {
2680 	ri->i_inline = 0;
2681 
2682 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2683 		ri->i_inline |= F2FS_INLINE_XATTR;
2684 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2685 		ri->i_inline |= F2FS_INLINE_DATA;
2686 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2687 		ri->i_inline |= F2FS_INLINE_DENTRY;
2688 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2689 		ri->i_inline |= F2FS_DATA_EXIST;
2690 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2691 		ri->i_inline |= F2FS_INLINE_DOTS;
2692 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2693 		ri->i_inline |= F2FS_EXTRA_ATTR;
2694 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2695 		ri->i_inline |= F2FS_PIN_FILE;
2696 }
2697 
2698 static inline int f2fs_has_extra_attr(struct inode *inode)
2699 {
2700 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2701 }
2702 
2703 static inline int f2fs_has_inline_xattr(struct inode *inode)
2704 {
2705 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2706 }
2707 
2708 static inline int f2fs_compressed_file(struct inode *inode)
2709 {
2710 	return S_ISREG(inode->i_mode) &&
2711 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2712 }
2713 
2714 static inline unsigned int addrs_per_inode(struct inode *inode)
2715 {
2716 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2717 				get_inline_xattr_addrs(inode);
2718 
2719 	if (!f2fs_compressed_file(inode))
2720 		return addrs;
2721 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2722 }
2723 
2724 static inline unsigned int addrs_per_block(struct inode *inode)
2725 {
2726 	if (!f2fs_compressed_file(inode))
2727 		return DEF_ADDRS_PER_BLOCK;
2728 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2729 }
2730 
2731 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2732 {
2733 	struct f2fs_inode *ri = F2FS_INODE(page);
2734 
2735 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2736 					get_inline_xattr_addrs(inode)]);
2737 }
2738 
2739 static inline int inline_xattr_size(struct inode *inode)
2740 {
2741 	if (f2fs_has_inline_xattr(inode))
2742 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2743 	return 0;
2744 }
2745 
2746 static inline int f2fs_has_inline_data(struct inode *inode)
2747 {
2748 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2749 }
2750 
2751 static inline int f2fs_exist_data(struct inode *inode)
2752 {
2753 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2754 }
2755 
2756 static inline int f2fs_has_inline_dots(struct inode *inode)
2757 {
2758 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2759 }
2760 
2761 static inline int f2fs_is_mmap_file(struct inode *inode)
2762 {
2763 	return is_inode_flag_set(inode, FI_MMAP_FILE);
2764 }
2765 
2766 static inline bool f2fs_is_pinned_file(struct inode *inode)
2767 {
2768 	return is_inode_flag_set(inode, FI_PIN_FILE);
2769 }
2770 
2771 static inline bool f2fs_is_atomic_file(struct inode *inode)
2772 {
2773 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2774 }
2775 
2776 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2777 {
2778 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2779 }
2780 
2781 static inline bool f2fs_is_volatile_file(struct inode *inode)
2782 {
2783 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2784 }
2785 
2786 static inline bool f2fs_is_first_block_written(struct inode *inode)
2787 {
2788 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2789 }
2790 
2791 static inline bool f2fs_is_drop_cache(struct inode *inode)
2792 {
2793 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2794 }
2795 
2796 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2797 {
2798 	struct f2fs_inode *ri = F2FS_INODE(page);
2799 	int extra_size = get_extra_isize(inode);
2800 
2801 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2802 }
2803 
2804 static inline int f2fs_has_inline_dentry(struct inode *inode)
2805 {
2806 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2807 }
2808 
2809 static inline int is_file(struct inode *inode, int type)
2810 {
2811 	return F2FS_I(inode)->i_advise & type;
2812 }
2813 
2814 static inline void set_file(struct inode *inode, int type)
2815 {
2816 	F2FS_I(inode)->i_advise |= type;
2817 	f2fs_mark_inode_dirty_sync(inode, true);
2818 }
2819 
2820 static inline void clear_file(struct inode *inode, int type)
2821 {
2822 	F2FS_I(inode)->i_advise &= ~type;
2823 	f2fs_mark_inode_dirty_sync(inode, true);
2824 }
2825 
2826 static inline bool f2fs_is_time_consistent(struct inode *inode)
2827 {
2828 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2829 		return false;
2830 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2831 		return false;
2832 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2833 		return false;
2834 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2835 						&F2FS_I(inode)->i_crtime))
2836 		return false;
2837 	return true;
2838 }
2839 
2840 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2841 {
2842 	bool ret;
2843 
2844 	if (dsync) {
2845 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2846 
2847 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2848 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2849 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2850 		return ret;
2851 	}
2852 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2853 			file_keep_isize(inode) ||
2854 			i_size_read(inode) & ~PAGE_MASK)
2855 		return false;
2856 
2857 	if (!f2fs_is_time_consistent(inode))
2858 		return false;
2859 
2860 	down_read(&F2FS_I(inode)->i_sem);
2861 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2862 	up_read(&F2FS_I(inode)->i_sem);
2863 
2864 	return ret;
2865 }
2866 
2867 static inline bool f2fs_readonly(struct super_block *sb)
2868 {
2869 	return sb_rdonly(sb);
2870 }
2871 
2872 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2873 {
2874 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2875 }
2876 
2877 static inline bool is_dot_dotdot(const struct qstr *str)
2878 {
2879 	if (str->len == 1 && str->name[0] == '.')
2880 		return true;
2881 
2882 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2883 		return true;
2884 
2885 	return false;
2886 }
2887 
2888 static inline bool f2fs_may_extent_tree(struct inode *inode)
2889 {
2890 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2891 
2892 	if (!test_opt(sbi, EXTENT_CACHE) ||
2893 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
2894 			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2895 		return false;
2896 
2897 	/*
2898 	 * for recovered files during mount do not create extents
2899 	 * if shrinker is not registered.
2900 	 */
2901 	if (list_empty(&sbi->s_list))
2902 		return false;
2903 
2904 	return S_ISREG(inode->i_mode);
2905 }
2906 
2907 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2908 					size_t size, gfp_t flags)
2909 {
2910 	void *ret;
2911 
2912 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2913 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
2914 		return NULL;
2915 	}
2916 
2917 	ret = kmalloc(size, flags);
2918 	if (ret)
2919 		return ret;
2920 
2921 	return kvmalloc(size, flags);
2922 }
2923 
2924 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2925 					size_t size, gfp_t flags)
2926 {
2927 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2928 }
2929 
2930 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2931 					size_t size, gfp_t flags)
2932 {
2933 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2934 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
2935 		return NULL;
2936 	}
2937 
2938 	return kvmalloc(size, flags);
2939 }
2940 
2941 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2942 					size_t size, gfp_t flags)
2943 {
2944 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2945 }
2946 
2947 static inline int get_extra_isize(struct inode *inode)
2948 {
2949 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2950 }
2951 
2952 static inline int get_inline_xattr_addrs(struct inode *inode)
2953 {
2954 	return F2FS_I(inode)->i_inline_xattr_size;
2955 }
2956 
2957 #define f2fs_get_inode_mode(i) \
2958 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2959 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2960 
2961 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2962 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2963 	offsetof(struct f2fs_inode, i_extra_isize))	\
2964 
2965 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2966 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2967 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2968 		sizeof((f2fs_inode)->field))			\
2969 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2970 
2971 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2972 {
2973 	int i;
2974 
2975 	spin_lock(&sbi->iostat_lock);
2976 	for (i = 0; i < NR_IO_TYPE; i++)
2977 		sbi->write_iostat[i] = 0;
2978 	spin_unlock(&sbi->iostat_lock);
2979 }
2980 
2981 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2982 			enum iostat_type type, unsigned long long io_bytes)
2983 {
2984 	if (!sbi->iostat_enable)
2985 		return;
2986 	spin_lock(&sbi->iostat_lock);
2987 	sbi->write_iostat[type] += io_bytes;
2988 
2989 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2990 		sbi->write_iostat[APP_BUFFERED_IO] =
2991 			sbi->write_iostat[APP_WRITE_IO] -
2992 			sbi->write_iostat[APP_DIRECT_IO];
2993 	spin_unlock(&sbi->iostat_lock);
2994 }
2995 
2996 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2997 
2998 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
2999 
3000 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3001 					block_t blkaddr, int type);
3002 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3003 					block_t blkaddr, int type)
3004 {
3005 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3006 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3007 			 blkaddr, type);
3008 		f2fs_bug_on(sbi, 1);
3009 	}
3010 }
3011 
3012 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3013 {
3014 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3015 			blkaddr == COMPRESS_ADDR)
3016 		return false;
3017 	return true;
3018 }
3019 
3020 static inline void f2fs_set_page_private(struct page *page,
3021 						unsigned long data)
3022 {
3023 	if (PagePrivate(page))
3024 		return;
3025 
3026 	get_page(page);
3027 	SetPagePrivate(page);
3028 	set_page_private(page, data);
3029 }
3030 
3031 static inline void f2fs_clear_page_private(struct page *page)
3032 {
3033 	if (!PagePrivate(page))
3034 		return;
3035 
3036 	set_page_private(page, 0);
3037 	ClearPagePrivate(page);
3038 	f2fs_put_page(page, 0);
3039 }
3040 
3041 /*
3042  * file.c
3043  */
3044 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3045 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3046 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3047 int f2fs_truncate(struct inode *inode);
3048 int f2fs_getattr(const struct path *path, struct kstat *stat,
3049 			u32 request_mask, unsigned int flags);
3050 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3051 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3052 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3053 int f2fs_precache_extents(struct inode *inode);
3054 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3055 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3056 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3057 int f2fs_pin_file_control(struct inode *inode, bool inc);
3058 
3059 /*
3060  * inode.c
3061  */
3062 void f2fs_set_inode_flags(struct inode *inode);
3063 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3064 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3065 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3066 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3067 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3068 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3069 void f2fs_update_inode_page(struct inode *inode);
3070 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3071 void f2fs_evict_inode(struct inode *inode);
3072 void f2fs_handle_failed_inode(struct inode *inode);
3073 
3074 /*
3075  * namei.c
3076  */
3077 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3078 							bool hot, bool set);
3079 struct dentry *f2fs_get_parent(struct dentry *child);
3080 
3081 extern int f2fs_ci_compare(const struct inode *parent,
3082 			   const struct qstr *name,
3083 			   const struct qstr *entry,
3084 			   bool quick);
3085 
3086 /*
3087  * dir.c
3088  */
3089 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3090 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
3091 			f2fs_hash_t namehash, int *max_slots,
3092 			struct f2fs_dentry_ptr *d);
3093 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3094 			unsigned int start_pos, struct fscrypt_str *fstr);
3095 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3096 			struct f2fs_dentry_ptr *d);
3097 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3098 			const struct qstr *new_name,
3099 			const struct qstr *orig_name, struct page *dpage);
3100 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3101 			unsigned int current_depth);
3102 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3103 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3104 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3105 			struct fscrypt_name *fname, struct page **res_page);
3106 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3107 			const struct qstr *child, struct page **res_page);
3108 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3109 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3110 			struct page **page);
3111 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3112 			struct page *page, struct inode *inode);
3113 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3114 			struct fscrypt_name *fname);
3115 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3116 			const struct qstr *name, f2fs_hash_t name_hash,
3117 			unsigned int bit_pos);
3118 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
3119 			const struct qstr *orig_name,
3120 			struct inode *inode, nid_t ino, umode_t mode);
3121 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
3122 			struct inode *inode, nid_t ino, umode_t mode);
3123 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3124 			struct inode *inode, nid_t ino, umode_t mode);
3125 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3126 			struct inode *dir, struct inode *inode);
3127 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3128 bool f2fs_empty_dir(struct inode *dir);
3129 
3130 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3131 {
3132 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3133 				inode, inode->i_ino, inode->i_mode);
3134 }
3135 
3136 /*
3137  * super.c
3138  */
3139 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3140 void f2fs_inode_synced(struct inode *inode);
3141 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3142 int f2fs_quota_sync(struct super_block *sb, int type);
3143 void f2fs_quota_off_umount(struct super_block *sb);
3144 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3145 int f2fs_sync_fs(struct super_block *sb, int sync);
3146 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3147 
3148 /*
3149  * hash.c
3150  */
3151 f2fs_hash_t f2fs_dentry_hash(const struct inode *dir,
3152 		const struct qstr *name_info, struct fscrypt_name *fname);
3153 
3154 /*
3155  * node.c
3156  */
3157 struct dnode_of_data;
3158 struct node_info;
3159 
3160 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3161 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3162 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3163 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3164 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3165 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3166 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3167 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3168 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3169 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3170 						struct node_info *ni);
3171 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3172 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3173 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3174 int f2fs_truncate_xattr_node(struct inode *inode);
3175 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3176 					unsigned int seq_id);
3177 int f2fs_remove_inode_page(struct inode *inode);
3178 struct page *f2fs_new_inode_page(struct inode *inode);
3179 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3180 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3181 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3182 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3183 int f2fs_move_node_page(struct page *node_page, int gc_type);
3184 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3185 			struct writeback_control *wbc, bool atomic,
3186 			unsigned int *seq_id);
3187 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3188 			struct writeback_control *wbc,
3189 			bool do_balance, enum iostat_type io_type);
3190 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3191 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3192 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3193 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3194 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3195 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3196 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3197 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3198 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3199 			unsigned int segno, struct f2fs_summary_block *sum);
3200 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3201 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3202 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3203 int __init f2fs_create_node_manager_caches(void);
3204 void f2fs_destroy_node_manager_caches(void);
3205 
3206 /*
3207  * segment.c
3208  */
3209 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3210 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3211 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3212 void f2fs_drop_inmem_pages(struct inode *inode);
3213 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3214 int f2fs_commit_inmem_pages(struct inode *inode);
3215 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3216 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3217 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3218 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3219 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3220 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3221 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3222 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3223 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3224 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3225 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3226 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3227 					struct cp_control *cpc);
3228 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3229 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3230 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3231 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3232 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3233 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3234 					unsigned int start, unsigned int end);
3235 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type);
3236 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3237 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3238 					struct cp_control *cpc);
3239 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3240 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3241 					block_t blk_addr);
3242 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3243 						enum iostat_type io_type);
3244 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3245 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3246 			struct f2fs_io_info *fio);
3247 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3248 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3249 			block_t old_blkaddr, block_t new_blkaddr,
3250 			bool recover_curseg, bool recover_newaddr);
3251 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3252 			block_t old_addr, block_t new_addr,
3253 			unsigned char version, bool recover_curseg,
3254 			bool recover_newaddr);
3255 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3256 			block_t old_blkaddr, block_t *new_blkaddr,
3257 			struct f2fs_summary *sum, int type,
3258 			struct f2fs_io_info *fio, bool add_list);
3259 void f2fs_wait_on_page_writeback(struct page *page,
3260 			enum page_type type, bool ordered, bool locked);
3261 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3262 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3263 								block_t len);
3264 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3265 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3266 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3267 			unsigned int val, int alloc);
3268 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3269 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3270 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3271 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3272 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3273 int __init f2fs_create_segment_manager_caches(void);
3274 void f2fs_destroy_segment_manager_caches(void);
3275 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3276 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3277 			enum page_type type, enum temp_type temp);
3278 
3279 /*
3280  * checkpoint.c
3281  */
3282 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3283 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3284 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3285 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3286 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3287 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3288 					block_t blkaddr, int type);
3289 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3290 			int type, bool sync);
3291 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3292 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3293 			long nr_to_write, enum iostat_type io_type);
3294 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3295 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3296 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3297 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3298 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3299 					unsigned int devidx, int type);
3300 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3301 					unsigned int devidx, int type);
3302 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3303 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3304 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3305 void f2fs_add_orphan_inode(struct inode *inode);
3306 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3307 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3308 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3309 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3310 void f2fs_remove_dirty_inode(struct inode *inode);
3311 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3312 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3313 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3314 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3315 int __init f2fs_create_checkpoint_caches(void);
3316 void f2fs_destroy_checkpoint_caches(void);
3317 
3318 /*
3319  * data.c
3320  */
3321 int __init f2fs_init_bioset(void);
3322 void f2fs_destroy_bioset(void);
3323 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool no_fail);
3324 int f2fs_init_bio_entry_cache(void);
3325 void f2fs_destroy_bio_entry_cache(void);
3326 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3327 				struct bio *bio, enum page_type type);
3328 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3329 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3330 				struct inode *inode, struct page *page,
3331 				nid_t ino, enum page_type type);
3332 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3333 					struct bio **bio, struct page *page);
3334 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3335 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3336 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3337 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3338 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3339 			block_t blk_addr, struct bio *bio);
3340 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3341 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3342 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3343 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3344 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3345 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3346 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3347 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3348 int f2fs_mpage_readpages(struct address_space *mapping,
3349 			struct list_head *pages, struct page *page,
3350 			unsigned nr_pages, bool is_readahead);
3351 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3352 			int op_flags, bool for_write);
3353 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3354 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3355 			bool for_write);
3356 struct page *f2fs_get_new_data_page(struct inode *inode,
3357 			struct page *ipage, pgoff_t index, bool new_i_size);
3358 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3359 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3360 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3361 			int create, int flag);
3362 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3363 			u64 start, u64 len);
3364 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3365 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3366 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3367 int f2fs_write_single_data_page(struct page *page, int *submitted,
3368 				struct bio **bio, sector_t *last_block,
3369 				struct writeback_control *wbc,
3370 				enum iostat_type io_type,
3371 				int compr_blocks);
3372 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3373 			unsigned int length);
3374 int f2fs_release_page(struct page *page, gfp_t wait);
3375 #ifdef CONFIG_MIGRATION
3376 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3377 			struct page *page, enum migrate_mode mode);
3378 #endif
3379 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3380 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3381 int f2fs_init_post_read_processing(void);
3382 void f2fs_destroy_post_read_processing(void);
3383 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3384 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3385 
3386 /*
3387  * gc.c
3388  */
3389 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3390 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3391 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3392 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3393 			unsigned int segno);
3394 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3395 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3396 
3397 /*
3398  * recovery.c
3399  */
3400 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3401 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3402 
3403 /*
3404  * debug.c
3405  */
3406 #ifdef CONFIG_F2FS_STAT_FS
3407 struct f2fs_stat_info {
3408 	struct list_head stat_list;
3409 	struct f2fs_sb_info *sbi;
3410 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3411 	int main_area_segs, main_area_sections, main_area_zones;
3412 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3413 	unsigned long long hit_total, total_ext;
3414 	int ext_tree, zombie_tree, ext_node;
3415 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3416 	int ndirty_data, ndirty_qdata;
3417 	int inmem_pages;
3418 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3419 	int nats, dirty_nats, sits, dirty_sits;
3420 	int free_nids, avail_nids, alloc_nids;
3421 	int total_count, utilization;
3422 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3423 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3424 	int nr_dio_read, nr_dio_write;
3425 	unsigned int io_skip_bggc, other_skip_bggc;
3426 	int nr_flushing, nr_flushed, flush_list_empty;
3427 	int nr_discarding, nr_discarded;
3428 	int nr_discard_cmd;
3429 	unsigned int undiscard_blks;
3430 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3431 	int compr_inode, compr_blocks;
3432 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3433 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3434 	unsigned int bimodal, avg_vblocks;
3435 	int util_free, util_valid, util_invalid;
3436 	int rsvd_segs, overp_segs;
3437 	int dirty_count, node_pages, meta_pages;
3438 	int prefree_count, call_count, cp_count, bg_cp_count;
3439 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3440 	int bg_node_segs, bg_data_segs;
3441 	int tot_blks, data_blks, node_blks;
3442 	int bg_data_blks, bg_node_blks;
3443 	unsigned long long skipped_atomic_files[2];
3444 	int curseg[NR_CURSEG_TYPE];
3445 	int cursec[NR_CURSEG_TYPE];
3446 	int curzone[NR_CURSEG_TYPE];
3447 
3448 	unsigned int meta_count[META_MAX];
3449 	unsigned int segment_count[2];
3450 	unsigned int block_count[2];
3451 	unsigned int inplace_count;
3452 	unsigned long long base_mem, cache_mem, page_mem;
3453 };
3454 
3455 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3456 {
3457 	return (struct f2fs_stat_info *)sbi->stat_info;
3458 }
3459 
3460 #define stat_inc_cp_count(si)		((si)->cp_count++)
3461 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3462 #define stat_inc_call_count(si)		((si)->call_count++)
3463 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3464 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3465 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3466 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3467 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3468 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3469 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3470 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3471 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3472 #define stat_inc_inline_xattr(inode)					\
3473 	do {								\
3474 		if (f2fs_has_inline_xattr(inode))			\
3475 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3476 	} while (0)
3477 #define stat_dec_inline_xattr(inode)					\
3478 	do {								\
3479 		if (f2fs_has_inline_xattr(inode))			\
3480 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3481 	} while (0)
3482 #define stat_inc_inline_inode(inode)					\
3483 	do {								\
3484 		if (f2fs_has_inline_data(inode))			\
3485 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3486 	} while (0)
3487 #define stat_dec_inline_inode(inode)					\
3488 	do {								\
3489 		if (f2fs_has_inline_data(inode))			\
3490 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3491 	} while (0)
3492 #define stat_inc_inline_dir(inode)					\
3493 	do {								\
3494 		if (f2fs_has_inline_dentry(inode))			\
3495 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3496 	} while (0)
3497 #define stat_dec_inline_dir(inode)					\
3498 	do {								\
3499 		if (f2fs_has_inline_dentry(inode))			\
3500 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3501 	} while (0)
3502 #define stat_inc_compr_inode(inode)					\
3503 	do {								\
3504 		if (f2fs_compressed_file(inode))			\
3505 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3506 	} while (0)
3507 #define stat_dec_compr_inode(inode)					\
3508 	do {								\
3509 		if (f2fs_compressed_file(inode))			\
3510 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3511 	} while (0)
3512 #define stat_add_compr_blocks(inode, blocks)				\
3513 		(atomic_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3514 #define stat_sub_compr_blocks(inode, blocks)				\
3515 		(atomic_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3516 #define stat_inc_meta_count(sbi, blkaddr)				\
3517 	do {								\
3518 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3519 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3520 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3521 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3522 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3523 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3524 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3525 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3526 	} while (0)
3527 #define stat_inc_seg_type(sbi, curseg)					\
3528 		((sbi)->segment_count[(curseg)->alloc_type]++)
3529 #define stat_inc_block_count(sbi, curseg)				\
3530 		((sbi)->block_count[(curseg)->alloc_type]++)
3531 #define stat_inc_inplace_blocks(sbi)					\
3532 		(atomic_inc(&(sbi)->inplace_count))
3533 #define stat_update_max_atomic_write(inode)				\
3534 	do {								\
3535 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3536 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3537 		if (cur > max)						\
3538 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3539 	} while (0)
3540 #define stat_inc_volatile_write(inode)					\
3541 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3542 #define stat_dec_volatile_write(inode)					\
3543 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3544 #define stat_update_max_volatile_write(inode)				\
3545 	do {								\
3546 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3547 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3548 		if (cur > max)						\
3549 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3550 	} while (0)
3551 #define stat_inc_seg_count(sbi, type, gc_type)				\
3552 	do {								\
3553 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3554 		si->tot_segs++;						\
3555 		if ((type) == SUM_TYPE_DATA) {				\
3556 			si->data_segs++;				\
3557 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3558 		} else {						\
3559 			si->node_segs++;				\
3560 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3561 		}							\
3562 	} while (0)
3563 
3564 #define stat_inc_tot_blk_count(si, blks)				\
3565 	((si)->tot_blks += (blks))
3566 
3567 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3568 	do {								\
3569 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3570 		stat_inc_tot_blk_count(si, blks);			\
3571 		si->data_blks += (blks);				\
3572 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3573 	} while (0)
3574 
3575 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3576 	do {								\
3577 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3578 		stat_inc_tot_blk_count(si, blks);			\
3579 		si->node_blks += (blks);				\
3580 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3581 	} while (0)
3582 
3583 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3584 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3585 void __init f2fs_create_root_stats(void);
3586 void f2fs_destroy_root_stats(void);
3587 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3588 #else
3589 #define stat_inc_cp_count(si)				do { } while (0)
3590 #define stat_inc_bg_cp_count(si)			do { } while (0)
3591 #define stat_inc_call_count(si)				do { } while (0)
3592 #define stat_inc_bggc_count(si)				do { } while (0)
3593 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3594 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3595 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3596 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3597 #define stat_inc_total_hit(sbi)				do { } while (0)
3598 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3599 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3600 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3601 #define stat_inc_inline_xattr(inode)			do { } while (0)
3602 #define stat_dec_inline_xattr(inode)			do { } while (0)
3603 #define stat_inc_inline_inode(inode)			do { } while (0)
3604 #define stat_dec_inline_inode(inode)			do { } while (0)
3605 #define stat_inc_inline_dir(inode)			do { } while (0)
3606 #define stat_dec_inline_dir(inode)			do { } while (0)
3607 #define stat_inc_compr_inode(inode)			do { } while (0)
3608 #define stat_dec_compr_inode(inode)			do { } while (0)
3609 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3610 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3611 #define stat_inc_atomic_write(inode)			do { } while (0)
3612 #define stat_dec_atomic_write(inode)			do { } while (0)
3613 #define stat_update_max_atomic_write(inode)		do { } while (0)
3614 #define stat_inc_volatile_write(inode)			do { } while (0)
3615 #define stat_dec_volatile_write(inode)			do { } while (0)
3616 #define stat_update_max_volatile_write(inode)		do { } while (0)
3617 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3618 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3619 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3620 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3621 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3622 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3623 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3624 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3625 
3626 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3627 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3628 static inline void __init f2fs_create_root_stats(void) { }
3629 static inline void f2fs_destroy_root_stats(void) { }
3630 static inline void update_sit_info(struct f2fs_sb_info *sbi) {}
3631 #endif
3632 
3633 extern const struct file_operations f2fs_dir_operations;
3634 #ifdef CONFIG_UNICODE
3635 extern const struct dentry_operations f2fs_dentry_ops;
3636 #endif
3637 extern const struct file_operations f2fs_file_operations;
3638 extern const struct inode_operations f2fs_file_inode_operations;
3639 extern const struct address_space_operations f2fs_dblock_aops;
3640 extern const struct address_space_operations f2fs_node_aops;
3641 extern const struct address_space_operations f2fs_meta_aops;
3642 extern const struct inode_operations f2fs_dir_inode_operations;
3643 extern const struct inode_operations f2fs_symlink_inode_operations;
3644 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3645 extern const struct inode_operations f2fs_special_inode_operations;
3646 extern struct kmem_cache *f2fs_inode_entry_slab;
3647 
3648 /*
3649  * inline.c
3650  */
3651 bool f2fs_may_inline_data(struct inode *inode);
3652 bool f2fs_may_inline_dentry(struct inode *inode);
3653 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3654 void f2fs_truncate_inline_inode(struct inode *inode,
3655 						struct page *ipage, u64 from);
3656 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3657 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3658 int f2fs_convert_inline_inode(struct inode *inode);
3659 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3660 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3661 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3662 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3663 			struct fscrypt_name *fname, struct page **res_page);
3664 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3665 			struct page *ipage);
3666 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3667 			const struct qstr *orig_name,
3668 			struct inode *inode, nid_t ino, umode_t mode);
3669 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3670 				struct page *page, struct inode *dir,
3671 				struct inode *inode);
3672 bool f2fs_empty_inline_dir(struct inode *dir);
3673 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3674 			struct fscrypt_str *fstr);
3675 int f2fs_inline_data_fiemap(struct inode *inode,
3676 			struct fiemap_extent_info *fieinfo,
3677 			__u64 start, __u64 len);
3678 
3679 /*
3680  * shrinker.c
3681  */
3682 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3683 			struct shrink_control *sc);
3684 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3685 			struct shrink_control *sc);
3686 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3687 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3688 
3689 /*
3690  * extent_cache.c
3691  */
3692 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3693 				struct rb_entry *cached_re, unsigned int ofs);
3694 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3695 				struct rb_root_cached *root,
3696 				struct rb_node **parent,
3697 				unsigned int ofs, bool *leftmost);
3698 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3699 		struct rb_entry *cached_re, unsigned int ofs,
3700 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3701 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3702 		bool force, bool *leftmost);
3703 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3704 						struct rb_root_cached *root);
3705 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3706 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3707 void f2fs_drop_extent_tree(struct inode *inode);
3708 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3709 void f2fs_destroy_extent_tree(struct inode *inode);
3710 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3711 			struct extent_info *ei);
3712 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3713 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3714 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3715 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3716 int __init f2fs_create_extent_cache(void);
3717 void f2fs_destroy_extent_cache(void);
3718 
3719 /*
3720  * sysfs.c
3721  */
3722 int __init f2fs_init_sysfs(void);
3723 void f2fs_exit_sysfs(void);
3724 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3725 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3726 
3727 /* verity.c */
3728 extern const struct fsverity_operations f2fs_verityops;
3729 
3730 /*
3731  * crypto support
3732  */
3733 static inline bool f2fs_encrypted_file(struct inode *inode)
3734 {
3735 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3736 }
3737 
3738 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3739 {
3740 #ifdef CONFIG_FS_ENCRYPTION
3741 	file_set_encrypt(inode);
3742 	f2fs_set_inode_flags(inode);
3743 #endif
3744 }
3745 
3746 /*
3747  * Returns true if the reads of the inode's data need to undergo some
3748  * postprocessing step, like decryption or authenticity verification.
3749  */
3750 static inline bool f2fs_post_read_required(struct inode *inode)
3751 {
3752 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3753 		f2fs_compressed_file(inode);
3754 }
3755 
3756 /*
3757  * compress.c
3758  */
3759 #ifdef CONFIG_F2FS_FS_COMPRESSION
3760 bool f2fs_is_compressed_page(struct page *page);
3761 struct page *f2fs_compress_control_page(struct page *page);
3762 int f2fs_prepare_compress_overwrite(struct inode *inode,
3763 			struct page **pagep, pgoff_t index, void **fsdata);
3764 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3765 					pgoff_t index, unsigned copied);
3766 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3767 bool f2fs_is_compress_backend_ready(struct inode *inode);
3768 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3769 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3770 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3771 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3772 int f2fs_write_multi_pages(struct compress_ctx *cc,
3773 						int *submitted,
3774 						struct writeback_control *wbc,
3775 						enum iostat_type io_type);
3776 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3777 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3778 				unsigned nr_pages, sector_t *last_block_in_bio,
3779 				bool is_readahead);
3780 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3781 void f2fs_free_dic(struct decompress_io_ctx *dic);
3782 void f2fs_decompress_end_io(struct page **rpages,
3783 			unsigned int cluster_size, bool err, bool verity);
3784 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3785 void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3786 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3787 #else
3788 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3789 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3790 {
3791 	if (!f2fs_compressed_file(inode))
3792 		return true;
3793 	/* not support compression */
3794 	return false;
3795 }
3796 static inline struct page *f2fs_compress_control_page(struct page *page)
3797 {
3798 	WARN_ON_ONCE(1);
3799 	return ERR_PTR(-EINVAL);
3800 }
3801 #endif
3802 
3803 static inline void set_compress_context(struct inode *inode)
3804 {
3805 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3806 
3807 	F2FS_I(inode)->i_compress_algorithm =
3808 			F2FS_OPTION(sbi).compress_algorithm;
3809 	F2FS_I(inode)->i_log_cluster_size =
3810 			F2FS_OPTION(sbi).compress_log_size;
3811 	F2FS_I(inode)->i_cluster_size =
3812 			1 << F2FS_I(inode)->i_log_cluster_size;
3813 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3814 	set_inode_flag(inode, FI_COMPRESSED_FILE);
3815 	stat_inc_compr_inode(inode);
3816 }
3817 
3818 static inline u64 f2fs_disable_compressed_file(struct inode *inode)
3819 {
3820 	struct f2fs_inode_info *fi = F2FS_I(inode);
3821 
3822 	if (!f2fs_compressed_file(inode))
3823 		return 0;
3824 	if (fi->i_compr_blocks)
3825 		return fi->i_compr_blocks;
3826 
3827 	fi->i_flags &= ~F2FS_COMPR_FL;
3828 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3829 	stat_dec_compr_inode(inode);
3830 	return 0;
3831 }
3832 
3833 #define F2FS_FEATURE_FUNCS(name, flagname) \
3834 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3835 { \
3836 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3837 }
3838 
3839 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3840 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3841 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3842 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3843 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3844 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3845 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3846 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3847 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3848 F2FS_FEATURE_FUNCS(verity, VERITY);
3849 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3850 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3851 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3852 
3853 #ifdef CONFIG_BLK_DEV_ZONED
3854 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3855 				    block_t blkaddr)
3856 {
3857 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3858 
3859 	return test_bit(zno, FDEV(devi).blkz_seq);
3860 }
3861 #endif
3862 
3863 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3864 {
3865 	return f2fs_sb_has_blkzoned(sbi);
3866 }
3867 
3868 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3869 {
3870 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3871 	       bdev_is_zoned(bdev);
3872 }
3873 
3874 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3875 {
3876 	int i;
3877 
3878 	if (!f2fs_is_multi_device(sbi))
3879 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3880 
3881 	for (i = 0; i < sbi->s_ndevs; i++)
3882 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3883 			return true;
3884 	return false;
3885 }
3886 
3887 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3888 {
3889 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3890 					f2fs_hw_should_discard(sbi);
3891 }
3892 
3893 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3894 {
3895 	int i;
3896 
3897 	if (!f2fs_is_multi_device(sbi))
3898 		return bdev_read_only(sbi->sb->s_bdev);
3899 
3900 	for (i = 0; i < sbi->s_ndevs; i++)
3901 		if (bdev_read_only(FDEV(i).bdev))
3902 			return true;
3903 	return false;
3904 }
3905 
3906 
3907 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3908 {
3909 	clear_opt(sbi, ADAPTIVE);
3910 	clear_opt(sbi, LFS);
3911 
3912 	switch (mt) {
3913 	case F2FS_MOUNT_ADAPTIVE:
3914 		set_opt(sbi, ADAPTIVE);
3915 		break;
3916 	case F2FS_MOUNT_LFS:
3917 		set_opt(sbi, LFS);
3918 		break;
3919 	}
3920 }
3921 
3922 static inline bool f2fs_may_encrypt(struct inode *inode)
3923 {
3924 #ifdef CONFIG_FS_ENCRYPTION
3925 	umode_t mode = inode->i_mode;
3926 
3927 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3928 #else
3929 	return false;
3930 #endif
3931 }
3932 
3933 static inline bool f2fs_may_compress(struct inode *inode)
3934 {
3935 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
3936 				f2fs_is_atomic_file(inode) ||
3937 				f2fs_is_volatile_file(inode))
3938 		return false;
3939 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
3940 }
3941 
3942 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
3943 						u64 blocks, bool add)
3944 {
3945 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
3946 
3947 	if (add) {
3948 		F2FS_I(inode)->i_compr_blocks += diff;
3949 		stat_add_compr_blocks(inode, diff);
3950 	} else {
3951 		F2FS_I(inode)->i_compr_blocks -= diff;
3952 		stat_sub_compr_blocks(inode, diff);
3953 	}
3954 	f2fs_mark_inode_dirty_sync(inode, true);
3955 }
3956 
3957 static inline int block_unaligned_IO(struct inode *inode,
3958 				struct kiocb *iocb, struct iov_iter *iter)
3959 {
3960 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3961 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3962 	loff_t offset = iocb->ki_pos;
3963 	unsigned long align = offset | iov_iter_alignment(iter);
3964 
3965 	return align & blocksize_mask;
3966 }
3967 
3968 static inline int allow_outplace_dio(struct inode *inode,
3969 				struct kiocb *iocb, struct iov_iter *iter)
3970 {
3971 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3972 	int rw = iov_iter_rw(iter);
3973 
3974 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3975 				!block_unaligned_IO(inode, iocb, iter));
3976 }
3977 
3978 static inline bool f2fs_force_buffered_io(struct inode *inode,
3979 				struct kiocb *iocb, struct iov_iter *iter)
3980 {
3981 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3982 	int rw = iov_iter_rw(iter);
3983 
3984 	if (f2fs_post_read_required(inode))
3985 		return true;
3986 	if (f2fs_is_multi_device(sbi))
3987 		return true;
3988 	if (f2fs_compressed_file(inode))
3989 		return true;
3990 	/*
3991 	 * for blkzoned device, fallback direct IO to buffered IO, so
3992 	 * all IOs can be serialized by log-structured write.
3993 	 */
3994 	if (f2fs_sb_has_blkzoned(sbi))
3995 		return true;
3996 	if (test_opt(sbi, LFS) && (rw == WRITE)) {
3997 		if (block_unaligned_IO(inode, iocb, iter))
3998 			return true;
3999 		if (F2FS_IO_ALIGNED(sbi))
4000 			return true;
4001 	}
4002 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4003 					!IS_SWAPFILE(inode))
4004 		return true;
4005 
4006 	return false;
4007 }
4008 
4009 #ifdef CONFIG_F2FS_FAULT_INJECTION
4010 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4011 							unsigned int type);
4012 #else
4013 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4014 #endif
4015 
4016 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4017 {
4018 #ifdef CONFIG_QUOTA
4019 	if (f2fs_sb_has_quota_ino(sbi))
4020 		return true;
4021 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4022 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4023 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4024 		return true;
4025 #endif
4026 	return false;
4027 }
4028 
4029 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4030 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4031 
4032 #endif /* _LINUX_F2FS_H */
4033