1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/buffer_head.h> 15 #include <linux/slab.h> 16 #include <linux/crc32.h> 17 #include <linux/magic.h> 18 #include <linux/kobject.h> 19 #include <linux/sched.h> 20 #include <linux/cred.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <linux/part_stat.h> 26 #include <crypto/hash.h> 27 28 #include <linux/fscrypt.h> 29 #include <linux/fsverity.h> 30 31 #ifdef CONFIG_F2FS_CHECK_FS 32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 33 #else 34 #define f2fs_bug_on(sbi, condition) \ 35 do { \ 36 if (unlikely(condition)) { \ 37 WARN_ON(1); \ 38 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 39 } \ 40 } while (0) 41 #endif 42 43 enum { 44 FAULT_KMALLOC, 45 FAULT_KVMALLOC, 46 FAULT_PAGE_ALLOC, 47 FAULT_PAGE_GET, 48 FAULT_ALLOC_BIO, 49 FAULT_ALLOC_NID, 50 FAULT_ORPHAN, 51 FAULT_BLOCK, 52 FAULT_DIR_DEPTH, 53 FAULT_EVICT_INODE, 54 FAULT_TRUNCATE, 55 FAULT_READ_IO, 56 FAULT_CHECKPOINT, 57 FAULT_DISCARD, 58 FAULT_WRITE_IO, 59 FAULT_MAX, 60 }; 61 62 #ifdef CONFIG_F2FS_FAULT_INJECTION 63 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1) 64 65 struct f2fs_fault_info { 66 atomic_t inject_ops; 67 unsigned int inject_rate; 68 unsigned int inject_type; 69 }; 70 71 extern const char *f2fs_fault_name[FAULT_MAX]; 72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type))) 73 #endif 74 75 /* 76 * For mount options 77 */ 78 #define F2FS_MOUNT_BG_GC 0x00000001 79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 80 #define F2FS_MOUNT_DISCARD 0x00000004 81 #define F2FS_MOUNT_NOHEAP 0x00000008 82 #define F2FS_MOUNT_XATTR_USER 0x00000010 83 #define F2FS_MOUNT_POSIX_ACL 0x00000020 84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 85 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 86 #define F2FS_MOUNT_INLINE_DATA 0x00000100 87 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 88 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 89 #define F2FS_MOUNT_NOBARRIER 0x00000800 90 #define F2FS_MOUNT_FASTBOOT 0x00001000 91 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 92 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000 93 #define F2FS_MOUNT_DATA_FLUSH 0x00008000 94 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000 95 #define F2FS_MOUNT_ADAPTIVE 0x00020000 96 #define F2FS_MOUNT_LFS 0x00040000 97 #define F2FS_MOUNT_USRQUOTA 0x00080000 98 #define F2FS_MOUNT_GRPQUOTA 0x00100000 99 #define F2FS_MOUNT_PRJQUOTA 0x00200000 100 #define F2FS_MOUNT_QUOTA 0x00400000 101 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000 102 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000 103 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000 104 105 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 106 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 107 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 108 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 109 110 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 111 typecheck(unsigned long long, b) && \ 112 ((long long)((a) - (b)) > 0)) 113 114 typedef u32 block_t; /* 115 * should not change u32, since it is the on-disk block 116 * address format, __le32. 117 */ 118 typedef u32 nid_t; 119 120 #define COMPRESS_EXT_NUM 16 121 122 struct f2fs_mount_info { 123 unsigned int opt; 124 int write_io_size_bits; /* Write IO size bits */ 125 block_t root_reserved_blocks; /* root reserved blocks */ 126 kuid_t s_resuid; /* reserved blocks for uid */ 127 kgid_t s_resgid; /* reserved blocks for gid */ 128 int active_logs; /* # of active logs */ 129 int inline_xattr_size; /* inline xattr size */ 130 #ifdef CONFIG_F2FS_FAULT_INJECTION 131 struct f2fs_fault_info fault_info; /* For fault injection */ 132 #endif 133 #ifdef CONFIG_QUOTA 134 /* Names of quota files with journalled quota */ 135 char *s_qf_names[MAXQUOTAS]; 136 int s_jquota_fmt; /* Format of quota to use */ 137 #endif 138 /* For which write hints are passed down to block layer */ 139 int whint_mode; 140 int alloc_mode; /* segment allocation policy */ 141 int fsync_mode; /* fsync policy */ 142 bool test_dummy_encryption; /* test dummy encryption */ 143 block_t unusable_cap; /* Amount of space allowed to be 144 * unusable when disabling checkpoint 145 */ 146 147 /* For compression */ 148 unsigned char compress_algorithm; /* algorithm type */ 149 unsigned compress_log_size; /* cluster log size */ 150 unsigned char compress_ext_cnt; /* extension count */ 151 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 152 }; 153 154 #define F2FS_FEATURE_ENCRYPT 0x0001 155 #define F2FS_FEATURE_BLKZONED 0x0002 156 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004 157 #define F2FS_FEATURE_EXTRA_ATTR 0x0008 158 #define F2FS_FEATURE_PRJQUOTA 0x0010 159 #define F2FS_FEATURE_INODE_CHKSUM 0x0020 160 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040 161 #define F2FS_FEATURE_QUOTA_INO 0x0080 162 #define F2FS_FEATURE_INODE_CRTIME 0x0100 163 #define F2FS_FEATURE_LOST_FOUND 0x0200 164 #define F2FS_FEATURE_VERITY 0x0400 165 #define F2FS_FEATURE_SB_CHKSUM 0x0800 166 #define F2FS_FEATURE_CASEFOLD 0x1000 167 #define F2FS_FEATURE_COMPRESSION 0x2000 168 169 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 170 ((raw_super->feature & cpu_to_le32(mask)) != 0) 171 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 172 #define F2FS_SET_FEATURE(sbi, mask) \ 173 (sbi->raw_super->feature |= cpu_to_le32(mask)) 174 #define F2FS_CLEAR_FEATURE(sbi, mask) \ 175 (sbi->raw_super->feature &= ~cpu_to_le32(mask)) 176 177 /* 178 * Default values for user and/or group using reserved blocks 179 */ 180 #define F2FS_DEF_RESUID 0 181 #define F2FS_DEF_RESGID 0 182 183 /* 184 * For checkpoint manager 185 */ 186 enum { 187 NAT_BITMAP, 188 SIT_BITMAP 189 }; 190 191 #define CP_UMOUNT 0x00000001 192 #define CP_FASTBOOT 0x00000002 193 #define CP_SYNC 0x00000004 194 #define CP_RECOVERY 0x00000008 195 #define CP_DISCARD 0x00000010 196 #define CP_TRIMMED 0x00000020 197 #define CP_PAUSE 0x00000040 198 199 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi) 200 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 201 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 202 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 203 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 204 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 205 #define DEF_CP_INTERVAL 60 /* 60 secs */ 206 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 207 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 208 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 209 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 210 211 struct cp_control { 212 int reason; 213 __u64 trim_start; 214 __u64 trim_end; 215 __u64 trim_minlen; 216 }; 217 218 /* 219 * indicate meta/data type 220 */ 221 enum { 222 META_CP, 223 META_NAT, 224 META_SIT, 225 META_SSA, 226 META_MAX, 227 META_POR, 228 DATA_GENERIC, /* check range only */ 229 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 230 DATA_GENERIC_ENHANCE_READ, /* 231 * strong check on range and segment 232 * bitmap but no warning due to race 233 * condition of read on truncated area 234 * by extent_cache 235 */ 236 META_GENERIC, 237 }; 238 239 /* for the list of ino */ 240 enum { 241 ORPHAN_INO, /* for orphan ino list */ 242 APPEND_INO, /* for append ino list */ 243 UPDATE_INO, /* for update ino list */ 244 TRANS_DIR_INO, /* for trasactions dir ino list */ 245 FLUSH_INO, /* for multiple device flushing */ 246 MAX_INO_ENTRY, /* max. list */ 247 }; 248 249 struct ino_entry { 250 struct list_head list; /* list head */ 251 nid_t ino; /* inode number */ 252 unsigned int dirty_device; /* dirty device bitmap */ 253 }; 254 255 /* for the list of inodes to be GCed */ 256 struct inode_entry { 257 struct list_head list; /* list head */ 258 struct inode *inode; /* vfs inode pointer */ 259 }; 260 261 struct fsync_node_entry { 262 struct list_head list; /* list head */ 263 struct page *page; /* warm node page pointer */ 264 unsigned int seq_id; /* sequence id */ 265 }; 266 267 /* for the bitmap indicate blocks to be discarded */ 268 struct discard_entry { 269 struct list_head list; /* list head */ 270 block_t start_blkaddr; /* start blockaddr of current segment */ 271 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 272 }; 273 274 /* default discard granularity of inner discard thread, unit: block count */ 275 #define DEFAULT_DISCARD_GRANULARITY 16 276 277 /* max discard pend list number */ 278 #define MAX_PLIST_NUM 512 279 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 280 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 281 282 enum { 283 D_PREP, /* initial */ 284 D_PARTIAL, /* partially submitted */ 285 D_SUBMIT, /* all submitted */ 286 D_DONE, /* finished */ 287 }; 288 289 struct discard_info { 290 block_t lstart; /* logical start address */ 291 block_t len; /* length */ 292 block_t start; /* actual start address in dev */ 293 }; 294 295 struct discard_cmd { 296 struct rb_node rb_node; /* rb node located in rb-tree */ 297 union { 298 struct { 299 block_t lstart; /* logical start address */ 300 block_t len; /* length */ 301 block_t start; /* actual start address in dev */ 302 }; 303 struct discard_info di; /* discard info */ 304 305 }; 306 struct list_head list; /* command list */ 307 struct completion wait; /* compleation */ 308 struct block_device *bdev; /* bdev */ 309 unsigned short ref; /* reference count */ 310 unsigned char state; /* state */ 311 unsigned char queued; /* queued discard */ 312 int error; /* bio error */ 313 spinlock_t lock; /* for state/bio_ref updating */ 314 unsigned short bio_ref; /* bio reference count */ 315 }; 316 317 enum { 318 DPOLICY_BG, 319 DPOLICY_FORCE, 320 DPOLICY_FSTRIM, 321 DPOLICY_UMOUNT, 322 MAX_DPOLICY, 323 }; 324 325 struct discard_policy { 326 int type; /* type of discard */ 327 unsigned int min_interval; /* used for candidates exist */ 328 unsigned int mid_interval; /* used for device busy */ 329 unsigned int max_interval; /* used for candidates not exist */ 330 unsigned int max_requests; /* # of discards issued per round */ 331 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 332 bool io_aware; /* issue discard in idle time */ 333 bool sync; /* submit discard with REQ_SYNC flag */ 334 bool ordered; /* issue discard by lba order */ 335 unsigned int granularity; /* discard granularity */ 336 int timeout; /* discard timeout for put_super */ 337 }; 338 339 struct discard_cmd_control { 340 struct task_struct *f2fs_issue_discard; /* discard thread */ 341 struct list_head entry_list; /* 4KB discard entry list */ 342 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 343 struct list_head wait_list; /* store on-flushing entries */ 344 struct list_head fstrim_list; /* in-flight discard from fstrim */ 345 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 346 unsigned int discard_wake; /* to wake up discard thread */ 347 struct mutex cmd_lock; 348 unsigned int nr_discards; /* # of discards in the list */ 349 unsigned int max_discards; /* max. discards to be issued */ 350 unsigned int discard_granularity; /* discard granularity */ 351 unsigned int undiscard_blks; /* # of undiscard blocks */ 352 unsigned int next_pos; /* next discard position */ 353 atomic_t issued_discard; /* # of issued discard */ 354 atomic_t queued_discard; /* # of queued discard */ 355 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 356 struct rb_root_cached root; /* root of discard rb-tree */ 357 bool rbtree_check; /* config for consistence check */ 358 }; 359 360 /* for the list of fsync inodes, used only during recovery */ 361 struct fsync_inode_entry { 362 struct list_head list; /* list head */ 363 struct inode *inode; /* vfs inode pointer */ 364 block_t blkaddr; /* block address locating the last fsync */ 365 block_t last_dentry; /* block address locating the last dentry */ 366 }; 367 368 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 369 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 370 371 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 372 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 373 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 374 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 375 376 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 377 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 378 379 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 380 { 381 int before = nats_in_cursum(journal); 382 383 journal->n_nats = cpu_to_le16(before + i); 384 return before; 385 } 386 387 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 388 { 389 int before = sits_in_cursum(journal); 390 391 journal->n_sits = cpu_to_le16(before + i); 392 return before; 393 } 394 395 static inline bool __has_cursum_space(struct f2fs_journal *journal, 396 int size, int type) 397 { 398 if (type == NAT_JOURNAL) 399 return size <= MAX_NAT_JENTRIES(journal); 400 return size <= MAX_SIT_JENTRIES(journal); 401 } 402 403 /* 404 * ioctl commands 405 */ 406 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 407 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 408 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 409 410 #define F2FS_IOCTL_MAGIC 0xf5 411 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 412 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 413 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 414 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 415 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 416 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32) 417 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7) 418 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \ 419 struct f2fs_defragment) 420 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \ 421 struct f2fs_move_range) 422 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \ 423 struct f2fs_flush_device) 424 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \ 425 struct f2fs_gc_range) 426 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32) 427 #define F2FS_IOC_SET_PIN_FILE _IOW(F2FS_IOCTL_MAGIC, 13, __u32) 428 #define F2FS_IOC_GET_PIN_FILE _IOR(F2FS_IOCTL_MAGIC, 14, __u32) 429 #define F2FS_IOC_PRECACHE_EXTENTS _IO(F2FS_IOCTL_MAGIC, 15) 430 #define F2FS_IOC_RESIZE_FS _IOW(F2FS_IOCTL_MAGIC, 16, __u64) 431 432 #define F2FS_IOC_GET_VOLUME_NAME FS_IOC_GETFSLABEL 433 #define F2FS_IOC_SET_VOLUME_NAME FS_IOC_SETFSLABEL 434 435 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY 436 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY 437 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT 438 439 /* 440 * should be same as XFS_IOC_GOINGDOWN. 441 * Flags for going down operation used by FS_IOC_GOINGDOWN 442 */ 443 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 444 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 445 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 446 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 447 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */ 448 #define F2FS_GOING_DOWN_NEED_FSCK 0x4 /* going down to trigger fsck */ 449 450 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 451 /* 452 * ioctl commands in 32 bit emulation 453 */ 454 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 455 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 456 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION 457 #endif 458 459 #define F2FS_IOC_FSGETXATTR FS_IOC_FSGETXATTR 460 #define F2FS_IOC_FSSETXATTR FS_IOC_FSSETXATTR 461 462 struct f2fs_gc_range { 463 u32 sync; 464 u64 start; 465 u64 len; 466 }; 467 468 struct f2fs_defragment { 469 u64 start; 470 u64 len; 471 }; 472 473 struct f2fs_move_range { 474 u32 dst_fd; /* destination fd */ 475 u64 pos_in; /* start position in src_fd */ 476 u64 pos_out; /* start position in dst_fd */ 477 u64 len; /* size to move */ 478 }; 479 480 struct f2fs_flush_device { 481 u32 dev_num; /* device number to flush */ 482 u32 segments; /* # of segments to flush */ 483 }; 484 485 /* for inline stuff */ 486 #define DEF_INLINE_RESERVED_SIZE 1 487 static inline int get_extra_isize(struct inode *inode); 488 static inline int get_inline_xattr_addrs(struct inode *inode); 489 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 490 (CUR_ADDRS_PER_INODE(inode) - \ 491 get_inline_xattr_addrs(inode) - \ 492 DEF_INLINE_RESERVED_SIZE)) 493 494 /* for inline dir */ 495 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 496 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 497 BITS_PER_BYTE + 1)) 498 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 499 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 500 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 501 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 502 NR_INLINE_DENTRY(inode) + \ 503 INLINE_DENTRY_BITMAP_SIZE(inode))) 504 505 /* 506 * For INODE and NODE manager 507 */ 508 /* for directory operations */ 509 struct f2fs_dentry_ptr { 510 struct inode *inode; 511 void *bitmap; 512 struct f2fs_dir_entry *dentry; 513 __u8 (*filename)[F2FS_SLOT_LEN]; 514 int max; 515 int nr_bitmap; 516 }; 517 518 static inline void make_dentry_ptr_block(struct inode *inode, 519 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 520 { 521 d->inode = inode; 522 d->max = NR_DENTRY_IN_BLOCK; 523 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 524 d->bitmap = t->dentry_bitmap; 525 d->dentry = t->dentry; 526 d->filename = t->filename; 527 } 528 529 static inline void make_dentry_ptr_inline(struct inode *inode, 530 struct f2fs_dentry_ptr *d, void *t) 531 { 532 int entry_cnt = NR_INLINE_DENTRY(inode); 533 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 534 int reserved_size = INLINE_RESERVED_SIZE(inode); 535 536 d->inode = inode; 537 d->max = entry_cnt; 538 d->nr_bitmap = bitmap_size; 539 d->bitmap = t; 540 d->dentry = t + bitmap_size + reserved_size; 541 d->filename = t + bitmap_size + reserved_size + 542 SIZE_OF_DIR_ENTRY * entry_cnt; 543 } 544 545 /* 546 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 547 * as its node offset to distinguish from index node blocks. 548 * But some bits are used to mark the node block. 549 */ 550 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 551 >> OFFSET_BIT_SHIFT) 552 enum { 553 ALLOC_NODE, /* allocate a new node page if needed */ 554 LOOKUP_NODE, /* look up a node without readahead */ 555 LOOKUP_NODE_RA, /* 556 * look up a node with readahead called 557 * by get_data_block. 558 */ 559 }; 560 561 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */ 562 563 /* maximum retry quota flush count */ 564 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 565 566 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 567 568 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 569 570 /* for in-memory extent cache entry */ 571 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 572 573 /* number of extent info in extent cache we try to shrink */ 574 #define EXTENT_CACHE_SHRINK_NUMBER 128 575 576 struct rb_entry { 577 struct rb_node rb_node; /* rb node located in rb-tree */ 578 unsigned int ofs; /* start offset of the entry */ 579 unsigned int len; /* length of the entry */ 580 }; 581 582 struct extent_info { 583 unsigned int fofs; /* start offset in a file */ 584 unsigned int len; /* length of the extent */ 585 u32 blk; /* start block address of the extent */ 586 }; 587 588 struct extent_node { 589 struct rb_node rb_node; /* rb node located in rb-tree */ 590 struct extent_info ei; /* extent info */ 591 struct list_head list; /* node in global extent list of sbi */ 592 struct extent_tree *et; /* extent tree pointer */ 593 }; 594 595 struct extent_tree { 596 nid_t ino; /* inode number */ 597 struct rb_root_cached root; /* root of extent info rb-tree */ 598 struct extent_node *cached_en; /* recently accessed extent node */ 599 struct extent_info largest; /* largested extent info */ 600 struct list_head list; /* to be used by sbi->zombie_list */ 601 rwlock_t lock; /* protect extent info rb-tree */ 602 atomic_t node_cnt; /* # of extent node in rb-tree*/ 603 bool largest_updated; /* largest extent updated */ 604 }; 605 606 /* 607 * This structure is taken from ext4_map_blocks. 608 * 609 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 610 */ 611 #define F2FS_MAP_NEW (1 << BH_New) 612 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 613 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 614 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 615 F2FS_MAP_UNWRITTEN) 616 617 struct f2fs_map_blocks { 618 block_t m_pblk; 619 block_t m_lblk; 620 unsigned int m_len; 621 unsigned int m_flags; 622 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 623 pgoff_t *m_next_extent; /* point to next possible extent */ 624 int m_seg_type; 625 bool m_may_create; /* indicate it is from write path */ 626 }; 627 628 /* for flag in get_data_block */ 629 enum { 630 F2FS_GET_BLOCK_DEFAULT, 631 F2FS_GET_BLOCK_FIEMAP, 632 F2FS_GET_BLOCK_BMAP, 633 F2FS_GET_BLOCK_DIO, 634 F2FS_GET_BLOCK_PRE_DIO, 635 F2FS_GET_BLOCK_PRE_AIO, 636 F2FS_GET_BLOCK_PRECACHE, 637 }; 638 639 /* 640 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 641 */ 642 #define FADVISE_COLD_BIT 0x01 643 #define FADVISE_LOST_PINO_BIT 0x02 644 #define FADVISE_ENCRYPT_BIT 0x04 645 #define FADVISE_ENC_NAME_BIT 0x08 646 #define FADVISE_KEEP_SIZE_BIT 0x10 647 #define FADVISE_HOT_BIT 0x20 648 #define FADVISE_VERITY_BIT 0x40 649 650 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 651 652 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 653 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 654 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 655 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 656 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 657 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 658 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 659 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 660 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 661 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 662 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 663 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 664 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 665 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 666 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 667 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 668 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 669 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 670 671 #define DEF_DIR_LEVEL 0 672 673 enum { 674 GC_FAILURE_PIN, 675 GC_FAILURE_ATOMIC, 676 MAX_GC_FAILURE 677 }; 678 679 struct f2fs_inode_info { 680 struct inode vfs_inode; /* serve a vfs inode */ 681 unsigned long i_flags; /* keep an inode flags for ioctl */ 682 unsigned char i_advise; /* use to give file attribute hints */ 683 unsigned char i_dir_level; /* use for dentry level for large dir */ 684 unsigned int i_current_depth; /* only for directory depth */ 685 /* for gc failure statistic */ 686 unsigned int i_gc_failures[MAX_GC_FAILURE]; 687 unsigned int i_pino; /* parent inode number */ 688 umode_t i_acl_mode; /* keep file acl mode temporarily */ 689 690 /* Use below internally in f2fs*/ 691 unsigned long flags; /* use to pass per-file flags */ 692 struct rw_semaphore i_sem; /* protect fi info */ 693 atomic_t dirty_pages; /* # of dirty pages */ 694 f2fs_hash_t chash; /* hash value of given file name */ 695 unsigned int clevel; /* maximum level of given file name */ 696 struct task_struct *task; /* lookup and create consistency */ 697 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 698 nid_t i_xattr_nid; /* node id that contains xattrs */ 699 loff_t last_disk_size; /* lastly written file size */ 700 701 #ifdef CONFIG_QUOTA 702 struct dquot *i_dquot[MAXQUOTAS]; 703 704 /* quota space reservation, managed internally by quota code */ 705 qsize_t i_reserved_quota; 706 #endif 707 struct list_head dirty_list; /* dirty list for dirs and files */ 708 struct list_head gdirty_list; /* linked in global dirty list */ 709 struct list_head inmem_ilist; /* list for inmem inodes */ 710 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 711 struct task_struct *inmem_task; /* store inmemory task */ 712 struct mutex inmem_lock; /* lock for inmemory pages */ 713 struct extent_tree *extent_tree; /* cached extent_tree entry */ 714 715 /* avoid racing between foreground op and gc */ 716 struct rw_semaphore i_gc_rwsem[2]; 717 struct rw_semaphore i_mmap_sem; 718 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */ 719 720 int i_extra_isize; /* size of extra space located in i_addr */ 721 kprojid_t i_projid; /* id for project quota */ 722 int i_inline_xattr_size; /* inline xattr size */ 723 struct timespec64 i_crtime; /* inode creation time */ 724 struct timespec64 i_disk_time[4];/* inode disk times */ 725 726 /* for file compress */ 727 u64 i_compr_blocks; /* # of compressed blocks */ 728 unsigned char i_compress_algorithm; /* algorithm type */ 729 unsigned char i_log_cluster_size; /* log of cluster size */ 730 unsigned int i_cluster_size; /* cluster size */ 731 }; 732 733 static inline void get_extent_info(struct extent_info *ext, 734 struct f2fs_extent *i_ext) 735 { 736 ext->fofs = le32_to_cpu(i_ext->fofs); 737 ext->blk = le32_to_cpu(i_ext->blk); 738 ext->len = le32_to_cpu(i_ext->len); 739 } 740 741 static inline void set_raw_extent(struct extent_info *ext, 742 struct f2fs_extent *i_ext) 743 { 744 i_ext->fofs = cpu_to_le32(ext->fofs); 745 i_ext->blk = cpu_to_le32(ext->blk); 746 i_ext->len = cpu_to_le32(ext->len); 747 } 748 749 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 750 u32 blk, unsigned int len) 751 { 752 ei->fofs = fofs; 753 ei->blk = blk; 754 ei->len = len; 755 } 756 757 static inline bool __is_discard_mergeable(struct discard_info *back, 758 struct discard_info *front, unsigned int max_len) 759 { 760 return (back->lstart + back->len == front->lstart) && 761 (back->len + front->len <= max_len); 762 } 763 764 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 765 struct discard_info *back, unsigned int max_len) 766 { 767 return __is_discard_mergeable(back, cur, max_len); 768 } 769 770 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 771 struct discard_info *front, unsigned int max_len) 772 { 773 return __is_discard_mergeable(cur, front, max_len); 774 } 775 776 static inline bool __is_extent_mergeable(struct extent_info *back, 777 struct extent_info *front) 778 { 779 return (back->fofs + back->len == front->fofs && 780 back->blk + back->len == front->blk); 781 } 782 783 static inline bool __is_back_mergeable(struct extent_info *cur, 784 struct extent_info *back) 785 { 786 return __is_extent_mergeable(back, cur); 787 } 788 789 static inline bool __is_front_mergeable(struct extent_info *cur, 790 struct extent_info *front) 791 { 792 return __is_extent_mergeable(cur, front); 793 } 794 795 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 796 static inline void __try_update_largest_extent(struct extent_tree *et, 797 struct extent_node *en) 798 { 799 if (en->ei.len > et->largest.len) { 800 et->largest = en->ei; 801 et->largest_updated = true; 802 } 803 } 804 805 /* 806 * For free nid management 807 */ 808 enum nid_state { 809 FREE_NID, /* newly added to free nid list */ 810 PREALLOC_NID, /* it is preallocated */ 811 MAX_NID_STATE, 812 }; 813 814 struct f2fs_nm_info { 815 block_t nat_blkaddr; /* base disk address of NAT */ 816 nid_t max_nid; /* maximum possible node ids */ 817 nid_t available_nids; /* # of available node ids */ 818 nid_t next_scan_nid; /* the next nid to be scanned */ 819 unsigned int ram_thresh; /* control the memory footprint */ 820 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 821 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 822 823 /* NAT cache management */ 824 struct radix_tree_root nat_root;/* root of the nat entry cache */ 825 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 826 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 827 struct list_head nat_entries; /* cached nat entry list (clean) */ 828 spinlock_t nat_list_lock; /* protect clean nat entry list */ 829 unsigned int nat_cnt; /* the # of cached nat entries */ 830 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 831 unsigned int nat_blocks; /* # of nat blocks */ 832 833 /* free node ids management */ 834 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 835 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 836 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 837 spinlock_t nid_list_lock; /* protect nid lists ops */ 838 struct mutex build_lock; /* lock for build free nids */ 839 unsigned char **free_nid_bitmap; 840 unsigned char *nat_block_bitmap; 841 unsigned short *free_nid_count; /* free nid count of NAT block */ 842 843 /* for checkpoint */ 844 char *nat_bitmap; /* NAT bitmap pointer */ 845 846 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 847 unsigned char *nat_bits; /* NAT bits blocks */ 848 unsigned char *full_nat_bits; /* full NAT pages */ 849 unsigned char *empty_nat_bits; /* empty NAT pages */ 850 #ifdef CONFIG_F2FS_CHECK_FS 851 char *nat_bitmap_mir; /* NAT bitmap mirror */ 852 #endif 853 int bitmap_size; /* bitmap size */ 854 }; 855 856 /* 857 * this structure is used as one of function parameters. 858 * all the information are dedicated to a given direct node block determined 859 * by the data offset in a file. 860 */ 861 struct dnode_of_data { 862 struct inode *inode; /* vfs inode pointer */ 863 struct page *inode_page; /* its inode page, NULL is possible */ 864 struct page *node_page; /* cached direct node page */ 865 nid_t nid; /* node id of the direct node block */ 866 unsigned int ofs_in_node; /* data offset in the node page */ 867 bool inode_page_locked; /* inode page is locked or not */ 868 bool node_changed; /* is node block changed */ 869 char cur_level; /* level of hole node page */ 870 char max_level; /* level of current page located */ 871 block_t data_blkaddr; /* block address of the node block */ 872 }; 873 874 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 875 struct page *ipage, struct page *npage, nid_t nid) 876 { 877 memset(dn, 0, sizeof(*dn)); 878 dn->inode = inode; 879 dn->inode_page = ipage; 880 dn->node_page = npage; 881 dn->nid = nid; 882 } 883 884 /* 885 * For SIT manager 886 * 887 * By default, there are 6 active log areas across the whole main area. 888 * When considering hot and cold data separation to reduce cleaning overhead, 889 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 890 * respectively. 891 * In the current design, you should not change the numbers intentionally. 892 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 893 * logs individually according to the underlying devices. (default: 6) 894 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 895 * data and 8 for node logs. 896 */ 897 #define NR_CURSEG_DATA_TYPE (3) 898 #define NR_CURSEG_NODE_TYPE (3) 899 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 900 901 enum { 902 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 903 CURSEG_WARM_DATA, /* data blocks */ 904 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 905 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 906 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 907 CURSEG_COLD_NODE, /* indirect node blocks */ 908 NO_CHECK_TYPE, 909 CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */ 910 }; 911 912 struct flush_cmd { 913 struct completion wait; 914 struct llist_node llnode; 915 nid_t ino; 916 int ret; 917 }; 918 919 struct flush_cmd_control { 920 struct task_struct *f2fs_issue_flush; /* flush thread */ 921 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 922 atomic_t issued_flush; /* # of issued flushes */ 923 atomic_t queued_flush; /* # of queued flushes */ 924 struct llist_head issue_list; /* list for command issue */ 925 struct llist_node *dispatch_list; /* list for command dispatch */ 926 }; 927 928 struct f2fs_sm_info { 929 struct sit_info *sit_info; /* whole segment information */ 930 struct free_segmap_info *free_info; /* free segment information */ 931 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 932 struct curseg_info *curseg_array; /* active segment information */ 933 934 struct rw_semaphore curseg_lock; /* for preventing curseg change */ 935 936 block_t seg0_blkaddr; /* block address of 0'th segment */ 937 block_t main_blkaddr; /* start block address of main area */ 938 block_t ssa_blkaddr; /* start block address of SSA area */ 939 940 unsigned int segment_count; /* total # of segments */ 941 unsigned int main_segments; /* # of segments in main area */ 942 unsigned int reserved_segments; /* # of reserved segments */ 943 unsigned int ovp_segments; /* # of overprovision segments */ 944 945 /* a threshold to reclaim prefree segments */ 946 unsigned int rec_prefree_segments; 947 948 /* for batched trimming */ 949 unsigned int trim_sections; /* # of sections to trim */ 950 951 struct list_head sit_entry_set; /* sit entry set list */ 952 953 unsigned int ipu_policy; /* in-place-update policy */ 954 unsigned int min_ipu_util; /* in-place-update threshold */ 955 unsigned int min_fsync_blocks; /* threshold for fsync */ 956 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 957 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 958 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 959 960 /* for flush command control */ 961 struct flush_cmd_control *fcc_info; 962 963 /* for discard command control */ 964 struct discard_cmd_control *dcc_info; 965 }; 966 967 /* 968 * For superblock 969 */ 970 /* 971 * COUNT_TYPE for monitoring 972 * 973 * f2fs monitors the number of several block types such as on-writeback, 974 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 975 */ 976 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 977 enum count_type { 978 F2FS_DIRTY_DENTS, 979 F2FS_DIRTY_DATA, 980 F2FS_DIRTY_QDATA, 981 F2FS_DIRTY_NODES, 982 F2FS_DIRTY_META, 983 F2FS_INMEM_PAGES, 984 F2FS_DIRTY_IMETA, 985 F2FS_WB_CP_DATA, 986 F2FS_WB_DATA, 987 F2FS_RD_DATA, 988 F2FS_RD_NODE, 989 F2FS_RD_META, 990 F2FS_DIO_WRITE, 991 F2FS_DIO_READ, 992 NR_COUNT_TYPE, 993 }; 994 995 /* 996 * The below are the page types of bios used in submit_bio(). 997 * The available types are: 998 * DATA User data pages. It operates as async mode. 999 * NODE Node pages. It operates as async mode. 1000 * META FS metadata pages such as SIT, NAT, CP. 1001 * NR_PAGE_TYPE The number of page types. 1002 * META_FLUSH Make sure the previous pages are written 1003 * with waiting the bio's completion 1004 * ... Only can be used with META. 1005 */ 1006 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1007 enum page_type { 1008 DATA, 1009 NODE, 1010 META, 1011 NR_PAGE_TYPE, 1012 META_FLUSH, 1013 INMEM, /* the below types are used by tracepoints only. */ 1014 INMEM_DROP, 1015 INMEM_INVALIDATE, 1016 INMEM_REVOKE, 1017 IPU, 1018 OPU, 1019 }; 1020 1021 enum temp_type { 1022 HOT = 0, /* must be zero for meta bio */ 1023 WARM, 1024 COLD, 1025 NR_TEMP_TYPE, 1026 }; 1027 1028 enum need_lock_type { 1029 LOCK_REQ = 0, 1030 LOCK_DONE, 1031 LOCK_RETRY, 1032 }; 1033 1034 enum cp_reason_type { 1035 CP_NO_NEEDED, 1036 CP_NON_REGULAR, 1037 CP_COMPRESSED, 1038 CP_HARDLINK, 1039 CP_SB_NEED_CP, 1040 CP_WRONG_PINO, 1041 CP_NO_SPC_ROLL, 1042 CP_NODE_NEED_CP, 1043 CP_FASTBOOT_MODE, 1044 CP_SPEC_LOG_NUM, 1045 CP_RECOVER_DIR, 1046 }; 1047 1048 enum iostat_type { 1049 APP_DIRECT_IO, /* app direct IOs */ 1050 APP_BUFFERED_IO, /* app buffered IOs */ 1051 APP_WRITE_IO, /* app write IOs */ 1052 APP_MAPPED_IO, /* app mapped IOs */ 1053 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1054 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1055 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1056 FS_GC_DATA_IO, /* data IOs from forground gc */ 1057 FS_GC_NODE_IO, /* node IOs from forground gc */ 1058 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1059 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1060 FS_CP_META_IO, /* meta IOs from checkpoint */ 1061 FS_DISCARD, /* discard */ 1062 NR_IO_TYPE, 1063 }; 1064 1065 struct f2fs_io_info { 1066 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1067 nid_t ino; /* inode number */ 1068 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1069 enum temp_type temp; /* contains HOT/WARM/COLD */ 1070 int op; /* contains REQ_OP_ */ 1071 int op_flags; /* req_flag_bits */ 1072 block_t new_blkaddr; /* new block address to be written */ 1073 block_t old_blkaddr; /* old block address before Cow */ 1074 struct page *page; /* page to be written */ 1075 struct page *encrypted_page; /* encrypted page */ 1076 struct page *compressed_page; /* compressed page */ 1077 struct list_head list; /* serialize IOs */ 1078 bool submitted; /* indicate IO submission */ 1079 int need_lock; /* indicate we need to lock cp_rwsem */ 1080 bool in_list; /* indicate fio is in io_list */ 1081 bool is_por; /* indicate IO is from recovery or not */ 1082 bool retry; /* need to reallocate block address */ 1083 int compr_blocks; /* # of compressed block addresses */ 1084 bool encrypted; /* indicate file is encrypted */ 1085 enum iostat_type io_type; /* io type */ 1086 struct writeback_control *io_wbc; /* writeback control */ 1087 struct bio **bio; /* bio for ipu */ 1088 sector_t *last_block; /* last block number in bio */ 1089 unsigned char version; /* version of the node */ 1090 }; 1091 1092 struct bio_entry { 1093 struct bio *bio; 1094 struct list_head list; 1095 }; 1096 1097 #define is_read_io(rw) ((rw) == READ) 1098 struct f2fs_bio_info { 1099 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1100 struct bio *bio; /* bios to merge */ 1101 sector_t last_block_in_bio; /* last block number */ 1102 struct f2fs_io_info fio; /* store buffered io info. */ 1103 struct rw_semaphore io_rwsem; /* blocking op for bio */ 1104 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1105 struct list_head io_list; /* track fios */ 1106 struct list_head bio_list; /* bio entry list head */ 1107 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */ 1108 }; 1109 1110 #define FDEV(i) (sbi->devs[i]) 1111 #define RDEV(i) (raw_super->devs[i]) 1112 struct f2fs_dev_info { 1113 struct block_device *bdev; 1114 char path[MAX_PATH_LEN]; 1115 unsigned int total_segments; 1116 block_t start_blk; 1117 block_t end_blk; 1118 #ifdef CONFIG_BLK_DEV_ZONED 1119 unsigned int nr_blkz; /* Total number of zones */ 1120 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1121 #endif 1122 }; 1123 1124 enum inode_type { 1125 DIR_INODE, /* for dirty dir inode */ 1126 FILE_INODE, /* for dirty regular/symlink inode */ 1127 DIRTY_META, /* for all dirtied inode metadata */ 1128 ATOMIC_FILE, /* for all atomic files */ 1129 NR_INODE_TYPE, 1130 }; 1131 1132 /* for inner inode cache management */ 1133 struct inode_management { 1134 struct radix_tree_root ino_root; /* ino entry array */ 1135 spinlock_t ino_lock; /* for ino entry lock */ 1136 struct list_head ino_list; /* inode list head */ 1137 unsigned long ino_num; /* number of entries */ 1138 }; 1139 1140 /* For s_flag in struct f2fs_sb_info */ 1141 enum { 1142 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1143 SBI_IS_CLOSE, /* specify unmounting */ 1144 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1145 SBI_POR_DOING, /* recovery is doing or not */ 1146 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1147 SBI_NEED_CP, /* need to checkpoint */ 1148 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1149 SBI_IS_RECOVERED, /* recovered orphan/data */ 1150 SBI_CP_DISABLED, /* CP was disabled last mount */ 1151 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1152 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1153 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1154 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1155 SBI_IS_RESIZEFS, /* resizefs is in process */ 1156 }; 1157 1158 enum { 1159 CP_TIME, 1160 REQ_TIME, 1161 DISCARD_TIME, 1162 GC_TIME, 1163 DISABLE_TIME, 1164 UMOUNT_DISCARD_TIMEOUT, 1165 MAX_TIME, 1166 }; 1167 1168 enum { 1169 GC_NORMAL, 1170 GC_IDLE_CB, 1171 GC_IDLE_GREEDY, 1172 GC_URGENT, 1173 }; 1174 1175 enum { 1176 WHINT_MODE_OFF, /* not pass down write hints */ 1177 WHINT_MODE_USER, /* try to pass down hints given by users */ 1178 WHINT_MODE_FS, /* pass down hints with F2FS policy */ 1179 }; 1180 1181 enum { 1182 ALLOC_MODE_DEFAULT, /* stay default */ 1183 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1184 }; 1185 1186 enum fsync_mode { 1187 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1188 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1189 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1190 }; 1191 1192 /* 1193 * this value is set in page as a private data which indicate that 1194 * the page is atomically written, and it is in inmem_pages list. 1195 */ 1196 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1) 1197 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2) 1198 1199 #define IS_ATOMIC_WRITTEN_PAGE(page) \ 1200 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE) 1201 #define IS_DUMMY_WRITTEN_PAGE(page) \ 1202 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE) 1203 1204 #ifdef CONFIG_FS_ENCRYPTION 1205 #define DUMMY_ENCRYPTION_ENABLED(sbi) \ 1206 (unlikely(F2FS_OPTION(sbi).test_dummy_encryption)) 1207 #else 1208 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0) 1209 #endif 1210 1211 /* For compression */ 1212 enum compress_algorithm_type { 1213 COMPRESS_LZO, 1214 COMPRESS_LZ4, 1215 COMPRESS_MAX, 1216 }; 1217 1218 #define COMPRESS_DATA_RESERVED_SIZE 4 1219 struct compress_data { 1220 __le32 clen; /* compressed data size */ 1221 __le32 chksum; /* checksum of compressed data */ 1222 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1223 u8 cdata[]; /* compressed data */ 1224 }; 1225 1226 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1227 1228 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1229 1230 /* compress context */ 1231 struct compress_ctx { 1232 struct inode *inode; /* inode the context belong to */ 1233 pgoff_t cluster_idx; /* cluster index number */ 1234 unsigned int cluster_size; /* page count in cluster */ 1235 unsigned int log_cluster_size; /* log of cluster size */ 1236 struct page **rpages; /* pages store raw data in cluster */ 1237 unsigned int nr_rpages; /* total page number in rpages */ 1238 struct page **cpages; /* pages store compressed data in cluster */ 1239 unsigned int nr_cpages; /* total page number in cpages */ 1240 void *rbuf; /* virtual mapped address on rpages */ 1241 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1242 size_t rlen; /* valid data length in rbuf */ 1243 size_t clen; /* valid data length in cbuf */ 1244 void *private; /* payload buffer for specified compression algorithm */ 1245 }; 1246 1247 /* compress context for write IO path */ 1248 struct compress_io_ctx { 1249 u32 magic; /* magic number to indicate page is compressed */ 1250 struct inode *inode; /* inode the context belong to */ 1251 struct page **rpages; /* pages store raw data in cluster */ 1252 unsigned int nr_rpages; /* total page number in rpages */ 1253 refcount_t ref; /* referrence count of raw page */ 1254 }; 1255 1256 /* decompress io context for read IO path */ 1257 struct decompress_io_ctx { 1258 u32 magic; /* magic number to indicate page is compressed */ 1259 struct inode *inode; /* inode the context belong to */ 1260 pgoff_t cluster_idx; /* cluster index number */ 1261 unsigned int cluster_size; /* page count in cluster */ 1262 unsigned int log_cluster_size; /* log of cluster size */ 1263 struct page **rpages; /* pages store raw data in cluster */ 1264 unsigned int nr_rpages; /* total page number in rpages */ 1265 struct page **cpages; /* pages store compressed data in cluster */ 1266 unsigned int nr_cpages; /* total page number in cpages */ 1267 struct page **tpages; /* temp pages to pad holes in cluster */ 1268 void *rbuf; /* virtual mapped address on rpages */ 1269 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1270 size_t rlen; /* valid data length in rbuf */ 1271 size_t clen; /* valid data length in cbuf */ 1272 refcount_t ref; /* referrence count of compressed page */ 1273 bool failed; /* indicate IO error during decompression */ 1274 }; 1275 1276 #define NULL_CLUSTER ((unsigned int)(~0)) 1277 #define MIN_COMPRESS_LOG_SIZE 2 1278 #define MAX_COMPRESS_LOG_SIZE 8 1279 1280 struct f2fs_sb_info { 1281 struct super_block *sb; /* pointer to VFS super block */ 1282 struct proc_dir_entry *s_proc; /* proc entry */ 1283 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1284 struct rw_semaphore sb_lock; /* lock for raw super block */ 1285 int valid_super_block; /* valid super block no */ 1286 unsigned long s_flag; /* flags for sbi */ 1287 struct mutex writepages; /* mutex for writepages() */ 1288 #ifdef CONFIG_UNICODE 1289 struct unicode_map *s_encoding; 1290 __u16 s_encoding_flags; 1291 #endif 1292 1293 #ifdef CONFIG_BLK_DEV_ZONED 1294 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1295 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */ 1296 #endif 1297 1298 /* for node-related operations */ 1299 struct f2fs_nm_info *nm_info; /* node manager */ 1300 struct inode *node_inode; /* cache node blocks */ 1301 1302 /* for segment-related operations */ 1303 struct f2fs_sm_info *sm_info; /* segment manager */ 1304 1305 /* for bio operations */ 1306 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1307 /* keep migration IO order for LFS mode */ 1308 struct rw_semaphore io_order_lock; 1309 mempool_t *write_io_dummy; /* Dummy pages */ 1310 1311 /* for checkpoint */ 1312 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1313 int cur_cp_pack; /* remain current cp pack */ 1314 spinlock_t cp_lock; /* for flag in ckpt */ 1315 struct inode *meta_inode; /* cache meta blocks */ 1316 struct mutex cp_mutex; /* checkpoint procedure lock */ 1317 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 1318 struct rw_semaphore node_write; /* locking node writes */ 1319 struct rw_semaphore node_change; /* locking node change */ 1320 wait_queue_head_t cp_wait; 1321 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1322 long interval_time[MAX_TIME]; /* to store thresholds */ 1323 1324 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1325 1326 spinlock_t fsync_node_lock; /* for node entry lock */ 1327 struct list_head fsync_node_list; /* node list head */ 1328 unsigned int fsync_seg_id; /* sequence id */ 1329 unsigned int fsync_node_num; /* number of node entries */ 1330 1331 /* for orphan inode, use 0'th array */ 1332 unsigned int max_orphans; /* max orphan inodes */ 1333 1334 /* for inode management */ 1335 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1336 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1337 struct mutex flush_lock; /* for flush exclusion */ 1338 1339 /* for extent tree cache */ 1340 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 1341 struct mutex extent_tree_lock; /* locking extent radix tree */ 1342 struct list_head extent_list; /* lru list for shrinker */ 1343 spinlock_t extent_lock; /* locking extent lru list */ 1344 atomic_t total_ext_tree; /* extent tree count */ 1345 struct list_head zombie_list; /* extent zombie tree list */ 1346 atomic_t total_zombie_tree; /* extent zombie tree count */ 1347 atomic_t total_ext_node; /* extent info count */ 1348 1349 /* basic filesystem units */ 1350 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1351 unsigned int log_blocksize; /* log2 block size */ 1352 unsigned int blocksize; /* block size */ 1353 unsigned int root_ino_num; /* root inode number*/ 1354 unsigned int node_ino_num; /* node inode number*/ 1355 unsigned int meta_ino_num; /* meta inode number*/ 1356 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1357 unsigned int blocks_per_seg; /* blocks per segment */ 1358 unsigned int segs_per_sec; /* segments per section */ 1359 unsigned int secs_per_zone; /* sections per zone */ 1360 unsigned int total_sections; /* total section count */ 1361 struct mutex resize_mutex; /* for resize exclusion */ 1362 unsigned int total_node_count; /* total node block count */ 1363 unsigned int total_valid_node_count; /* valid node block count */ 1364 loff_t max_file_blocks; /* max block index of file */ 1365 int dir_level; /* directory level */ 1366 int readdir_ra; /* readahead inode in readdir */ 1367 1368 block_t user_block_count; /* # of user blocks */ 1369 block_t total_valid_block_count; /* # of valid blocks */ 1370 block_t discard_blks; /* discard command candidats */ 1371 block_t last_valid_block_count; /* for recovery */ 1372 block_t reserved_blocks; /* configurable reserved blocks */ 1373 block_t current_reserved_blocks; /* current reserved blocks */ 1374 1375 /* Additional tracking for no checkpoint mode */ 1376 block_t unusable_block_count; /* # of blocks saved by last cp */ 1377 1378 unsigned int nquota_files; /* # of quota sysfile */ 1379 struct rw_semaphore quota_sem; /* blocking cp for flags */ 1380 1381 /* # of pages, see count_type */ 1382 atomic_t nr_pages[NR_COUNT_TYPE]; 1383 /* # of allocated blocks */ 1384 struct percpu_counter alloc_valid_block_count; 1385 1386 /* writeback control */ 1387 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1388 1389 /* valid inode count */ 1390 struct percpu_counter total_valid_inode_count; 1391 1392 struct f2fs_mount_info mount_opt; /* mount options */ 1393 1394 /* for cleaning operations */ 1395 struct rw_semaphore gc_lock; /* 1396 * semaphore for GC, avoid 1397 * race between GC and GC or CP 1398 */ 1399 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1400 unsigned int cur_victim_sec; /* current victim section num */ 1401 unsigned int gc_mode; /* current GC state */ 1402 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1403 /* for skip statistic */ 1404 unsigned int atomic_files; /* # of opened atomic file */ 1405 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */ 1406 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1407 1408 /* threshold for gc trials on pinned files */ 1409 u64 gc_pin_file_threshold; 1410 struct rw_semaphore pin_sem; 1411 1412 /* maximum # of trials to find a victim segment for SSR and GC */ 1413 unsigned int max_victim_search; 1414 /* migration granularity of garbage collection, unit: segment */ 1415 unsigned int migration_granularity; 1416 1417 /* 1418 * for stat information. 1419 * one is for the LFS mode, and the other is for the SSR mode. 1420 */ 1421 #ifdef CONFIG_F2FS_STAT_FS 1422 struct f2fs_stat_info *stat_info; /* FS status information */ 1423 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1424 unsigned int segment_count[2]; /* # of allocated segments */ 1425 unsigned int block_count[2]; /* # of allocated blocks */ 1426 atomic_t inplace_count; /* # of inplace update */ 1427 atomic64_t total_hit_ext; /* # of lookup extent cache */ 1428 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */ 1429 atomic64_t read_hit_largest; /* # of hit largest extent node */ 1430 atomic64_t read_hit_cached; /* # of hit cached extent node */ 1431 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1432 atomic_t inline_inode; /* # of inline_data inodes */ 1433 atomic_t inline_dir; /* # of inline_dentry inodes */ 1434 atomic_t compr_inode; /* # of compressed inodes */ 1435 atomic_t compr_blocks; /* # of compressed blocks */ 1436 atomic_t vw_cnt; /* # of volatile writes */ 1437 atomic_t max_aw_cnt; /* max # of atomic writes */ 1438 atomic_t max_vw_cnt; /* max # of volatile writes */ 1439 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1440 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1441 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1442 #endif 1443 spinlock_t stat_lock; /* lock for stat operations */ 1444 1445 /* For app/fs IO statistics */ 1446 spinlock_t iostat_lock; 1447 unsigned long long write_iostat[NR_IO_TYPE]; 1448 bool iostat_enable; 1449 1450 /* For sysfs suppport */ 1451 struct kobject s_kobj; 1452 struct completion s_kobj_unregister; 1453 1454 /* For shrinker support */ 1455 struct list_head s_list; 1456 int s_ndevs; /* number of devices */ 1457 struct f2fs_dev_info *devs; /* for device list */ 1458 unsigned int dirty_device; /* for checkpoint data flush */ 1459 spinlock_t dev_lock; /* protect dirty_device */ 1460 struct mutex umount_mutex; 1461 unsigned int shrinker_run_no; 1462 1463 /* For write statistics */ 1464 u64 sectors_written_start; 1465 u64 kbytes_written; 1466 1467 /* Reference to checksum algorithm driver via cryptoapi */ 1468 struct crypto_shash *s_chksum_driver; 1469 1470 /* Precomputed FS UUID checksum for seeding other checksums */ 1471 __u32 s_chksum_seed; 1472 1473 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1474 }; 1475 1476 struct f2fs_private_dio { 1477 struct inode *inode; 1478 void *orig_private; 1479 bio_end_io_t *orig_end_io; 1480 bool write; 1481 }; 1482 1483 #ifdef CONFIG_F2FS_FAULT_INJECTION 1484 #define f2fs_show_injection_info(sbi, type) \ 1485 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \ 1486 KERN_INFO, sbi->sb->s_id, \ 1487 f2fs_fault_name[type], \ 1488 __func__, __builtin_return_address(0)) 1489 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1490 { 1491 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1492 1493 if (!ffi->inject_rate) 1494 return false; 1495 1496 if (!IS_FAULT_SET(ffi, type)) 1497 return false; 1498 1499 atomic_inc(&ffi->inject_ops); 1500 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1501 atomic_set(&ffi->inject_ops, 0); 1502 return true; 1503 } 1504 return false; 1505 } 1506 #else 1507 #define f2fs_show_injection_info(sbi, type) do { } while (0) 1508 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1509 { 1510 return false; 1511 } 1512 #endif 1513 1514 /* 1515 * Test if the mounted volume is a multi-device volume. 1516 * - For a single regular disk volume, sbi->s_ndevs is 0. 1517 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1518 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1519 */ 1520 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1521 { 1522 return sbi->s_ndevs > 1; 1523 } 1524 1525 /* For write statistics. Suppose sector size is 512 bytes, 1526 * and the return value is in kbytes. s is of struct f2fs_sb_info. 1527 */ 1528 #define BD_PART_WRITTEN(s) \ 1529 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \ 1530 (s)->sectors_written_start) >> 1) 1531 1532 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1533 { 1534 unsigned long now = jiffies; 1535 1536 sbi->last_time[type] = now; 1537 1538 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1539 if (type == REQ_TIME) { 1540 sbi->last_time[DISCARD_TIME] = now; 1541 sbi->last_time[GC_TIME] = now; 1542 } 1543 } 1544 1545 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1546 { 1547 unsigned long interval = sbi->interval_time[type] * HZ; 1548 1549 return time_after(jiffies, sbi->last_time[type] + interval); 1550 } 1551 1552 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1553 int type) 1554 { 1555 unsigned long interval = sbi->interval_time[type] * HZ; 1556 unsigned int wait_ms = 0; 1557 long delta; 1558 1559 delta = (sbi->last_time[type] + interval) - jiffies; 1560 if (delta > 0) 1561 wait_ms = jiffies_to_msecs(delta); 1562 1563 return wait_ms; 1564 } 1565 1566 /* 1567 * Inline functions 1568 */ 1569 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1570 const void *address, unsigned int length) 1571 { 1572 struct { 1573 struct shash_desc shash; 1574 char ctx[4]; 1575 } desc; 1576 int err; 1577 1578 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1579 1580 desc.shash.tfm = sbi->s_chksum_driver; 1581 *(u32 *)desc.ctx = crc; 1582 1583 err = crypto_shash_update(&desc.shash, address, length); 1584 BUG_ON(err); 1585 1586 return *(u32 *)desc.ctx; 1587 } 1588 1589 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1590 unsigned int length) 1591 { 1592 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1593 } 1594 1595 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1596 void *buf, size_t buf_size) 1597 { 1598 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1599 } 1600 1601 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1602 const void *address, unsigned int length) 1603 { 1604 return __f2fs_crc32(sbi, crc, address, length); 1605 } 1606 1607 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1608 { 1609 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1610 } 1611 1612 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1613 { 1614 return sb->s_fs_info; 1615 } 1616 1617 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1618 { 1619 return F2FS_SB(inode->i_sb); 1620 } 1621 1622 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1623 { 1624 return F2FS_I_SB(mapping->host); 1625 } 1626 1627 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 1628 { 1629 return F2FS_M_SB(page_file_mapping(page)); 1630 } 1631 1632 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 1633 { 1634 return (struct f2fs_super_block *)(sbi->raw_super); 1635 } 1636 1637 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 1638 { 1639 return (struct f2fs_checkpoint *)(sbi->ckpt); 1640 } 1641 1642 static inline struct f2fs_node *F2FS_NODE(struct page *page) 1643 { 1644 return (struct f2fs_node *)page_address(page); 1645 } 1646 1647 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 1648 { 1649 return &((struct f2fs_node *)page_address(page))->i; 1650 } 1651 1652 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 1653 { 1654 return (struct f2fs_nm_info *)(sbi->nm_info); 1655 } 1656 1657 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 1658 { 1659 return (struct f2fs_sm_info *)(sbi->sm_info); 1660 } 1661 1662 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 1663 { 1664 return (struct sit_info *)(SM_I(sbi)->sit_info); 1665 } 1666 1667 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 1668 { 1669 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 1670 } 1671 1672 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 1673 { 1674 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 1675 } 1676 1677 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 1678 { 1679 return sbi->meta_inode->i_mapping; 1680 } 1681 1682 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 1683 { 1684 return sbi->node_inode->i_mapping; 1685 } 1686 1687 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 1688 { 1689 return test_bit(type, &sbi->s_flag); 1690 } 1691 1692 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1693 { 1694 set_bit(type, &sbi->s_flag); 1695 } 1696 1697 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 1698 { 1699 clear_bit(type, &sbi->s_flag); 1700 } 1701 1702 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 1703 { 1704 return le64_to_cpu(cp->checkpoint_ver); 1705 } 1706 1707 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 1708 { 1709 if (type < F2FS_MAX_QUOTAS) 1710 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 1711 return 0; 1712 } 1713 1714 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 1715 { 1716 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 1717 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 1718 } 1719 1720 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1721 { 1722 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1723 1724 return ckpt_flags & f; 1725 } 1726 1727 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1728 { 1729 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 1730 } 1731 1732 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1733 { 1734 unsigned int ckpt_flags; 1735 1736 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1737 ckpt_flags |= f; 1738 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1739 } 1740 1741 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1742 { 1743 unsigned long flags; 1744 1745 spin_lock_irqsave(&sbi->cp_lock, flags); 1746 __set_ckpt_flags(F2FS_CKPT(sbi), f); 1747 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1748 } 1749 1750 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 1751 { 1752 unsigned int ckpt_flags; 1753 1754 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 1755 ckpt_flags &= (~f); 1756 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 1757 } 1758 1759 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 1760 { 1761 unsigned long flags; 1762 1763 spin_lock_irqsave(&sbi->cp_lock, flags); 1764 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 1765 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1766 } 1767 1768 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock) 1769 { 1770 unsigned long flags; 1771 unsigned char *nat_bits; 1772 1773 /* 1774 * In order to re-enable nat_bits we need to call fsck.f2fs by 1775 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost, 1776 * so let's rely on regular fsck or unclean shutdown. 1777 */ 1778 1779 if (lock) 1780 spin_lock_irqsave(&sbi->cp_lock, flags); 1781 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG); 1782 nat_bits = NM_I(sbi)->nat_bits; 1783 NM_I(sbi)->nat_bits = NULL; 1784 if (lock) 1785 spin_unlock_irqrestore(&sbi->cp_lock, flags); 1786 1787 kvfree(nat_bits); 1788 } 1789 1790 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi, 1791 struct cp_control *cpc) 1792 { 1793 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG); 1794 1795 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set; 1796 } 1797 1798 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 1799 { 1800 down_read(&sbi->cp_rwsem); 1801 } 1802 1803 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 1804 { 1805 return down_read_trylock(&sbi->cp_rwsem); 1806 } 1807 1808 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 1809 { 1810 up_read(&sbi->cp_rwsem); 1811 } 1812 1813 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 1814 { 1815 down_write(&sbi->cp_rwsem); 1816 } 1817 1818 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 1819 { 1820 up_write(&sbi->cp_rwsem); 1821 } 1822 1823 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 1824 { 1825 int reason = CP_SYNC; 1826 1827 if (test_opt(sbi, FASTBOOT)) 1828 reason = CP_FASTBOOT; 1829 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 1830 reason = CP_UMOUNT; 1831 return reason; 1832 } 1833 1834 static inline bool __remain_node_summaries(int reason) 1835 { 1836 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 1837 } 1838 1839 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 1840 { 1841 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 1842 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 1843 } 1844 1845 /* 1846 * Check whether the inode has blocks or not 1847 */ 1848 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 1849 { 1850 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 1851 1852 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 1853 } 1854 1855 static inline bool f2fs_has_xattr_block(unsigned int ofs) 1856 { 1857 return ofs == XATTR_NODE_OFFSET; 1858 } 1859 1860 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 1861 struct inode *inode, bool cap) 1862 { 1863 if (!inode) 1864 return true; 1865 if (!test_opt(sbi, RESERVE_ROOT)) 1866 return false; 1867 if (IS_NOQUOTA(inode)) 1868 return true; 1869 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 1870 return true; 1871 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 1872 in_group_p(F2FS_OPTION(sbi).s_resgid)) 1873 return true; 1874 if (cap && capable(CAP_SYS_RESOURCE)) 1875 return true; 1876 return false; 1877 } 1878 1879 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 1880 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 1881 struct inode *inode, blkcnt_t *count) 1882 { 1883 blkcnt_t diff = 0, release = 0; 1884 block_t avail_user_block_count; 1885 int ret; 1886 1887 ret = dquot_reserve_block(inode, *count); 1888 if (ret) 1889 return ret; 1890 1891 if (time_to_inject(sbi, FAULT_BLOCK)) { 1892 f2fs_show_injection_info(sbi, FAULT_BLOCK); 1893 release = *count; 1894 goto release_quota; 1895 } 1896 1897 /* 1898 * let's increase this in prior to actual block count change in order 1899 * for f2fs_sync_file to avoid data races when deciding checkpoint. 1900 */ 1901 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 1902 1903 spin_lock(&sbi->stat_lock); 1904 sbi->total_valid_block_count += (block_t)(*count); 1905 avail_user_block_count = sbi->user_block_count - 1906 sbi->current_reserved_blocks; 1907 1908 if (!__allow_reserved_blocks(sbi, inode, true)) 1909 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 1910 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1911 if (avail_user_block_count > sbi->unusable_block_count) 1912 avail_user_block_count -= sbi->unusable_block_count; 1913 else 1914 avail_user_block_count = 0; 1915 } 1916 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) { 1917 diff = sbi->total_valid_block_count - avail_user_block_count; 1918 if (diff > *count) 1919 diff = *count; 1920 *count -= diff; 1921 release = diff; 1922 sbi->total_valid_block_count -= diff; 1923 if (!*count) { 1924 spin_unlock(&sbi->stat_lock); 1925 goto enospc; 1926 } 1927 } 1928 spin_unlock(&sbi->stat_lock); 1929 1930 if (unlikely(release)) { 1931 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1932 dquot_release_reservation_block(inode, release); 1933 } 1934 f2fs_i_blocks_write(inode, *count, true, true); 1935 return 0; 1936 1937 enospc: 1938 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 1939 release_quota: 1940 dquot_release_reservation_block(inode, release); 1941 return -ENOSPC; 1942 } 1943 1944 __printf(2, 3) 1945 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...); 1946 1947 #define f2fs_err(sbi, fmt, ...) \ 1948 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__) 1949 #define f2fs_warn(sbi, fmt, ...) \ 1950 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__) 1951 #define f2fs_notice(sbi, fmt, ...) \ 1952 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__) 1953 #define f2fs_info(sbi, fmt, ...) \ 1954 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__) 1955 #define f2fs_debug(sbi, fmt, ...) \ 1956 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__) 1957 1958 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1959 struct inode *inode, 1960 block_t count) 1961 { 1962 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 1963 1964 spin_lock(&sbi->stat_lock); 1965 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1966 sbi->total_valid_block_count -= (block_t)count; 1967 if (sbi->reserved_blocks && 1968 sbi->current_reserved_blocks < sbi->reserved_blocks) 1969 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 1970 sbi->current_reserved_blocks + count); 1971 spin_unlock(&sbi->stat_lock); 1972 if (unlikely(inode->i_blocks < sectors)) { 1973 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 1974 inode->i_ino, 1975 (unsigned long long)inode->i_blocks, 1976 (unsigned long long)sectors); 1977 set_sbi_flag(sbi, SBI_NEED_FSCK); 1978 return; 1979 } 1980 f2fs_i_blocks_write(inode, count, false, true); 1981 } 1982 1983 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1984 { 1985 atomic_inc(&sbi->nr_pages[count_type]); 1986 1987 if (count_type == F2FS_DIRTY_DENTS || 1988 count_type == F2FS_DIRTY_NODES || 1989 count_type == F2FS_DIRTY_META || 1990 count_type == F2FS_DIRTY_QDATA || 1991 count_type == F2FS_DIRTY_IMETA) 1992 set_sbi_flag(sbi, SBI_IS_DIRTY); 1993 } 1994 1995 static inline void inode_inc_dirty_pages(struct inode *inode) 1996 { 1997 atomic_inc(&F2FS_I(inode)->dirty_pages); 1998 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 1999 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2000 if (IS_NOQUOTA(inode)) 2001 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2002 } 2003 2004 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2005 { 2006 atomic_dec(&sbi->nr_pages[count_type]); 2007 } 2008 2009 static inline void inode_dec_dirty_pages(struct inode *inode) 2010 { 2011 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2012 !S_ISLNK(inode->i_mode)) 2013 return; 2014 2015 atomic_dec(&F2FS_I(inode)->dirty_pages); 2016 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2017 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2018 if (IS_NOQUOTA(inode)) 2019 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2020 } 2021 2022 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2023 { 2024 return atomic_read(&sbi->nr_pages[count_type]); 2025 } 2026 2027 static inline int get_dirty_pages(struct inode *inode) 2028 { 2029 return atomic_read(&F2FS_I(inode)->dirty_pages); 2030 } 2031 2032 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2033 { 2034 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg; 2035 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >> 2036 sbi->log_blocks_per_seg; 2037 2038 return segs / sbi->segs_per_sec; 2039 } 2040 2041 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2042 { 2043 return sbi->total_valid_block_count; 2044 } 2045 2046 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2047 { 2048 return sbi->discard_blks; 2049 } 2050 2051 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2052 { 2053 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2054 2055 /* return NAT or SIT bitmap */ 2056 if (flag == NAT_BITMAP) 2057 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2058 else if (flag == SIT_BITMAP) 2059 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2060 2061 return 0; 2062 } 2063 2064 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2065 { 2066 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2067 } 2068 2069 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2070 { 2071 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2072 int offset; 2073 2074 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2075 offset = (flag == SIT_BITMAP) ? 2076 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2077 /* 2078 * if large_nat_bitmap feature is enabled, leave checksum 2079 * protection for all nat/sit bitmaps. 2080 */ 2081 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32); 2082 } 2083 2084 if (__cp_payload(sbi) > 0) { 2085 if (flag == NAT_BITMAP) 2086 return &ckpt->sit_nat_version_bitmap; 2087 else 2088 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2089 } else { 2090 offset = (flag == NAT_BITMAP) ? 2091 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2092 return &ckpt->sit_nat_version_bitmap + offset; 2093 } 2094 } 2095 2096 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2097 { 2098 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2099 2100 if (sbi->cur_cp_pack == 2) 2101 start_addr += sbi->blocks_per_seg; 2102 return start_addr; 2103 } 2104 2105 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2106 { 2107 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2108 2109 if (sbi->cur_cp_pack == 1) 2110 start_addr += sbi->blocks_per_seg; 2111 return start_addr; 2112 } 2113 2114 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2115 { 2116 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2117 } 2118 2119 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2120 { 2121 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2122 } 2123 2124 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2125 struct inode *inode, bool is_inode) 2126 { 2127 block_t valid_block_count; 2128 unsigned int valid_node_count, user_block_count; 2129 int err; 2130 2131 if (is_inode) { 2132 if (inode) { 2133 err = dquot_alloc_inode(inode); 2134 if (err) 2135 return err; 2136 } 2137 } else { 2138 err = dquot_reserve_block(inode, 1); 2139 if (err) 2140 return err; 2141 } 2142 2143 if (time_to_inject(sbi, FAULT_BLOCK)) { 2144 f2fs_show_injection_info(sbi, FAULT_BLOCK); 2145 goto enospc; 2146 } 2147 2148 spin_lock(&sbi->stat_lock); 2149 2150 valid_block_count = sbi->total_valid_block_count + 2151 sbi->current_reserved_blocks + 1; 2152 2153 if (!__allow_reserved_blocks(sbi, inode, false)) 2154 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks; 2155 user_block_count = sbi->user_block_count; 2156 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2157 user_block_count -= sbi->unusable_block_count; 2158 2159 if (unlikely(valid_block_count > user_block_count)) { 2160 spin_unlock(&sbi->stat_lock); 2161 goto enospc; 2162 } 2163 2164 valid_node_count = sbi->total_valid_node_count + 1; 2165 if (unlikely(valid_node_count > sbi->total_node_count)) { 2166 spin_unlock(&sbi->stat_lock); 2167 goto enospc; 2168 } 2169 2170 sbi->total_valid_node_count++; 2171 sbi->total_valid_block_count++; 2172 spin_unlock(&sbi->stat_lock); 2173 2174 if (inode) { 2175 if (is_inode) 2176 f2fs_mark_inode_dirty_sync(inode, true); 2177 else 2178 f2fs_i_blocks_write(inode, 1, true, true); 2179 } 2180 2181 percpu_counter_inc(&sbi->alloc_valid_block_count); 2182 return 0; 2183 2184 enospc: 2185 if (is_inode) { 2186 if (inode) 2187 dquot_free_inode(inode); 2188 } else { 2189 dquot_release_reservation_block(inode, 1); 2190 } 2191 return -ENOSPC; 2192 } 2193 2194 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2195 struct inode *inode, bool is_inode) 2196 { 2197 spin_lock(&sbi->stat_lock); 2198 2199 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 2200 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 2201 2202 sbi->total_valid_node_count--; 2203 sbi->total_valid_block_count--; 2204 if (sbi->reserved_blocks && 2205 sbi->current_reserved_blocks < sbi->reserved_blocks) 2206 sbi->current_reserved_blocks++; 2207 2208 spin_unlock(&sbi->stat_lock); 2209 2210 if (is_inode) { 2211 dquot_free_inode(inode); 2212 } else { 2213 if (unlikely(inode->i_blocks == 0)) { 2214 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu", 2215 inode->i_ino, 2216 (unsigned long long)inode->i_blocks); 2217 set_sbi_flag(sbi, SBI_NEED_FSCK); 2218 return; 2219 } 2220 f2fs_i_blocks_write(inode, 1, false, true); 2221 } 2222 } 2223 2224 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2225 { 2226 return sbi->total_valid_node_count; 2227 } 2228 2229 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2230 { 2231 percpu_counter_inc(&sbi->total_valid_inode_count); 2232 } 2233 2234 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2235 { 2236 percpu_counter_dec(&sbi->total_valid_inode_count); 2237 } 2238 2239 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2240 { 2241 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2242 } 2243 2244 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2245 pgoff_t index, bool for_write) 2246 { 2247 struct page *page; 2248 2249 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2250 if (!for_write) 2251 page = find_get_page_flags(mapping, index, 2252 FGP_LOCK | FGP_ACCESSED); 2253 else 2254 page = find_lock_page(mapping, index); 2255 if (page) 2256 return page; 2257 2258 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) { 2259 f2fs_show_injection_info(F2FS_M_SB(mapping), 2260 FAULT_PAGE_ALLOC); 2261 return NULL; 2262 } 2263 } 2264 2265 if (!for_write) 2266 return grab_cache_page(mapping, index); 2267 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS); 2268 } 2269 2270 static inline struct page *f2fs_pagecache_get_page( 2271 struct address_space *mapping, pgoff_t index, 2272 int fgp_flags, gfp_t gfp_mask) 2273 { 2274 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) { 2275 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET); 2276 return NULL; 2277 } 2278 2279 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2280 } 2281 2282 static inline void f2fs_copy_page(struct page *src, struct page *dst) 2283 { 2284 char *src_kaddr = kmap(src); 2285 char *dst_kaddr = kmap(dst); 2286 2287 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE); 2288 kunmap(dst); 2289 kunmap(src); 2290 } 2291 2292 static inline void f2fs_put_page(struct page *page, int unlock) 2293 { 2294 if (!page) 2295 return; 2296 2297 if (unlock) { 2298 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2299 unlock_page(page); 2300 } 2301 put_page(page); 2302 } 2303 2304 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2305 { 2306 if (dn->node_page) 2307 f2fs_put_page(dn->node_page, 1); 2308 if (dn->inode_page && dn->node_page != dn->inode_page) 2309 f2fs_put_page(dn->inode_page, 0); 2310 dn->node_page = NULL; 2311 dn->inode_page = NULL; 2312 } 2313 2314 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2315 size_t size) 2316 { 2317 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2318 } 2319 2320 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2321 gfp_t flags) 2322 { 2323 void *entry; 2324 2325 entry = kmem_cache_alloc(cachep, flags); 2326 if (!entry) 2327 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2328 return entry; 2329 } 2330 2331 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2332 { 2333 if (sbi->gc_mode == GC_URGENT) 2334 return true; 2335 2336 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2337 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2338 get_pages(sbi, F2FS_WB_CP_DATA) || 2339 get_pages(sbi, F2FS_DIO_READ) || 2340 get_pages(sbi, F2FS_DIO_WRITE)) 2341 return false; 2342 2343 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2344 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2345 return false; 2346 2347 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2348 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2349 return false; 2350 2351 return f2fs_time_over(sbi, type); 2352 } 2353 2354 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2355 unsigned long index, void *item) 2356 { 2357 while (radix_tree_insert(root, index, item)) 2358 cond_resched(); 2359 } 2360 2361 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2362 2363 static inline bool IS_INODE(struct page *page) 2364 { 2365 struct f2fs_node *p = F2FS_NODE(page); 2366 2367 return RAW_IS_INODE(p); 2368 } 2369 2370 static inline int offset_in_addr(struct f2fs_inode *i) 2371 { 2372 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2373 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2374 } 2375 2376 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2377 { 2378 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2379 } 2380 2381 static inline int f2fs_has_extra_attr(struct inode *inode); 2382 static inline block_t datablock_addr(struct inode *inode, 2383 struct page *node_page, unsigned int offset) 2384 { 2385 struct f2fs_node *raw_node; 2386 __le32 *addr_array; 2387 int base = 0; 2388 bool is_inode = IS_INODE(node_page); 2389 2390 raw_node = F2FS_NODE(node_page); 2391 2392 /* from GC path only */ 2393 if (is_inode) { 2394 if (!inode) 2395 base = offset_in_addr(&raw_node->i); 2396 else if (f2fs_has_extra_attr(inode)) 2397 base = get_extra_isize(inode); 2398 } 2399 2400 addr_array = blkaddr_in_node(raw_node); 2401 return le32_to_cpu(addr_array[base + offset]); 2402 } 2403 2404 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2405 { 2406 int mask; 2407 2408 addr += (nr >> 3); 2409 mask = 1 << (7 - (nr & 0x07)); 2410 return mask & *addr; 2411 } 2412 2413 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2414 { 2415 int mask; 2416 2417 addr += (nr >> 3); 2418 mask = 1 << (7 - (nr & 0x07)); 2419 *addr |= mask; 2420 } 2421 2422 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2423 { 2424 int mask; 2425 2426 addr += (nr >> 3); 2427 mask = 1 << (7 - (nr & 0x07)); 2428 *addr &= ~mask; 2429 } 2430 2431 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 2432 { 2433 int mask; 2434 int ret; 2435 2436 addr += (nr >> 3); 2437 mask = 1 << (7 - (nr & 0x07)); 2438 ret = mask & *addr; 2439 *addr |= mask; 2440 return ret; 2441 } 2442 2443 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 2444 { 2445 int mask; 2446 int ret; 2447 2448 addr += (nr >> 3); 2449 mask = 1 << (7 - (nr & 0x07)); 2450 ret = mask & *addr; 2451 *addr &= ~mask; 2452 return ret; 2453 } 2454 2455 static inline void f2fs_change_bit(unsigned int nr, char *addr) 2456 { 2457 int mask; 2458 2459 addr += (nr >> 3); 2460 mask = 1 << (7 - (nr & 0x07)); 2461 *addr ^= mask; 2462 } 2463 2464 /* 2465 * On-disk inode flags (f2fs_inode::i_flags) 2466 */ 2467 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 2468 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 2469 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 2470 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 2471 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 2472 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 2473 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 2474 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 2475 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 2476 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 2477 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 2478 2479 /* Flags that should be inherited by new inodes from their parent. */ 2480 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 2481 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2482 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL) 2483 2484 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 2485 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 2486 F2FS_CASEFOLD_FL)) 2487 2488 /* Flags that are appropriate for non-directories/regular files. */ 2489 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 2490 2491 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 2492 { 2493 if (S_ISDIR(mode)) 2494 return flags; 2495 else if (S_ISREG(mode)) 2496 return flags & F2FS_REG_FLMASK; 2497 else 2498 return flags & F2FS_OTHER_FLMASK; 2499 } 2500 2501 /* used for f2fs_inode_info->flags */ 2502 enum { 2503 FI_NEW_INODE, /* indicate newly allocated inode */ 2504 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 2505 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 2506 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 2507 FI_INC_LINK, /* need to increment i_nlink */ 2508 FI_ACL_MODE, /* indicate acl mode */ 2509 FI_NO_ALLOC, /* should not allocate any blocks */ 2510 FI_FREE_NID, /* free allocated nide */ 2511 FI_NO_EXTENT, /* not to use the extent cache */ 2512 FI_INLINE_XATTR, /* used for inline xattr */ 2513 FI_INLINE_DATA, /* used for inline data*/ 2514 FI_INLINE_DENTRY, /* used for inline dentry */ 2515 FI_APPEND_WRITE, /* inode has appended data */ 2516 FI_UPDATE_WRITE, /* inode has in-place-update data */ 2517 FI_NEED_IPU, /* used for ipu per file */ 2518 FI_ATOMIC_FILE, /* indicate atomic file */ 2519 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */ 2520 FI_VOLATILE_FILE, /* indicate volatile file */ 2521 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 2522 FI_DROP_CACHE, /* drop dirty page cache */ 2523 FI_DATA_EXIST, /* indicate data exists */ 2524 FI_INLINE_DOTS, /* indicate inline dot dentries */ 2525 FI_DO_DEFRAG, /* indicate defragment is running */ 2526 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 2527 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */ 2528 FI_HOT_DATA, /* indicate file is hot */ 2529 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 2530 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 2531 FI_PIN_FILE, /* indicate file should not be gced */ 2532 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */ 2533 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 2534 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 2535 FI_MMAP_FILE, /* indicate file was mmapped */ 2536 }; 2537 2538 static inline void __mark_inode_dirty_flag(struct inode *inode, 2539 int flag, bool set) 2540 { 2541 switch (flag) { 2542 case FI_INLINE_XATTR: 2543 case FI_INLINE_DATA: 2544 case FI_INLINE_DENTRY: 2545 case FI_NEW_INODE: 2546 if (set) 2547 return; 2548 /* fall through */ 2549 case FI_DATA_EXIST: 2550 case FI_INLINE_DOTS: 2551 case FI_PIN_FILE: 2552 case FI_COMPRESSED_FILE: 2553 f2fs_mark_inode_dirty_sync(inode, true); 2554 } 2555 } 2556 2557 static inline void set_inode_flag(struct inode *inode, int flag) 2558 { 2559 if (!test_bit(flag, &F2FS_I(inode)->flags)) 2560 set_bit(flag, &F2FS_I(inode)->flags); 2561 __mark_inode_dirty_flag(inode, flag, true); 2562 } 2563 2564 static inline int is_inode_flag_set(struct inode *inode, int flag) 2565 { 2566 return test_bit(flag, &F2FS_I(inode)->flags); 2567 } 2568 2569 static inline void clear_inode_flag(struct inode *inode, int flag) 2570 { 2571 if (test_bit(flag, &F2FS_I(inode)->flags)) 2572 clear_bit(flag, &F2FS_I(inode)->flags); 2573 __mark_inode_dirty_flag(inode, flag, false); 2574 } 2575 2576 static inline bool f2fs_verity_in_progress(struct inode *inode) 2577 { 2578 return IS_ENABLED(CONFIG_FS_VERITY) && 2579 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 2580 } 2581 2582 static inline void set_acl_inode(struct inode *inode, umode_t mode) 2583 { 2584 F2FS_I(inode)->i_acl_mode = mode; 2585 set_inode_flag(inode, FI_ACL_MODE); 2586 f2fs_mark_inode_dirty_sync(inode, false); 2587 } 2588 2589 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 2590 { 2591 if (inc) 2592 inc_nlink(inode); 2593 else 2594 drop_nlink(inode); 2595 f2fs_mark_inode_dirty_sync(inode, true); 2596 } 2597 2598 static inline void f2fs_i_blocks_write(struct inode *inode, 2599 block_t diff, bool add, bool claim) 2600 { 2601 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2602 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2603 2604 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 2605 if (add) { 2606 if (claim) 2607 dquot_claim_block(inode, diff); 2608 else 2609 dquot_alloc_block_nofail(inode, diff); 2610 } else { 2611 dquot_free_block(inode, diff); 2612 } 2613 2614 f2fs_mark_inode_dirty_sync(inode, true); 2615 if (clean || recover) 2616 set_inode_flag(inode, FI_AUTO_RECOVER); 2617 } 2618 2619 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 2620 { 2621 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 2622 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 2623 2624 if (i_size_read(inode) == i_size) 2625 return; 2626 2627 i_size_write(inode, i_size); 2628 f2fs_mark_inode_dirty_sync(inode, true); 2629 if (clean || recover) 2630 set_inode_flag(inode, FI_AUTO_RECOVER); 2631 } 2632 2633 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 2634 { 2635 F2FS_I(inode)->i_current_depth = depth; 2636 f2fs_mark_inode_dirty_sync(inode, true); 2637 } 2638 2639 static inline void f2fs_i_gc_failures_write(struct inode *inode, 2640 unsigned int count) 2641 { 2642 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count; 2643 f2fs_mark_inode_dirty_sync(inode, true); 2644 } 2645 2646 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 2647 { 2648 F2FS_I(inode)->i_xattr_nid = xnid; 2649 f2fs_mark_inode_dirty_sync(inode, true); 2650 } 2651 2652 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 2653 { 2654 F2FS_I(inode)->i_pino = pino; 2655 f2fs_mark_inode_dirty_sync(inode, true); 2656 } 2657 2658 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 2659 { 2660 struct f2fs_inode_info *fi = F2FS_I(inode); 2661 2662 if (ri->i_inline & F2FS_INLINE_XATTR) 2663 set_bit(FI_INLINE_XATTR, &fi->flags); 2664 if (ri->i_inline & F2FS_INLINE_DATA) 2665 set_bit(FI_INLINE_DATA, &fi->flags); 2666 if (ri->i_inline & F2FS_INLINE_DENTRY) 2667 set_bit(FI_INLINE_DENTRY, &fi->flags); 2668 if (ri->i_inline & F2FS_DATA_EXIST) 2669 set_bit(FI_DATA_EXIST, &fi->flags); 2670 if (ri->i_inline & F2FS_INLINE_DOTS) 2671 set_bit(FI_INLINE_DOTS, &fi->flags); 2672 if (ri->i_inline & F2FS_EXTRA_ATTR) 2673 set_bit(FI_EXTRA_ATTR, &fi->flags); 2674 if (ri->i_inline & F2FS_PIN_FILE) 2675 set_bit(FI_PIN_FILE, &fi->flags); 2676 } 2677 2678 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 2679 { 2680 ri->i_inline = 0; 2681 2682 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 2683 ri->i_inline |= F2FS_INLINE_XATTR; 2684 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 2685 ri->i_inline |= F2FS_INLINE_DATA; 2686 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 2687 ri->i_inline |= F2FS_INLINE_DENTRY; 2688 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 2689 ri->i_inline |= F2FS_DATA_EXIST; 2690 if (is_inode_flag_set(inode, FI_INLINE_DOTS)) 2691 ri->i_inline |= F2FS_INLINE_DOTS; 2692 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 2693 ri->i_inline |= F2FS_EXTRA_ATTR; 2694 if (is_inode_flag_set(inode, FI_PIN_FILE)) 2695 ri->i_inline |= F2FS_PIN_FILE; 2696 } 2697 2698 static inline int f2fs_has_extra_attr(struct inode *inode) 2699 { 2700 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 2701 } 2702 2703 static inline int f2fs_has_inline_xattr(struct inode *inode) 2704 { 2705 return is_inode_flag_set(inode, FI_INLINE_XATTR); 2706 } 2707 2708 static inline int f2fs_compressed_file(struct inode *inode) 2709 { 2710 return S_ISREG(inode->i_mode) && 2711 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 2712 } 2713 2714 static inline unsigned int addrs_per_inode(struct inode *inode) 2715 { 2716 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) - 2717 get_inline_xattr_addrs(inode); 2718 2719 if (!f2fs_compressed_file(inode)) 2720 return addrs; 2721 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 2722 } 2723 2724 static inline unsigned int addrs_per_block(struct inode *inode) 2725 { 2726 if (!f2fs_compressed_file(inode)) 2727 return DEF_ADDRS_PER_BLOCK; 2728 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size); 2729 } 2730 2731 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 2732 { 2733 struct f2fs_inode *ri = F2FS_INODE(page); 2734 2735 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 2736 get_inline_xattr_addrs(inode)]); 2737 } 2738 2739 static inline int inline_xattr_size(struct inode *inode) 2740 { 2741 if (f2fs_has_inline_xattr(inode)) 2742 return get_inline_xattr_addrs(inode) * sizeof(__le32); 2743 return 0; 2744 } 2745 2746 static inline int f2fs_has_inline_data(struct inode *inode) 2747 { 2748 return is_inode_flag_set(inode, FI_INLINE_DATA); 2749 } 2750 2751 static inline int f2fs_exist_data(struct inode *inode) 2752 { 2753 return is_inode_flag_set(inode, FI_DATA_EXIST); 2754 } 2755 2756 static inline int f2fs_has_inline_dots(struct inode *inode) 2757 { 2758 return is_inode_flag_set(inode, FI_INLINE_DOTS); 2759 } 2760 2761 static inline int f2fs_is_mmap_file(struct inode *inode) 2762 { 2763 return is_inode_flag_set(inode, FI_MMAP_FILE); 2764 } 2765 2766 static inline bool f2fs_is_pinned_file(struct inode *inode) 2767 { 2768 return is_inode_flag_set(inode, FI_PIN_FILE); 2769 } 2770 2771 static inline bool f2fs_is_atomic_file(struct inode *inode) 2772 { 2773 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 2774 } 2775 2776 static inline bool f2fs_is_commit_atomic_write(struct inode *inode) 2777 { 2778 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT); 2779 } 2780 2781 static inline bool f2fs_is_volatile_file(struct inode *inode) 2782 { 2783 return is_inode_flag_set(inode, FI_VOLATILE_FILE); 2784 } 2785 2786 static inline bool f2fs_is_first_block_written(struct inode *inode) 2787 { 2788 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN); 2789 } 2790 2791 static inline bool f2fs_is_drop_cache(struct inode *inode) 2792 { 2793 return is_inode_flag_set(inode, FI_DROP_CACHE); 2794 } 2795 2796 static inline void *inline_data_addr(struct inode *inode, struct page *page) 2797 { 2798 struct f2fs_inode *ri = F2FS_INODE(page); 2799 int extra_size = get_extra_isize(inode); 2800 2801 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]); 2802 } 2803 2804 static inline int f2fs_has_inline_dentry(struct inode *inode) 2805 { 2806 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 2807 } 2808 2809 static inline int is_file(struct inode *inode, int type) 2810 { 2811 return F2FS_I(inode)->i_advise & type; 2812 } 2813 2814 static inline void set_file(struct inode *inode, int type) 2815 { 2816 F2FS_I(inode)->i_advise |= type; 2817 f2fs_mark_inode_dirty_sync(inode, true); 2818 } 2819 2820 static inline void clear_file(struct inode *inode, int type) 2821 { 2822 F2FS_I(inode)->i_advise &= ~type; 2823 f2fs_mark_inode_dirty_sync(inode, true); 2824 } 2825 2826 static inline bool f2fs_is_time_consistent(struct inode *inode) 2827 { 2828 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime)) 2829 return false; 2830 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime)) 2831 return false; 2832 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime)) 2833 return false; 2834 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3, 2835 &F2FS_I(inode)->i_crtime)) 2836 return false; 2837 return true; 2838 } 2839 2840 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 2841 { 2842 bool ret; 2843 2844 if (dsync) { 2845 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2846 2847 spin_lock(&sbi->inode_lock[DIRTY_META]); 2848 ret = list_empty(&F2FS_I(inode)->gdirty_list); 2849 spin_unlock(&sbi->inode_lock[DIRTY_META]); 2850 return ret; 2851 } 2852 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 2853 file_keep_isize(inode) || 2854 i_size_read(inode) & ~PAGE_MASK) 2855 return false; 2856 2857 if (!f2fs_is_time_consistent(inode)) 2858 return false; 2859 2860 down_read(&F2FS_I(inode)->i_sem); 2861 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 2862 up_read(&F2FS_I(inode)->i_sem); 2863 2864 return ret; 2865 } 2866 2867 static inline bool f2fs_readonly(struct super_block *sb) 2868 { 2869 return sb_rdonly(sb); 2870 } 2871 2872 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 2873 { 2874 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 2875 } 2876 2877 static inline bool is_dot_dotdot(const struct qstr *str) 2878 { 2879 if (str->len == 1 && str->name[0] == '.') 2880 return true; 2881 2882 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 2883 return true; 2884 2885 return false; 2886 } 2887 2888 static inline bool f2fs_may_extent_tree(struct inode *inode) 2889 { 2890 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2891 2892 if (!test_opt(sbi, EXTENT_CACHE) || 2893 is_inode_flag_set(inode, FI_NO_EXTENT) || 2894 is_inode_flag_set(inode, FI_COMPRESSED_FILE)) 2895 return false; 2896 2897 /* 2898 * for recovered files during mount do not create extents 2899 * if shrinker is not registered. 2900 */ 2901 if (list_empty(&sbi->s_list)) 2902 return false; 2903 2904 return S_ISREG(inode->i_mode); 2905 } 2906 2907 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 2908 size_t size, gfp_t flags) 2909 { 2910 void *ret; 2911 2912 if (time_to_inject(sbi, FAULT_KMALLOC)) { 2913 f2fs_show_injection_info(sbi, FAULT_KMALLOC); 2914 return NULL; 2915 } 2916 2917 ret = kmalloc(size, flags); 2918 if (ret) 2919 return ret; 2920 2921 return kvmalloc(size, flags); 2922 } 2923 2924 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 2925 size_t size, gfp_t flags) 2926 { 2927 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 2928 } 2929 2930 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 2931 size_t size, gfp_t flags) 2932 { 2933 if (time_to_inject(sbi, FAULT_KVMALLOC)) { 2934 f2fs_show_injection_info(sbi, FAULT_KVMALLOC); 2935 return NULL; 2936 } 2937 2938 return kvmalloc(size, flags); 2939 } 2940 2941 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 2942 size_t size, gfp_t flags) 2943 { 2944 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 2945 } 2946 2947 static inline int get_extra_isize(struct inode *inode) 2948 { 2949 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 2950 } 2951 2952 static inline int get_inline_xattr_addrs(struct inode *inode) 2953 { 2954 return F2FS_I(inode)->i_inline_xattr_size; 2955 } 2956 2957 #define f2fs_get_inode_mode(i) \ 2958 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 2959 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 2960 2961 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 2962 (offsetof(struct f2fs_inode, i_extra_end) - \ 2963 offsetof(struct f2fs_inode, i_extra_isize)) \ 2964 2965 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 2966 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 2967 ((offsetof(typeof(*(f2fs_inode)), field) + \ 2968 sizeof((f2fs_inode)->field)) \ 2969 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 2970 2971 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi) 2972 { 2973 int i; 2974 2975 spin_lock(&sbi->iostat_lock); 2976 for (i = 0; i < NR_IO_TYPE; i++) 2977 sbi->write_iostat[i] = 0; 2978 spin_unlock(&sbi->iostat_lock); 2979 } 2980 2981 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi, 2982 enum iostat_type type, unsigned long long io_bytes) 2983 { 2984 if (!sbi->iostat_enable) 2985 return; 2986 spin_lock(&sbi->iostat_lock); 2987 sbi->write_iostat[type] += io_bytes; 2988 2989 if (type == APP_WRITE_IO || type == APP_DIRECT_IO) 2990 sbi->write_iostat[APP_BUFFERED_IO] = 2991 sbi->write_iostat[APP_WRITE_IO] - 2992 sbi->write_iostat[APP_DIRECT_IO]; 2993 spin_unlock(&sbi->iostat_lock); 2994 } 2995 2996 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1) 2997 2998 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 2999 3000 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3001 block_t blkaddr, int type); 3002 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3003 block_t blkaddr, int type) 3004 { 3005 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) { 3006 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3007 blkaddr, type); 3008 f2fs_bug_on(sbi, 1); 3009 } 3010 } 3011 3012 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3013 { 3014 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3015 blkaddr == COMPRESS_ADDR) 3016 return false; 3017 return true; 3018 } 3019 3020 static inline void f2fs_set_page_private(struct page *page, 3021 unsigned long data) 3022 { 3023 if (PagePrivate(page)) 3024 return; 3025 3026 get_page(page); 3027 SetPagePrivate(page); 3028 set_page_private(page, data); 3029 } 3030 3031 static inline void f2fs_clear_page_private(struct page *page) 3032 { 3033 if (!PagePrivate(page)) 3034 return; 3035 3036 set_page_private(page, 0); 3037 ClearPagePrivate(page); 3038 f2fs_put_page(page, 0); 3039 } 3040 3041 /* 3042 * file.c 3043 */ 3044 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3045 void f2fs_truncate_data_blocks(struct dnode_of_data *dn); 3046 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3047 int f2fs_truncate(struct inode *inode); 3048 int f2fs_getattr(const struct path *path, struct kstat *stat, 3049 u32 request_mask, unsigned int flags); 3050 int f2fs_setattr(struct dentry *dentry, struct iattr *attr); 3051 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3052 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3053 int f2fs_precache_extents(struct inode *inode); 3054 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3055 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3056 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3057 int f2fs_pin_file_control(struct inode *inode, bool inc); 3058 3059 /* 3060 * inode.c 3061 */ 3062 void f2fs_set_inode_flags(struct inode *inode); 3063 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3064 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3065 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3066 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3067 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3068 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3069 void f2fs_update_inode_page(struct inode *inode); 3070 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3071 void f2fs_evict_inode(struct inode *inode); 3072 void f2fs_handle_failed_inode(struct inode *inode); 3073 3074 /* 3075 * namei.c 3076 */ 3077 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3078 bool hot, bool set); 3079 struct dentry *f2fs_get_parent(struct dentry *child); 3080 3081 extern int f2fs_ci_compare(const struct inode *parent, 3082 const struct qstr *name, 3083 const struct qstr *entry, 3084 bool quick); 3085 3086 /* 3087 * dir.c 3088 */ 3089 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de); 3090 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname, 3091 f2fs_hash_t namehash, int *max_slots, 3092 struct f2fs_dentry_ptr *d); 3093 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3094 unsigned int start_pos, struct fscrypt_str *fstr); 3095 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3096 struct f2fs_dentry_ptr *d); 3097 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3098 const struct qstr *new_name, 3099 const struct qstr *orig_name, struct page *dpage); 3100 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3101 unsigned int current_depth); 3102 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3103 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3104 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3105 struct fscrypt_name *fname, struct page **res_page); 3106 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3107 const struct qstr *child, struct page **res_page); 3108 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3109 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3110 struct page **page); 3111 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3112 struct page *page, struct inode *inode); 3113 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3114 struct fscrypt_name *fname); 3115 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3116 const struct qstr *name, f2fs_hash_t name_hash, 3117 unsigned int bit_pos); 3118 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name, 3119 const struct qstr *orig_name, 3120 struct inode *inode, nid_t ino, umode_t mode); 3121 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname, 3122 struct inode *inode, nid_t ino, umode_t mode); 3123 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3124 struct inode *inode, nid_t ino, umode_t mode); 3125 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3126 struct inode *dir, struct inode *inode); 3127 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir); 3128 bool f2fs_empty_dir(struct inode *dir); 3129 3130 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3131 { 3132 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3133 inode, inode->i_ino, inode->i_mode); 3134 } 3135 3136 /* 3137 * super.c 3138 */ 3139 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3140 void f2fs_inode_synced(struct inode *inode); 3141 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3142 int f2fs_quota_sync(struct super_block *sb, int type); 3143 void f2fs_quota_off_umount(struct super_block *sb); 3144 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3145 int f2fs_sync_fs(struct super_block *sb, int sync); 3146 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3147 3148 /* 3149 * hash.c 3150 */ 3151 f2fs_hash_t f2fs_dentry_hash(const struct inode *dir, 3152 const struct qstr *name_info, struct fscrypt_name *fname); 3153 3154 /* 3155 * node.c 3156 */ 3157 struct dnode_of_data; 3158 struct node_info; 3159 3160 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3161 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3162 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3163 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3164 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3165 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3166 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3167 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3168 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3169 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3170 struct node_info *ni); 3171 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3172 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3173 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3174 int f2fs_truncate_xattr_node(struct inode *inode); 3175 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3176 unsigned int seq_id); 3177 int f2fs_remove_inode_page(struct inode *inode); 3178 struct page *f2fs_new_inode_page(struct inode *inode); 3179 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3180 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3181 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3182 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3183 int f2fs_move_node_page(struct page *node_page, int gc_type); 3184 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3185 struct writeback_control *wbc, bool atomic, 3186 unsigned int *seq_id); 3187 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3188 struct writeback_control *wbc, 3189 bool do_balance, enum iostat_type io_type); 3190 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3191 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3192 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3193 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3194 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3195 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3196 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3197 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3198 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3199 unsigned int segno, struct f2fs_summary_block *sum); 3200 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3201 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3202 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3203 int __init f2fs_create_node_manager_caches(void); 3204 void f2fs_destroy_node_manager_caches(void); 3205 3206 /* 3207 * segment.c 3208 */ 3209 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3210 void f2fs_register_inmem_page(struct inode *inode, struct page *page); 3211 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure); 3212 void f2fs_drop_inmem_pages(struct inode *inode); 3213 void f2fs_drop_inmem_page(struct inode *inode, struct page *page); 3214 int f2fs_commit_inmem_pages(struct inode *inode); 3215 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3216 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi); 3217 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3218 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3219 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3220 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3221 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3222 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3223 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3224 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3225 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3226 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3227 struct cp_control *cpc); 3228 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3229 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3230 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3231 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3232 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3233 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3234 unsigned int start, unsigned int end); 3235 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type); 3236 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3237 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3238 struct cp_control *cpc); 3239 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3240 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3241 block_t blk_addr); 3242 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3243 enum iostat_type io_type); 3244 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3245 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3246 struct f2fs_io_info *fio); 3247 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3248 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3249 block_t old_blkaddr, block_t new_blkaddr, 3250 bool recover_curseg, bool recover_newaddr); 3251 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3252 block_t old_addr, block_t new_addr, 3253 unsigned char version, bool recover_curseg, 3254 bool recover_newaddr); 3255 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3256 block_t old_blkaddr, block_t *new_blkaddr, 3257 struct f2fs_summary *sum, int type, 3258 struct f2fs_io_info *fio, bool add_list); 3259 void f2fs_wait_on_page_writeback(struct page *page, 3260 enum page_type type, bool ordered, bool locked); 3261 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3262 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3263 block_t len); 3264 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3265 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3266 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3267 unsigned int val, int alloc); 3268 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3269 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3270 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3271 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3272 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3273 int __init f2fs_create_segment_manager_caches(void); 3274 void f2fs_destroy_segment_manager_caches(void); 3275 int f2fs_rw_hint_to_seg_type(enum rw_hint hint); 3276 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3277 enum page_type type, enum temp_type temp); 3278 3279 /* 3280 * checkpoint.c 3281 */ 3282 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io); 3283 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3284 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3285 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index); 3286 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3287 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3288 block_t blkaddr, int type); 3289 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3290 int type, bool sync); 3291 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index); 3292 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3293 long nr_to_write, enum iostat_type io_type); 3294 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3295 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3296 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3297 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3298 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3299 unsigned int devidx, int type); 3300 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3301 unsigned int devidx, int type); 3302 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi); 3303 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3304 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3305 void f2fs_add_orphan_inode(struct inode *inode); 3306 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3307 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3308 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3309 void f2fs_update_dirty_page(struct inode *inode, struct page *page); 3310 void f2fs_remove_dirty_inode(struct inode *inode); 3311 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type); 3312 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi); 3313 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3314 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3315 int __init f2fs_create_checkpoint_caches(void); 3316 void f2fs_destroy_checkpoint_caches(void); 3317 3318 /* 3319 * data.c 3320 */ 3321 int __init f2fs_init_bioset(void); 3322 void f2fs_destroy_bioset(void); 3323 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool no_fail); 3324 int f2fs_init_bio_entry_cache(void); 3325 void f2fs_destroy_bio_entry_cache(void); 3326 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 3327 struct bio *bio, enum page_type type); 3328 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3329 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3330 struct inode *inode, struct page *page, 3331 nid_t ino, enum page_type type); 3332 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3333 struct bio **bio, struct page *page); 3334 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3335 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3336 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3337 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3338 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3339 block_t blk_addr, struct bio *bio); 3340 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3341 void f2fs_set_data_blkaddr(struct dnode_of_data *dn); 3342 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3343 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3344 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3345 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index); 3346 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from); 3347 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3348 int f2fs_mpage_readpages(struct address_space *mapping, 3349 struct list_head *pages, struct page *page, 3350 unsigned nr_pages, bool is_readahead); 3351 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3352 int op_flags, bool for_write); 3353 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index); 3354 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3355 bool for_write); 3356 struct page *f2fs_get_new_data_page(struct inode *inode, 3357 struct page *ipage, pgoff_t index, bool new_i_size); 3358 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3359 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock); 3360 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 3361 int create, int flag); 3362 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3363 u64 start, u64 len); 3364 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3365 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3366 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3367 int f2fs_write_single_data_page(struct page *page, int *submitted, 3368 struct bio **bio, sector_t *last_block, 3369 struct writeback_control *wbc, 3370 enum iostat_type io_type, 3371 int compr_blocks); 3372 void f2fs_invalidate_page(struct page *page, unsigned int offset, 3373 unsigned int length); 3374 int f2fs_release_page(struct page *page, gfp_t wait); 3375 #ifdef CONFIG_MIGRATION 3376 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage, 3377 struct page *page, enum migrate_mode mode); 3378 #endif 3379 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3380 void f2fs_clear_page_cache_dirty_tag(struct page *page); 3381 int f2fs_init_post_read_processing(void); 3382 void f2fs_destroy_post_read_processing(void); 3383 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3384 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3385 3386 /* 3387 * gc.c 3388 */ 3389 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3390 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3391 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3392 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, 3393 unsigned int segno); 3394 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3395 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count); 3396 3397 /* 3398 * recovery.c 3399 */ 3400 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3401 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3402 3403 /* 3404 * debug.c 3405 */ 3406 #ifdef CONFIG_F2FS_STAT_FS 3407 struct f2fs_stat_info { 3408 struct list_head stat_list; 3409 struct f2fs_sb_info *sbi; 3410 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3411 int main_area_segs, main_area_sections, main_area_zones; 3412 unsigned long long hit_largest, hit_cached, hit_rbtree; 3413 unsigned long long hit_total, total_ext; 3414 int ext_tree, zombie_tree, ext_node; 3415 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3416 int ndirty_data, ndirty_qdata; 3417 int inmem_pages; 3418 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3419 int nats, dirty_nats, sits, dirty_sits; 3420 int free_nids, avail_nids, alloc_nids; 3421 int total_count, utilization; 3422 int bg_gc, nr_wb_cp_data, nr_wb_data; 3423 int nr_rd_data, nr_rd_node, nr_rd_meta; 3424 int nr_dio_read, nr_dio_write; 3425 unsigned int io_skip_bggc, other_skip_bggc; 3426 int nr_flushing, nr_flushed, flush_list_empty; 3427 int nr_discarding, nr_discarded; 3428 int nr_discard_cmd; 3429 unsigned int undiscard_blks; 3430 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3431 int compr_inode, compr_blocks; 3432 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt; 3433 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3434 unsigned int bimodal, avg_vblocks; 3435 int util_free, util_valid, util_invalid; 3436 int rsvd_segs, overp_segs; 3437 int dirty_count, node_pages, meta_pages; 3438 int prefree_count, call_count, cp_count, bg_cp_count; 3439 int tot_segs, node_segs, data_segs, free_segs, free_secs; 3440 int bg_node_segs, bg_data_segs; 3441 int tot_blks, data_blks, node_blks; 3442 int bg_data_blks, bg_node_blks; 3443 unsigned long long skipped_atomic_files[2]; 3444 int curseg[NR_CURSEG_TYPE]; 3445 int cursec[NR_CURSEG_TYPE]; 3446 int curzone[NR_CURSEG_TYPE]; 3447 3448 unsigned int meta_count[META_MAX]; 3449 unsigned int segment_count[2]; 3450 unsigned int block_count[2]; 3451 unsigned int inplace_count; 3452 unsigned long long base_mem, cache_mem, page_mem; 3453 }; 3454 3455 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 3456 { 3457 return (struct f2fs_stat_info *)sbi->stat_info; 3458 } 3459 3460 #define stat_inc_cp_count(si) ((si)->cp_count++) 3461 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++) 3462 #define stat_inc_call_count(si) ((si)->call_count++) 3463 #define stat_inc_bggc_count(si) ((si)->bg_gc++) 3464 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 3465 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 3466 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 3467 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 3468 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext)) 3469 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree)) 3470 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 3471 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached)) 3472 #define stat_inc_inline_xattr(inode) \ 3473 do { \ 3474 if (f2fs_has_inline_xattr(inode)) \ 3475 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 3476 } while (0) 3477 #define stat_dec_inline_xattr(inode) \ 3478 do { \ 3479 if (f2fs_has_inline_xattr(inode)) \ 3480 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 3481 } while (0) 3482 #define stat_inc_inline_inode(inode) \ 3483 do { \ 3484 if (f2fs_has_inline_data(inode)) \ 3485 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 3486 } while (0) 3487 #define stat_dec_inline_inode(inode) \ 3488 do { \ 3489 if (f2fs_has_inline_data(inode)) \ 3490 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 3491 } while (0) 3492 #define stat_inc_inline_dir(inode) \ 3493 do { \ 3494 if (f2fs_has_inline_dentry(inode)) \ 3495 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 3496 } while (0) 3497 #define stat_dec_inline_dir(inode) \ 3498 do { \ 3499 if (f2fs_has_inline_dentry(inode)) \ 3500 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 3501 } while (0) 3502 #define stat_inc_compr_inode(inode) \ 3503 do { \ 3504 if (f2fs_compressed_file(inode)) \ 3505 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 3506 } while (0) 3507 #define stat_dec_compr_inode(inode) \ 3508 do { \ 3509 if (f2fs_compressed_file(inode)) \ 3510 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 3511 } while (0) 3512 #define stat_add_compr_blocks(inode, blocks) \ 3513 (atomic_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3514 #define stat_sub_compr_blocks(inode, blocks) \ 3515 (atomic_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 3516 #define stat_inc_meta_count(sbi, blkaddr) \ 3517 do { \ 3518 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 3519 atomic_inc(&(sbi)->meta_count[META_CP]); \ 3520 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 3521 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 3522 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 3523 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 3524 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 3525 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 3526 } while (0) 3527 #define stat_inc_seg_type(sbi, curseg) \ 3528 ((sbi)->segment_count[(curseg)->alloc_type]++) 3529 #define stat_inc_block_count(sbi, curseg) \ 3530 ((sbi)->block_count[(curseg)->alloc_type]++) 3531 #define stat_inc_inplace_blocks(sbi) \ 3532 (atomic_inc(&(sbi)->inplace_count)) 3533 #define stat_update_max_atomic_write(inode) \ 3534 do { \ 3535 int cur = F2FS_I_SB(inode)->atomic_files; \ 3536 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 3537 if (cur > max) \ 3538 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 3539 } while (0) 3540 #define stat_inc_volatile_write(inode) \ 3541 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt)) 3542 #define stat_dec_volatile_write(inode) \ 3543 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt)) 3544 #define stat_update_max_volatile_write(inode) \ 3545 do { \ 3546 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \ 3547 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \ 3548 if (cur > max) \ 3549 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \ 3550 } while (0) 3551 #define stat_inc_seg_count(sbi, type, gc_type) \ 3552 do { \ 3553 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3554 si->tot_segs++; \ 3555 if ((type) == SUM_TYPE_DATA) { \ 3556 si->data_segs++; \ 3557 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 3558 } else { \ 3559 si->node_segs++; \ 3560 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 3561 } \ 3562 } while (0) 3563 3564 #define stat_inc_tot_blk_count(si, blks) \ 3565 ((si)->tot_blks += (blks)) 3566 3567 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 3568 do { \ 3569 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3570 stat_inc_tot_blk_count(si, blks); \ 3571 si->data_blks += (blks); \ 3572 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3573 } while (0) 3574 3575 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 3576 do { \ 3577 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 3578 stat_inc_tot_blk_count(si, blks); \ 3579 si->node_blks += (blks); \ 3580 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 3581 } while (0) 3582 3583 int f2fs_build_stats(struct f2fs_sb_info *sbi); 3584 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 3585 void __init f2fs_create_root_stats(void); 3586 void f2fs_destroy_root_stats(void); 3587 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 3588 #else 3589 #define stat_inc_cp_count(si) do { } while (0) 3590 #define stat_inc_bg_cp_count(si) do { } while (0) 3591 #define stat_inc_call_count(si) do { } while (0) 3592 #define stat_inc_bggc_count(si) do { } while (0) 3593 #define stat_io_skip_bggc_count(sbi) do { } while (0) 3594 #define stat_other_skip_bggc_count(sbi) do { } while (0) 3595 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 3596 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 3597 #define stat_inc_total_hit(sbi) do { } while (0) 3598 #define stat_inc_rbtree_node_hit(sbi) do { } while (0) 3599 #define stat_inc_largest_node_hit(sbi) do { } while (0) 3600 #define stat_inc_cached_node_hit(sbi) do { } while (0) 3601 #define stat_inc_inline_xattr(inode) do { } while (0) 3602 #define stat_dec_inline_xattr(inode) do { } while (0) 3603 #define stat_inc_inline_inode(inode) do { } while (0) 3604 #define stat_dec_inline_inode(inode) do { } while (0) 3605 #define stat_inc_inline_dir(inode) do { } while (0) 3606 #define stat_dec_inline_dir(inode) do { } while (0) 3607 #define stat_inc_compr_inode(inode) do { } while (0) 3608 #define stat_dec_compr_inode(inode) do { } while (0) 3609 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 3610 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 3611 #define stat_inc_atomic_write(inode) do { } while (0) 3612 #define stat_dec_atomic_write(inode) do { } while (0) 3613 #define stat_update_max_atomic_write(inode) do { } while (0) 3614 #define stat_inc_volatile_write(inode) do { } while (0) 3615 #define stat_dec_volatile_write(inode) do { } while (0) 3616 #define stat_update_max_volatile_write(inode) do { } while (0) 3617 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 3618 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 3619 #define stat_inc_block_count(sbi, curseg) do { } while (0) 3620 #define stat_inc_inplace_blocks(sbi) do { } while (0) 3621 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0) 3622 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 3623 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 3624 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 3625 3626 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 3627 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 3628 static inline void __init f2fs_create_root_stats(void) { } 3629 static inline void f2fs_destroy_root_stats(void) { } 3630 static inline void update_sit_info(struct f2fs_sb_info *sbi) {} 3631 #endif 3632 3633 extern const struct file_operations f2fs_dir_operations; 3634 #ifdef CONFIG_UNICODE 3635 extern const struct dentry_operations f2fs_dentry_ops; 3636 #endif 3637 extern const struct file_operations f2fs_file_operations; 3638 extern const struct inode_operations f2fs_file_inode_operations; 3639 extern const struct address_space_operations f2fs_dblock_aops; 3640 extern const struct address_space_operations f2fs_node_aops; 3641 extern const struct address_space_operations f2fs_meta_aops; 3642 extern const struct inode_operations f2fs_dir_inode_operations; 3643 extern const struct inode_operations f2fs_symlink_inode_operations; 3644 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 3645 extern const struct inode_operations f2fs_special_inode_operations; 3646 extern struct kmem_cache *f2fs_inode_entry_slab; 3647 3648 /* 3649 * inline.c 3650 */ 3651 bool f2fs_may_inline_data(struct inode *inode); 3652 bool f2fs_may_inline_dentry(struct inode *inode); 3653 void f2fs_do_read_inline_data(struct page *page, struct page *ipage); 3654 void f2fs_truncate_inline_inode(struct inode *inode, 3655 struct page *ipage, u64 from); 3656 int f2fs_read_inline_data(struct inode *inode, struct page *page); 3657 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 3658 int f2fs_convert_inline_inode(struct inode *inode); 3659 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 3660 int f2fs_write_inline_data(struct inode *inode, struct page *page); 3661 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage); 3662 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 3663 struct fscrypt_name *fname, struct page **res_page); 3664 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 3665 struct page *ipage); 3666 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name, 3667 const struct qstr *orig_name, 3668 struct inode *inode, nid_t ino, umode_t mode); 3669 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 3670 struct page *page, struct inode *dir, 3671 struct inode *inode); 3672 bool f2fs_empty_inline_dir(struct inode *dir); 3673 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 3674 struct fscrypt_str *fstr); 3675 int f2fs_inline_data_fiemap(struct inode *inode, 3676 struct fiemap_extent_info *fieinfo, 3677 __u64 start, __u64 len); 3678 3679 /* 3680 * shrinker.c 3681 */ 3682 unsigned long f2fs_shrink_count(struct shrinker *shrink, 3683 struct shrink_control *sc); 3684 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 3685 struct shrink_control *sc); 3686 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 3687 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 3688 3689 /* 3690 * extent_cache.c 3691 */ 3692 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 3693 struct rb_entry *cached_re, unsigned int ofs); 3694 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 3695 struct rb_root_cached *root, 3696 struct rb_node **parent, 3697 unsigned int ofs, bool *leftmost); 3698 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 3699 struct rb_entry *cached_re, unsigned int ofs, 3700 struct rb_entry **prev_entry, struct rb_entry **next_entry, 3701 struct rb_node ***insert_p, struct rb_node **insert_parent, 3702 bool force, bool *leftmost); 3703 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 3704 struct rb_root_cached *root); 3705 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink); 3706 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext); 3707 void f2fs_drop_extent_tree(struct inode *inode); 3708 unsigned int f2fs_destroy_extent_node(struct inode *inode); 3709 void f2fs_destroy_extent_tree(struct inode *inode); 3710 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 3711 struct extent_info *ei); 3712 void f2fs_update_extent_cache(struct dnode_of_data *dn); 3713 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 3714 pgoff_t fofs, block_t blkaddr, unsigned int len); 3715 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 3716 int __init f2fs_create_extent_cache(void); 3717 void f2fs_destroy_extent_cache(void); 3718 3719 /* 3720 * sysfs.c 3721 */ 3722 int __init f2fs_init_sysfs(void); 3723 void f2fs_exit_sysfs(void); 3724 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 3725 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 3726 3727 /* verity.c */ 3728 extern const struct fsverity_operations f2fs_verityops; 3729 3730 /* 3731 * crypto support 3732 */ 3733 static inline bool f2fs_encrypted_file(struct inode *inode) 3734 { 3735 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 3736 } 3737 3738 static inline void f2fs_set_encrypted_inode(struct inode *inode) 3739 { 3740 #ifdef CONFIG_FS_ENCRYPTION 3741 file_set_encrypt(inode); 3742 f2fs_set_inode_flags(inode); 3743 #endif 3744 } 3745 3746 /* 3747 * Returns true if the reads of the inode's data need to undergo some 3748 * postprocessing step, like decryption or authenticity verification. 3749 */ 3750 static inline bool f2fs_post_read_required(struct inode *inode) 3751 { 3752 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 3753 f2fs_compressed_file(inode); 3754 } 3755 3756 /* 3757 * compress.c 3758 */ 3759 #ifdef CONFIG_F2FS_FS_COMPRESSION 3760 bool f2fs_is_compressed_page(struct page *page); 3761 struct page *f2fs_compress_control_page(struct page *page); 3762 int f2fs_prepare_compress_overwrite(struct inode *inode, 3763 struct page **pagep, pgoff_t index, void **fsdata); 3764 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 3765 pgoff_t index, unsigned copied); 3766 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 3767 bool f2fs_is_compress_backend_ready(struct inode *inode); 3768 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity); 3769 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 3770 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 3771 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page); 3772 int f2fs_write_multi_pages(struct compress_ctx *cc, 3773 int *submitted, 3774 struct writeback_control *wbc, 3775 enum iostat_type io_type); 3776 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 3777 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 3778 unsigned nr_pages, sector_t *last_block_in_bio, 3779 bool is_readahead); 3780 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 3781 void f2fs_free_dic(struct decompress_io_ctx *dic); 3782 void f2fs_decompress_end_io(struct page **rpages, 3783 unsigned int cluster_size, bool err, bool verity); 3784 int f2fs_init_compress_ctx(struct compress_ctx *cc); 3785 void f2fs_destroy_compress_ctx(struct compress_ctx *cc); 3786 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 3787 #else 3788 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 3789 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 3790 { 3791 if (!f2fs_compressed_file(inode)) 3792 return true; 3793 /* not support compression */ 3794 return false; 3795 } 3796 static inline struct page *f2fs_compress_control_page(struct page *page) 3797 { 3798 WARN_ON_ONCE(1); 3799 return ERR_PTR(-EINVAL); 3800 } 3801 #endif 3802 3803 static inline void set_compress_context(struct inode *inode) 3804 { 3805 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3806 3807 F2FS_I(inode)->i_compress_algorithm = 3808 F2FS_OPTION(sbi).compress_algorithm; 3809 F2FS_I(inode)->i_log_cluster_size = 3810 F2FS_OPTION(sbi).compress_log_size; 3811 F2FS_I(inode)->i_cluster_size = 3812 1 << F2FS_I(inode)->i_log_cluster_size; 3813 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL; 3814 set_inode_flag(inode, FI_COMPRESSED_FILE); 3815 stat_inc_compr_inode(inode); 3816 } 3817 3818 static inline u64 f2fs_disable_compressed_file(struct inode *inode) 3819 { 3820 struct f2fs_inode_info *fi = F2FS_I(inode); 3821 3822 if (!f2fs_compressed_file(inode)) 3823 return 0; 3824 if (fi->i_compr_blocks) 3825 return fi->i_compr_blocks; 3826 3827 fi->i_flags &= ~F2FS_COMPR_FL; 3828 clear_inode_flag(inode, FI_COMPRESSED_FILE); 3829 stat_dec_compr_inode(inode); 3830 return 0; 3831 } 3832 3833 #define F2FS_FEATURE_FUNCS(name, flagname) \ 3834 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 3835 { \ 3836 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 3837 } 3838 3839 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 3840 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 3841 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 3842 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 3843 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 3844 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 3845 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 3846 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 3847 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 3848 F2FS_FEATURE_FUNCS(verity, VERITY); 3849 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 3850 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 3851 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 3852 3853 #ifdef CONFIG_BLK_DEV_ZONED 3854 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 3855 block_t blkaddr) 3856 { 3857 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz; 3858 3859 return test_bit(zno, FDEV(devi).blkz_seq); 3860 } 3861 #endif 3862 3863 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 3864 { 3865 return f2fs_sb_has_blkzoned(sbi); 3866 } 3867 3868 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 3869 { 3870 return blk_queue_discard(bdev_get_queue(bdev)) || 3871 bdev_is_zoned(bdev); 3872 } 3873 3874 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 3875 { 3876 int i; 3877 3878 if (!f2fs_is_multi_device(sbi)) 3879 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 3880 3881 for (i = 0; i < sbi->s_ndevs; i++) 3882 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 3883 return true; 3884 return false; 3885 } 3886 3887 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 3888 { 3889 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 3890 f2fs_hw_should_discard(sbi); 3891 } 3892 3893 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 3894 { 3895 int i; 3896 3897 if (!f2fs_is_multi_device(sbi)) 3898 return bdev_read_only(sbi->sb->s_bdev); 3899 3900 for (i = 0; i < sbi->s_ndevs; i++) 3901 if (bdev_read_only(FDEV(i).bdev)) 3902 return true; 3903 return false; 3904 } 3905 3906 3907 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt) 3908 { 3909 clear_opt(sbi, ADAPTIVE); 3910 clear_opt(sbi, LFS); 3911 3912 switch (mt) { 3913 case F2FS_MOUNT_ADAPTIVE: 3914 set_opt(sbi, ADAPTIVE); 3915 break; 3916 case F2FS_MOUNT_LFS: 3917 set_opt(sbi, LFS); 3918 break; 3919 } 3920 } 3921 3922 static inline bool f2fs_may_encrypt(struct inode *inode) 3923 { 3924 #ifdef CONFIG_FS_ENCRYPTION 3925 umode_t mode = inode->i_mode; 3926 3927 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 3928 #else 3929 return false; 3930 #endif 3931 } 3932 3933 static inline bool f2fs_may_compress(struct inode *inode) 3934 { 3935 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 3936 f2fs_is_atomic_file(inode) || 3937 f2fs_is_volatile_file(inode)) 3938 return false; 3939 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 3940 } 3941 3942 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 3943 u64 blocks, bool add) 3944 { 3945 int diff = F2FS_I(inode)->i_cluster_size - blocks; 3946 3947 if (add) { 3948 F2FS_I(inode)->i_compr_blocks += diff; 3949 stat_add_compr_blocks(inode, diff); 3950 } else { 3951 F2FS_I(inode)->i_compr_blocks -= diff; 3952 stat_sub_compr_blocks(inode, diff); 3953 } 3954 f2fs_mark_inode_dirty_sync(inode, true); 3955 } 3956 3957 static inline int block_unaligned_IO(struct inode *inode, 3958 struct kiocb *iocb, struct iov_iter *iter) 3959 { 3960 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits); 3961 unsigned int blocksize_mask = (1 << i_blkbits) - 1; 3962 loff_t offset = iocb->ki_pos; 3963 unsigned long align = offset | iov_iter_alignment(iter); 3964 3965 return align & blocksize_mask; 3966 } 3967 3968 static inline int allow_outplace_dio(struct inode *inode, 3969 struct kiocb *iocb, struct iov_iter *iter) 3970 { 3971 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3972 int rw = iov_iter_rw(iter); 3973 3974 return (test_opt(sbi, LFS) && (rw == WRITE) && 3975 !block_unaligned_IO(inode, iocb, iter)); 3976 } 3977 3978 static inline bool f2fs_force_buffered_io(struct inode *inode, 3979 struct kiocb *iocb, struct iov_iter *iter) 3980 { 3981 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3982 int rw = iov_iter_rw(iter); 3983 3984 if (f2fs_post_read_required(inode)) 3985 return true; 3986 if (f2fs_is_multi_device(sbi)) 3987 return true; 3988 if (f2fs_compressed_file(inode)) 3989 return true; 3990 /* 3991 * for blkzoned device, fallback direct IO to buffered IO, so 3992 * all IOs can be serialized by log-structured write. 3993 */ 3994 if (f2fs_sb_has_blkzoned(sbi)) 3995 return true; 3996 if (test_opt(sbi, LFS) && (rw == WRITE)) { 3997 if (block_unaligned_IO(inode, iocb, iter)) 3998 return true; 3999 if (F2FS_IO_ALIGNED(sbi)) 4000 return true; 4001 } 4002 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) && 4003 !IS_SWAPFILE(inode)) 4004 return true; 4005 4006 return false; 4007 } 4008 4009 #ifdef CONFIG_F2FS_FAULT_INJECTION 4010 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 4011 unsigned int type); 4012 #else 4013 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0) 4014 #endif 4015 4016 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4017 { 4018 #ifdef CONFIG_QUOTA 4019 if (f2fs_sb_has_quota_ino(sbi)) 4020 return true; 4021 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4022 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4023 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4024 return true; 4025 #endif 4026 return false; 4027 } 4028 4029 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4030 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4031 4032 #endif /* _LINUX_F2FS_H */ 4033