xref: /linux/fs/f2fs/f2fs.h (revision 7a92fc8b4d20680e4c20289a670d8fca2d1f2c1b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR,
64 	FAULT_MAX,
65 };
66 
67 #ifdef CONFIG_F2FS_FAULT_INJECTION
68 #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
69 
70 struct f2fs_fault_info {
71 	atomic_t inject_ops;
72 	unsigned int inject_rate;
73 	unsigned int inject_type;
74 };
75 
76 extern const char *f2fs_fault_name[FAULT_MAX];
77 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
78 #endif
79 
80 /*
81  * For mount options
82  */
83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
84 #define F2FS_MOUNT_DISCARD		0x00000002
85 #define F2FS_MOUNT_NOHEAP		0x00000004
86 #define F2FS_MOUNT_XATTR_USER		0x00000008
87 #define F2FS_MOUNT_POSIX_ACL		0x00000010
88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
89 #define F2FS_MOUNT_INLINE_XATTR		0x00000040
90 #define F2FS_MOUNT_INLINE_DATA		0x00000080
91 #define F2FS_MOUNT_INLINE_DENTRY	0x00000100
92 #define F2FS_MOUNT_FLUSH_MERGE		0x00000200
93 #define F2FS_MOUNT_NOBARRIER		0x00000400
94 #define F2FS_MOUNT_FASTBOOT		0x00000800
95 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
96 #define F2FS_MOUNT_DATA_FLUSH		0x00002000
97 #define F2FS_MOUNT_FAULT_INJECTION	0x00004000
98 #define F2FS_MOUNT_USRQUOTA		0x00008000
99 #define F2FS_MOUNT_GRPQUOTA		0x00010000
100 #define F2FS_MOUNT_PRJQUOTA		0x00020000
101 #define F2FS_MOUNT_QUOTA		0x00040000
102 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
103 #define F2FS_MOUNT_RESERVE_ROOT		0x00100000
104 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
105 #define F2FS_MOUNT_NORECOVERY		0x00400000
106 #define F2FS_MOUNT_ATGC			0x00800000
107 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
108 #define	F2FS_MOUNT_GC_MERGE		0x02000000
109 #define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
110 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
111 
112 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
113 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
114 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
115 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
116 
117 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
118 		typecheck(unsigned long long, b) &&			\
119 		((long long)((a) - (b)) > 0))
120 
121 typedef u32 block_t;	/*
122 			 * should not change u32, since it is the on-disk block
123 			 * address format, __le32.
124 			 */
125 typedef u32 nid_t;
126 
127 #define COMPRESS_EXT_NUM		16
128 
129 /*
130  * An implementation of an rwsem that is explicitly unfair to readers. This
131  * prevents priority inversion when a low-priority reader acquires the read lock
132  * while sleeping on the write lock but the write lock is needed by
133  * higher-priority clients.
134  */
135 
136 struct f2fs_rwsem {
137         struct rw_semaphore internal_rwsem;
138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
139         wait_queue_head_t read_waiters;
140 #endif
141 };
142 
143 struct f2fs_mount_info {
144 	unsigned int opt;
145 	int write_io_size_bits;		/* Write IO size bits */
146 	block_t root_reserved_blocks;	/* root reserved blocks */
147 	kuid_t s_resuid;		/* reserved blocks for uid */
148 	kgid_t s_resgid;		/* reserved blocks for gid */
149 	int active_logs;		/* # of active logs */
150 	int inline_xattr_size;		/* inline xattr size */
151 #ifdef CONFIG_F2FS_FAULT_INJECTION
152 	struct f2fs_fault_info fault_info;	/* For fault injection */
153 #endif
154 #ifdef CONFIG_QUOTA
155 	/* Names of quota files with journalled quota */
156 	char *s_qf_names[MAXQUOTAS];
157 	int s_jquota_fmt;			/* Format of quota to use */
158 #endif
159 	/* For which write hints are passed down to block layer */
160 	int alloc_mode;			/* segment allocation policy */
161 	int fsync_mode;			/* fsync policy */
162 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
163 	int bggc_mode;			/* bggc mode: off, on or sync */
164 	int memory_mode;		/* memory mode */
165 	int errors;			/* errors parameter */
166 	int discard_unit;		/*
167 					 * discard command's offset/size should
168 					 * be aligned to this unit: block,
169 					 * segment or section
170 					 */
171 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
172 	block_t unusable_cap_perc;	/* percentage for cap */
173 	block_t unusable_cap;		/* Amount of space allowed to be
174 					 * unusable when disabling checkpoint
175 					 */
176 
177 	/* For compression */
178 	unsigned char compress_algorithm;	/* algorithm type */
179 	unsigned char compress_log_size;	/* cluster log size */
180 	unsigned char compress_level;		/* compress level */
181 	bool compress_chksum;			/* compressed data chksum */
182 	unsigned char compress_ext_cnt;		/* extension count */
183 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
184 	int compress_mode;			/* compression mode */
185 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
186 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
187 };
188 
189 #define F2FS_FEATURE_ENCRYPT			0x00000001
190 #define F2FS_FEATURE_BLKZONED			0x00000002
191 #define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
192 #define F2FS_FEATURE_EXTRA_ATTR			0x00000008
193 #define F2FS_FEATURE_PRJQUOTA			0x00000010
194 #define F2FS_FEATURE_INODE_CHKSUM		0x00000020
195 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
196 #define F2FS_FEATURE_QUOTA_INO			0x00000080
197 #define F2FS_FEATURE_INODE_CRTIME		0x00000100
198 #define F2FS_FEATURE_LOST_FOUND			0x00000200
199 #define F2FS_FEATURE_VERITY			0x00000400
200 #define F2FS_FEATURE_SB_CHKSUM			0x00000800
201 #define F2FS_FEATURE_CASEFOLD			0x00001000
202 #define F2FS_FEATURE_COMPRESSION		0x00002000
203 #define F2FS_FEATURE_RO				0x00004000
204 
205 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
206 	((raw_super->feature & cpu_to_le32(mask)) != 0)
207 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
208 
209 /*
210  * Default values for user and/or group using reserved blocks
211  */
212 #define	F2FS_DEF_RESUID		0
213 #define	F2FS_DEF_RESGID		0
214 
215 /*
216  * For checkpoint manager
217  */
218 enum {
219 	NAT_BITMAP,
220 	SIT_BITMAP
221 };
222 
223 #define	CP_UMOUNT	0x00000001
224 #define	CP_FASTBOOT	0x00000002
225 #define	CP_SYNC		0x00000004
226 #define	CP_RECOVERY	0x00000008
227 #define	CP_DISCARD	0x00000010
228 #define CP_TRIMMED	0x00000020
229 #define CP_PAUSE	0x00000040
230 #define CP_RESIZE 	0x00000080
231 
232 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
233 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
234 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
235 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
236 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
237 #define DEF_CP_INTERVAL			60	/* 60 secs */
238 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
239 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
240 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
241 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
242 
243 struct cp_control {
244 	int reason;
245 	__u64 trim_start;
246 	__u64 trim_end;
247 	__u64 trim_minlen;
248 };
249 
250 /*
251  * indicate meta/data type
252  */
253 enum {
254 	META_CP,
255 	META_NAT,
256 	META_SIT,
257 	META_SSA,
258 	META_MAX,
259 	META_POR,
260 	DATA_GENERIC,		/* check range only */
261 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
262 	DATA_GENERIC_ENHANCE_READ,	/*
263 					 * strong check on range and segment
264 					 * bitmap but no warning due to race
265 					 * condition of read on truncated area
266 					 * by extent_cache
267 					 */
268 	DATA_GENERIC_ENHANCE_UPDATE,	/*
269 					 * strong check on range and segment
270 					 * bitmap for update case
271 					 */
272 	META_GENERIC,
273 };
274 
275 /* for the list of ino */
276 enum {
277 	ORPHAN_INO,		/* for orphan ino list */
278 	APPEND_INO,		/* for append ino list */
279 	UPDATE_INO,		/* for update ino list */
280 	TRANS_DIR_INO,		/* for transactions dir ino list */
281 	FLUSH_INO,		/* for multiple device flushing */
282 	MAX_INO_ENTRY,		/* max. list */
283 };
284 
285 struct ino_entry {
286 	struct list_head list;		/* list head */
287 	nid_t ino;			/* inode number */
288 	unsigned int dirty_device;	/* dirty device bitmap */
289 };
290 
291 /* for the list of inodes to be GCed */
292 struct inode_entry {
293 	struct list_head list;	/* list head */
294 	struct inode *inode;	/* vfs inode pointer */
295 };
296 
297 struct fsync_node_entry {
298 	struct list_head list;	/* list head */
299 	struct page *page;	/* warm node page pointer */
300 	unsigned int seq_id;	/* sequence id */
301 };
302 
303 struct ckpt_req {
304 	struct completion wait;		/* completion for checkpoint done */
305 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
306 	int ret;			/* return code of checkpoint */
307 	ktime_t queue_time;		/* request queued time */
308 };
309 
310 struct ckpt_req_control {
311 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
312 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
313 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
314 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
315 	atomic_t total_ckpt;		/* # of total ckpts */
316 	atomic_t queued_ckpt;		/* # of queued ckpts */
317 	struct llist_head issue_list;	/* list for command issue */
318 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
319 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
320 	unsigned int peak_time;		/* peak wait time in msec until now */
321 };
322 
323 /* for the bitmap indicate blocks to be discarded */
324 struct discard_entry {
325 	struct list_head list;	/* list head */
326 	block_t start_blkaddr;	/* start blockaddr of current segment */
327 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
328 };
329 
330 /* minimum discard granularity, unit: block count */
331 #define MIN_DISCARD_GRANULARITY		1
332 /* default discard granularity of inner discard thread, unit: block count */
333 #define DEFAULT_DISCARD_GRANULARITY		16
334 /* default maximum discard granularity of ordered discard, unit: block count */
335 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
336 
337 /* max discard pend list number */
338 #define MAX_PLIST_NUM		512
339 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
340 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
341 
342 enum {
343 	D_PREP,			/* initial */
344 	D_PARTIAL,		/* partially submitted */
345 	D_SUBMIT,		/* all submitted */
346 	D_DONE,			/* finished */
347 };
348 
349 struct discard_info {
350 	block_t lstart;			/* logical start address */
351 	block_t len;			/* length */
352 	block_t start;			/* actual start address in dev */
353 };
354 
355 struct discard_cmd {
356 	struct rb_node rb_node;		/* rb node located in rb-tree */
357 	struct discard_info di;		/* discard info */
358 	struct list_head list;		/* command list */
359 	struct completion wait;		/* compleation */
360 	struct block_device *bdev;	/* bdev */
361 	unsigned short ref;		/* reference count */
362 	unsigned char state;		/* state */
363 	unsigned char queued;		/* queued discard */
364 	int error;			/* bio error */
365 	spinlock_t lock;		/* for state/bio_ref updating */
366 	unsigned short bio_ref;		/* bio reference count */
367 };
368 
369 enum {
370 	DPOLICY_BG,
371 	DPOLICY_FORCE,
372 	DPOLICY_FSTRIM,
373 	DPOLICY_UMOUNT,
374 	MAX_DPOLICY,
375 };
376 
377 struct discard_policy {
378 	int type;			/* type of discard */
379 	unsigned int min_interval;	/* used for candidates exist */
380 	unsigned int mid_interval;	/* used for device busy */
381 	unsigned int max_interval;	/* used for candidates not exist */
382 	unsigned int max_requests;	/* # of discards issued per round */
383 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
384 	bool io_aware;			/* issue discard in idle time */
385 	bool sync;			/* submit discard with REQ_SYNC flag */
386 	bool ordered;			/* issue discard by lba order */
387 	bool timeout;			/* discard timeout for put_super */
388 	unsigned int granularity;	/* discard granularity */
389 };
390 
391 struct discard_cmd_control {
392 	struct task_struct *f2fs_issue_discard;	/* discard thread */
393 	struct list_head entry_list;		/* 4KB discard entry list */
394 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
395 	struct list_head wait_list;		/* store on-flushing entries */
396 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
397 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
398 	struct mutex cmd_lock;
399 	unsigned int nr_discards;		/* # of discards in the list */
400 	unsigned int max_discards;		/* max. discards to be issued */
401 	unsigned int max_discard_request;	/* max. discard request per round */
402 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
403 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
404 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
405 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
406 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
407 	unsigned int discard_granularity;	/* discard granularity */
408 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
409 	unsigned int undiscard_blks;		/* # of undiscard blocks */
410 	unsigned int next_pos;			/* next discard position */
411 	atomic_t issued_discard;		/* # of issued discard */
412 	atomic_t queued_discard;		/* # of queued discard */
413 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
414 	struct rb_root_cached root;		/* root of discard rb-tree */
415 	bool rbtree_check;			/* config for consistence check */
416 	bool discard_wake;			/* to wake up discard thread */
417 };
418 
419 /* for the list of fsync inodes, used only during recovery */
420 struct fsync_inode_entry {
421 	struct list_head list;	/* list head */
422 	struct inode *inode;	/* vfs inode pointer */
423 	block_t blkaddr;	/* block address locating the last fsync */
424 	block_t last_dentry;	/* block address locating the last dentry */
425 };
426 
427 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
428 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
429 
430 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
431 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
432 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
433 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
434 
435 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
436 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
437 
438 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
439 {
440 	int before = nats_in_cursum(journal);
441 
442 	journal->n_nats = cpu_to_le16(before + i);
443 	return before;
444 }
445 
446 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
447 {
448 	int before = sits_in_cursum(journal);
449 
450 	journal->n_sits = cpu_to_le16(before + i);
451 	return before;
452 }
453 
454 static inline bool __has_cursum_space(struct f2fs_journal *journal,
455 							int size, int type)
456 {
457 	if (type == NAT_JOURNAL)
458 		return size <= MAX_NAT_JENTRIES(journal);
459 	return size <= MAX_SIT_JENTRIES(journal);
460 }
461 
462 /* for inline stuff */
463 #define DEF_INLINE_RESERVED_SIZE	1
464 static inline int get_extra_isize(struct inode *inode);
465 static inline int get_inline_xattr_addrs(struct inode *inode);
466 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
467 				(CUR_ADDRS_PER_INODE(inode) -		\
468 				get_inline_xattr_addrs(inode) -	\
469 				DEF_INLINE_RESERVED_SIZE))
470 
471 /* for inline dir */
472 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
473 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
474 				BITS_PER_BYTE + 1))
475 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
476 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
477 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
478 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
479 				NR_INLINE_DENTRY(inode) + \
480 				INLINE_DENTRY_BITMAP_SIZE(inode)))
481 
482 /*
483  * For INODE and NODE manager
484  */
485 /* for directory operations */
486 
487 struct f2fs_filename {
488 	/*
489 	 * The filename the user specified.  This is NULL for some
490 	 * filesystem-internal operations, e.g. converting an inline directory
491 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
492 	 */
493 	const struct qstr *usr_fname;
494 
495 	/*
496 	 * The on-disk filename.  For encrypted directories, this is encrypted.
497 	 * This may be NULL for lookups in an encrypted dir without the key.
498 	 */
499 	struct fscrypt_str disk_name;
500 
501 	/* The dirhash of this filename */
502 	f2fs_hash_t hash;
503 
504 #ifdef CONFIG_FS_ENCRYPTION
505 	/*
506 	 * For lookups in encrypted directories: either the buffer backing
507 	 * disk_name, or a buffer that holds the decoded no-key name.
508 	 */
509 	struct fscrypt_str crypto_buf;
510 #endif
511 #if IS_ENABLED(CONFIG_UNICODE)
512 	/*
513 	 * For casefolded directories: the casefolded name, but it's left NULL
514 	 * if the original name is not valid Unicode, if the original name is
515 	 * "." or "..", if the directory is both casefolded and encrypted and
516 	 * its encryption key is unavailable, or if the filesystem is doing an
517 	 * internal operation where usr_fname is also NULL.  In all these cases
518 	 * we fall back to treating the name as an opaque byte sequence.
519 	 */
520 	struct fscrypt_str cf_name;
521 #endif
522 };
523 
524 struct f2fs_dentry_ptr {
525 	struct inode *inode;
526 	void *bitmap;
527 	struct f2fs_dir_entry *dentry;
528 	__u8 (*filename)[F2FS_SLOT_LEN];
529 	int max;
530 	int nr_bitmap;
531 };
532 
533 static inline void make_dentry_ptr_block(struct inode *inode,
534 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
535 {
536 	d->inode = inode;
537 	d->max = NR_DENTRY_IN_BLOCK;
538 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
539 	d->bitmap = t->dentry_bitmap;
540 	d->dentry = t->dentry;
541 	d->filename = t->filename;
542 }
543 
544 static inline void make_dentry_ptr_inline(struct inode *inode,
545 					struct f2fs_dentry_ptr *d, void *t)
546 {
547 	int entry_cnt = NR_INLINE_DENTRY(inode);
548 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
549 	int reserved_size = INLINE_RESERVED_SIZE(inode);
550 
551 	d->inode = inode;
552 	d->max = entry_cnt;
553 	d->nr_bitmap = bitmap_size;
554 	d->bitmap = t;
555 	d->dentry = t + bitmap_size + reserved_size;
556 	d->filename = t + bitmap_size + reserved_size +
557 					SIZE_OF_DIR_ENTRY * entry_cnt;
558 }
559 
560 /*
561  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
562  * as its node offset to distinguish from index node blocks.
563  * But some bits are used to mark the node block.
564  */
565 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
566 				>> OFFSET_BIT_SHIFT)
567 enum {
568 	ALLOC_NODE,			/* allocate a new node page if needed */
569 	LOOKUP_NODE,			/* look up a node without readahead */
570 	LOOKUP_NODE_RA,			/*
571 					 * look up a node with readahead called
572 					 * by get_data_block.
573 					 */
574 };
575 
576 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
577 
578 /* congestion wait timeout value, default: 20ms */
579 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
580 
581 /* maximum retry quota flush count */
582 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
583 
584 /* maximum retry of EIO'ed page */
585 #define MAX_RETRY_PAGE_EIO			100
586 
587 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
588 
589 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
590 
591 /* dirty segments threshold for triggering CP */
592 #define DEFAULT_DIRTY_THRESHOLD		4
593 
594 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
595 #define RECOVERY_MIN_RA_BLOCKS		1
596 
597 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
598 
599 /* for in-memory extent cache entry */
600 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
601 
602 /* number of extent info in extent cache we try to shrink */
603 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
604 
605 /* number of age extent info in extent cache we try to shrink */
606 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
607 #define LAST_AGE_WEIGHT			30
608 #define SAME_AGE_REGION			1024
609 
610 /*
611  * Define data block with age less than 1GB as hot data
612  * define data block with age less than 10GB but more than 1GB as warm data
613  */
614 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
615 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
616 
617 /* extent cache type */
618 enum extent_type {
619 	EX_READ,
620 	EX_BLOCK_AGE,
621 	NR_EXTENT_CACHES,
622 };
623 
624 struct extent_info {
625 	unsigned int fofs;		/* start offset in a file */
626 	unsigned int len;		/* length of the extent */
627 	union {
628 		/* read extent_cache */
629 		struct {
630 			/* start block address of the extent */
631 			block_t blk;
632 #ifdef CONFIG_F2FS_FS_COMPRESSION
633 			/* physical extent length of compressed blocks */
634 			unsigned int c_len;
635 #endif
636 		};
637 		/* block age extent_cache */
638 		struct {
639 			/* block age of the extent */
640 			unsigned long long age;
641 			/* last total blocks allocated */
642 			unsigned long long last_blocks;
643 		};
644 	};
645 };
646 
647 struct extent_node {
648 	struct rb_node rb_node;		/* rb node located in rb-tree */
649 	struct extent_info ei;		/* extent info */
650 	struct list_head list;		/* node in global extent list of sbi */
651 	struct extent_tree *et;		/* extent tree pointer */
652 };
653 
654 struct extent_tree {
655 	nid_t ino;			/* inode number */
656 	enum extent_type type;		/* keep the extent tree type */
657 	struct rb_root_cached root;	/* root of extent info rb-tree */
658 	struct extent_node *cached_en;	/* recently accessed extent node */
659 	struct list_head list;		/* to be used by sbi->zombie_list */
660 	rwlock_t lock;			/* protect extent info rb-tree */
661 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
662 	bool largest_updated;		/* largest extent updated */
663 	struct extent_info largest;	/* largest cached extent for EX_READ */
664 };
665 
666 struct extent_tree_info {
667 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
668 	struct mutex extent_tree_lock;	/* locking extent radix tree */
669 	struct list_head extent_list;		/* lru list for shrinker */
670 	spinlock_t extent_lock;			/* locking extent lru list */
671 	atomic_t total_ext_tree;		/* extent tree count */
672 	struct list_head zombie_list;		/* extent zombie tree list */
673 	atomic_t total_zombie_tree;		/* extent zombie tree count */
674 	atomic_t total_ext_node;		/* extent info count */
675 };
676 
677 /*
678  * State of block returned by f2fs_map_blocks.
679  */
680 #define F2FS_MAP_NEW		(1U << 0)
681 #define F2FS_MAP_MAPPED		(1U << 1)
682 #define F2FS_MAP_DELALLOC	(1U << 2)
683 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
684 				F2FS_MAP_DELALLOC)
685 
686 struct f2fs_map_blocks {
687 	struct block_device *m_bdev;	/* for multi-device dio */
688 	block_t m_pblk;
689 	block_t m_lblk;
690 	unsigned int m_len;
691 	unsigned int m_flags;
692 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
693 	pgoff_t *m_next_extent;		/* point to next possible extent */
694 	int m_seg_type;
695 	bool m_may_create;		/* indicate it is from write path */
696 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
697 };
698 
699 /* for flag in get_data_block */
700 enum {
701 	F2FS_GET_BLOCK_DEFAULT,
702 	F2FS_GET_BLOCK_FIEMAP,
703 	F2FS_GET_BLOCK_BMAP,
704 	F2FS_GET_BLOCK_DIO,
705 	F2FS_GET_BLOCK_PRE_DIO,
706 	F2FS_GET_BLOCK_PRE_AIO,
707 	F2FS_GET_BLOCK_PRECACHE,
708 };
709 
710 /*
711  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
712  */
713 #define FADVISE_COLD_BIT	0x01
714 #define FADVISE_LOST_PINO_BIT	0x02
715 #define FADVISE_ENCRYPT_BIT	0x04
716 #define FADVISE_ENC_NAME_BIT	0x08
717 #define FADVISE_KEEP_SIZE_BIT	0x10
718 #define FADVISE_HOT_BIT		0x20
719 #define FADVISE_VERITY_BIT	0x40
720 #define FADVISE_TRUNC_BIT	0x80
721 
722 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
723 
724 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
725 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
726 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
727 
728 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
729 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
730 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
731 
732 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
733 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
734 
735 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
736 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
737 
738 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
739 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
740 
741 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
742 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
743 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
744 
745 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
746 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
747 
748 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
749 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
750 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
751 
752 #define DEF_DIR_LEVEL		0
753 
754 enum {
755 	GC_FAILURE_PIN,
756 	MAX_GC_FAILURE
757 };
758 
759 /* used for f2fs_inode_info->flags */
760 enum {
761 	FI_NEW_INODE,		/* indicate newly allocated inode */
762 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
763 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
764 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
765 	FI_INC_LINK,		/* need to increment i_nlink */
766 	FI_ACL_MODE,		/* indicate acl mode */
767 	FI_NO_ALLOC,		/* should not allocate any blocks */
768 	FI_FREE_NID,		/* free allocated nide */
769 	FI_NO_EXTENT,		/* not to use the extent cache */
770 	FI_INLINE_XATTR,	/* used for inline xattr */
771 	FI_INLINE_DATA,		/* used for inline data*/
772 	FI_INLINE_DENTRY,	/* used for inline dentry */
773 	FI_APPEND_WRITE,	/* inode has appended data */
774 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
775 	FI_NEED_IPU,		/* used for ipu per file */
776 	FI_ATOMIC_FILE,		/* indicate atomic file */
777 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
778 	FI_DROP_CACHE,		/* drop dirty page cache */
779 	FI_DATA_EXIST,		/* indicate data exists */
780 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
781 	FI_SKIP_WRITES,		/* should skip data page writeback */
782 	FI_OPU_WRITE,		/* used for opu per file */
783 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
784 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
785 	FI_HOT_DATA,		/* indicate file is hot */
786 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
787 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
788 	FI_PIN_FILE,		/* indicate file should not be gced */
789 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
790 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
791 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
792 	FI_MMAP_FILE,		/* indicate file was mmapped */
793 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
794 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
795 	FI_ALIGNED_WRITE,	/* enable aligned write */
796 	FI_COW_FILE,		/* indicate COW file */
797 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
798 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
799 	FI_MAX,			/* max flag, never be used */
800 };
801 
802 struct f2fs_inode_info {
803 	struct inode vfs_inode;		/* serve a vfs inode */
804 	unsigned long i_flags;		/* keep an inode flags for ioctl */
805 	unsigned char i_advise;		/* use to give file attribute hints */
806 	unsigned char i_dir_level;	/* use for dentry level for large dir */
807 	unsigned int i_current_depth;	/* only for directory depth */
808 	/* for gc failure statistic */
809 	unsigned int i_gc_failures[MAX_GC_FAILURE];
810 	unsigned int i_pino;		/* parent inode number */
811 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
812 
813 	/* Use below internally in f2fs*/
814 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
815 	struct f2fs_rwsem i_sem;	/* protect fi info */
816 	atomic_t dirty_pages;		/* # of dirty pages */
817 	f2fs_hash_t chash;		/* hash value of given file name */
818 	unsigned int clevel;		/* maximum level of given file name */
819 	struct task_struct *task;	/* lookup and create consistency */
820 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
821 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
822 	nid_t i_xattr_nid;		/* node id that contains xattrs */
823 	loff_t	last_disk_size;		/* lastly written file size */
824 	spinlock_t i_size_lock;		/* protect last_disk_size */
825 
826 #ifdef CONFIG_QUOTA
827 	struct dquot *i_dquot[MAXQUOTAS];
828 
829 	/* quota space reservation, managed internally by quota code */
830 	qsize_t i_reserved_quota;
831 #endif
832 	struct list_head dirty_list;	/* dirty list for dirs and files */
833 	struct list_head gdirty_list;	/* linked in global dirty list */
834 	struct task_struct *atomic_write_task;	/* store atomic write task */
835 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
836 					/* cached extent_tree entry */
837 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
838 
839 	/* avoid racing between foreground op and gc */
840 	struct f2fs_rwsem i_gc_rwsem[2];
841 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
842 
843 	int i_extra_isize;		/* size of extra space located in i_addr */
844 	kprojid_t i_projid;		/* id for project quota */
845 	int i_inline_xattr_size;	/* inline xattr size */
846 	struct timespec64 i_crtime;	/* inode creation time */
847 	struct timespec64 i_disk_time[3];/* inode disk times */
848 
849 	/* for file compress */
850 	atomic_t i_compr_blocks;		/* # of compressed blocks */
851 	unsigned char i_compress_algorithm;	/* algorithm type */
852 	unsigned char i_log_cluster_size;	/* log of cluster size */
853 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
854 	unsigned char i_compress_flag;		/* compress flag */
855 	unsigned int i_cluster_size;		/* cluster size */
856 
857 	unsigned int atomic_write_cnt;
858 	loff_t original_i_size;		/* original i_size before atomic write */
859 };
860 
861 static inline void get_read_extent_info(struct extent_info *ext,
862 					struct f2fs_extent *i_ext)
863 {
864 	ext->fofs = le32_to_cpu(i_ext->fofs);
865 	ext->blk = le32_to_cpu(i_ext->blk);
866 	ext->len = le32_to_cpu(i_ext->len);
867 }
868 
869 static inline void set_raw_read_extent(struct extent_info *ext,
870 					struct f2fs_extent *i_ext)
871 {
872 	i_ext->fofs = cpu_to_le32(ext->fofs);
873 	i_ext->blk = cpu_to_le32(ext->blk);
874 	i_ext->len = cpu_to_le32(ext->len);
875 }
876 
877 static inline bool __is_discard_mergeable(struct discard_info *back,
878 			struct discard_info *front, unsigned int max_len)
879 {
880 	return (back->lstart + back->len == front->lstart) &&
881 		(back->len + front->len <= max_len);
882 }
883 
884 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
885 			struct discard_info *back, unsigned int max_len)
886 {
887 	return __is_discard_mergeable(back, cur, max_len);
888 }
889 
890 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
891 			struct discard_info *front, unsigned int max_len)
892 {
893 	return __is_discard_mergeable(cur, front, max_len);
894 }
895 
896 /*
897  * For free nid management
898  */
899 enum nid_state {
900 	FREE_NID,		/* newly added to free nid list */
901 	PREALLOC_NID,		/* it is preallocated */
902 	MAX_NID_STATE,
903 };
904 
905 enum nat_state {
906 	TOTAL_NAT,
907 	DIRTY_NAT,
908 	RECLAIMABLE_NAT,
909 	MAX_NAT_STATE,
910 };
911 
912 struct f2fs_nm_info {
913 	block_t nat_blkaddr;		/* base disk address of NAT */
914 	nid_t max_nid;			/* maximum possible node ids */
915 	nid_t available_nids;		/* # of available node ids */
916 	nid_t next_scan_nid;		/* the next nid to be scanned */
917 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
918 	unsigned int ram_thresh;	/* control the memory footprint */
919 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
920 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
921 
922 	/* NAT cache management */
923 	struct radix_tree_root nat_root;/* root of the nat entry cache */
924 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
925 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
926 	struct list_head nat_entries;	/* cached nat entry list (clean) */
927 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
928 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
929 	unsigned int nat_blocks;	/* # of nat blocks */
930 
931 	/* free node ids management */
932 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
933 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
934 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
935 	spinlock_t nid_list_lock;	/* protect nid lists ops */
936 	struct mutex build_lock;	/* lock for build free nids */
937 	unsigned char **free_nid_bitmap;
938 	unsigned char *nat_block_bitmap;
939 	unsigned short *free_nid_count;	/* free nid count of NAT block */
940 
941 	/* for checkpoint */
942 	char *nat_bitmap;		/* NAT bitmap pointer */
943 
944 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
945 	unsigned char *nat_bits;	/* NAT bits blocks */
946 	unsigned char *full_nat_bits;	/* full NAT pages */
947 	unsigned char *empty_nat_bits;	/* empty NAT pages */
948 #ifdef CONFIG_F2FS_CHECK_FS
949 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
950 #endif
951 	int bitmap_size;		/* bitmap size */
952 };
953 
954 /*
955  * this structure is used as one of function parameters.
956  * all the information are dedicated to a given direct node block determined
957  * by the data offset in a file.
958  */
959 struct dnode_of_data {
960 	struct inode *inode;		/* vfs inode pointer */
961 	struct page *inode_page;	/* its inode page, NULL is possible */
962 	struct page *node_page;		/* cached direct node page */
963 	nid_t nid;			/* node id of the direct node block */
964 	unsigned int ofs_in_node;	/* data offset in the node page */
965 	bool inode_page_locked;		/* inode page is locked or not */
966 	bool node_changed;		/* is node block changed */
967 	char cur_level;			/* level of hole node page */
968 	char max_level;			/* level of current page located */
969 	block_t	data_blkaddr;		/* block address of the node block */
970 };
971 
972 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
973 		struct page *ipage, struct page *npage, nid_t nid)
974 {
975 	memset(dn, 0, sizeof(*dn));
976 	dn->inode = inode;
977 	dn->inode_page = ipage;
978 	dn->node_page = npage;
979 	dn->nid = nid;
980 }
981 
982 /*
983  * For SIT manager
984  *
985  * By default, there are 6 active log areas across the whole main area.
986  * When considering hot and cold data separation to reduce cleaning overhead,
987  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
988  * respectively.
989  * In the current design, you should not change the numbers intentionally.
990  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
991  * logs individually according to the underlying devices. (default: 6)
992  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
993  * data and 8 for node logs.
994  */
995 #define	NR_CURSEG_DATA_TYPE	(3)
996 #define NR_CURSEG_NODE_TYPE	(3)
997 #define NR_CURSEG_INMEM_TYPE	(2)
998 #define NR_CURSEG_RO_TYPE	(2)
999 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1000 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1001 
1002 enum {
1003 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1004 	CURSEG_WARM_DATA,	/* data blocks */
1005 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1006 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1007 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1008 	CURSEG_COLD_NODE,	/* indirect node blocks */
1009 	NR_PERSISTENT_LOG,	/* number of persistent log */
1010 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1011 				/* pinned file that needs consecutive block address */
1012 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1013 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1014 };
1015 
1016 struct flush_cmd {
1017 	struct completion wait;
1018 	struct llist_node llnode;
1019 	nid_t ino;
1020 	int ret;
1021 };
1022 
1023 struct flush_cmd_control {
1024 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1025 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1026 	atomic_t issued_flush;			/* # of issued flushes */
1027 	atomic_t queued_flush;			/* # of queued flushes */
1028 	struct llist_head issue_list;		/* list for command issue */
1029 	struct llist_node *dispatch_list;	/* list for command dispatch */
1030 };
1031 
1032 struct f2fs_sm_info {
1033 	struct sit_info *sit_info;		/* whole segment information */
1034 	struct free_segmap_info *free_info;	/* free segment information */
1035 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1036 	struct curseg_info *curseg_array;	/* active segment information */
1037 
1038 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1039 
1040 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1041 	block_t main_blkaddr;		/* start block address of main area */
1042 	block_t ssa_blkaddr;		/* start block address of SSA area */
1043 
1044 	unsigned int segment_count;	/* total # of segments */
1045 	unsigned int main_segments;	/* # of segments in main area */
1046 	unsigned int reserved_segments;	/* # of reserved segments */
1047 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1048 	unsigned int ovp_segments;	/* # of overprovision segments */
1049 
1050 	/* a threshold to reclaim prefree segments */
1051 	unsigned int rec_prefree_segments;
1052 
1053 	struct list_head sit_entry_set;	/* sit entry set list */
1054 
1055 	unsigned int ipu_policy;	/* in-place-update policy */
1056 	unsigned int min_ipu_util;	/* in-place-update threshold */
1057 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1058 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1059 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1060 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1061 
1062 	/* for flush command control */
1063 	struct flush_cmd_control *fcc_info;
1064 
1065 	/* for discard command control */
1066 	struct discard_cmd_control *dcc_info;
1067 };
1068 
1069 /*
1070  * For superblock
1071  */
1072 /*
1073  * COUNT_TYPE for monitoring
1074  *
1075  * f2fs monitors the number of several block types such as on-writeback,
1076  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1077  */
1078 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1079 enum count_type {
1080 	F2FS_DIRTY_DENTS,
1081 	F2FS_DIRTY_DATA,
1082 	F2FS_DIRTY_QDATA,
1083 	F2FS_DIRTY_NODES,
1084 	F2FS_DIRTY_META,
1085 	F2FS_DIRTY_IMETA,
1086 	F2FS_WB_CP_DATA,
1087 	F2FS_WB_DATA,
1088 	F2FS_RD_DATA,
1089 	F2FS_RD_NODE,
1090 	F2FS_RD_META,
1091 	F2FS_DIO_WRITE,
1092 	F2FS_DIO_READ,
1093 	NR_COUNT_TYPE,
1094 };
1095 
1096 /*
1097  * The below are the page types of bios used in submit_bio().
1098  * The available types are:
1099  * DATA			User data pages. It operates as async mode.
1100  * NODE			Node pages. It operates as async mode.
1101  * META			FS metadata pages such as SIT, NAT, CP.
1102  * NR_PAGE_TYPE		The number of page types.
1103  * META_FLUSH		Make sure the previous pages are written
1104  *			with waiting the bio's completion
1105  * ...			Only can be used with META.
1106  */
1107 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1108 enum page_type {
1109 	DATA = 0,
1110 	NODE = 1,	/* should not change this */
1111 	META,
1112 	NR_PAGE_TYPE,
1113 	META_FLUSH,
1114 	IPU,		/* the below types are used by tracepoints only. */
1115 	OPU,
1116 };
1117 
1118 enum temp_type {
1119 	HOT = 0,	/* must be zero for meta bio */
1120 	WARM,
1121 	COLD,
1122 	NR_TEMP_TYPE,
1123 };
1124 
1125 enum need_lock_type {
1126 	LOCK_REQ = 0,
1127 	LOCK_DONE,
1128 	LOCK_RETRY,
1129 };
1130 
1131 enum cp_reason_type {
1132 	CP_NO_NEEDED,
1133 	CP_NON_REGULAR,
1134 	CP_COMPRESSED,
1135 	CP_HARDLINK,
1136 	CP_SB_NEED_CP,
1137 	CP_WRONG_PINO,
1138 	CP_NO_SPC_ROLL,
1139 	CP_NODE_NEED_CP,
1140 	CP_FASTBOOT_MODE,
1141 	CP_SPEC_LOG_NUM,
1142 	CP_RECOVER_DIR,
1143 };
1144 
1145 enum iostat_type {
1146 	/* WRITE IO */
1147 	APP_DIRECT_IO,			/* app direct write IOs */
1148 	APP_BUFFERED_IO,		/* app buffered write IOs */
1149 	APP_WRITE_IO,			/* app write IOs */
1150 	APP_MAPPED_IO,			/* app mapped IOs */
1151 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1152 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1153 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1154 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1155 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1156 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1157 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1158 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1159 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1160 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1161 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1162 
1163 	/* READ IO */
1164 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1165 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1166 	APP_READ_IO,			/* app read IOs */
1167 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1168 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1169 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1170 	FS_DATA_READ_IO,		/* data read IOs */
1171 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1172 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1173 	FS_NODE_READ_IO,		/* node read IOs */
1174 	FS_META_READ_IO,		/* meta read IOs */
1175 
1176 	/* other */
1177 	FS_DISCARD_IO,			/* discard */
1178 	FS_FLUSH_IO,			/* flush */
1179 	FS_ZONE_RESET_IO,		/* zone reset */
1180 	NR_IO_TYPE,
1181 };
1182 
1183 struct f2fs_io_info {
1184 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1185 	nid_t ino;		/* inode number */
1186 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1187 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1188 	enum req_op op;		/* contains REQ_OP_ */
1189 	blk_opf_t op_flags;	/* req_flag_bits */
1190 	block_t new_blkaddr;	/* new block address to be written */
1191 	block_t old_blkaddr;	/* old block address before Cow */
1192 	struct page *page;	/* page to be written */
1193 	struct page *encrypted_page;	/* encrypted page */
1194 	struct page *compressed_page;	/* compressed page */
1195 	struct list_head list;		/* serialize IOs */
1196 	unsigned int compr_blocks;	/* # of compressed block addresses */
1197 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1198 	unsigned int version:8;		/* version of the node */
1199 	unsigned int submitted:1;	/* indicate IO submission */
1200 	unsigned int in_list:1;		/* indicate fio is in io_list */
1201 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1202 	unsigned int retry:1;		/* need to reallocate block address */
1203 	unsigned int encrypted:1;	/* indicate file is encrypted */
1204 	unsigned int post_read:1;	/* require post read */
1205 	enum iostat_type io_type;	/* io type */
1206 	struct writeback_control *io_wbc; /* writeback control */
1207 	struct bio **bio;		/* bio for ipu */
1208 	sector_t *last_block;		/* last block number in bio */
1209 };
1210 
1211 struct bio_entry {
1212 	struct bio *bio;
1213 	struct list_head list;
1214 };
1215 
1216 #define is_read_io(rw) ((rw) == READ)
1217 struct f2fs_bio_info {
1218 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1219 	struct bio *bio;		/* bios to merge */
1220 	sector_t last_block_in_bio;	/* last block number */
1221 	struct f2fs_io_info fio;	/* store buffered io info. */
1222 #ifdef CONFIG_BLK_DEV_ZONED
1223 	struct completion zone_wait;	/* condition value for the previous open zone to close */
1224 	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1225 	void *bi_private;		/* previous bi_private for pending bio */
1226 #endif
1227 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1228 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1229 	struct list_head io_list;	/* track fios */
1230 	struct list_head bio_list;	/* bio entry list head */
1231 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1232 };
1233 
1234 #define FDEV(i)				(sbi->devs[i])
1235 #define RDEV(i)				(raw_super->devs[i])
1236 struct f2fs_dev_info {
1237 	struct bdev_handle *bdev_handle;
1238 	struct block_device *bdev;
1239 	char path[MAX_PATH_LEN];
1240 	unsigned int total_segments;
1241 	block_t start_blk;
1242 	block_t end_blk;
1243 #ifdef CONFIG_BLK_DEV_ZONED
1244 	unsigned int nr_blkz;		/* Total number of zones */
1245 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1246 #endif
1247 };
1248 
1249 enum inode_type {
1250 	DIR_INODE,			/* for dirty dir inode */
1251 	FILE_INODE,			/* for dirty regular/symlink inode */
1252 	DIRTY_META,			/* for all dirtied inode metadata */
1253 	NR_INODE_TYPE,
1254 };
1255 
1256 /* for inner inode cache management */
1257 struct inode_management {
1258 	struct radix_tree_root ino_root;	/* ino entry array */
1259 	spinlock_t ino_lock;			/* for ino entry lock */
1260 	struct list_head ino_list;		/* inode list head */
1261 	unsigned long ino_num;			/* number of entries */
1262 };
1263 
1264 /* for GC_AT */
1265 struct atgc_management {
1266 	bool atgc_enabled;			/* ATGC is enabled or not */
1267 	struct rb_root_cached root;		/* root of victim rb-tree */
1268 	struct list_head victim_list;		/* linked with all victim entries */
1269 	unsigned int victim_count;		/* victim count in rb-tree */
1270 	unsigned int candidate_ratio;		/* candidate ratio */
1271 	unsigned int max_candidate_count;	/* max candidate count */
1272 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1273 	unsigned long long age_threshold;	/* age threshold */
1274 };
1275 
1276 struct f2fs_gc_control {
1277 	unsigned int victim_segno;	/* target victim segment number */
1278 	int init_gc_type;		/* FG_GC or BG_GC */
1279 	bool no_bg_gc;			/* check the space and stop bg_gc */
1280 	bool should_migrate_blocks;	/* should migrate blocks */
1281 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1282 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1283 };
1284 
1285 /*
1286  * For s_flag in struct f2fs_sb_info
1287  * Modification on enum should be synchronized with s_flag array
1288  */
1289 enum {
1290 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1291 	SBI_IS_CLOSE,				/* specify unmounting */
1292 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1293 	SBI_POR_DOING,				/* recovery is doing or not */
1294 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1295 	SBI_NEED_CP,				/* need to checkpoint */
1296 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1297 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1298 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1299 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1300 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1301 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1302 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1303 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1304 	SBI_IS_FREEZING,			/* freezefs is in process */
1305 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1306 	MAX_SBI_FLAG,
1307 };
1308 
1309 enum {
1310 	CP_TIME,
1311 	REQ_TIME,
1312 	DISCARD_TIME,
1313 	GC_TIME,
1314 	DISABLE_TIME,
1315 	UMOUNT_DISCARD_TIMEOUT,
1316 	MAX_TIME,
1317 };
1318 
1319 /* Note that you need to keep synchronization with this gc_mode_names array */
1320 enum {
1321 	GC_NORMAL,
1322 	GC_IDLE_CB,
1323 	GC_IDLE_GREEDY,
1324 	GC_IDLE_AT,
1325 	GC_URGENT_HIGH,
1326 	GC_URGENT_LOW,
1327 	GC_URGENT_MID,
1328 	MAX_GC_MODE,
1329 };
1330 
1331 enum {
1332 	BGGC_MODE_ON,		/* background gc is on */
1333 	BGGC_MODE_OFF,		/* background gc is off */
1334 	BGGC_MODE_SYNC,		/*
1335 				 * background gc is on, migrating blocks
1336 				 * like foreground gc
1337 				 */
1338 };
1339 
1340 enum {
1341 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1342 	FS_MODE_LFS,			/* use lfs allocation only */
1343 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1344 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1345 };
1346 
1347 enum {
1348 	ALLOC_MODE_DEFAULT,	/* stay default */
1349 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1350 };
1351 
1352 enum fsync_mode {
1353 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1354 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1355 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1356 };
1357 
1358 enum {
1359 	COMPR_MODE_FS,		/*
1360 				 * automatically compress compression
1361 				 * enabled files
1362 				 */
1363 	COMPR_MODE_USER,	/*
1364 				 * automatical compression is disabled.
1365 				 * user can control the file compression
1366 				 * using ioctls
1367 				 */
1368 };
1369 
1370 enum {
1371 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1372 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1373 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1374 };
1375 
1376 enum {
1377 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1378 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1379 };
1380 
1381 enum errors_option {
1382 	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1383 	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1384 	MOUNT_ERRORS_PANIC,	/* panic on errors */
1385 };
1386 
1387 enum {
1388 	BACKGROUND,
1389 	FOREGROUND,
1390 	MAX_CALL_TYPE,
1391 	TOTAL_CALL = FOREGROUND,
1392 };
1393 
1394 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1395 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1396 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1397 
1398 /*
1399  * Layout of f2fs page.private:
1400  *
1401  * Layout A: lowest bit should be 1
1402  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1403  * bit 0	PAGE_PRIVATE_NOT_POINTER
1404  * bit 1	PAGE_PRIVATE_DUMMY_WRITE
1405  * bit 2	PAGE_PRIVATE_ONGOING_MIGRATION
1406  * bit 3	PAGE_PRIVATE_INLINE_INODE
1407  * bit 4	PAGE_PRIVATE_REF_RESOURCE
1408  * bit 5-	f2fs private data
1409  *
1410  * Layout B: lowest bit should be 0
1411  * page.private is a wrapped pointer.
1412  */
1413 enum {
1414 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1415 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1416 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1417 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1418 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1419 	PAGE_PRIVATE_MAX
1420 };
1421 
1422 /* For compression */
1423 enum compress_algorithm_type {
1424 	COMPRESS_LZO,
1425 	COMPRESS_LZ4,
1426 	COMPRESS_ZSTD,
1427 	COMPRESS_LZORLE,
1428 	COMPRESS_MAX,
1429 };
1430 
1431 enum compress_flag {
1432 	COMPRESS_CHKSUM,
1433 	COMPRESS_MAX_FLAG,
1434 };
1435 
1436 #define	COMPRESS_WATERMARK			20
1437 #define	COMPRESS_PERCENT			20
1438 
1439 #define COMPRESS_DATA_RESERVED_SIZE		4
1440 struct compress_data {
1441 	__le32 clen;			/* compressed data size */
1442 	__le32 chksum;			/* compressed data chksum */
1443 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1444 	u8 cdata[];			/* compressed data */
1445 };
1446 
1447 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1448 
1449 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1450 
1451 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1452 
1453 #define	COMPRESS_LEVEL_OFFSET	8
1454 
1455 /* compress context */
1456 struct compress_ctx {
1457 	struct inode *inode;		/* inode the context belong to */
1458 	pgoff_t cluster_idx;		/* cluster index number */
1459 	unsigned int cluster_size;	/* page count in cluster */
1460 	unsigned int log_cluster_size;	/* log of cluster size */
1461 	struct page **rpages;		/* pages store raw data in cluster */
1462 	unsigned int nr_rpages;		/* total page number in rpages */
1463 	struct page **cpages;		/* pages store compressed data in cluster */
1464 	unsigned int nr_cpages;		/* total page number in cpages */
1465 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1466 	void *rbuf;			/* virtual mapped address on rpages */
1467 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1468 	size_t rlen;			/* valid data length in rbuf */
1469 	size_t clen;			/* valid data length in cbuf */
1470 	void *private;			/* payload buffer for specified compression algorithm */
1471 	void *private2;			/* extra payload buffer */
1472 };
1473 
1474 /* compress context for write IO path */
1475 struct compress_io_ctx {
1476 	u32 magic;			/* magic number to indicate page is compressed */
1477 	struct inode *inode;		/* inode the context belong to */
1478 	struct page **rpages;		/* pages store raw data in cluster */
1479 	unsigned int nr_rpages;		/* total page number in rpages */
1480 	atomic_t pending_pages;		/* in-flight compressed page count */
1481 };
1482 
1483 /* Context for decompressing one cluster on the read IO path */
1484 struct decompress_io_ctx {
1485 	u32 magic;			/* magic number to indicate page is compressed */
1486 	struct inode *inode;		/* inode the context belong to */
1487 	pgoff_t cluster_idx;		/* cluster index number */
1488 	unsigned int cluster_size;	/* page count in cluster */
1489 	unsigned int log_cluster_size;	/* log of cluster size */
1490 	struct page **rpages;		/* pages store raw data in cluster */
1491 	unsigned int nr_rpages;		/* total page number in rpages */
1492 	struct page **cpages;		/* pages store compressed data in cluster */
1493 	unsigned int nr_cpages;		/* total page number in cpages */
1494 	struct page **tpages;		/* temp pages to pad holes in cluster */
1495 	void *rbuf;			/* virtual mapped address on rpages */
1496 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1497 	size_t rlen;			/* valid data length in rbuf */
1498 	size_t clen;			/* valid data length in cbuf */
1499 
1500 	/*
1501 	 * The number of compressed pages remaining to be read in this cluster.
1502 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1503 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1504 	 * is decompressed (or an error is reported).
1505 	 *
1506 	 * If an error occurs before all the pages have been submitted for I/O,
1507 	 * then this will never reach 0.  In this case the I/O submitter is
1508 	 * responsible for calling f2fs_decompress_end_io() instead.
1509 	 */
1510 	atomic_t remaining_pages;
1511 
1512 	/*
1513 	 * Number of references to this decompress_io_ctx.
1514 	 *
1515 	 * One reference is held for I/O completion.  This reference is dropped
1516 	 * after the pagecache pages are updated and unlocked -- either after
1517 	 * decompression (and verity if enabled), or after an error.
1518 	 *
1519 	 * In addition, each compressed page holds a reference while it is in a
1520 	 * bio.  These references are necessary prevent compressed pages from
1521 	 * being freed while they are still in a bio.
1522 	 */
1523 	refcount_t refcnt;
1524 
1525 	bool failed;			/* IO error occurred before decompression? */
1526 	bool need_verity;		/* need fs-verity verification after decompression? */
1527 	void *private;			/* payload buffer for specified decompression algorithm */
1528 	void *private2;			/* extra payload buffer */
1529 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1530 	struct work_struct free_work;	/* work for late free this structure itself */
1531 };
1532 
1533 #define NULL_CLUSTER			((unsigned int)(~0))
1534 #define MIN_COMPRESS_LOG_SIZE		2
1535 #define MAX_COMPRESS_LOG_SIZE		8
1536 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1537 
1538 struct f2fs_sb_info {
1539 	struct super_block *sb;			/* pointer to VFS super block */
1540 	struct proc_dir_entry *s_proc;		/* proc entry */
1541 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1542 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1543 	int valid_super_block;			/* valid super block no */
1544 	unsigned long s_flag;				/* flags for sbi */
1545 	struct mutex writepages;		/* mutex for writepages() */
1546 
1547 #ifdef CONFIG_BLK_DEV_ZONED
1548 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1549 #endif
1550 
1551 	/* for node-related operations */
1552 	struct f2fs_nm_info *nm_info;		/* node manager */
1553 	struct inode *node_inode;		/* cache node blocks */
1554 
1555 	/* for segment-related operations */
1556 	struct f2fs_sm_info *sm_info;		/* segment manager */
1557 
1558 	/* for bio operations */
1559 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1560 	/* keep migration IO order for LFS mode */
1561 	struct f2fs_rwsem io_order_lock;
1562 	mempool_t *write_io_dummy;		/* Dummy pages */
1563 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1564 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1565 
1566 	/* for checkpoint */
1567 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1568 	int cur_cp_pack;			/* remain current cp pack */
1569 	spinlock_t cp_lock;			/* for flag in ckpt */
1570 	struct inode *meta_inode;		/* cache meta blocks */
1571 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1572 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1573 	struct f2fs_rwsem node_write;		/* locking node writes */
1574 	struct f2fs_rwsem node_change;	/* locking node change */
1575 	wait_queue_head_t cp_wait;
1576 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1577 	long interval_time[MAX_TIME];		/* to store thresholds */
1578 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1579 
1580 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1581 
1582 	spinlock_t fsync_node_lock;		/* for node entry lock */
1583 	struct list_head fsync_node_list;	/* node list head */
1584 	unsigned int fsync_seg_id;		/* sequence id */
1585 	unsigned int fsync_node_num;		/* number of node entries */
1586 
1587 	/* for orphan inode, use 0'th array */
1588 	unsigned int max_orphans;		/* max orphan inodes */
1589 
1590 	/* for inode management */
1591 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1592 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1593 	struct mutex flush_lock;		/* for flush exclusion */
1594 
1595 	/* for extent tree cache */
1596 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1597 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1598 
1599 	/* The threshold used for hot and warm data seperation*/
1600 	unsigned int hot_data_age_threshold;
1601 	unsigned int warm_data_age_threshold;
1602 	unsigned int last_age_weight;
1603 
1604 	/* basic filesystem units */
1605 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1606 	unsigned int log_blocksize;		/* log2 block size */
1607 	unsigned int blocksize;			/* block size */
1608 	unsigned int root_ino_num;		/* root inode number*/
1609 	unsigned int node_ino_num;		/* node inode number*/
1610 	unsigned int meta_ino_num;		/* meta inode number*/
1611 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1612 	unsigned int blocks_per_seg;		/* blocks per segment */
1613 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1614 	unsigned int segs_per_sec;		/* segments per section */
1615 	unsigned int secs_per_zone;		/* sections per zone */
1616 	unsigned int total_sections;		/* total section count */
1617 	unsigned int total_node_count;		/* total node block count */
1618 	unsigned int total_valid_node_count;	/* valid node block count */
1619 	int dir_level;				/* directory level */
1620 	bool readdir_ra;			/* readahead inode in readdir */
1621 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1622 
1623 	block_t user_block_count;		/* # of user blocks */
1624 	block_t total_valid_block_count;	/* # of valid blocks */
1625 	block_t discard_blks;			/* discard command candidats */
1626 	block_t last_valid_block_count;		/* for recovery */
1627 	block_t reserved_blocks;		/* configurable reserved blocks */
1628 	block_t current_reserved_blocks;	/* current reserved blocks */
1629 
1630 	/* Additional tracking for no checkpoint mode */
1631 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1632 
1633 	unsigned int nquota_files;		/* # of quota sysfile */
1634 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1635 
1636 	/* # of pages, see count_type */
1637 	atomic_t nr_pages[NR_COUNT_TYPE];
1638 	/* # of allocated blocks */
1639 	struct percpu_counter alloc_valid_block_count;
1640 	/* # of node block writes as roll forward recovery */
1641 	struct percpu_counter rf_node_block_count;
1642 
1643 	/* writeback control */
1644 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1645 
1646 	/* valid inode count */
1647 	struct percpu_counter total_valid_inode_count;
1648 
1649 	struct f2fs_mount_info mount_opt;	/* mount options */
1650 
1651 	/* for cleaning operations */
1652 	struct f2fs_rwsem gc_lock;		/*
1653 						 * semaphore for GC, avoid
1654 						 * race between GC and GC or CP
1655 						 */
1656 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1657 	struct atgc_management am;		/* atgc management */
1658 	unsigned int cur_victim_sec;		/* current victim section num */
1659 	unsigned int gc_mode;			/* current GC state */
1660 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1661 	spinlock_t gc_remaining_trials_lock;
1662 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1663 	unsigned int gc_remaining_trials;
1664 
1665 	/* for skip statistic */
1666 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1667 
1668 	/* threshold for gc trials on pinned files */
1669 	u64 gc_pin_file_threshold;
1670 	struct f2fs_rwsem pin_sem;
1671 
1672 	/* maximum # of trials to find a victim segment for SSR and GC */
1673 	unsigned int max_victim_search;
1674 	/* migration granularity of garbage collection, unit: segment */
1675 	unsigned int migration_granularity;
1676 
1677 	/*
1678 	 * for stat information.
1679 	 * one is for the LFS mode, and the other is for the SSR mode.
1680 	 */
1681 #ifdef CONFIG_F2FS_STAT_FS
1682 	struct f2fs_stat_info *stat_info;	/* FS status information */
1683 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1684 	unsigned int segment_count[2];		/* # of allocated segments */
1685 	unsigned int block_count[2];		/* # of allocated blocks */
1686 	atomic_t inplace_count;		/* # of inplace update */
1687 	/* # of lookup extent cache */
1688 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1689 	/* # of hit rbtree extent node */
1690 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1691 	/* # of hit cached extent node */
1692 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1693 	/* # of hit largest extent node in read extent cache */
1694 	atomic64_t read_hit_largest;
1695 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1696 	atomic_t inline_inode;			/* # of inline_data inodes */
1697 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1698 	atomic_t compr_inode;			/* # of compressed inodes */
1699 	atomic64_t compr_blocks;		/* # of compressed blocks */
1700 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1701 	atomic_t atomic_files;			/* # of opened atomic file */
1702 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1703 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1704 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1705 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1706 	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1707 #endif
1708 	spinlock_t stat_lock;			/* lock for stat operations */
1709 
1710 	/* to attach REQ_META|REQ_FUA flags */
1711 	unsigned int data_io_flag;
1712 	unsigned int node_io_flag;
1713 
1714 	/* For sysfs support */
1715 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1716 	struct completion s_kobj_unregister;
1717 
1718 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1719 	struct completion s_stat_kobj_unregister;
1720 
1721 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1722 	struct completion s_feature_list_kobj_unregister;
1723 
1724 	/* For shrinker support */
1725 	struct list_head s_list;
1726 	struct mutex umount_mutex;
1727 	unsigned int shrinker_run_no;
1728 
1729 	/* For multi devices */
1730 	int s_ndevs;				/* number of devices */
1731 	struct f2fs_dev_info *devs;		/* for device list */
1732 	unsigned int dirty_device;		/* for checkpoint data flush */
1733 	spinlock_t dev_lock;			/* protect dirty_device */
1734 	bool aligned_blksize;			/* all devices has the same logical blksize */
1735 
1736 	/* For write statistics */
1737 	u64 sectors_written_start;
1738 	u64 kbytes_written;
1739 
1740 	/* Reference to checksum algorithm driver via cryptoapi */
1741 	struct crypto_shash *s_chksum_driver;
1742 
1743 	/* Precomputed FS UUID checksum for seeding other checksums */
1744 	__u32 s_chksum_seed;
1745 
1746 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1747 
1748 	/*
1749 	 * If we are in irq context, let's update error information into
1750 	 * on-disk superblock in the work.
1751 	 */
1752 	struct work_struct s_error_work;
1753 	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1754 	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1755 	spinlock_t error_lock;			/* protect errors/stop_reason array */
1756 	bool error_dirty;			/* errors of sb is dirty */
1757 
1758 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1759 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1760 
1761 	/* For reclaimed segs statistics per each GC mode */
1762 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1763 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1764 
1765 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1766 
1767 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1768 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1769 
1770 	/* For atomic write statistics */
1771 	atomic64_t current_atomic_write;
1772 	s64 peak_atomic_write;
1773 	u64 committed_atomic_block;
1774 	u64 revoked_atomic_block;
1775 
1776 #ifdef CONFIG_F2FS_FS_COMPRESSION
1777 	struct kmem_cache *page_array_slab;	/* page array entry */
1778 	unsigned int page_array_slab_size;	/* default page array slab size */
1779 
1780 	/* For runtime compression statistics */
1781 	u64 compr_written_block;
1782 	u64 compr_saved_block;
1783 	u32 compr_new_inode;
1784 
1785 	/* For compressed block cache */
1786 	struct inode *compress_inode;		/* cache compressed blocks */
1787 	unsigned int compress_percent;		/* cache page percentage */
1788 	unsigned int compress_watermark;	/* cache page watermark */
1789 	atomic_t compress_page_hit;		/* cache hit count */
1790 #endif
1791 
1792 #ifdef CONFIG_F2FS_IOSTAT
1793 	/* For app/fs IO statistics */
1794 	spinlock_t iostat_lock;
1795 	unsigned long long iostat_count[NR_IO_TYPE];
1796 	unsigned long long iostat_bytes[NR_IO_TYPE];
1797 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1798 	bool iostat_enable;
1799 	unsigned long iostat_next_period;
1800 	unsigned int iostat_period_ms;
1801 
1802 	/* For io latency related statistics info in one iostat period */
1803 	spinlock_t iostat_lat_lock;
1804 	struct iostat_lat_info *iostat_io_lat;
1805 #endif
1806 };
1807 
1808 #ifdef CONFIG_F2FS_FAULT_INJECTION
1809 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1810 									__builtin_return_address(0))
1811 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1812 				const char *func, const char *parent_func)
1813 {
1814 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1815 
1816 	if (!ffi->inject_rate)
1817 		return false;
1818 
1819 	if (!IS_FAULT_SET(ffi, type))
1820 		return false;
1821 
1822 	atomic_inc(&ffi->inject_ops);
1823 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1824 		atomic_set(&ffi->inject_ops, 0);
1825 		printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",
1826 			KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type],
1827 			func, parent_func);
1828 		return true;
1829 	}
1830 	return false;
1831 }
1832 #else
1833 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1834 {
1835 	return false;
1836 }
1837 #endif
1838 
1839 /*
1840  * Test if the mounted volume is a multi-device volume.
1841  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1842  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1843  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1844  */
1845 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1846 {
1847 	return sbi->s_ndevs > 1;
1848 }
1849 
1850 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1851 {
1852 	unsigned long now = jiffies;
1853 
1854 	sbi->last_time[type] = now;
1855 
1856 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1857 	if (type == REQ_TIME) {
1858 		sbi->last_time[DISCARD_TIME] = now;
1859 		sbi->last_time[GC_TIME] = now;
1860 	}
1861 }
1862 
1863 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1864 {
1865 	unsigned long interval = sbi->interval_time[type] * HZ;
1866 
1867 	return time_after(jiffies, sbi->last_time[type] + interval);
1868 }
1869 
1870 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1871 						int type)
1872 {
1873 	unsigned long interval = sbi->interval_time[type] * HZ;
1874 	unsigned int wait_ms = 0;
1875 	long delta;
1876 
1877 	delta = (sbi->last_time[type] + interval) - jiffies;
1878 	if (delta > 0)
1879 		wait_ms = jiffies_to_msecs(delta);
1880 
1881 	return wait_ms;
1882 }
1883 
1884 /*
1885  * Inline functions
1886  */
1887 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1888 			      const void *address, unsigned int length)
1889 {
1890 	struct {
1891 		struct shash_desc shash;
1892 		char ctx[4];
1893 	} desc;
1894 	int err;
1895 
1896 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1897 
1898 	desc.shash.tfm = sbi->s_chksum_driver;
1899 	*(u32 *)desc.ctx = crc;
1900 
1901 	err = crypto_shash_update(&desc.shash, address, length);
1902 	BUG_ON(err);
1903 
1904 	return *(u32 *)desc.ctx;
1905 }
1906 
1907 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1908 			   unsigned int length)
1909 {
1910 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1911 }
1912 
1913 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1914 				  void *buf, size_t buf_size)
1915 {
1916 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1917 }
1918 
1919 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1920 			      const void *address, unsigned int length)
1921 {
1922 	return __f2fs_crc32(sbi, crc, address, length);
1923 }
1924 
1925 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1926 {
1927 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1928 }
1929 
1930 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1931 {
1932 	return sb->s_fs_info;
1933 }
1934 
1935 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1936 {
1937 	return F2FS_SB(inode->i_sb);
1938 }
1939 
1940 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1941 {
1942 	return F2FS_I_SB(mapping->host);
1943 }
1944 
1945 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1946 {
1947 	return F2FS_M_SB(page_file_mapping(page));
1948 }
1949 
1950 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1951 {
1952 	return (struct f2fs_super_block *)(sbi->raw_super);
1953 }
1954 
1955 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1956 {
1957 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1958 }
1959 
1960 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1961 {
1962 	return (struct f2fs_node *)page_address(page);
1963 }
1964 
1965 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1966 {
1967 	return &((struct f2fs_node *)page_address(page))->i;
1968 }
1969 
1970 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1971 {
1972 	return (struct f2fs_nm_info *)(sbi->nm_info);
1973 }
1974 
1975 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1976 {
1977 	return (struct f2fs_sm_info *)(sbi->sm_info);
1978 }
1979 
1980 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1981 {
1982 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1983 }
1984 
1985 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1986 {
1987 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1988 }
1989 
1990 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1991 {
1992 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1993 }
1994 
1995 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1996 {
1997 	return sbi->meta_inode->i_mapping;
1998 }
1999 
2000 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2001 {
2002 	return sbi->node_inode->i_mapping;
2003 }
2004 
2005 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2006 {
2007 	return test_bit(type, &sbi->s_flag);
2008 }
2009 
2010 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2011 {
2012 	set_bit(type, &sbi->s_flag);
2013 }
2014 
2015 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2016 {
2017 	clear_bit(type, &sbi->s_flag);
2018 }
2019 
2020 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2021 {
2022 	return le64_to_cpu(cp->checkpoint_ver);
2023 }
2024 
2025 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2026 {
2027 	if (type < F2FS_MAX_QUOTAS)
2028 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2029 	return 0;
2030 }
2031 
2032 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2033 {
2034 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2035 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2036 }
2037 
2038 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2039 {
2040 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2041 
2042 	return ckpt_flags & f;
2043 }
2044 
2045 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2046 {
2047 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2048 }
2049 
2050 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2051 {
2052 	unsigned int ckpt_flags;
2053 
2054 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2055 	ckpt_flags |= f;
2056 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2057 }
2058 
2059 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2060 {
2061 	unsigned long flags;
2062 
2063 	spin_lock_irqsave(&sbi->cp_lock, flags);
2064 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2065 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2066 }
2067 
2068 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2069 {
2070 	unsigned int ckpt_flags;
2071 
2072 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2073 	ckpt_flags &= (~f);
2074 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2075 }
2076 
2077 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2078 {
2079 	unsigned long flags;
2080 
2081 	spin_lock_irqsave(&sbi->cp_lock, flags);
2082 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2083 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2084 }
2085 
2086 #define init_f2fs_rwsem(sem)					\
2087 do {								\
2088 	static struct lock_class_key __key;			\
2089 								\
2090 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2091 } while (0)
2092 
2093 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2094 		const char *sem_name, struct lock_class_key *key)
2095 {
2096 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2097 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2098 	init_waitqueue_head(&sem->read_waiters);
2099 #endif
2100 }
2101 
2102 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2103 {
2104 	return rwsem_is_locked(&sem->internal_rwsem);
2105 }
2106 
2107 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2108 {
2109 	return rwsem_is_contended(&sem->internal_rwsem);
2110 }
2111 
2112 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2113 {
2114 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2115 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2116 #else
2117 	down_read(&sem->internal_rwsem);
2118 #endif
2119 }
2120 
2121 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2122 {
2123 	return down_read_trylock(&sem->internal_rwsem);
2124 }
2125 
2126 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2127 {
2128 	up_read(&sem->internal_rwsem);
2129 }
2130 
2131 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2132 {
2133 	down_write(&sem->internal_rwsem);
2134 }
2135 
2136 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2137 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2138 {
2139 	down_read_nested(&sem->internal_rwsem, subclass);
2140 }
2141 
2142 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2143 {
2144 	down_write_nested(&sem->internal_rwsem, subclass);
2145 }
2146 #else
2147 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2148 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2149 #endif
2150 
2151 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2152 {
2153 	return down_write_trylock(&sem->internal_rwsem);
2154 }
2155 
2156 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2157 {
2158 	up_write(&sem->internal_rwsem);
2159 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2160 	wake_up_all(&sem->read_waiters);
2161 #endif
2162 }
2163 
2164 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2165 {
2166 	f2fs_down_read(&sbi->cp_rwsem);
2167 }
2168 
2169 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2170 {
2171 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2172 		return 0;
2173 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2174 }
2175 
2176 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2177 {
2178 	f2fs_up_read(&sbi->cp_rwsem);
2179 }
2180 
2181 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2182 {
2183 	f2fs_down_write(&sbi->cp_rwsem);
2184 }
2185 
2186 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2187 {
2188 	f2fs_up_write(&sbi->cp_rwsem);
2189 }
2190 
2191 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2192 {
2193 	int reason = CP_SYNC;
2194 
2195 	if (test_opt(sbi, FASTBOOT))
2196 		reason = CP_FASTBOOT;
2197 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2198 		reason = CP_UMOUNT;
2199 	return reason;
2200 }
2201 
2202 static inline bool __remain_node_summaries(int reason)
2203 {
2204 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2205 }
2206 
2207 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2208 {
2209 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2210 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2211 }
2212 
2213 /*
2214  * Check whether the inode has blocks or not
2215  */
2216 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2217 {
2218 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2219 
2220 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2221 }
2222 
2223 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2224 {
2225 	return ofs == XATTR_NODE_OFFSET;
2226 }
2227 
2228 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2229 					struct inode *inode, bool cap)
2230 {
2231 	if (!inode)
2232 		return true;
2233 	if (!test_opt(sbi, RESERVE_ROOT))
2234 		return false;
2235 	if (IS_NOQUOTA(inode))
2236 		return true;
2237 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2238 		return true;
2239 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2240 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2241 		return true;
2242 	if (cap && capable(CAP_SYS_RESOURCE))
2243 		return true;
2244 	return false;
2245 }
2246 
2247 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2248 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2249 				 struct inode *inode, blkcnt_t *count)
2250 {
2251 	blkcnt_t diff = 0, release = 0;
2252 	block_t avail_user_block_count;
2253 	int ret;
2254 
2255 	ret = dquot_reserve_block(inode, *count);
2256 	if (ret)
2257 		return ret;
2258 
2259 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2260 		release = *count;
2261 		goto release_quota;
2262 	}
2263 
2264 	/*
2265 	 * let's increase this in prior to actual block count change in order
2266 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2267 	 */
2268 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2269 
2270 	spin_lock(&sbi->stat_lock);
2271 	sbi->total_valid_block_count += (block_t)(*count);
2272 	avail_user_block_count = sbi->user_block_count -
2273 					sbi->current_reserved_blocks;
2274 
2275 	if (!__allow_reserved_blocks(sbi, inode, true))
2276 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2277 
2278 	if (F2FS_IO_ALIGNED(sbi))
2279 		avail_user_block_count -= sbi->blocks_per_seg *
2280 				SM_I(sbi)->additional_reserved_segments;
2281 
2282 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2283 		if (avail_user_block_count > sbi->unusable_block_count)
2284 			avail_user_block_count -= sbi->unusable_block_count;
2285 		else
2286 			avail_user_block_count = 0;
2287 	}
2288 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2289 		diff = sbi->total_valid_block_count - avail_user_block_count;
2290 		if (diff > *count)
2291 			diff = *count;
2292 		*count -= diff;
2293 		release = diff;
2294 		sbi->total_valid_block_count -= diff;
2295 		if (!*count) {
2296 			spin_unlock(&sbi->stat_lock);
2297 			goto enospc;
2298 		}
2299 	}
2300 	spin_unlock(&sbi->stat_lock);
2301 
2302 	if (unlikely(release)) {
2303 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2304 		dquot_release_reservation_block(inode, release);
2305 	}
2306 	f2fs_i_blocks_write(inode, *count, true, true);
2307 	return 0;
2308 
2309 enospc:
2310 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2311 release_quota:
2312 	dquot_release_reservation_block(inode, release);
2313 	return -ENOSPC;
2314 }
2315 
2316 __printf(2, 3)
2317 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2318 
2319 #define f2fs_err(sbi, fmt, ...)						\
2320 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2321 #define f2fs_warn(sbi, fmt, ...)					\
2322 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2323 #define f2fs_notice(sbi, fmt, ...)					\
2324 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2325 #define f2fs_info(sbi, fmt, ...)					\
2326 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2327 #define f2fs_debug(sbi, fmt, ...)					\
2328 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2329 
2330 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2331 static inline bool page_private_##name(struct page *page) \
2332 { \
2333 	return PagePrivate(page) && \
2334 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2335 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2336 }
2337 
2338 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2339 static inline void set_page_private_##name(struct page *page) \
2340 { \
2341 	if (!PagePrivate(page)) \
2342 		attach_page_private(page, (void *)0); \
2343 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2344 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2345 }
2346 
2347 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2348 static inline void clear_page_private_##name(struct page *page) \
2349 { \
2350 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2351 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2352 		detach_page_private(page); \
2353 }
2354 
2355 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2356 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2357 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2358 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
2359 
2360 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2361 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2362 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2363 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
2364 
2365 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2366 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2367 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2368 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
2369 
2370 static inline unsigned long get_page_private_data(struct page *page)
2371 {
2372 	unsigned long data = page_private(page);
2373 
2374 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2375 		return 0;
2376 	return data >> PAGE_PRIVATE_MAX;
2377 }
2378 
2379 static inline void set_page_private_data(struct page *page, unsigned long data)
2380 {
2381 	if (!PagePrivate(page))
2382 		attach_page_private(page, (void *)0);
2383 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2384 	page_private(page) |= data << PAGE_PRIVATE_MAX;
2385 }
2386 
2387 static inline void clear_page_private_data(struct page *page)
2388 {
2389 	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2390 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2391 		detach_page_private(page);
2392 }
2393 
2394 static inline void clear_page_private_all(struct page *page)
2395 {
2396 	clear_page_private_data(page);
2397 	clear_page_private_reference(page);
2398 	clear_page_private_gcing(page);
2399 	clear_page_private_inline(page);
2400 
2401 	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2402 }
2403 
2404 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2405 						struct inode *inode,
2406 						block_t count)
2407 {
2408 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2409 
2410 	spin_lock(&sbi->stat_lock);
2411 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2412 	sbi->total_valid_block_count -= (block_t)count;
2413 	if (sbi->reserved_blocks &&
2414 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2415 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2416 					sbi->current_reserved_blocks + count);
2417 	spin_unlock(&sbi->stat_lock);
2418 	if (unlikely(inode->i_blocks < sectors)) {
2419 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2420 			  inode->i_ino,
2421 			  (unsigned long long)inode->i_blocks,
2422 			  (unsigned long long)sectors);
2423 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2424 		return;
2425 	}
2426 	f2fs_i_blocks_write(inode, count, false, true);
2427 }
2428 
2429 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2430 {
2431 	atomic_inc(&sbi->nr_pages[count_type]);
2432 
2433 	if (count_type == F2FS_DIRTY_DENTS ||
2434 			count_type == F2FS_DIRTY_NODES ||
2435 			count_type == F2FS_DIRTY_META ||
2436 			count_type == F2FS_DIRTY_QDATA ||
2437 			count_type == F2FS_DIRTY_IMETA)
2438 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2439 }
2440 
2441 static inline void inode_inc_dirty_pages(struct inode *inode)
2442 {
2443 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2444 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2445 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2446 	if (IS_NOQUOTA(inode))
2447 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2448 }
2449 
2450 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2451 {
2452 	atomic_dec(&sbi->nr_pages[count_type]);
2453 }
2454 
2455 static inline void inode_dec_dirty_pages(struct inode *inode)
2456 {
2457 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2458 			!S_ISLNK(inode->i_mode))
2459 		return;
2460 
2461 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2462 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2463 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2464 	if (IS_NOQUOTA(inode))
2465 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2466 }
2467 
2468 static inline void inc_atomic_write_cnt(struct inode *inode)
2469 {
2470 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2471 	struct f2fs_inode_info *fi = F2FS_I(inode);
2472 	u64 current_write;
2473 
2474 	fi->atomic_write_cnt++;
2475 	atomic64_inc(&sbi->current_atomic_write);
2476 	current_write = atomic64_read(&sbi->current_atomic_write);
2477 	if (current_write > sbi->peak_atomic_write)
2478 		sbi->peak_atomic_write = current_write;
2479 }
2480 
2481 static inline void release_atomic_write_cnt(struct inode *inode)
2482 {
2483 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2484 	struct f2fs_inode_info *fi = F2FS_I(inode);
2485 
2486 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2487 	fi->atomic_write_cnt = 0;
2488 }
2489 
2490 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2491 {
2492 	return atomic_read(&sbi->nr_pages[count_type]);
2493 }
2494 
2495 static inline int get_dirty_pages(struct inode *inode)
2496 {
2497 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2498 }
2499 
2500 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2501 {
2502 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2503 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2504 						sbi->log_blocks_per_seg;
2505 
2506 	return segs / sbi->segs_per_sec;
2507 }
2508 
2509 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2510 {
2511 	return sbi->total_valid_block_count;
2512 }
2513 
2514 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2515 {
2516 	return sbi->discard_blks;
2517 }
2518 
2519 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2520 {
2521 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2522 
2523 	/* return NAT or SIT bitmap */
2524 	if (flag == NAT_BITMAP)
2525 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2526 	else if (flag == SIT_BITMAP)
2527 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2528 
2529 	return 0;
2530 }
2531 
2532 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2533 {
2534 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2535 }
2536 
2537 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2538 {
2539 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2540 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2541 	int offset;
2542 
2543 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2544 		offset = (flag == SIT_BITMAP) ?
2545 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2546 		/*
2547 		 * if large_nat_bitmap feature is enabled, leave checksum
2548 		 * protection for all nat/sit bitmaps.
2549 		 */
2550 		return tmp_ptr + offset + sizeof(__le32);
2551 	}
2552 
2553 	if (__cp_payload(sbi) > 0) {
2554 		if (flag == NAT_BITMAP)
2555 			return tmp_ptr;
2556 		else
2557 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2558 	} else {
2559 		offset = (flag == NAT_BITMAP) ?
2560 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2561 		return tmp_ptr + offset;
2562 	}
2563 }
2564 
2565 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2566 {
2567 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2568 
2569 	if (sbi->cur_cp_pack == 2)
2570 		start_addr += sbi->blocks_per_seg;
2571 	return start_addr;
2572 }
2573 
2574 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2575 {
2576 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2577 
2578 	if (sbi->cur_cp_pack == 1)
2579 		start_addr += sbi->blocks_per_seg;
2580 	return start_addr;
2581 }
2582 
2583 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2584 {
2585 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2586 }
2587 
2588 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2589 {
2590 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2591 }
2592 
2593 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
2594 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2595 					struct inode *inode, bool is_inode)
2596 {
2597 	block_t	valid_block_count;
2598 	unsigned int valid_node_count, user_block_count;
2599 	int err;
2600 
2601 	if (is_inode) {
2602 		if (inode) {
2603 			err = dquot_alloc_inode(inode);
2604 			if (err)
2605 				return err;
2606 		}
2607 	} else {
2608 		err = dquot_reserve_block(inode, 1);
2609 		if (err)
2610 			return err;
2611 	}
2612 
2613 	if (time_to_inject(sbi, FAULT_BLOCK))
2614 		goto enospc;
2615 
2616 	spin_lock(&sbi->stat_lock);
2617 
2618 	valid_block_count = sbi->total_valid_block_count +
2619 					sbi->current_reserved_blocks + 1;
2620 
2621 	if (!__allow_reserved_blocks(sbi, inode, false))
2622 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2623 
2624 	if (F2FS_IO_ALIGNED(sbi))
2625 		valid_block_count += sbi->blocks_per_seg *
2626 				SM_I(sbi)->additional_reserved_segments;
2627 
2628 	user_block_count = sbi->user_block_count;
2629 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2630 		user_block_count -= sbi->unusable_block_count;
2631 
2632 	if (unlikely(valid_block_count > user_block_count)) {
2633 		spin_unlock(&sbi->stat_lock);
2634 		goto enospc;
2635 	}
2636 
2637 	valid_node_count = sbi->total_valid_node_count + 1;
2638 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2639 		spin_unlock(&sbi->stat_lock);
2640 		goto enospc;
2641 	}
2642 
2643 	sbi->total_valid_node_count++;
2644 	sbi->total_valid_block_count++;
2645 	spin_unlock(&sbi->stat_lock);
2646 
2647 	if (inode) {
2648 		if (is_inode)
2649 			f2fs_mark_inode_dirty_sync(inode, true);
2650 		else
2651 			f2fs_i_blocks_write(inode, 1, true, true);
2652 	}
2653 
2654 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2655 	return 0;
2656 
2657 enospc:
2658 	if (is_inode) {
2659 		if (inode)
2660 			dquot_free_inode(inode);
2661 	} else {
2662 		dquot_release_reservation_block(inode, 1);
2663 	}
2664 	return -ENOSPC;
2665 }
2666 
2667 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2668 					struct inode *inode, bool is_inode)
2669 {
2670 	spin_lock(&sbi->stat_lock);
2671 
2672 	if (unlikely(!sbi->total_valid_block_count ||
2673 			!sbi->total_valid_node_count)) {
2674 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2675 			  sbi->total_valid_block_count,
2676 			  sbi->total_valid_node_count);
2677 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2678 	} else {
2679 		sbi->total_valid_block_count--;
2680 		sbi->total_valid_node_count--;
2681 	}
2682 
2683 	if (sbi->reserved_blocks &&
2684 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2685 		sbi->current_reserved_blocks++;
2686 
2687 	spin_unlock(&sbi->stat_lock);
2688 
2689 	if (is_inode) {
2690 		dquot_free_inode(inode);
2691 	} else {
2692 		if (unlikely(inode->i_blocks == 0)) {
2693 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2694 				  inode->i_ino,
2695 				  (unsigned long long)inode->i_blocks);
2696 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2697 			return;
2698 		}
2699 		f2fs_i_blocks_write(inode, 1, false, true);
2700 	}
2701 }
2702 
2703 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2704 {
2705 	return sbi->total_valid_node_count;
2706 }
2707 
2708 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2709 {
2710 	percpu_counter_inc(&sbi->total_valid_inode_count);
2711 }
2712 
2713 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2714 {
2715 	percpu_counter_dec(&sbi->total_valid_inode_count);
2716 }
2717 
2718 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2719 {
2720 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2721 }
2722 
2723 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2724 						pgoff_t index, bool for_write)
2725 {
2726 	struct page *page;
2727 	unsigned int flags;
2728 
2729 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2730 		if (!for_write)
2731 			page = find_get_page_flags(mapping, index,
2732 							FGP_LOCK | FGP_ACCESSED);
2733 		else
2734 			page = find_lock_page(mapping, index);
2735 		if (page)
2736 			return page;
2737 
2738 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2739 			return NULL;
2740 	}
2741 
2742 	if (!for_write)
2743 		return grab_cache_page(mapping, index);
2744 
2745 	flags = memalloc_nofs_save();
2746 	page = grab_cache_page_write_begin(mapping, index);
2747 	memalloc_nofs_restore(flags);
2748 
2749 	return page;
2750 }
2751 
2752 static inline struct page *f2fs_pagecache_get_page(
2753 				struct address_space *mapping, pgoff_t index,
2754 				fgf_t fgp_flags, gfp_t gfp_mask)
2755 {
2756 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2757 		return NULL;
2758 
2759 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2760 }
2761 
2762 static inline void f2fs_put_page(struct page *page, int unlock)
2763 {
2764 	if (!page)
2765 		return;
2766 
2767 	if (unlock) {
2768 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2769 		unlock_page(page);
2770 	}
2771 	put_page(page);
2772 }
2773 
2774 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2775 {
2776 	if (dn->node_page)
2777 		f2fs_put_page(dn->node_page, 1);
2778 	if (dn->inode_page && dn->node_page != dn->inode_page)
2779 		f2fs_put_page(dn->inode_page, 0);
2780 	dn->node_page = NULL;
2781 	dn->inode_page = NULL;
2782 }
2783 
2784 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2785 					size_t size)
2786 {
2787 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2788 }
2789 
2790 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2791 						gfp_t flags)
2792 {
2793 	void *entry;
2794 
2795 	entry = kmem_cache_alloc(cachep, flags);
2796 	if (!entry)
2797 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2798 	return entry;
2799 }
2800 
2801 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2802 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2803 {
2804 	if (nofail)
2805 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2806 
2807 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2808 		return NULL;
2809 
2810 	return kmem_cache_alloc(cachep, flags);
2811 }
2812 
2813 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2814 {
2815 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2816 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2817 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2818 		get_pages(sbi, F2FS_DIO_READ) ||
2819 		get_pages(sbi, F2FS_DIO_WRITE))
2820 		return true;
2821 
2822 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2823 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2824 		return true;
2825 
2826 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2827 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2828 		return true;
2829 	return false;
2830 }
2831 
2832 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2833 {
2834 	if (sbi->gc_mode == GC_URGENT_HIGH)
2835 		return true;
2836 
2837 	if (is_inflight_io(sbi, type))
2838 		return false;
2839 
2840 	if (sbi->gc_mode == GC_URGENT_MID)
2841 		return true;
2842 
2843 	if (sbi->gc_mode == GC_URGENT_LOW &&
2844 			(type == DISCARD_TIME || type == GC_TIME))
2845 		return true;
2846 
2847 	return f2fs_time_over(sbi, type);
2848 }
2849 
2850 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2851 				unsigned long index, void *item)
2852 {
2853 	while (radix_tree_insert(root, index, item))
2854 		cond_resched();
2855 }
2856 
2857 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2858 
2859 static inline bool IS_INODE(struct page *page)
2860 {
2861 	struct f2fs_node *p = F2FS_NODE(page);
2862 
2863 	return RAW_IS_INODE(p);
2864 }
2865 
2866 static inline int offset_in_addr(struct f2fs_inode *i)
2867 {
2868 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2869 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2870 }
2871 
2872 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2873 {
2874 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2875 }
2876 
2877 static inline int f2fs_has_extra_attr(struct inode *inode);
2878 static inline block_t data_blkaddr(struct inode *inode,
2879 			struct page *node_page, unsigned int offset)
2880 {
2881 	struct f2fs_node *raw_node;
2882 	__le32 *addr_array;
2883 	int base = 0;
2884 	bool is_inode = IS_INODE(node_page);
2885 
2886 	raw_node = F2FS_NODE(node_page);
2887 
2888 	if (is_inode) {
2889 		if (!inode)
2890 			/* from GC path only */
2891 			base = offset_in_addr(&raw_node->i);
2892 		else if (f2fs_has_extra_attr(inode))
2893 			base = get_extra_isize(inode);
2894 	}
2895 
2896 	addr_array = blkaddr_in_node(raw_node);
2897 	return le32_to_cpu(addr_array[base + offset]);
2898 }
2899 
2900 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2901 {
2902 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2903 }
2904 
2905 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2906 {
2907 	int mask;
2908 
2909 	addr += (nr >> 3);
2910 	mask = BIT(7 - (nr & 0x07));
2911 	return mask & *addr;
2912 }
2913 
2914 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2915 {
2916 	int mask;
2917 
2918 	addr += (nr >> 3);
2919 	mask = BIT(7 - (nr & 0x07));
2920 	*addr |= mask;
2921 }
2922 
2923 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2924 {
2925 	int mask;
2926 
2927 	addr += (nr >> 3);
2928 	mask = BIT(7 - (nr & 0x07));
2929 	*addr &= ~mask;
2930 }
2931 
2932 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2933 {
2934 	int mask;
2935 	int ret;
2936 
2937 	addr += (nr >> 3);
2938 	mask = BIT(7 - (nr & 0x07));
2939 	ret = mask & *addr;
2940 	*addr |= mask;
2941 	return ret;
2942 }
2943 
2944 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2945 {
2946 	int mask;
2947 	int ret;
2948 
2949 	addr += (nr >> 3);
2950 	mask = BIT(7 - (nr & 0x07));
2951 	ret = mask & *addr;
2952 	*addr &= ~mask;
2953 	return ret;
2954 }
2955 
2956 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2957 {
2958 	int mask;
2959 
2960 	addr += (nr >> 3);
2961 	mask = BIT(7 - (nr & 0x07));
2962 	*addr ^= mask;
2963 }
2964 
2965 /*
2966  * On-disk inode flags (f2fs_inode::i_flags)
2967  */
2968 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2969 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2970 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2971 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2972 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2973 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2974 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2975 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2976 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2977 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2978 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2979 
2980 #define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
2981 
2982 /* Flags that should be inherited by new inodes from their parent. */
2983 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2984 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2985 			   F2FS_CASEFOLD_FL)
2986 
2987 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2988 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2989 				F2FS_CASEFOLD_FL))
2990 
2991 /* Flags that are appropriate for non-directories/regular files. */
2992 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2993 
2994 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2995 {
2996 	if (S_ISDIR(mode))
2997 		return flags;
2998 	else if (S_ISREG(mode))
2999 		return flags & F2FS_REG_FLMASK;
3000 	else
3001 		return flags & F2FS_OTHER_FLMASK;
3002 }
3003 
3004 static inline void __mark_inode_dirty_flag(struct inode *inode,
3005 						int flag, bool set)
3006 {
3007 	switch (flag) {
3008 	case FI_INLINE_XATTR:
3009 	case FI_INLINE_DATA:
3010 	case FI_INLINE_DENTRY:
3011 	case FI_NEW_INODE:
3012 		if (set)
3013 			return;
3014 		fallthrough;
3015 	case FI_DATA_EXIST:
3016 	case FI_INLINE_DOTS:
3017 	case FI_PIN_FILE:
3018 	case FI_COMPRESS_RELEASED:
3019 		f2fs_mark_inode_dirty_sync(inode, true);
3020 	}
3021 }
3022 
3023 static inline void set_inode_flag(struct inode *inode, int flag)
3024 {
3025 	set_bit(flag, F2FS_I(inode)->flags);
3026 	__mark_inode_dirty_flag(inode, flag, true);
3027 }
3028 
3029 static inline int is_inode_flag_set(struct inode *inode, int flag)
3030 {
3031 	return test_bit(flag, F2FS_I(inode)->flags);
3032 }
3033 
3034 static inline void clear_inode_flag(struct inode *inode, int flag)
3035 {
3036 	clear_bit(flag, F2FS_I(inode)->flags);
3037 	__mark_inode_dirty_flag(inode, flag, false);
3038 }
3039 
3040 static inline bool f2fs_verity_in_progress(struct inode *inode)
3041 {
3042 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3043 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3044 }
3045 
3046 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3047 {
3048 	F2FS_I(inode)->i_acl_mode = mode;
3049 	set_inode_flag(inode, FI_ACL_MODE);
3050 	f2fs_mark_inode_dirty_sync(inode, false);
3051 }
3052 
3053 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3054 {
3055 	if (inc)
3056 		inc_nlink(inode);
3057 	else
3058 		drop_nlink(inode);
3059 	f2fs_mark_inode_dirty_sync(inode, true);
3060 }
3061 
3062 static inline void f2fs_i_blocks_write(struct inode *inode,
3063 					block_t diff, bool add, bool claim)
3064 {
3065 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3066 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3067 
3068 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3069 	if (add) {
3070 		if (claim)
3071 			dquot_claim_block(inode, diff);
3072 		else
3073 			dquot_alloc_block_nofail(inode, diff);
3074 	} else {
3075 		dquot_free_block(inode, diff);
3076 	}
3077 
3078 	f2fs_mark_inode_dirty_sync(inode, true);
3079 	if (clean || recover)
3080 		set_inode_flag(inode, FI_AUTO_RECOVER);
3081 }
3082 
3083 static inline bool f2fs_is_atomic_file(struct inode *inode);
3084 
3085 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3086 {
3087 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3088 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3089 
3090 	if (i_size_read(inode) == i_size)
3091 		return;
3092 
3093 	i_size_write(inode, i_size);
3094 
3095 	if (f2fs_is_atomic_file(inode))
3096 		return;
3097 
3098 	f2fs_mark_inode_dirty_sync(inode, true);
3099 	if (clean || recover)
3100 		set_inode_flag(inode, FI_AUTO_RECOVER);
3101 }
3102 
3103 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3104 {
3105 	F2FS_I(inode)->i_current_depth = depth;
3106 	f2fs_mark_inode_dirty_sync(inode, true);
3107 }
3108 
3109 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3110 					unsigned int count)
3111 {
3112 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3113 	f2fs_mark_inode_dirty_sync(inode, true);
3114 }
3115 
3116 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3117 {
3118 	F2FS_I(inode)->i_xattr_nid = xnid;
3119 	f2fs_mark_inode_dirty_sync(inode, true);
3120 }
3121 
3122 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3123 {
3124 	F2FS_I(inode)->i_pino = pino;
3125 	f2fs_mark_inode_dirty_sync(inode, true);
3126 }
3127 
3128 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3129 {
3130 	struct f2fs_inode_info *fi = F2FS_I(inode);
3131 
3132 	if (ri->i_inline & F2FS_INLINE_XATTR)
3133 		set_bit(FI_INLINE_XATTR, fi->flags);
3134 	if (ri->i_inline & F2FS_INLINE_DATA)
3135 		set_bit(FI_INLINE_DATA, fi->flags);
3136 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3137 		set_bit(FI_INLINE_DENTRY, fi->flags);
3138 	if (ri->i_inline & F2FS_DATA_EXIST)
3139 		set_bit(FI_DATA_EXIST, fi->flags);
3140 	if (ri->i_inline & F2FS_INLINE_DOTS)
3141 		set_bit(FI_INLINE_DOTS, fi->flags);
3142 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3143 		set_bit(FI_EXTRA_ATTR, fi->flags);
3144 	if (ri->i_inline & F2FS_PIN_FILE)
3145 		set_bit(FI_PIN_FILE, fi->flags);
3146 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3147 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3148 }
3149 
3150 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3151 {
3152 	ri->i_inline = 0;
3153 
3154 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3155 		ri->i_inline |= F2FS_INLINE_XATTR;
3156 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3157 		ri->i_inline |= F2FS_INLINE_DATA;
3158 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3159 		ri->i_inline |= F2FS_INLINE_DENTRY;
3160 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3161 		ri->i_inline |= F2FS_DATA_EXIST;
3162 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3163 		ri->i_inline |= F2FS_INLINE_DOTS;
3164 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3165 		ri->i_inline |= F2FS_EXTRA_ATTR;
3166 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3167 		ri->i_inline |= F2FS_PIN_FILE;
3168 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3169 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3170 }
3171 
3172 static inline int f2fs_has_extra_attr(struct inode *inode)
3173 {
3174 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3175 }
3176 
3177 static inline int f2fs_has_inline_xattr(struct inode *inode)
3178 {
3179 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3180 }
3181 
3182 static inline int f2fs_compressed_file(struct inode *inode)
3183 {
3184 	return S_ISREG(inode->i_mode) &&
3185 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3186 }
3187 
3188 static inline bool f2fs_need_compress_data(struct inode *inode)
3189 {
3190 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3191 
3192 	if (!f2fs_compressed_file(inode))
3193 		return false;
3194 
3195 	if (compress_mode == COMPR_MODE_FS)
3196 		return true;
3197 	else if (compress_mode == COMPR_MODE_USER &&
3198 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3199 		return true;
3200 
3201 	return false;
3202 }
3203 
3204 static inline unsigned int addrs_per_inode(struct inode *inode)
3205 {
3206 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3207 				get_inline_xattr_addrs(inode);
3208 
3209 	if (!f2fs_compressed_file(inode))
3210 		return addrs;
3211 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3212 }
3213 
3214 static inline unsigned int addrs_per_block(struct inode *inode)
3215 {
3216 	if (!f2fs_compressed_file(inode))
3217 		return DEF_ADDRS_PER_BLOCK;
3218 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3219 }
3220 
3221 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3222 {
3223 	struct f2fs_inode *ri = F2FS_INODE(page);
3224 
3225 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3226 					get_inline_xattr_addrs(inode)]);
3227 }
3228 
3229 static inline int inline_xattr_size(struct inode *inode)
3230 {
3231 	if (f2fs_has_inline_xattr(inode))
3232 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3233 	return 0;
3234 }
3235 
3236 /*
3237  * Notice: check inline_data flag without inode page lock is unsafe.
3238  * It could change at any time by f2fs_convert_inline_page().
3239  */
3240 static inline int f2fs_has_inline_data(struct inode *inode)
3241 {
3242 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3243 }
3244 
3245 static inline int f2fs_exist_data(struct inode *inode)
3246 {
3247 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3248 }
3249 
3250 static inline int f2fs_has_inline_dots(struct inode *inode)
3251 {
3252 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3253 }
3254 
3255 static inline int f2fs_is_mmap_file(struct inode *inode)
3256 {
3257 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3258 }
3259 
3260 static inline bool f2fs_is_pinned_file(struct inode *inode)
3261 {
3262 	return is_inode_flag_set(inode, FI_PIN_FILE);
3263 }
3264 
3265 static inline bool f2fs_is_atomic_file(struct inode *inode)
3266 {
3267 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3268 }
3269 
3270 static inline bool f2fs_is_cow_file(struct inode *inode)
3271 {
3272 	return is_inode_flag_set(inode, FI_COW_FILE);
3273 }
3274 
3275 static inline bool f2fs_is_first_block_written(struct inode *inode)
3276 {
3277 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3278 }
3279 
3280 static inline bool f2fs_is_drop_cache(struct inode *inode)
3281 {
3282 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3283 }
3284 
3285 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3286 {
3287 	struct f2fs_inode *ri = F2FS_INODE(page);
3288 	int extra_size = get_extra_isize(inode);
3289 
3290 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3291 }
3292 
3293 static inline int f2fs_has_inline_dentry(struct inode *inode)
3294 {
3295 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3296 }
3297 
3298 static inline int is_file(struct inode *inode, int type)
3299 {
3300 	return F2FS_I(inode)->i_advise & type;
3301 }
3302 
3303 static inline void set_file(struct inode *inode, int type)
3304 {
3305 	if (is_file(inode, type))
3306 		return;
3307 	F2FS_I(inode)->i_advise |= type;
3308 	f2fs_mark_inode_dirty_sync(inode, true);
3309 }
3310 
3311 static inline void clear_file(struct inode *inode, int type)
3312 {
3313 	if (!is_file(inode, type))
3314 		return;
3315 	F2FS_I(inode)->i_advise &= ~type;
3316 	f2fs_mark_inode_dirty_sync(inode, true);
3317 }
3318 
3319 static inline bool f2fs_is_time_consistent(struct inode *inode)
3320 {
3321 	struct timespec64 ts = inode_get_atime(inode);
3322 
3323 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3324 		return false;
3325 	ts = inode_get_ctime(inode);
3326 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3327 		return false;
3328 	ts = inode_get_mtime(inode);
3329 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3330 		return false;
3331 	return true;
3332 }
3333 
3334 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3335 {
3336 	bool ret;
3337 
3338 	if (dsync) {
3339 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3340 
3341 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3342 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3343 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3344 		return ret;
3345 	}
3346 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3347 			file_keep_isize(inode) ||
3348 			i_size_read(inode) & ~PAGE_MASK)
3349 		return false;
3350 
3351 	if (!f2fs_is_time_consistent(inode))
3352 		return false;
3353 
3354 	spin_lock(&F2FS_I(inode)->i_size_lock);
3355 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3356 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3357 
3358 	return ret;
3359 }
3360 
3361 static inline bool f2fs_readonly(struct super_block *sb)
3362 {
3363 	return sb_rdonly(sb);
3364 }
3365 
3366 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3367 {
3368 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3369 }
3370 
3371 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3372 {
3373 	if (len == 1 && name[0] == '.')
3374 		return true;
3375 
3376 	if (len == 2 && name[0] == '.' && name[1] == '.')
3377 		return true;
3378 
3379 	return false;
3380 }
3381 
3382 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3383 					size_t size, gfp_t flags)
3384 {
3385 	if (time_to_inject(sbi, FAULT_KMALLOC))
3386 		return NULL;
3387 
3388 	return kmalloc(size, flags);
3389 }
3390 
3391 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3392 {
3393 	if (time_to_inject(sbi, FAULT_KMALLOC))
3394 		return NULL;
3395 
3396 	return __getname();
3397 }
3398 
3399 static inline void f2fs_putname(char *buf)
3400 {
3401 	__putname(buf);
3402 }
3403 
3404 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3405 					size_t size, gfp_t flags)
3406 {
3407 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3408 }
3409 
3410 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3411 					size_t size, gfp_t flags)
3412 {
3413 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3414 		return NULL;
3415 
3416 	return kvmalloc(size, flags);
3417 }
3418 
3419 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3420 					size_t size, gfp_t flags)
3421 {
3422 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3423 }
3424 
3425 static inline int get_extra_isize(struct inode *inode)
3426 {
3427 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3428 }
3429 
3430 static inline int get_inline_xattr_addrs(struct inode *inode)
3431 {
3432 	return F2FS_I(inode)->i_inline_xattr_size;
3433 }
3434 
3435 #define f2fs_get_inode_mode(i) \
3436 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3437 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3438 
3439 #define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3440 
3441 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3442 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3443 	offsetof(struct f2fs_inode, i_extra_isize))	\
3444 
3445 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3446 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3447 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3448 		sizeof((f2fs_inode)->field))			\
3449 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3450 
3451 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3452 
3453 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3454 
3455 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3456 					block_t blkaddr, int type);
3457 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3458 					block_t blkaddr, int type)
3459 {
3460 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3461 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3462 			 blkaddr, type);
3463 		f2fs_bug_on(sbi, 1);
3464 	}
3465 }
3466 
3467 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3468 {
3469 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3470 			blkaddr == COMPRESS_ADDR)
3471 		return false;
3472 	return true;
3473 }
3474 
3475 /*
3476  * file.c
3477  */
3478 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3479 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3480 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3481 int f2fs_truncate(struct inode *inode);
3482 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3483 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3484 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3485 		 struct iattr *attr);
3486 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3487 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3488 int f2fs_precache_extents(struct inode *inode);
3489 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3490 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3491 		      struct dentry *dentry, struct fileattr *fa);
3492 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3493 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3494 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3495 int f2fs_pin_file_control(struct inode *inode, bool inc);
3496 
3497 /*
3498  * inode.c
3499  */
3500 void f2fs_set_inode_flags(struct inode *inode);
3501 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3502 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3503 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3504 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3505 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3506 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3507 void f2fs_update_inode_page(struct inode *inode);
3508 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3509 void f2fs_evict_inode(struct inode *inode);
3510 void f2fs_handle_failed_inode(struct inode *inode);
3511 
3512 /*
3513  * namei.c
3514  */
3515 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3516 							bool hot, bool set);
3517 struct dentry *f2fs_get_parent(struct dentry *child);
3518 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3519 		     struct inode **new_inode);
3520 
3521 /*
3522  * dir.c
3523  */
3524 int f2fs_init_casefolded_name(const struct inode *dir,
3525 			      struct f2fs_filename *fname);
3526 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3527 			int lookup, struct f2fs_filename *fname);
3528 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3529 			struct f2fs_filename *fname);
3530 void f2fs_free_filename(struct f2fs_filename *fname);
3531 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3532 			const struct f2fs_filename *fname, int *max_slots);
3533 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3534 			unsigned int start_pos, struct fscrypt_str *fstr);
3535 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3536 			struct f2fs_dentry_ptr *d);
3537 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3538 			const struct f2fs_filename *fname, struct page *dpage);
3539 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3540 			unsigned int current_depth);
3541 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3542 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3543 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3544 					 const struct f2fs_filename *fname,
3545 					 struct page **res_page);
3546 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3547 			const struct qstr *child, struct page **res_page);
3548 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3549 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3550 			struct page **page);
3551 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3552 			struct page *page, struct inode *inode);
3553 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3554 			  const struct f2fs_filename *fname);
3555 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3556 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3557 			unsigned int bit_pos);
3558 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3559 			struct inode *inode, nid_t ino, umode_t mode);
3560 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3561 			struct inode *inode, nid_t ino, umode_t mode);
3562 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3563 			struct inode *inode, nid_t ino, umode_t mode);
3564 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3565 			struct inode *dir, struct inode *inode);
3566 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3567 bool f2fs_empty_dir(struct inode *dir);
3568 
3569 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3570 {
3571 	if (fscrypt_is_nokey_name(dentry))
3572 		return -ENOKEY;
3573 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3574 				inode, inode->i_ino, inode->i_mode);
3575 }
3576 
3577 /*
3578  * super.c
3579  */
3580 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3581 void f2fs_inode_synced(struct inode *inode);
3582 int f2fs_dquot_initialize(struct inode *inode);
3583 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3584 int f2fs_quota_sync(struct super_block *sb, int type);
3585 loff_t max_file_blocks(struct inode *inode);
3586 void f2fs_quota_off_umount(struct super_block *sb);
3587 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3588 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason,
3589 							bool irq_context);
3590 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3591 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3592 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3593 int f2fs_sync_fs(struct super_block *sb, int sync);
3594 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3595 
3596 /*
3597  * hash.c
3598  */
3599 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3600 
3601 /*
3602  * node.c
3603  */
3604 struct node_info;
3605 
3606 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3607 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3608 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3609 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3610 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3611 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3612 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3613 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3614 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3615 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3616 				struct node_info *ni, bool checkpoint_context);
3617 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3618 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3619 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3620 int f2fs_truncate_xattr_node(struct inode *inode);
3621 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3622 					unsigned int seq_id);
3623 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3624 int f2fs_remove_inode_page(struct inode *inode);
3625 struct page *f2fs_new_inode_page(struct inode *inode);
3626 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3627 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3628 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3629 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3630 int f2fs_move_node_page(struct page *node_page, int gc_type);
3631 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3632 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3633 			struct writeback_control *wbc, bool atomic,
3634 			unsigned int *seq_id);
3635 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3636 			struct writeback_control *wbc,
3637 			bool do_balance, enum iostat_type io_type);
3638 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3639 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3640 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3641 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3642 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3643 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3644 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3645 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3646 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3647 			unsigned int segno, struct f2fs_summary_block *sum);
3648 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3649 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3650 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3651 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3652 int __init f2fs_create_node_manager_caches(void);
3653 void f2fs_destroy_node_manager_caches(void);
3654 
3655 /*
3656  * segment.c
3657  */
3658 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3659 int f2fs_commit_atomic_write(struct inode *inode);
3660 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3661 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3662 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3663 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3664 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3665 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3666 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3667 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3668 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3669 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3670 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3671 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3672 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3673 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3674 					struct cp_control *cpc);
3675 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3676 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3677 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3678 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3679 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3680 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3681 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3682 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3683 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3684 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3685 			unsigned int *newseg, bool new_sec, int dir);
3686 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3687 					unsigned int start, unsigned int end);
3688 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3689 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3690 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3691 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3692 					struct cp_control *cpc);
3693 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3694 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3695 					block_t blk_addr);
3696 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3697 						enum iostat_type io_type);
3698 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3699 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3700 			struct f2fs_io_info *fio);
3701 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3702 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3703 			block_t old_blkaddr, block_t new_blkaddr,
3704 			bool recover_curseg, bool recover_newaddr,
3705 			bool from_gc);
3706 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3707 			block_t old_addr, block_t new_addr,
3708 			unsigned char version, bool recover_curseg,
3709 			bool recover_newaddr);
3710 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3711 			block_t old_blkaddr, block_t *new_blkaddr,
3712 			struct f2fs_summary *sum, int type,
3713 			struct f2fs_io_info *fio);
3714 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3715 					block_t blkaddr, unsigned int blkcnt);
3716 void f2fs_wait_on_page_writeback(struct page *page,
3717 			enum page_type type, bool ordered, bool locked);
3718 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3719 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3720 								block_t len);
3721 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3722 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3723 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3724 			unsigned int val, int alloc);
3725 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3726 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3727 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3728 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3729 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3730 int __init f2fs_create_segment_manager_caches(void);
3731 void f2fs_destroy_segment_manager_caches(void);
3732 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3733 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3734 			unsigned int segno);
3735 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3736 			unsigned int segno);
3737 
3738 #define DEF_FRAGMENT_SIZE	4
3739 #define MIN_FRAGMENT_SIZE	1
3740 #define MAX_FRAGMENT_SIZE	512
3741 
3742 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3743 {
3744 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3745 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3746 }
3747 
3748 /*
3749  * checkpoint.c
3750  */
3751 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3752 							unsigned char reason);
3753 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3754 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3755 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3756 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3757 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3758 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3759 					block_t blkaddr, int type);
3760 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3761 			int type, bool sync);
3762 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3763 							unsigned int ra_blocks);
3764 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3765 			long nr_to_write, enum iostat_type io_type);
3766 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3767 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3768 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3769 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3770 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3771 					unsigned int devidx, int type);
3772 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3773 					unsigned int devidx, int type);
3774 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3775 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3776 void f2fs_add_orphan_inode(struct inode *inode);
3777 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3778 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3779 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3780 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3781 void f2fs_remove_dirty_inode(struct inode *inode);
3782 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3783 								bool from_cp);
3784 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3785 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3786 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3787 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3788 int __init f2fs_create_checkpoint_caches(void);
3789 void f2fs_destroy_checkpoint_caches(void);
3790 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3791 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3792 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3793 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3794 
3795 /*
3796  * data.c
3797  */
3798 int __init f2fs_init_bioset(void);
3799 void f2fs_destroy_bioset(void);
3800 int f2fs_init_bio_entry_cache(void);
3801 void f2fs_destroy_bio_entry_cache(void);
3802 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3803 			  enum page_type type);
3804 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3805 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3806 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3807 				struct inode *inode, struct page *page,
3808 				nid_t ino, enum page_type type);
3809 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3810 					struct bio **bio, struct page *page);
3811 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3812 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3813 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3814 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3815 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3816 		block_t blk_addr, sector_t *sector);
3817 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3818 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3819 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3820 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3821 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3822 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3823 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3824 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3825 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3826 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3827 							pgoff_t *next_pgofs);
3828 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3829 			bool for_write);
3830 struct page *f2fs_get_new_data_page(struct inode *inode,
3831 			struct page *ipage, pgoff_t index, bool new_i_size);
3832 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3833 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3834 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3835 			u64 start, u64 len);
3836 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3837 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3838 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3839 int f2fs_write_single_data_page(struct page *page, int *submitted,
3840 				struct bio **bio, sector_t *last_block,
3841 				struct writeback_control *wbc,
3842 				enum iostat_type io_type,
3843 				int compr_blocks, bool allow_balance);
3844 void f2fs_write_failed(struct inode *inode, loff_t to);
3845 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3846 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3847 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3848 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3849 int f2fs_init_post_read_processing(void);
3850 void f2fs_destroy_post_read_processing(void);
3851 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3852 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3853 extern const struct iomap_ops f2fs_iomap_ops;
3854 
3855 /*
3856  * gc.c
3857  */
3858 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3859 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3860 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3861 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3862 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3863 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3864 int __init f2fs_create_garbage_collection_cache(void);
3865 void f2fs_destroy_garbage_collection_cache(void);
3866 /* victim selection function for cleaning and SSR */
3867 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3868 			int gc_type, int type, char alloc_mode,
3869 			unsigned long long age);
3870 
3871 /*
3872  * recovery.c
3873  */
3874 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3875 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3876 int __init f2fs_create_recovery_cache(void);
3877 void f2fs_destroy_recovery_cache(void);
3878 
3879 /*
3880  * debug.c
3881  */
3882 #ifdef CONFIG_F2FS_STAT_FS
3883 struct f2fs_stat_info {
3884 	struct list_head stat_list;
3885 	struct f2fs_sb_info *sbi;
3886 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3887 	int main_area_segs, main_area_sections, main_area_zones;
3888 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3889 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3890 	unsigned long long total_ext[NR_EXTENT_CACHES];
3891 	unsigned long long hit_total[NR_EXTENT_CACHES];
3892 	int ext_tree[NR_EXTENT_CACHES];
3893 	int zombie_tree[NR_EXTENT_CACHES];
3894 	int ext_node[NR_EXTENT_CACHES];
3895 	/* to count memory footprint */
3896 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3897 	/* for read extent cache */
3898 	unsigned long long hit_largest;
3899 	/* for block age extent cache */
3900 	unsigned long long allocated_data_blocks;
3901 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3902 	int ndirty_data, ndirty_qdata;
3903 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3904 	int nats, dirty_nats, sits, dirty_sits;
3905 	int free_nids, avail_nids, alloc_nids;
3906 	int total_count, utilization;
3907 	int nr_wb_cp_data, nr_wb_data;
3908 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3909 	int nr_dio_read, nr_dio_write;
3910 	unsigned int io_skip_bggc, other_skip_bggc;
3911 	int nr_flushing, nr_flushed, flush_list_empty;
3912 	int nr_discarding, nr_discarded;
3913 	int nr_discard_cmd;
3914 	unsigned int undiscard_blks;
3915 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3916 	unsigned int cur_ckpt_time, peak_ckpt_time;
3917 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3918 	int compr_inode, swapfile_inode;
3919 	unsigned long long compr_blocks;
3920 	int aw_cnt, max_aw_cnt;
3921 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3922 	unsigned int bimodal, avg_vblocks;
3923 	int util_free, util_valid, util_invalid;
3924 	int rsvd_segs, overp_segs;
3925 	int dirty_count, node_pages, meta_pages, compress_pages;
3926 	int compress_page_hit;
3927 	int prefree_count, free_segs, free_secs;
3928 	int cp_call_count[MAX_CALL_TYPE], cp_count;
3929 	int gc_call_count[MAX_CALL_TYPE];
3930 	int gc_segs[2][2];
3931 	int gc_secs[2][2];
3932 	int tot_blks, data_blks, node_blks;
3933 	int bg_data_blks, bg_node_blks;
3934 	int curseg[NR_CURSEG_TYPE];
3935 	int cursec[NR_CURSEG_TYPE];
3936 	int curzone[NR_CURSEG_TYPE];
3937 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3938 	unsigned int full_seg[NR_CURSEG_TYPE];
3939 	unsigned int valid_blks[NR_CURSEG_TYPE];
3940 
3941 	unsigned int meta_count[META_MAX];
3942 	unsigned int segment_count[2];
3943 	unsigned int block_count[2];
3944 	unsigned int inplace_count;
3945 	unsigned long long base_mem, cache_mem, page_mem;
3946 };
3947 
3948 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3949 {
3950 	return (struct f2fs_stat_info *)sbi->stat_info;
3951 }
3952 
3953 #define stat_inc_cp_call_count(sbi, foreground)				\
3954 		atomic_inc(&sbi->cp_call_count[(foreground)])
3955 #define stat_inc_cp_count(si)		(F2FS_STAT(sbi)->cp_count++)
3956 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3957 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3958 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3959 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3960 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3961 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3962 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3963 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3964 #define stat_inc_inline_xattr(inode)					\
3965 	do {								\
3966 		if (f2fs_has_inline_xattr(inode))			\
3967 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3968 	} while (0)
3969 #define stat_dec_inline_xattr(inode)					\
3970 	do {								\
3971 		if (f2fs_has_inline_xattr(inode))			\
3972 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3973 	} while (0)
3974 #define stat_inc_inline_inode(inode)					\
3975 	do {								\
3976 		if (f2fs_has_inline_data(inode))			\
3977 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3978 	} while (0)
3979 #define stat_dec_inline_inode(inode)					\
3980 	do {								\
3981 		if (f2fs_has_inline_data(inode))			\
3982 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3983 	} while (0)
3984 #define stat_inc_inline_dir(inode)					\
3985 	do {								\
3986 		if (f2fs_has_inline_dentry(inode))			\
3987 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3988 	} while (0)
3989 #define stat_dec_inline_dir(inode)					\
3990 	do {								\
3991 		if (f2fs_has_inline_dentry(inode))			\
3992 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3993 	} while (0)
3994 #define stat_inc_compr_inode(inode)					\
3995 	do {								\
3996 		if (f2fs_compressed_file(inode))			\
3997 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3998 	} while (0)
3999 #define stat_dec_compr_inode(inode)					\
4000 	do {								\
4001 		if (f2fs_compressed_file(inode))			\
4002 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4003 	} while (0)
4004 #define stat_add_compr_blocks(inode, blocks)				\
4005 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4006 #define stat_sub_compr_blocks(inode, blocks)				\
4007 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4008 #define stat_inc_swapfile_inode(inode)					\
4009 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4010 #define stat_dec_swapfile_inode(inode)					\
4011 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4012 #define stat_inc_atomic_inode(inode)					\
4013 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4014 #define stat_dec_atomic_inode(inode)					\
4015 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4016 #define stat_inc_meta_count(sbi, blkaddr)				\
4017 	do {								\
4018 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4019 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4020 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4021 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4022 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4023 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4024 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4025 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4026 	} while (0)
4027 #define stat_inc_seg_type(sbi, curseg)					\
4028 		((sbi)->segment_count[(curseg)->alloc_type]++)
4029 #define stat_inc_block_count(sbi, curseg)				\
4030 		((sbi)->block_count[(curseg)->alloc_type]++)
4031 #define stat_inc_inplace_blocks(sbi)					\
4032 		(atomic_inc(&(sbi)->inplace_count))
4033 #define stat_update_max_atomic_write(inode)				\
4034 	do {								\
4035 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4036 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4037 		if (cur > max)						\
4038 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4039 	} while (0)
4040 #define stat_inc_gc_call_count(sbi, foreground)				\
4041 		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4042 #define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4043 		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4044 #define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4045 		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4046 
4047 #define stat_inc_tot_blk_count(si, blks)				\
4048 	((si)->tot_blks += (blks))
4049 
4050 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4051 	do {								\
4052 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4053 		stat_inc_tot_blk_count(si, blks);			\
4054 		si->data_blks += (blks);				\
4055 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4056 	} while (0)
4057 
4058 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4059 	do {								\
4060 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4061 		stat_inc_tot_blk_count(si, blks);			\
4062 		si->node_blks += (blks);				\
4063 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4064 	} while (0)
4065 
4066 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4067 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4068 void __init f2fs_create_root_stats(void);
4069 void f2fs_destroy_root_stats(void);
4070 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4071 #else
4072 #define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4073 #define stat_inc_cp_count(sbi)				do { } while (0)
4074 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4075 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4076 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4077 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4078 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4079 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4080 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4081 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4082 #define stat_inc_inline_xattr(inode)			do { } while (0)
4083 #define stat_dec_inline_xattr(inode)			do { } while (0)
4084 #define stat_inc_inline_inode(inode)			do { } while (0)
4085 #define stat_dec_inline_inode(inode)			do { } while (0)
4086 #define stat_inc_inline_dir(inode)			do { } while (0)
4087 #define stat_dec_inline_dir(inode)			do { } while (0)
4088 #define stat_inc_compr_inode(inode)			do { } while (0)
4089 #define stat_dec_compr_inode(inode)			do { } while (0)
4090 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4091 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4092 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4093 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4094 #define stat_inc_atomic_inode(inode)			do { } while (0)
4095 #define stat_dec_atomic_inode(inode)			do { } while (0)
4096 #define stat_update_max_atomic_write(inode)		do { } while (0)
4097 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4098 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4099 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4100 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4101 #define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4102 #define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4103 #define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4104 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4105 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4106 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4107 
4108 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
4109 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
4110 static inline void __init f2fs_create_root_stats(void) { }
4111 static inline void f2fs_destroy_root_stats(void) { }
4112 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4113 #endif
4114 
4115 extern const struct file_operations f2fs_dir_operations;
4116 extern const struct file_operations f2fs_file_operations;
4117 extern const struct inode_operations f2fs_file_inode_operations;
4118 extern const struct address_space_operations f2fs_dblock_aops;
4119 extern const struct address_space_operations f2fs_node_aops;
4120 extern const struct address_space_operations f2fs_meta_aops;
4121 extern const struct inode_operations f2fs_dir_inode_operations;
4122 extern const struct inode_operations f2fs_symlink_inode_operations;
4123 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4124 extern const struct inode_operations f2fs_special_inode_operations;
4125 extern struct kmem_cache *f2fs_inode_entry_slab;
4126 
4127 /*
4128  * inline.c
4129  */
4130 bool f2fs_may_inline_data(struct inode *inode);
4131 bool f2fs_sanity_check_inline_data(struct inode *inode);
4132 bool f2fs_may_inline_dentry(struct inode *inode);
4133 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4134 void f2fs_truncate_inline_inode(struct inode *inode,
4135 						struct page *ipage, u64 from);
4136 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4137 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4138 int f2fs_convert_inline_inode(struct inode *inode);
4139 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4140 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4141 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4142 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4143 					const struct f2fs_filename *fname,
4144 					struct page **res_page);
4145 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4146 			struct page *ipage);
4147 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4148 			struct inode *inode, nid_t ino, umode_t mode);
4149 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4150 				struct page *page, struct inode *dir,
4151 				struct inode *inode);
4152 bool f2fs_empty_inline_dir(struct inode *dir);
4153 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4154 			struct fscrypt_str *fstr);
4155 int f2fs_inline_data_fiemap(struct inode *inode,
4156 			struct fiemap_extent_info *fieinfo,
4157 			__u64 start, __u64 len);
4158 
4159 /*
4160  * shrinker.c
4161  */
4162 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4163 			struct shrink_control *sc);
4164 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4165 			struct shrink_control *sc);
4166 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4167 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4168 
4169 /*
4170  * extent_cache.c
4171  */
4172 bool sanity_check_extent_cache(struct inode *inode);
4173 void f2fs_init_extent_tree(struct inode *inode);
4174 void f2fs_drop_extent_tree(struct inode *inode);
4175 void f2fs_destroy_extent_node(struct inode *inode);
4176 void f2fs_destroy_extent_tree(struct inode *inode);
4177 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4178 int __init f2fs_create_extent_cache(void);
4179 void f2fs_destroy_extent_cache(void);
4180 
4181 /* read extent cache ops */
4182 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4183 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4184 			struct extent_info *ei);
4185 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4186 			block_t *blkaddr);
4187 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4188 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4189 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4190 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4191 			int nr_shrink);
4192 
4193 /* block age extent cache ops */
4194 void f2fs_init_age_extent_tree(struct inode *inode);
4195 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4196 			struct extent_info *ei);
4197 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4198 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4199 			pgoff_t fofs, unsigned int len);
4200 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4201 			int nr_shrink);
4202 
4203 /*
4204  * sysfs.c
4205  */
4206 #define MIN_RA_MUL	2
4207 #define MAX_RA_MUL	256
4208 
4209 int __init f2fs_init_sysfs(void);
4210 void f2fs_exit_sysfs(void);
4211 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4212 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4213 
4214 /* verity.c */
4215 extern const struct fsverity_operations f2fs_verityops;
4216 
4217 /*
4218  * crypto support
4219  */
4220 static inline bool f2fs_encrypted_file(struct inode *inode)
4221 {
4222 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4223 }
4224 
4225 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4226 {
4227 #ifdef CONFIG_FS_ENCRYPTION
4228 	file_set_encrypt(inode);
4229 	f2fs_set_inode_flags(inode);
4230 #endif
4231 }
4232 
4233 /*
4234  * Returns true if the reads of the inode's data need to undergo some
4235  * postprocessing step, like decryption or authenticity verification.
4236  */
4237 static inline bool f2fs_post_read_required(struct inode *inode)
4238 {
4239 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4240 		f2fs_compressed_file(inode);
4241 }
4242 
4243 /*
4244  * compress.c
4245  */
4246 #ifdef CONFIG_F2FS_FS_COMPRESSION
4247 bool f2fs_is_compressed_page(struct page *page);
4248 struct page *f2fs_compress_control_page(struct page *page);
4249 int f2fs_prepare_compress_overwrite(struct inode *inode,
4250 			struct page **pagep, pgoff_t index, void **fsdata);
4251 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4252 					pgoff_t index, unsigned copied);
4253 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4254 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4255 bool f2fs_is_compress_backend_ready(struct inode *inode);
4256 bool f2fs_is_compress_level_valid(int alg, int lvl);
4257 int __init f2fs_init_compress_mempool(void);
4258 void f2fs_destroy_compress_mempool(void);
4259 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4260 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4261 				block_t blkaddr, bool in_task);
4262 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4263 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4264 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4265 				int index, int nr_pages, bool uptodate);
4266 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4267 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4268 int f2fs_write_multi_pages(struct compress_ctx *cc,
4269 						int *submitted,
4270 						struct writeback_control *wbc,
4271 						enum iostat_type io_type);
4272 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4273 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4274 				pgoff_t fofs, block_t blkaddr,
4275 				unsigned int llen, unsigned int c_len);
4276 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4277 				unsigned nr_pages, sector_t *last_block_in_bio,
4278 				bool is_readahead, bool for_write);
4279 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4280 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4281 				bool in_task);
4282 void f2fs_put_page_dic(struct page *page, bool in_task);
4283 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4284 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4285 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4286 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4287 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4288 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4289 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4290 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4291 int __init f2fs_init_compress_cache(void);
4292 void f2fs_destroy_compress_cache(void);
4293 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4294 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4295 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4296 						nid_t ino, block_t blkaddr);
4297 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4298 								block_t blkaddr);
4299 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4300 #define inc_compr_inode_stat(inode)					\
4301 	do {								\
4302 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4303 		sbi->compr_new_inode++;					\
4304 	} while (0)
4305 #define add_compr_block_stat(inode, blocks)				\
4306 	do {								\
4307 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4308 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4309 		sbi->compr_written_block += blocks;			\
4310 		sbi->compr_saved_block += diff;				\
4311 	} while (0)
4312 #else
4313 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
4314 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4315 {
4316 	if (!f2fs_compressed_file(inode))
4317 		return true;
4318 	/* not support compression */
4319 	return false;
4320 }
4321 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
4322 static inline struct page *f2fs_compress_control_page(struct page *page)
4323 {
4324 	WARN_ON_ONCE(1);
4325 	return ERR_PTR(-EINVAL);
4326 }
4327 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
4328 static inline void f2fs_destroy_compress_mempool(void) { }
4329 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4330 				bool in_task) { }
4331 static inline void f2fs_end_read_compressed_page(struct page *page,
4332 				bool failed, block_t blkaddr, bool in_task)
4333 {
4334 	WARN_ON_ONCE(1);
4335 }
4336 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4337 {
4338 	WARN_ON_ONCE(1);
4339 }
4340 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
4341 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
4342 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
4343 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
4344 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
4345 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
4346 static inline int __init f2fs_init_compress_cache(void) { return 0; }
4347 static inline void f2fs_destroy_compress_cache(void) { }
4348 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4349 				block_t blkaddr) { }
4350 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4351 				struct page *page, nid_t ino, block_t blkaddr) { }
4352 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4353 				struct page *page, block_t blkaddr) { return false; }
4354 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4355 							nid_t ino) { }
4356 #define inc_compr_inode_stat(inode)		do { } while (0)
4357 static inline void f2fs_update_read_extent_tree_range_compressed(
4358 				struct inode *inode,
4359 				pgoff_t fofs, block_t blkaddr,
4360 				unsigned int llen, unsigned int c_len) { }
4361 #endif
4362 
4363 static inline int set_compress_context(struct inode *inode)
4364 {
4365 #ifdef CONFIG_F2FS_FS_COMPRESSION
4366 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4367 
4368 	F2FS_I(inode)->i_compress_algorithm =
4369 			F2FS_OPTION(sbi).compress_algorithm;
4370 	F2FS_I(inode)->i_log_cluster_size =
4371 			F2FS_OPTION(sbi).compress_log_size;
4372 	F2FS_I(inode)->i_compress_flag =
4373 			F2FS_OPTION(sbi).compress_chksum ?
4374 				BIT(COMPRESS_CHKSUM) : 0;
4375 	F2FS_I(inode)->i_cluster_size =
4376 			BIT(F2FS_I(inode)->i_log_cluster_size);
4377 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4378 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4379 			F2FS_OPTION(sbi).compress_level)
4380 		F2FS_I(inode)->i_compress_level =
4381 				F2FS_OPTION(sbi).compress_level;
4382 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4383 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4384 	stat_inc_compr_inode(inode);
4385 	inc_compr_inode_stat(inode);
4386 	f2fs_mark_inode_dirty_sync(inode, true);
4387 	return 0;
4388 #else
4389 	return -EOPNOTSUPP;
4390 #endif
4391 }
4392 
4393 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4394 {
4395 	struct f2fs_inode_info *fi = F2FS_I(inode);
4396 
4397 	if (!f2fs_compressed_file(inode))
4398 		return true;
4399 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4400 		return false;
4401 
4402 	fi->i_flags &= ~F2FS_COMPR_FL;
4403 	stat_dec_compr_inode(inode);
4404 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4405 	f2fs_mark_inode_dirty_sync(inode, true);
4406 	return true;
4407 }
4408 
4409 #define F2FS_FEATURE_FUNCS(name, flagname) \
4410 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4411 { \
4412 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4413 }
4414 
4415 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4416 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4417 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4418 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4419 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4420 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4421 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4422 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4423 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4424 F2FS_FEATURE_FUNCS(verity, VERITY);
4425 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4426 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4427 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4428 F2FS_FEATURE_FUNCS(readonly, RO);
4429 
4430 #ifdef CONFIG_BLK_DEV_ZONED
4431 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4432 				    block_t blkaddr)
4433 {
4434 	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4435 
4436 	return test_bit(zno, FDEV(devi).blkz_seq);
4437 }
4438 #endif
4439 
4440 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4441 				  struct block_device *bdev)
4442 {
4443 	int i;
4444 
4445 	if (!f2fs_is_multi_device(sbi))
4446 		return 0;
4447 
4448 	for (i = 0; i < sbi->s_ndevs; i++)
4449 		if (FDEV(i).bdev == bdev)
4450 			return i;
4451 
4452 	WARN_ON(1);
4453 	return -1;
4454 }
4455 
4456 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4457 {
4458 	return f2fs_sb_has_blkzoned(sbi);
4459 }
4460 
4461 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4462 {
4463 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4464 }
4465 
4466 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4467 {
4468 	int i;
4469 
4470 	if (!f2fs_is_multi_device(sbi))
4471 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4472 
4473 	for (i = 0; i < sbi->s_ndevs; i++)
4474 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4475 			return true;
4476 	return false;
4477 }
4478 
4479 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4480 {
4481 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4482 					f2fs_hw_should_discard(sbi);
4483 }
4484 
4485 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4486 {
4487 	int i;
4488 
4489 	if (!f2fs_is_multi_device(sbi))
4490 		return bdev_read_only(sbi->sb->s_bdev);
4491 
4492 	for (i = 0; i < sbi->s_ndevs; i++)
4493 		if (bdev_read_only(FDEV(i).bdev))
4494 			return true;
4495 	return false;
4496 }
4497 
4498 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4499 {
4500 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4501 }
4502 
4503 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4504 {
4505 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4506 }
4507 
4508 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4509 {
4510 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4511 }
4512 
4513 static inline bool f2fs_may_compress(struct inode *inode)
4514 {
4515 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4516 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4517 		f2fs_is_mmap_file(inode))
4518 		return false;
4519 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4520 }
4521 
4522 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4523 						u64 blocks, bool add)
4524 {
4525 	struct f2fs_inode_info *fi = F2FS_I(inode);
4526 	int diff = fi->i_cluster_size - blocks;
4527 
4528 	/* don't update i_compr_blocks if saved blocks were released */
4529 	if (!add && !atomic_read(&fi->i_compr_blocks))
4530 		return;
4531 
4532 	if (add) {
4533 		atomic_add(diff, &fi->i_compr_blocks);
4534 		stat_add_compr_blocks(inode, diff);
4535 	} else {
4536 		atomic_sub(diff, &fi->i_compr_blocks);
4537 		stat_sub_compr_blocks(inode, diff);
4538 	}
4539 	f2fs_mark_inode_dirty_sync(inode, true);
4540 }
4541 
4542 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4543 								int flag)
4544 {
4545 	if (!f2fs_is_multi_device(sbi))
4546 		return false;
4547 	if (flag != F2FS_GET_BLOCK_DIO)
4548 		return false;
4549 	return sbi->aligned_blksize;
4550 }
4551 
4552 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4553 {
4554 	return fsverity_active(inode) &&
4555 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4556 }
4557 
4558 #ifdef CONFIG_F2FS_FAULT_INJECTION
4559 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4560 							unsigned int type);
4561 #else
4562 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4563 #endif
4564 
4565 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4566 {
4567 #ifdef CONFIG_QUOTA
4568 	if (f2fs_sb_has_quota_ino(sbi))
4569 		return true;
4570 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4571 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4572 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4573 		return true;
4574 #endif
4575 	return false;
4576 }
4577 
4578 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4579 {
4580 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4581 }
4582 
4583 static inline void f2fs_io_schedule_timeout(long timeout)
4584 {
4585 	set_current_state(TASK_UNINTERRUPTIBLE);
4586 	io_schedule_timeout(timeout);
4587 }
4588 
4589 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4590 					enum page_type type)
4591 {
4592 	if (unlikely(f2fs_cp_error(sbi)))
4593 		return;
4594 
4595 	if (ofs == sbi->page_eio_ofs[type]) {
4596 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4597 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4598 	} else {
4599 		sbi->page_eio_ofs[type] = ofs;
4600 		sbi->page_eio_cnt[type] = 0;
4601 	}
4602 }
4603 
4604 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4605 {
4606 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4607 }
4608 
4609 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4610 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4611 
4612 #endif /* _LINUX_F2FS_H */
4613