xref: /linux/fs/f2fs/f2fs.h (revision 4e0ae876f77bc01a7e77724dea57b4b82bd53244)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #include <linux/fscrypt.h>
28 
29 #ifdef CONFIG_F2FS_CHECK_FS
30 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
31 #else
32 #define f2fs_bug_on(sbi, condition)					\
33 	do {								\
34 		if (unlikely(condition)) {				\
35 			WARN_ON(1);					\
36 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
37 		}							\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_MAX,
58 };
59 
60 #ifdef CONFIG_F2FS_FAULT_INJECTION
61 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
62 
63 struct f2fs_fault_info {
64 	atomic_t inject_ops;
65 	unsigned int inject_rate;
66 	unsigned int inject_type;
67 };
68 
69 extern const char *f2fs_fault_name[FAULT_MAX];
70 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
71 #endif
72 
73 /*
74  * For mount options
75  */
76 #define F2FS_MOUNT_BG_GC		0x00000001
77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
78 #define F2FS_MOUNT_DISCARD		0x00000004
79 #define F2FS_MOUNT_NOHEAP		0x00000008
80 #define F2FS_MOUNT_XATTR_USER		0x00000010
81 #define F2FS_MOUNT_POSIX_ACL		0x00000020
82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
83 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
84 #define F2FS_MOUNT_INLINE_DATA		0x00000100
85 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
86 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
87 #define F2FS_MOUNT_NOBARRIER		0x00000800
88 #define F2FS_MOUNT_FASTBOOT		0x00001000
89 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
90 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
91 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
92 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
93 #define F2FS_MOUNT_ADAPTIVE		0x00020000
94 #define F2FS_MOUNT_LFS			0x00040000
95 #define F2FS_MOUNT_USRQUOTA		0x00080000
96 #define F2FS_MOUNT_GRPQUOTA		0x00100000
97 #define F2FS_MOUNT_PRJQUOTA		0x00200000
98 #define F2FS_MOUNT_QUOTA		0x00400000
99 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
100 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
101 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
102 
103 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
104 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
105 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
106 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
107 
108 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
109 		typecheck(unsigned long long, b) &&			\
110 		((long long)((a) - (b)) > 0))
111 
112 typedef u32 block_t;	/*
113 			 * should not change u32, since it is the on-disk block
114 			 * address format, __le32.
115 			 */
116 typedef u32 nid_t;
117 
118 struct f2fs_mount_info {
119 	unsigned int opt;
120 	int write_io_size_bits;		/* Write IO size bits */
121 	block_t root_reserved_blocks;	/* root reserved blocks */
122 	kuid_t s_resuid;		/* reserved blocks for uid */
123 	kgid_t s_resgid;		/* reserved blocks for gid */
124 	int active_logs;		/* # of active logs */
125 	int inline_xattr_size;		/* inline xattr size */
126 #ifdef CONFIG_F2FS_FAULT_INJECTION
127 	struct f2fs_fault_info fault_info;	/* For fault injection */
128 #endif
129 #ifdef CONFIG_QUOTA
130 	/* Names of quota files with journalled quota */
131 	char *s_qf_names[MAXQUOTAS];
132 	int s_jquota_fmt;			/* Format of quota to use */
133 #endif
134 	/* For which write hints are passed down to block layer */
135 	int whint_mode;
136 	int alloc_mode;			/* segment allocation policy */
137 	int fsync_mode;			/* fsync policy */
138 	bool test_dummy_encryption;	/* test dummy encryption */
139 };
140 
141 #define F2FS_FEATURE_ENCRYPT		0x0001
142 #define F2FS_FEATURE_BLKZONED		0x0002
143 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
144 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
145 #define F2FS_FEATURE_PRJQUOTA		0x0010
146 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
147 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
148 #define F2FS_FEATURE_QUOTA_INO		0x0080
149 #define F2FS_FEATURE_INODE_CRTIME	0x0100
150 #define F2FS_FEATURE_LOST_FOUND		0x0200
151 #define F2FS_FEATURE_VERITY		0x0400	/* reserved */
152 #define F2FS_FEATURE_SB_CHKSUM		0x0800
153 
154 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
155 	((raw_super->feature & cpu_to_le32(mask)) != 0)
156 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
157 #define F2FS_SET_FEATURE(sbi, mask)					\
158 	(sbi->raw_super->feature |= cpu_to_le32(mask))
159 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
160 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
161 
162 /*
163  * Default values for user and/or group using reserved blocks
164  */
165 #define	F2FS_DEF_RESUID		0
166 #define	F2FS_DEF_RESGID		0
167 
168 /*
169  * For checkpoint manager
170  */
171 enum {
172 	NAT_BITMAP,
173 	SIT_BITMAP
174 };
175 
176 #define	CP_UMOUNT	0x00000001
177 #define	CP_FASTBOOT	0x00000002
178 #define	CP_SYNC		0x00000004
179 #define	CP_RECOVERY	0x00000008
180 #define	CP_DISCARD	0x00000010
181 #define CP_TRIMMED	0x00000020
182 #define CP_PAUSE	0x00000040
183 
184 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
185 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
186 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
187 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
188 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
189 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
190 #define DEF_CP_INTERVAL			60	/* 60 secs */
191 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
192 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
193 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
194 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
195 
196 struct cp_control {
197 	int reason;
198 	__u64 trim_start;
199 	__u64 trim_end;
200 	__u64 trim_minlen;
201 };
202 
203 /*
204  * indicate meta/data type
205  */
206 enum {
207 	META_CP,
208 	META_NAT,
209 	META_SIT,
210 	META_SSA,
211 	META_MAX,
212 	META_POR,
213 	DATA_GENERIC,
214 	META_GENERIC,
215 };
216 
217 /* for the list of ino */
218 enum {
219 	ORPHAN_INO,		/* for orphan ino list */
220 	APPEND_INO,		/* for append ino list */
221 	UPDATE_INO,		/* for update ino list */
222 	TRANS_DIR_INO,		/* for trasactions dir ino list */
223 	FLUSH_INO,		/* for multiple device flushing */
224 	MAX_INO_ENTRY,		/* max. list */
225 };
226 
227 struct ino_entry {
228 	struct list_head list;		/* list head */
229 	nid_t ino;			/* inode number */
230 	unsigned int dirty_device;	/* dirty device bitmap */
231 };
232 
233 /* for the list of inodes to be GCed */
234 struct inode_entry {
235 	struct list_head list;	/* list head */
236 	struct inode *inode;	/* vfs inode pointer */
237 };
238 
239 struct fsync_node_entry {
240 	struct list_head list;	/* list head */
241 	struct page *page;	/* warm node page pointer */
242 	unsigned int seq_id;	/* sequence id */
243 };
244 
245 /* for the bitmap indicate blocks to be discarded */
246 struct discard_entry {
247 	struct list_head list;	/* list head */
248 	block_t start_blkaddr;	/* start blockaddr of current segment */
249 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
250 };
251 
252 /* default discard granularity of inner discard thread, unit: block count */
253 #define DEFAULT_DISCARD_GRANULARITY		16
254 
255 /* max discard pend list number */
256 #define MAX_PLIST_NUM		512
257 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
258 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
259 
260 enum {
261 	D_PREP,			/* initial */
262 	D_PARTIAL,		/* partially submitted */
263 	D_SUBMIT,		/* all submitted */
264 	D_DONE,			/* finished */
265 };
266 
267 struct discard_info {
268 	block_t lstart;			/* logical start address */
269 	block_t len;			/* length */
270 	block_t start;			/* actual start address in dev */
271 };
272 
273 struct discard_cmd {
274 	struct rb_node rb_node;		/* rb node located in rb-tree */
275 	union {
276 		struct {
277 			block_t lstart;	/* logical start address */
278 			block_t len;	/* length */
279 			block_t start;	/* actual start address in dev */
280 		};
281 		struct discard_info di;	/* discard info */
282 
283 	};
284 	struct list_head list;		/* command list */
285 	struct completion wait;		/* compleation */
286 	struct block_device *bdev;	/* bdev */
287 	unsigned short ref;		/* reference count */
288 	unsigned char state;		/* state */
289 	unsigned char queued;		/* queued discard */
290 	int error;			/* bio error */
291 	spinlock_t lock;		/* for state/bio_ref updating */
292 	unsigned short bio_ref;		/* bio reference count */
293 };
294 
295 enum {
296 	DPOLICY_BG,
297 	DPOLICY_FORCE,
298 	DPOLICY_FSTRIM,
299 	DPOLICY_UMOUNT,
300 	MAX_DPOLICY,
301 };
302 
303 struct discard_policy {
304 	int type;			/* type of discard */
305 	unsigned int min_interval;	/* used for candidates exist */
306 	unsigned int mid_interval;	/* used for device busy */
307 	unsigned int max_interval;	/* used for candidates not exist */
308 	unsigned int max_requests;	/* # of discards issued per round */
309 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
310 	bool io_aware;			/* issue discard in idle time */
311 	bool sync;			/* submit discard with REQ_SYNC flag */
312 	bool ordered;			/* issue discard by lba order */
313 	unsigned int granularity;	/* discard granularity */
314 	int timeout;			/* discard timeout for put_super */
315 };
316 
317 struct discard_cmd_control {
318 	struct task_struct *f2fs_issue_discard;	/* discard thread */
319 	struct list_head entry_list;		/* 4KB discard entry list */
320 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
321 	struct list_head wait_list;		/* store on-flushing entries */
322 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
323 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
324 	unsigned int discard_wake;		/* to wake up discard thread */
325 	struct mutex cmd_lock;
326 	unsigned int nr_discards;		/* # of discards in the list */
327 	unsigned int max_discards;		/* max. discards to be issued */
328 	unsigned int discard_granularity;	/* discard granularity */
329 	unsigned int undiscard_blks;		/* # of undiscard blocks */
330 	unsigned int next_pos;			/* next discard position */
331 	atomic_t issued_discard;		/* # of issued discard */
332 	atomic_t queued_discard;		/* # of queued discard */
333 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
334 	struct rb_root_cached root;		/* root of discard rb-tree */
335 	bool rbtree_check;			/* config for consistence check */
336 };
337 
338 /* for the list of fsync inodes, used only during recovery */
339 struct fsync_inode_entry {
340 	struct list_head list;	/* list head */
341 	struct inode *inode;	/* vfs inode pointer */
342 	block_t blkaddr;	/* block address locating the last fsync */
343 	block_t last_dentry;	/* block address locating the last dentry */
344 };
345 
346 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
347 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
348 
349 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
350 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
351 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
352 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
353 
354 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
355 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
356 
357 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
358 {
359 	int before = nats_in_cursum(journal);
360 
361 	journal->n_nats = cpu_to_le16(before + i);
362 	return before;
363 }
364 
365 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
366 {
367 	int before = sits_in_cursum(journal);
368 
369 	journal->n_sits = cpu_to_le16(before + i);
370 	return before;
371 }
372 
373 static inline bool __has_cursum_space(struct f2fs_journal *journal,
374 							int size, int type)
375 {
376 	if (type == NAT_JOURNAL)
377 		return size <= MAX_NAT_JENTRIES(journal);
378 	return size <= MAX_SIT_JENTRIES(journal);
379 }
380 
381 /*
382  * ioctl commands
383  */
384 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
385 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
386 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
387 
388 #define F2FS_IOCTL_MAGIC		0xf5
389 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
390 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
391 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
392 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
393 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
394 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
395 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
396 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
397 						struct f2fs_defragment)
398 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
399 						struct f2fs_move_range)
400 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
401 						struct f2fs_flush_device)
402 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
403 						struct f2fs_gc_range)
404 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
405 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
406 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
407 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
408 
409 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
410 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
411 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
412 
413 /*
414  * should be same as XFS_IOC_GOINGDOWN.
415  * Flags for going down operation used by FS_IOC_GOINGDOWN
416  */
417 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
418 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
419 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
420 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
421 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
422 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
423 
424 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
425 /*
426  * ioctl commands in 32 bit emulation
427  */
428 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
429 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
430 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
431 #endif
432 
433 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
434 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
435 
436 struct f2fs_gc_range {
437 	u32 sync;
438 	u64 start;
439 	u64 len;
440 };
441 
442 struct f2fs_defragment {
443 	u64 start;
444 	u64 len;
445 };
446 
447 struct f2fs_move_range {
448 	u32 dst_fd;		/* destination fd */
449 	u64 pos_in;		/* start position in src_fd */
450 	u64 pos_out;		/* start position in dst_fd */
451 	u64 len;		/* size to move */
452 };
453 
454 struct f2fs_flush_device {
455 	u32 dev_num;		/* device number to flush */
456 	u32 segments;		/* # of segments to flush */
457 };
458 
459 /* for inline stuff */
460 #define DEF_INLINE_RESERVED_SIZE	1
461 static inline int get_extra_isize(struct inode *inode);
462 static inline int get_inline_xattr_addrs(struct inode *inode);
463 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
464 				(CUR_ADDRS_PER_INODE(inode) -		\
465 				get_inline_xattr_addrs(inode) -	\
466 				DEF_INLINE_RESERVED_SIZE))
467 
468 /* for inline dir */
469 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
470 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
471 				BITS_PER_BYTE + 1))
472 #define INLINE_DENTRY_BITMAP_SIZE(inode)	((NR_INLINE_DENTRY(inode) + \
473 					BITS_PER_BYTE - 1) / BITS_PER_BYTE)
474 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
475 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
476 				NR_INLINE_DENTRY(inode) + \
477 				INLINE_DENTRY_BITMAP_SIZE(inode)))
478 
479 /*
480  * For INODE and NODE manager
481  */
482 /* for directory operations */
483 struct f2fs_dentry_ptr {
484 	struct inode *inode;
485 	void *bitmap;
486 	struct f2fs_dir_entry *dentry;
487 	__u8 (*filename)[F2FS_SLOT_LEN];
488 	int max;
489 	int nr_bitmap;
490 };
491 
492 static inline void make_dentry_ptr_block(struct inode *inode,
493 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
494 {
495 	d->inode = inode;
496 	d->max = NR_DENTRY_IN_BLOCK;
497 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
498 	d->bitmap = t->dentry_bitmap;
499 	d->dentry = t->dentry;
500 	d->filename = t->filename;
501 }
502 
503 static inline void make_dentry_ptr_inline(struct inode *inode,
504 					struct f2fs_dentry_ptr *d, void *t)
505 {
506 	int entry_cnt = NR_INLINE_DENTRY(inode);
507 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
508 	int reserved_size = INLINE_RESERVED_SIZE(inode);
509 
510 	d->inode = inode;
511 	d->max = entry_cnt;
512 	d->nr_bitmap = bitmap_size;
513 	d->bitmap = t;
514 	d->dentry = t + bitmap_size + reserved_size;
515 	d->filename = t + bitmap_size + reserved_size +
516 					SIZE_OF_DIR_ENTRY * entry_cnt;
517 }
518 
519 /*
520  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
521  * as its node offset to distinguish from index node blocks.
522  * But some bits are used to mark the node block.
523  */
524 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
525 				>> OFFSET_BIT_SHIFT)
526 enum {
527 	ALLOC_NODE,			/* allocate a new node page if needed */
528 	LOOKUP_NODE,			/* look up a node without readahead */
529 	LOOKUP_NODE_RA,			/*
530 					 * look up a node with readahead called
531 					 * by get_data_block.
532 					 */
533 };
534 
535 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
536 
537 /* maximum retry quota flush count */
538 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
539 
540 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
541 
542 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
543 
544 /* for in-memory extent cache entry */
545 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
546 
547 /* number of extent info in extent cache we try to shrink */
548 #define EXTENT_CACHE_SHRINK_NUMBER	128
549 
550 struct rb_entry {
551 	struct rb_node rb_node;		/* rb node located in rb-tree */
552 	unsigned int ofs;		/* start offset of the entry */
553 	unsigned int len;		/* length of the entry */
554 };
555 
556 struct extent_info {
557 	unsigned int fofs;		/* start offset in a file */
558 	unsigned int len;		/* length of the extent */
559 	u32 blk;			/* start block address of the extent */
560 };
561 
562 struct extent_node {
563 	struct rb_node rb_node;		/* rb node located in rb-tree */
564 	struct extent_info ei;		/* extent info */
565 	struct list_head list;		/* node in global extent list of sbi */
566 	struct extent_tree *et;		/* extent tree pointer */
567 };
568 
569 struct extent_tree {
570 	nid_t ino;			/* inode number */
571 	struct rb_root_cached root;	/* root of extent info rb-tree */
572 	struct extent_node *cached_en;	/* recently accessed extent node */
573 	struct extent_info largest;	/* largested extent info */
574 	struct list_head list;		/* to be used by sbi->zombie_list */
575 	rwlock_t lock;			/* protect extent info rb-tree */
576 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
577 	bool largest_updated;		/* largest extent updated */
578 };
579 
580 /*
581  * This structure is taken from ext4_map_blocks.
582  *
583  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
584  */
585 #define F2FS_MAP_NEW		(1 << BH_New)
586 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
587 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
588 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
589 				F2FS_MAP_UNWRITTEN)
590 
591 struct f2fs_map_blocks {
592 	block_t m_pblk;
593 	block_t m_lblk;
594 	unsigned int m_len;
595 	unsigned int m_flags;
596 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
597 	pgoff_t *m_next_extent;		/* point to next possible extent */
598 	int m_seg_type;
599 	bool m_may_create;		/* indicate it is from write path */
600 };
601 
602 /* for flag in get_data_block */
603 enum {
604 	F2FS_GET_BLOCK_DEFAULT,
605 	F2FS_GET_BLOCK_FIEMAP,
606 	F2FS_GET_BLOCK_BMAP,
607 	F2FS_GET_BLOCK_DIO,
608 	F2FS_GET_BLOCK_PRE_DIO,
609 	F2FS_GET_BLOCK_PRE_AIO,
610 	F2FS_GET_BLOCK_PRECACHE,
611 };
612 
613 /*
614  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
615  */
616 #define FADVISE_COLD_BIT	0x01
617 #define FADVISE_LOST_PINO_BIT	0x02
618 #define FADVISE_ENCRYPT_BIT	0x04
619 #define FADVISE_ENC_NAME_BIT	0x08
620 #define FADVISE_KEEP_SIZE_BIT	0x10
621 #define FADVISE_HOT_BIT		0x20
622 #define FADVISE_VERITY_BIT	0x40	/* reserved */
623 
624 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
625 
626 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
627 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
628 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
629 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
630 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
631 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
632 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
633 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
634 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
635 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
636 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
637 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
638 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
639 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
640 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
641 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
642 
643 #define DEF_DIR_LEVEL		0
644 
645 enum {
646 	GC_FAILURE_PIN,
647 	GC_FAILURE_ATOMIC,
648 	MAX_GC_FAILURE
649 };
650 
651 struct f2fs_inode_info {
652 	struct inode vfs_inode;		/* serve a vfs inode */
653 	unsigned long i_flags;		/* keep an inode flags for ioctl */
654 	unsigned char i_advise;		/* use to give file attribute hints */
655 	unsigned char i_dir_level;	/* use for dentry level for large dir */
656 	unsigned int i_current_depth;	/* only for directory depth */
657 	/* for gc failure statistic */
658 	unsigned int i_gc_failures[MAX_GC_FAILURE];
659 	unsigned int i_pino;		/* parent inode number */
660 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
661 
662 	/* Use below internally in f2fs*/
663 	unsigned long flags;		/* use to pass per-file flags */
664 	struct rw_semaphore i_sem;	/* protect fi info */
665 	atomic_t dirty_pages;		/* # of dirty pages */
666 	f2fs_hash_t chash;		/* hash value of given file name */
667 	unsigned int clevel;		/* maximum level of given file name */
668 	struct task_struct *task;	/* lookup and create consistency */
669 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
670 	nid_t i_xattr_nid;		/* node id that contains xattrs */
671 	loff_t	last_disk_size;		/* lastly written file size */
672 
673 #ifdef CONFIG_QUOTA
674 	struct dquot *i_dquot[MAXQUOTAS];
675 
676 	/* quota space reservation, managed internally by quota code */
677 	qsize_t i_reserved_quota;
678 #endif
679 	struct list_head dirty_list;	/* dirty list for dirs and files */
680 	struct list_head gdirty_list;	/* linked in global dirty list */
681 	struct list_head inmem_ilist;	/* list for inmem inodes */
682 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
683 	struct task_struct *inmem_task;	/* store inmemory task */
684 	struct mutex inmem_lock;	/* lock for inmemory pages */
685 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
686 
687 	/* avoid racing between foreground op and gc */
688 	struct rw_semaphore i_gc_rwsem[2];
689 	struct rw_semaphore i_mmap_sem;
690 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
691 
692 	int i_extra_isize;		/* size of extra space located in i_addr */
693 	kprojid_t i_projid;		/* id for project quota */
694 	int i_inline_xattr_size;	/* inline xattr size */
695 	struct timespec64 i_crtime;	/* inode creation time */
696 	struct timespec64 i_disk_time[4];/* inode disk times */
697 };
698 
699 static inline void get_extent_info(struct extent_info *ext,
700 					struct f2fs_extent *i_ext)
701 {
702 	ext->fofs = le32_to_cpu(i_ext->fofs);
703 	ext->blk = le32_to_cpu(i_ext->blk);
704 	ext->len = le32_to_cpu(i_ext->len);
705 }
706 
707 static inline void set_raw_extent(struct extent_info *ext,
708 					struct f2fs_extent *i_ext)
709 {
710 	i_ext->fofs = cpu_to_le32(ext->fofs);
711 	i_ext->blk = cpu_to_le32(ext->blk);
712 	i_ext->len = cpu_to_le32(ext->len);
713 }
714 
715 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
716 						u32 blk, unsigned int len)
717 {
718 	ei->fofs = fofs;
719 	ei->blk = blk;
720 	ei->len = len;
721 }
722 
723 static inline bool __is_discard_mergeable(struct discard_info *back,
724 			struct discard_info *front, unsigned int max_len)
725 {
726 	return (back->lstart + back->len == front->lstart) &&
727 		(back->len + front->len <= max_len);
728 }
729 
730 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
731 			struct discard_info *back, unsigned int max_len)
732 {
733 	return __is_discard_mergeable(back, cur, max_len);
734 }
735 
736 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
737 			struct discard_info *front, unsigned int max_len)
738 {
739 	return __is_discard_mergeable(cur, front, max_len);
740 }
741 
742 static inline bool __is_extent_mergeable(struct extent_info *back,
743 						struct extent_info *front)
744 {
745 	return (back->fofs + back->len == front->fofs &&
746 			back->blk + back->len == front->blk);
747 }
748 
749 static inline bool __is_back_mergeable(struct extent_info *cur,
750 						struct extent_info *back)
751 {
752 	return __is_extent_mergeable(back, cur);
753 }
754 
755 static inline bool __is_front_mergeable(struct extent_info *cur,
756 						struct extent_info *front)
757 {
758 	return __is_extent_mergeable(cur, front);
759 }
760 
761 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
762 static inline void __try_update_largest_extent(struct extent_tree *et,
763 						struct extent_node *en)
764 {
765 	if (en->ei.len > et->largest.len) {
766 		et->largest = en->ei;
767 		et->largest_updated = true;
768 	}
769 }
770 
771 /*
772  * For free nid management
773  */
774 enum nid_state {
775 	FREE_NID,		/* newly added to free nid list */
776 	PREALLOC_NID,		/* it is preallocated */
777 	MAX_NID_STATE,
778 };
779 
780 struct f2fs_nm_info {
781 	block_t nat_blkaddr;		/* base disk address of NAT */
782 	nid_t max_nid;			/* maximum possible node ids */
783 	nid_t available_nids;		/* # of available node ids */
784 	nid_t next_scan_nid;		/* the next nid to be scanned */
785 	unsigned int ram_thresh;	/* control the memory footprint */
786 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
787 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
788 
789 	/* NAT cache management */
790 	struct radix_tree_root nat_root;/* root of the nat entry cache */
791 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
792 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
793 	struct list_head nat_entries;	/* cached nat entry list (clean) */
794 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
795 	unsigned int nat_cnt;		/* the # of cached nat entries */
796 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
797 	unsigned int nat_blocks;	/* # of nat blocks */
798 
799 	/* free node ids management */
800 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
801 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
802 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
803 	spinlock_t nid_list_lock;	/* protect nid lists ops */
804 	struct mutex build_lock;	/* lock for build free nids */
805 	unsigned char **free_nid_bitmap;
806 	unsigned char *nat_block_bitmap;
807 	unsigned short *free_nid_count;	/* free nid count of NAT block */
808 
809 	/* for checkpoint */
810 	char *nat_bitmap;		/* NAT bitmap pointer */
811 
812 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
813 	unsigned char *nat_bits;	/* NAT bits blocks */
814 	unsigned char *full_nat_bits;	/* full NAT pages */
815 	unsigned char *empty_nat_bits;	/* empty NAT pages */
816 #ifdef CONFIG_F2FS_CHECK_FS
817 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
818 #endif
819 	int bitmap_size;		/* bitmap size */
820 };
821 
822 /*
823  * this structure is used as one of function parameters.
824  * all the information are dedicated to a given direct node block determined
825  * by the data offset in a file.
826  */
827 struct dnode_of_data {
828 	struct inode *inode;		/* vfs inode pointer */
829 	struct page *inode_page;	/* its inode page, NULL is possible */
830 	struct page *node_page;		/* cached direct node page */
831 	nid_t nid;			/* node id of the direct node block */
832 	unsigned int ofs_in_node;	/* data offset in the node page */
833 	bool inode_page_locked;		/* inode page is locked or not */
834 	bool node_changed;		/* is node block changed */
835 	char cur_level;			/* level of hole node page */
836 	char max_level;			/* level of current page located */
837 	block_t	data_blkaddr;		/* block address of the node block */
838 };
839 
840 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
841 		struct page *ipage, struct page *npage, nid_t nid)
842 {
843 	memset(dn, 0, sizeof(*dn));
844 	dn->inode = inode;
845 	dn->inode_page = ipage;
846 	dn->node_page = npage;
847 	dn->nid = nid;
848 }
849 
850 /*
851  * For SIT manager
852  *
853  * By default, there are 6 active log areas across the whole main area.
854  * When considering hot and cold data separation to reduce cleaning overhead,
855  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
856  * respectively.
857  * In the current design, you should not change the numbers intentionally.
858  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
859  * logs individually according to the underlying devices. (default: 6)
860  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
861  * data and 8 for node logs.
862  */
863 #define	NR_CURSEG_DATA_TYPE	(3)
864 #define NR_CURSEG_NODE_TYPE	(3)
865 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
866 
867 enum {
868 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
869 	CURSEG_WARM_DATA,	/* data blocks */
870 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
871 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
872 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
873 	CURSEG_COLD_NODE,	/* indirect node blocks */
874 	NO_CHECK_TYPE,
875 };
876 
877 struct flush_cmd {
878 	struct completion wait;
879 	struct llist_node llnode;
880 	nid_t ino;
881 	int ret;
882 };
883 
884 struct flush_cmd_control {
885 	struct task_struct *f2fs_issue_flush;	/* flush thread */
886 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
887 	atomic_t issued_flush;			/* # of issued flushes */
888 	atomic_t queued_flush;			/* # of queued flushes */
889 	struct llist_head issue_list;		/* list for command issue */
890 	struct llist_node *dispatch_list;	/* list for command dispatch */
891 };
892 
893 struct f2fs_sm_info {
894 	struct sit_info *sit_info;		/* whole segment information */
895 	struct free_segmap_info *free_info;	/* free segment information */
896 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
897 	struct curseg_info *curseg_array;	/* active segment information */
898 
899 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
900 
901 	block_t seg0_blkaddr;		/* block address of 0'th segment */
902 	block_t main_blkaddr;		/* start block address of main area */
903 	block_t ssa_blkaddr;		/* start block address of SSA area */
904 
905 	unsigned int segment_count;	/* total # of segments */
906 	unsigned int main_segments;	/* # of segments in main area */
907 	unsigned int reserved_segments;	/* # of reserved segments */
908 	unsigned int ovp_segments;	/* # of overprovision segments */
909 
910 	/* a threshold to reclaim prefree segments */
911 	unsigned int rec_prefree_segments;
912 
913 	/* for batched trimming */
914 	unsigned int trim_sections;		/* # of sections to trim */
915 
916 	struct list_head sit_entry_set;	/* sit entry set list */
917 
918 	unsigned int ipu_policy;	/* in-place-update policy */
919 	unsigned int min_ipu_util;	/* in-place-update threshold */
920 	unsigned int min_fsync_blocks;	/* threshold for fsync */
921 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
922 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
923 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
924 
925 	/* for flush command control */
926 	struct flush_cmd_control *fcc_info;
927 
928 	/* for discard command control */
929 	struct discard_cmd_control *dcc_info;
930 };
931 
932 /*
933  * For superblock
934  */
935 /*
936  * COUNT_TYPE for monitoring
937  *
938  * f2fs monitors the number of several block types such as on-writeback,
939  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
940  */
941 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
942 enum count_type {
943 	F2FS_DIRTY_DENTS,
944 	F2FS_DIRTY_DATA,
945 	F2FS_DIRTY_QDATA,
946 	F2FS_DIRTY_NODES,
947 	F2FS_DIRTY_META,
948 	F2FS_INMEM_PAGES,
949 	F2FS_DIRTY_IMETA,
950 	F2FS_WB_CP_DATA,
951 	F2FS_WB_DATA,
952 	F2FS_RD_DATA,
953 	F2FS_RD_NODE,
954 	F2FS_RD_META,
955 	F2FS_DIO_WRITE,
956 	F2FS_DIO_READ,
957 	NR_COUNT_TYPE,
958 };
959 
960 /*
961  * The below are the page types of bios used in submit_bio().
962  * The available types are:
963  * DATA			User data pages. It operates as async mode.
964  * NODE			Node pages. It operates as async mode.
965  * META			FS metadata pages such as SIT, NAT, CP.
966  * NR_PAGE_TYPE		The number of page types.
967  * META_FLUSH		Make sure the previous pages are written
968  *			with waiting the bio's completion
969  * ...			Only can be used with META.
970  */
971 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
972 enum page_type {
973 	DATA,
974 	NODE,
975 	META,
976 	NR_PAGE_TYPE,
977 	META_FLUSH,
978 	INMEM,		/* the below types are used by tracepoints only. */
979 	INMEM_DROP,
980 	INMEM_INVALIDATE,
981 	INMEM_REVOKE,
982 	IPU,
983 	OPU,
984 };
985 
986 enum temp_type {
987 	HOT = 0,	/* must be zero for meta bio */
988 	WARM,
989 	COLD,
990 	NR_TEMP_TYPE,
991 };
992 
993 enum need_lock_type {
994 	LOCK_REQ = 0,
995 	LOCK_DONE,
996 	LOCK_RETRY,
997 };
998 
999 enum cp_reason_type {
1000 	CP_NO_NEEDED,
1001 	CP_NON_REGULAR,
1002 	CP_HARDLINK,
1003 	CP_SB_NEED_CP,
1004 	CP_WRONG_PINO,
1005 	CP_NO_SPC_ROLL,
1006 	CP_NODE_NEED_CP,
1007 	CP_FASTBOOT_MODE,
1008 	CP_SPEC_LOG_NUM,
1009 	CP_RECOVER_DIR,
1010 };
1011 
1012 enum iostat_type {
1013 	APP_DIRECT_IO,			/* app direct IOs */
1014 	APP_BUFFERED_IO,		/* app buffered IOs */
1015 	APP_WRITE_IO,			/* app write IOs */
1016 	APP_MAPPED_IO,			/* app mapped IOs */
1017 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1018 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1019 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1020 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1021 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1022 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1023 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1024 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1025 	FS_DISCARD,			/* discard */
1026 	NR_IO_TYPE,
1027 };
1028 
1029 struct f2fs_io_info {
1030 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1031 	nid_t ino;		/* inode number */
1032 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1033 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1034 	int op;			/* contains REQ_OP_ */
1035 	int op_flags;		/* req_flag_bits */
1036 	block_t new_blkaddr;	/* new block address to be written */
1037 	block_t old_blkaddr;	/* old block address before Cow */
1038 	struct page *page;	/* page to be written */
1039 	struct page *encrypted_page;	/* encrypted page */
1040 	struct list_head list;		/* serialize IOs */
1041 	bool submitted;		/* indicate IO submission */
1042 	int need_lock;		/* indicate we need to lock cp_rwsem */
1043 	bool in_list;		/* indicate fio is in io_list */
1044 	bool is_meta;		/* indicate borrow meta inode mapping or not */
1045 	bool retry;		/* need to reallocate block address */
1046 	enum iostat_type io_type;	/* io type */
1047 	struct writeback_control *io_wbc; /* writeback control */
1048 	unsigned char version;		/* version of the node */
1049 };
1050 
1051 #define is_read_io(rw) ((rw) == READ)
1052 struct f2fs_bio_info {
1053 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1054 	struct bio *bio;		/* bios to merge */
1055 	sector_t last_block_in_bio;	/* last block number */
1056 	struct f2fs_io_info fio;	/* store buffered io info. */
1057 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1058 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1059 	struct list_head io_list;	/* track fios */
1060 };
1061 
1062 #define FDEV(i)				(sbi->devs[i])
1063 #define RDEV(i)				(raw_super->devs[i])
1064 struct f2fs_dev_info {
1065 	struct block_device *bdev;
1066 	char path[MAX_PATH_LEN];
1067 	unsigned int total_segments;
1068 	block_t start_blk;
1069 	block_t end_blk;
1070 #ifdef CONFIG_BLK_DEV_ZONED
1071 	unsigned int nr_blkz;			/* Total number of zones */
1072 	u8 *blkz_type;				/* Array of zones type */
1073 #endif
1074 };
1075 
1076 enum inode_type {
1077 	DIR_INODE,			/* for dirty dir inode */
1078 	FILE_INODE,			/* for dirty regular/symlink inode */
1079 	DIRTY_META,			/* for all dirtied inode metadata */
1080 	ATOMIC_FILE,			/* for all atomic files */
1081 	NR_INODE_TYPE,
1082 };
1083 
1084 /* for inner inode cache management */
1085 struct inode_management {
1086 	struct radix_tree_root ino_root;	/* ino entry array */
1087 	spinlock_t ino_lock;			/* for ino entry lock */
1088 	struct list_head ino_list;		/* inode list head */
1089 	unsigned long ino_num;			/* number of entries */
1090 };
1091 
1092 /* For s_flag in struct f2fs_sb_info */
1093 enum {
1094 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1095 	SBI_IS_CLOSE,				/* specify unmounting */
1096 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1097 	SBI_POR_DOING,				/* recovery is doing or not */
1098 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1099 	SBI_NEED_CP,				/* need to checkpoint */
1100 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1101 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1102 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1103 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1104 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1105 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1106 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1107 };
1108 
1109 enum {
1110 	CP_TIME,
1111 	REQ_TIME,
1112 	DISCARD_TIME,
1113 	GC_TIME,
1114 	DISABLE_TIME,
1115 	UMOUNT_DISCARD_TIMEOUT,
1116 	MAX_TIME,
1117 };
1118 
1119 enum {
1120 	GC_NORMAL,
1121 	GC_IDLE_CB,
1122 	GC_IDLE_GREEDY,
1123 	GC_URGENT,
1124 };
1125 
1126 enum {
1127 	WHINT_MODE_OFF,		/* not pass down write hints */
1128 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1129 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1130 };
1131 
1132 enum {
1133 	ALLOC_MODE_DEFAULT,	/* stay default */
1134 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1135 };
1136 
1137 enum fsync_mode {
1138 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1139 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1140 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1141 };
1142 
1143 #ifdef CONFIG_FS_ENCRYPTION
1144 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1145 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1146 #else
1147 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1148 #endif
1149 
1150 struct f2fs_sb_info {
1151 	struct super_block *sb;			/* pointer to VFS super block */
1152 	struct proc_dir_entry *s_proc;		/* proc entry */
1153 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1154 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1155 	int valid_super_block;			/* valid super block no */
1156 	unsigned long s_flag;				/* flags for sbi */
1157 	struct mutex writepages;		/* mutex for writepages() */
1158 
1159 #ifdef CONFIG_BLK_DEV_ZONED
1160 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1161 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1162 #endif
1163 
1164 	/* for node-related operations */
1165 	struct f2fs_nm_info *nm_info;		/* node manager */
1166 	struct inode *node_inode;		/* cache node blocks */
1167 
1168 	/* for segment-related operations */
1169 	struct f2fs_sm_info *sm_info;		/* segment manager */
1170 
1171 	/* for bio operations */
1172 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1173 	/* keep migration IO order for LFS mode */
1174 	struct rw_semaphore io_order_lock;
1175 	mempool_t *write_io_dummy;		/* Dummy pages */
1176 
1177 	/* for checkpoint */
1178 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1179 	int cur_cp_pack;			/* remain current cp pack */
1180 	spinlock_t cp_lock;			/* for flag in ckpt */
1181 	struct inode *meta_inode;		/* cache meta blocks */
1182 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1183 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1184 	struct rw_semaphore node_write;		/* locking node writes */
1185 	struct rw_semaphore node_change;	/* locking node change */
1186 	wait_queue_head_t cp_wait;
1187 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1188 	long interval_time[MAX_TIME];		/* to store thresholds */
1189 
1190 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1191 
1192 	spinlock_t fsync_node_lock;		/* for node entry lock */
1193 	struct list_head fsync_node_list;	/* node list head */
1194 	unsigned int fsync_seg_id;		/* sequence id */
1195 	unsigned int fsync_node_num;		/* number of node entries */
1196 
1197 	/* for orphan inode, use 0'th array */
1198 	unsigned int max_orphans;		/* max orphan inodes */
1199 
1200 	/* for inode management */
1201 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1202 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1203 
1204 	/* for extent tree cache */
1205 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1206 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1207 	struct list_head extent_list;		/* lru list for shrinker */
1208 	spinlock_t extent_lock;			/* locking extent lru list */
1209 	atomic_t total_ext_tree;		/* extent tree count */
1210 	struct list_head zombie_list;		/* extent zombie tree list */
1211 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1212 	atomic_t total_ext_node;		/* extent info count */
1213 
1214 	/* basic filesystem units */
1215 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1216 	unsigned int log_blocksize;		/* log2 block size */
1217 	unsigned int blocksize;			/* block size */
1218 	unsigned int root_ino_num;		/* root inode number*/
1219 	unsigned int node_ino_num;		/* node inode number*/
1220 	unsigned int meta_ino_num;		/* meta inode number*/
1221 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1222 	unsigned int blocks_per_seg;		/* blocks per segment */
1223 	unsigned int segs_per_sec;		/* segments per section */
1224 	unsigned int secs_per_zone;		/* sections per zone */
1225 	unsigned int total_sections;		/* total section count */
1226 	unsigned int total_node_count;		/* total node block count */
1227 	unsigned int total_valid_node_count;	/* valid node block count */
1228 	loff_t max_file_blocks;			/* max block index of file */
1229 	int dir_level;				/* directory level */
1230 	int readdir_ra;				/* readahead inode in readdir */
1231 
1232 	block_t user_block_count;		/* # of user blocks */
1233 	block_t total_valid_block_count;	/* # of valid blocks */
1234 	block_t discard_blks;			/* discard command candidats */
1235 	block_t last_valid_block_count;		/* for recovery */
1236 	block_t reserved_blocks;		/* configurable reserved blocks */
1237 	block_t current_reserved_blocks;	/* current reserved blocks */
1238 
1239 	/* Additional tracking for no checkpoint mode */
1240 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1241 
1242 	unsigned int nquota_files;		/* # of quota sysfile */
1243 
1244 	/* # of pages, see count_type */
1245 	atomic_t nr_pages[NR_COUNT_TYPE];
1246 	/* # of allocated blocks */
1247 	struct percpu_counter alloc_valid_block_count;
1248 
1249 	/* writeback control */
1250 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1251 
1252 	/* valid inode count */
1253 	struct percpu_counter total_valid_inode_count;
1254 
1255 	struct f2fs_mount_info mount_opt;	/* mount options */
1256 
1257 	/* for cleaning operations */
1258 	struct mutex gc_mutex;			/* mutex for GC */
1259 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1260 	unsigned int cur_victim_sec;		/* current victim section num */
1261 	unsigned int gc_mode;			/* current GC state */
1262 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1263 	/* for skip statistic */
1264 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1265 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1266 
1267 	/* threshold for gc trials on pinned files */
1268 	u64 gc_pin_file_threshold;
1269 
1270 	/* maximum # of trials to find a victim segment for SSR and GC */
1271 	unsigned int max_victim_search;
1272 	/* migration granularity of garbage collection, unit: segment */
1273 	unsigned int migration_granularity;
1274 
1275 	/*
1276 	 * for stat information.
1277 	 * one is for the LFS mode, and the other is for the SSR mode.
1278 	 */
1279 #ifdef CONFIG_F2FS_STAT_FS
1280 	struct f2fs_stat_info *stat_info;	/* FS status information */
1281 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1282 	unsigned int segment_count[2];		/* # of allocated segments */
1283 	unsigned int block_count[2];		/* # of allocated blocks */
1284 	atomic_t inplace_count;		/* # of inplace update */
1285 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1286 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1287 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1288 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1289 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1290 	atomic_t inline_inode;			/* # of inline_data inodes */
1291 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1292 	atomic_t aw_cnt;			/* # of atomic writes */
1293 	atomic_t vw_cnt;			/* # of volatile writes */
1294 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1295 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1296 	int bg_gc;				/* background gc calls */
1297 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1298 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1299 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1300 #endif
1301 	spinlock_t stat_lock;			/* lock for stat operations */
1302 
1303 	/* For app/fs IO statistics */
1304 	spinlock_t iostat_lock;
1305 	unsigned long long write_iostat[NR_IO_TYPE];
1306 	bool iostat_enable;
1307 
1308 	/* For sysfs suppport */
1309 	struct kobject s_kobj;
1310 	struct completion s_kobj_unregister;
1311 
1312 	/* For shrinker support */
1313 	struct list_head s_list;
1314 	int s_ndevs;				/* number of devices */
1315 	struct f2fs_dev_info *devs;		/* for device list */
1316 	unsigned int dirty_device;		/* for checkpoint data flush */
1317 	spinlock_t dev_lock;			/* protect dirty_device */
1318 	struct mutex umount_mutex;
1319 	unsigned int shrinker_run_no;
1320 
1321 	/* For write statistics */
1322 	u64 sectors_written_start;
1323 	u64 kbytes_written;
1324 
1325 	/* Reference to checksum algorithm driver via cryptoapi */
1326 	struct crypto_shash *s_chksum_driver;
1327 
1328 	/* Precomputed FS UUID checksum for seeding other checksums */
1329 	__u32 s_chksum_seed;
1330 };
1331 
1332 struct f2fs_private_dio {
1333 	struct inode *inode;
1334 	void *orig_private;
1335 	bio_end_io_t *orig_end_io;
1336 	bool write;
1337 };
1338 
1339 #ifdef CONFIG_F2FS_FAULT_INJECTION
1340 #define f2fs_show_injection_info(type)					\
1341 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pF\n",	\
1342 		KERN_INFO, f2fs_fault_name[type],			\
1343 		__func__, __builtin_return_address(0))
1344 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1345 {
1346 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1347 
1348 	if (!ffi->inject_rate)
1349 		return false;
1350 
1351 	if (!IS_FAULT_SET(ffi, type))
1352 		return false;
1353 
1354 	atomic_inc(&ffi->inject_ops);
1355 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1356 		atomic_set(&ffi->inject_ops, 0);
1357 		return true;
1358 	}
1359 	return false;
1360 }
1361 #else
1362 #define f2fs_show_injection_info(type) do { } while (0)
1363 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1364 {
1365 	return false;
1366 }
1367 #endif
1368 
1369 /* For write statistics. Suppose sector size is 512 bytes,
1370  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1371  */
1372 #define BD_PART_WRITTEN(s)						 \
1373 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1374 		(s)->sectors_written_start) >> 1)
1375 
1376 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1377 {
1378 	unsigned long now = jiffies;
1379 
1380 	sbi->last_time[type] = now;
1381 
1382 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1383 	if (type == REQ_TIME) {
1384 		sbi->last_time[DISCARD_TIME] = now;
1385 		sbi->last_time[GC_TIME] = now;
1386 	}
1387 }
1388 
1389 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1390 {
1391 	unsigned long interval = sbi->interval_time[type] * HZ;
1392 
1393 	return time_after(jiffies, sbi->last_time[type] + interval);
1394 }
1395 
1396 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1397 						int type)
1398 {
1399 	unsigned long interval = sbi->interval_time[type] * HZ;
1400 	unsigned int wait_ms = 0;
1401 	long delta;
1402 
1403 	delta = (sbi->last_time[type] + interval) - jiffies;
1404 	if (delta > 0)
1405 		wait_ms = jiffies_to_msecs(delta);
1406 
1407 	return wait_ms;
1408 }
1409 
1410 /*
1411  * Inline functions
1412  */
1413 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1414 			      const void *address, unsigned int length)
1415 {
1416 	struct {
1417 		struct shash_desc shash;
1418 		char ctx[4];
1419 	} desc;
1420 	int err;
1421 
1422 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1423 
1424 	desc.shash.tfm = sbi->s_chksum_driver;
1425 	desc.shash.flags = 0;
1426 	*(u32 *)desc.ctx = crc;
1427 
1428 	err = crypto_shash_update(&desc.shash, address, length);
1429 	BUG_ON(err);
1430 
1431 	return *(u32 *)desc.ctx;
1432 }
1433 
1434 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1435 			   unsigned int length)
1436 {
1437 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1438 }
1439 
1440 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1441 				  void *buf, size_t buf_size)
1442 {
1443 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1444 }
1445 
1446 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1447 			      const void *address, unsigned int length)
1448 {
1449 	return __f2fs_crc32(sbi, crc, address, length);
1450 }
1451 
1452 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1453 {
1454 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1455 }
1456 
1457 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1458 {
1459 	return sb->s_fs_info;
1460 }
1461 
1462 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1463 {
1464 	return F2FS_SB(inode->i_sb);
1465 }
1466 
1467 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1468 {
1469 	return F2FS_I_SB(mapping->host);
1470 }
1471 
1472 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1473 {
1474 	return F2FS_M_SB(page->mapping);
1475 }
1476 
1477 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1478 {
1479 	return (struct f2fs_super_block *)(sbi->raw_super);
1480 }
1481 
1482 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1483 {
1484 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1485 }
1486 
1487 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1488 {
1489 	return (struct f2fs_node *)page_address(page);
1490 }
1491 
1492 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1493 {
1494 	return &((struct f2fs_node *)page_address(page))->i;
1495 }
1496 
1497 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1498 {
1499 	return (struct f2fs_nm_info *)(sbi->nm_info);
1500 }
1501 
1502 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1503 {
1504 	return (struct f2fs_sm_info *)(sbi->sm_info);
1505 }
1506 
1507 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1508 {
1509 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1510 }
1511 
1512 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1513 {
1514 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1515 }
1516 
1517 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1518 {
1519 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1520 }
1521 
1522 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1523 {
1524 	return sbi->meta_inode->i_mapping;
1525 }
1526 
1527 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1528 {
1529 	return sbi->node_inode->i_mapping;
1530 }
1531 
1532 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1533 {
1534 	return test_bit(type, &sbi->s_flag);
1535 }
1536 
1537 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1538 {
1539 	set_bit(type, &sbi->s_flag);
1540 }
1541 
1542 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1543 {
1544 	clear_bit(type, &sbi->s_flag);
1545 }
1546 
1547 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1548 {
1549 	return le64_to_cpu(cp->checkpoint_ver);
1550 }
1551 
1552 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1553 {
1554 	if (type < F2FS_MAX_QUOTAS)
1555 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1556 	return 0;
1557 }
1558 
1559 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1560 {
1561 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1562 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1563 }
1564 
1565 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1566 {
1567 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1568 
1569 	return ckpt_flags & f;
1570 }
1571 
1572 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1573 {
1574 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1575 }
1576 
1577 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1578 {
1579 	unsigned int ckpt_flags;
1580 
1581 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1582 	ckpt_flags |= f;
1583 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1584 }
1585 
1586 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1587 {
1588 	unsigned long flags;
1589 
1590 	spin_lock_irqsave(&sbi->cp_lock, flags);
1591 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1592 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1593 }
1594 
1595 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1596 {
1597 	unsigned int ckpt_flags;
1598 
1599 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1600 	ckpt_flags &= (~f);
1601 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1602 }
1603 
1604 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1605 {
1606 	unsigned long flags;
1607 
1608 	spin_lock_irqsave(&sbi->cp_lock, flags);
1609 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1610 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1611 }
1612 
1613 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1614 {
1615 	unsigned long flags;
1616 
1617 	/*
1618 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1619 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1620 	 * so let's rely on regular fsck or unclean shutdown.
1621 	 */
1622 
1623 	if (lock)
1624 		spin_lock_irqsave(&sbi->cp_lock, flags);
1625 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1626 	kvfree(NM_I(sbi)->nat_bits);
1627 	NM_I(sbi)->nat_bits = NULL;
1628 	if (lock)
1629 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1630 }
1631 
1632 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1633 					struct cp_control *cpc)
1634 {
1635 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1636 
1637 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1638 }
1639 
1640 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1641 {
1642 	down_read(&sbi->cp_rwsem);
1643 }
1644 
1645 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1646 {
1647 	return down_read_trylock(&sbi->cp_rwsem);
1648 }
1649 
1650 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1651 {
1652 	up_read(&sbi->cp_rwsem);
1653 }
1654 
1655 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1656 {
1657 	down_write(&sbi->cp_rwsem);
1658 }
1659 
1660 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1661 {
1662 	up_write(&sbi->cp_rwsem);
1663 }
1664 
1665 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1666 {
1667 	int reason = CP_SYNC;
1668 
1669 	if (test_opt(sbi, FASTBOOT))
1670 		reason = CP_FASTBOOT;
1671 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1672 		reason = CP_UMOUNT;
1673 	return reason;
1674 }
1675 
1676 static inline bool __remain_node_summaries(int reason)
1677 {
1678 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1679 }
1680 
1681 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1682 {
1683 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1684 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1685 }
1686 
1687 /*
1688  * Check whether the inode has blocks or not
1689  */
1690 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1691 {
1692 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1693 
1694 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1695 }
1696 
1697 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1698 {
1699 	return ofs == XATTR_NODE_OFFSET;
1700 }
1701 
1702 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1703 					struct inode *inode, bool cap)
1704 {
1705 	if (!inode)
1706 		return true;
1707 	if (!test_opt(sbi, RESERVE_ROOT))
1708 		return false;
1709 	if (IS_NOQUOTA(inode))
1710 		return true;
1711 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1712 		return true;
1713 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1714 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1715 		return true;
1716 	if (cap && capable(CAP_SYS_RESOURCE))
1717 		return true;
1718 	return false;
1719 }
1720 
1721 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1722 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1723 				 struct inode *inode, blkcnt_t *count)
1724 {
1725 	blkcnt_t diff = 0, release = 0;
1726 	block_t avail_user_block_count;
1727 	int ret;
1728 
1729 	ret = dquot_reserve_block(inode, *count);
1730 	if (ret)
1731 		return ret;
1732 
1733 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1734 		f2fs_show_injection_info(FAULT_BLOCK);
1735 		release = *count;
1736 		goto enospc;
1737 	}
1738 
1739 	/*
1740 	 * let's increase this in prior to actual block count change in order
1741 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1742 	 */
1743 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1744 
1745 	spin_lock(&sbi->stat_lock);
1746 	sbi->total_valid_block_count += (block_t)(*count);
1747 	avail_user_block_count = sbi->user_block_count -
1748 					sbi->current_reserved_blocks;
1749 
1750 	if (!__allow_reserved_blocks(sbi, inode, true))
1751 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1752 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1753 		avail_user_block_count -= sbi->unusable_block_count;
1754 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1755 		diff = sbi->total_valid_block_count - avail_user_block_count;
1756 		if (diff > *count)
1757 			diff = *count;
1758 		*count -= diff;
1759 		release = diff;
1760 		sbi->total_valid_block_count -= diff;
1761 		if (!*count) {
1762 			spin_unlock(&sbi->stat_lock);
1763 			goto enospc;
1764 		}
1765 	}
1766 	spin_unlock(&sbi->stat_lock);
1767 
1768 	if (unlikely(release)) {
1769 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1770 		dquot_release_reservation_block(inode, release);
1771 	}
1772 	f2fs_i_blocks_write(inode, *count, true, true);
1773 	return 0;
1774 
1775 enospc:
1776 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1777 	dquot_release_reservation_block(inode, release);
1778 	return -ENOSPC;
1779 }
1780 
1781 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1782 						struct inode *inode,
1783 						block_t count)
1784 {
1785 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1786 
1787 	spin_lock(&sbi->stat_lock);
1788 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1789 	f2fs_bug_on(sbi, inode->i_blocks < sectors);
1790 	sbi->total_valid_block_count -= (block_t)count;
1791 	if (sbi->reserved_blocks &&
1792 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1793 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1794 					sbi->current_reserved_blocks + count);
1795 	spin_unlock(&sbi->stat_lock);
1796 	f2fs_i_blocks_write(inode, count, false, true);
1797 }
1798 
1799 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1800 {
1801 	atomic_inc(&sbi->nr_pages[count_type]);
1802 
1803 	if (count_type == F2FS_DIRTY_DENTS ||
1804 			count_type == F2FS_DIRTY_NODES ||
1805 			count_type == F2FS_DIRTY_META ||
1806 			count_type == F2FS_DIRTY_QDATA ||
1807 			count_type == F2FS_DIRTY_IMETA)
1808 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1809 }
1810 
1811 static inline void inode_inc_dirty_pages(struct inode *inode)
1812 {
1813 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1814 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1815 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1816 	if (IS_NOQUOTA(inode))
1817 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1818 }
1819 
1820 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1821 {
1822 	atomic_dec(&sbi->nr_pages[count_type]);
1823 }
1824 
1825 static inline void inode_dec_dirty_pages(struct inode *inode)
1826 {
1827 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1828 			!S_ISLNK(inode->i_mode))
1829 		return;
1830 
1831 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1832 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1833 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1834 	if (IS_NOQUOTA(inode))
1835 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1836 }
1837 
1838 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1839 {
1840 	return atomic_read(&sbi->nr_pages[count_type]);
1841 }
1842 
1843 static inline int get_dirty_pages(struct inode *inode)
1844 {
1845 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1846 }
1847 
1848 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1849 {
1850 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1851 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1852 						sbi->log_blocks_per_seg;
1853 
1854 	return segs / sbi->segs_per_sec;
1855 }
1856 
1857 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1858 {
1859 	return sbi->total_valid_block_count;
1860 }
1861 
1862 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1863 {
1864 	return sbi->discard_blks;
1865 }
1866 
1867 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1868 {
1869 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1870 
1871 	/* return NAT or SIT bitmap */
1872 	if (flag == NAT_BITMAP)
1873 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1874 	else if (flag == SIT_BITMAP)
1875 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1876 
1877 	return 0;
1878 }
1879 
1880 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1881 {
1882 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1883 }
1884 
1885 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1886 {
1887 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1888 	int offset;
1889 
1890 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1891 		offset = (flag == SIT_BITMAP) ?
1892 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1893 		return &ckpt->sit_nat_version_bitmap + offset;
1894 	}
1895 
1896 	if (__cp_payload(sbi) > 0) {
1897 		if (flag == NAT_BITMAP)
1898 			return &ckpt->sit_nat_version_bitmap;
1899 		else
1900 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1901 	} else {
1902 		offset = (flag == NAT_BITMAP) ?
1903 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1904 		return &ckpt->sit_nat_version_bitmap + offset;
1905 	}
1906 }
1907 
1908 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1909 {
1910 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1911 
1912 	if (sbi->cur_cp_pack == 2)
1913 		start_addr += sbi->blocks_per_seg;
1914 	return start_addr;
1915 }
1916 
1917 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1918 {
1919 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1920 
1921 	if (sbi->cur_cp_pack == 1)
1922 		start_addr += sbi->blocks_per_seg;
1923 	return start_addr;
1924 }
1925 
1926 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1927 {
1928 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1929 }
1930 
1931 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1932 {
1933 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1934 }
1935 
1936 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1937 					struct inode *inode, bool is_inode)
1938 {
1939 	block_t	valid_block_count;
1940 	unsigned int valid_node_count;
1941 	int err;
1942 
1943 	if (is_inode) {
1944 		if (inode) {
1945 			err = dquot_alloc_inode(inode);
1946 			if (err)
1947 				return err;
1948 		}
1949 	} else {
1950 		err = dquot_reserve_block(inode, 1);
1951 		if (err)
1952 			return err;
1953 	}
1954 
1955 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1956 		f2fs_show_injection_info(FAULT_BLOCK);
1957 		goto enospc;
1958 	}
1959 
1960 	spin_lock(&sbi->stat_lock);
1961 
1962 	valid_block_count = sbi->total_valid_block_count +
1963 					sbi->current_reserved_blocks + 1;
1964 
1965 	if (!__allow_reserved_blocks(sbi, inode, false))
1966 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
1967 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1968 		valid_block_count += sbi->unusable_block_count;
1969 
1970 	if (unlikely(valid_block_count > sbi->user_block_count)) {
1971 		spin_unlock(&sbi->stat_lock);
1972 		goto enospc;
1973 	}
1974 
1975 	valid_node_count = sbi->total_valid_node_count + 1;
1976 	if (unlikely(valid_node_count > sbi->total_node_count)) {
1977 		spin_unlock(&sbi->stat_lock);
1978 		goto enospc;
1979 	}
1980 
1981 	sbi->total_valid_node_count++;
1982 	sbi->total_valid_block_count++;
1983 	spin_unlock(&sbi->stat_lock);
1984 
1985 	if (inode) {
1986 		if (is_inode)
1987 			f2fs_mark_inode_dirty_sync(inode, true);
1988 		else
1989 			f2fs_i_blocks_write(inode, 1, true, true);
1990 	}
1991 
1992 	percpu_counter_inc(&sbi->alloc_valid_block_count);
1993 	return 0;
1994 
1995 enospc:
1996 	if (is_inode) {
1997 		if (inode)
1998 			dquot_free_inode(inode);
1999 	} else {
2000 		dquot_release_reservation_block(inode, 1);
2001 	}
2002 	return -ENOSPC;
2003 }
2004 
2005 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2006 					struct inode *inode, bool is_inode)
2007 {
2008 	spin_lock(&sbi->stat_lock);
2009 
2010 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2011 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2012 	f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
2013 
2014 	sbi->total_valid_node_count--;
2015 	sbi->total_valid_block_count--;
2016 	if (sbi->reserved_blocks &&
2017 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2018 		sbi->current_reserved_blocks++;
2019 
2020 	spin_unlock(&sbi->stat_lock);
2021 
2022 	if (is_inode)
2023 		dquot_free_inode(inode);
2024 	else
2025 		f2fs_i_blocks_write(inode, 1, false, true);
2026 }
2027 
2028 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2029 {
2030 	return sbi->total_valid_node_count;
2031 }
2032 
2033 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2034 {
2035 	percpu_counter_inc(&sbi->total_valid_inode_count);
2036 }
2037 
2038 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2039 {
2040 	percpu_counter_dec(&sbi->total_valid_inode_count);
2041 }
2042 
2043 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2044 {
2045 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2046 }
2047 
2048 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2049 						pgoff_t index, bool for_write)
2050 {
2051 	struct page *page;
2052 
2053 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2054 		if (!for_write)
2055 			page = find_get_page_flags(mapping, index,
2056 							FGP_LOCK | FGP_ACCESSED);
2057 		else
2058 			page = find_lock_page(mapping, index);
2059 		if (page)
2060 			return page;
2061 
2062 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2063 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2064 			return NULL;
2065 		}
2066 	}
2067 
2068 	if (!for_write)
2069 		return grab_cache_page(mapping, index);
2070 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2071 }
2072 
2073 static inline struct page *f2fs_pagecache_get_page(
2074 				struct address_space *mapping, pgoff_t index,
2075 				int fgp_flags, gfp_t gfp_mask)
2076 {
2077 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2078 		f2fs_show_injection_info(FAULT_PAGE_GET);
2079 		return NULL;
2080 	}
2081 
2082 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2083 }
2084 
2085 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2086 {
2087 	char *src_kaddr = kmap(src);
2088 	char *dst_kaddr = kmap(dst);
2089 
2090 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2091 	kunmap(dst);
2092 	kunmap(src);
2093 }
2094 
2095 static inline void f2fs_put_page(struct page *page, int unlock)
2096 {
2097 	if (!page)
2098 		return;
2099 
2100 	if (unlock) {
2101 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2102 		unlock_page(page);
2103 	}
2104 	put_page(page);
2105 }
2106 
2107 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2108 {
2109 	if (dn->node_page)
2110 		f2fs_put_page(dn->node_page, 1);
2111 	if (dn->inode_page && dn->node_page != dn->inode_page)
2112 		f2fs_put_page(dn->inode_page, 0);
2113 	dn->node_page = NULL;
2114 	dn->inode_page = NULL;
2115 }
2116 
2117 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2118 					size_t size)
2119 {
2120 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2121 }
2122 
2123 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2124 						gfp_t flags)
2125 {
2126 	void *entry;
2127 
2128 	entry = kmem_cache_alloc(cachep, flags);
2129 	if (!entry)
2130 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2131 	return entry;
2132 }
2133 
2134 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2135 						int npages, bool no_fail)
2136 {
2137 	struct bio *bio;
2138 
2139 	if (no_fail) {
2140 		/* No failure on bio allocation */
2141 		bio = bio_alloc(GFP_NOIO, npages);
2142 		if (!bio)
2143 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2144 		return bio;
2145 	}
2146 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2147 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2148 		return NULL;
2149 	}
2150 
2151 	return bio_alloc(GFP_KERNEL, npages);
2152 }
2153 
2154 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2155 {
2156 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2157 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2158 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2159 		get_pages(sbi, F2FS_DIO_READ) ||
2160 		get_pages(sbi, F2FS_DIO_WRITE))
2161 		return false;
2162 
2163 	if (SM_I(sbi) && SM_I(sbi)->dcc_info &&
2164 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2165 		return false;
2166 
2167 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2168 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2169 		return false;
2170 
2171 	return f2fs_time_over(sbi, type);
2172 }
2173 
2174 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2175 				unsigned long index, void *item)
2176 {
2177 	while (radix_tree_insert(root, index, item))
2178 		cond_resched();
2179 }
2180 
2181 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2182 
2183 static inline bool IS_INODE(struct page *page)
2184 {
2185 	struct f2fs_node *p = F2FS_NODE(page);
2186 
2187 	return RAW_IS_INODE(p);
2188 }
2189 
2190 static inline int offset_in_addr(struct f2fs_inode *i)
2191 {
2192 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2193 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2194 }
2195 
2196 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2197 {
2198 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2199 }
2200 
2201 static inline int f2fs_has_extra_attr(struct inode *inode);
2202 static inline block_t datablock_addr(struct inode *inode,
2203 			struct page *node_page, unsigned int offset)
2204 {
2205 	struct f2fs_node *raw_node;
2206 	__le32 *addr_array;
2207 	int base = 0;
2208 	bool is_inode = IS_INODE(node_page);
2209 
2210 	raw_node = F2FS_NODE(node_page);
2211 
2212 	/* from GC path only */
2213 	if (is_inode) {
2214 		if (!inode)
2215 			base = offset_in_addr(&raw_node->i);
2216 		else if (f2fs_has_extra_attr(inode))
2217 			base = get_extra_isize(inode);
2218 	}
2219 
2220 	addr_array = blkaddr_in_node(raw_node);
2221 	return le32_to_cpu(addr_array[base + offset]);
2222 }
2223 
2224 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2225 {
2226 	int mask;
2227 
2228 	addr += (nr >> 3);
2229 	mask = 1 << (7 - (nr & 0x07));
2230 	return mask & *addr;
2231 }
2232 
2233 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2234 {
2235 	int mask;
2236 
2237 	addr += (nr >> 3);
2238 	mask = 1 << (7 - (nr & 0x07));
2239 	*addr |= mask;
2240 }
2241 
2242 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2243 {
2244 	int mask;
2245 
2246 	addr += (nr >> 3);
2247 	mask = 1 << (7 - (nr & 0x07));
2248 	*addr &= ~mask;
2249 }
2250 
2251 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2252 {
2253 	int mask;
2254 	int ret;
2255 
2256 	addr += (nr >> 3);
2257 	mask = 1 << (7 - (nr & 0x07));
2258 	ret = mask & *addr;
2259 	*addr |= mask;
2260 	return ret;
2261 }
2262 
2263 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2264 {
2265 	int mask;
2266 	int ret;
2267 
2268 	addr += (nr >> 3);
2269 	mask = 1 << (7 - (nr & 0x07));
2270 	ret = mask & *addr;
2271 	*addr &= ~mask;
2272 	return ret;
2273 }
2274 
2275 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2276 {
2277 	int mask;
2278 
2279 	addr += (nr >> 3);
2280 	mask = 1 << (7 - (nr & 0x07));
2281 	*addr ^= mask;
2282 }
2283 
2284 /*
2285  * Inode flags
2286  */
2287 #define F2FS_SECRM_FL			0x00000001 /* Secure deletion */
2288 #define F2FS_UNRM_FL			0x00000002 /* Undelete */
2289 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2290 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2291 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2292 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2293 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2294 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2295 /* Reserved for compression usage... */
2296 #define F2FS_DIRTY_FL			0x00000100
2297 #define F2FS_COMPRBLK_FL		0x00000200 /* One or more compressed clusters */
2298 #define F2FS_NOCOMPR_FL			0x00000400 /* Don't compress */
2299 #define F2FS_ENCRYPT_FL			0x00000800 /* encrypted file */
2300 /* End compression flags --- maybe not all used */
2301 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2302 #define F2FS_IMAGIC_FL			0x00002000 /* AFS directory */
2303 #define F2FS_JOURNAL_DATA_FL		0x00004000 /* file data should be journaled */
2304 #define F2FS_NOTAIL_FL			0x00008000 /* file tail should not be merged */
2305 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2306 #define F2FS_TOPDIR_FL			0x00020000 /* Top of directory hierarchies*/
2307 #define F2FS_HUGE_FILE_FL               0x00040000 /* Set to each huge file */
2308 #define F2FS_EXTENTS_FL			0x00080000 /* Inode uses extents */
2309 #define F2FS_EA_INODE_FL	        0x00200000 /* Inode used for large EA */
2310 #define F2FS_EOFBLOCKS_FL		0x00400000 /* Blocks allocated beyond EOF */
2311 #define F2FS_NOCOW_FL			0x00800000 /* Do not cow file */
2312 #define F2FS_INLINE_DATA_FL		0x10000000 /* Inode has inline data. */
2313 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2314 #define F2FS_RESERVED_FL		0x80000000 /* reserved for ext4 lib */
2315 
2316 #define F2FS_FL_USER_VISIBLE		0x30CBDFFF /* User visible flags */
2317 #define F2FS_FL_USER_MODIFIABLE		0x204BC0FF /* User modifiable flags */
2318 
2319 /* Flags we can manipulate with through F2FS_IOC_FSSETXATTR */
2320 #define F2FS_FL_XFLAG_VISIBLE		(F2FS_SYNC_FL | \
2321 					 F2FS_IMMUTABLE_FL | \
2322 					 F2FS_APPEND_FL | \
2323 					 F2FS_NODUMP_FL | \
2324 					 F2FS_NOATIME_FL | \
2325 					 F2FS_PROJINHERIT_FL)
2326 
2327 /* Flags that should be inherited by new inodes from their parent. */
2328 #define F2FS_FL_INHERITED (F2FS_SECRM_FL | F2FS_UNRM_FL | F2FS_COMPR_FL |\
2329 			   F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL |\
2330 			   F2FS_NOCOMPR_FL | F2FS_JOURNAL_DATA_FL |\
2331 			   F2FS_NOTAIL_FL | F2FS_DIRSYNC_FL |\
2332 			   F2FS_PROJINHERIT_FL)
2333 
2334 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2335 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_TOPDIR_FL))
2336 
2337 /* Flags that are appropriate for non-directories/regular files. */
2338 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2339 
2340 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2341 {
2342 	if (S_ISDIR(mode))
2343 		return flags;
2344 	else if (S_ISREG(mode))
2345 		return flags & F2FS_REG_FLMASK;
2346 	else
2347 		return flags & F2FS_OTHER_FLMASK;
2348 }
2349 
2350 /* used for f2fs_inode_info->flags */
2351 enum {
2352 	FI_NEW_INODE,		/* indicate newly allocated inode */
2353 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2354 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2355 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2356 	FI_INC_LINK,		/* need to increment i_nlink */
2357 	FI_ACL_MODE,		/* indicate acl mode */
2358 	FI_NO_ALLOC,		/* should not allocate any blocks */
2359 	FI_FREE_NID,		/* free allocated nide */
2360 	FI_NO_EXTENT,		/* not to use the extent cache */
2361 	FI_INLINE_XATTR,	/* used for inline xattr */
2362 	FI_INLINE_DATA,		/* used for inline data*/
2363 	FI_INLINE_DENTRY,	/* used for inline dentry */
2364 	FI_APPEND_WRITE,	/* inode has appended data */
2365 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2366 	FI_NEED_IPU,		/* used for ipu per file */
2367 	FI_ATOMIC_FILE,		/* indicate atomic file */
2368 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2369 	FI_VOLATILE_FILE,	/* indicate volatile file */
2370 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2371 	FI_DROP_CACHE,		/* drop dirty page cache */
2372 	FI_DATA_EXIST,		/* indicate data exists */
2373 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2374 	FI_DO_DEFRAG,		/* indicate defragment is running */
2375 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2376 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2377 	FI_HOT_DATA,		/* indicate file is hot */
2378 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2379 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2380 	FI_PIN_FILE,		/* indicate file should not be gced */
2381 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2382 };
2383 
2384 static inline void __mark_inode_dirty_flag(struct inode *inode,
2385 						int flag, bool set)
2386 {
2387 	switch (flag) {
2388 	case FI_INLINE_XATTR:
2389 	case FI_INLINE_DATA:
2390 	case FI_INLINE_DENTRY:
2391 	case FI_NEW_INODE:
2392 		if (set)
2393 			return;
2394 		/* fall through */
2395 	case FI_DATA_EXIST:
2396 	case FI_INLINE_DOTS:
2397 	case FI_PIN_FILE:
2398 		f2fs_mark_inode_dirty_sync(inode, true);
2399 	}
2400 }
2401 
2402 static inline void set_inode_flag(struct inode *inode, int flag)
2403 {
2404 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2405 		set_bit(flag, &F2FS_I(inode)->flags);
2406 	__mark_inode_dirty_flag(inode, flag, true);
2407 }
2408 
2409 static inline int is_inode_flag_set(struct inode *inode, int flag)
2410 {
2411 	return test_bit(flag, &F2FS_I(inode)->flags);
2412 }
2413 
2414 static inline void clear_inode_flag(struct inode *inode, int flag)
2415 {
2416 	if (test_bit(flag, &F2FS_I(inode)->flags))
2417 		clear_bit(flag, &F2FS_I(inode)->flags);
2418 	__mark_inode_dirty_flag(inode, flag, false);
2419 }
2420 
2421 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2422 {
2423 	F2FS_I(inode)->i_acl_mode = mode;
2424 	set_inode_flag(inode, FI_ACL_MODE);
2425 	f2fs_mark_inode_dirty_sync(inode, false);
2426 }
2427 
2428 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2429 {
2430 	if (inc)
2431 		inc_nlink(inode);
2432 	else
2433 		drop_nlink(inode);
2434 	f2fs_mark_inode_dirty_sync(inode, true);
2435 }
2436 
2437 static inline void f2fs_i_blocks_write(struct inode *inode,
2438 					block_t diff, bool add, bool claim)
2439 {
2440 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2441 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2442 
2443 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2444 	if (add) {
2445 		if (claim)
2446 			dquot_claim_block(inode, diff);
2447 		else
2448 			dquot_alloc_block_nofail(inode, diff);
2449 	} else {
2450 		dquot_free_block(inode, diff);
2451 	}
2452 
2453 	f2fs_mark_inode_dirty_sync(inode, true);
2454 	if (clean || recover)
2455 		set_inode_flag(inode, FI_AUTO_RECOVER);
2456 }
2457 
2458 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2459 {
2460 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2461 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2462 
2463 	if (i_size_read(inode) == i_size)
2464 		return;
2465 
2466 	i_size_write(inode, i_size);
2467 	f2fs_mark_inode_dirty_sync(inode, true);
2468 	if (clean || recover)
2469 		set_inode_flag(inode, FI_AUTO_RECOVER);
2470 }
2471 
2472 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2473 {
2474 	F2FS_I(inode)->i_current_depth = depth;
2475 	f2fs_mark_inode_dirty_sync(inode, true);
2476 }
2477 
2478 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2479 					unsigned int count)
2480 {
2481 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2482 	f2fs_mark_inode_dirty_sync(inode, true);
2483 }
2484 
2485 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2486 {
2487 	F2FS_I(inode)->i_xattr_nid = xnid;
2488 	f2fs_mark_inode_dirty_sync(inode, true);
2489 }
2490 
2491 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2492 {
2493 	F2FS_I(inode)->i_pino = pino;
2494 	f2fs_mark_inode_dirty_sync(inode, true);
2495 }
2496 
2497 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2498 {
2499 	struct f2fs_inode_info *fi = F2FS_I(inode);
2500 
2501 	if (ri->i_inline & F2FS_INLINE_XATTR)
2502 		set_bit(FI_INLINE_XATTR, &fi->flags);
2503 	if (ri->i_inline & F2FS_INLINE_DATA)
2504 		set_bit(FI_INLINE_DATA, &fi->flags);
2505 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2506 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2507 	if (ri->i_inline & F2FS_DATA_EXIST)
2508 		set_bit(FI_DATA_EXIST, &fi->flags);
2509 	if (ri->i_inline & F2FS_INLINE_DOTS)
2510 		set_bit(FI_INLINE_DOTS, &fi->flags);
2511 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2512 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2513 	if (ri->i_inline & F2FS_PIN_FILE)
2514 		set_bit(FI_PIN_FILE, &fi->flags);
2515 }
2516 
2517 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2518 {
2519 	ri->i_inline = 0;
2520 
2521 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2522 		ri->i_inline |= F2FS_INLINE_XATTR;
2523 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2524 		ri->i_inline |= F2FS_INLINE_DATA;
2525 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2526 		ri->i_inline |= F2FS_INLINE_DENTRY;
2527 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2528 		ri->i_inline |= F2FS_DATA_EXIST;
2529 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2530 		ri->i_inline |= F2FS_INLINE_DOTS;
2531 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2532 		ri->i_inline |= F2FS_EXTRA_ATTR;
2533 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2534 		ri->i_inline |= F2FS_PIN_FILE;
2535 }
2536 
2537 static inline int f2fs_has_extra_attr(struct inode *inode)
2538 {
2539 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2540 }
2541 
2542 static inline int f2fs_has_inline_xattr(struct inode *inode)
2543 {
2544 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2545 }
2546 
2547 static inline unsigned int addrs_per_inode(struct inode *inode)
2548 {
2549 	return CUR_ADDRS_PER_INODE(inode) - get_inline_xattr_addrs(inode);
2550 }
2551 
2552 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2553 {
2554 	struct f2fs_inode *ri = F2FS_INODE(page);
2555 
2556 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2557 					get_inline_xattr_addrs(inode)]);
2558 }
2559 
2560 static inline int inline_xattr_size(struct inode *inode)
2561 {
2562 	return get_inline_xattr_addrs(inode) * sizeof(__le32);
2563 }
2564 
2565 static inline int f2fs_has_inline_data(struct inode *inode)
2566 {
2567 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2568 }
2569 
2570 static inline int f2fs_exist_data(struct inode *inode)
2571 {
2572 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2573 }
2574 
2575 static inline int f2fs_has_inline_dots(struct inode *inode)
2576 {
2577 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2578 }
2579 
2580 static inline bool f2fs_is_pinned_file(struct inode *inode)
2581 {
2582 	return is_inode_flag_set(inode, FI_PIN_FILE);
2583 }
2584 
2585 static inline bool f2fs_is_atomic_file(struct inode *inode)
2586 {
2587 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2588 }
2589 
2590 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2591 {
2592 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2593 }
2594 
2595 static inline bool f2fs_is_volatile_file(struct inode *inode)
2596 {
2597 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2598 }
2599 
2600 static inline bool f2fs_is_first_block_written(struct inode *inode)
2601 {
2602 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2603 }
2604 
2605 static inline bool f2fs_is_drop_cache(struct inode *inode)
2606 {
2607 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2608 }
2609 
2610 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2611 {
2612 	struct f2fs_inode *ri = F2FS_INODE(page);
2613 	int extra_size = get_extra_isize(inode);
2614 
2615 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2616 }
2617 
2618 static inline int f2fs_has_inline_dentry(struct inode *inode)
2619 {
2620 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2621 }
2622 
2623 static inline int is_file(struct inode *inode, int type)
2624 {
2625 	return F2FS_I(inode)->i_advise & type;
2626 }
2627 
2628 static inline void set_file(struct inode *inode, int type)
2629 {
2630 	F2FS_I(inode)->i_advise |= type;
2631 	f2fs_mark_inode_dirty_sync(inode, true);
2632 }
2633 
2634 static inline void clear_file(struct inode *inode, int type)
2635 {
2636 	F2FS_I(inode)->i_advise &= ~type;
2637 	f2fs_mark_inode_dirty_sync(inode, true);
2638 }
2639 
2640 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2641 {
2642 	bool ret;
2643 
2644 	if (dsync) {
2645 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2646 
2647 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2648 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2649 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2650 		return ret;
2651 	}
2652 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2653 			file_keep_isize(inode) ||
2654 			i_size_read(inode) & ~PAGE_MASK)
2655 		return false;
2656 
2657 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2658 		return false;
2659 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2660 		return false;
2661 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2662 		return false;
2663 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2664 						&F2FS_I(inode)->i_crtime))
2665 		return false;
2666 
2667 	down_read(&F2FS_I(inode)->i_sem);
2668 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2669 	up_read(&F2FS_I(inode)->i_sem);
2670 
2671 	return ret;
2672 }
2673 
2674 static inline bool f2fs_readonly(struct super_block *sb)
2675 {
2676 	return sb_rdonly(sb);
2677 }
2678 
2679 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2680 {
2681 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2682 }
2683 
2684 static inline bool is_dot_dotdot(const struct qstr *str)
2685 {
2686 	if (str->len == 1 && str->name[0] == '.')
2687 		return true;
2688 
2689 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2690 		return true;
2691 
2692 	return false;
2693 }
2694 
2695 static inline bool f2fs_may_extent_tree(struct inode *inode)
2696 {
2697 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2698 
2699 	if (!test_opt(sbi, EXTENT_CACHE) ||
2700 			is_inode_flag_set(inode, FI_NO_EXTENT))
2701 		return false;
2702 
2703 	/*
2704 	 * for recovered files during mount do not create extents
2705 	 * if shrinker is not registered.
2706 	 */
2707 	if (list_empty(&sbi->s_list))
2708 		return false;
2709 
2710 	return S_ISREG(inode->i_mode);
2711 }
2712 
2713 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2714 					size_t size, gfp_t flags)
2715 {
2716 	void *ret;
2717 
2718 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2719 		f2fs_show_injection_info(FAULT_KMALLOC);
2720 		return NULL;
2721 	}
2722 
2723 	ret = kmalloc(size, flags);
2724 	if (ret)
2725 		return ret;
2726 
2727 	return kvmalloc(size, flags);
2728 }
2729 
2730 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2731 					size_t size, gfp_t flags)
2732 {
2733 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2734 }
2735 
2736 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2737 					size_t size, gfp_t flags)
2738 {
2739 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2740 		f2fs_show_injection_info(FAULT_KVMALLOC);
2741 		return NULL;
2742 	}
2743 
2744 	return kvmalloc(size, flags);
2745 }
2746 
2747 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2748 					size_t size, gfp_t flags)
2749 {
2750 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2751 }
2752 
2753 static inline int get_extra_isize(struct inode *inode)
2754 {
2755 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2756 }
2757 
2758 static inline int get_inline_xattr_addrs(struct inode *inode)
2759 {
2760 	return F2FS_I(inode)->i_inline_xattr_size;
2761 }
2762 
2763 #define f2fs_get_inode_mode(i) \
2764 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2765 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2766 
2767 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2768 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2769 	offsetof(struct f2fs_inode, i_extra_isize))	\
2770 
2771 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2772 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2773 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2774 		sizeof((f2fs_inode)->field))			\
2775 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2776 
2777 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2778 {
2779 	int i;
2780 
2781 	spin_lock(&sbi->iostat_lock);
2782 	for (i = 0; i < NR_IO_TYPE; i++)
2783 		sbi->write_iostat[i] = 0;
2784 	spin_unlock(&sbi->iostat_lock);
2785 }
2786 
2787 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2788 			enum iostat_type type, unsigned long long io_bytes)
2789 {
2790 	if (!sbi->iostat_enable)
2791 		return;
2792 	spin_lock(&sbi->iostat_lock);
2793 	sbi->write_iostat[type] += io_bytes;
2794 
2795 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2796 		sbi->write_iostat[APP_BUFFERED_IO] =
2797 			sbi->write_iostat[APP_WRITE_IO] -
2798 			sbi->write_iostat[APP_DIRECT_IO];
2799 	spin_unlock(&sbi->iostat_lock);
2800 }
2801 
2802 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2803 
2804 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META &&	\
2805 				(!is_read_io((fio)->op) || (fio)->is_meta))
2806 
2807 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2808 					block_t blkaddr, int type);
2809 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2810 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2811 					block_t blkaddr, int type)
2812 {
2813 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2814 		f2fs_msg(sbi->sb, KERN_ERR,
2815 			"invalid blkaddr: %u, type: %d, run fsck to fix.",
2816 			blkaddr, type);
2817 		f2fs_bug_on(sbi, 1);
2818 	}
2819 }
2820 
2821 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2822 {
2823 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2824 		return false;
2825 	return true;
2826 }
2827 
2828 static inline bool is_valid_data_blkaddr(struct f2fs_sb_info *sbi,
2829 						block_t blkaddr)
2830 {
2831 	if (!__is_valid_data_blkaddr(blkaddr))
2832 		return false;
2833 	verify_blkaddr(sbi, blkaddr, DATA_GENERIC);
2834 	return true;
2835 }
2836 
2837 static inline void f2fs_set_page_private(struct page *page,
2838 						unsigned long data)
2839 {
2840 	if (PagePrivate(page))
2841 		return;
2842 
2843 	get_page(page);
2844 	SetPagePrivate(page);
2845 	set_page_private(page, data);
2846 }
2847 
2848 static inline void f2fs_clear_page_private(struct page *page)
2849 {
2850 	if (!PagePrivate(page))
2851 		return;
2852 
2853 	set_page_private(page, 0);
2854 	ClearPagePrivate(page);
2855 	f2fs_put_page(page, 0);
2856 }
2857 
2858 /*
2859  * file.c
2860  */
2861 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2862 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2863 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2864 int f2fs_truncate(struct inode *inode);
2865 int f2fs_getattr(const struct path *path, struct kstat *stat,
2866 			u32 request_mask, unsigned int flags);
2867 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2868 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2869 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2870 int f2fs_precache_extents(struct inode *inode);
2871 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2872 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2873 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2874 int f2fs_pin_file_control(struct inode *inode, bool inc);
2875 
2876 /*
2877  * inode.c
2878  */
2879 void f2fs_set_inode_flags(struct inode *inode);
2880 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2881 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2882 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2883 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2884 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2885 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2886 void f2fs_update_inode_page(struct inode *inode);
2887 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2888 void f2fs_evict_inode(struct inode *inode);
2889 void f2fs_handle_failed_inode(struct inode *inode);
2890 
2891 /*
2892  * namei.c
2893  */
2894 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2895 							bool hot, bool set);
2896 struct dentry *f2fs_get_parent(struct dentry *child);
2897 
2898 /*
2899  * dir.c
2900  */
2901 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2902 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2903 			f2fs_hash_t namehash, int *max_slots,
2904 			struct f2fs_dentry_ptr *d);
2905 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2906 			unsigned int start_pos, struct fscrypt_str *fstr);
2907 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2908 			struct f2fs_dentry_ptr *d);
2909 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2910 			const struct qstr *new_name,
2911 			const struct qstr *orig_name, struct page *dpage);
2912 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2913 			unsigned int current_depth);
2914 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2915 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2916 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2917 			struct fscrypt_name *fname, struct page **res_page);
2918 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2919 			const struct qstr *child, struct page **res_page);
2920 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2921 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2922 			struct page **page);
2923 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2924 			struct page *page, struct inode *inode);
2925 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2926 			const struct qstr *name, f2fs_hash_t name_hash,
2927 			unsigned int bit_pos);
2928 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2929 			const struct qstr *orig_name,
2930 			struct inode *inode, nid_t ino, umode_t mode);
2931 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2932 			struct inode *inode, nid_t ino, umode_t mode);
2933 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2934 			struct inode *inode, nid_t ino, umode_t mode);
2935 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2936 			struct inode *dir, struct inode *inode);
2937 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2938 bool f2fs_empty_dir(struct inode *dir);
2939 
2940 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2941 {
2942 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2943 				inode, inode->i_ino, inode->i_mode);
2944 }
2945 
2946 /*
2947  * super.c
2948  */
2949 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2950 void f2fs_inode_synced(struct inode *inode);
2951 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2952 int f2fs_quota_sync(struct super_block *sb, int type);
2953 void f2fs_quota_off_umount(struct super_block *sb);
2954 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2955 int f2fs_sync_fs(struct super_block *sb, int sync);
2956 extern __printf(3, 4)
2957 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2958 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
2959 
2960 /*
2961  * hash.c
2962  */
2963 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2964 				struct fscrypt_name *fname);
2965 
2966 /*
2967  * node.c
2968  */
2969 struct dnode_of_data;
2970 struct node_info;
2971 
2972 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
2973 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
2974 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
2975 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
2976 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
2977 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
2978 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2979 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2980 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2981 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
2982 						struct node_info *ni);
2983 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2984 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2985 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
2986 int f2fs_truncate_xattr_node(struct inode *inode);
2987 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2988 					unsigned int seq_id);
2989 int f2fs_remove_inode_page(struct inode *inode);
2990 struct page *f2fs_new_inode_page(struct inode *inode);
2991 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2992 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2993 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2994 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
2995 int f2fs_move_node_page(struct page *node_page, int gc_type);
2996 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2997 			struct writeback_control *wbc, bool atomic,
2998 			unsigned int *seq_id);
2999 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3000 			struct writeback_control *wbc,
3001 			bool do_balance, enum iostat_type io_type);
3002 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3003 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3004 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3005 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3006 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3007 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3008 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3009 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3010 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3011 			unsigned int segno, struct f2fs_summary_block *sum);
3012 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3013 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3014 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3015 int __init f2fs_create_node_manager_caches(void);
3016 void f2fs_destroy_node_manager_caches(void);
3017 
3018 /*
3019  * segment.c
3020  */
3021 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3022 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3023 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3024 void f2fs_drop_inmem_pages(struct inode *inode);
3025 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3026 int f2fs_commit_inmem_pages(struct inode *inode);
3027 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3028 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3029 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3030 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3031 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3032 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3033 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3034 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3035 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3036 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3037 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3038 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3039 					struct cp_control *cpc);
3040 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3041 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi);
3042 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3043 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3044 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3045 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3046 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3047 					struct cp_control *cpc);
3048 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3049 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3050 					block_t blk_addr);
3051 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3052 						enum iostat_type io_type);
3053 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3054 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3055 			struct f2fs_io_info *fio);
3056 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3057 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3058 			block_t old_blkaddr, block_t new_blkaddr,
3059 			bool recover_curseg, bool recover_newaddr);
3060 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3061 			block_t old_addr, block_t new_addr,
3062 			unsigned char version, bool recover_curseg,
3063 			bool recover_newaddr);
3064 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3065 			block_t old_blkaddr, block_t *new_blkaddr,
3066 			struct f2fs_summary *sum, int type,
3067 			struct f2fs_io_info *fio, bool add_list);
3068 void f2fs_wait_on_page_writeback(struct page *page,
3069 			enum page_type type, bool ordered, bool locked);
3070 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3071 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3072 								block_t len);
3073 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3074 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3075 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3076 			unsigned int val, int alloc);
3077 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3078 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3079 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3080 int __init f2fs_create_segment_manager_caches(void);
3081 void f2fs_destroy_segment_manager_caches(void);
3082 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3083 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3084 			enum page_type type, enum temp_type temp);
3085 
3086 /*
3087  * checkpoint.c
3088  */
3089 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3090 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3091 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3092 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3093 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3094 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3095 					block_t blkaddr, int type);
3096 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3097 			int type, bool sync);
3098 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3099 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3100 			long nr_to_write, enum iostat_type io_type);
3101 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3102 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3103 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3104 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3105 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3106 					unsigned int devidx, int type);
3107 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3108 					unsigned int devidx, int type);
3109 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3110 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3111 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3112 void f2fs_add_orphan_inode(struct inode *inode);
3113 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3114 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3115 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3116 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3117 void f2fs_remove_dirty_inode(struct inode *inode);
3118 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3119 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3120 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3121 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3122 int __init f2fs_create_checkpoint_caches(void);
3123 void f2fs_destroy_checkpoint_caches(void);
3124 
3125 /*
3126  * data.c
3127  */
3128 int f2fs_init_post_read_processing(void);
3129 void f2fs_destroy_post_read_processing(void);
3130 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3131 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3132 				struct inode *inode, struct page *page,
3133 				nid_t ino, enum page_type type);
3134 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3135 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3136 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3137 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3138 			block_t blk_addr, struct bio *bio);
3139 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3140 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3141 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3142 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3143 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3144 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3145 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3146 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3147 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3148 			int op_flags, bool for_write);
3149 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3150 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3151 			bool for_write);
3152 struct page *f2fs_get_new_data_page(struct inode *inode,
3153 			struct page *ipage, pgoff_t index, bool new_i_size);
3154 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3155 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3156 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3157 			int create, int flag);
3158 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3159 			u64 start, u64 len);
3160 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3161 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3162 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3163 			unsigned int length);
3164 int f2fs_release_page(struct page *page, gfp_t wait);
3165 #ifdef CONFIG_MIGRATION
3166 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3167 			struct page *page, enum migrate_mode mode);
3168 #endif
3169 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3170 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3171 
3172 /*
3173  * gc.c
3174  */
3175 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3176 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3177 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3178 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3179 			unsigned int segno);
3180 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3181 
3182 /*
3183  * recovery.c
3184  */
3185 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3186 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3187 
3188 /*
3189  * debug.c
3190  */
3191 #ifdef CONFIG_F2FS_STAT_FS
3192 struct f2fs_stat_info {
3193 	struct list_head stat_list;
3194 	struct f2fs_sb_info *sbi;
3195 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3196 	int main_area_segs, main_area_sections, main_area_zones;
3197 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3198 	unsigned long long hit_total, total_ext;
3199 	int ext_tree, zombie_tree, ext_node;
3200 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3201 	int ndirty_data, ndirty_qdata;
3202 	int inmem_pages;
3203 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3204 	int nats, dirty_nats, sits, dirty_sits;
3205 	int free_nids, avail_nids, alloc_nids;
3206 	int total_count, utilization;
3207 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3208 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3209 	int nr_dio_read, nr_dio_write;
3210 	unsigned int io_skip_bggc, other_skip_bggc;
3211 	int nr_flushing, nr_flushed, flush_list_empty;
3212 	int nr_discarding, nr_discarded;
3213 	int nr_discard_cmd;
3214 	unsigned int undiscard_blks;
3215 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3216 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3217 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3218 	unsigned int bimodal, avg_vblocks;
3219 	int util_free, util_valid, util_invalid;
3220 	int rsvd_segs, overp_segs;
3221 	int dirty_count, node_pages, meta_pages;
3222 	int prefree_count, call_count, cp_count, bg_cp_count;
3223 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3224 	int bg_node_segs, bg_data_segs;
3225 	int tot_blks, data_blks, node_blks;
3226 	int bg_data_blks, bg_node_blks;
3227 	unsigned long long skipped_atomic_files[2];
3228 	int curseg[NR_CURSEG_TYPE];
3229 	int cursec[NR_CURSEG_TYPE];
3230 	int curzone[NR_CURSEG_TYPE];
3231 
3232 	unsigned int meta_count[META_MAX];
3233 	unsigned int segment_count[2];
3234 	unsigned int block_count[2];
3235 	unsigned int inplace_count;
3236 	unsigned long long base_mem, cache_mem, page_mem;
3237 };
3238 
3239 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3240 {
3241 	return (struct f2fs_stat_info *)sbi->stat_info;
3242 }
3243 
3244 #define stat_inc_cp_count(si)		((si)->cp_count++)
3245 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3246 #define stat_inc_call_count(si)		((si)->call_count++)
3247 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3248 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3249 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3250 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3251 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3252 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3253 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3254 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3255 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3256 #define stat_inc_inline_xattr(inode)					\
3257 	do {								\
3258 		if (f2fs_has_inline_xattr(inode))			\
3259 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3260 	} while (0)
3261 #define stat_dec_inline_xattr(inode)					\
3262 	do {								\
3263 		if (f2fs_has_inline_xattr(inode))			\
3264 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3265 	} while (0)
3266 #define stat_inc_inline_inode(inode)					\
3267 	do {								\
3268 		if (f2fs_has_inline_data(inode))			\
3269 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3270 	} while (0)
3271 #define stat_dec_inline_inode(inode)					\
3272 	do {								\
3273 		if (f2fs_has_inline_data(inode))			\
3274 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3275 	} while (0)
3276 #define stat_inc_inline_dir(inode)					\
3277 	do {								\
3278 		if (f2fs_has_inline_dentry(inode))			\
3279 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3280 	} while (0)
3281 #define stat_dec_inline_dir(inode)					\
3282 	do {								\
3283 		if (f2fs_has_inline_dentry(inode))			\
3284 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3285 	} while (0)
3286 #define stat_inc_meta_count(sbi, blkaddr)				\
3287 	do {								\
3288 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3289 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3290 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3291 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3292 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3293 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3294 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3295 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3296 	} while (0)
3297 #define stat_inc_seg_type(sbi, curseg)					\
3298 		((sbi)->segment_count[(curseg)->alloc_type]++)
3299 #define stat_inc_block_count(sbi, curseg)				\
3300 		((sbi)->block_count[(curseg)->alloc_type]++)
3301 #define stat_inc_inplace_blocks(sbi)					\
3302 		(atomic_inc(&(sbi)->inplace_count))
3303 #define stat_inc_atomic_write(inode)					\
3304 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3305 #define stat_dec_atomic_write(inode)					\
3306 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3307 #define stat_update_max_atomic_write(inode)				\
3308 	do {								\
3309 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3310 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3311 		if (cur > max)						\
3312 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3313 	} while (0)
3314 #define stat_inc_volatile_write(inode)					\
3315 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3316 #define stat_dec_volatile_write(inode)					\
3317 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3318 #define stat_update_max_volatile_write(inode)				\
3319 	do {								\
3320 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3321 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3322 		if (cur > max)						\
3323 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3324 	} while (0)
3325 #define stat_inc_seg_count(sbi, type, gc_type)				\
3326 	do {								\
3327 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3328 		si->tot_segs++;						\
3329 		if ((type) == SUM_TYPE_DATA) {				\
3330 			si->data_segs++;				\
3331 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3332 		} else {						\
3333 			si->node_segs++;				\
3334 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3335 		}							\
3336 	} while (0)
3337 
3338 #define stat_inc_tot_blk_count(si, blks)				\
3339 	((si)->tot_blks += (blks))
3340 
3341 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3342 	do {								\
3343 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3344 		stat_inc_tot_blk_count(si, blks);			\
3345 		si->data_blks += (blks);				\
3346 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3347 	} while (0)
3348 
3349 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3350 	do {								\
3351 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3352 		stat_inc_tot_blk_count(si, blks);			\
3353 		si->node_blks += (blks);				\
3354 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3355 	} while (0)
3356 
3357 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3358 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3359 void __init f2fs_create_root_stats(void);
3360 void f2fs_destroy_root_stats(void);
3361 #else
3362 #define stat_inc_cp_count(si)				do { } while (0)
3363 #define stat_inc_bg_cp_count(si)			do { } while (0)
3364 #define stat_inc_call_count(si)				do { } while (0)
3365 #define stat_inc_bggc_count(si)				do { } while (0)
3366 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3367 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3368 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3369 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3370 #define stat_inc_total_hit(sb)				do { } while (0)
3371 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3372 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3373 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3374 #define stat_inc_inline_xattr(inode)			do { } while (0)
3375 #define stat_dec_inline_xattr(inode)			do { } while (0)
3376 #define stat_inc_inline_inode(inode)			do { } while (0)
3377 #define stat_dec_inline_inode(inode)			do { } while (0)
3378 #define stat_inc_inline_dir(inode)			do { } while (0)
3379 #define stat_dec_inline_dir(inode)			do { } while (0)
3380 #define stat_inc_atomic_write(inode)			do { } while (0)
3381 #define stat_dec_atomic_write(inode)			do { } while (0)
3382 #define stat_update_max_atomic_write(inode)		do { } while (0)
3383 #define stat_inc_volatile_write(inode)			do { } while (0)
3384 #define stat_dec_volatile_write(inode)			do { } while (0)
3385 #define stat_update_max_volatile_write(inode)		do { } while (0)
3386 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3387 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3388 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3389 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3390 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3391 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3392 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3393 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3394 
3395 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3396 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3397 static inline void __init f2fs_create_root_stats(void) { }
3398 static inline void f2fs_destroy_root_stats(void) { }
3399 #endif
3400 
3401 extern const struct file_operations f2fs_dir_operations;
3402 extern const struct file_operations f2fs_file_operations;
3403 extern const struct inode_operations f2fs_file_inode_operations;
3404 extern const struct address_space_operations f2fs_dblock_aops;
3405 extern const struct address_space_operations f2fs_node_aops;
3406 extern const struct address_space_operations f2fs_meta_aops;
3407 extern const struct inode_operations f2fs_dir_inode_operations;
3408 extern const struct inode_operations f2fs_symlink_inode_operations;
3409 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3410 extern const struct inode_operations f2fs_special_inode_operations;
3411 extern struct kmem_cache *f2fs_inode_entry_slab;
3412 
3413 /*
3414  * inline.c
3415  */
3416 bool f2fs_may_inline_data(struct inode *inode);
3417 bool f2fs_may_inline_dentry(struct inode *inode);
3418 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3419 void f2fs_truncate_inline_inode(struct inode *inode,
3420 						struct page *ipage, u64 from);
3421 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3422 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3423 int f2fs_convert_inline_inode(struct inode *inode);
3424 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3425 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3426 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3427 			struct fscrypt_name *fname, struct page **res_page);
3428 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3429 			struct page *ipage);
3430 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3431 			const struct qstr *orig_name,
3432 			struct inode *inode, nid_t ino, umode_t mode);
3433 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3434 				struct page *page, struct inode *dir,
3435 				struct inode *inode);
3436 bool f2fs_empty_inline_dir(struct inode *dir);
3437 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3438 			struct fscrypt_str *fstr);
3439 int f2fs_inline_data_fiemap(struct inode *inode,
3440 			struct fiemap_extent_info *fieinfo,
3441 			__u64 start, __u64 len);
3442 
3443 /*
3444  * shrinker.c
3445  */
3446 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3447 			struct shrink_control *sc);
3448 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3449 			struct shrink_control *sc);
3450 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3451 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3452 
3453 /*
3454  * extent_cache.c
3455  */
3456 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3457 				struct rb_entry *cached_re, unsigned int ofs);
3458 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3459 				struct rb_root_cached *root,
3460 				struct rb_node **parent,
3461 				unsigned int ofs, bool *leftmost);
3462 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3463 		struct rb_entry *cached_re, unsigned int ofs,
3464 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3465 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3466 		bool force, bool *leftmost);
3467 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3468 						struct rb_root_cached *root);
3469 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3470 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3471 void f2fs_drop_extent_tree(struct inode *inode);
3472 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3473 void f2fs_destroy_extent_tree(struct inode *inode);
3474 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3475 			struct extent_info *ei);
3476 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3477 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3478 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3479 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3480 int __init f2fs_create_extent_cache(void);
3481 void f2fs_destroy_extent_cache(void);
3482 
3483 /*
3484  * sysfs.c
3485  */
3486 int __init f2fs_init_sysfs(void);
3487 void f2fs_exit_sysfs(void);
3488 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3489 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3490 
3491 /*
3492  * crypto support
3493  */
3494 static inline bool f2fs_encrypted_file(struct inode *inode)
3495 {
3496 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3497 }
3498 
3499 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3500 {
3501 #ifdef CONFIG_FS_ENCRYPTION
3502 	file_set_encrypt(inode);
3503 	f2fs_set_inode_flags(inode);
3504 #endif
3505 }
3506 
3507 /*
3508  * Returns true if the reads of the inode's data need to undergo some
3509  * postprocessing step, like decryption or authenticity verification.
3510  */
3511 static inline bool f2fs_post_read_required(struct inode *inode)
3512 {
3513 	return f2fs_encrypted_file(inode);
3514 }
3515 
3516 #define F2FS_FEATURE_FUNCS(name, flagname) \
3517 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3518 { \
3519 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3520 }
3521 
3522 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3523 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3524 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3525 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3526 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3527 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3528 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3529 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3530 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3531 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3532 
3533 #ifdef CONFIG_BLK_DEV_ZONED
3534 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3535 			struct block_device *bdev, block_t blkaddr)
3536 {
3537 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3538 	int i;
3539 
3540 	for (i = 0; i < sbi->s_ndevs; i++)
3541 		if (FDEV(i).bdev == bdev)
3542 			return FDEV(i).blkz_type[zno];
3543 	return -EINVAL;
3544 }
3545 #endif
3546 
3547 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3548 {
3549 	return f2fs_sb_has_blkzoned(sbi);
3550 }
3551 
3552 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3553 {
3554 	return blk_queue_discard(bdev_get_queue(sbi->sb->s_bdev));
3555 }
3556 
3557 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3558 {
3559 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3560 					f2fs_hw_should_discard(sbi);
3561 }
3562 
3563 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3564 {
3565 	clear_opt(sbi, ADAPTIVE);
3566 	clear_opt(sbi, LFS);
3567 
3568 	switch (mt) {
3569 	case F2FS_MOUNT_ADAPTIVE:
3570 		set_opt(sbi, ADAPTIVE);
3571 		break;
3572 	case F2FS_MOUNT_LFS:
3573 		set_opt(sbi, LFS);
3574 		break;
3575 	}
3576 }
3577 
3578 static inline bool f2fs_may_encrypt(struct inode *inode)
3579 {
3580 #ifdef CONFIG_FS_ENCRYPTION
3581 	umode_t mode = inode->i_mode;
3582 
3583 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3584 #else
3585 	return false;
3586 #endif
3587 }
3588 
3589 static inline int block_unaligned_IO(struct inode *inode,
3590 				struct kiocb *iocb, struct iov_iter *iter)
3591 {
3592 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3593 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3594 	loff_t offset = iocb->ki_pos;
3595 	unsigned long align = offset | iov_iter_alignment(iter);
3596 
3597 	return align & blocksize_mask;
3598 }
3599 
3600 static inline int allow_outplace_dio(struct inode *inode,
3601 				struct kiocb *iocb, struct iov_iter *iter)
3602 {
3603 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3604 	int rw = iov_iter_rw(iter);
3605 
3606 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3607 				!block_unaligned_IO(inode, iocb, iter));
3608 }
3609 
3610 static inline bool f2fs_force_buffered_io(struct inode *inode,
3611 				struct kiocb *iocb, struct iov_iter *iter)
3612 {
3613 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3614 	int rw = iov_iter_rw(iter);
3615 
3616 	if (f2fs_post_read_required(inode))
3617 		return true;
3618 	if (sbi->s_ndevs)
3619 		return true;
3620 	/*
3621 	 * for blkzoned device, fallback direct IO to buffered IO, so
3622 	 * all IOs can be serialized by log-structured write.
3623 	 */
3624 	if (f2fs_sb_has_blkzoned(sbi))
3625 		return true;
3626 	if (test_opt(sbi, LFS) && (rw == WRITE) &&
3627 				block_unaligned_IO(inode, iocb, iter))
3628 		return true;
3629 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
3630 		return true;
3631 
3632 	return false;
3633 }
3634 
3635 #ifdef CONFIG_F2FS_FAULT_INJECTION
3636 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3637 							unsigned int type);
3638 #else
3639 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3640 #endif
3641 
3642 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3643 {
3644 #ifdef CONFIG_QUOTA
3645 	if (f2fs_sb_has_quota_ino(sbi))
3646 		return true;
3647 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3648 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3649 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3650 		return true;
3651 #endif
3652 	return false;
3653 }
3654 
3655 #endif
3656