1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/f2fs.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #ifndef _LINUX_F2FS_H 9 #define _LINUX_F2FS_H 10 11 #include <linux/uio.h> 12 #include <linux/types.h> 13 #include <linux/page-flags.h> 14 #include <linux/slab.h> 15 #include <linux/crc32.h> 16 #include <linux/magic.h> 17 #include <linux/kobject.h> 18 #include <linux/sched.h> 19 #include <linux/cred.h> 20 #include <linux/sched/mm.h> 21 #include <linux/vmalloc.h> 22 #include <linux/bio.h> 23 #include <linux/blkdev.h> 24 #include <linux/quotaops.h> 25 #include <linux/part_stat.h> 26 #include <linux/rw_hint.h> 27 #include <crypto/hash.h> 28 29 #include <linux/fscrypt.h> 30 #include <linux/fsverity.h> 31 32 struct pagevec; 33 34 #ifdef CONFIG_F2FS_CHECK_FS 35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 36 #else 37 #define f2fs_bug_on(sbi, condition) \ 38 do { \ 39 if (WARN_ON(condition)) \ 40 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 41 } while (0) 42 #endif 43 44 enum { 45 FAULT_KMALLOC, 46 FAULT_KVMALLOC, 47 FAULT_PAGE_ALLOC, 48 FAULT_PAGE_GET, 49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */ 50 FAULT_ALLOC_NID, 51 FAULT_ORPHAN, 52 FAULT_BLOCK, 53 FAULT_DIR_DEPTH, 54 FAULT_EVICT_INODE, 55 FAULT_TRUNCATE, 56 FAULT_READ_IO, 57 FAULT_CHECKPOINT, 58 FAULT_DISCARD, 59 FAULT_WRITE_IO, 60 FAULT_SLAB_ALLOC, 61 FAULT_DQUOT_INIT, 62 FAULT_LOCK_OP, 63 FAULT_BLKADDR_VALIDITY, 64 FAULT_BLKADDR_CONSISTENCE, 65 FAULT_NO_SEGMENT, 66 FAULT_MAX, 67 }; 68 69 #ifdef CONFIG_F2FS_FAULT_INJECTION 70 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0)) 71 72 struct f2fs_fault_info { 73 atomic_t inject_ops; 74 int inject_rate; 75 unsigned int inject_type; 76 }; 77 78 extern const char *f2fs_fault_name[FAULT_MAX]; 79 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type)) 80 81 /* maximum retry count for injected failure */ 82 #define DEFAULT_FAILURE_RETRY_COUNT 8 83 #else 84 #define DEFAULT_FAILURE_RETRY_COUNT 1 85 #endif 86 87 /* 88 * For mount options 89 */ 90 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000001 91 #define F2FS_MOUNT_DISCARD 0x00000002 92 #define F2FS_MOUNT_NOHEAP 0x00000004 93 #define F2FS_MOUNT_XATTR_USER 0x00000008 94 #define F2FS_MOUNT_POSIX_ACL 0x00000010 95 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000020 96 #define F2FS_MOUNT_INLINE_XATTR 0x00000040 97 #define F2FS_MOUNT_INLINE_DATA 0x00000080 98 #define F2FS_MOUNT_INLINE_DENTRY 0x00000100 99 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200 100 #define F2FS_MOUNT_NOBARRIER 0x00000400 101 #define F2FS_MOUNT_FASTBOOT 0x00000800 102 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00001000 103 #define F2FS_MOUNT_DATA_FLUSH 0x00002000 104 #define F2FS_MOUNT_FAULT_INJECTION 0x00004000 105 #define F2FS_MOUNT_USRQUOTA 0x00008000 106 #define F2FS_MOUNT_GRPQUOTA 0x00010000 107 #define F2FS_MOUNT_PRJQUOTA 0x00020000 108 #define F2FS_MOUNT_QUOTA 0x00040000 109 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00080000 110 #define F2FS_MOUNT_RESERVE_ROOT 0x00100000 111 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x00200000 112 #define F2FS_MOUNT_NORECOVERY 0x00400000 113 #define F2FS_MOUNT_ATGC 0x00800000 114 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x01000000 115 #define F2FS_MOUNT_GC_MERGE 0x02000000 116 #define F2FS_MOUNT_COMPRESS_CACHE 0x04000000 117 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x08000000 118 119 #define F2FS_OPTION(sbi) ((sbi)->mount_opt) 120 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option) 121 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option) 122 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option) 123 124 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 125 typecheck(unsigned long long, b) && \ 126 ((long long)((a) - (b)) > 0)) 127 128 typedef u32 block_t; /* 129 * should not change u32, since it is the on-disk block 130 * address format, __le32. 131 */ 132 typedef u32 nid_t; 133 134 #define COMPRESS_EXT_NUM 16 135 136 enum blkzone_allocation_policy { 137 BLKZONE_ALLOC_PRIOR_SEQ, /* Prioritize writing to sequential zones */ 138 BLKZONE_ALLOC_ONLY_SEQ, /* Only allow writing to sequential zones */ 139 BLKZONE_ALLOC_PRIOR_CONV, /* Prioritize writing to conventional zones */ 140 }; 141 142 /* 143 * An implementation of an rwsem that is explicitly unfair to readers. This 144 * prevents priority inversion when a low-priority reader acquires the read lock 145 * while sleeping on the write lock but the write lock is needed by 146 * higher-priority clients. 147 */ 148 149 struct f2fs_rwsem { 150 struct rw_semaphore internal_rwsem; 151 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 152 wait_queue_head_t read_waiters; 153 #endif 154 }; 155 156 struct f2fs_mount_info { 157 unsigned int opt; 158 block_t root_reserved_blocks; /* root reserved blocks */ 159 kuid_t s_resuid; /* reserved blocks for uid */ 160 kgid_t s_resgid; /* reserved blocks for gid */ 161 int active_logs; /* # of active logs */ 162 int inline_xattr_size; /* inline xattr size */ 163 #ifdef CONFIG_F2FS_FAULT_INJECTION 164 struct f2fs_fault_info fault_info; /* For fault injection */ 165 #endif 166 #ifdef CONFIG_QUOTA 167 /* Names of quota files with journalled quota */ 168 char *s_qf_names[MAXQUOTAS]; 169 int s_jquota_fmt; /* Format of quota to use */ 170 #endif 171 /* For which write hints are passed down to block layer */ 172 int alloc_mode; /* segment allocation policy */ 173 int fsync_mode; /* fsync policy */ 174 int fs_mode; /* fs mode: LFS or ADAPTIVE */ 175 int bggc_mode; /* bggc mode: off, on or sync */ 176 int memory_mode; /* memory mode */ 177 int errors; /* errors parameter */ 178 int discard_unit; /* 179 * discard command's offset/size should 180 * be aligned to this unit: block, 181 * segment or section 182 */ 183 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */ 184 block_t unusable_cap_perc; /* percentage for cap */ 185 block_t unusable_cap; /* Amount of space allowed to be 186 * unusable when disabling checkpoint 187 */ 188 189 /* For compression */ 190 unsigned char compress_algorithm; /* algorithm type */ 191 unsigned char compress_log_size; /* cluster log size */ 192 unsigned char compress_level; /* compress level */ 193 bool compress_chksum; /* compressed data chksum */ 194 unsigned char compress_ext_cnt; /* extension count */ 195 unsigned char nocompress_ext_cnt; /* nocompress extension count */ 196 int compress_mode; /* compression mode */ 197 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 198 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */ 199 }; 200 201 #define F2FS_FEATURE_ENCRYPT 0x00000001 202 #define F2FS_FEATURE_BLKZONED 0x00000002 203 #define F2FS_FEATURE_ATOMIC_WRITE 0x00000004 204 #define F2FS_FEATURE_EXTRA_ATTR 0x00000008 205 #define F2FS_FEATURE_PRJQUOTA 0x00000010 206 #define F2FS_FEATURE_INODE_CHKSUM 0x00000020 207 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x00000040 208 #define F2FS_FEATURE_QUOTA_INO 0x00000080 209 #define F2FS_FEATURE_INODE_CRTIME 0x00000100 210 #define F2FS_FEATURE_LOST_FOUND 0x00000200 211 #define F2FS_FEATURE_VERITY 0x00000400 212 #define F2FS_FEATURE_SB_CHKSUM 0x00000800 213 #define F2FS_FEATURE_CASEFOLD 0x00001000 214 #define F2FS_FEATURE_COMPRESSION 0x00002000 215 #define F2FS_FEATURE_RO 0x00004000 216 217 #define __F2FS_HAS_FEATURE(raw_super, mask) \ 218 ((raw_super->feature & cpu_to_le32(mask)) != 0) 219 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask) 220 221 /* 222 * Default values for user and/or group using reserved blocks 223 */ 224 #define F2FS_DEF_RESUID 0 225 #define F2FS_DEF_RESGID 0 226 227 /* 228 * For checkpoint manager 229 */ 230 enum { 231 NAT_BITMAP, 232 SIT_BITMAP 233 }; 234 235 #define CP_UMOUNT 0x00000001 236 #define CP_FASTBOOT 0x00000002 237 #define CP_SYNC 0x00000004 238 #define CP_RECOVERY 0x00000008 239 #define CP_DISCARD 0x00000010 240 #define CP_TRIMMED 0x00000020 241 #define CP_PAUSE 0x00000040 242 #define CP_RESIZE 0x00000080 243 244 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */ 245 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */ 246 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */ 247 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */ 248 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */ 249 #define DEF_CP_INTERVAL 60 /* 60 secs */ 250 #define DEF_IDLE_INTERVAL 5 /* 5 secs */ 251 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */ 252 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */ 253 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */ 254 255 struct cp_control { 256 int reason; 257 __u64 trim_start; 258 __u64 trim_end; 259 __u64 trim_minlen; 260 }; 261 262 /* 263 * indicate meta/data type 264 */ 265 enum { 266 META_CP, 267 META_NAT, 268 META_SIT, 269 META_SSA, 270 META_MAX, 271 META_POR, 272 DATA_GENERIC, /* check range only */ 273 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */ 274 DATA_GENERIC_ENHANCE_READ, /* 275 * strong check on range and segment 276 * bitmap but no warning due to race 277 * condition of read on truncated area 278 * by extent_cache 279 */ 280 DATA_GENERIC_ENHANCE_UPDATE, /* 281 * strong check on range and segment 282 * bitmap for update case 283 */ 284 META_GENERIC, 285 }; 286 287 /* for the list of ino */ 288 enum { 289 ORPHAN_INO, /* for orphan ino list */ 290 APPEND_INO, /* for append ino list */ 291 UPDATE_INO, /* for update ino list */ 292 TRANS_DIR_INO, /* for transactions dir ino list */ 293 XATTR_DIR_INO, /* for xattr updated dir ino list */ 294 FLUSH_INO, /* for multiple device flushing */ 295 MAX_INO_ENTRY, /* max. list */ 296 }; 297 298 struct ino_entry { 299 struct list_head list; /* list head */ 300 nid_t ino; /* inode number */ 301 unsigned int dirty_device; /* dirty device bitmap */ 302 }; 303 304 /* for the list of inodes to be GCed */ 305 struct inode_entry { 306 struct list_head list; /* list head */ 307 struct inode *inode; /* vfs inode pointer */ 308 }; 309 310 struct fsync_node_entry { 311 struct list_head list; /* list head */ 312 struct page *page; /* warm node page pointer */ 313 unsigned int seq_id; /* sequence id */ 314 }; 315 316 struct ckpt_req { 317 struct completion wait; /* completion for checkpoint done */ 318 struct llist_node llnode; /* llist_node to be linked in wait queue */ 319 int ret; /* return code of checkpoint */ 320 ktime_t queue_time; /* request queued time */ 321 }; 322 323 struct ckpt_req_control { 324 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */ 325 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */ 326 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */ 327 atomic_t issued_ckpt; /* # of actually issued ckpts */ 328 atomic_t total_ckpt; /* # of total ckpts */ 329 atomic_t queued_ckpt; /* # of queued ckpts */ 330 struct llist_head issue_list; /* list for command issue */ 331 spinlock_t stat_lock; /* lock for below checkpoint time stats */ 332 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */ 333 unsigned int peak_time; /* peak wait time in msec until now */ 334 }; 335 336 /* for the bitmap indicate blocks to be discarded */ 337 struct discard_entry { 338 struct list_head list; /* list head */ 339 block_t start_blkaddr; /* start blockaddr of current segment */ 340 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */ 341 }; 342 343 /* minimum discard granularity, unit: block count */ 344 #define MIN_DISCARD_GRANULARITY 1 345 /* default discard granularity of inner discard thread, unit: block count */ 346 #define DEFAULT_DISCARD_GRANULARITY 16 347 /* default maximum discard granularity of ordered discard, unit: block count */ 348 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16 349 350 /* max discard pend list number */ 351 #define MAX_PLIST_NUM 512 352 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \ 353 (MAX_PLIST_NUM - 1) : ((blk_num) - 1)) 354 355 enum { 356 D_PREP, /* initial */ 357 D_PARTIAL, /* partially submitted */ 358 D_SUBMIT, /* all submitted */ 359 D_DONE, /* finished */ 360 }; 361 362 struct discard_info { 363 block_t lstart; /* logical start address */ 364 block_t len; /* length */ 365 block_t start; /* actual start address in dev */ 366 }; 367 368 struct discard_cmd { 369 struct rb_node rb_node; /* rb node located in rb-tree */ 370 struct discard_info di; /* discard info */ 371 struct list_head list; /* command list */ 372 struct completion wait; /* compleation */ 373 struct block_device *bdev; /* bdev */ 374 unsigned short ref; /* reference count */ 375 unsigned char state; /* state */ 376 unsigned char queued; /* queued discard */ 377 int error; /* bio error */ 378 spinlock_t lock; /* for state/bio_ref updating */ 379 unsigned short bio_ref; /* bio reference count */ 380 }; 381 382 enum { 383 DPOLICY_BG, 384 DPOLICY_FORCE, 385 DPOLICY_FSTRIM, 386 DPOLICY_UMOUNT, 387 MAX_DPOLICY, 388 }; 389 390 enum { 391 DPOLICY_IO_AWARE_DISABLE, /* force to not be aware of IO */ 392 DPOLICY_IO_AWARE_ENABLE, /* force to be aware of IO */ 393 DPOLICY_IO_AWARE_MAX, 394 }; 395 396 struct discard_policy { 397 int type; /* type of discard */ 398 unsigned int min_interval; /* used for candidates exist */ 399 unsigned int mid_interval; /* used for device busy */ 400 unsigned int max_interval; /* used for candidates not exist */ 401 unsigned int max_requests; /* # of discards issued per round */ 402 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */ 403 bool io_aware; /* issue discard in idle time */ 404 bool sync; /* submit discard with REQ_SYNC flag */ 405 bool ordered; /* issue discard by lba order */ 406 bool timeout; /* discard timeout for put_super */ 407 unsigned int granularity; /* discard granularity */ 408 }; 409 410 struct discard_cmd_control { 411 struct task_struct *f2fs_issue_discard; /* discard thread */ 412 struct list_head entry_list; /* 4KB discard entry list */ 413 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */ 414 struct list_head wait_list; /* store on-flushing entries */ 415 struct list_head fstrim_list; /* in-flight discard from fstrim */ 416 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */ 417 struct mutex cmd_lock; 418 unsigned int nr_discards; /* # of discards in the list */ 419 unsigned int max_discards; /* max. discards to be issued */ 420 unsigned int max_discard_request; /* max. discard request per round */ 421 unsigned int min_discard_issue_time; /* min. interval between discard issue */ 422 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */ 423 unsigned int max_discard_issue_time; /* max. interval between discard issue */ 424 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */ 425 unsigned int discard_urgent_util; /* utilization which issue discard proactively */ 426 unsigned int discard_granularity; /* discard granularity */ 427 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */ 428 unsigned int discard_io_aware; /* io_aware policy */ 429 unsigned int undiscard_blks; /* # of undiscard blocks */ 430 unsigned int next_pos; /* next discard position */ 431 atomic_t issued_discard; /* # of issued discard */ 432 atomic_t queued_discard; /* # of queued discard */ 433 atomic_t discard_cmd_cnt; /* # of cached cmd count */ 434 struct rb_root_cached root; /* root of discard rb-tree */ 435 bool rbtree_check; /* config for consistence check */ 436 bool discard_wake; /* to wake up discard thread */ 437 }; 438 439 /* for the list of fsync inodes, used only during recovery */ 440 struct fsync_inode_entry { 441 struct list_head list; /* list head */ 442 struct inode *inode; /* vfs inode pointer */ 443 block_t blkaddr; /* block address locating the last fsync */ 444 block_t last_dentry; /* block address locating the last dentry */ 445 }; 446 447 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats)) 448 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits)) 449 450 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne) 451 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid) 452 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se) 453 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno) 454 455 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl)) 456 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl)) 457 458 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i) 459 { 460 int before = nats_in_cursum(journal); 461 462 journal->n_nats = cpu_to_le16(before + i); 463 return before; 464 } 465 466 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i) 467 { 468 int before = sits_in_cursum(journal); 469 470 journal->n_sits = cpu_to_le16(before + i); 471 return before; 472 } 473 474 static inline bool __has_cursum_space(struct f2fs_journal *journal, 475 int size, int type) 476 { 477 if (type == NAT_JOURNAL) 478 return size <= MAX_NAT_JENTRIES(journal); 479 return size <= MAX_SIT_JENTRIES(journal); 480 } 481 482 /* for inline stuff */ 483 #define DEF_INLINE_RESERVED_SIZE 1 484 static inline int get_extra_isize(struct inode *inode); 485 static inline int get_inline_xattr_addrs(struct inode *inode); 486 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \ 487 (CUR_ADDRS_PER_INODE(inode) - \ 488 get_inline_xattr_addrs(inode) - \ 489 DEF_INLINE_RESERVED_SIZE)) 490 491 /* for inline dir */ 492 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \ 493 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 494 BITS_PER_BYTE + 1)) 495 #define INLINE_DENTRY_BITMAP_SIZE(inode) \ 496 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE) 497 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \ 498 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \ 499 NR_INLINE_DENTRY(inode) + \ 500 INLINE_DENTRY_BITMAP_SIZE(inode))) 501 502 /* 503 * For INODE and NODE manager 504 */ 505 /* for directory operations */ 506 507 struct f2fs_filename { 508 /* 509 * The filename the user specified. This is NULL for some 510 * filesystem-internal operations, e.g. converting an inline directory 511 * to a non-inline one, or roll-forward recovering an encrypted dentry. 512 */ 513 const struct qstr *usr_fname; 514 515 /* 516 * The on-disk filename. For encrypted directories, this is encrypted. 517 * This may be NULL for lookups in an encrypted dir without the key. 518 */ 519 struct fscrypt_str disk_name; 520 521 /* The dirhash of this filename */ 522 f2fs_hash_t hash; 523 524 #ifdef CONFIG_FS_ENCRYPTION 525 /* 526 * For lookups in encrypted directories: either the buffer backing 527 * disk_name, or a buffer that holds the decoded no-key name. 528 */ 529 struct fscrypt_str crypto_buf; 530 #endif 531 #if IS_ENABLED(CONFIG_UNICODE) 532 /* 533 * For casefolded directories: the casefolded name, but it's left NULL 534 * if the original name is not valid Unicode, if the original name is 535 * "." or "..", if the directory is both casefolded and encrypted and 536 * its encryption key is unavailable, or if the filesystem is doing an 537 * internal operation where usr_fname is also NULL. In all these cases 538 * we fall back to treating the name as an opaque byte sequence. 539 */ 540 struct qstr cf_name; 541 #endif 542 }; 543 544 struct f2fs_dentry_ptr { 545 struct inode *inode; 546 void *bitmap; 547 struct f2fs_dir_entry *dentry; 548 __u8 (*filename)[F2FS_SLOT_LEN]; 549 int max; 550 int nr_bitmap; 551 }; 552 553 static inline void make_dentry_ptr_block(struct inode *inode, 554 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t) 555 { 556 d->inode = inode; 557 d->max = NR_DENTRY_IN_BLOCK; 558 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP; 559 d->bitmap = t->dentry_bitmap; 560 d->dentry = t->dentry; 561 d->filename = t->filename; 562 } 563 564 static inline void make_dentry_ptr_inline(struct inode *inode, 565 struct f2fs_dentry_ptr *d, void *t) 566 { 567 int entry_cnt = NR_INLINE_DENTRY(inode); 568 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode); 569 int reserved_size = INLINE_RESERVED_SIZE(inode); 570 571 d->inode = inode; 572 d->max = entry_cnt; 573 d->nr_bitmap = bitmap_size; 574 d->bitmap = t; 575 d->dentry = t + bitmap_size + reserved_size; 576 d->filename = t + bitmap_size + reserved_size + 577 SIZE_OF_DIR_ENTRY * entry_cnt; 578 } 579 580 /* 581 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 582 * as its node offset to distinguish from index node blocks. 583 * But some bits are used to mark the node block. 584 */ 585 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 586 >> OFFSET_BIT_SHIFT) 587 enum { 588 ALLOC_NODE, /* allocate a new node page if needed */ 589 LOOKUP_NODE, /* look up a node without readahead */ 590 LOOKUP_NODE_RA, /* 591 * look up a node with readahead called 592 * by get_data_block. 593 */ 594 }; 595 596 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */ 597 598 /* congestion wait timeout value, default: 20ms */ 599 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20)) 600 601 /* maximum retry quota flush count */ 602 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8 603 604 /* maximum retry of EIO'ed page */ 605 #define MAX_RETRY_PAGE_EIO 100 606 607 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */ 608 609 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 610 611 /* dirty segments threshold for triggering CP */ 612 #define DEFAULT_DIRTY_THRESHOLD 4 613 614 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS 615 #define RECOVERY_MIN_RA_BLOCKS 1 616 617 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */ 618 619 /* for in-memory extent cache entry */ 620 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 621 622 /* number of extent info in extent cache we try to shrink */ 623 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128 624 625 /* number of age extent info in extent cache we try to shrink */ 626 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128 627 #define LAST_AGE_WEIGHT 30 628 #define SAME_AGE_REGION 1024 629 630 /* 631 * Define data block with age less than 1GB as hot data 632 * define data block with age less than 10GB but more than 1GB as warm data 633 */ 634 #define DEF_HOT_DATA_AGE_THRESHOLD 262144 635 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440 636 637 /* extent cache type */ 638 enum extent_type { 639 EX_READ, 640 EX_BLOCK_AGE, 641 NR_EXTENT_CACHES, 642 }; 643 644 struct extent_info { 645 unsigned int fofs; /* start offset in a file */ 646 unsigned int len; /* length of the extent */ 647 union { 648 /* read extent_cache */ 649 struct { 650 /* start block address of the extent */ 651 block_t blk; 652 #ifdef CONFIG_F2FS_FS_COMPRESSION 653 /* physical extent length of compressed blocks */ 654 unsigned int c_len; 655 #endif 656 }; 657 /* block age extent_cache */ 658 struct { 659 /* block age of the extent */ 660 unsigned long long age; 661 /* last total blocks allocated */ 662 unsigned long long last_blocks; 663 }; 664 }; 665 }; 666 667 struct extent_node { 668 struct rb_node rb_node; /* rb node located in rb-tree */ 669 struct extent_info ei; /* extent info */ 670 struct list_head list; /* node in global extent list of sbi */ 671 struct extent_tree *et; /* extent tree pointer */ 672 }; 673 674 struct extent_tree { 675 nid_t ino; /* inode number */ 676 enum extent_type type; /* keep the extent tree type */ 677 struct rb_root_cached root; /* root of extent info rb-tree */ 678 struct extent_node *cached_en; /* recently accessed extent node */ 679 struct list_head list; /* to be used by sbi->zombie_list */ 680 rwlock_t lock; /* protect extent info rb-tree */ 681 atomic_t node_cnt; /* # of extent node in rb-tree*/ 682 bool largest_updated; /* largest extent updated */ 683 struct extent_info largest; /* largest cached extent for EX_READ */ 684 }; 685 686 struct extent_tree_info { 687 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 688 struct mutex extent_tree_lock; /* locking extent radix tree */ 689 struct list_head extent_list; /* lru list for shrinker */ 690 spinlock_t extent_lock; /* locking extent lru list */ 691 atomic_t total_ext_tree; /* extent tree count */ 692 struct list_head zombie_list; /* extent zombie tree list */ 693 atomic_t total_zombie_tree; /* extent zombie tree count */ 694 atomic_t total_ext_node; /* extent info count */ 695 }; 696 697 /* 698 * State of block returned by f2fs_map_blocks. 699 */ 700 #define F2FS_MAP_NEW (1U << 0) 701 #define F2FS_MAP_MAPPED (1U << 1) 702 #define F2FS_MAP_DELALLOC (1U << 2) 703 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 704 F2FS_MAP_DELALLOC) 705 706 struct f2fs_map_blocks { 707 struct block_device *m_bdev; /* for multi-device dio */ 708 block_t m_pblk; 709 block_t m_lblk; 710 unsigned int m_len; 711 unsigned int m_flags; 712 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */ 713 pgoff_t *m_next_extent; /* point to next possible extent */ 714 int m_seg_type; 715 bool m_may_create; /* indicate it is from write path */ 716 bool m_multidev_dio; /* indicate it allows multi-device dio */ 717 }; 718 719 /* for flag in get_data_block */ 720 enum { 721 F2FS_GET_BLOCK_DEFAULT, 722 F2FS_GET_BLOCK_FIEMAP, 723 F2FS_GET_BLOCK_BMAP, 724 F2FS_GET_BLOCK_DIO, 725 F2FS_GET_BLOCK_PRE_DIO, 726 F2FS_GET_BLOCK_PRE_AIO, 727 F2FS_GET_BLOCK_PRECACHE, 728 }; 729 730 /* 731 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 732 */ 733 #define FADVISE_COLD_BIT 0x01 734 #define FADVISE_LOST_PINO_BIT 0x02 735 #define FADVISE_ENCRYPT_BIT 0x04 736 #define FADVISE_ENC_NAME_BIT 0x08 737 #define FADVISE_KEEP_SIZE_BIT 0x10 738 #define FADVISE_HOT_BIT 0x20 739 #define FADVISE_VERITY_BIT 0x40 740 #define FADVISE_TRUNC_BIT 0x80 741 742 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT) 743 744 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 745 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 746 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 747 748 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 749 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 750 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 751 752 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 753 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 754 755 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 756 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 757 758 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT) 759 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT) 760 761 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT) 762 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT) 763 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT) 764 765 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT) 766 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT) 767 768 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT) 769 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT) 770 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT) 771 772 #define DEF_DIR_LEVEL 0 773 774 /* used for f2fs_inode_info->flags */ 775 enum { 776 FI_NEW_INODE, /* indicate newly allocated inode */ 777 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 778 FI_AUTO_RECOVER, /* indicate inode is recoverable */ 779 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 780 FI_INC_LINK, /* need to increment i_nlink */ 781 FI_ACL_MODE, /* indicate acl mode */ 782 FI_NO_ALLOC, /* should not allocate any blocks */ 783 FI_FREE_NID, /* free allocated nide */ 784 FI_NO_EXTENT, /* not to use the extent cache */ 785 FI_INLINE_XATTR, /* used for inline xattr */ 786 FI_INLINE_DATA, /* used for inline data*/ 787 FI_INLINE_DENTRY, /* used for inline dentry */ 788 FI_APPEND_WRITE, /* inode has appended data */ 789 FI_UPDATE_WRITE, /* inode has in-place-update data */ 790 FI_NEED_IPU, /* used for ipu per file */ 791 FI_ATOMIC_FILE, /* indicate atomic file */ 792 FI_DATA_EXIST, /* indicate data exists */ 793 FI_SKIP_WRITES, /* should skip data page writeback */ 794 FI_OPU_WRITE, /* used for opu per file */ 795 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */ 796 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */ 797 FI_HOT_DATA, /* indicate file is hot */ 798 FI_EXTRA_ATTR, /* indicate file has extra attribute */ 799 FI_PROJ_INHERIT, /* indicate file inherits projectid */ 800 FI_PIN_FILE, /* indicate file should not be gced */ 801 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */ 802 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */ 803 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */ 804 FI_MMAP_FILE, /* indicate file was mmapped */ 805 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */ 806 FI_COMPRESS_RELEASED, /* compressed blocks were released */ 807 FI_ALIGNED_WRITE, /* enable aligned write */ 808 FI_COW_FILE, /* indicate COW file */ 809 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */ 810 FI_ATOMIC_DIRTIED, /* indicate atomic file is dirtied */ 811 FI_ATOMIC_REPLACE, /* indicate atomic replace */ 812 FI_OPENED_FILE, /* indicate file has been opened */ 813 FI_MAX, /* max flag, never be used */ 814 }; 815 816 struct f2fs_inode_info { 817 struct inode vfs_inode; /* serve a vfs inode */ 818 unsigned long i_flags; /* keep an inode flags for ioctl */ 819 unsigned char i_advise; /* use to give file attribute hints */ 820 unsigned char i_dir_level; /* use for dentry level for large dir */ 821 union { 822 unsigned int i_current_depth; /* only for directory depth */ 823 unsigned short i_gc_failures; /* for gc failure statistic */ 824 }; 825 unsigned int i_pino; /* parent inode number */ 826 umode_t i_acl_mode; /* keep file acl mode temporarily */ 827 828 /* Use below internally in f2fs*/ 829 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */ 830 struct f2fs_rwsem i_sem; /* protect fi info */ 831 atomic_t dirty_pages; /* # of dirty pages */ 832 f2fs_hash_t chash; /* hash value of given file name */ 833 unsigned int clevel; /* maximum level of given file name */ 834 struct task_struct *task; /* lookup and create consistency */ 835 struct task_struct *cp_task; /* separate cp/wb IO stats*/ 836 struct task_struct *wb_task; /* indicate inode is in context of writeback */ 837 nid_t i_xattr_nid; /* node id that contains xattrs */ 838 loff_t last_disk_size; /* lastly written file size */ 839 spinlock_t i_size_lock; /* protect last_disk_size */ 840 841 #ifdef CONFIG_QUOTA 842 struct dquot __rcu *i_dquot[MAXQUOTAS]; 843 844 /* quota space reservation, managed internally by quota code */ 845 qsize_t i_reserved_quota; 846 #endif 847 struct list_head dirty_list; /* dirty list for dirs and files */ 848 struct list_head gdirty_list; /* linked in global dirty list */ 849 struct task_struct *atomic_write_task; /* store atomic write task */ 850 struct extent_tree *extent_tree[NR_EXTENT_CACHES]; 851 /* cached extent_tree entry */ 852 union { 853 struct inode *cow_inode; /* copy-on-write inode for atomic write */ 854 struct inode *atomic_inode; 855 /* point to atomic_inode, available only for cow_inode */ 856 }; 857 858 /* avoid racing between foreground op and gc */ 859 struct f2fs_rwsem i_gc_rwsem[2]; 860 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */ 861 862 int i_extra_isize; /* size of extra space located in i_addr */ 863 kprojid_t i_projid; /* id for project quota */ 864 int i_inline_xattr_size; /* inline xattr size */ 865 struct timespec64 i_crtime; /* inode creation time */ 866 struct timespec64 i_disk_time[3];/* inode disk times */ 867 868 /* for file compress */ 869 atomic_t i_compr_blocks; /* # of compressed blocks */ 870 unsigned char i_compress_algorithm; /* algorithm type */ 871 unsigned char i_log_cluster_size; /* log of cluster size */ 872 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */ 873 unsigned char i_compress_flag; /* compress flag */ 874 unsigned int i_cluster_size; /* cluster size */ 875 876 unsigned int atomic_write_cnt; 877 loff_t original_i_size; /* original i_size before atomic write */ 878 }; 879 880 static inline void get_read_extent_info(struct extent_info *ext, 881 struct f2fs_extent *i_ext) 882 { 883 ext->fofs = le32_to_cpu(i_ext->fofs); 884 ext->blk = le32_to_cpu(i_ext->blk); 885 ext->len = le32_to_cpu(i_ext->len); 886 } 887 888 static inline void set_raw_read_extent(struct extent_info *ext, 889 struct f2fs_extent *i_ext) 890 { 891 i_ext->fofs = cpu_to_le32(ext->fofs); 892 i_ext->blk = cpu_to_le32(ext->blk); 893 i_ext->len = cpu_to_le32(ext->len); 894 } 895 896 static inline bool __is_discard_mergeable(struct discard_info *back, 897 struct discard_info *front, unsigned int max_len) 898 { 899 return (back->lstart + back->len == front->lstart) && 900 (back->len + front->len <= max_len); 901 } 902 903 static inline bool __is_discard_back_mergeable(struct discard_info *cur, 904 struct discard_info *back, unsigned int max_len) 905 { 906 return __is_discard_mergeable(back, cur, max_len); 907 } 908 909 static inline bool __is_discard_front_mergeable(struct discard_info *cur, 910 struct discard_info *front, unsigned int max_len) 911 { 912 return __is_discard_mergeable(cur, front, max_len); 913 } 914 915 /* 916 * For free nid management 917 */ 918 enum nid_state { 919 FREE_NID, /* newly added to free nid list */ 920 PREALLOC_NID, /* it is preallocated */ 921 MAX_NID_STATE, 922 }; 923 924 enum nat_state { 925 TOTAL_NAT, 926 DIRTY_NAT, 927 RECLAIMABLE_NAT, 928 MAX_NAT_STATE, 929 }; 930 931 struct f2fs_nm_info { 932 block_t nat_blkaddr; /* base disk address of NAT */ 933 nid_t max_nid; /* maximum possible node ids */ 934 nid_t available_nids; /* # of available node ids */ 935 nid_t next_scan_nid; /* the next nid to be scanned */ 936 nid_t max_rf_node_blocks; /* max # of nodes for recovery */ 937 unsigned int ram_thresh; /* control the memory footprint */ 938 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */ 939 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */ 940 941 /* NAT cache management */ 942 struct radix_tree_root nat_root;/* root of the nat entry cache */ 943 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 944 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */ 945 struct list_head nat_entries; /* cached nat entry list (clean) */ 946 spinlock_t nat_list_lock; /* protect clean nat entry list */ 947 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */ 948 unsigned int nat_blocks; /* # of nat blocks */ 949 950 /* free node ids management */ 951 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 952 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */ 953 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */ 954 spinlock_t nid_list_lock; /* protect nid lists ops */ 955 struct mutex build_lock; /* lock for build free nids */ 956 unsigned char **free_nid_bitmap; 957 unsigned char *nat_block_bitmap; 958 unsigned short *free_nid_count; /* free nid count of NAT block */ 959 960 /* for checkpoint */ 961 char *nat_bitmap; /* NAT bitmap pointer */ 962 963 unsigned int nat_bits_blocks; /* # of nat bits blocks */ 964 unsigned char *nat_bits; /* NAT bits blocks */ 965 unsigned char *full_nat_bits; /* full NAT pages */ 966 unsigned char *empty_nat_bits; /* empty NAT pages */ 967 #ifdef CONFIG_F2FS_CHECK_FS 968 char *nat_bitmap_mir; /* NAT bitmap mirror */ 969 #endif 970 int bitmap_size; /* bitmap size */ 971 }; 972 973 /* 974 * this structure is used as one of function parameters. 975 * all the information are dedicated to a given direct node block determined 976 * by the data offset in a file. 977 */ 978 struct dnode_of_data { 979 struct inode *inode; /* vfs inode pointer */ 980 struct page *inode_page; /* its inode page, NULL is possible */ 981 struct page *node_page; /* cached direct node page */ 982 nid_t nid; /* node id of the direct node block */ 983 unsigned int ofs_in_node; /* data offset in the node page */ 984 bool inode_page_locked; /* inode page is locked or not */ 985 bool node_changed; /* is node block changed */ 986 char cur_level; /* level of hole node page */ 987 char max_level; /* level of current page located */ 988 block_t data_blkaddr; /* block address of the node block */ 989 }; 990 991 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 992 struct page *ipage, struct page *npage, nid_t nid) 993 { 994 memset(dn, 0, sizeof(*dn)); 995 dn->inode = inode; 996 dn->inode_page = ipage; 997 dn->node_page = npage; 998 dn->nid = nid; 999 } 1000 1001 /* 1002 * For SIT manager 1003 * 1004 * By default, there are 6 active log areas across the whole main area. 1005 * When considering hot and cold data separation to reduce cleaning overhead, 1006 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 1007 * respectively. 1008 * In the current design, you should not change the numbers intentionally. 1009 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 1010 * logs individually according to the underlying devices. (default: 6) 1011 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 1012 * data and 8 for node logs. 1013 */ 1014 #define NR_CURSEG_DATA_TYPE (3) 1015 #define NR_CURSEG_NODE_TYPE (3) 1016 #define NR_CURSEG_INMEM_TYPE (2) 1017 #define NR_CURSEG_RO_TYPE (2) 1018 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 1019 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE) 1020 1021 enum { 1022 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 1023 CURSEG_WARM_DATA, /* data blocks */ 1024 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 1025 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 1026 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 1027 CURSEG_COLD_NODE, /* indirect node blocks */ 1028 NR_PERSISTENT_LOG, /* number of persistent log */ 1029 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG, 1030 /* pinned file that needs consecutive block address */ 1031 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */ 1032 NO_CHECK_TYPE, /* number of persistent & inmem log */ 1033 }; 1034 1035 struct flush_cmd { 1036 struct completion wait; 1037 struct llist_node llnode; 1038 nid_t ino; 1039 int ret; 1040 }; 1041 1042 struct flush_cmd_control { 1043 struct task_struct *f2fs_issue_flush; /* flush thread */ 1044 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 1045 atomic_t issued_flush; /* # of issued flushes */ 1046 atomic_t queued_flush; /* # of queued flushes */ 1047 struct llist_head issue_list; /* list for command issue */ 1048 struct llist_node *dispatch_list; /* list for command dispatch */ 1049 }; 1050 1051 struct f2fs_sm_info { 1052 struct sit_info *sit_info; /* whole segment information */ 1053 struct free_segmap_info *free_info; /* free segment information */ 1054 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 1055 struct curseg_info *curseg_array; /* active segment information */ 1056 1057 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */ 1058 1059 block_t seg0_blkaddr; /* block address of 0'th segment */ 1060 block_t main_blkaddr; /* start block address of main area */ 1061 block_t ssa_blkaddr; /* start block address of SSA area */ 1062 1063 unsigned int segment_count; /* total # of segments */ 1064 unsigned int main_segments; /* # of segments in main area */ 1065 unsigned int reserved_segments; /* # of reserved segments */ 1066 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */ 1067 unsigned int ovp_segments; /* # of overprovision segments */ 1068 1069 /* a threshold to reclaim prefree segments */ 1070 unsigned int rec_prefree_segments; 1071 1072 struct list_head sit_entry_set; /* sit entry set list */ 1073 1074 unsigned int ipu_policy; /* in-place-update policy */ 1075 unsigned int min_ipu_util; /* in-place-update threshold */ 1076 unsigned int min_fsync_blocks; /* threshold for fsync */ 1077 unsigned int min_seq_blocks; /* threshold for sequential blocks */ 1078 unsigned int min_hot_blocks; /* threshold for hot block allocation */ 1079 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */ 1080 1081 /* for flush command control */ 1082 struct flush_cmd_control *fcc_info; 1083 1084 /* for discard command control */ 1085 struct discard_cmd_control *dcc_info; 1086 }; 1087 1088 /* 1089 * For superblock 1090 */ 1091 /* 1092 * COUNT_TYPE for monitoring 1093 * 1094 * f2fs monitors the number of several block types such as on-writeback, 1095 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 1096 */ 1097 #define WB_DATA_TYPE(p, f) \ 1098 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA) 1099 enum count_type { 1100 F2FS_DIRTY_DENTS, 1101 F2FS_DIRTY_DATA, 1102 F2FS_DIRTY_QDATA, 1103 F2FS_DIRTY_NODES, 1104 F2FS_DIRTY_META, 1105 F2FS_DIRTY_IMETA, 1106 F2FS_WB_CP_DATA, 1107 F2FS_WB_DATA, 1108 F2FS_RD_DATA, 1109 F2FS_RD_NODE, 1110 F2FS_RD_META, 1111 F2FS_DIO_WRITE, 1112 F2FS_DIO_READ, 1113 NR_COUNT_TYPE, 1114 }; 1115 1116 /* 1117 * The below are the page types of bios used in submit_bio(). 1118 * The available types are: 1119 * DATA User data pages. It operates as async mode. 1120 * NODE Node pages. It operates as async mode. 1121 * META FS metadata pages such as SIT, NAT, CP. 1122 * NR_PAGE_TYPE The number of page types. 1123 * META_FLUSH Make sure the previous pages are written 1124 * with waiting the bio's completion 1125 * ... Only can be used with META. 1126 */ 1127 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 1128 #define PAGE_TYPE_ON_MAIN(type) ((type) == DATA || (type) == NODE) 1129 enum page_type { 1130 DATA = 0, 1131 NODE = 1, /* should not change this */ 1132 META, 1133 NR_PAGE_TYPE, 1134 META_FLUSH, 1135 IPU, /* the below types are used by tracepoints only. */ 1136 OPU, 1137 }; 1138 1139 enum temp_type { 1140 HOT = 0, /* must be zero for meta bio */ 1141 WARM, 1142 COLD, 1143 NR_TEMP_TYPE, 1144 }; 1145 1146 enum need_lock_type { 1147 LOCK_REQ = 0, 1148 LOCK_DONE, 1149 LOCK_RETRY, 1150 }; 1151 1152 enum cp_reason_type { 1153 CP_NO_NEEDED, 1154 CP_NON_REGULAR, 1155 CP_COMPRESSED, 1156 CP_HARDLINK, 1157 CP_SB_NEED_CP, 1158 CP_WRONG_PINO, 1159 CP_NO_SPC_ROLL, 1160 CP_NODE_NEED_CP, 1161 CP_FASTBOOT_MODE, 1162 CP_SPEC_LOG_NUM, 1163 CP_RECOVER_DIR, 1164 CP_XATTR_DIR, 1165 }; 1166 1167 enum iostat_type { 1168 /* WRITE IO */ 1169 APP_DIRECT_IO, /* app direct write IOs */ 1170 APP_BUFFERED_IO, /* app buffered write IOs */ 1171 APP_WRITE_IO, /* app write IOs */ 1172 APP_MAPPED_IO, /* app mapped IOs */ 1173 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */ 1174 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */ 1175 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */ 1176 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */ 1177 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */ 1178 FS_META_IO, /* meta IOs from kworker/reclaimer */ 1179 FS_GC_DATA_IO, /* data IOs from forground gc */ 1180 FS_GC_NODE_IO, /* node IOs from forground gc */ 1181 FS_CP_DATA_IO, /* data IOs from checkpoint */ 1182 FS_CP_NODE_IO, /* node IOs from checkpoint */ 1183 FS_CP_META_IO, /* meta IOs from checkpoint */ 1184 1185 /* READ IO */ 1186 APP_DIRECT_READ_IO, /* app direct read IOs */ 1187 APP_BUFFERED_READ_IO, /* app buffered read IOs */ 1188 APP_READ_IO, /* app read IOs */ 1189 APP_MAPPED_READ_IO, /* app mapped read IOs */ 1190 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */ 1191 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */ 1192 FS_DATA_READ_IO, /* data read IOs */ 1193 FS_GDATA_READ_IO, /* data read IOs from background gc */ 1194 FS_CDATA_READ_IO, /* compressed data read IOs */ 1195 FS_NODE_READ_IO, /* node read IOs */ 1196 FS_META_READ_IO, /* meta read IOs */ 1197 1198 /* other */ 1199 FS_DISCARD_IO, /* discard */ 1200 FS_FLUSH_IO, /* flush */ 1201 FS_ZONE_RESET_IO, /* zone reset */ 1202 NR_IO_TYPE, 1203 }; 1204 1205 struct f2fs_io_info { 1206 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 1207 nid_t ino; /* inode number */ 1208 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 1209 enum temp_type temp; /* contains HOT/WARM/COLD */ 1210 enum req_op op; /* contains REQ_OP_ */ 1211 blk_opf_t op_flags; /* req_flag_bits */ 1212 block_t new_blkaddr; /* new block address to be written */ 1213 block_t old_blkaddr; /* old block address before Cow */ 1214 struct page *page; /* page to be written */ 1215 struct page *encrypted_page; /* encrypted page */ 1216 struct page *compressed_page; /* compressed page */ 1217 struct list_head list; /* serialize IOs */ 1218 unsigned int compr_blocks; /* # of compressed block addresses */ 1219 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */ 1220 unsigned int version:8; /* version of the node */ 1221 unsigned int submitted:1; /* indicate IO submission */ 1222 unsigned int in_list:1; /* indicate fio is in io_list */ 1223 unsigned int is_por:1; /* indicate IO is from recovery or not */ 1224 unsigned int encrypted:1; /* indicate file is encrypted */ 1225 unsigned int meta_gc:1; /* require meta inode GC */ 1226 enum iostat_type io_type; /* io type */ 1227 struct writeback_control *io_wbc; /* writeback control */ 1228 struct bio **bio; /* bio for ipu */ 1229 sector_t *last_block; /* last block number in bio */ 1230 }; 1231 1232 struct bio_entry { 1233 struct bio *bio; 1234 struct list_head list; 1235 }; 1236 1237 #define is_read_io(rw) ((rw) == READ) 1238 struct f2fs_bio_info { 1239 struct f2fs_sb_info *sbi; /* f2fs superblock */ 1240 struct bio *bio; /* bios to merge */ 1241 sector_t last_block_in_bio; /* last block number */ 1242 struct f2fs_io_info fio; /* store buffered io info. */ 1243 #ifdef CONFIG_BLK_DEV_ZONED 1244 struct completion zone_wait; /* condition value for the previous open zone to close */ 1245 struct bio *zone_pending_bio; /* pending bio for the previous zone */ 1246 void *bi_private; /* previous bi_private for pending bio */ 1247 #endif 1248 struct f2fs_rwsem io_rwsem; /* blocking op for bio */ 1249 spinlock_t io_lock; /* serialize DATA/NODE IOs */ 1250 struct list_head io_list; /* track fios */ 1251 struct list_head bio_list; /* bio entry list head */ 1252 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */ 1253 }; 1254 1255 #define FDEV(i) (sbi->devs[i]) 1256 #define RDEV(i) (raw_super->devs[i]) 1257 struct f2fs_dev_info { 1258 struct file *bdev_file; 1259 struct block_device *bdev; 1260 char path[MAX_PATH_LEN]; 1261 unsigned int total_segments; 1262 block_t start_blk; 1263 block_t end_blk; 1264 #ifdef CONFIG_BLK_DEV_ZONED 1265 unsigned int nr_blkz; /* Total number of zones */ 1266 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */ 1267 #endif 1268 }; 1269 1270 enum inode_type { 1271 DIR_INODE, /* for dirty dir inode */ 1272 FILE_INODE, /* for dirty regular/symlink inode */ 1273 DIRTY_META, /* for all dirtied inode metadata */ 1274 NR_INODE_TYPE, 1275 }; 1276 1277 /* for inner inode cache management */ 1278 struct inode_management { 1279 struct radix_tree_root ino_root; /* ino entry array */ 1280 spinlock_t ino_lock; /* for ino entry lock */ 1281 struct list_head ino_list; /* inode list head */ 1282 unsigned long ino_num; /* number of entries */ 1283 }; 1284 1285 /* for GC_AT */ 1286 struct atgc_management { 1287 bool atgc_enabled; /* ATGC is enabled or not */ 1288 struct rb_root_cached root; /* root of victim rb-tree */ 1289 struct list_head victim_list; /* linked with all victim entries */ 1290 unsigned int victim_count; /* victim count in rb-tree */ 1291 unsigned int candidate_ratio; /* candidate ratio */ 1292 unsigned int max_candidate_count; /* max candidate count */ 1293 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */ 1294 unsigned long long age_threshold; /* age threshold */ 1295 }; 1296 1297 struct f2fs_gc_control { 1298 unsigned int victim_segno; /* target victim segment number */ 1299 int init_gc_type; /* FG_GC or BG_GC */ 1300 bool no_bg_gc; /* check the space and stop bg_gc */ 1301 bool should_migrate_blocks; /* should migrate blocks */ 1302 bool err_gc_skipped; /* return EAGAIN if GC skipped */ 1303 bool one_time; /* require one time GC in one migration unit */ 1304 unsigned int nr_free_secs; /* # of free sections to do GC */ 1305 }; 1306 1307 /* 1308 * For s_flag in struct f2fs_sb_info 1309 * Modification on enum should be synchronized with s_flag array 1310 */ 1311 enum { 1312 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 1313 SBI_IS_CLOSE, /* specify unmounting */ 1314 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 1315 SBI_POR_DOING, /* recovery is doing or not */ 1316 SBI_NEED_SB_WRITE, /* need to recover superblock */ 1317 SBI_NEED_CP, /* need to checkpoint */ 1318 SBI_IS_SHUTDOWN, /* shutdown by ioctl */ 1319 SBI_IS_RECOVERED, /* recovered orphan/data */ 1320 SBI_CP_DISABLED, /* CP was disabled last mount */ 1321 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */ 1322 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */ 1323 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */ 1324 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */ 1325 SBI_IS_RESIZEFS, /* resizefs is in process */ 1326 SBI_IS_FREEZING, /* freezefs is in process */ 1327 SBI_IS_WRITABLE, /* remove ro mountoption transiently */ 1328 MAX_SBI_FLAG, 1329 }; 1330 1331 enum { 1332 CP_TIME, 1333 REQ_TIME, 1334 DISCARD_TIME, 1335 GC_TIME, 1336 DISABLE_TIME, 1337 UMOUNT_DISCARD_TIMEOUT, 1338 MAX_TIME, 1339 }; 1340 1341 /* Note that you need to keep synchronization with this gc_mode_names array */ 1342 enum { 1343 GC_NORMAL, 1344 GC_IDLE_CB, 1345 GC_IDLE_GREEDY, 1346 GC_IDLE_AT, 1347 GC_URGENT_HIGH, 1348 GC_URGENT_LOW, 1349 GC_URGENT_MID, 1350 MAX_GC_MODE, 1351 }; 1352 1353 enum { 1354 BGGC_MODE_ON, /* background gc is on */ 1355 BGGC_MODE_OFF, /* background gc is off */ 1356 BGGC_MODE_SYNC, /* 1357 * background gc is on, migrating blocks 1358 * like foreground gc 1359 */ 1360 }; 1361 1362 enum { 1363 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */ 1364 FS_MODE_LFS, /* use lfs allocation only */ 1365 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */ 1366 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */ 1367 }; 1368 1369 enum { 1370 ALLOC_MODE_DEFAULT, /* stay default */ 1371 ALLOC_MODE_REUSE, /* reuse segments as much as possible */ 1372 }; 1373 1374 enum fsync_mode { 1375 FSYNC_MODE_POSIX, /* fsync follows posix semantics */ 1376 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */ 1377 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */ 1378 }; 1379 1380 enum { 1381 COMPR_MODE_FS, /* 1382 * automatically compress compression 1383 * enabled files 1384 */ 1385 COMPR_MODE_USER, /* 1386 * automatical compression is disabled. 1387 * user can control the file compression 1388 * using ioctls 1389 */ 1390 }; 1391 1392 enum { 1393 DISCARD_UNIT_BLOCK, /* basic discard unit is block */ 1394 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */ 1395 DISCARD_UNIT_SECTION, /* basic discard unit is section */ 1396 }; 1397 1398 enum { 1399 MEMORY_MODE_NORMAL, /* memory mode for normal devices */ 1400 MEMORY_MODE_LOW, /* memory mode for low memry devices */ 1401 }; 1402 1403 enum errors_option { 1404 MOUNT_ERRORS_READONLY, /* remount fs ro on errors */ 1405 MOUNT_ERRORS_CONTINUE, /* continue on errors */ 1406 MOUNT_ERRORS_PANIC, /* panic on errors */ 1407 }; 1408 1409 enum { 1410 BACKGROUND, 1411 FOREGROUND, 1412 MAX_CALL_TYPE, 1413 TOTAL_CALL = FOREGROUND, 1414 }; 1415 1416 static inline int f2fs_test_bit(unsigned int nr, char *addr); 1417 static inline void f2fs_set_bit(unsigned int nr, char *addr); 1418 static inline void f2fs_clear_bit(unsigned int nr, char *addr); 1419 1420 /* 1421 * Layout of f2fs page.private: 1422 * 1423 * Layout A: lowest bit should be 1 1424 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... | 1425 * bit 0 PAGE_PRIVATE_NOT_POINTER 1426 * bit 1 PAGE_PRIVATE_ONGOING_MIGRATION 1427 * bit 2 PAGE_PRIVATE_INLINE_INODE 1428 * bit 3 PAGE_PRIVATE_REF_RESOURCE 1429 * bit 4 PAGE_PRIVATE_ATOMIC_WRITE 1430 * bit 5- f2fs private data 1431 * 1432 * Layout B: lowest bit should be 0 1433 * page.private is a wrapped pointer. 1434 */ 1435 enum { 1436 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */ 1437 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */ 1438 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */ 1439 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */ 1440 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */ 1441 PAGE_PRIVATE_MAX 1442 }; 1443 1444 /* For compression */ 1445 enum compress_algorithm_type { 1446 COMPRESS_LZO, 1447 COMPRESS_LZ4, 1448 COMPRESS_ZSTD, 1449 COMPRESS_LZORLE, 1450 COMPRESS_MAX, 1451 }; 1452 1453 enum compress_flag { 1454 COMPRESS_CHKSUM, 1455 COMPRESS_MAX_FLAG, 1456 }; 1457 1458 #define COMPRESS_WATERMARK 20 1459 #define COMPRESS_PERCENT 20 1460 1461 #define COMPRESS_DATA_RESERVED_SIZE 4 1462 struct compress_data { 1463 __le32 clen; /* compressed data size */ 1464 __le32 chksum; /* compressed data chksum */ 1465 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */ 1466 u8 cdata[]; /* compressed data */ 1467 }; 1468 1469 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data)) 1470 1471 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000 1472 1473 #define F2FS_ZSTD_DEFAULT_CLEVEL 1 1474 1475 #define COMPRESS_LEVEL_OFFSET 8 1476 1477 /* compress context */ 1478 struct compress_ctx { 1479 struct inode *inode; /* inode the context belong to */ 1480 pgoff_t cluster_idx; /* cluster index number */ 1481 unsigned int cluster_size; /* page count in cluster */ 1482 unsigned int log_cluster_size; /* log of cluster size */ 1483 struct page **rpages; /* pages store raw data in cluster */ 1484 unsigned int nr_rpages; /* total page number in rpages */ 1485 struct page **cpages; /* pages store compressed data in cluster */ 1486 unsigned int nr_cpages; /* total page number in cpages */ 1487 unsigned int valid_nr_cpages; /* valid page number in cpages */ 1488 void *rbuf; /* virtual mapped address on rpages */ 1489 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1490 size_t rlen; /* valid data length in rbuf */ 1491 size_t clen; /* valid data length in cbuf */ 1492 void *private; /* payload buffer for specified compression algorithm */ 1493 void *private2; /* extra payload buffer */ 1494 }; 1495 1496 /* compress context for write IO path */ 1497 struct compress_io_ctx { 1498 u32 magic; /* magic number to indicate page is compressed */ 1499 struct inode *inode; /* inode the context belong to */ 1500 struct page **rpages; /* pages store raw data in cluster */ 1501 unsigned int nr_rpages; /* total page number in rpages */ 1502 atomic_t pending_pages; /* in-flight compressed page count */ 1503 }; 1504 1505 /* Context for decompressing one cluster on the read IO path */ 1506 struct decompress_io_ctx { 1507 u32 magic; /* magic number to indicate page is compressed */ 1508 struct inode *inode; /* inode the context belong to */ 1509 pgoff_t cluster_idx; /* cluster index number */ 1510 unsigned int cluster_size; /* page count in cluster */ 1511 unsigned int log_cluster_size; /* log of cluster size */ 1512 struct page **rpages; /* pages store raw data in cluster */ 1513 unsigned int nr_rpages; /* total page number in rpages */ 1514 struct page **cpages; /* pages store compressed data in cluster */ 1515 unsigned int nr_cpages; /* total page number in cpages */ 1516 struct page **tpages; /* temp pages to pad holes in cluster */ 1517 void *rbuf; /* virtual mapped address on rpages */ 1518 struct compress_data *cbuf; /* virtual mapped address on cpages */ 1519 size_t rlen; /* valid data length in rbuf */ 1520 size_t clen; /* valid data length in cbuf */ 1521 1522 /* 1523 * The number of compressed pages remaining to be read in this cluster. 1524 * This is initially nr_cpages. It is decremented by 1 each time a page 1525 * has been read (or failed to be read). When it reaches 0, the cluster 1526 * is decompressed (or an error is reported). 1527 * 1528 * If an error occurs before all the pages have been submitted for I/O, 1529 * then this will never reach 0. In this case the I/O submitter is 1530 * responsible for calling f2fs_decompress_end_io() instead. 1531 */ 1532 atomic_t remaining_pages; 1533 1534 /* 1535 * Number of references to this decompress_io_ctx. 1536 * 1537 * One reference is held for I/O completion. This reference is dropped 1538 * after the pagecache pages are updated and unlocked -- either after 1539 * decompression (and verity if enabled), or after an error. 1540 * 1541 * In addition, each compressed page holds a reference while it is in a 1542 * bio. These references are necessary prevent compressed pages from 1543 * being freed while they are still in a bio. 1544 */ 1545 refcount_t refcnt; 1546 1547 bool failed; /* IO error occurred before decompression? */ 1548 bool need_verity; /* need fs-verity verification after decompression? */ 1549 void *private; /* payload buffer for specified decompression algorithm */ 1550 void *private2; /* extra payload buffer */ 1551 struct work_struct verity_work; /* work to verify the decompressed pages */ 1552 struct work_struct free_work; /* work for late free this structure itself */ 1553 }; 1554 1555 #define NULL_CLUSTER ((unsigned int)(~0)) 1556 #define MIN_COMPRESS_LOG_SIZE 2 1557 #define MAX_COMPRESS_LOG_SIZE 8 1558 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size)) 1559 1560 struct f2fs_sb_info { 1561 struct super_block *sb; /* pointer to VFS super block */ 1562 struct proc_dir_entry *s_proc; /* proc entry */ 1563 struct f2fs_super_block *raw_super; /* raw super block pointer */ 1564 struct f2fs_rwsem sb_lock; /* lock for raw super block */ 1565 int valid_super_block; /* valid super block no */ 1566 unsigned long s_flag; /* flags for sbi */ 1567 struct mutex writepages; /* mutex for writepages() */ 1568 1569 #ifdef CONFIG_BLK_DEV_ZONED 1570 unsigned int blocks_per_blkz; /* F2FS blocks per zone */ 1571 unsigned int max_open_zones; /* max open zone resources of the zoned device */ 1572 /* For adjust the priority writing position of data in zone UFS */ 1573 unsigned int blkzone_alloc_policy; 1574 #endif 1575 1576 /* for node-related operations */ 1577 struct f2fs_nm_info *nm_info; /* node manager */ 1578 struct inode *node_inode; /* cache node blocks */ 1579 1580 /* for segment-related operations */ 1581 struct f2fs_sm_info *sm_info; /* segment manager */ 1582 1583 /* for bio operations */ 1584 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */ 1585 /* keep migration IO order for LFS mode */ 1586 struct f2fs_rwsem io_order_lock; 1587 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */ 1588 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */ 1589 1590 /* for checkpoint */ 1591 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 1592 int cur_cp_pack; /* remain current cp pack */ 1593 spinlock_t cp_lock; /* for flag in ckpt */ 1594 struct inode *meta_inode; /* cache meta blocks */ 1595 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */ 1596 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */ 1597 struct f2fs_rwsem node_write; /* locking node writes */ 1598 struct f2fs_rwsem node_change; /* locking node change */ 1599 wait_queue_head_t cp_wait; 1600 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */ 1601 long interval_time[MAX_TIME]; /* to store thresholds */ 1602 struct ckpt_req_control cprc_info; /* for checkpoint request control */ 1603 1604 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 1605 1606 spinlock_t fsync_node_lock; /* for node entry lock */ 1607 struct list_head fsync_node_list; /* node list head */ 1608 unsigned int fsync_seg_id; /* sequence id */ 1609 unsigned int fsync_node_num; /* number of node entries */ 1610 1611 /* for orphan inode, use 0'th array */ 1612 unsigned int max_orphans; /* max orphan inodes */ 1613 1614 /* for inode management */ 1615 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */ 1616 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */ 1617 struct mutex flush_lock; /* for flush exclusion */ 1618 1619 /* for extent tree cache */ 1620 struct extent_tree_info extent_tree[NR_EXTENT_CACHES]; 1621 atomic64_t allocated_data_blocks; /* for block age extent_cache */ 1622 1623 /* The threshold used for hot and warm data seperation*/ 1624 unsigned int hot_data_age_threshold; 1625 unsigned int warm_data_age_threshold; 1626 unsigned int last_age_weight; 1627 1628 /* basic filesystem units */ 1629 unsigned int log_sectors_per_block; /* log2 sectors per block */ 1630 unsigned int log_blocksize; /* log2 block size */ 1631 unsigned int blocksize; /* block size */ 1632 unsigned int root_ino_num; /* root inode number*/ 1633 unsigned int node_ino_num; /* node inode number*/ 1634 unsigned int meta_ino_num; /* meta inode number*/ 1635 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 1636 unsigned int blocks_per_seg; /* blocks per segment */ 1637 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */ 1638 unsigned int segs_per_sec; /* segments per section */ 1639 unsigned int secs_per_zone; /* sections per zone */ 1640 unsigned int total_sections; /* total section count */ 1641 unsigned int total_node_count; /* total node block count */ 1642 unsigned int total_valid_node_count; /* valid node block count */ 1643 int dir_level; /* directory level */ 1644 bool readdir_ra; /* readahead inode in readdir */ 1645 u64 max_io_bytes; /* max io bytes to merge IOs */ 1646 1647 block_t user_block_count; /* # of user blocks */ 1648 block_t total_valid_block_count; /* # of valid blocks */ 1649 block_t discard_blks; /* discard command candidats */ 1650 block_t last_valid_block_count; /* for recovery */ 1651 block_t reserved_blocks; /* configurable reserved blocks */ 1652 block_t current_reserved_blocks; /* current reserved blocks */ 1653 1654 /* Additional tracking for no checkpoint mode */ 1655 block_t unusable_block_count; /* # of blocks saved by last cp */ 1656 1657 unsigned int nquota_files; /* # of quota sysfile */ 1658 struct f2fs_rwsem quota_sem; /* blocking cp for flags */ 1659 1660 /* # of pages, see count_type */ 1661 atomic_t nr_pages[NR_COUNT_TYPE]; 1662 /* # of allocated blocks */ 1663 struct percpu_counter alloc_valid_block_count; 1664 /* # of node block writes as roll forward recovery */ 1665 struct percpu_counter rf_node_block_count; 1666 1667 /* writeback control */ 1668 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */ 1669 1670 /* valid inode count */ 1671 struct percpu_counter total_valid_inode_count; 1672 1673 struct f2fs_mount_info mount_opt; /* mount options */ 1674 1675 /* for cleaning operations */ 1676 struct f2fs_rwsem gc_lock; /* 1677 * semaphore for GC, avoid 1678 * race between GC and GC or CP 1679 */ 1680 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 1681 struct atgc_management am; /* atgc management */ 1682 unsigned int cur_victim_sec; /* current victim section num */ 1683 unsigned int gc_mode; /* current GC state */ 1684 unsigned int next_victim_seg[2]; /* next segment in victim section */ 1685 spinlock_t gc_remaining_trials_lock; 1686 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */ 1687 unsigned int gc_remaining_trials; 1688 1689 /* for skip statistic */ 1690 unsigned long long skipped_gc_rwsem; /* FG_GC only */ 1691 1692 /* threshold for gc trials on pinned files */ 1693 unsigned short gc_pin_file_threshold; 1694 struct f2fs_rwsem pin_sem; 1695 1696 /* maximum # of trials to find a victim segment for SSR and GC */ 1697 unsigned int max_victim_search; 1698 /* migration granularity of garbage collection, unit: segment */ 1699 unsigned int migration_granularity; 1700 /* migration window granularity of garbage collection, unit: segment */ 1701 unsigned int migration_window_granularity; 1702 1703 /* 1704 * for stat information. 1705 * one is for the LFS mode, and the other is for the SSR mode. 1706 */ 1707 #ifdef CONFIG_F2FS_STAT_FS 1708 struct f2fs_stat_info *stat_info; /* FS status information */ 1709 atomic_t meta_count[META_MAX]; /* # of meta blocks */ 1710 unsigned int segment_count[2]; /* # of allocated segments */ 1711 unsigned int block_count[2]; /* # of allocated blocks */ 1712 atomic_t inplace_count; /* # of inplace update */ 1713 /* # of lookup extent cache */ 1714 atomic64_t total_hit_ext[NR_EXTENT_CACHES]; 1715 /* # of hit rbtree extent node */ 1716 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES]; 1717 /* # of hit cached extent node */ 1718 atomic64_t read_hit_cached[NR_EXTENT_CACHES]; 1719 /* # of hit largest extent node in read extent cache */ 1720 atomic64_t read_hit_largest; 1721 atomic_t inline_xattr; /* # of inline_xattr inodes */ 1722 atomic_t inline_inode; /* # of inline_data inodes */ 1723 atomic_t inline_dir; /* # of inline_dentry inodes */ 1724 atomic_t compr_inode; /* # of compressed inodes */ 1725 atomic64_t compr_blocks; /* # of compressed blocks */ 1726 atomic_t swapfile_inode; /* # of swapfile inodes */ 1727 atomic_t atomic_files; /* # of opened atomic file */ 1728 atomic_t max_aw_cnt; /* max # of atomic writes */ 1729 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */ 1730 unsigned int other_skip_bggc; /* skip background gc for other reasons */ 1731 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */ 1732 atomic_t cp_call_count[MAX_CALL_TYPE]; /* # of cp call */ 1733 #endif 1734 spinlock_t stat_lock; /* lock for stat operations */ 1735 1736 /* to attach REQ_META|REQ_FUA flags */ 1737 unsigned int data_io_flag; 1738 unsigned int node_io_flag; 1739 1740 /* For sysfs support */ 1741 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */ 1742 struct completion s_kobj_unregister; 1743 1744 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */ 1745 struct completion s_stat_kobj_unregister; 1746 1747 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */ 1748 struct completion s_feature_list_kobj_unregister; 1749 1750 /* For shrinker support */ 1751 struct list_head s_list; 1752 struct mutex umount_mutex; 1753 unsigned int shrinker_run_no; 1754 1755 /* For multi devices */ 1756 int s_ndevs; /* number of devices */ 1757 struct f2fs_dev_info *devs; /* for device list */ 1758 unsigned int dirty_device; /* for checkpoint data flush */ 1759 spinlock_t dev_lock; /* protect dirty_device */ 1760 bool aligned_blksize; /* all devices has the same logical blksize */ 1761 1762 /* For write statistics */ 1763 u64 sectors_written_start; 1764 u64 kbytes_written; 1765 1766 /* Reference to checksum algorithm driver via cryptoapi */ 1767 struct crypto_shash *s_chksum_driver; 1768 1769 /* Precomputed FS UUID checksum for seeding other checksums */ 1770 __u32 s_chksum_seed; 1771 1772 struct workqueue_struct *post_read_wq; /* post read workqueue */ 1773 1774 /* 1775 * If we are in irq context, let's update error information into 1776 * on-disk superblock in the work. 1777 */ 1778 struct work_struct s_error_work; 1779 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */ 1780 unsigned char stop_reason[MAX_STOP_REASON]; /* stop reason */ 1781 spinlock_t error_lock; /* protect errors/stop_reason array */ 1782 bool error_dirty; /* errors of sb is dirty */ 1783 1784 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */ 1785 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */ 1786 1787 /* For reclaimed segs statistics per each GC mode */ 1788 unsigned int gc_segment_mode; /* GC state for reclaimed segments */ 1789 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */ 1790 1791 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */ 1792 1793 int max_fragment_chunk; /* max chunk size for block fragmentation mode */ 1794 int max_fragment_hole; /* max hole size for block fragmentation mode */ 1795 1796 /* For atomic write statistics */ 1797 atomic64_t current_atomic_write; 1798 s64 peak_atomic_write; 1799 u64 committed_atomic_block; 1800 u64 revoked_atomic_block; 1801 1802 #ifdef CONFIG_F2FS_FS_COMPRESSION 1803 struct kmem_cache *page_array_slab; /* page array entry */ 1804 unsigned int page_array_slab_size; /* default page array slab size */ 1805 1806 /* For runtime compression statistics */ 1807 u64 compr_written_block; 1808 u64 compr_saved_block; 1809 u32 compr_new_inode; 1810 1811 /* For compressed block cache */ 1812 struct inode *compress_inode; /* cache compressed blocks */ 1813 unsigned int compress_percent; /* cache page percentage */ 1814 unsigned int compress_watermark; /* cache page watermark */ 1815 atomic_t compress_page_hit; /* cache hit count */ 1816 #endif 1817 1818 #ifdef CONFIG_F2FS_IOSTAT 1819 /* For app/fs IO statistics */ 1820 spinlock_t iostat_lock; 1821 unsigned long long iostat_count[NR_IO_TYPE]; 1822 unsigned long long iostat_bytes[NR_IO_TYPE]; 1823 unsigned long long prev_iostat_bytes[NR_IO_TYPE]; 1824 bool iostat_enable; 1825 unsigned long iostat_next_period; 1826 unsigned int iostat_period_ms; 1827 1828 /* For io latency related statistics info in one iostat period */ 1829 spinlock_t iostat_lat_lock; 1830 struct iostat_lat_info *iostat_io_lat; 1831 #endif 1832 }; 1833 1834 /* Definitions to access f2fs_sb_info */ 1835 #define SEGS_TO_BLKS(sbi, segs) \ 1836 ((segs) << (sbi)->log_blocks_per_seg) 1837 #define BLKS_TO_SEGS(sbi, blks) \ 1838 ((blks) >> (sbi)->log_blocks_per_seg) 1839 1840 #define BLKS_PER_SEG(sbi) ((sbi)->blocks_per_seg) 1841 #define BLKS_PER_SEC(sbi) (SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec)) 1842 #define SEGS_PER_SEC(sbi) ((sbi)->segs_per_sec) 1843 1844 __printf(3, 4) 1845 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...); 1846 1847 #define f2fs_err(sbi, fmt, ...) \ 1848 f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__) 1849 #define f2fs_warn(sbi, fmt, ...) \ 1850 f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__) 1851 #define f2fs_notice(sbi, fmt, ...) \ 1852 f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__) 1853 #define f2fs_info(sbi, fmt, ...) \ 1854 f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__) 1855 #define f2fs_debug(sbi, fmt, ...) \ 1856 f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__) 1857 1858 #define f2fs_err_ratelimited(sbi, fmt, ...) \ 1859 f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__) 1860 #define f2fs_warn_ratelimited(sbi, fmt, ...) \ 1861 f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__) 1862 #define f2fs_info_ratelimited(sbi, fmt, ...) \ 1863 f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__) 1864 1865 #ifdef CONFIG_F2FS_FAULT_INJECTION 1866 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \ 1867 __builtin_return_address(0)) 1868 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type, 1869 const char *func, const char *parent_func) 1870 { 1871 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 1872 1873 if (!ffi->inject_rate) 1874 return false; 1875 1876 if (!IS_FAULT_SET(ffi, type)) 1877 return false; 1878 1879 atomic_inc(&ffi->inject_ops); 1880 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) { 1881 atomic_set(&ffi->inject_ops, 0); 1882 f2fs_info_ratelimited(sbi, "inject %s in %s of %pS", 1883 f2fs_fault_name[type], func, parent_func); 1884 return true; 1885 } 1886 return false; 1887 } 1888 #else 1889 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type) 1890 { 1891 return false; 1892 } 1893 #endif 1894 1895 /* 1896 * Test if the mounted volume is a multi-device volume. 1897 * - For a single regular disk volume, sbi->s_ndevs is 0. 1898 * - For a single zoned disk volume, sbi->s_ndevs is 1. 1899 * - For a multi-device volume, sbi->s_ndevs is always 2 or more. 1900 */ 1901 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi) 1902 { 1903 return sbi->s_ndevs > 1; 1904 } 1905 1906 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type) 1907 { 1908 unsigned long now = jiffies; 1909 1910 sbi->last_time[type] = now; 1911 1912 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */ 1913 if (type == REQ_TIME) { 1914 sbi->last_time[DISCARD_TIME] = now; 1915 sbi->last_time[GC_TIME] = now; 1916 } 1917 } 1918 1919 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type) 1920 { 1921 unsigned long interval = sbi->interval_time[type] * HZ; 1922 1923 return time_after(jiffies, sbi->last_time[type] + interval); 1924 } 1925 1926 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi, 1927 int type) 1928 { 1929 unsigned long interval = sbi->interval_time[type] * HZ; 1930 unsigned int wait_ms = 0; 1931 long delta; 1932 1933 delta = (sbi->last_time[type] + interval) - jiffies; 1934 if (delta > 0) 1935 wait_ms = jiffies_to_msecs(delta); 1936 1937 return wait_ms; 1938 } 1939 1940 /* 1941 * Inline functions 1942 */ 1943 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc, 1944 const void *address, unsigned int length) 1945 { 1946 struct { 1947 struct shash_desc shash; 1948 char ctx[4]; 1949 } desc; 1950 int err; 1951 1952 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx)); 1953 1954 desc.shash.tfm = sbi->s_chksum_driver; 1955 *(u32 *)desc.ctx = crc; 1956 1957 err = crypto_shash_update(&desc.shash, address, length); 1958 BUG_ON(err); 1959 1960 return *(u32 *)desc.ctx; 1961 } 1962 1963 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address, 1964 unsigned int length) 1965 { 1966 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length); 1967 } 1968 1969 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc, 1970 void *buf, size_t buf_size) 1971 { 1972 return f2fs_crc32(sbi, buf, buf_size) == blk_crc; 1973 } 1974 1975 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc, 1976 const void *address, unsigned int length) 1977 { 1978 return __f2fs_crc32(sbi, crc, address, length); 1979 } 1980 1981 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 1982 { 1983 return container_of(inode, struct f2fs_inode_info, vfs_inode); 1984 } 1985 1986 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 1987 { 1988 return sb->s_fs_info; 1989 } 1990 1991 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 1992 { 1993 return F2FS_SB(inode->i_sb); 1994 } 1995 1996 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 1997 { 1998 return F2FS_I_SB(mapping->host); 1999 } 2000 2001 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 2002 { 2003 return F2FS_M_SB(page_file_mapping(page)); 2004 } 2005 2006 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 2007 { 2008 return (struct f2fs_super_block *)(sbi->raw_super); 2009 } 2010 2011 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio, 2012 pgoff_t index) 2013 { 2014 pgoff_t idx_in_folio = index % (1 << folio_order(folio)); 2015 2016 return (struct f2fs_super_block *) 2017 (page_address(folio_page(folio, idx_in_folio)) + 2018 F2FS_SUPER_OFFSET); 2019 } 2020 2021 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 2022 { 2023 return (struct f2fs_checkpoint *)(sbi->ckpt); 2024 } 2025 2026 static inline struct f2fs_node *F2FS_NODE(struct page *page) 2027 { 2028 return (struct f2fs_node *)page_address(page); 2029 } 2030 2031 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 2032 { 2033 return &((struct f2fs_node *)page_address(page))->i; 2034 } 2035 2036 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 2037 { 2038 return (struct f2fs_nm_info *)(sbi->nm_info); 2039 } 2040 2041 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 2042 { 2043 return (struct f2fs_sm_info *)(sbi->sm_info); 2044 } 2045 2046 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 2047 { 2048 return (struct sit_info *)(SM_I(sbi)->sit_info); 2049 } 2050 2051 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 2052 { 2053 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 2054 } 2055 2056 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 2057 { 2058 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 2059 } 2060 2061 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 2062 { 2063 return sbi->meta_inode->i_mapping; 2064 } 2065 2066 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 2067 { 2068 return sbi->node_inode->i_mapping; 2069 } 2070 2071 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 2072 { 2073 return test_bit(type, &sbi->s_flag); 2074 } 2075 2076 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2077 { 2078 set_bit(type, &sbi->s_flag); 2079 } 2080 2081 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 2082 { 2083 clear_bit(type, &sbi->s_flag); 2084 } 2085 2086 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 2087 { 2088 return le64_to_cpu(cp->checkpoint_ver); 2089 } 2090 2091 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type) 2092 { 2093 if (type < F2FS_MAX_QUOTAS) 2094 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]); 2095 return 0; 2096 } 2097 2098 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp) 2099 { 2100 size_t crc_offset = le32_to_cpu(cp->checksum_offset); 2101 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset))); 2102 } 2103 2104 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2105 { 2106 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2107 2108 return ckpt_flags & f; 2109 } 2110 2111 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2112 { 2113 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f); 2114 } 2115 2116 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2117 { 2118 unsigned int ckpt_flags; 2119 2120 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2121 ckpt_flags |= f; 2122 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2123 } 2124 2125 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2126 { 2127 unsigned long flags; 2128 2129 spin_lock_irqsave(&sbi->cp_lock, flags); 2130 __set_ckpt_flags(F2FS_CKPT(sbi), f); 2131 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2132 } 2133 2134 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 2135 { 2136 unsigned int ckpt_flags; 2137 2138 ckpt_flags = le32_to_cpu(cp->ckpt_flags); 2139 ckpt_flags &= (~f); 2140 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 2141 } 2142 2143 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f) 2144 { 2145 unsigned long flags; 2146 2147 spin_lock_irqsave(&sbi->cp_lock, flags); 2148 __clear_ckpt_flags(F2FS_CKPT(sbi), f); 2149 spin_unlock_irqrestore(&sbi->cp_lock, flags); 2150 } 2151 2152 #define init_f2fs_rwsem(sem) \ 2153 do { \ 2154 static struct lock_class_key __key; \ 2155 \ 2156 __init_f2fs_rwsem((sem), #sem, &__key); \ 2157 } while (0) 2158 2159 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem, 2160 const char *sem_name, struct lock_class_key *key) 2161 { 2162 __init_rwsem(&sem->internal_rwsem, sem_name, key); 2163 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2164 init_waitqueue_head(&sem->read_waiters); 2165 #endif 2166 } 2167 2168 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem) 2169 { 2170 return rwsem_is_locked(&sem->internal_rwsem); 2171 } 2172 2173 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem) 2174 { 2175 return rwsem_is_contended(&sem->internal_rwsem); 2176 } 2177 2178 static inline void f2fs_down_read(struct f2fs_rwsem *sem) 2179 { 2180 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2181 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem)); 2182 #else 2183 down_read(&sem->internal_rwsem); 2184 #endif 2185 } 2186 2187 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem) 2188 { 2189 return down_read_trylock(&sem->internal_rwsem); 2190 } 2191 2192 static inline void f2fs_up_read(struct f2fs_rwsem *sem) 2193 { 2194 up_read(&sem->internal_rwsem); 2195 } 2196 2197 static inline void f2fs_down_write(struct f2fs_rwsem *sem) 2198 { 2199 down_write(&sem->internal_rwsem); 2200 } 2201 2202 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2203 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass) 2204 { 2205 down_read_nested(&sem->internal_rwsem, subclass); 2206 } 2207 2208 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass) 2209 { 2210 down_write_nested(&sem->internal_rwsem, subclass); 2211 } 2212 #else 2213 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem) 2214 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem) 2215 #endif 2216 2217 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem) 2218 { 2219 return down_write_trylock(&sem->internal_rwsem); 2220 } 2221 2222 static inline void f2fs_up_write(struct f2fs_rwsem *sem) 2223 { 2224 up_write(&sem->internal_rwsem); 2225 #ifdef CONFIG_F2FS_UNFAIR_RWSEM 2226 wake_up_all(&sem->read_waiters); 2227 #endif 2228 } 2229 2230 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 2231 { 2232 f2fs_down_read(&sbi->cp_rwsem); 2233 } 2234 2235 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi) 2236 { 2237 if (time_to_inject(sbi, FAULT_LOCK_OP)) 2238 return 0; 2239 return f2fs_down_read_trylock(&sbi->cp_rwsem); 2240 } 2241 2242 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 2243 { 2244 f2fs_up_read(&sbi->cp_rwsem); 2245 } 2246 2247 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 2248 { 2249 f2fs_down_write(&sbi->cp_rwsem); 2250 } 2251 2252 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 2253 { 2254 f2fs_up_write(&sbi->cp_rwsem); 2255 } 2256 2257 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 2258 { 2259 int reason = CP_SYNC; 2260 2261 if (test_opt(sbi, FASTBOOT)) 2262 reason = CP_FASTBOOT; 2263 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2264 reason = CP_UMOUNT; 2265 return reason; 2266 } 2267 2268 static inline bool __remain_node_summaries(int reason) 2269 { 2270 return (reason & (CP_UMOUNT | CP_FASTBOOT)); 2271 } 2272 2273 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 2274 { 2275 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) || 2276 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG)); 2277 } 2278 2279 /* 2280 * Check whether the inode has blocks or not 2281 */ 2282 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 2283 { 2284 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0; 2285 2286 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block; 2287 } 2288 2289 static inline bool f2fs_has_xattr_block(unsigned int ofs) 2290 { 2291 return ofs == XATTR_NODE_OFFSET; 2292 } 2293 2294 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi, 2295 struct inode *inode, bool cap) 2296 { 2297 if (!inode) 2298 return true; 2299 if (!test_opt(sbi, RESERVE_ROOT)) 2300 return false; 2301 if (IS_NOQUOTA(inode)) 2302 return true; 2303 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid())) 2304 return true; 2305 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) && 2306 in_group_p(F2FS_OPTION(sbi).s_resgid)) 2307 return true; 2308 if (cap && capable(CAP_SYS_RESOURCE)) 2309 return true; 2310 return false; 2311 } 2312 2313 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi, 2314 struct inode *inode, bool cap) 2315 { 2316 block_t avail_user_block_count; 2317 2318 avail_user_block_count = sbi->user_block_count - 2319 sbi->current_reserved_blocks; 2320 2321 if (!__allow_reserved_blocks(sbi, inode, cap)) 2322 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks; 2323 2324 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2325 if (avail_user_block_count > sbi->unusable_block_count) 2326 avail_user_block_count -= sbi->unusable_block_count; 2327 else 2328 avail_user_block_count = 0; 2329 } 2330 2331 return avail_user_block_count; 2332 } 2333 2334 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool); 2335 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi, 2336 struct inode *inode, blkcnt_t *count, bool partial) 2337 { 2338 long long diff = 0, release = 0; 2339 block_t avail_user_block_count; 2340 int ret; 2341 2342 ret = dquot_reserve_block(inode, *count); 2343 if (ret) 2344 return ret; 2345 2346 if (time_to_inject(sbi, FAULT_BLOCK)) { 2347 release = *count; 2348 goto release_quota; 2349 } 2350 2351 /* 2352 * let's increase this in prior to actual block count change in order 2353 * for f2fs_sync_file to avoid data races when deciding checkpoint. 2354 */ 2355 percpu_counter_add(&sbi->alloc_valid_block_count, (*count)); 2356 2357 spin_lock(&sbi->stat_lock); 2358 2359 avail_user_block_count = get_available_block_count(sbi, inode, true); 2360 diff = (long long)sbi->total_valid_block_count + *count - 2361 avail_user_block_count; 2362 if (unlikely(diff > 0)) { 2363 if (!partial) { 2364 spin_unlock(&sbi->stat_lock); 2365 release = *count; 2366 goto enospc; 2367 } 2368 if (diff > *count) 2369 diff = *count; 2370 *count -= diff; 2371 release = diff; 2372 if (!*count) { 2373 spin_unlock(&sbi->stat_lock); 2374 goto enospc; 2375 } 2376 } 2377 sbi->total_valid_block_count += (block_t)(*count); 2378 2379 spin_unlock(&sbi->stat_lock); 2380 2381 if (unlikely(release)) { 2382 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2383 dquot_release_reservation_block(inode, release); 2384 } 2385 f2fs_i_blocks_write(inode, *count, true, true); 2386 return 0; 2387 2388 enospc: 2389 percpu_counter_sub(&sbi->alloc_valid_block_count, release); 2390 release_quota: 2391 dquot_release_reservation_block(inode, release); 2392 return -ENOSPC; 2393 } 2394 2395 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \ 2396 static inline bool page_private_##name(struct page *page) \ 2397 { \ 2398 return PagePrivate(page) && \ 2399 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \ 2400 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2401 } 2402 2403 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \ 2404 static inline void set_page_private_##name(struct page *page) \ 2405 { \ 2406 if (!PagePrivate(page)) \ 2407 attach_page_private(page, (void *)0); \ 2408 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \ 2409 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2410 } 2411 2412 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \ 2413 static inline void clear_page_private_##name(struct page *page) \ 2414 { \ 2415 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \ 2416 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \ 2417 detach_page_private(page); \ 2418 } 2419 2420 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER); 2421 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE); 2422 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION); 2423 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE); 2424 2425 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE); 2426 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE); 2427 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION); 2428 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE); 2429 2430 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE); 2431 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE); 2432 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION); 2433 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE); 2434 2435 static inline unsigned long get_page_private_data(struct page *page) 2436 { 2437 unsigned long data = page_private(page); 2438 2439 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data)) 2440 return 0; 2441 return data >> PAGE_PRIVATE_MAX; 2442 } 2443 2444 static inline void set_page_private_data(struct page *page, unsigned long data) 2445 { 2446 if (!PagePrivate(page)) 2447 attach_page_private(page, (void *)0); 2448 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); 2449 page_private(page) |= data << PAGE_PRIVATE_MAX; 2450 } 2451 2452 static inline void clear_page_private_data(struct page *page) 2453 { 2454 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0); 2455 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) 2456 detach_page_private(page); 2457 } 2458 2459 static inline void clear_page_private_all(struct page *page) 2460 { 2461 clear_page_private_data(page); 2462 clear_page_private_reference(page); 2463 clear_page_private_gcing(page); 2464 clear_page_private_inline(page); 2465 clear_page_private_atomic(page); 2466 2467 f2fs_bug_on(F2FS_P_SB(page), page_private(page)); 2468 } 2469 2470 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 2471 struct inode *inode, 2472 block_t count) 2473 { 2474 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK; 2475 2476 spin_lock(&sbi->stat_lock); 2477 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 2478 sbi->total_valid_block_count -= (block_t)count; 2479 if (sbi->reserved_blocks && 2480 sbi->current_reserved_blocks < sbi->reserved_blocks) 2481 sbi->current_reserved_blocks = min(sbi->reserved_blocks, 2482 sbi->current_reserved_blocks + count); 2483 spin_unlock(&sbi->stat_lock); 2484 if (unlikely(inode->i_blocks < sectors)) { 2485 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu", 2486 inode->i_ino, 2487 (unsigned long long)inode->i_blocks, 2488 (unsigned long long)sectors); 2489 set_sbi_flag(sbi, SBI_NEED_FSCK); 2490 return; 2491 } 2492 f2fs_i_blocks_write(inode, count, false, true); 2493 } 2494 2495 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 2496 { 2497 atomic_inc(&sbi->nr_pages[count_type]); 2498 2499 if (count_type == F2FS_DIRTY_DENTS || 2500 count_type == F2FS_DIRTY_NODES || 2501 count_type == F2FS_DIRTY_META || 2502 count_type == F2FS_DIRTY_QDATA || 2503 count_type == F2FS_DIRTY_IMETA) 2504 set_sbi_flag(sbi, SBI_IS_DIRTY); 2505 } 2506 2507 static inline void inode_inc_dirty_pages(struct inode *inode) 2508 { 2509 atomic_inc(&F2FS_I(inode)->dirty_pages); 2510 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2511 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2512 if (IS_NOQUOTA(inode)) 2513 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2514 } 2515 2516 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 2517 { 2518 atomic_dec(&sbi->nr_pages[count_type]); 2519 } 2520 2521 static inline void inode_dec_dirty_pages(struct inode *inode) 2522 { 2523 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) && 2524 !S_ISLNK(inode->i_mode)) 2525 return; 2526 2527 atomic_dec(&F2FS_I(inode)->dirty_pages); 2528 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ? 2529 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA); 2530 if (IS_NOQUOTA(inode)) 2531 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA); 2532 } 2533 2534 static inline void inc_atomic_write_cnt(struct inode *inode) 2535 { 2536 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2537 struct f2fs_inode_info *fi = F2FS_I(inode); 2538 u64 current_write; 2539 2540 fi->atomic_write_cnt++; 2541 atomic64_inc(&sbi->current_atomic_write); 2542 current_write = atomic64_read(&sbi->current_atomic_write); 2543 if (current_write > sbi->peak_atomic_write) 2544 sbi->peak_atomic_write = current_write; 2545 } 2546 2547 static inline void release_atomic_write_cnt(struct inode *inode) 2548 { 2549 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2550 struct f2fs_inode_info *fi = F2FS_I(inode); 2551 2552 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write); 2553 fi->atomic_write_cnt = 0; 2554 } 2555 2556 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type) 2557 { 2558 return atomic_read(&sbi->nr_pages[count_type]); 2559 } 2560 2561 static inline int get_dirty_pages(struct inode *inode) 2562 { 2563 return atomic_read(&F2FS_I(inode)->dirty_pages); 2564 } 2565 2566 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 2567 { 2568 return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1, 2569 BLKS_PER_SEC(sbi)); 2570 } 2571 2572 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 2573 { 2574 return sbi->total_valid_block_count; 2575 } 2576 2577 static inline block_t discard_blocks(struct f2fs_sb_info *sbi) 2578 { 2579 return sbi->discard_blks; 2580 } 2581 2582 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 2583 { 2584 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2585 2586 /* return NAT or SIT bitmap */ 2587 if (flag == NAT_BITMAP) 2588 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2589 else if (flag == SIT_BITMAP) 2590 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2591 2592 return 0; 2593 } 2594 2595 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 2596 { 2597 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 2598 } 2599 2600 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 2601 { 2602 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2603 void *tmp_ptr = &ckpt->sit_nat_version_bitmap; 2604 int offset; 2605 2606 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) { 2607 offset = (flag == SIT_BITMAP) ? 2608 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0; 2609 /* 2610 * if large_nat_bitmap feature is enabled, leave checksum 2611 * protection for all nat/sit bitmaps. 2612 */ 2613 return tmp_ptr + offset + sizeof(__le32); 2614 } 2615 2616 if (__cp_payload(sbi) > 0) { 2617 if (flag == NAT_BITMAP) 2618 return tmp_ptr; 2619 else 2620 return (unsigned char *)ckpt + F2FS_BLKSIZE; 2621 } else { 2622 offset = (flag == NAT_BITMAP) ? 2623 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 2624 return tmp_ptr + offset; 2625 } 2626 } 2627 2628 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 2629 { 2630 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2631 2632 if (sbi->cur_cp_pack == 2) 2633 start_addr += BLKS_PER_SEG(sbi); 2634 return start_addr; 2635 } 2636 2637 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi) 2638 { 2639 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 2640 2641 if (sbi->cur_cp_pack == 1) 2642 start_addr += BLKS_PER_SEG(sbi); 2643 return start_addr; 2644 } 2645 2646 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi) 2647 { 2648 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1; 2649 } 2650 2651 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 2652 { 2653 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 2654 } 2655 2656 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync); 2657 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi, 2658 struct inode *inode, bool is_inode) 2659 { 2660 block_t valid_block_count; 2661 unsigned int valid_node_count; 2662 unsigned int avail_user_block_count; 2663 int err; 2664 2665 if (is_inode) { 2666 if (inode) { 2667 err = dquot_alloc_inode(inode); 2668 if (err) 2669 return err; 2670 } 2671 } else { 2672 err = dquot_reserve_block(inode, 1); 2673 if (err) 2674 return err; 2675 } 2676 2677 if (time_to_inject(sbi, FAULT_BLOCK)) 2678 goto enospc; 2679 2680 spin_lock(&sbi->stat_lock); 2681 2682 valid_block_count = sbi->total_valid_block_count + 1; 2683 avail_user_block_count = get_available_block_count(sbi, inode, false); 2684 2685 if (unlikely(valid_block_count > avail_user_block_count)) { 2686 spin_unlock(&sbi->stat_lock); 2687 goto enospc; 2688 } 2689 2690 valid_node_count = sbi->total_valid_node_count + 1; 2691 if (unlikely(valid_node_count > sbi->total_node_count)) { 2692 spin_unlock(&sbi->stat_lock); 2693 goto enospc; 2694 } 2695 2696 sbi->total_valid_node_count++; 2697 sbi->total_valid_block_count++; 2698 spin_unlock(&sbi->stat_lock); 2699 2700 if (inode) { 2701 if (is_inode) 2702 f2fs_mark_inode_dirty_sync(inode, true); 2703 else 2704 f2fs_i_blocks_write(inode, 1, true, true); 2705 } 2706 2707 percpu_counter_inc(&sbi->alloc_valid_block_count); 2708 return 0; 2709 2710 enospc: 2711 if (is_inode) { 2712 if (inode) 2713 dquot_free_inode(inode); 2714 } else { 2715 dquot_release_reservation_block(inode, 1); 2716 } 2717 return -ENOSPC; 2718 } 2719 2720 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 2721 struct inode *inode, bool is_inode) 2722 { 2723 spin_lock(&sbi->stat_lock); 2724 2725 if (unlikely(!sbi->total_valid_block_count || 2726 !sbi->total_valid_node_count)) { 2727 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u", 2728 sbi->total_valid_block_count, 2729 sbi->total_valid_node_count); 2730 set_sbi_flag(sbi, SBI_NEED_FSCK); 2731 } else { 2732 sbi->total_valid_block_count--; 2733 sbi->total_valid_node_count--; 2734 } 2735 2736 if (sbi->reserved_blocks && 2737 sbi->current_reserved_blocks < sbi->reserved_blocks) 2738 sbi->current_reserved_blocks++; 2739 2740 spin_unlock(&sbi->stat_lock); 2741 2742 if (is_inode) { 2743 dquot_free_inode(inode); 2744 } else { 2745 if (unlikely(inode->i_blocks == 0)) { 2746 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu", 2747 inode->i_ino, 2748 (unsigned long long)inode->i_blocks); 2749 set_sbi_flag(sbi, SBI_NEED_FSCK); 2750 return; 2751 } 2752 f2fs_i_blocks_write(inode, 1, false, true); 2753 } 2754 } 2755 2756 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 2757 { 2758 return sbi->total_valid_node_count; 2759 } 2760 2761 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 2762 { 2763 percpu_counter_inc(&sbi->total_valid_inode_count); 2764 } 2765 2766 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 2767 { 2768 percpu_counter_dec(&sbi->total_valid_inode_count); 2769 } 2770 2771 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi) 2772 { 2773 return percpu_counter_sum_positive(&sbi->total_valid_inode_count); 2774 } 2775 2776 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping, 2777 pgoff_t index, bool for_write) 2778 { 2779 struct page *page; 2780 unsigned int flags; 2781 2782 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) { 2783 if (!for_write) 2784 page = find_get_page_flags(mapping, index, 2785 FGP_LOCK | FGP_ACCESSED); 2786 else 2787 page = find_lock_page(mapping, index); 2788 if (page) 2789 return page; 2790 2791 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) 2792 return NULL; 2793 } 2794 2795 if (!for_write) 2796 return grab_cache_page(mapping, index); 2797 2798 flags = memalloc_nofs_save(); 2799 page = grab_cache_page_write_begin(mapping, index); 2800 memalloc_nofs_restore(flags); 2801 2802 return page; 2803 } 2804 2805 static inline struct page *f2fs_pagecache_get_page( 2806 struct address_space *mapping, pgoff_t index, 2807 fgf_t fgp_flags, gfp_t gfp_mask) 2808 { 2809 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) 2810 return NULL; 2811 2812 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask); 2813 } 2814 2815 static inline void f2fs_put_page(struct page *page, int unlock) 2816 { 2817 if (!page) 2818 return; 2819 2820 if (unlock) { 2821 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 2822 unlock_page(page); 2823 } 2824 put_page(page); 2825 } 2826 2827 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 2828 { 2829 if (dn->node_page) 2830 f2fs_put_page(dn->node_page, 1); 2831 if (dn->inode_page && dn->node_page != dn->inode_page) 2832 f2fs_put_page(dn->inode_page, 0); 2833 dn->node_page = NULL; 2834 dn->inode_page = NULL; 2835 } 2836 2837 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 2838 size_t size) 2839 { 2840 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 2841 } 2842 2843 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep, 2844 gfp_t flags) 2845 { 2846 void *entry; 2847 2848 entry = kmem_cache_alloc(cachep, flags); 2849 if (!entry) 2850 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL); 2851 return entry; 2852 } 2853 2854 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 2855 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi) 2856 { 2857 if (nofail) 2858 return f2fs_kmem_cache_alloc_nofail(cachep, flags); 2859 2860 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) 2861 return NULL; 2862 2863 return kmem_cache_alloc(cachep, flags); 2864 } 2865 2866 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type) 2867 { 2868 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) || 2869 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) || 2870 get_pages(sbi, F2FS_WB_CP_DATA) || 2871 get_pages(sbi, F2FS_DIO_READ) || 2872 get_pages(sbi, F2FS_DIO_WRITE)) 2873 return true; 2874 2875 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info && 2876 atomic_read(&SM_I(sbi)->dcc_info->queued_discard)) 2877 return true; 2878 2879 if (SM_I(sbi) && SM_I(sbi)->fcc_info && 2880 atomic_read(&SM_I(sbi)->fcc_info->queued_flush)) 2881 return true; 2882 return false; 2883 } 2884 2885 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi) 2886 { 2887 return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ); 2888 } 2889 2890 static inline bool is_idle(struct f2fs_sb_info *sbi, int type) 2891 { 2892 bool zoned_gc = (type == GC_TIME && 2893 F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED)); 2894 2895 if (sbi->gc_mode == GC_URGENT_HIGH) 2896 return true; 2897 2898 if (zoned_gc) { 2899 if (is_inflight_read_io(sbi)) 2900 return false; 2901 } else { 2902 if (is_inflight_io(sbi, type)) 2903 return false; 2904 } 2905 2906 if (sbi->gc_mode == GC_URGENT_MID) 2907 return true; 2908 2909 if (sbi->gc_mode == GC_URGENT_LOW && 2910 (type == DISCARD_TIME || type == GC_TIME)) 2911 return true; 2912 2913 if (zoned_gc) 2914 return true; 2915 2916 return f2fs_time_over(sbi, type); 2917 } 2918 2919 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 2920 unsigned long index, void *item) 2921 { 2922 while (radix_tree_insert(root, index, item)) 2923 cond_resched(); 2924 } 2925 2926 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 2927 2928 static inline bool IS_INODE(struct page *page) 2929 { 2930 struct f2fs_node *p = F2FS_NODE(page); 2931 2932 return RAW_IS_INODE(p); 2933 } 2934 2935 static inline int offset_in_addr(struct f2fs_inode *i) 2936 { 2937 return (i->i_inline & F2FS_EXTRA_ATTR) ? 2938 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0; 2939 } 2940 2941 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 2942 { 2943 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 2944 } 2945 2946 static inline int f2fs_has_extra_attr(struct inode *inode); 2947 static inline unsigned int get_dnode_base(struct inode *inode, 2948 struct page *node_page) 2949 { 2950 if (!IS_INODE(node_page)) 2951 return 0; 2952 2953 return inode ? get_extra_isize(inode) : 2954 offset_in_addr(&F2FS_NODE(node_page)->i); 2955 } 2956 2957 static inline __le32 *get_dnode_addr(struct inode *inode, 2958 struct page *node_page) 2959 { 2960 return blkaddr_in_node(F2FS_NODE(node_page)) + 2961 get_dnode_base(inode, node_page); 2962 } 2963 2964 static inline block_t data_blkaddr(struct inode *inode, 2965 struct page *node_page, unsigned int offset) 2966 { 2967 return le32_to_cpu(*(get_dnode_addr(inode, node_page) + offset)); 2968 } 2969 2970 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn) 2971 { 2972 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node); 2973 } 2974 2975 static inline int f2fs_test_bit(unsigned int nr, char *addr) 2976 { 2977 int mask; 2978 2979 addr += (nr >> 3); 2980 mask = BIT(7 - (nr & 0x07)); 2981 return mask & *addr; 2982 } 2983 2984 static inline void f2fs_set_bit(unsigned int nr, char *addr) 2985 { 2986 int mask; 2987 2988 addr += (nr >> 3); 2989 mask = BIT(7 - (nr & 0x07)); 2990 *addr |= mask; 2991 } 2992 2993 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 2994 { 2995 int mask; 2996 2997 addr += (nr >> 3); 2998 mask = BIT(7 - (nr & 0x07)); 2999 *addr &= ~mask; 3000 } 3001 3002 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 3003 { 3004 int mask; 3005 int ret; 3006 3007 addr += (nr >> 3); 3008 mask = BIT(7 - (nr & 0x07)); 3009 ret = mask & *addr; 3010 *addr |= mask; 3011 return ret; 3012 } 3013 3014 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 3015 { 3016 int mask; 3017 int ret; 3018 3019 addr += (nr >> 3); 3020 mask = BIT(7 - (nr & 0x07)); 3021 ret = mask & *addr; 3022 *addr &= ~mask; 3023 return ret; 3024 } 3025 3026 static inline void f2fs_change_bit(unsigned int nr, char *addr) 3027 { 3028 int mask; 3029 3030 addr += (nr >> 3); 3031 mask = BIT(7 - (nr & 0x07)); 3032 *addr ^= mask; 3033 } 3034 3035 /* 3036 * On-disk inode flags (f2fs_inode::i_flags) 3037 */ 3038 #define F2FS_COMPR_FL 0x00000004 /* Compress file */ 3039 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */ 3040 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */ 3041 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */ 3042 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */ 3043 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */ 3044 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */ 3045 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */ 3046 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */ 3047 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */ 3048 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */ 3049 3050 #define F2FS_QUOTA_DEFAULT_FL (F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL) 3051 3052 /* Flags that should be inherited by new inodes from their parent. */ 3053 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \ 3054 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 3055 F2FS_CASEFOLD_FL) 3056 3057 /* Flags that are appropriate for regular files (all but dir-specific ones). */ 3058 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \ 3059 F2FS_CASEFOLD_FL)) 3060 3061 /* Flags that are appropriate for non-directories/regular files. */ 3062 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL) 3063 3064 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags) 3065 { 3066 if (S_ISDIR(mode)) 3067 return flags; 3068 else if (S_ISREG(mode)) 3069 return flags & F2FS_REG_FLMASK; 3070 else 3071 return flags & F2FS_OTHER_FLMASK; 3072 } 3073 3074 static inline void __mark_inode_dirty_flag(struct inode *inode, 3075 int flag, bool set) 3076 { 3077 switch (flag) { 3078 case FI_INLINE_XATTR: 3079 case FI_INLINE_DATA: 3080 case FI_INLINE_DENTRY: 3081 case FI_NEW_INODE: 3082 if (set) 3083 return; 3084 fallthrough; 3085 case FI_DATA_EXIST: 3086 case FI_PIN_FILE: 3087 case FI_COMPRESS_RELEASED: 3088 f2fs_mark_inode_dirty_sync(inode, true); 3089 } 3090 } 3091 3092 static inline void set_inode_flag(struct inode *inode, int flag) 3093 { 3094 set_bit(flag, F2FS_I(inode)->flags); 3095 __mark_inode_dirty_flag(inode, flag, true); 3096 } 3097 3098 static inline int is_inode_flag_set(struct inode *inode, int flag) 3099 { 3100 return test_bit(flag, F2FS_I(inode)->flags); 3101 } 3102 3103 static inline void clear_inode_flag(struct inode *inode, int flag) 3104 { 3105 clear_bit(flag, F2FS_I(inode)->flags); 3106 __mark_inode_dirty_flag(inode, flag, false); 3107 } 3108 3109 static inline bool f2fs_verity_in_progress(struct inode *inode) 3110 { 3111 return IS_ENABLED(CONFIG_FS_VERITY) && 3112 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS); 3113 } 3114 3115 static inline void set_acl_inode(struct inode *inode, umode_t mode) 3116 { 3117 F2FS_I(inode)->i_acl_mode = mode; 3118 set_inode_flag(inode, FI_ACL_MODE); 3119 f2fs_mark_inode_dirty_sync(inode, false); 3120 } 3121 3122 static inline void f2fs_i_links_write(struct inode *inode, bool inc) 3123 { 3124 if (inc) 3125 inc_nlink(inode); 3126 else 3127 drop_nlink(inode); 3128 f2fs_mark_inode_dirty_sync(inode, true); 3129 } 3130 3131 static inline void f2fs_i_blocks_write(struct inode *inode, 3132 block_t diff, bool add, bool claim) 3133 { 3134 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3135 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3136 3137 /* add = 1, claim = 1 should be dquot_reserve_block in pair */ 3138 if (add) { 3139 if (claim) 3140 dquot_claim_block(inode, diff); 3141 else 3142 dquot_alloc_block_nofail(inode, diff); 3143 } else { 3144 dquot_free_block(inode, diff); 3145 } 3146 3147 f2fs_mark_inode_dirty_sync(inode, true); 3148 if (clean || recover) 3149 set_inode_flag(inode, FI_AUTO_RECOVER); 3150 } 3151 3152 static inline bool f2fs_is_atomic_file(struct inode *inode); 3153 3154 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size) 3155 { 3156 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE); 3157 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER); 3158 3159 if (i_size_read(inode) == i_size) 3160 return; 3161 3162 i_size_write(inode, i_size); 3163 3164 if (f2fs_is_atomic_file(inode)) 3165 return; 3166 3167 f2fs_mark_inode_dirty_sync(inode, true); 3168 if (clean || recover) 3169 set_inode_flag(inode, FI_AUTO_RECOVER); 3170 } 3171 3172 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth) 3173 { 3174 F2FS_I(inode)->i_current_depth = depth; 3175 f2fs_mark_inode_dirty_sync(inode, true); 3176 } 3177 3178 static inline void f2fs_i_gc_failures_write(struct inode *inode, 3179 unsigned int count) 3180 { 3181 F2FS_I(inode)->i_gc_failures = count; 3182 f2fs_mark_inode_dirty_sync(inode, true); 3183 } 3184 3185 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid) 3186 { 3187 F2FS_I(inode)->i_xattr_nid = xnid; 3188 f2fs_mark_inode_dirty_sync(inode, true); 3189 } 3190 3191 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino) 3192 { 3193 F2FS_I(inode)->i_pino = pino; 3194 f2fs_mark_inode_dirty_sync(inode, true); 3195 } 3196 3197 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri) 3198 { 3199 struct f2fs_inode_info *fi = F2FS_I(inode); 3200 3201 if (ri->i_inline & F2FS_INLINE_XATTR) 3202 set_bit(FI_INLINE_XATTR, fi->flags); 3203 if (ri->i_inline & F2FS_INLINE_DATA) 3204 set_bit(FI_INLINE_DATA, fi->flags); 3205 if (ri->i_inline & F2FS_INLINE_DENTRY) 3206 set_bit(FI_INLINE_DENTRY, fi->flags); 3207 if (ri->i_inline & F2FS_DATA_EXIST) 3208 set_bit(FI_DATA_EXIST, fi->flags); 3209 if (ri->i_inline & F2FS_EXTRA_ATTR) 3210 set_bit(FI_EXTRA_ATTR, fi->flags); 3211 if (ri->i_inline & F2FS_PIN_FILE) 3212 set_bit(FI_PIN_FILE, fi->flags); 3213 if (ri->i_inline & F2FS_COMPRESS_RELEASED) 3214 set_bit(FI_COMPRESS_RELEASED, fi->flags); 3215 } 3216 3217 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri) 3218 { 3219 ri->i_inline = 0; 3220 3221 if (is_inode_flag_set(inode, FI_INLINE_XATTR)) 3222 ri->i_inline |= F2FS_INLINE_XATTR; 3223 if (is_inode_flag_set(inode, FI_INLINE_DATA)) 3224 ri->i_inline |= F2FS_INLINE_DATA; 3225 if (is_inode_flag_set(inode, FI_INLINE_DENTRY)) 3226 ri->i_inline |= F2FS_INLINE_DENTRY; 3227 if (is_inode_flag_set(inode, FI_DATA_EXIST)) 3228 ri->i_inline |= F2FS_DATA_EXIST; 3229 if (is_inode_flag_set(inode, FI_EXTRA_ATTR)) 3230 ri->i_inline |= F2FS_EXTRA_ATTR; 3231 if (is_inode_flag_set(inode, FI_PIN_FILE)) 3232 ri->i_inline |= F2FS_PIN_FILE; 3233 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) 3234 ri->i_inline |= F2FS_COMPRESS_RELEASED; 3235 } 3236 3237 static inline int f2fs_has_extra_attr(struct inode *inode) 3238 { 3239 return is_inode_flag_set(inode, FI_EXTRA_ATTR); 3240 } 3241 3242 static inline int f2fs_has_inline_xattr(struct inode *inode) 3243 { 3244 return is_inode_flag_set(inode, FI_INLINE_XATTR); 3245 } 3246 3247 static inline int f2fs_compressed_file(struct inode *inode) 3248 { 3249 return S_ISREG(inode->i_mode) && 3250 is_inode_flag_set(inode, FI_COMPRESSED_FILE); 3251 } 3252 3253 static inline bool f2fs_need_compress_data(struct inode *inode) 3254 { 3255 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode; 3256 3257 if (!f2fs_compressed_file(inode)) 3258 return false; 3259 3260 if (compress_mode == COMPR_MODE_FS) 3261 return true; 3262 else if (compress_mode == COMPR_MODE_USER && 3263 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 3264 return true; 3265 3266 return false; 3267 } 3268 3269 static inline unsigned int addrs_per_page(struct inode *inode, 3270 bool is_inode) 3271 { 3272 unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) - 3273 get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK; 3274 3275 if (f2fs_compressed_file(inode)) 3276 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size); 3277 return addrs; 3278 } 3279 3280 static inline void *inline_xattr_addr(struct inode *inode, struct page *page) 3281 { 3282 struct f2fs_inode *ri = F2FS_INODE(page); 3283 3284 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 3285 get_inline_xattr_addrs(inode)]); 3286 } 3287 3288 static inline int inline_xattr_size(struct inode *inode) 3289 { 3290 if (f2fs_has_inline_xattr(inode)) 3291 return get_inline_xattr_addrs(inode) * sizeof(__le32); 3292 return 0; 3293 } 3294 3295 /* 3296 * Notice: check inline_data flag without inode page lock is unsafe. 3297 * It could change at any time by f2fs_convert_inline_page(). 3298 */ 3299 static inline int f2fs_has_inline_data(struct inode *inode) 3300 { 3301 return is_inode_flag_set(inode, FI_INLINE_DATA); 3302 } 3303 3304 static inline int f2fs_exist_data(struct inode *inode) 3305 { 3306 return is_inode_flag_set(inode, FI_DATA_EXIST); 3307 } 3308 3309 static inline int f2fs_is_mmap_file(struct inode *inode) 3310 { 3311 return is_inode_flag_set(inode, FI_MMAP_FILE); 3312 } 3313 3314 static inline bool f2fs_is_pinned_file(struct inode *inode) 3315 { 3316 return is_inode_flag_set(inode, FI_PIN_FILE); 3317 } 3318 3319 static inline bool f2fs_is_atomic_file(struct inode *inode) 3320 { 3321 return is_inode_flag_set(inode, FI_ATOMIC_FILE); 3322 } 3323 3324 static inline bool f2fs_is_cow_file(struct inode *inode) 3325 { 3326 return is_inode_flag_set(inode, FI_COW_FILE); 3327 } 3328 3329 static inline void *inline_data_addr(struct inode *inode, struct page *page) 3330 { 3331 __le32 *addr = get_dnode_addr(inode, page); 3332 3333 return (void *)(addr + DEF_INLINE_RESERVED_SIZE); 3334 } 3335 3336 static inline int f2fs_has_inline_dentry(struct inode *inode) 3337 { 3338 return is_inode_flag_set(inode, FI_INLINE_DENTRY); 3339 } 3340 3341 static inline int is_file(struct inode *inode, int type) 3342 { 3343 return F2FS_I(inode)->i_advise & type; 3344 } 3345 3346 static inline void set_file(struct inode *inode, int type) 3347 { 3348 if (is_file(inode, type)) 3349 return; 3350 F2FS_I(inode)->i_advise |= type; 3351 f2fs_mark_inode_dirty_sync(inode, true); 3352 } 3353 3354 static inline void clear_file(struct inode *inode, int type) 3355 { 3356 if (!is_file(inode, type)) 3357 return; 3358 F2FS_I(inode)->i_advise &= ~type; 3359 f2fs_mark_inode_dirty_sync(inode, true); 3360 } 3361 3362 static inline bool f2fs_is_time_consistent(struct inode *inode) 3363 { 3364 struct timespec64 ts = inode_get_atime(inode); 3365 3366 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts)) 3367 return false; 3368 ts = inode_get_ctime(inode); 3369 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts)) 3370 return false; 3371 ts = inode_get_mtime(inode); 3372 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts)) 3373 return false; 3374 return true; 3375 } 3376 3377 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync) 3378 { 3379 bool ret; 3380 3381 if (dsync) { 3382 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3383 3384 spin_lock(&sbi->inode_lock[DIRTY_META]); 3385 ret = list_empty(&F2FS_I(inode)->gdirty_list); 3386 spin_unlock(&sbi->inode_lock[DIRTY_META]); 3387 return ret; 3388 } 3389 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) || 3390 file_keep_isize(inode) || 3391 i_size_read(inode) & ~PAGE_MASK) 3392 return false; 3393 3394 if (!f2fs_is_time_consistent(inode)) 3395 return false; 3396 3397 spin_lock(&F2FS_I(inode)->i_size_lock); 3398 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode); 3399 spin_unlock(&F2FS_I(inode)->i_size_lock); 3400 3401 return ret; 3402 } 3403 3404 static inline bool f2fs_readonly(struct super_block *sb) 3405 { 3406 return sb_rdonly(sb); 3407 } 3408 3409 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 3410 { 3411 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG); 3412 } 3413 3414 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi, 3415 size_t size, gfp_t flags) 3416 { 3417 if (time_to_inject(sbi, FAULT_KMALLOC)) 3418 return NULL; 3419 3420 return kmalloc(size, flags); 3421 } 3422 3423 static inline void *f2fs_getname(struct f2fs_sb_info *sbi) 3424 { 3425 if (time_to_inject(sbi, FAULT_KMALLOC)) 3426 return NULL; 3427 3428 return __getname(); 3429 } 3430 3431 static inline void f2fs_putname(char *buf) 3432 { 3433 __putname(buf); 3434 } 3435 3436 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi, 3437 size_t size, gfp_t flags) 3438 { 3439 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO); 3440 } 3441 3442 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi, 3443 size_t size, gfp_t flags) 3444 { 3445 if (time_to_inject(sbi, FAULT_KVMALLOC)) 3446 return NULL; 3447 3448 return kvmalloc(size, flags); 3449 } 3450 3451 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi, 3452 size_t size, gfp_t flags) 3453 { 3454 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO); 3455 } 3456 3457 static inline int get_extra_isize(struct inode *inode) 3458 { 3459 return F2FS_I(inode)->i_extra_isize / sizeof(__le32); 3460 } 3461 3462 static inline int get_inline_xattr_addrs(struct inode *inode) 3463 { 3464 return F2FS_I(inode)->i_inline_xattr_size; 3465 } 3466 3467 #define f2fs_get_inode_mode(i) \ 3468 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \ 3469 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 3470 3471 #define F2FS_MIN_EXTRA_ATTR_SIZE (sizeof(__le32)) 3472 3473 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \ 3474 (offsetof(struct f2fs_inode, i_extra_end) - \ 3475 offsetof(struct f2fs_inode, i_extra_isize)) \ 3476 3477 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr)) 3478 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \ 3479 ((offsetof(typeof(*(f2fs_inode)), field) + \ 3480 sizeof((f2fs_inode)->field)) \ 3481 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \ 3482 3483 #define __is_large_section(sbi) (SEGS_PER_SEC(sbi) > 1) 3484 3485 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META) 3486 3487 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3488 block_t blkaddr, int type); 3489 static inline void verify_blkaddr(struct f2fs_sb_info *sbi, 3490 block_t blkaddr, int type) 3491 { 3492 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) 3493 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.", 3494 blkaddr, type); 3495 } 3496 3497 static inline bool __is_valid_data_blkaddr(block_t blkaddr) 3498 { 3499 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR || 3500 blkaddr == COMPRESS_ADDR) 3501 return false; 3502 return true; 3503 } 3504 3505 /* 3506 * file.c 3507 */ 3508 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3509 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock); 3510 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock); 3511 int f2fs_truncate(struct inode *inode); 3512 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path, 3513 struct kstat *stat, u32 request_mask, unsigned int flags); 3514 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3515 struct iattr *attr); 3516 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end); 3517 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count); 3518 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag, 3519 bool readonly, bool need_lock); 3520 int f2fs_precache_extents(struct inode *inode); 3521 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3522 int f2fs_fileattr_set(struct mnt_idmap *idmap, 3523 struct dentry *dentry, struct fileattr *fa); 3524 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3525 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3526 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid); 3527 int f2fs_pin_file_control(struct inode *inode, bool inc); 3528 3529 /* 3530 * inode.c 3531 */ 3532 void f2fs_set_inode_flags(struct inode *inode); 3533 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page); 3534 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page); 3535 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino); 3536 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino); 3537 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink); 3538 void f2fs_update_inode(struct inode *inode, struct page *node_page); 3539 void f2fs_update_inode_page(struct inode *inode); 3540 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc); 3541 void f2fs_evict_inode(struct inode *inode); 3542 void f2fs_handle_failed_inode(struct inode *inode); 3543 3544 /* 3545 * namei.c 3546 */ 3547 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name, 3548 bool hot, bool set); 3549 struct dentry *f2fs_get_parent(struct dentry *child); 3550 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 3551 struct inode **new_inode); 3552 3553 /* 3554 * dir.c 3555 */ 3556 #if IS_ENABLED(CONFIG_UNICODE) 3557 int f2fs_init_casefolded_name(const struct inode *dir, 3558 struct f2fs_filename *fname); 3559 void f2fs_free_casefolded_name(struct f2fs_filename *fname); 3560 #else 3561 static inline int f2fs_init_casefolded_name(const struct inode *dir, 3562 struct f2fs_filename *fname) 3563 { 3564 return 0; 3565 } 3566 3567 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname) 3568 { 3569 } 3570 #endif /* CONFIG_UNICODE */ 3571 3572 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname, 3573 int lookup, struct f2fs_filename *fname); 3574 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry, 3575 struct f2fs_filename *fname); 3576 void f2fs_free_filename(struct f2fs_filename *fname); 3577 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d, 3578 const struct f2fs_filename *fname, int *max_slots); 3579 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d, 3580 unsigned int start_pos, struct fscrypt_str *fstr); 3581 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent, 3582 struct f2fs_dentry_ptr *d); 3583 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir, 3584 const struct f2fs_filename *fname, struct page *dpage); 3585 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode, 3586 unsigned int current_depth); 3587 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots); 3588 void f2fs_drop_nlink(struct inode *dir, struct inode *inode); 3589 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir, 3590 const struct f2fs_filename *fname, 3591 struct page **res_page); 3592 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir, 3593 const struct qstr *child, struct page **res_page); 3594 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p); 3595 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr, 3596 struct page **page); 3597 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de, 3598 struct page *page, struct inode *inode); 3599 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage, 3600 const struct f2fs_filename *fname); 3601 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d, 3602 const struct fscrypt_str *name, f2fs_hash_t name_hash, 3603 unsigned int bit_pos); 3604 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname, 3605 struct inode *inode, nid_t ino, umode_t mode); 3606 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname, 3607 struct inode *inode, nid_t ino, umode_t mode); 3608 int f2fs_do_add_link(struct inode *dir, const struct qstr *name, 3609 struct inode *inode, nid_t ino, umode_t mode); 3610 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page, 3611 struct inode *dir, struct inode *inode); 3612 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir, 3613 struct f2fs_filename *fname); 3614 bool f2fs_empty_dir(struct inode *dir); 3615 3616 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 3617 { 3618 if (fscrypt_is_nokey_name(dentry)) 3619 return -ENOKEY; 3620 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name, 3621 inode, inode->i_ino, inode->i_mode); 3622 } 3623 3624 /* 3625 * super.c 3626 */ 3627 int f2fs_inode_dirtied(struct inode *inode, bool sync); 3628 void f2fs_inode_synced(struct inode *inode); 3629 int f2fs_dquot_initialize(struct inode *inode); 3630 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly); 3631 int f2fs_quota_sync(struct super_block *sb, int type); 3632 loff_t max_file_blocks(struct inode *inode); 3633 void f2fs_quota_off_umount(struct super_block *sb); 3634 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag); 3635 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 3636 bool irq_context); 3637 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error); 3638 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error); 3639 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover); 3640 int f2fs_sync_fs(struct super_block *sb, int sync); 3641 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi); 3642 3643 /* 3644 * hash.c 3645 */ 3646 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname); 3647 3648 /* 3649 * node.c 3650 */ 3651 struct node_info; 3652 3653 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid); 3654 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type); 3655 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page); 3656 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi); 3657 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page); 3658 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi); 3659 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid); 3660 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid); 3661 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino); 3662 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, 3663 struct node_info *ni, bool checkpoint_context); 3664 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs); 3665 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode); 3666 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from); 3667 int f2fs_truncate_xattr_node(struct inode *inode); 3668 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, 3669 unsigned int seq_id); 3670 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi); 3671 int f2fs_remove_inode_page(struct inode *inode); 3672 struct page *f2fs_new_inode_page(struct inode *inode); 3673 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs); 3674 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid); 3675 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid); 3676 struct page *f2fs_get_node_page_ra(struct page *parent, int start); 3677 int f2fs_move_node_page(struct page *node_page, int gc_type); 3678 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi); 3679 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, 3680 struct writeback_control *wbc, bool atomic, 3681 unsigned int *seq_id); 3682 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, 3683 struct writeback_control *wbc, 3684 bool do_balance, enum iostat_type io_type); 3685 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount); 3686 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid); 3687 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid); 3688 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid); 3689 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink); 3690 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page); 3691 int f2fs_recover_xattr_data(struct inode *inode, struct page *page); 3692 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page); 3693 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, 3694 unsigned int segno, struct f2fs_summary_block *sum); 3695 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi); 3696 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3697 int f2fs_build_node_manager(struct f2fs_sb_info *sbi); 3698 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi); 3699 int __init f2fs_create_node_manager_caches(void); 3700 void f2fs_destroy_node_manager_caches(void); 3701 3702 /* 3703 * segment.c 3704 */ 3705 bool f2fs_need_SSR(struct f2fs_sb_info *sbi); 3706 int f2fs_commit_atomic_write(struct inode *inode); 3707 void f2fs_abort_atomic_write(struct inode *inode, bool clean); 3708 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need); 3709 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg); 3710 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino); 3711 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi); 3712 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi); 3713 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free); 3714 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr); 3715 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr); 3716 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi); 3717 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi); 3718 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi); 3719 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi); 3720 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 3721 struct cp_control *cpc); 3722 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi); 3723 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi); 3724 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable); 3725 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi); 3726 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra); 3727 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno); 3728 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi); 3729 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi); 3730 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi); 3731 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi); 3732 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3733 unsigned int start, unsigned int end); 3734 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force); 3735 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi); 3736 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi); 3737 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range); 3738 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3739 struct cp_control *cpc); 3740 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno); 3741 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src, 3742 block_t blk_addr); 3743 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio, 3744 enum iostat_type io_type); 3745 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio); 3746 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3747 struct f2fs_io_info *fio); 3748 int f2fs_inplace_write_data(struct f2fs_io_info *fio); 3749 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3750 block_t old_blkaddr, block_t new_blkaddr, 3751 bool recover_curseg, bool recover_newaddr, 3752 bool from_gc); 3753 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3754 block_t old_addr, block_t new_addr, 3755 unsigned char version, bool recover_curseg, 3756 bool recover_newaddr); 3757 int f2fs_get_segment_temp(int seg_type); 3758 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3759 block_t old_blkaddr, block_t *new_blkaddr, 3760 struct f2fs_summary *sum, int type, 3761 struct f2fs_io_info *fio); 3762 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3763 block_t blkaddr, unsigned int blkcnt); 3764 void f2fs_wait_on_page_writeback(struct page *page, 3765 enum page_type type, bool ordered, bool locked); 3766 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr); 3767 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3768 block_t len); 3769 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3770 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk); 3771 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3772 unsigned int val, int alloc); 3773 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3774 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi); 3775 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi); 3776 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi); 3777 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi); 3778 int __init f2fs_create_segment_manager_caches(void); 3779 void f2fs_destroy_segment_manager_caches(void); 3780 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint); 3781 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3782 enum page_type type, enum temp_type temp); 3783 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi); 3784 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 3785 unsigned int segno); 3786 3787 #define DEF_FRAGMENT_SIZE 4 3788 #define MIN_FRAGMENT_SIZE 1 3789 #define MAX_FRAGMENT_SIZE 512 3790 3791 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi) 3792 { 3793 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG || 3794 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK; 3795 } 3796 3797 /* 3798 * checkpoint.c 3799 */ 3800 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io, 3801 unsigned char reason); 3802 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi); 3803 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3804 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index); 3805 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index); 3806 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index); 3807 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi, 3808 block_t blkaddr, int type); 3809 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi, 3810 block_t blkaddr, int type); 3811 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, 3812 int type, bool sync); 3813 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index, 3814 unsigned int ra_blocks); 3815 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type, 3816 long nr_to_write, enum iostat_type io_type); 3817 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3818 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type); 3819 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all); 3820 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode); 3821 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3822 unsigned int devidx, int type); 3823 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino, 3824 unsigned int devidx, int type); 3825 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi); 3826 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi); 3827 void f2fs_add_orphan_inode(struct inode *inode); 3828 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino); 3829 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi); 3830 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi); 3831 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio); 3832 void f2fs_remove_dirty_inode(struct inode *inode); 3833 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type, 3834 bool from_cp); 3835 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type); 3836 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi); 3837 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc); 3838 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi); 3839 int __init f2fs_create_checkpoint_caches(void); 3840 void f2fs_destroy_checkpoint_caches(void); 3841 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi); 3842 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi); 3843 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi); 3844 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi); 3845 3846 /* 3847 * data.c 3848 */ 3849 int __init f2fs_init_bioset(void); 3850 void f2fs_destroy_bioset(void); 3851 bool f2fs_is_cp_guaranteed(struct page *page); 3852 int f2fs_init_bio_entry_cache(void); 3853 void f2fs_destroy_bio_entry_cache(void); 3854 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 3855 enum page_type type); 3856 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi); 3857 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type); 3858 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 3859 struct inode *inode, struct page *page, 3860 nid_t ino, enum page_type type); 3861 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 3862 struct bio **bio, struct page *page); 3863 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi); 3864 int f2fs_submit_page_bio(struct f2fs_io_info *fio); 3865 int f2fs_merge_page_bio(struct f2fs_io_info *fio); 3866 void f2fs_submit_page_write(struct f2fs_io_info *fio); 3867 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 3868 block_t blk_addr, sector_t *sector); 3869 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr); 3870 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3871 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr); 3872 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count); 3873 int f2fs_reserve_new_block(struct dnode_of_data *dn); 3874 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index); 3875 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index); 3876 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 3877 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs); 3878 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 3879 pgoff_t *next_pgofs); 3880 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 3881 bool for_write); 3882 struct page *f2fs_get_new_data_page(struct inode *inode, 3883 struct page *ipage, pgoff_t index, bool new_i_size); 3884 int f2fs_do_write_data_page(struct f2fs_io_info *fio); 3885 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag); 3886 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 3887 u64 start, u64 len); 3888 int f2fs_encrypt_one_page(struct f2fs_io_info *fio); 3889 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio); 3890 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio); 3891 int f2fs_write_single_data_page(struct folio *folio, int *submitted, 3892 struct bio **bio, sector_t *last_block, 3893 struct writeback_control *wbc, 3894 enum iostat_type io_type, 3895 int compr_blocks, bool allow_balance); 3896 void f2fs_write_failed(struct inode *inode, loff_t to); 3897 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length); 3898 bool f2fs_release_folio(struct folio *folio, gfp_t wait); 3899 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len); 3900 void f2fs_clear_page_cache_dirty_tag(struct folio *folio); 3901 int f2fs_init_post_read_processing(void); 3902 void f2fs_destroy_post_read_processing(void); 3903 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi); 3904 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi); 3905 extern const struct iomap_ops f2fs_iomap_ops; 3906 3907 /* 3908 * gc.c 3909 */ 3910 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi); 3911 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi); 3912 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode); 3913 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control); 3914 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi); 3915 int f2fs_gc_range(struct f2fs_sb_info *sbi, 3916 unsigned int start_seg, unsigned int end_seg, 3917 bool dry_run, unsigned int dry_run_sections); 3918 int f2fs_resize_fs(struct file *filp, __u64 block_count); 3919 int __init f2fs_create_garbage_collection_cache(void); 3920 void f2fs_destroy_garbage_collection_cache(void); 3921 /* victim selection function for cleaning and SSR */ 3922 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result, 3923 int gc_type, int type, char alloc_mode, 3924 unsigned long long age, bool one_time); 3925 3926 /* 3927 * recovery.c 3928 */ 3929 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only); 3930 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi); 3931 int __init f2fs_create_recovery_cache(void); 3932 void f2fs_destroy_recovery_cache(void); 3933 3934 /* 3935 * debug.c 3936 */ 3937 #ifdef CONFIG_F2FS_STAT_FS 3938 struct f2fs_stat_info { 3939 struct list_head stat_list; 3940 struct f2fs_sb_info *sbi; 3941 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 3942 int main_area_segs, main_area_sections, main_area_zones; 3943 unsigned long long hit_cached[NR_EXTENT_CACHES]; 3944 unsigned long long hit_rbtree[NR_EXTENT_CACHES]; 3945 unsigned long long total_ext[NR_EXTENT_CACHES]; 3946 unsigned long long hit_total[NR_EXTENT_CACHES]; 3947 int ext_tree[NR_EXTENT_CACHES]; 3948 int zombie_tree[NR_EXTENT_CACHES]; 3949 int ext_node[NR_EXTENT_CACHES]; 3950 /* to count memory footprint */ 3951 unsigned long long ext_mem[NR_EXTENT_CACHES]; 3952 /* for read extent cache */ 3953 unsigned long long hit_largest; 3954 /* for block age extent cache */ 3955 unsigned long long allocated_data_blocks; 3956 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta; 3957 int ndirty_data, ndirty_qdata; 3958 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all; 3959 int nats, dirty_nats, sits, dirty_sits; 3960 int free_nids, avail_nids, alloc_nids; 3961 int total_count, utilization; 3962 int nr_wb_cp_data, nr_wb_data; 3963 int nr_rd_data, nr_rd_node, nr_rd_meta; 3964 int nr_dio_read, nr_dio_write; 3965 unsigned int io_skip_bggc, other_skip_bggc; 3966 int nr_flushing, nr_flushed, flush_list_empty; 3967 int nr_discarding, nr_discarded; 3968 int nr_discard_cmd; 3969 unsigned int undiscard_blks; 3970 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt; 3971 unsigned int cur_ckpt_time, peak_ckpt_time; 3972 int inline_xattr, inline_inode, inline_dir, append, update, orphans; 3973 int compr_inode, swapfile_inode; 3974 unsigned long long compr_blocks; 3975 int aw_cnt, max_aw_cnt; 3976 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks; 3977 unsigned int bimodal, avg_vblocks; 3978 int util_free, util_valid, util_invalid; 3979 int rsvd_segs, overp_segs; 3980 int dirty_count, node_pages, meta_pages, compress_pages; 3981 int compress_page_hit; 3982 int prefree_count, free_segs, free_secs; 3983 int cp_call_count[MAX_CALL_TYPE], cp_count; 3984 int gc_call_count[MAX_CALL_TYPE]; 3985 int gc_segs[2][2]; 3986 int gc_secs[2][2]; 3987 int tot_blks, data_blks, node_blks; 3988 int bg_data_blks, bg_node_blks; 3989 int curseg[NR_CURSEG_TYPE]; 3990 int cursec[NR_CURSEG_TYPE]; 3991 int curzone[NR_CURSEG_TYPE]; 3992 unsigned int dirty_seg[NR_CURSEG_TYPE]; 3993 unsigned int full_seg[NR_CURSEG_TYPE]; 3994 unsigned int valid_blks[NR_CURSEG_TYPE]; 3995 3996 unsigned int meta_count[META_MAX]; 3997 unsigned int segment_count[2]; 3998 unsigned int block_count[2]; 3999 unsigned int inplace_count; 4000 unsigned long long base_mem, cache_mem, page_mem; 4001 }; 4002 4003 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 4004 { 4005 return (struct f2fs_stat_info *)sbi->stat_info; 4006 } 4007 4008 #define stat_inc_cp_call_count(sbi, foreground) \ 4009 atomic_inc(&sbi->cp_call_count[(foreground)]) 4010 #define stat_inc_cp_count(sbi) (F2FS_STAT(sbi)->cp_count++) 4011 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++) 4012 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++) 4013 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++) 4014 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--) 4015 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type])) 4016 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type])) 4017 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest)) 4018 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type])) 4019 #define stat_inc_inline_xattr(inode) \ 4020 do { \ 4021 if (f2fs_has_inline_xattr(inode)) \ 4022 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \ 4023 } while (0) 4024 #define stat_dec_inline_xattr(inode) \ 4025 do { \ 4026 if (f2fs_has_inline_xattr(inode)) \ 4027 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \ 4028 } while (0) 4029 #define stat_inc_inline_inode(inode) \ 4030 do { \ 4031 if (f2fs_has_inline_data(inode)) \ 4032 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 4033 } while (0) 4034 #define stat_dec_inline_inode(inode) \ 4035 do { \ 4036 if (f2fs_has_inline_data(inode)) \ 4037 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 4038 } while (0) 4039 #define stat_inc_inline_dir(inode) \ 4040 do { \ 4041 if (f2fs_has_inline_dentry(inode)) \ 4042 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 4043 } while (0) 4044 #define stat_dec_inline_dir(inode) \ 4045 do { \ 4046 if (f2fs_has_inline_dentry(inode)) \ 4047 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 4048 } while (0) 4049 #define stat_inc_compr_inode(inode) \ 4050 do { \ 4051 if (f2fs_compressed_file(inode)) \ 4052 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \ 4053 } while (0) 4054 #define stat_dec_compr_inode(inode) \ 4055 do { \ 4056 if (f2fs_compressed_file(inode)) \ 4057 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \ 4058 } while (0) 4059 #define stat_add_compr_blocks(inode, blocks) \ 4060 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4061 #define stat_sub_compr_blocks(inode, blocks) \ 4062 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks)) 4063 #define stat_inc_swapfile_inode(inode) \ 4064 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode)) 4065 #define stat_dec_swapfile_inode(inode) \ 4066 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode)) 4067 #define stat_inc_atomic_inode(inode) \ 4068 (atomic_inc(&F2FS_I_SB(inode)->atomic_files)) 4069 #define stat_dec_atomic_inode(inode) \ 4070 (atomic_dec(&F2FS_I_SB(inode)->atomic_files)) 4071 #define stat_inc_meta_count(sbi, blkaddr) \ 4072 do { \ 4073 if (blkaddr < SIT_I(sbi)->sit_base_addr) \ 4074 atomic_inc(&(sbi)->meta_count[META_CP]); \ 4075 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \ 4076 atomic_inc(&(sbi)->meta_count[META_SIT]); \ 4077 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \ 4078 atomic_inc(&(sbi)->meta_count[META_NAT]); \ 4079 else if (blkaddr < SM_I(sbi)->main_blkaddr) \ 4080 atomic_inc(&(sbi)->meta_count[META_SSA]); \ 4081 } while (0) 4082 #define stat_inc_seg_type(sbi, curseg) \ 4083 ((sbi)->segment_count[(curseg)->alloc_type]++) 4084 #define stat_inc_block_count(sbi, curseg) \ 4085 ((sbi)->block_count[(curseg)->alloc_type]++) 4086 #define stat_inc_inplace_blocks(sbi) \ 4087 (atomic_inc(&(sbi)->inplace_count)) 4088 #define stat_update_max_atomic_write(inode) \ 4089 do { \ 4090 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \ 4091 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \ 4092 if (cur > max) \ 4093 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \ 4094 } while (0) 4095 #define stat_inc_gc_call_count(sbi, foreground) \ 4096 (F2FS_STAT(sbi)->gc_call_count[(foreground)]++) 4097 #define stat_inc_gc_sec_count(sbi, type, gc_type) \ 4098 (F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++) 4099 #define stat_inc_gc_seg_count(sbi, type, gc_type) \ 4100 (F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++) 4101 4102 #define stat_inc_tot_blk_count(si, blks) \ 4103 ((si)->tot_blks += (blks)) 4104 4105 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 4106 do { \ 4107 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4108 stat_inc_tot_blk_count(si, blks); \ 4109 si->data_blks += (blks); \ 4110 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4111 } while (0) 4112 4113 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 4114 do { \ 4115 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 4116 stat_inc_tot_blk_count(si, blks); \ 4117 si->node_blks += (blks); \ 4118 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \ 4119 } while (0) 4120 4121 int f2fs_build_stats(struct f2fs_sb_info *sbi); 4122 void f2fs_destroy_stats(struct f2fs_sb_info *sbi); 4123 void __init f2fs_create_root_stats(void); 4124 void f2fs_destroy_root_stats(void); 4125 void f2fs_update_sit_info(struct f2fs_sb_info *sbi); 4126 #else 4127 #define stat_inc_cp_call_count(sbi, foreground) do { } while (0) 4128 #define stat_inc_cp_count(sbi) do { } while (0) 4129 #define stat_io_skip_bggc_count(sbi) do { } while (0) 4130 #define stat_other_skip_bggc_count(sbi) do { } while (0) 4131 #define stat_inc_dirty_inode(sbi, type) do { } while (0) 4132 #define stat_dec_dirty_inode(sbi, type) do { } while (0) 4133 #define stat_inc_total_hit(sbi, type) do { } while (0) 4134 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0) 4135 #define stat_inc_largest_node_hit(sbi) do { } while (0) 4136 #define stat_inc_cached_node_hit(sbi, type) do { } while (0) 4137 #define stat_inc_inline_xattr(inode) do { } while (0) 4138 #define stat_dec_inline_xattr(inode) do { } while (0) 4139 #define stat_inc_inline_inode(inode) do { } while (0) 4140 #define stat_dec_inline_inode(inode) do { } while (0) 4141 #define stat_inc_inline_dir(inode) do { } while (0) 4142 #define stat_dec_inline_dir(inode) do { } while (0) 4143 #define stat_inc_compr_inode(inode) do { } while (0) 4144 #define stat_dec_compr_inode(inode) do { } while (0) 4145 #define stat_add_compr_blocks(inode, blocks) do { } while (0) 4146 #define stat_sub_compr_blocks(inode, blocks) do { } while (0) 4147 #define stat_inc_swapfile_inode(inode) do { } while (0) 4148 #define stat_dec_swapfile_inode(inode) do { } while (0) 4149 #define stat_inc_atomic_inode(inode) do { } while (0) 4150 #define stat_dec_atomic_inode(inode) do { } while (0) 4151 #define stat_update_max_atomic_write(inode) do { } while (0) 4152 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0) 4153 #define stat_inc_seg_type(sbi, curseg) do { } while (0) 4154 #define stat_inc_block_count(sbi, curseg) do { } while (0) 4155 #define stat_inc_inplace_blocks(sbi) do { } while (0) 4156 #define stat_inc_gc_call_count(sbi, foreground) do { } while (0) 4157 #define stat_inc_gc_sec_count(sbi, type, gc_type) do { } while (0) 4158 #define stat_inc_gc_seg_count(sbi, type, gc_type) do { } while (0) 4159 #define stat_inc_tot_blk_count(si, blks) do { } while (0) 4160 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0) 4161 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0) 4162 4163 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 4164 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 4165 static inline void __init f2fs_create_root_stats(void) { } 4166 static inline void f2fs_destroy_root_stats(void) { } 4167 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {} 4168 #endif 4169 4170 extern const struct file_operations f2fs_dir_operations; 4171 extern const struct file_operations f2fs_file_operations; 4172 extern const struct inode_operations f2fs_file_inode_operations; 4173 extern const struct address_space_operations f2fs_dblock_aops; 4174 extern const struct address_space_operations f2fs_node_aops; 4175 extern const struct address_space_operations f2fs_meta_aops; 4176 extern const struct inode_operations f2fs_dir_inode_operations; 4177 extern const struct inode_operations f2fs_symlink_inode_operations; 4178 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 4179 extern const struct inode_operations f2fs_special_inode_operations; 4180 extern struct kmem_cache *f2fs_inode_entry_slab; 4181 4182 /* 4183 * inline.c 4184 */ 4185 bool f2fs_may_inline_data(struct inode *inode); 4186 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage); 4187 bool f2fs_may_inline_dentry(struct inode *inode); 4188 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage); 4189 void f2fs_truncate_inline_inode(struct inode *inode, 4190 struct page *ipage, u64 from); 4191 int f2fs_read_inline_data(struct inode *inode, struct folio *folio); 4192 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page); 4193 int f2fs_convert_inline_inode(struct inode *inode); 4194 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry); 4195 int f2fs_write_inline_data(struct inode *inode, struct folio *folio); 4196 int f2fs_recover_inline_data(struct inode *inode, struct page *npage); 4197 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir, 4198 const struct f2fs_filename *fname, 4199 struct page **res_page); 4200 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent, 4201 struct page *ipage); 4202 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname, 4203 struct inode *inode, nid_t ino, umode_t mode); 4204 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, 4205 struct page *page, struct inode *dir, 4206 struct inode *inode); 4207 bool f2fs_empty_inline_dir(struct inode *dir); 4208 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx, 4209 struct fscrypt_str *fstr); 4210 int f2fs_inline_data_fiemap(struct inode *inode, 4211 struct fiemap_extent_info *fieinfo, 4212 __u64 start, __u64 len); 4213 4214 /* 4215 * shrinker.c 4216 */ 4217 unsigned long f2fs_shrink_count(struct shrinker *shrink, 4218 struct shrink_control *sc); 4219 unsigned long f2fs_shrink_scan(struct shrinker *shrink, 4220 struct shrink_control *sc); 4221 void f2fs_join_shrinker(struct f2fs_sb_info *sbi); 4222 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi); 4223 4224 /* 4225 * extent_cache.c 4226 */ 4227 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage); 4228 void f2fs_init_extent_tree(struct inode *inode); 4229 void f2fs_drop_extent_tree(struct inode *inode); 4230 void f2fs_destroy_extent_node(struct inode *inode); 4231 void f2fs_destroy_extent_tree(struct inode *inode); 4232 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi); 4233 int __init f2fs_create_extent_cache(void); 4234 void f2fs_destroy_extent_cache(void); 4235 4236 /* read extent cache ops */ 4237 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage); 4238 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 4239 struct extent_info *ei); 4240 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, 4241 block_t *blkaddr); 4242 void f2fs_update_read_extent_cache(struct dnode_of_data *dn); 4243 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 4244 pgoff_t fofs, block_t blkaddr, unsigned int len); 4245 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, 4246 int nr_shrink); 4247 4248 /* block age extent cache ops */ 4249 void f2fs_init_age_extent_tree(struct inode *inode); 4250 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 4251 struct extent_info *ei); 4252 void f2fs_update_age_extent_cache(struct dnode_of_data *dn); 4253 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 4254 pgoff_t fofs, unsigned int len); 4255 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, 4256 int nr_shrink); 4257 4258 /* 4259 * sysfs.c 4260 */ 4261 #define MIN_RA_MUL 2 4262 #define MAX_RA_MUL 256 4263 4264 int __init f2fs_init_sysfs(void); 4265 void f2fs_exit_sysfs(void); 4266 int f2fs_register_sysfs(struct f2fs_sb_info *sbi); 4267 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi); 4268 4269 /* verity.c */ 4270 extern const struct fsverity_operations f2fs_verityops; 4271 4272 /* 4273 * crypto support 4274 */ 4275 static inline bool f2fs_encrypted_file(struct inode *inode) 4276 { 4277 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode); 4278 } 4279 4280 static inline void f2fs_set_encrypted_inode(struct inode *inode) 4281 { 4282 #ifdef CONFIG_FS_ENCRYPTION 4283 file_set_encrypt(inode); 4284 f2fs_set_inode_flags(inode); 4285 #endif 4286 } 4287 4288 /* 4289 * Returns true if the reads of the inode's data need to undergo some 4290 * postprocessing step, like decryption or authenticity verification. 4291 */ 4292 static inline bool f2fs_post_read_required(struct inode *inode) 4293 { 4294 return f2fs_encrypted_file(inode) || fsverity_active(inode) || 4295 f2fs_compressed_file(inode); 4296 } 4297 4298 static inline bool f2fs_used_in_atomic_write(struct inode *inode) 4299 { 4300 return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode); 4301 } 4302 4303 static inline bool f2fs_meta_inode_gc_required(struct inode *inode) 4304 { 4305 return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode); 4306 } 4307 4308 /* 4309 * compress.c 4310 */ 4311 #ifdef CONFIG_F2FS_FS_COMPRESSION 4312 enum cluster_check_type { 4313 CLUSTER_IS_COMPR, /* check only if compressed cluster */ 4314 CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */ 4315 CLUSTER_RAW_BLKS /* return # of raw blocks in a cluster */ 4316 }; 4317 bool f2fs_is_compressed_page(struct page *page); 4318 struct page *f2fs_compress_control_page(struct page *page); 4319 int f2fs_prepare_compress_overwrite(struct inode *inode, 4320 struct page **pagep, pgoff_t index, void **fsdata); 4321 bool f2fs_compress_write_end(struct inode *inode, void *fsdata, 4322 pgoff_t index, unsigned copied); 4323 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock); 4324 void f2fs_compress_write_end_io(struct bio *bio, struct page *page); 4325 bool f2fs_is_compress_backend_ready(struct inode *inode); 4326 bool f2fs_is_compress_level_valid(int alg, int lvl); 4327 int __init f2fs_init_compress_mempool(void); 4328 void f2fs_destroy_compress_mempool(void); 4329 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task); 4330 void f2fs_end_read_compressed_page(struct page *page, bool failed, 4331 block_t blkaddr, bool in_task); 4332 bool f2fs_cluster_is_empty(struct compress_ctx *cc); 4333 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index); 4334 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages, 4335 int index, int nr_pages, bool uptodate); 4336 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn); 4337 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio); 4338 int f2fs_write_multi_pages(struct compress_ctx *cc, 4339 int *submitted, 4340 struct writeback_control *wbc, 4341 enum iostat_type io_type); 4342 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index); 4343 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index); 4344 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 4345 pgoff_t fofs, block_t blkaddr, 4346 unsigned int llen, unsigned int c_len); 4347 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 4348 unsigned nr_pages, sector_t *last_block_in_bio, 4349 struct readahead_control *rac, bool for_write); 4350 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc); 4351 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed, 4352 bool in_task); 4353 void f2fs_put_page_dic(struct page *page, bool in_task); 4354 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn, 4355 unsigned int ofs_in_node); 4356 int f2fs_init_compress_ctx(struct compress_ctx *cc); 4357 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse); 4358 void f2fs_init_compress_info(struct f2fs_sb_info *sbi); 4359 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi); 4360 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi); 4361 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi); 4362 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi); 4363 int __init f2fs_init_compress_cache(void); 4364 void f2fs_destroy_compress_cache(void); 4365 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi); 4366 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr); 4367 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4368 nid_t ino, block_t blkaddr); 4369 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page, 4370 block_t blkaddr); 4371 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino); 4372 #define inc_compr_inode_stat(inode) \ 4373 do { \ 4374 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4375 sbi->compr_new_inode++; \ 4376 } while (0) 4377 #define add_compr_block_stat(inode, blocks) \ 4378 do { \ 4379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \ 4380 int diff = F2FS_I(inode)->i_cluster_size - blocks; \ 4381 sbi->compr_written_block += blocks; \ 4382 sbi->compr_saved_block += diff; \ 4383 } while (0) 4384 #else 4385 static inline bool f2fs_is_compressed_page(struct page *page) { return false; } 4386 static inline bool f2fs_is_compress_backend_ready(struct inode *inode) 4387 { 4388 if (!f2fs_compressed_file(inode)) 4389 return true; 4390 /* not support compression */ 4391 return false; 4392 } 4393 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; } 4394 static inline struct page *f2fs_compress_control_page(struct page *page) 4395 { 4396 WARN_ON_ONCE(1); 4397 return ERR_PTR(-EINVAL); 4398 } 4399 static inline int __init f2fs_init_compress_mempool(void) { return 0; } 4400 static inline void f2fs_destroy_compress_mempool(void) { } 4401 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic, 4402 bool in_task) { } 4403 static inline void f2fs_end_read_compressed_page(struct page *page, 4404 bool failed, block_t blkaddr, bool in_task) 4405 { 4406 WARN_ON_ONCE(1); 4407 } 4408 static inline void f2fs_put_page_dic(struct page *page, bool in_task) 4409 { 4410 WARN_ON_ONCE(1); 4411 } 4412 static inline unsigned int f2fs_cluster_blocks_are_contiguous( 4413 struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; } 4414 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; } 4415 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; } 4416 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { } 4417 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; } 4418 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { } 4419 static inline int __init f2fs_init_compress_cache(void) { return 0; } 4420 static inline void f2fs_destroy_compress_cache(void) { } 4421 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, 4422 block_t blkaddr) { } 4423 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, 4424 struct page *page, nid_t ino, block_t blkaddr) { } 4425 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, 4426 struct page *page, block_t blkaddr) { return false; } 4427 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, 4428 nid_t ino) { } 4429 #define inc_compr_inode_stat(inode) do { } while (0) 4430 static inline int f2fs_is_compressed_cluster( 4431 struct inode *inode, 4432 pgoff_t index) { return 0; } 4433 static inline bool f2fs_is_sparse_cluster( 4434 struct inode *inode, 4435 pgoff_t index) { return true; } 4436 static inline void f2fs_update_read_extent_tree_range_compressed( 4437 struct inode *inode, 4438 pgoff_t fofs, block_t blkaddr, 4439 unsigned int llen, unsigned int c_len) { } 4440 #endif 4441 4442 static inline int set_compress_context(struct inode *inode) 4443 { 4444 #ifdef CONFIG_F2FS_FS_COMPRESSION 4445 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4446 struct f2fs_inode_info *fi = F2FS_I(inode); 4447 4448 fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm; 4449 fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size; 4450 fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ? 4451 BIT(COMPRESS_CHKSUM) : 0; 4452 fi->i_cluster_size = BIT(fi->i_log_cluster_size); 4453 if ((fi->i_compress_algorithm == COMPRESS_LZ4 || 4454 fi->i_compress_algorithm == COMPRESS_ZSTD) && 4455 F2FS_OPTION(sbi).compress_level) 4456 fi->i_compress_level = F2FS_OPTION(sbi).compress_level; 4457 fi->i_flags |= F2FS_COMPR_FL; 4458 set_inode_flag(inode, FI_COMPRESSED_FILE); 4459 stat_inc_compr_inode(inode); 4460 inc_compr_inode_stat(inode); 4461 f2fs_mark_inode_dirty_sync(inode, true); 4462 return 0; 4463 #else 4464 return -EOPNOTSUPP; 4465 #endif 4466 } 4467 4468 static inline bool f2fs_disable_compressed_file(struct inode *inode) 4469 { 4470 struct f2fs_inode_info *fi = F2FS_I(inode); 4471 4472 f2fs_down_write(&fi->i_sem); 4473 4474 if (!f2fs_compressed_file(inode)) { 4475 f2fs_up_write(&fi->i_sem); 4476 return true; 4477 } 4478 if (f2fs_is_mmap_file(inode) || 4479 (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) { 4480 f2fs_up_write(&fi->i_sem); 4481 return false; 4482 } 4483 4484 fi->i_flags &= ~F2FS_COMPR_FL; 4485 stat_dec_compr_inode(inode); 4486 clear_inode_flag(inode, FI_COMPRESSED_FILE); 4487 f2fs_mark_inode_dirty_sync(inode, true); 4488 4489 f2fs_up_write(&fi->i_sem); 4490 return true; 4491 } 4492 4493 #define F2FS_FEATURE_FUNCS(name, flagname) \ 4494 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \ 4495 { \ 4496 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \ 4497 } 4498 4499 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT); 4500 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED); 4501 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR); 4502 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA); 4503 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM); 4504 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR); 4505 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO); 4506 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME); 4507 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND); 4508 F2FS_FEATURE_FUNCS(verity, VERITY); 4509 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM); 4510 F2FS_FEATURE_FUNCS(casefold, CASEFOLD); 4511 F2FS_FEATURE_FUNCS(compression, COMPRESSION); 4512 F2FS_FEATURE_FUNCS(readonly, RO); 4513 4514 #ifdef CONFIG_BLK_DEV_ZONED 4515 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi, 4516 block_t blkaddr) 4517 { 4518 unsigned int zno = blkaddr / sbi->blocks_per_blkz; 4519 4520 return test_bit(zno, FDEV(devi).blkz_seq); 4521 } 4522 #endif 4523 4524 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi, 4525 struct block_device *bdev) 4526 { 4527 int i; 4528 4529 if (!f2fs_is_multi_device(sbi)) 4530 return 0; 4531 4532 for (i = 0; i < sbi->s_ndevs; i++) 4533 if (FDEV(i).bdev == bdev) 4534 return i; 4535 4536 WARN_ON(1); 4537 return -1; 4538 } 4539 4540 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi) 4541 { 4542 return f2fs_sb_has_blkzoned(sbi); 4543 } 4544 4545 static inline bool f2fs_bdev_support_discard(struct block_device *bdev) 4546 { 4547 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev); 4548 } 4549 4550 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi) 4551 { 4552 int i; 4553 4554 if (!f2fs_is_multi_device(sbi)) 4555 return f2fs_bdev_support_discard(sbi->sb->s_bdev); 4556 4557 for (i = 0; i < sbi->s_ndevs; i++) 4558 if (f2fs_bdev_support_discard(FDEV(i).bdev)) 4559 return true; 4560 return false; 4561 } 4562 4563 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi) 4564 { 4565 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) || 4566 f2fs_hw_should_discard(sbi); 4567 } 4568 4569 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi) 4570 { 4571 int i; 4572 4573 if (!f2fs_is_multi_device(sbi)) 4574 return bdev_read_only(sbi->sb->s_bdev); 4575 4576 for (i = 0; i < sbi->s_ndevs; i++) 4577 if (bdev_read_only(FDEV(i).bdev)) 4578 return true; 4579 return false; 4580 } 4581 4582 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi) 4583 { 4584 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi); 4585 } 4586 4587 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi) 4588 { 4589 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS; 4590 } 4591 4592 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi, 4593 block_t blkaddr) 4594 { 4595 if (f2fs_sb_has_blkzoned(sbi)) { 4596 int devi = f2fs_target_device_index(sbi, blkaddr); 4597 4598 return !bdev_is_zoned(FDEV(devi).bdev); 4599 } 4600 return true; 4601 } 4602 4603 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi) 4604 { 4605 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW; 4606 } 4607 4608 static inline bool f2fs_may_compress(struct inode *inode) 4609 { 4610 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) || 4611 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) || 4612 f2fs_is_mmap_file(inode)) 4613 return false; 4614 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode); 4615 } 4616 4617 static inline void f2fs_i_compr_blocks_update(struct inode *inode, 4618 u64 blocks, bool add) 4619 { 4620 struct f2fs_inode_info *fi = F2FS_I(inode); 4621 int diff = fi->i_cluster_size - blocks; 4622 4623 /* don't update i_compr_blocks if saved blocks were released */ 4624 if (!add && !atomic_read(&fi->i_compr_blocks)) 4625 return; 4626 4627 if (add) { 4628 atomic_add(diff, &fi->i_compr_blocks); 4629 stat_add_compr_blocks(inode, diff); 4630 } else { 4631 atomic_sub(diff, &fi->i_compr_blocks); 4632 stat_sub_compr_blocks(inode, diff); 4633 } 4634 f2fs_mark_inode_dirty_sync(inode, true); 4635 } 4636 4637 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi, 4638 int flag) 4639 { 4640 if (!f2fs_is_multi_device(sbi)) 4641 return false; 4642 if (flag != F2FS_GET_BLOCK_DIO) 4643 return false; 4644 return sbi->aligned_blksize; 4645 } 4646 4647 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx) 4648 { 4649 return fsverity_active(inode) && 4650 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 4651 } 4652 4653 #ifdef CONFIG_F2FS_FAULT_INJECTION 4654 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 4655 unsigned long type); 4656 #else 4657 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 4658 unsigned long rate, unsigned long type) 4659 { 4660 return 0; 4661 } 4662 #endif 4663 4664 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi) 4665 { 4666 #ifdef CONFIG_QUOTA 4667 if (f2fs_sb_has_quota_ino(sbi)) 4668 return true; 4669 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 4670 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 4671 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 4672 return true; 4673 #endif 4674 return false; 4675 } 4676 4677 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi) 4678 { 4679 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK; 4680 } 4681 4682 static inline void f2fs_io_schedule_timeout(long timeout) 4683 { 4684 set_current_state(TASK_UNINTERRUPTIBLE); 4685 io_schedule_timeout(timeout); 4686 } 4687 4688 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, 4689 struct folio *folio, enum page_type type) 4690 { 4691 pgoff_t ofs = folio->index; 4692 4693 if (unlikely(f2fs_cp_error(sbi))) 4694 return; 4695 4696 if (ofs == sbi->page_eio_ofs[type]) { 4697 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO) 4698 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4699 } else { 4700 sbi->page_eio_ofs[type] = ofs; 4701 sbi->page_eio_cnt[type] = 0; 4702 } 4703 } 4704 4705 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi) 4706 { 4707 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb); 4708 } 4709 4710 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi, 4711 block_t blkaddr, unsigned int cnt) 4712 { 4713 bool need_submit = false; 4714 int i = 0; 4715 4716 do { 4717 struct page *page; 4718 4719 page = find_get_page(META_MAPPING(sbi), blkaddr + i); 4720 if (page) { 4721 if (folio_test_writeback(page_folio(page))) 4722 need_submit = true; 4723 f2fs_put_page(page, 0); 4724 } 4725 } while (++i < cnt && !need_submit); 4726 4727 if (need_submit) 4728 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode, 4729 NULL, 0, DATA); 4730 4731 truncate_inode_pages_range(META_MAPPING(sbi), 4732 F2FS_BLK_TO_BYTES((loff_t)blkaddr), 4733 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1))); 4734 } 4735 4736 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi, 4737 block_t blkaddr) 4738 { 4739 f2fs_truncate_meta_inode_pages(sbi, blkaddr, 1); 4740 f2fs_invalidate_compress_page(sbi, blkaddr); 4741 } 4742 4743 #define EFSBADCRC EBADMSG /* Bad CRC detected */ 4744 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */ 4745 4746 #endif /* _LINUX_F2FS_H */ 4747