1 /* 2 * fs/f2fs/f2fs.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #ifndef _LINUX_F2FS_H 12 #define _LINUX_F2FS_H 13 14 #include <linux/types.h> 15 #include <linux/page-flags.h> 16 #include <linux/buffer_head.h> 17 #include <linux/slab.h> 18 #include <linux/crc32.h> 19 #include <linux/magic.h> 20 #include <linux/kobject.h> 21 #include <linux/sched.h> 22 23 #ifdef CONFIG_F2FS_CHECK_FS 24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition) 25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y) 26 #else 27 #define f2fs_bug_on(sbi, condition) \ 28 do { \ 29 if (unlikely(condition)) { \ 30 WARN_ON(1); \ 31 set_sbi_flag(sbi, SBI_NEED_FSCK); \ 32 } \ 33 } while (0) 34 #define f2fs_down_write(x, y) down_write(x) 35 #endif 36 37 /* 38 * For mount options 39 */ 40 #define F2FS_MOUNT_BG_GC 0x00000001 41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002 42 #define F2FS_MOUNT_DISCARD 0x00000004 43 #define F2FS_MOUNT_NOHEAP 0x00000008 44 #define F2FS_MOUNT_XATTR_USER 0x00000010 45 #define F2FS_MOUNT_POSIX_ACL 0x00000020 46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040 47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080 48 #define F2FS_MOUNT_INLINE_DATA 0x00000100 49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200 50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400 51 #define F2FS_MOUNT_NOBARRIER 0x00000800 52 #define F2FS_MOUNT_FASTBOOT 0x00001000 53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000 54 55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option) 56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option) 57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option) 58 59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \ 60 typecheck(unsigned long long, b) && \ 61 ((long long)((a) - (b)) > 0)) 62 63 typedef u32 block_t; /* 64 * should not change u32, since it is the on-disk block 65 * address format, __le32. 66 */ 67 typedef u32 nid_t; 68 69 struct f2fs_mount_info { 70 unsigned int opt; 71 }; 72 73 #define F2FS_FEATURE_ENCRYPT 0x0001 74 75 #define F2FS_HAS_FEATURE(sb, mask) \ 76 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0) 77 #define F2FS_SET_FEATURE(sb, mask) \ 78 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask) 79 #define F2FS_CLEAR_FEATURE(sb, mask) \ 80 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask) 81 82 #define CRCPOLY_LE 0xedb88320 83 84 static inline __u32 f2fs_crc32(void *buf, size_t len) 85 { 86 unsigned char *p = (unsigned char *)buf; 87 __u32 crc = F2FS_SUPER_MAGIC; 88 int i; 89 90 while (len--) { 91 crc ^= *p++; 92 for (i = 0; i < 8; i++) 93 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0); 94 } 95 return crc; 96 } 97 98 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size) 99 { 100 return f2fs_crc32(buf, buf_size) == blk_crc; 101 } 102 103 /* 104 * For checkpoint manager 105 */ 106 enum { 107 NAT_BITMAP, 108 SIT_BITMAP 109 }; 110 111 enum { 112 CP_UMOUNT, 113 CP_FASTBOOT, 114 CP_SYNC, 115 CP_RECOVERY, 116 CP_DISCARD, 117 }; 118 119 #define DEF_BATCHED_TRIM_SECTIONS 32 120 #define BATCHED_TRIM_SEGMENTS(sbi) \ 121 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec) 122 #define BATCHED_TRIM_BLOCKS(sbi) \ 123 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg) 124 125 struct cp_control { 126 int reason; 127 __u64 trim_start; 128 __u64 trim_end; 129 __u64 trim_minlen; 130 __u64 trimmed; 131 }; 132 133 /* 134 * For CP/NAT/SIT/SSA readahead 135 */ 136 enum { 137 META_CP, 138 META_NAT, 139 META_SIT, 140 META_SSA, 141 META_POR, 142 }; 143 144 /* for the list of ino */ 145 enum { 146 ORPHAN_INO, /* for orphan ino list */ 147 APPEND_INO, /* for append ino list */ 148 UPDATE_INO, /* for update ino list */ 149 MAX_INO_ENTRY, /* max. list */ 150 }; 151 152 struct ino_entry { 153 struct list_head list; /* list head */ 154 nid_t ino; /* inode number */ 155 }; 156 157 /* 158 * for the list of directory inodes or gc inodes. 159 * NOTE: there are two slab users for this structure, if we add/modify/delete 160 * fields in structure for one of slab users, it may affect fields or size of 161 * other one, in this condition, it's better to split both of slab and related 162 * data structure. 163 */ 164 struct inode_entry { 165 struct list_head list; /* list head */ 166 struct inode *inode; /* vfs inode pointer */ 167 }; 168 169 /* for the list of blockaddresses to be discarded */ 170 struct discard_entry { 171 struct list_head list; /* list head */ 172 block_t blkaddr; /* block address to be discarded */ 173 int len; /* # of consecutive blocks of the discard */ 174 }; 175 176 /* for the list of fsync inodes, used only during recovery */ 177 struct fsync_inode_entry { 178 struct list_head list; /* list head */ 179 struct inode *inode; /* vfs inode pointer */ 180 block_t blkaddr; /* block address locating the last fsync */ 181 block_t last_dentry; /* block address locating the last dentry */ 182 block_t last_inode; /* block address locating the last inode */ 183 }; 184 185 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats)) 186 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits)) 187 188 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne) 189 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid) 190 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se) 191 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno) 192 193 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum)) 194 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum)) 195 196 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i) 197 { 198 int before = nats_in_cursum(rs); 199 rs->n_nats = cpu_to_le16(before + i); 200 return before; 201 } 202 203 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i) 204 { 205 int before = sits_in_cursum(rs); 206 rs->n_sits = cpu_to_le16(before + i); 207 return before; 208 } 209 210 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size, 211 int type) 212 { 213 if (type == NAT_JOURNAL) 214 return size <= MAX_NAT_JENTRIES(sum); 215 return size <= MAX_SIT_JENTRIES(sum); 216 } 217 218 /* 219 * ioctl commands 220 */ 221 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS 222 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS 223 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION 224 225 #define F2FS_IOCTL_MAGIC 0xf5 226 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1) 227 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2) 228 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3) 229 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4) 230 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5) 231 232 #define F2FS_IOC_SET_ENCRYPTION_POLICY \ 233 _IOR('f', 19, struct f2fs_encryption_policy) 234 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \ 235 _IOW('f', 20, __u8[16]) 236 #define F2FS_IOC_GET_ENCRYPTION_POLICY \ 237 _IOW('f', 21, struct f2fs_encryption_policy) 238 239 /* 240 * should be same as XFS_IOC_GOINGDOWN. 241 * Flags for going down operation used by FS_IOC_GOINGDOWN 242 */ 243 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */ 244 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */ 245 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */ 246 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */ 247 248 #if defined(__KERNEL__) && defined(CONFIG_COMPAT) 249 /* 250 * ioctl commands in 32 bit emulation 251 */ 252 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS 253 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS 254 #endif 255 256 /* 257 * For INODE and NODE manager 258 */ 259 /* for directory operations */ 260 struct f2fs_str { 261 unsigned char *name; 262 u32 len; 263 }; 264 265 struct f2fs_filename { 266 const struct qstr *usr_fname; 267 struct f2fs_str disk_name; 268 f2fs_hash_t hash; 269 #ifdef CONFIG_F2FS_FS_ENCRYPTION 270 struct f2fs_str crypto_buf; 271 #endif 272 }; 273 274 #define FSTR_INIT(n, l) { .name = n, .len = l } 275 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len) 276 #define fname_name(p) ((p)->disk_name.name) 277 #define fname_len(p) ((p)->disk_name.len) 278 279 struct f2fs_dentry_ptr { 280 struct inode *inode; 281 const void *bitmap; 282 struct f2fs_dir_entry *dentry; 283 __u8 (*filename)[F2FS_SLOT_LEN]; 284 int max; 285 }; 286 287 static inline void make_dentry_ptr(struct inode *inode, 288 struct f2fs_dentry_ptr *d, void *src, int type) 289 { 290 d->inode = inode; 291 292 if (type == 1) { 293 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src; 294 d->max = NR_DENTRY_IN_BLOCK; 295 d->bitmap = &t->dentry_bitmap; 296 d->dentry = t->dentry; 297 d->filename = t->filename; 298 } else { 299 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src; 300 d->max = NR_INLINE_DENTRY; 301 d->bitmap = &t->dentry_bitmap; 302 d->dentry = t->dentry; 303 d->filename = t->filename; 304 } 305 } 306 307 /* 308 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1 309 * as its node offset to distinguish from index node blocks. 310 * But some bits are used to mark the node block. 311 */ 312 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \ 313 >> OFFSET_BIT_SHIFT) 314 enum { 315 ALLOC_NODE, /* allocate a new node page if needed */ 316 LOOKUP_NODE, /* look up a node without readahead */ 317 LOOKUP_NODE_RA, /* 318 * look up a node with readahead called 319 * by get_data_block. 320 */ 321 }; 322 323 #define F2FS_LINK_MAX 32000 /* maximum link count per file */ 324 325 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */ 326 327 /* vector size for gang look-up from extent cache that consists of radix tree */ 328 #define EXT_TREE_VEC_SIZE 64 329 330 /* for in-memory extent cache entry */ 331 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */ 332 333 /* number of extent info in extent cache we try to shrink */ 334 #define EXTENT_CACHE_SHRINK_NUMBER 128 335 336 struct extent_info { 337 unsigned int fofs; /* start offset in a file */ 338 u32 blk; /* start block address of the extent */ 339 unsigned int len; /* length of the extent */ 340 }; 341 342 struct extent_node { 343 struct rb_node rb_node; /* rb node located in rb-tree */ 344 struct list_head list; /* node in global extent list of sbi */ 345 struct extent_info ei; /* extent info */ 346 }; 347 348 struct extent_tree { 349 nid_t ino; /* inode number */ 350 struct rb_root root; /* root of extent info rb-tree */ 351 struct extent_node *cached_en; /* recently accessed extent node */ 352 rwlock_t lock; /* protect extent info rb-tree */ 353 atomic_t refcount; /* reference count of rb-tree */ 354 unsigned int count; /* # of extent node in rb-tree*/ 355 }; 356 357 /* 358 * This structure is taken from ext4_map_blocks. 359 * 360 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks(). 361 */ 362 #define F2FS_MAP_NEW (1 << BH_New) 363 #define F2FS_MAP_MAPPED (1 << BH_Mapped) 364 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten) 365 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\ 366 F2FS_MAP_UNWRITTEN) 367 368 struct f2fs_map_blocks { 369 block_t m_pblk; 370 block_t m_lblk; 371 unsigned int m_len; 372 unsigned int m_flags; 373 }; 374 375 /* 376 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later. 377 */ 378 #define FADVISE_COLD_BIT 0x01 379 #define FADVISE_LOST_PINO_BIT 0x02 380 #define FADVISE_ENCRYPT_BIT 0x04 381 #define FADVISE_ENC_NAME_BIT 0x08 382 383 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 384 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 385 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 386 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 387 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 388 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 389 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT) 390 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT) 391 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT) 392 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT) 393 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT) 394 395 /* Encryption algorithms */ 396 #define F2FS_ENCRYPTION_MODE_INVALID 0 397 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1 398 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2 399 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3 400 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4 401 402 #include "f2fs_crypto.h" 403 404 #define DEF_DIR_LEVEL 0 405 406 struct f2fs_inode_info { 407 struct inode vfs_inode; /* serve a vfs inode */ 408 unsigned long i_flags; /* keep an inode flags for ioctl */ 409 unsigned char i_advise; /* use to give file attribute hints */ 410 unsigned char i_dir_level; /* use for dentry level for large dir */ 411 unsigned int i_current_depth; /* use only in directory structure */ 412 unsigned int i_pino; /* parent inode number */ 413 umode_t i_acl_mode; /* keep file acl mode temporarily */ 414 415 /* Use below internally in f2fs*/ 416 unsigned long flags; /* use to pass per-file flags */ 417 struct rw_semaphore i_sem; /* protect fi info */ 418 atomic_t dirty_pages; /* # of dirty pages */ 419 f2fs_hash_t chash; /* hash value of given file name */ 420 unsigned int clevel; /* maximum level of given file name */ 421 nid_t i_xattr_nid; /* node id that contains xattrs */ 422 unsigned long long xattr_ver; /* cp version of xattr modification */ 423 struct extent_info ext; /* in-memory extent cache entry */ 424 rwlock_t ext_lock; /* rwlock for single extent cache */ 425 struct inode_entry *dirty_dir; /* the pointer of dirty dir */ 426 427 struct radix_tree_root inmem_root; /* radix tree for inmem pages */ 428 struct list_head inmem_pages; /* inmemory pages managed by f2fs */ 429 struct mutex inmem_lock; /* lock for inmemory pages */ 430 431 #ifdef CONFIG_F2FS_FS_ENCRYPTION 432 /* Encryption params */ 433 struct f2fs_crypt_info *i_crypt_info; 434 #endif 435 }; 436 437 static inline void get_extent_info(struct extent_info *ext, 438 struct f2fs_extent i_ext) 439 { 440 ext->fofs = le32_to_cpu(i_ext.fofs); 441 ext->blk = le32_to_cpu(i_ext.blk); 442 ext->len = le32_to_cpu(i_ext.len); 443 } 444 445 static inline void set_raw_extent(struct extent_info *ext, 446 struct f2fs_extent *i_ext) 447 { 448 i_ext->fofs = cpu_to_le32(ext->fofs); 449 i_ext->blk = cpu_to_le32(ext->blk); 450 i_ext->len = cpu_to_le32(ext->len); 451 } 452 453 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs, 454 u32 blk, unsigned int len) 455 { 456 ei->fofs = fofs; 457 ei->blk = blk; 458 ei->len = len; 459 } 460 461 static inline bool __is_extent_same(struct extent_info *ei1, 462 struct extent_info *ei2) 463 { 464 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk && 465 ei1->len == ei2->len); 466 } 467 468 static inline bool __is_extent_mergeable(struct extent_info *back, 469 struct extent_info *front) 470 { 471 return (back->fofs + back->len == front->fofs && 472 back->blk + back->len == front->blk); 473 } 474 475 static inline bool __is_back_mergeable(struct extent_info *cur, 476 struct extent_info *back) 477 { 478 return __is_extent_mergeable(back, cur); 479 } 480 481 static inline bool __is_front_mergeable(struct extent_info *cur, 482 struct extent_info *front) 483 { 484 return __is_extent_mergeable(cur, front); 485 } 486 487 struct f2fs_nm_info { 488 block_t nat_blkaddr; /* base disk address of NAT */ 489 nid_t max_nid; /* maximum possible node ids */ 490 nid_t available_nids; /* maximum available node ids */ 491 nid_t next_scan_nid; /* the next nid to be scanned */ 492 unsigned int ram_thresh; /* control the memory footprint */ 493 494 /* NAT cache management */ 495 struct radix_tree_root nat_root;/* root of the nat entry cache */ 496 struct radix_tree_root nat_set_root;/* root of the nat set cache */ 497 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */ 498 struct list_head nat_entries; /* cached nat entry list (clean) */ 499 unsigned int nat_cnt; /* the # of cached nat entries */ 500 unsigned int dirty_nat_cnt; /* total num of nat entries in set */ 501 502 /* free node ids management */ 503 struct radix_tree_root free_nid_root;/* root of the free_nid cache */ 504 struct list_head free_nid_list; /* a list for free nids */ 505 spinlock_t free_nid_list_lock; /* protect free nid list */ 506 unsigned int fcnt; /* the number of free node id */ 507 struct mutex build_lock; /* lock for build free nids */ 508 509 /* for checkpoint */ 510 char *nat_bitmap; /* NAT bitmap pointer */ 511 int bitmap_size; /* bitmap size */ 512 }; 513 514 /* 515 * this structure is used as one of function parameters. 516 * all the information are dedicated to a given direct node block determined 517 * by the data offset in a file. 518 */ 519 struct dnode_of_data { 520 struct inode *inode; /* vfs inode pointer */ 521 struct page *inode_page; /* its inode page, NULL is possible */ 522 struct page *node_page; /* cached direct node page */ 523 nid_t nid; /* node id of the direct node block */ 524 unsigned int ofs_in_node; /* data offset in the node page */ 525 bool inode_page_locked; /* inode page is locked or not */ 526 block_t data_blkaddr; /* block address of the node block */ 527 }; 528 529 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode, 530 struct page *ipage, struct page *npage, nid_t nid) 531 { 532 memset(dn, 0, sizeof(*dn)); 533 dn->inode = inode; 534 dn->inode_page = ipage; 535 dn->node_page = npage; 536 dn->nid = nid; 537 } 538 539 /* 540 * For SIT manager 541 * 542 * By default, there are 6 active log areas across the whole main area. 543 * When considering hot and cold data separation to reduce cleaning overhead, 544 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types, 545 * respectively. 546 * In the current design, you should not change the numbers intentionally. 547 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6 548 * logs individually according to the underlying devices. (default: 6) 549 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for 550 * data and 8 for node logs. 551 */ 552 #define NR_CURSEG_DATA_TYPE (3) 553 #define NR_CURSEG_NODE_TYPE (3) 554 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE) 555 556 enum { 557 CURSEG_HOT_DATA = 0, /* directory entry blocks */ 558 CURSEG_WARM_DATA, /* data blocks */ 559 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */ 560 CURSEG_HOT_NODE, /* direct node blocks of directory files */ 561 CURSEG_WARM_NODE, /* direct node blocks of normal files */ 562 CURSEG_COLD_NODE, /* indirect node blocks */ 563 NO_CHECK_TYPE, 564 CURSEG_DIRECT_IO, /* to use for the direct IO path */ 565 }; 566 567 struct flush_cmd { 568 struct completion wait; 569 struct llist_node llnode; 570 int ret; 571 }; 572 573 struct flush_cmd_control { 574 struct task_struct *f2fs_issue_flush; /* flush thread */ 575 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */ 576 struct llist_head issue_list; /* list for command issue */ 577 struct llist_node *dispatch_list; /* list for command dispatch */ 578 }; 579 580 struct f2fs_sm_info { 581 struct sit_info *sit_info; /* whole segment information */ 582 struct free_segmap_info *free_info; /* free segment information */ 583 struct dirty_seglist_info *dirty_info; /* dirty segment information */ 584 struct curseg_info *curseg_array; /* active segment information */ 585 586 block_t seg0_blkaddr; /* block address of 0'th segment */ 587 block_t main_blkaddr; /* start block address of main area */ 588 block_t ssa_blkaddr; /* start block address of SSA area */ 589 590 unsigned int segment_count; /* total # of segments */ 591 unsigned int main_segments; /* # of segments in main area */ 592 unsigned int reserved_segments; /* # of reserved segments */ 593 unsigned int ovp_segments; /* # of overprovision segments */ 594 595 /* a threshold to reclaim prefree segments */ 596 unsigned int rec_prefree_segments; 597 598 /* for small discard management */ 599 struct list_head discard_list; /* 4KB discard list */ 600 int nr_discards; /* # of discards in the list */ 601 int max_discards; /* max. discards to be issued */ 602 603 /* for batched trimming */ 604 unsigned int trim_sections; /* # of sections to trim */ 605 606 struct list_head sit_entry_set; /* sit entry set list */ 607 608 unsigned int ipu_policy; /* in-place-update policy */ 609 unsigned int min_ipu_util; /* in-place-update threshold */ 610 unsigned int min_fsync_blocks; /* threshold for fsync */ 611 612 /* for flush command control */ 613 struct flush_cmd_control *cmd_control_info; 614 615 }; 616 617 /* 618 * For superblock 619 */ 620 /* 621 * COUNT_TYPE for monitoring 622 * 623 * f2fs monitors the number of several block types such as on-writeback, 624 * dirty dentry blocks, dirty node blocks, and dirty meta blocks. 625 */ 626 enum count_type { 627 F2FS_WRITEBACK, 628 F2FS_DIRTY_DENTS, 629 F2FS_DIRTY_NODES, 630 F2FS_DIRTY_META, 631 F2FS_INMEM_PAGES, 632 NR_COUNT_TYPE, 633 }; 634 635 /* 636 * The below are the page types of bios used in submit_bio(). 637 * The available types are: 638 * DATA User data pages. It operates as async mode. 639 * NODE Node pages. It operates as async mode. 640 * META FS metadata pages such as SIT, NAT, CP. 641 * NR_PAGE_TYPE The number of page types. 642 * META_FLUSH Make sure the previous pages are written 643 * with waiting the bio's completion 644 * ... Only can be used with META. 645 */ 646 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type)) 647 enum page_type { 648 DATA, 649 NODE, 650 META, 651 NR_PAGE_TYPE, 652 META_FLUSH, 653 INMEM, /* the below types are used by tracepoints only. */ 654 INMEM_DROP, 655 IPU, 656 OPU, 657 }; 658 659 struct f2fs_io_info { 660 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */ 661 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */ 662 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */ 663 block_t blk_addr; /* block address to be written */ 664 struct page *page; /* page to be written */ 665 struct page *encrypted_page; /* encrypted page */ 666 }; 667 668 #define is_read_io(rw) (((rw) & 1) == READ) 669 struct f2fs_bio_info { 670 struct f2fs_sb_info *sbi; /* f2fs superblock */ 671 struct bio *bio; /* bios to merge */ 672 sector_t last_block_in_bio; /* last block number */ 673 struct f2fs_io_info fio; /* store buffered io info. */ 674 struct rw_semaphore io_rwsem; /* blocking op for bio */ 675 }; 676 677 /* for inner inode cache management */ 678 struct inode_management { 679 struct radix_tree_root ino_root; /* ino entry array */ 680 spinlock_t ino_lock; /* for ino entry lock */ 681 struct list_head ino_list; /* inode list head */ 682 unsigned long ino_num; /* number of entries */ 683 }; 684 685 /* For s_flag in struct f2fs_sb_info */ 686 enum { 687 SBI_IS_DIRTY, /* dirty flag for checkpoint */ 688 SBI_IS_CLOSE, /* specify unmounting */ 689 SBI_NEED_FSCK, /* need fsck.f2fs to fix */ 690 SBI_POR_DOING, /* recovery is doing or not */ 691 }; 692 693 struct f2fs_sb_info { 694 struct super_block *sb; /* pointer to VFS super block */ 695 struct proc_dir_entry *s_proc; /* proc entry */ 696 struct buffer_head *raw_super_buf; /* buffer head of raw sb */ 697 struct f2fs_super_block *raw_super; /* raw super block pointer */ 698 int s_flag; /* flags for sbi */ 699 700 /* for node-related operations */ 701 struct f2fs_nm_info *nm_info; /* node manager */ 702 struct inode *node_inode; /* cache node blocks */ 703 704 /* for segment-related operations */ 705 struct f2fs_sm_info *sm_info; /* segment manager */ 706 707 /* for bio operations */ 708 struct f2fs_bio_info read_io; /* for read bios */ 709 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */ 710 711 /* for checkpoint */ 712 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */ 713 struct inode *meta_inode; /* cache meta blocks */ 714 struct mutex cp_mutex; /* checkpoint procedure lock */ 715 struct rw_semaphore cp_rwsem; /* blocking FS operations */ 716 struct rw_semaphore node_write; /* locking node writes */ 717 struct mutex writepages; /* mutex for writepages() */ 718 wait_queue_head_t cp_wait; 719 720 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ 721 722 /* for orphan inode, use 0'th array */ 723 unsigned int max_orphans; /* max orphan inodes */ 724 725 /* for directory inode management */ 726 struct list_head dir_inode_list; /* dir inode list */ 727 spinlock_t dir_inode_lock; /* for dir inode list lock */ 728 729 /* for extent tree cache */ 730 struct radix_tree_root extent_tree_root;/* cache extent cache entries */ 731 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */ 732 struct list_head extent_list; /* lru list for shrinker */ 733 spinlock_t extent_lock; /* locking extent lru list */ 734 int total_ext_tree; /* extent tree count */ 735 atomic_t total_ext_node; /* extent info count */ 736 737 /* basic filesystem units */ 738 unsigned int log_sectors_per_block; /* log2 sectors per block */ 739 unsigned int log_blocksize; /* log2 block size */ 740 unsigned int blocksize; /* block size */ 741 unsigned int root_ino_num; /* root inode number*/ 742 unsigned int node_ino_num; /* node inode number*/ 743 unsigned int meta_ino_num; /* meta inode number*/ 744 unsigned int log_blocks_per_seg; /* log2 blocks per segment */ 745 unsigned int blocks_per_seg; /* blocks per segment */ 746 unsigned int segs_per_sec; /* segments per section */ 747 unsigned int secs_per_zone; /* sections per zone */ 748 unsigned int total_sections; /* total section count */ 749 unsigned int total_node_count; /* total node block count */ 750 unsigned int total_valid_node_count; /* valid node block count */ 751 unsigned int total_valid_inode_count; /* valid inode count */ 752 int active_logs; /* # of active logs */ 753 int dir_level; /* directory level */ 754 755 block_t user_block_count; /* # of user blocks */ 756 block_t total_valid_block_count; /* # of valid blocks */ 757 block_t alloc_valid_block_count; /* # of allocated blocks */ 758 block_t discard_blks; /* discard command candidats */ 759 block_t last_valid_block_count; /* for recovery */ 760 u32 s_next_generation; /* for NFS support */ 761 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */ 762 763 struct f2fs_mount_info mount_opt; /* mount options */ 764 765 /* for cleaning operations */ 766 struct mutex gc_mutex; /* mutex for GC */ 767 struct f2fs_gc_kthread *gc_thread; /* GC thread */ 768 unsigned int cur_victim_sec; /* current victim section num */ 769 770 /* maximum # of trials to find a victim segment for SSR and GC */ 771 unsigned int max_victim_search; 772 773 /* 774 * for stat information. 775 * one is for the LFS mode, and the other is for the SSR mode. 776 */ 777 #ifdef CONFIG_F2FS_STAT_FS 778 struct f2fs_stat_info *stat_info; /* FS status information */ 779 unsigned int segment_count[2]; /* # of allocated segments */ 780 unsigned int block_count[2]; /* # of allocated blocks */ 781 atomic_t inplace_count; /* # of inplace update */ 782 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */ 783 atomic_t inline_inode; /* # of inline_data inodes */ 784 atomic_t inline_dir; /* # of inline_dentry inodes */ 785 int bg_gc; /* background gc calls */ 786 unsigned int n_dirty_dirs; /* # of dir inodes */ 787 #endif 788 unsigned int last_victim[2]; /* last victim segment # */ 789 spinlock_t stat_lock; /* lock for stat operations */ 790 791 /* For sysfs suppport */ 792 struct kobject s_kobj; 793 struct completion s_kobj_unregister; 794 }; 795 796 /* 797 * Inline functions 798 */ 799 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode) 800 { 801 return container_of(inode, struct f2fs_inode_info, vfs_inode); 802 } 803 804 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb) 805 { 806 return sb->s_fs_info; 807 } 808 809 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode) 810 { 811 return F2FS_SB(inode->i_sb); 812 } 813 814 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping) 815 { 816 return F2FS_I_SB(mapping->host); 817 } 818 819 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page) 820 { 821 return F2FS_M_SB(page->mapping); 822 } 823 824 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi) 825 { 826 return (struct f2fs_super_block *)(sbi->raw_super); 827 } 828 829 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi) 830 { 831 return (struct f2fs_checkpoint *)(sbi->ckpt); 832 } 833 834 static inline struct f2fs_node *F2FS_NODE(struct page *page) 835 { 836 return (struct f2fs_node *)page_address(page); 837 } 838 839 static inline struct f2fs_inode *F2FS_INODE(struct page *page) 840 { 841 return &((struct f2fs_node *)page_address(page))->i; 842 } 843 844 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi) 845 { 846 return (struct f2fs_nm_info *)(sbi->nm_info); 847 } 848 849 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi) 850 { 851 return (struct f2fs_sm_info *)(sbi->sm_info); 852 } 853 854 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi) 855 { 856 return (struct sit_info *)(SM_I(sbi)->sit_info); 857 } 858 859 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi) 860 { 861 return (struct free_segmap_info *)(SM_I(sbi)->free_info); 862 } 863 864 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi) 865 { 866 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info); 867 } 868 869 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi) 870 { 871 return sbi->meta_inode->i_mapping; 872 } 873 874 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi) 875 { 876 return sbi->node_inode->i_mapping; 877 } 878 879 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type) 880 { 881 return sbi->s_flag & (0x01 << type); 882 } 883 884 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 885 { 886 sbi->s_flag |= (0x01 << type); 887 } 888 889 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type) 890 { 891 sbi->s_flag &= ~(0x01 << type); 892 } 893 894 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp) 895 { 896 return le64_to_cpu(cp->checkpoint_ver); 897 } 898 899 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 900 { 901 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 902 return ckpt_flags & f; 903 } 904 905 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 906 { 907 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 908 ckpt_flags |= f; 909 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 910 } 911 912 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f) 913 { 914 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags); 915 ckpt_flags &= (~f); 916 cp->ckpt_flags = cpu_to_le32(ckpt_flags); 917 } 918 919 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi) 920 { 921 down_read(&sbi->cp_rwsem); 922 } 923 924 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi) 925 { 926 up_read(&sbi->cp_rwsem); 927 } 928 929 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi) 930 { 931 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex); 932 } 933 934 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi) 935 { 936 up_write(&sbi->cp_rwsem); 937 } 938 939 static inline int __get_cp_reason(struct f2fs_sb_info *sbi) 940 { 941 int reason = CP_SYNC; 942 943 if (test_opt(sbi, FASTBOOT)) 944 reason = CP_FASTBOOT; 945 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 946 reason = CP_UMOUNT; 947 return reason; 948 } 949 950 static inline bool __remain_node_summaries(int reason) 951 { 952 return (reason == CP_UMOUNT || reason == CP_FASTBOOT); 953 } 954 955 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi) 956 { 957 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) || 958 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG)); 959 } 960 961 /* 962 * Check whether the given nid is within node id range. 963 */ 964 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) 965 { 966 if (unlikely(nid < F2FS_ROOT_INO(sbi))) 967 return -EINVAL; 968 if (unlikely(nid >= NM_I(sbi)->max_nid)) 969 return -EINVAL; 970 return 0; 971 } 972 973 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1 974 975 /* 976 * Check whether the inode has blocks or not 977 */ 978 static inline int F2FS_HAS_BLOCKS(struct inode *inode) 979 { 980 if (F2FS_I(inode)->i_xattr_nid) 981 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1; 982 else 983 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS; 984 } 985 986 static inline bool f2fs_has_xattr_block(unsigned int ofs) 987 { 988 return ofs == XATTR_NODE_OFFSET; 989 } 990 991 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi, 992 struct inode *inode, blkcnt_t count) 993 { 994 block_t valid_block_count; 995 996 spin_lock(&sbi->stat_lock); 997 valid_block_count = 998 sbi->total_valid_block_count + (block_t)count; 999 if (unlikely(valid_block_count > sbi->user_block_count)) { 1000 spin_unlock(&sbi->stat_lock); 1001 return false; 1002 } 1003 inode->i_blocks += count; 1004 sbi->total_valid_block_count = valid_block_count; 1005 sbi->alloc_valid_block_count += (block_t)count; 1006 spin_unlock(&sbi->stat_lock); 1007 return true; 1008 } 1009 1010 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi, 1011 struct inode *inode, 1012 blkcnt_t count) 1013 { 1014 spin_lock(&sbi->stat_lock); 1015 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count); 1016 f2fs_bug_on(sbi, inode->i_blocks < count); 1017 inode->i_blocks -= count; 1018 sbi->total_valid_block_count -= (block_t)count; 1019 spin_unlock(&sbi->stat_lock); 1020 } 1021 1022 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type) 1023 { 1024 atomic_inc(&sbi->nr_pages[count_type]); 1025 set_sbi_flag(sbi, SBI_IS_DIRTY); 1026 } 1027 1028 static inline void inode_inc_dirty_pages(struct inode *inode) 1029 { 1030 atomic_inc(&F2FS_I(inode)->dirty_pages); 1031 if (S_ISDIR(inode->i_mode)) 1032 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 1033 } 1034 1035 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type) 1036 { 1037 atomic_dec(&sbi->nr_pages[count_type]); 1038 } 1039 1040 static inline void inode_dec_dirty_pages(struct inode *inode) 1041 { 1042 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode)) 1043 return; 1044 1045 atomic_dec(&F2FS_I(inode)->dirty_pages); 1046 1047 if (S_ISDIR(inode->i_mode)) 1048 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS); 1049 } 1050 1051 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type) 1052 { 1053 return atomic_read(&sbi->nr_pages[count_type]); 1054 } 1055 1056 static inline int get_dirty_pages(struct inode *inode) 1057 { 1058 return atomic_read(&F2FS_I(inode)->dirty_pages); 1059 } 1060 1061 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type) 1062 { 1063 unsigned int pages_per_sec = sbi->segs_per_sec * 1064 (1 << sbi->log_blocks_per_seg); 1065 return ((get_pages(sbi, block_type) + pages_per_sec - 1) 1066 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec; 1067 } 1068 1069 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi) 1070 { 1071 return sbi->total_valid_block_count; 1072 } 1073 1074 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag) 1075 { 1076 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1077 1078 /* return NAT or SIT bitmap */ 1079 if (flag == NAT_BITMAP) 1080 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 1081 else if (flag == SIT_BITMAP) 1082 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 1083 1084 return 0; 1085 } 1086 1087 static inline block_t __cp_payload(struct f2fs_sb_info *sbi) 1088 { 1089 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload); 1090 } 1091 1092 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag) 1093 { 1094 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1095 int offset; 1096 1097 if (__cp_payload(sbi) > 0) { 1098 if (flag == NAT_BITMAP) 1099 return &ckpt->sit_nat_version_bitmap; 1100 else 1101 return (unsigned char *)ckpt + F2FS_BLKSIZE; 1102 } else { 1103 offset = (flag == NAT_BITMAP) ? 1104 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0; 1105 return &ckpt->sit_nat_version_bitmap + offset; 1106 } 1107 } 1108 1109 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi) 1110 { 1111 block_t start_addr; 1112 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1113 unsigned long long ckpt_version = cur_cp_version(ckpt); 1114 1115 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr); 1116 1117 /* 1118 * odd numbered checkpoint should at cp segment 0 1119 * and even segment must be at cp segment 1 1120 */ 1121 if (!(ckpt_version & 1)) 1122 start_addr += sbi->blocks_per_seg; 1123 1124 return start_addr; 1125 } 1126 1127 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi) 1128 { 1129 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 1130 } 1131 1132 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi, 1133 struct inode *inode) 1134 { 1135 block_t valid_block_count; 1136 unsigned int valid_node_count; 1137 1138 spin_lock(&sbi->stat_lock); 1139 1140 valid_block_count = sbi->total_valid_block_count + 1; 1141 if (unlikely(valid_block_count > sbi->user_block_count)) { 1142 spin_unlock(&sbi->stat_lock); 1143 return false; 1144 } 1145 1146 valid_node_count = sbi->total_valid_node_count + 1; 1147 if (unlikely(valid_node_count > sbi->total_node_count)) { 1148 spin_unlock(&sbi->stat_lock); 1149 return false; 1150 } 1151 1152 if (inode) 1153 inode->i_blocks++; 1154 1155 sbi->alloc_valid_block_count++; 1156 sbi->total_valid_node_count++; 1157 sbi->total_valid_block_count++; 1158 spin_unlock(&sbi->stat_lock); 1159 1160 return true; 1161 } 1162 1163 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi, 1164 struct inode *inode) 1165 { 1166 spin_lock(&sbi->stat_lock); 1167 1168 f2fs_bug_on(sbi, !sbi->total_valid_block_count); 1169 f2fs_bug_on(sbi, !sbi->total_valid_node_count); 1170 f2fs_bug_on(sbi, !inode->i_blocks); 1171 1172 inode->i_blocks--; 1173 sbi->total_valid_node_count--; 1174 sbi->total_valid_block_count--; 1175 1176 spin_unlock(&sbi->stat_lock); 1177 } 1178 1179 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi) 1180 { 1181 return sbi->total_valid_node_count; 1182 } 1183 1184 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi) 1185 { 1186 spin_lock(&sbi->stat_lock); 1187 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count); 1188 sbi->total_valid_inode_count++; 1189 spin_unlock(&sbi->stat_lock); 1190 } 1191 1192 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi) 1193 { 1194 spin_lock(&sbi->stat_lock); 1195 f2fs_bug_on(sbi, !sbi->total_valid_inode_count); 1196 sbi->total_valid_inode_count--; 1197 spin_unlock(&sbi->stat_lock); 1198 } 1199 1200 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi) 1201 { 1202 return sbi->total_valid_inode_count; 1203 } 1204 1205 static inline void f2fs_put_page(struct page *page, int unlock) 1206 { 1207 if (!page) 1208 return; 1209 1210 if (unlock) { 1211 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page)); 1212 unlock_page(page); 1213 } 1214 page_cache_release(page); 1215 } 1216 1217 static inline void f2fs_put_dnode(struct dnode_of_data *dn) 1218 { 1219 if (dn->node_page) 1220 f2fs_put_page(dn->node_page, 1); 1221 if (dn->inode_page && dn->node_page != dn->inode_page) 1222 f2fs_put_page(dn->inode_page, 0); 1223 dn->node_page = NULL; 1224 dn->inode_page = NULL; 1225 } 1226 1227 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name, 1228 size_t size) 1229 { 1230 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL); 1231 } 1232 1233 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep, 1234 gfp_t flags) 1235 { 1236 void *entry; 1237 retry: 1238 entry = kmem_cache_alloc(cachep, flags); 1239 if (!entry) { 1240 cond_resched(); 1241 goto retry; 1242 } 1243 1244 return entry; 1245 } 1246 1247 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root, 1248 unsigned long index, void *item) 1249 { 1250 while (radix_tree_insert(root, index, item)) 1251 cond_resched(); 1252 } 1253 1254 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino) 1255 1256 static inline bool IS_INODE(struct page *page) 1257 { 1258 struct f2fs_node *p = F2FS_NODE(page); 1259 return RAW_IS_INODE(p); 1260 } 1261 1262 static inline __le32 *blkaddr_in_node(struct f2fs_node *node) 1263 { 1264 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr; 1265 } 1266 1267 static inline block_t datablock_addr(struct page *node_page, 1268 unsigned int offset) 1269 { 1270 struct f2fs_node *raw_node; 1271 __le32 *addr_array; 1272 raw_node = F2FS_NODE(node_page); 1273 addr_array = blkaddr_in_node(raw_node); 1274 return le32_to_cpu(addr_array[offset]); 1275 } 1276 1277 static inline int f2fs_test_bit(unsigned int nr, char *addr) 1278 { 1279 int mask; 1280 1281 addr += (nr >> 3); 1282 mask = 1 << (7 - (nr & 0x07)); 1283 return mask & *addr; 1284 } 1285 1286 static inline void f2fs_set_bit(unsigned int nr, char *addr) 1287 { 1288 int mask; 1289 1290 addr += (nr >> 3); 1291 mask = 1 << (7 - (nr & 0x07)); 1292 *addr |= mask; 1293 } 1294 1295 static inline void f2fs_clear_bit(unsigned int nr, char *addr) 1296 { 1297 int mask; 1298 1299 addr += (nr >> 3); 1300 mask = 1 << (7 - (nr & 0x07)); 1301 *addr &= ~mask; 1302 } 1303 1304 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr) 1305 { 1306 int mask; 1307 int ret; 1308 1309 addr += (nr >> 3); 1310 mask = 1 << (7 - (nr & 0x07)); 1311 ret = mask & *addr; 1312 *addr |= mask; 1313 return ret; 1314 } 1315 1316 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr) 1317 { 1318 int mask; 1319 int ret; 1320 1321 addr += (nr >> 3); 1322 mask = 1 << (7 - (nr & 0x07)); 1323 ret = mask & *addr; 1324 *addr &= ~mask; 1325 return ret; 1326 } 1327 1328 static inline void f2fs_change_bit(unsigned int nr, char *addr) 1329 { 1330 int mask; 1331 1332 addr += (nr >> 3); 1333 mask = 1 << (7 - (nr & 0x07)); 1334 *addr ^= mask; 1335 } 1336 1337 /* used for f2fs_inode_info->flags */ 1338 enum { 1339 FI_NEW_INODE, /* indicate newly allocated inode */ 1340 FI_DIRTY_INODE, /* indicate inode is dirty or not */ 1341 FI_DIRTY_DIR, /* indicate directory has dirty pages */ 1342 FI_INC_LINK, /* need to increment i_nlink */ 1343 FI_ACL_MODE, /* indicate acl mode */ 1344 FI_NO_ALLOC, /* should not allocate any blocks */ 1345 FI_UPDATE_DIR, /* should update inode block for consistency */ 1346 FI_DELAY_IPUT, /* used for the recovery */ 1347 FI_NO_EXTENT, /* not to use the extent cache */ 1348 FI_INLINE_XATTR, /* used for inline xattr */ 1349 FI_INLINE_DATA, /* used for inline data*/ 1350 FI_INLINE_DENTRY, /* used for inline dentry */ 1351 FI_APPEND_WRITE, /* inode has appended data */ 1352 FI_UPDATE_WRITE, /* inode has in-place-update data */ 1353 FI_NEED_IPU, /* used for ipu per file */ 1354 FI_ATOMIC_FILE, /* indicate atomic file */ 1355 FI_VOLATILE_FILE, /* indicate volatile file */ 1356 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */ 1357 FI_DROP_CACHE, /* drop dirty page cache */ 1358 FI_DATA_EXIST, /* indicate data exists */ 1359 FI_INLINE_DOTS, /* indicate inline dot dentries */ 1360 }; 1361 1362 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag) 1363 { 1364 if (!test_bit(flag, &fi->flags)) 1365 set_bit(flag, &fi->flags); 1366 } 1367 1368 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag) 1369 { 1370 return test_bit(flag, &fi->flags); 1371 } 1372 1373 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag) 1374 { 1375 if (test_bit(flag, &fi->flags)) 1376 clear_bit(flag, &fi->flags); 1377 } 1378 1379 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode) 1380 { 1381 fi->i_acl_mode = mode; 1382 set_inode_flag(fi, FI_ACL_MODE); 1383 } 1384 1385 static inline void get_inline_info(struct f2fs_inode_info *fi, 1386 struct f2fs_inode *ri) 1387 { 1388 if (ri->i_inline & F2FS_INLINE_XATTR) 1389 set_inode_flag(fi, FI_INLINE_XATTR); 1390 if (ri->i_inline & F2FS_INLINE_DATA) 1391 set_inode_flag(fi, FI_INLINE_DATA); 1392 if (ri->i_inline & F2FS_INLINE_DENTRY) 1393 set_inode_flag(fi, FI_INLINE_DENTRY); 1394 if (ri->i_inline & F2FS_DATA_EXIST) 1395 set_inode_flag(fi, FI_DATA_EXIST); 1396 if (ri->i_inline & F2FS_INLINE_DOTS) 1397 set_inode_flag(fi, FI_INLINE_DOTS); 1398 } 1399 1400 static inline void set_raw_inline(struct f2fs_inode_info *fi, 1401 struct f2fs_inode *ri) 1402 { 1403 ri->i_inline = 0; 1404 1405 if (is_inode_flag_set(fi, FI_INLINE_XATTR)) 1406 ri->i_inline |= F2FS_INLINE_XATTR; 1407 if (is_inode_flag_set(fi, FI_INLINE_DATA)) 1408 ri->i_inline |= F2FS_INLINE_DATA; 1409 if (is_inode_flag_set(fi, FI_INLINE_DENTRY)) 1410 ri->i_inline |= F2FS_INLINE_DENTRY; 1411 if (is_inode_flag_set(fi, FI_DATA_EXIST)) 1412 ri->i_inline |= F2FS_DATA_EXIST; 1413 if (is_inode_flag_set(fi, FI_INLINE_DOTS)) 1414 ri->i_inline |= F2FS_INLINE_DOTS; 1415 } 1416 1417 static inline int f2fs_has_inline_xattr(struct inode *inode) 1418 { 1419 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR); 1420 } 1421 1422 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi) 1423 { 1424 if (f2fs_has_inline_xattr(&fi->vfs_inode)) 1425 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS; 1426 return DEF_ADDRS_PER_INODE; 1427 } 1428 1429 static inline void *inline_xattr_addr(struct page *page) 1430 { 1431 struct f2fs_inode *ri = F2FS_INODE(page); 1432 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE - 1433 F2FS_INLINE_XATTR_ADDRS]); 1434 } 1435 1436 static inline int inline_xattr_size(struct inode *inode) 1437 { 1438 if (f2fs_has_inline_xattr(inode)) 1439 return F2FS_INLINE_XATTR_ADDRS << 2; 1440 else 1441 return 0; 1442 } 1443 1444 static inline int f2fs_has_inline_data(struct inode *inode) 1445 { 1446 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA); 1447 } 1448 1449 static inline void f2fs_clear_inline_inode(struct inode *inode) 1450 { 1451 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); 1452 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST); 1453 } 1454 1455 static inline int f2fs_exist_data(struct inode *inode) 1456 { 1457 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST); 1458 } 1459 1460 static inline int f2fs_has_inline_dots(struct inode *inode) 1461 { 1462 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS); 1463 } 1464 1465 static inline bool f2fs_is_atomic_file(struct inode *inode) 1466 { 1467 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE); 1468 } 1469 1470 static inline bool f2fs_is_volatile_file(struct inode *inode) 1471 { 1472 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE); 1473 } 1474 1475 static inline bool f2fs_is_first_block_written(struct inode *inode) 1476 { 1477 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); 1478 } 1479 1480 static inline bool f2fs_is_drop_cache(struct inode *inode) 1481 { 1482 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE); 1483 } 1484 1485 static inline void *inline_data_addr(struct page *page) 1486 { 1487 struct f2fs_inode *ri = F2FS_INODE(page); 1488 return (void *)&(ri->i_addr[1]); 1489 } 1490 1491 static inline int f2fs_has_inline_dentry(struct inode *inode) 1492 { 1493 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY); 1494 } 1495 1496 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page) 1497 { 1498 if (!f2fs_has_inline_dentry(dir)) 1499 kunmap(page); 1500 } 1501 1502 static inline int is_file(struct inode *inode, int type) 1503 { 1504 return F2FS_I(inode)->i_advise & type; 1505 } 1506 1507 static inline void set_file(struct inode *inode, int type) 1508 { 1509 F2FS_I(inode)->i_advise |= type; 1510 } 1511 1512 static inline void clear_file(struct inode *inode, int type) 1513 { 1514 F2FS_I(inode)->i_advise &= ~type; 1515 } 1516 1517 static inline int f2fs_readonly(struct super_block *sb) 1518 { 1519 return sb->s_flags & MS_RDONLY; 1520 } 1521 1522 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi) 1523 { 1524 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1525 } 1526 1527 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi) 1528 { 1529 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG); 1530 sbi->sb->s_flags |= MS_RDONLY; 1531 } 1532 1533 static inline bool is_dot_dotdot(const struct qstr *str) 1534 { 1535 if (str->len == 1 && str->name[0] == '.') 1536 return true; 1537 1538 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.') 1539 return true; 1540 1541 return false; 1542 } 1543 1544 #define get_inode_mode(i) \ 1545 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \ 1546 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode)) 1547 1548 /* get offset of first page in next direct node */ 1549 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \ 1550 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \ 1551 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \ 1552 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi)) 1553 1554 /* 1555 * file.c 1556 */ 1557 int f2fs_sync_file(struct file *, loff_t, loff_t, int); 1558 void truncate_data_blocks(struct dnode_of_data *); 1559 int truncate_blocks(struct inode *, u64, bool); 1560 void f2fs_truncate(struct inode *); 1561 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *); 1562 int f2fs_setattr(struct dentry *, struct iattr *); 1563 int truncate_hole(struct inode *, pgoff_t, pgoff_t); 1564 int truncate_data_blocks_range(struct dnode_of_data *, int); 1565 long f2fs_ioctl(struct file *, unsigned int, unsigned long); 1566 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long); 1567 1568 /* 1569 * inode.c 1570 */ 1571 void f2fs_set_inode_flags(struct inode *); 1572 struct inode *f2fs_iget(struct super_block *, unsigned long); 1573 int try_to_free_nats(struct f2fs_sb_info *, int); 1574 void update_inode(struct inode *, struct page *); 1575 void update_inode_page(struct inode *); 1576 int f2fs_write_inode(struct inode *, struct writeback_control *); 1577 void f2fs_evict_inode(struct inode *); 1578 void handle_failed_inode(struct inode *); 1579 1580 /* 1581 * namei.c 1582 */ 1583 struct dentry *f2fs_get_parent(struct dentry *child); 1584 1585 /* 1586 * dir.c 1587 */ 1588 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX]; 1589 void set_de_type(struct f2fs_dir_entry *, umode_t); 1590 1591 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *, 1592 f2fs_hash_t, int *, struct f2fs_dentry_ptr *); 1593 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *, 1594 unsigned int, struct f2fs_str *); 1595 void do_make_empty_dir(struct inode *, struct inode *, 1596 struct f2fs_dentry_ptr *); 1597 struct page *init_inode_metadata(struct inode *, struct inode *, 1598 const struct qstr *, struct page *); 1599 void update_parent_metadata(struct inode *, struct inode *, unsigned int); 1600 int room_for_filename(const void *, int, int); 1601 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *); 1602 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *, 1603 struct page **); 1604 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **); 1605 ino_t f2fs_inode_by_name(struct inode *, struct qstr *); 1606 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *, 1607 struct page *, struct inode *); 1608 int update_dent_inode(struct inode *, struct inode *, const struct qstr *); 1609 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *, 1610 const struct qstr *, f2fs_hash_t , unsigned int); 1611 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t, 1612 umode_t); 1613 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *, 1614 struct inode *); 1615 int f2fs_do_tmpfile(struct inode *, struct inode *); 1616 bool f2fs_empty_dir(struct inode *); 1617 1618 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode) 1619 { 1620 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name, 1621 inode, inode->i_ino, inode->i_mode); 1622 } 1623 1624 /* 1625 * super.c 1626 */ 1627 int f2fs_commit_super(struct f2fs_sb_info *, bool); 1628 int f2fs_sync_fs(struct super_block *, int); 1629 extern __printf(3, 4) 1630 void f2fs_msg(struct super_block *, const char *, const char *, ...); 1631 1632 /* 1633 * hash.c 1634 */ 1635 f2fs_hash_t f2fs_dentry_hash(const struct qstr *); 1636 1637 /* 1638 * node.c 1639 */ 1640 struct dnode_of_data; 1641 struct node_info; 1642 1643 bool available_free_memory(struct f2fs_sb_info *, int); 1644 int need_dentry_mark(struct f2fs_sb_info *, nid_t); 1645 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t); 1646 bool need_inode_block_update(struct f2fs_sb_info *, nid_t); 1647 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *); 1648 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int); 1649 int truncate_inode_blocks(struct inode *, pgoff_t); 1650 int truncate_xattr_node(struct inode *, struct page *); 1651 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t); 1652 void remove_inode_page(struct inode *); 1653 struct page *new_inode_page(struct inode *); 1654 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *); 1655 void ra_node_page(struct f2fs_sb_info *, nid_t); 1656 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t); 1657 struct page *get_node_page_ra(struct page *, int); 1658 void sync_inode_page(struct dnode_of_data *); 1659 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *); 1660 bool alloc_nid(struct f2fs_sb_info *, nid_t *); 1661 void alloc_nid_done(struct f2fs_sb_info *, nid_t); 1662 void alloc_nid_failed(struct f2fs_sb_info *, nid_t); 1663 void recover_inline_xattr(struct inode *, struct page *); 1664 void recover_xattr_data(struct inode *, struct page *, block_t); 1665 int recover_inode_page(struct f2fs_sb_info *, struct page *); 1666 int restore_node_summary(struct f2fs_sb_info *, unsigned int, 1667 struct f2fs_summary_block *); 1668 void flush_nat_entries(struct f2fs_sb_info *); 1669 int build_node_manager(struct f2fs_sb_info *); 1670 void destroy_node_manager(struct f2fs_sb_info *); 1671 int __init create_node_manager_caches(void); 1672 void destroy_node_manager_caches(void); 1673 1674 /* 1675 * segment.c 1676 */ 1677 void register_inmem_page(struct inode *, struct page *); 1678 void commit_inmem_pages(struct inode *, bool); 1679 void f2fs_balance_fs(struct f2fs_sb_info *); 1680 void f2fs_balance_fs_bg(struct f2fs_sb_info *); 1681 int f2fs_issue_flush(struct f2fs_sb_info *); 1682 int create_flush_cmd_control(struct f2fs_sb_info *); 1683 void destroy_flush_cmd_control(struct f2fs_sb_info *); 1684 void invalidate_blocks(struct f2fs_sb_info *, block_t); 1685 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t); 1686 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *); 1687 void release_discard_addrs(struct f2fs_sb_info *); 1688 void discard_next_dnode(struct f2fs_sb_info *, block_t); 1689 int npages_for_summary_flush(struct f2fs_sb_info *, bool); 1690 void allocate_new_segments(struct f2fs_sb_info *); 1691 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *); 1692 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int); 1693 void update_meta_page(struct f2fs_sb_info *, void *, block_t); 1694 void write_meta_page(struct f2fs_sb_info *, struct page *); 1695 void write_node_page(unsigned int, struct f2fs_io_info *); 1696 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *); 1697 void rewrite_data_page(struct f2fs_io_info *); 1698 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *, 1699 block_t, block_t, unsigned char, bool); 1700 void allocate_data_block(struct f2fs_sb_info *, struct page *, 1701 block_t, block_t *, struct f2fs_summary *, int); 1702 void f2fs_wait_on_page_writeback(struct page *, enum page_type); 1703 void write_data_summaries(struct f2fs_sb_info *, block_t); 1704 void write_node_summaries(struct f2fs_sb_info *, block_t); 1705 int lookup_journal_in_cursum(struct f2fs_summary_block *, 1706 int, unsigned int, int); 1707 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *); 1708 int build_segment_manager(struct f2fs_sb_info *); 1709 void destroy_segment_manager(struct f2fs_sb_info *); 1710 int __init create_segment_manager_caches(void); 1711 void destroy_segment_manager_caches(void); 1712 1713 /* 1714 * checkpoint.c 1715 */ 1716 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t); 1717 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t); 1718 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int); 1719 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int); 1720 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t); 1721 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long); 1722 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1723 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type); 1724 void release_dirty_inode(struct f2fs_sb_info *); 1725 bool exist_written_data(struct f2fs_sb_info *, nid_t, int); 1726 int acquire_orphan_inode(struct f2fs_sb_info *); 1727 void release_orphan_inode(struct f2fs_sb_info *); 1728 void add_orphan_inode(struct f2fs_sb_info *, nid_t); 1729 void remove_orphan_inode(struct f2fs_sb_info *, nid_t); 1730 void recover_orphan_inodes(struct f2fs_sb_info *); 1731 int get_valid_checkpoint(struct f2fs_sb_info *); 1732 void update_dirty_page(struct inode *, struct page *); 1733 void add_dirty_dir_inode(struct inode *); 1734 void remove_dirty_dir_inode(struct inode *); 1735 void sync_dirty_dir_inodes(struct f2fs_sb_info *); 1736 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *); 1737 void init_ino_entry_info(struct f2fs_sb_info *); 1738 int __init create_checkpoint_caches(void); 1739 void destroy_checkpoint_caches(void); 1740 1741 /* 1742 * data.c 1743 */ 1744 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int); 1745 int f2fs_submit_page_bio(struct f2fs_io_info *); 1746 void f2fs_submit_page_mbio(struct f2fs_io_info *); 1747 void set_data_blkaddr(struct dnode_of_data *); 1748 int reserve_new_block(struct dnode_of_data *); 1749 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t); 1750 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int); 1751 void f2fs_destroy_extent_tree(struct inode *); 1752 void f2fs_init_extent_cache(struct inode *, struct f2fs_extent *); 1753 void f2fs_update_extent_cache(struct dnode_of_data *); 1754 void f2fs_preserve_extent_tree(struct inode *); 1755 struct page *get_read_data_page(struct inode *, pgoff_t, int); 1756 struct page *find_data_page(struct inode *, pgoff_t); 1757 struct page *get_lock_data_page(struct inode *, pgoff_t); 1758 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool); 1759 int do_write_data_page(struct f2fs_io_info *); 1760 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64); 1761 void init_extent_cache_info(struct f2fs_sb_info *); 1762 int __init create_extent_cache(void); 1763 void destroy_extent_cache(void); 1764 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int); 1765 int f2fs_release_page(struct page *, gfp_t); 1766 1767 /* 1768 * gc.c 1769 */ 1770 int start_gc_thread(struct f2fs_sb_info *); 1771 void stop_gc_thread(struct f2fs_sb_info *); 1772 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *); 1773 int f2fs_gc(struct f2fs_sb_info *); 1774 void build_gc_manager(struct f2fs_sb_info *); 1775 1776 /* 1777 * recovery.c 1778 */ 1779 int recover_fsync_data(struct f2fs_sb_info *); 1780 bool space_for_roll_forward(struct f2fs_sb_info *); 1781 1782 /* 1783 * debug.c 1784 */ 1785 #ifdef CONFIG_F2FS_STAT_FS 1786 struct f2fs_stat_info { 1787 struct list_head stat_list; 1788 struct f2fs_sb_info *sbi; 1789 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs; 1790 int main_area_segs, main_area_sections, main_area_zones; 1791 int hit_ext, total_ext, ext_tree, ext_node; 1792 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta; 1793 int nats, dirty_nats, sits, dirty_sits, fnids; 1794 int total_count, utilization; 1795 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages; 1796 unsigned int valid_count, valid_node_count, valid_inode_count; 1797 unsigned int bimodal, avg_vblocks; 1798 int util_free, util_valid, util_invalid; 1799 int rsvd_segs, overp_segs; 1800 int dirty_count, node_pages, meta_pages; 1801 int prefree_count, call_count, cp_count; 1802 int tot_segs, node_segs, data_segs, free_segs, free_secs; 1803 int bg_node_segs, bg_data_segs; 1804 int tot_blks, data_blks, node_blks; 1805 int bg_data_blks, bg_node_blks; 1806 int curseg[NR_CURSEG_TYPE]; 1807 int cursec[NR_CURSEG_TYPE]; 1808 int curzone[NR_CURSEG_TYPE]; 1809 1810 unsigned int segment_count[2]; 1811 unsigned int block_count[2]; 1812 unsigned int inplace_count; 1813 unsigned base_mem, cache_mem, page_mem; 1814 }; 1815 1816 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi) 1817 { 1818 return (struct f2fs_stat_info *)sbi->stat_info; 1819 } 1820 1821 #define stat_inc_cp_count(si) ((si)->cp_count++) 1822 #define stat_inc_call_count(si) ((si)->call_count++) 1823 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++) 1824 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++) 1825 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--) 1826 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++) 1827 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++) 1828 #define stat_inc_inline_inode(inode) \ 1829 do { \ 1830 if (f2fs_has_inline_data(inode)) \ 1831 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \ 1832 } while (0) 1833 #define stat_dec_inline_inode(inode) \ 1834 do { \ 1835 if (f2fs_has_inline_data(inode)) \ 1836 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \ 1837 } while (0) 1838 #define stat_inc_inline_dir(inode) \ 1839 do { \ 1840 if (f2fs_has_inline_dentry(inode)) \ 1841 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \ 1842 } while (0) 1843 #define stat_dec_inline_dir(inode) \ 1844 do { \ 1845 if (f2fs_has_inline_dentry(inode)) \ 1846 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \ 1847 } while (0) 1848 #define stat_inc_seg_type(sbi, curseg) \ 1849 ((sbi)->segment_count[(curseg)->alloc_type]++) 1850 #define stat_inc_block_count(sbi, curseg) \ 1851 ((sbi)->block_count[(curseg)->alloc_type]++) 1852 #define stat_inc_inplace_blocks(sbi) \ 1853 (atomic_inc(&(sbi)->inplace_count)) 1854 #define stat_inc_seg_count(sbi, type, gc_type) \ 1855 do { \ 1856 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1857 (si)->tot_segs++; \ 1858 if (type == SUM_TYPE_DATA) { \ 1859 si->data_segs++; \ 1860 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \ 1861 } else { \ 1862 si->node_segs++; \ 1863 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \ 1864 } \ 1865 } while (0) 1866 1867 #define stat_inc_tot_blk_count(si, blks) \ 1868 (si->tot_blks += (blks)) 1869 1870 #define stat_inc_data_blk_count(sbi, blks, gc_type) \ 1871 do { \ 1872 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1873 stat_inc_tot_blk_count(si, blks); \ 1874 si->data_blks += (blks); \ 1875 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \ 1876 } while (0) 1877 1878 #define stat_inc_node_blk_count(sbi, blks, gc_type) \ 1879 do { \ 1880 struct f2fs_stat_info *si = F2FS_STAT(sbi); \ 1881 stat_inc_tot_blk_count(si, blks); \ 1882 si->node_blks += (blks); \ 1883 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \ 1884 } while (0) 1885 1886 int f2fs_build_stats(struct f2fs_sb_info *); 1887 void f2fs_destroy_stats(struct f2fs_sb_info *); 1888 void __init f2fs_create_root_stats(void); 1889 void f2fs_destroy_root_stats(void); 1890 #else 1891 #define stat_inc_cp_count(si) 1892 #define stat_inc_call_count(si) 1893 #define stat_inc_bggc_count(si) 1894 #define stat_inc_dirty_dir(sbi) 1895 #define stat_dec_dirty_dir(sbi) 1896 #define stat_inc_total_hit(sb) 1897 #define stat_inc_read_hit(sb) 1898 #define stat_inc_inline_inode(inode) 1899 #define stat_dec_inline_inode(inode) 1900 #define stat_inc_inline_dir(inode) 1901 #define stat_dec_inline_dir(inode) 1902 #define stat_inc_seg_type(sbi, curseg) 1903 #define stat_inc_block_count(sbi, curseg) 1904 #define stat_inc_inplace_blocks(sbi) 1905 #define stat_inc_seg_count(sbi, type, gc_type) 1906 #define stat_inc_tot_blk_count(si, blks) 1907 #define stat_inc_data_blk_count(sbi, blks, gc_type) 1908 #define stat_inc_node_blk_count(sbi, blks, gc_type) 1909 1910 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; } 1911 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { } 1912 static inline void __init f2fs_create_root_stats(void) { } 1913 static inline void f2fs_destroy_root_stats(void) { } 1914 #endif 1915 1916 extern const struct file_operations f2fs_dir_operations; 1917 extern const struct file_operations f2fs_file_operations; 1918 extern const struct inode_operations f2fs_file_inode_operations; 1919 extern const struct address_space_operations f2fs_dblock_aops; 1920 extern const struct address_space_operations f2fs_node_aops; 1921 extern const struct address_space_operations f2fs_meta_aops; 1922 extern const struct inode_operations f2fs_dir_inode_operations; 1923 extern const struct inode_operations f2fs_symlink_inode_operations; 1924 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations; 1925 extern const struct inode_operations f2fs_special_inode_operations; 1926 extern struct kmem_cache *inode_entry_slab; 1927 1928 /* 1929 * inline.c 1930 */ 1931 bool f2fs_may_inline_data(struct inode *); 1932 bool f2fs_may_inline_dentry(struct inode *); 1933 void read_inline_data(struct page *, struct page *); 1934 bool truncate_inline_inode(struct page *, u64); 1935 int f2fs_read_inline_data(struct inode *, struct page *); 1936 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *); 1937 int f2fs_convert_inline_inode(struct inode *); 1938 int f2fs_write_inline_data(struct inode *, struct page *); 1939 bool recover_inline_data(struct inode *, struct page *); 1940 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, 1941 struct f2fs_filename *, struct page **); 1942 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **); 1943 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *); 1944 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *, 1945 nid_t, umode_t); 1946 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *, 1947 struct inode *, struct inode *); 1948 bool f2fs_empty_inline_dir(struct inode *); 1949 int f2fs_read_inline_dir(struct file *, struct dir_context *, 1950 struct f2fs_str *); 1951 1952 /* 1953 * crypto support 1954 */ 1955 static inline int f2fs_encrypted_inode(struct inode *inode) 1956 { 1957 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1958 return file_is_encrypt(inode); 1959 #else 1960 return 0; 1961 #endif 1962 } 1963 1964 static inline void f2fs_set_encrypted_inode(struct inode *inode) 1965 { 1966 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1967 file_set_encrypt(inode); 1968 #endif 1969 } 1970 1971 static inline bool f2fs_bio_encrypted(struct bio *bio) 1972 { 1973 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1974 return unlikely(bio->bi_private != NULL); 1975 #else 1976 return false; 1977 #endif 1978 } 1979 1980 static inline int f2fs_sb_has_crypto(struct super_block *sb) 1981 { 1982 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1983 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT); 1984 #else 1985 return 0; 1986 #endif 1987 } 1988 1989 static inline bool f2fs_may_encrypt(struct inode *inode) 1990 { 1991 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1992 mode_t mode = inode->i_mode; 1993 1994 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)); 1995 #else 1996 return 0; 1997 #endif 1998 } 1999 2000 /* crypto_policy.c */ 2001 int f2fs_is_child_context_consistent_with_parent(struct inode *, 2002 struct inode *); 2003 int f2fs_inherit_context(struct inode *, struct inode *, struct page *); 2004 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *); 2005 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *); 2006 2007 /* crypt.c */ 2008 extern struct kmem_cache *f2fs_crypt_info_cachep; 2009 bool f2fs_valid_contents_enc_mode(uint32_t); 2010 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t); 2011 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *); 2012 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *); 2013 struct page *f2fs_encrypt(struct inode *, struct page *); 2014 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *); 2015 int f2fs_decrypt_one(struct inode *, struct page *); 2016 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *); 2017 2018 /* crypto_key.c */ 2019 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *); 2020 int _f2fs_get_encryption_info(struct inode *inode); 2021 2022 /* crypto_fname.c */ 2023 bool f2fs_valid_filenames_enc_mode(uint32_t); 2024 u32 f2fs_fname_crypto_round_up(u32, u32); 2025 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *); 2026 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *, 2027 const struct f2fs_str *, struct f2fs_str *); 2028 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *, 2029 struct f2fs_str *); 2030 2031 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2032 void f2fs_restore_and_release_control_page(struct page **); 2033 void f2fs_restore_control_page(struct page *); 2034 2035 int __init f2fs_init_crypto(void); 2036 int f2fs_crypto_initialize(void); 2037 void f2fs_exit_crypto(void); 2038 2039 int f2fs_has_encryption_key(struct inode *); 2040 2041 static inline int f2fs_get_encryption_info(struct inode *inode) 2042 { 2043 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info; 2044 2045 if (!ci || 2046 (ci->ci_keyring_key && 2047 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) | 2048 (1 << KEY_FLAG_REVOKED) | 2049 (1 << KEY_FLAG_DEAD))))) 2050 return _f2fs_get_encryption_info(inode); 2051 return 0; 2052 } 2053 2054 void f2fs_fname_crypto_free_buffer(struct f2fs_str *); 2055 int f2fs_fname_setup_filename(struct inode *, const struct qstr *, 2056 int lookup, struct f2fs_filename *); 2057 void f2fs_fname_free_filename(struct f2fs_filename *); 2058 #else 2059 static inline void f2fs_restore_and_release_control_page(struct page **p) { } 2060 static inline void f2fs_restore_control_page(struct page *p) { } 2061 2062 static inline int __init f2fs_init_crypto(void) { return 0; } 2063 static inline void f2fs_exit_crypto(void) { } 2064 2065 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; } 2066 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; } 2067 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { } 2068 2069 static inline int f2fs_fname_setup_filename(struct inode *dir, 2070 const struct qstr *iname, 2071 int lookup, struct f2fs_filename *fname) 2072 { 2073 memset(fname, 0, sizeof(struct f2fs_filename)); 2074 fname->usr_fname = iname; 2075 fname->disk_name.name = (unsigned char *)iname->name; 2076 fname->disk_name.len = iname->len; 2077 return 0; 2078 } 2079 2080 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { } 2081 #endif 2082 #endif 2083