1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs extent cache support 4 * 5 * Copyright (c) 2015 Motorola Mobility 6 * Copyright (c) 2015 Samsung Electronics 7 * Authors: Jaegeuk Kim <jaegeuk@kernel.org> 8 * Chao Yu <chao2.yu@samsung.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 14 #include "f2fs.h" 15 #include "node.h" 16 #include <trace/events/f2fs.h> 17 18 static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re, 19 unsigned int ofs) 20 { 21 if (cached_re) { 22 if (cached_re->ofs <= ofs && 23 cached_re->ofs + cached_re->len > ofs) { 24 return cached_re; 25 } 26 } 27 return NULL; 28 } 29 30 static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root, 31 unsigned int ofs) 32 { 33 struct rb_node *node = root->rb_root.rb_node; 34 struct rb_entry *re; 35 36 while (node) { 37 re = rb_entry(node, struct rb_entry, rb_node); 38 39 if (ofs < re->ofs) 40 node = node->rb_left; 41 else if (ofs >= re->ofs + re->len) 42 node = node->rb_right; 43 else 44 return re; 45 } 46 return NULL; 47 } 48 49 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 50 struct rb_entry *cached_re, unsigned int ofs) 51 { 52 struct rb_entry *re; 53 54 re = __lookup_rb_tree_fast(cached_re, ofs); 55 if (!re) 56 return __lookup_rb_tree_slow(root, ofs); 57 58 return re; 59 } 60 61 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi, 62 struct rb_root_cached *root, 63 struct rb_node **parent, 64 unsigned long long key, bool *leftmost) 65 { 66 struct rb_node **p = &root->rb_root.rb_node; 67 struct rb_entry *re; 68 69 while (*p) { 70 *parent = *p; 71 re = rb_entry(*parent, struct rb_entry, rb_node); 72 73 if (key < re->key) { 74 p = &(*p)->rb_left; 75 } else { 76 p = &(*p)->rb_right; 77 *leftmost = false; 78 } 79 } 80 81 return p; 82 } 83 84 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 85 struct rb_root_cached *root, 86 struct rb_node **parent, 87 unsigned int ofs, bool *leftmost) 88 { 89 struct rb_node **p = &root->rb_root.rb_node; 90 struct rb_entry *re; 91 92 while (*p) { 93 *parent = *p; 94 re = rb_entry(*parent, struct rb_entry, rb_node); 95 96 if (ofs < re->ofs) { 97 p = &(*p)->rb_left; 98 } else if (ofs >= re->ofs + re->len) { 99 p = &(*p)->rb_right; 100 *leftmost = false; 101 } else { 102 f2fs_bug_on(sbi, 1); 103 } 104 } 105 106 return p; 107 } 108 109 /* 110 * lookup rb entry in position of @ofs in rb-tree, 111 * if hit, return the entry, otherwise, return NULL 112 * @prev_ex: extent before ofs 113 * @next_ex: extent after ofs 114 * @insert_p: insert point for new extent at ofs 115 * in order to simpfy the insertion after. 116 * tree must stay unchanged between lookup and insertion. 117 */ 118 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 119 struct rb_entry *cached_re, 120 unsigned int ofs, 121 struct rb_entry **prev_entry, 122 struct rb_entry **next_entry, 123 struct rb_node ***insert_p, 124 struct rb_node **insert_parent, 125 bool force, bool *leftmost) 126 { 127 struct rb_node **pnode = &root->rb_root.rb_node; 128 struct rb_node *parent = NULL, *tmp_node; 129 struct rb_entry *re = cached_re; 130 131 *insert_p = NULL; 132 *insert_parent = NULL; 133 *prev_entry = NULL; 134 *next_entry = NULL; 135 136 if (RB_EMPTY_ROOT(&root->rb_root)) 137 return NULL; 138 139 if (re) { 140 if (re->ofs <= ofs && re->ofs + re->len > ofs) 141 goto lookup_neighbors; 142 } 143 144 if (leftmost) 145 *leftmost = true; 146 147 while (*pnode) { 148 parent = *pnode; 149 re = rb_entry(*pnode, struct rb_entry, rb_node); 150 151 if (ofs < re->ofs) { 152 pnode = &(*pnode)->rb_left; 153 } else if (ofs >= re->ofs + re->len) { 154 pnode = &(*pnode)->rb_right; 155 if (leftmost) 156 *leftmost = false; 157 } else { 158 goto lookup_neighbors; 159 } 160 } 161 162 *insert_p = pnode; 163 *insert_parent = parent; 164 165 re = rb_entry(parent, struct rb_entry, rb_node); 166 tmp_node = parent; 167 if (parent && ofs > re->ofs) 168 tmp_node = rb_next(parent); 169 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 170 171 tmp_node = parent; 172 if (parent && ofs < re->ofs) 173 tmp_node = rb_prev(parent); 174 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 175 return NULL; 176 177 lookup_neighbors: 178 if (ofs == re->ofs || force) { 179 /* lookup prev node for merging backward later */ 180 tmp_node = rb_prev(&re->rb_node); 181 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 182 } 183 if (ofs == re->ofs + re->len - 1 || force) { 184 /* lookup next node for merging frontward later */ 185 tmp_node = rb_next(&re->rb_node); 186 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 187 } 188 return re; 189 } 190 191 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 192 struct rb_root_cached *root, bool check_key) 193 { 194 #ifdef CONFIG_F2FS_CHECK_FS 195 struct rb_node *cur = rb_first_cached(root), *next; 196 struct rb_entry *cur_re, *next_re; 197 198 if (!cur) 199 return true; 200 201 while (cur) { 202 next = rb_next(cur); 203 if (!next) 204 return true; 205 206 cur_re = rb_entry(cur, struct rb_entry, rb_node); 207 next_re = rb_entry(next, struct rb_entry, rb_node); 208 209 if (check_key) { 210 if (cur_re->key > next_re->key) { 211 f2fs_info(sbi, "inconsistent rbtree, " 212 "cur(%llu) next(%llu)", 213 cur_re->key, next_re->key); 214 return false; 215 } 216 goto next; 217 } 218 219 if (cur_re->ofs + cur_re->len > next_re->ofs) { 220 f2fs_info(sbi, "inconsistent rbtree, cur(%u, %u) next(%u, %u)", 221 cur_re->ofs, cur_re->len, 222 next_re->ofs, next_re->len); 223 return false; 224 } 225 next: 226 cur = next; 227 } 228 #endif 229 return true; 230 } 231 232 static struct kmem_cache *extent_tree_slab; 233 static struct kmem_cache *extent_node_slab; 234 235 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, 236 struct extent_tree *et, struct extent_info *ei, 237 struct rb_node *parent, struct rb_node **p, 238 bool leftmost) 239 { 240 struct extent_node *en; 241 242 en = f2fs_kmem_cache_alloc(extent_node_slab, GFP_ATOMIC, false, sbi); 243 if (!en) 244 return NULL; 245 246 en->ei = *ei; 247 INIT_LIST_HEAD(&en->list); 248 en->et = et; 249 250 rb_link_node(&en->rb_node, parent, p); 251 rb_insert_color_cached(&en->rb_node, &et->root, leftmost); 252 atomic_inc(&et->node_cnt); 253 atomic_inc(&sbi->total_ext_node); 254 return en; 255 } 256 257 static void __detach_extent_node(struct f2fs_sb_info *sbi, 258 struct extent_tree *et, struct extent_node *en) 259 { 260 rb_erase_cached(&en->rb_node, &et->root); 261 atomic_dec(&et->node_cnt); 262 atomic_dec(&sbi->total_ext_node); 263 264 if (et->cached_en == en) 265 et->cached_en = NULL; 266 kmem_cache_free(extent_node_slab, en); 267 } 268 269 /* 270 * Flow to release an extent_node: 271 * 1. list_del_init 272 * 2. __detach_extent_node 273 * 3. kmem_cache_free. 274 */ 275 static void __release_extent_node(struct f2fs_sb_info *sbi, 276 struct extent_tree *et, struct extent_node *en) 277 { 278 spin_lock(&sbi->extent_lock); 279 f2fs_bug_on(sbi, list_empty(&en->list)); 280 list_del_init(&en->list); 281 spin_unlock(&sbi->extent_lock); 282 283 __detach_extent_node(sbi, et, en); 284 } 285 286 static struct extent_tree *__grab_extent_tree(struct inode *inode) 287 { 288 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 289 struct extent_tree *et; 290 nid_t ino = inode->i_ino; 291 292 mutex_lock(&sbi->extent_tree_lock); 293 et = radix_tree_lookup(&sbi->extent_tree_root, ino); 294 if (!et) { 295 et = f2fs_kmem_cache_alloc(extent_tree_slab, 296 GFP_NOFS, true, NULL); 297 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et); 298 memset(et, 0, sizeof(struct extent_tree)); 299 et->ino = ino; 300 et->root = RB_ROOT_CACHED; 301 et->cached_en = NULL; 302 rwlock_init(&et->lock); 303 INIT_LIST_HEAD(&et->list); 304 atomic_set(&et->node_cnt, 0); 305 atomic_inc(&sbi->total_ext_tree); 306 } else { 307 atomic_dec(&sbi->total_zombie_tree); 308 list_del_init(&et->list); 309 } 310 mutex_unlock(&sbi->extent_tree_lock); 311 312 /* never died until evict_inode */ 313 F2FS_I(inode)->extent_tree = et; 314 315 return et; 316 } 317 318 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi, 319 struct extent_tree *et, struct extent_info *ei) 320 { 321 struct rb_node **p = &et->root.rb_root.rb_node; 322 struct extent_node *en; 323 324 en = __attach_extent_node(sbi, et, ei, NULL, p, true); 325 if (!en) 326 return NULL; 327 328 et->largest = en->ei; 329 et->cached_en = en; 330 return en; 331 } 332 333 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, 334 struct extent_tree *et) 335 { 336 struct rb_node *node, *next; 337 struct extent_node *en; 338 unsigned int count = atomic_read(&et->node_cnt); 339 340 node = rb_first_cached(&et->root); 341 while (node) { 342 next = rb_next(node); 343 en = rb_entry(node, struct extent_node, rb_node); 344 __release_extent_node(sbi, et, en); 345 node = next; 346 } 347 348 return count - atomic_read(&et->node_cnt); 349 } 350 351 static void __drop_largest_extent(struct extent_tree *et, 352 pgoff_t fofs, unsigned int len) 353 { 354 if (fofs < et->largest.fofs + et->largest.len && 355 fofs + len > et->largest.fofs) { 356 et->largest.len = 0; 357 et->largest_updated = true; 358 } 359 } 360 361 /* return true, if inode page is changed */ 362 static void __f2fs_init_extent_tree(struct inode *inode, struct page *ipage) 363 { 364 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 365 struct f2fs_extent *i_ext = ipage ? &F2FS_INODE(ipage)->i_ext : NULL; 366 struct extent_tree *et; 367 struct extent_node *en; 368 struct extent_info ei; 369 370 if (!f2fs_may_extent_tree(inode)) { 371 /* drop largest extent */ 372 if (i_ext && i_ext->len) { 373 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 374 i_ext->len = 0; 375 set_page_dirty(ipage); 376 return; 377 } 378 return; 379 } 380 381 et = __grab_extent_tree(inode); 382 383 if (!i_ext || !i_ext->len) 384 return; 385 386 get_extent_info(&ei, i_ext); 387 388 write_lock(&et->lock); 389 if (atomic_read(&et->node_cnt)) 390 goto out; 391 392 en = __init_extent_tree(sbi, et, &ei); 393 if (en) { 394 spin_lock(&sbi->extent_lock); 395 list_add_tail(&en->list, &sbi->extent_list); 396 spin_unlock(&sbi->extent_lock); 397 } 398 out: 399 write_unlock(&et->lock); 400 } 401 402 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage) 403 { 404 __f2fs_init_extent_tree(inode, ipage); 405 406 if (!F2FS_I(inode)->extent_tree) 407 set_inode_flag(inode, FI_NO_EXTENT); 408 } 409 410 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs, 411 struct extent_info *ei) 412 { 413 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 414 struct extent_tree *et = F2FS_I(inode)->extent_tree; 415 struct extent_node *en; 416 bool ret = false; 417 418 f2fs_bug_on(sbi, !et); 419 420 trace_f2fs_lookup_extent_tree_start(inode, pgofs); 421 422 read_lock(&et->lock); 423 424 if (et->largest.fofs <= pgofs && 425 et->largest.fofs + et->largest.len > pgofs) { 426 *ei = et->largest; 427 ret = true; 428 stat_inc_largest_node_hit(sbi); 429 goto out; 430 } 431 432 en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root, 433 (struct rb_entry *)et->cached_en, pgofs); 434 if (!en) 435 goto out; 436 437 if (en == et->cached_en) 438 stat_inc_cached_node_hit(sbi); 439 else 440 stat_inc_rbtree_node_hit(sbi); 441 442 *ei = en->ei; 443 spin_lock(&sbi->extent_lock); 444 if (!list_empty(&en->list)) { 445 list_move_tail(&en->list, &sbi->extent_list); 446 et->cached_en = en; 447 } 448 spin_unlock(&sbi->extent_lock); 449 ret = true; 450 out: 451 stat_inc_total_hit(sbi); 452 read_unlock(&et->lock); 453 454 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei); 455 return ret; 456 } 457 458 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi, 459 struct extent_tree *et, struct extent_info *ei, 460 struct extent_node *prev_ex, 461 struct extent_node *next_ex) 462 { 463 struct extent_node *en = NULL; 464 465 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) { 466 prev_ex->ei.len += ei->len; 467 ei = &prev_ex->ei; 468 en = prev_ex; 469 } 470 471 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) { 472 next_ex->ei.fofs = ei->fofs; 473 next_ex->ei.blk = ei->blk; 474 next_ex->ei.len += ei->len; 475 if (en) 476 __release_extent_node(sbi, et, prev_ex); 477 478 en = next_ex; 479 } 480 481 if (!en) 482 return NULL; 483 484 __try_update_largest_extent(et, en); 485 486 spin_lock(&sbi->extent_lock); 487 if (!list_empty(&en->list)) { 488 list_move_tail(&en->list, &sbi->extent_list); 489 et->cached_en = en; 490 } 491 spin_unlock(&sbi->extent_lock); 492 return en; 493 } 494 495 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi, 496 struct extent_tree *et, struct extent_info *ei, 497 struct rb_node **insert_p, 498 struct rb_node *insert_parent, 499 bool leftmost) 500 { 501 struct rb_node **p; 502 struct rb_node *parent = NULL; 503 struct extent_node *en = NULL; 504 505 if (insert_p && insert_parent) { 506 parent = insert_parent; 507 p = insert_p; 508 goto do_insert; 509 } 510 511 leftmost = true; 512 513 p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent, 514 ei->fofs, &leftmost); 515 do_insert: 516 en = __attach_extent_node(sbi, et, ei, parent, p, leftmost); 517 if (!en) 518 return NULL; 519 520 __try_update_largest_extent(et, en); 521 522 /* update in global extent list */ 523 spin_lock(&sbi->extent_lock); 524 list_add_tail(&en->list, &sbi->extent_list); 525 et->cached_en = en; 526 spin_unlock(&sbi->extent_lock); 527 return en; 528 } 529 530 static void f2fs_update_extent_tree_range(struct inode *inode, 531 pgoff_t fofs, block_t blkaddr, unsigned int len) 532 { 533 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 534 struct extent_tree *et = F2FS_I(inode)->extent_tree; 535 struct extent_node *en = NULL, *en1 = NULL; 536 struct extent_node *prev_en = NULL, *next_en = NULL; 537 struct extent_info ei, dei, prev; 538 struct rb_node **insert_p = NULL, *insert_parent = NULL; 539 unsigned int end = fofs + len; 540 unsigned int pos = (unsigned int)fofs; 541 bool updated = false; 542 bool leftmost = false; 543 544 if (!et) 545 return; 546 547 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len, 0); 548 549 write_lock(&et->lock); 550 551 if (is_inode_flag_set(inode, FI_NO_EXTENT)) { 552 write_unlock(&et->lock); 553 return; 554 } 555 556 prev = et->largest; 557 dei.len = 0; 558 559 /* 560 * drop largest extent before lookup, in case it's already 561 * been shrunk from extent tree 562 */ 563 __drop_largest_extent(et, fofs, len); 564 565 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */ 566 en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root, 567 (struct rb_entry *)et->cached_en, fofs, 568 (struct rb_entry **)&prev_en, 569 (struct rb_entry **)&next_en, 570 &insert_p, &insert_parent, false, 571 &leftmost); 572 if (!en) 573 en = next_en; 574 575 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */ 576 while (en && en->ei.fofs < end) { 577 unsigned int org_end; 578 int parts = 0; /* # of parts current extent split into */ 579 580 next_en = en1 = NULL; 581 582 dei = en->ei; 583 org_end = dei.fofs + dei.len; 584 f2fs_bug_on(sbi, pos >= org_end); 585 586 if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) { 587 en->ei.len = pos - en->ei.fofs; 588 prev_en = en; 589 parts = 1; 590 } 591 592 if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) { 593 if (parts) { 594 set_extent_info(&ei, end, 595 end - dei.fofs + dei.blk, 596 org_end - end); 597 en1 = __insert_extent_tree(sbi, et, &ei, 598 NULL, NULL, true); 599 next_en = en1; 600 } else { 601 en->ei.fofs = end; 602 en->ei.blk += end - dei.fofs; 603 en->ei.len -= end - dei.fofs; 604 next_en = en; 605 } 606 parts++; 607 } 608 609 if (!next_en) { 610 struct rb_node *node = rb_next(&en->rb_node); 611 612 next_en = rb_entry_safe(node, struct extent_node, 613 rb_node); 614 } 615 616 if (parts) 617 __try_update_largest_extent(et, en); 618 else 619 __release_extent_node(sbi, et, en); 620 621 /* 622 * if original extent is split into zero or two parts, extent 623 * tree has been altered by deletion or insertion, therefore 624 * invalidate pointers regard to tree. 625 */ 626 if (parts != 1) { 627 insert_p = NULL; 628 insert_parent = NULL; 629 } 630 en = next_en; 631 } 632 633 /* 3. update extent in extent cache */ 634 if (blkaddr) { 635 636 set_extent_info(&ei, fofs, blkaddr, len); 637 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en)) 638 __insert_extent_tree(sbi, et, &ei, 639 insert_p, insert_parent, leftmost); 640 641 /* give up extent_cache, if split and small updates happen */ 642 if (dei.len >= 1 && 643 prev.len < F2FS_MIN_EXTENT_LEN && 644 et->largest.len < F2FS_MIN_EXTENT_LEN) { 645 et->largest.len = 0; 646 et->largest_updated = true; 647 set_inode_flag(inode, FI_NO_EXTENT); 648 } 649 } 650 651 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 652 __free_extent_tree(sbi, et); 653 654 if (et->largest_updated) { 655 et->largest_updated = false; 656 updated = true; 657 } 658 659 write_unlock(&et->lock); 660 661 if (updated) 662 f2fs_mark_inode_dirty_sync(inode, true); 663 } 664 665 #ifdef CONFIG_F2FS_FS_COMPRESSION 666 void f2fs_update_extent_tree_range_compressed(struct inode *inode, 667 pgoff_t fofs, block_t blkaddr, unsigned int llen, 668 unsigned int c_len) 669 { 670 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 671 struct extent_tree *et = F2FS_I(inode)->extent_tree; 672 struct extent_node *en = NULL; 673 struct extent_node *prev_en = NULL, *next_en = NULL; 674 struct extent_info ei; 675 struct rb_node **insert_p = NULL, *insert_parent = NULL; 676 bool leftmost = false; 677 678 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, llen, c_len); 679 680 /* it is safe here to check FI_NO_EXTENT w/o et->lock in ro image */ 681 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 682 return; 683 684 write_lock(&et->lock); 685 686 en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root, 687 (struct rb_entry *)et->cached_en, fofs, 688 (struct rb_entry **)&prev_en, 689 (struct rb_entry **)&next_en, 690 &insert_p, &insert_parent, false, 691 &leftmost); 692 if (en) 693 goto unlock_out; 694 695 set_extent_info(&ei, fofs, blkaddr, llen); 696 ei.c_len = c_len; 697 698 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en)) 699 __insert_extent_tree(sbi, et, &ei, 700 insert_p, insert_parent, leftmost); 701 unlock_out: 702 write_unlock(&et->lock); 703 } 704 #endif 705 706 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) 707 { 708 struct extent_tree *et, *next; 709 struct extent_node *en; 710 unsigned int node_cnt = 0, tree_cnt = 0; 711 int remained; 712 713 if (!test_opt(sbi, EXTENT_CACHE)) 714 return 0; 715 716 if (!atomic_read(&sbi->total_zombie_tree)) 717 goto free_node; 718 719 if (!mutex_trylock(&sbi->extent_tree_lock)) 720 goto out; 721 722 /* 1. remove unreferenced extent tree */ 723 list_for_each_entry_safe(et, next, &sbi->zombie_list, list) { 724 if (atomic_read(&et->node_cnt)) { 725 write_lock(&et->lock); 726 node_cnt += __free_extent_tree(sbi, et); 727 write_unlock(&et->lock); 728 } 729 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 730 list_del_init(&et->list); 731 radix_tree_delete(&sbi->extent_tree_root, et->ino); 732 kmem_cache_free(extent_tree_slab, et); 733 atomic_dec(&sbi->total_ext_tree); 734 atomic_dec(&sbi->total_zombie_tree); 735 tree_cnt++; 736 737 if (node_cnt + tree_cnt >= nr_shrink) 738 goto unlock_out; 739 cond_resched(); 740 } 741 mutex_unlock(&sbi->extent_tree_lock); 742 743 free_node: 744 /* 2. remove LRU extent entries */ 745 if (!mutex_trylock(&sbi->extent_tree_lock)) 746 goto out; 747 748 remained = nr_shrink - (node_cnt + tree_cnt); 749 750 spin_lock(&sbi->extent_lock); 751 for (; remained > 0; remained--) { 752 if (list_empty(&sbi->extent_list)) 753 break; 754 en = list_first_entry(&sbi->extent_list, 755 struct extent_node, list); 756 et = en->et; 757 if (!write_trylock(&et->lock)) { 758 /* refresh this extent node's position in extent list */ 759 list_move_tail(&en->list, &sbi->extent_list); 760 continue; 761 } 762 763 list_del_init(&en->list); 764 spin_unlock(&sbi->extent_lock); 765 766 __detach_extent_node(sbi, et, en); 767 768 write_unlock(&et->lock); 769 node_cnt++; 770 spin_lock(&sbi->extent_lock); 771 } 772 spin_unlock(&sbi->extent_lock); 773 774 unlock_out: 775 mutex_unlock(&sbi->extent_tree_lock); 776 out: 777 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt); 778 779 return node_cnt + tree_cnt; 780 } 781 782 unsigned int f2fs_destroy_extent_node(struct inode *inode) 783 { 784 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 785 struct extent_tree *et = F2FS_I(inode)->extent_tree; 786 unsigned int node_cnt = 0; 787 788 if (!et || !atomic_read(&et->node_cnt)) 789 return 0; 790 791 write_lock(&et->lock); 792 node_cnt = __free_extent_tree(sbi, et); 793 write_unlock(&et->lock); 794 795 return node_cnt; 796 } 797 798 void f2fs_drop_extent_tree(struct inode *inode) 799 { 800 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 801 struct extent_tree *et = F2FS_I(inode)->extent_tree; 802 bool updated = false; 803 804 if (!f2fs_may_extent_tree(inode)) 805 return; 806 807 write_lock(&et->lock); 808 set_inode_flag(inode, FI_NO_EXTENT); 809 __free_extent_tree(sbi, et); 810 if (et->largest.len) { 811 et->largest.len = 0; 812 updated = true; 813 } 814 write_unlock(&et->lock); 815 if (updated) 816 f2fs_mark_inode_dirty_sync(inode, true); 817 } 818 819 void f2fs_destroy_extent_tree(struct inode *inode) 820 { 821 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 822 struct extent_tree *et = F2FS_I(inode)->extent_tree; 823 unsigned int node_cnt = 0; 824 825 if (!et) 826 return; 827 828 if (inode->i_nlink && !is_bad_inode(inode) && 829 atomic_read(&et->node_cnt)) { 830 mutex_lock(&sbi->extent_tree_lock); 831 list_add_tail(&et->list, &sbi->zombie_list); 832 atomic_inc(&sbi->total_zombie_tree); 833 mutex_unlock(&sbi->extent_tree_lock); 834 return; 835 } 836 837 /* free all extent info belong to this extent tree */ 838 node_cnt = f2fs_destroy_extent_node(inode); 839 840 /* delete extent tree entry in radix tree */ 841 mutex_lock(&sbi->extent_tree_lock); 842 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 843 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino); 844 kmem_cache_free(extent_tree_slab, et); 845 atomic_dec(&sbi->total_ext_tree); 846 mutex_unlock(&sbi->extent_tree_lock); 847 848 F2FS_I(inode)->extent_tree = NULL; 849 850 trace_f2fs_destroy_extent_tree(inode, node_cnt); 851 } 852 853 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 854 struct extent_info *ei) 855 { 856 if (!f2fs_may_extent_tree(inode)) 857 return false; 858 859 return f2fs_lookup_extent_tree(inode, pgofs, ei); 860 } 861 862 void f2fs_update_extent_cache(struct dnode_of_data *dn) 863 { 864 pgoff_t fofs; 865 block_t blkaddr; 866 867 if (!f2fs_may_extent_tree(dn->inode)) 868 return; 869 870 if (dn->data_blkaddr == NEW_ADDR) 871 blkaddr = NULL_ADDR; 872 else 873 blkaddr = dn->data_blkaddr; 874 875 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 876 dn->ofs_in_node; 877 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1); 878 } 879 880 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 881 pgoff_t fofs, block_t blkaddr, unsigned int len) 882 883 { 884 if (!f2fs_may_extent_tree(dn->inode)) 885 return; 886 887 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len); 888 } 889 890 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi) 891 { 892 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO); 893 mutex_init(&sbi->extent_tree_lock); 894 INIT_LIST_HEAD(&sbi->extent_list); 895 spin_lock_init(&sbi->extent_lock); 896 atomic_set(&sbi->total_ext_tree, 0); 897 INIT_LIST_HEAD(&sbi->zombie_list); 898 atomic_set(&sbi->total_zombie_tree, 0); 899 atomic_set(&sbi->total_ext_node, 0); 900 } 901 902 int __init f2fs_create_extent_cache(void) 903 { 904 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", 905 sizeof(struct extent_tree)); 906 if (!extent_tree_slab) 907 return -ENOMEM; 908 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", 909 sizeof(struct extent_node)); 910 if (!extent_node_slab) { 911 kmem_cache_destroy(extent_tree_slab); 912 return -ENOMEM; 913 } 914 return 0; 915 } 916 917 void f2fs_destroy_extent_cache(void) 918 { 919 kmem_cache_destroy(extent_node_slab); 920 kmem_cache_destroy(extent_tree_slab); 921 } 922