1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs extent cache support 4 * 5 * Copyright (c) 2015 Motorola Mobility 6 * Copyright (c) 2015 Samsung Electronics 7 * Authors: Jaegeuk Kim <jaegeuk@kernel.org> 8 * Chao Yu <chao2.yu@samsung.com> 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 14 #include "f2fs.h" 15 #include "node.h" 16 #include <trace/events/f2fs.h> 17 18 static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re, 19 unsigned int ofs) 20 { 21 if (cached_re) { 22 if (cached_re->ofs <= ofs && 23 cached_re->ofs + cached_re->len > ofs) { 24 return cached_re; 25 } 26 } 27 return NULL; 28 } 29 30 static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root, 31 unsigned int ofs) 32 { 33 struct rb_node *node = root->rb_root.rb_node; 34 struct rb_entry *re; 35 36 while (node) { 37 re = rb_entry(node, struct rb_entry, rb_node); 38 39 if (ofs < re->ofs) 40 node = node->rb_left; 41 else if (ofs >= re->ofs + re->len) 42 node = node->rb_right; 43 else 44 return re; 45 } 46 return NULL; 47 } 48 49 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root, 50 struct rb_entry *cached_re, unsigned int ofs) 51 { 52 struct rb_entry *re; 53 54 re = __lookup_rb_tree_fast(cached_re, ofs); 55 if (!re) 56 return __lookup_rb_tree_slow(root, ofs); 57 58 return re; 59 } 60 61 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi, 62 struct rb_root_cached *root, 63 struct rb_node **parent, 64 unsigned long long key, bool *leftmost) 65 { 66 struct rb_node **p = &root->rb_root.rb_node; 67 struct rb_entry *re; 68 69 while (*p) { 70 *parent = *p; 71 re = rb_entry(*parent, struct rb_entry, rb_node); 72 73 if (key < re->key) { 74 p = &(*p)->rb_left; 75 } else { 76 p = &(*p)->rb_right; 77 *leftmost = false; 78 } 79 } 80 81 return p; 82 } 83 84 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi, 85 struct rb_root_cached *root, 86 struct rb_node **parent, 87 unsigned int ofs, bool *leftmost) 88 { 89 struct rb_node **p = &root->rb_root.rb_node; 90 struct rb_entry *re; 91 92 while (*p) { 93 *parent = *p; 94 re = rb_entry(*parent, struct rb_entry, rb_node); 95 96 if (ofs < re->ofs) { 97 p = &(*p)->rb_left; 98 } else if (ofs >= re->ofs + re->len) { 99 p = &(*p)->rb_right; 100 *leftmost = false; 101 } else { 102 f2fs_bug_on(sbi, 1); 103 } 104 } 105 106 return p; 107 } 108 109 /* 110 * lookup rb entry in position of @ofs in rb-tree, 111 * if hit, return the entry, otherwise, return NULL 112 * @prev_ex: extent before ofs 113 * @next_ex: extent after ofs 114 * @insert_p: insert point for new extent at ofs 115 * in order to simpfy the insertion after. 116 * tree must stay unchanged between lookup and insertion. 117 */ 118 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root, 119 struct rb_entry *cached_re, 120 unsigned int ofs, 121 struct rb_entry **prev_entry, 122 struct rb_entry **next_entry, 123 struct rb_node ***insert_p, 124 struct rb_node **insert_parent, 125 bool force, bool *leftmost) 126 { 127 struct rb_node **pnode = &root->rb_root.rb_node; 128 struct rb_node *parent = NULL, *tmp_node; 129 struct rb_entry *re = cached_re; 130 131 *insert_p = NULL; 132 *insert_parent = NULL; 133 *prev_entry = NULL; 134 *next_entry = NULL; 135 136 if (RB_EMPTY_ROOT(&root->rb_root)) 137 return NULL; 138 139 if (re) { 140 if (re->ofs <= ofs && re->ofs + re->len > ofs) 141 goto lookup_neighbors; 142 } 143 144 if (leftmost) 145 *leftmost = true; 146 147 while (*pnode) { 148 parent = *pnode; 149 re = rb_entry(*pnode, struct rb_entry, rb_node); 150 151 if (ofs < re->ofs) { 152 pnode = &(*pnode)->rb_left; 153 } else if (ofs >= re->ofs + re->len) { 154 pnode = &(*pnode)->rb_right; 155 if (leftmost) 156 *leftmost = false; 157 } else { 158 goto lookup_neighbors; 159 } 160 } 161 162 *insert_p = pnode; 163 *insert_parent = parent; 164 165 re = rb_entry(parent, struct rb_entry, rb_node); 166 tmp_node = parent; 167 if (parent && ofs > re->ofs) 168 tmp_node = rb_next(parent); 169 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 170 171 tmp_node = parent; 172 if (parent && ofs < re->ofs) 173 tmp_node = rb_prev(parent); 174 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 175 return NULL; 176 177 lookup_neighbors: 178 if (ofs == re->ofs || force) { 179 /* lookup prev node for merging backward later */ 180 tmp_node = rb_prev(&re->rb_node); 181 *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 182 } 183 if (ofs == re->ofs + re->len - 1 || force) { 184 /* lookup next node for merging frontward later */ 185 tmp_node = rb_next(&re->rb_node); 186 *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node); 187 } 188 return re; 189 } 190 191 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi, 192 struct rb_root_cached *root, bool check_key) 193 { 194 #ifdef CONFIG_F2FS_CHECK_FS 195 struct rb_node *cur = rb_first_cached(root), *next; 196 struct rb_entry *cur_re, *next_re; 197 198 if (!cur) 199 return true; 200 201 while (cur) { 202 next = rb_next(cur); 203 if (!next) 204 return true; 205 206 cur_re = rb_entry(cur, struct rb_entry, rb_node); 207 next_re = rb_entry(next, struct rb_entry, rb_node); 208 209 if (check_key) { 210 if (cur_re->key > next_re->key) { 211 f2fs_info(sbi, "inconsistent rbtree, " 212 "cur(%llu) next(%llu)", 213 cur_re->key, next_re->key); 214 return false; 215 } 216 goto next; 217 } 218 219 if (cur_re->ofs + cur_re->len > next_re->ofs) { 220 f2fs_info(sbi, "inconsistent rbtree, cur(%u, %u) next(%u, %u)", 221 cur_re->ofs, cur_re->len, 222 next_re->ofs, next_re->len); 223 return false; 224 } 225 next: 226 cur = next; 227 } 228 #endif 229 return true; 230 } 231 232 static struct kmem_cache *extent_tree_slab; 233 static struct kmem_cache *extent_node_slab; 234 235 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, 236 struct extent_tree *et, struct extent_info *ei, 237 struct rb_node *parent, struct rb_node **p, 238 bool leftmost) 239 { 240 struct extent_node *en; 241 242 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC); 243 if (!en) 244 return NULL; 245 246 en->ei = *ei; 247 INIT_LIST_HEAD(&en->list); 248 en->et = et; 249 250 rb_link_node(&en->rb_node, parent, p); 251 rb_insert_color_cached(&en->rb_node, &et->root, leftmost); 252 atomic_inc(&et->node_cnt); 253 atomic_inc(&sbi->total_ext_node); 254 return en; 255 } 256 257 static void __detach_extent_node(struct f2fs_sb_info *sbi, 258 struct extent_tree *et, struct extent_node *en) 259 { 260 rb_erase_cached(&en->rb_node, &et->root); 261 atomic_dec(&et->node_cnt); 262 atomic_dec(&sbi->total_ext_node); 263 264 if (et->cached_en == en) 265 et->cached_en = NULL; 266 kmem_cache_free(extent_node_slab, en); 267 } 268 269 /* 270 * Flow to release an extent_node: 271 * 1. list_del_init 272 * 2. __detach_extent_node 273 * 3. kmem_cache_free. 274 */ 275 static void __release_extent_node(struct f2fs_sb_info *sbi, 276 struct extent_tree *et, struct extent_node *en) 277 { 278 spin_lock(&sbi->extent_lock); 279 f2fs_bug_on(sbi, list_empty(&en->list)); 280 list_del_init(&en->list); 281 spin_unlock(&sbi->extent_lock); 282 283 __detach_extent_node(sbi, et, en); 284 } 285 286 static struct extent_tree *__grab_extent_tree(struct inode *inode) 287 { 288 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 289 struct extent_tree *et; 290 nid_t ino = inode->i_ino; 291 292 mutex_lock(&sbi->extent_tree_lock); 293 et = radix_tree_lookup(&sbi->extent_tree_root, ino); 294 if (!et) { 295 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS); 296 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et); 297 memset(et, 0, sizeof(struct extent_tree)); 298 et->ino = ino; 299 et->root = RB_ROOT_CACHED; 300 et->cached_en = NULL; 301 rwlock_init(&et->lock); 302 INIT_LIST_HEAD(&et->list); 303 atomic_set(&et->node_cnt, 0); 304 atomic_inc(&sbi->total_ext_tree); 305 } else { 306 atomic_dec(&sbi->total_zombie_tree); 307 list_del_init(&et->list); 308 } 309 mutex_unlock(&sbi->extent_tree_lock); 310 311 /* never died until evict_inode */ 312 F2FS_I(inode)->extent_tree = et; 313 314 return et; 315 } 316 317 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi, 318 struct extent_tree *et, struct extent_info *ei) 319 { 320 struct rb_node **p = &et->root.rb_root.rb_node; 321 struct extent_node *en; 322 323 en = __attach_extent_node(sbi, et, ei, NULL, p, true); 324 if (!en) 325 return NULL; 326 327 et->largest = en->ei; 328 et->cached_en = en; 329 return en; 330 } 331 332 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, 333 struct extent_tree *et) 334 { 335 struct rb_node *node, *next; 336 struct extent_node *en; 337 unsigned int count = atomic_read(&et->node_cnt); 338 339 node = rb_first_cached(&et->root); 340 while (node) { 341 next = rb_next(node); 342 en = rb_entry(node, struct extent_node, rb_node); 343 __release_extent_node(sbi, et, en); 344 node = next; 345 } 346 347 return count - atomic_read(&et->node_cnt); 348 } 349 350 static void __drop_largest_extent(struct extent_tree *et, 351 pgoff_t fofs, unsigned int len) 352 { 353 if (fofs < et->largest.fofs + et->largest.len && 354 fofs + len > et->largest.fofs) { 355 et->largest.len = 0; 356 et->largest_updated = true; 357 } 358 } 359 360 /* return true, if inode page is changed */ 361 static void __f2fs_init_extent_tree(struct inode *inode, struct page *ipage) 362 { 363 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 364 struct f2fs_extent *i_ext = ipage ? &F2FS_INODE(ipage)->i_ext : NULL; 365 struct extent_tree *et; 366 struct extent_node *en; 367 struct extent_info ei; 368 369 if (!f2fs_may_extent_tree(inode)) { 370 /* drop largest extent */ 371 if (i_ext && i_ext->len) { 372 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 373 i_ext->len = 0; 374 set_page_dirty(ipage); 375 return; 376 } 377 return; 378 } 379 380 et = __grab_extent_tree(inode); 381 382 if (!i_ext || !i_ext->len) 383 return; 384 385 get_extent_info(&ei, i_ext); 386 387 write_lock(&et->lock); 388 if (atomic_read(&et->node_cnt)) 389 goto out; 390 391 en = __init_extent_tree(sbi, et, &ei); 392 if (en) { 393 spin_lock(&sbi->extent_lock); 394 list_add_tail(&en->list, &sbi->extent_list); 395 spin_unlock(&sbi->extent_lock); 396 } 397 out: 398 write_unlock(&et->lock); 399 } 400 401 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage) 402 { 403 __f2fs_init_extent_tree(inode, ipage); 404 405 if (!F2FS_I(inode)->extent_tree) 406 set_inode_flag(inode, FI_NO_EXTENT); 407 } 408 409 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs, 410 struct extent_info *ei) 411 { 412 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 413 struct extent_tree *et = F2FS_I(inode)->extent_tree; 414 struct extent_node *en; 415 bool ret = false; 416 417 f2fs_bug_on(sbi, !et); 418 419 trace_f2fs_lookup_extent_tree_start(inode, pgofs); 420 421 read_lock(&et->lock); 422 423 if (et->largest.fofs <= pgofs && 424 et->largest.fofs + et->largest.len > pgofs) { 425 *ei = et->largest; 426 ret = true; 427 stat_inc_largest_node_hit(sbi); 428 goto out; 429 } 430 431 en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root, 432 (struct rb_entry *)et->cached_en, pgofs); 433 if (!en) 434 goto out; 435 436 if (en == et->cached_en) 437 stat_inc_cached_node_hit(sbi); 438 else 439 stat_inc_rbtree_node_hit(sbi); 440 441 *ei = en->ei; 442 spin_lock(&sbi->extent_lock); 443 if (!list_empty(&en->list)) { 444 list_move_tail(&en->list, &sbi->extent_list); 445 et->cached_en = en; 446 } 447 spin_unlock(&sbi->extent_lock); 448 ret = true; 449 out: 450 stat_inc_total_hit(sbi); 451 read_unlock(&et->lock); 452 453 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei); 454 return ret; 455 } 456 457 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi, 458 struct extent_tree *et, struct extent_info *ei, 459 struct extent_node *prev_ex, 460 struct extent_node *next_ex) 461 { 462 struct extent_node *en = NULL; 463 464 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) { 465 prev_ex->ei.len += ei->len; 466 ei = &prev_ex->ei; 467 en = prev_ex; 468 } 469 470 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) { 471 next_ex->ei.fofs = ei->fofs; 472 next_ex->ei.blk = ei->blk; 473 next_ex->ei.len += ei->len; 474 if (en) 475 __release_extent_node(sbi, et, prev_ex); 476 477 en = next_ex; 478 } 479 480 if (!en) 481 return NULL; 482 483 __try_update_largest_extent(et, en); 484 485 spin_lock(&sbi->extent_lock); 486 if (!list_empty(&en->list)) { 487 list_move_tail(&en->list, &sbi->extent_list); 488 et->cached_en = en; 489 } 490 spin_unlock(&sbi->extent_lock); 491 return en; 492 } 493 494 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi, 495 struct extent_tree *et, struct extent_info *ei, 496 struct rb_node **insert_p, 497 struct rb_node *insert_parent, 498 bool leftmost) 499 { 500 struct rb_node **p; 501 struct rb_node *parent = NULL; 502 struct extent_node *en = NULL; 503 504 if (insert_p && insert_parent) { 505 parent = insert_parent; 506 p = insert_p; 507 goto do_insert; 508 } 509 510 leftmost = true; 511 512 p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent, 513 ei->fofs, &leftmost); 514 do_insert: 515 en = __attach_extent_node(sbi, et, ei, parent, p, leftmost); 516 if (!en) 517 return NULL; 518 519 __try_update_largest_extent(et, en); 520 521 /* update in global extent list */ 522 spin_lock(&sbi->extent_lock); 523 list_add_tail(&en->list, &sbi->extent_list); 524 et->cached_en = en; 525 spin_unlock(&sbi->extent_lock); 526 return en; 527 } 528 529 static void f2fs_update_extent_tree_range(struct inode *inode, 530 pgoff_t fofs, block_t blkaddr, unsigned int len) 531 { 532 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 533 struct extent_tree *et = F2FS_I(inode)->extent_tree; 534 struct extent_node *en = NULL, *en1 = NULL; 535 struct extent_node *prev_en = NULL, *next_en = NULL; 536 struct extent_info ei, dei, prev; 537 struct rb_node **insert_p = NULL, *insert_parent = NULL; 538 unsigned int end = fofs + len; 539 unsigned int pos = (unsigned int)fofs; 540 bool updated = false; 541 bool leftmost = false; 542 543 if (!et) 544 return; 545 546 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len); 547 548 write_lock(&et->lock); 549 550 if (is_inode_flag_set(inode, FI_NO_EXTENT)) { 551 write_unlock(&et->lock); 552 return; 553 } 554 555 prev = et->largest; 556 dei.len = 0; 557 558 /* 559 * drop largest extent before lookup, in case it's already 560 * been shrunk from extent tree 561 */ 562 __drop_largest_extent(et, fofs, len); 563 564 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */ 565 en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root, 566 (struct rb_entry *)et->cached_en, fofs, 567 (struct rb_entry **)&prev_en, 568 (struct rb_entry **)&next_en, 569 &insert_p, &insert_parent, false, 570 &leftmost); 571 if (!en) 572 en = next_en; 573 574 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */ 575 while (en && en->ei.fofs < end) { 576 unsigned int org_end; 577 int parts = 0; /* # of parts current extent split into */ 578 579 next_en = en1 = NULL; 580 581 dei = en->ei; 582 org_end = dei.fofs + dei.len; 583 f2fs_bug_on(sbi, pos >= org_end); 584 585 if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) { 586 en->ei.len = pos - en->ei.fofs; 587 prev_en = en; 588 parts = 1; 589 } 590 591 if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) { 592 if (parts) { 593 set_extent_info(&ei, end, 594 end - dei.fofs + dei.blk, 595 org_end - end); 596 en1 = __insert_extent_tree(sbi, et, &ei, 597 NULL, NULL, true); 598 next_en = en1; 599 } else { 600 en->ei.fofs = end; 601 en->ei.blk += end - dei.fofs; 602 en->ei.len -= end - dei.fofs; 603 next_en = en; 604 } 605 parts++; 606 } 607 608 if (!next_en) { 609 struct rb_node *node = rb_next(&en->rb_node); 610 611 next_en = rb_entry_safe(node, struct extent_node, 612 rb_node); 613 } 614 615 if (parts) 616 __try_update_largest_extent(et, en); 617 else 618 __release_extent_node(sbi, et, en); 619 620 /* 621 * if original extent is split into zero or two parts, extent 622 * tree has been altered by deletion or insertion, therefore 623 * invalidate pointers regard to tree. 624 */ 625 if (parts != 1) { 626 insert_p = NULL; 627 insert_parent = NULL; 628 } 629 en = next_en; 630 } 631 632 /* 3. update extent in extent cache */ 633 if (blkaddr) { 634 635 set_extent_info(&ei, fofs, blkaddr, len); 636 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en)) 637 __insert_extent_tree(sbi, et, &ei, 638 insert_p, insert_parent, leftmost); 639 640 /* give up extent_cache, if split and small updates happen */ 641 if (dei.len >= 1 && 642 prev.len < F2FS_MIN_EXTENT_LEN && 643 et->largest.len < F2FS_MIN_EXTENT_LEN) { 644 et->largest.len = 0; 645 et->largest_updated = true; 646 set_inode_flag(inode, FI_NO_EXTENT); 647 } 648 } 649 650 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 651 __free_extent_tree(sbi, et); 652 653 if (et->largest_updated) { 654 et->largest_updated = false; 655 updated = true; 656 } 657 658 write_unlock(&et->lock); 659 660 if (updated) 661 f2fs_mark_inode_dirty_sync(inode, true); 662 } 663 664 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) 665 { 666 struct extent_tree *et, *next; 667 struct extent_node *en; 668 unsigned int node_cnt = 0, tree_cnt = 0; 669 int remained; 670 671 if (!test_opt(sbi, EXTENT_CACHE)) 672 return 0; 673 674 if (!atomic_read(&sbi->total_zombie_tree)) 675 goto free_node; 676 677 if (!mutex_trylock(&sbi->extent_tree_lock)) 678 goto out; 679 680 /* 1. remove unreferenced extent tree */ 681 list_for_each_entry_safe(et, next, &sbi->zombie_list, list) { 682 if (atomic_read(&et->node_cnt)) { 683 write_lock(&et->lock); 684 node_cnt += __free_extent_tree(sbi, et); 685 write_unlock(&et->lock); 686 } 687 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 688 list_del_init(&et->list); 689 radix_tree_delete(&sbi->extent_tree_root, et->ino); 690 kmem_cache_free(extent_tree_slab, et); 691 atomic_dec(&sbi->total_ext_tree); 692 atomic_dec(&sbi->total_zombie_tree); 693 tree_cnt++; 694 695 if (node_cnt + tree_cnt >= nr_shrink) 696 goto unlock_out; 697 cond_resched(); 698 } 699 mutex_unlock(&sbi->extent_tree_lock); 700 701 free_node: 702 /* 2. remove LRU extent entries */ 703 if (!mutex_trylock(&sbi->extent_tree_lock)) 704 goto out; 705 706 remained = nr_shrink - (node_cnt + tree_cnt); 707 708 spin_lock(&sbi->extent_lock); 709 for (; remained > 0; remained--) { 710 if (list_empty(&sbi->extent_list)) 711 break; 712 en = list_first_entry(&sbi->extent_list, 713 struct extent_node, list); 714 et = en->et; 715 if (!write_trylock(&et->lock)) { 716 /* refresh this extent node's position in extent list */ 717 list_move_tail(&en->list, &sbi->extent_list); 718 continue; 719 } 720 721 list_del_init(&en->list); 722 spin_unlock(&sbi->extent_lock); 723 724 __detach_extent_node(sbi, et, en); 725 726 write_unlock(&et->lock); 727 node_cnt++; 728 spin_lock(&sbi->extent_lock); 729 } 730 spin_unlock(&sbi->extent_lock); 731 732 unlock_out: 733 mutex_unlock(&sbi->extent_tree_lock); 734 out: 735 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt); 736 737 return node_cnt + tree_cnt; 738 } 739 740 unsigned int f2fs_destroy_extent_node(struct inode *inode) 741 { 742 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 743 struct extent_tree *et = F2FS_I(inode)->extent_tree; 744 unsigned int node_cnt = 0; 745 746 if (!et || !atomic_read(&et->node_cnt)) 747 return 0; 748 749 write_lock(&et->lock); 750 node_cnt = __free_extent_tree(sbi, et); 751 write_unlock(&et->lock); 752 753 return node_cnt; 754 } 755 756 void f2fs_drop_extent_tree(struct inode *inode) 757 { 758 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 759 struct extent_tree *et = F2FS_I(inode)->extent_tree; 760 bool updated = false; 761 762 if (!f2fs_may_extent_tree(inode)) 763 return; 764 765 set_inode_flag(inode, FI_NO_EXTENT); 766 767 write_lock(&et->lock); 768 __free_extent_tree(sbi, et); 769 if (et->largest.len) { 770 et->largest.len = 0; 771 updated = true; 772 } 773 write_unlock(&et->lock); 774 if (updated) 775 f2fs_mark_inode_dirty_sync(inode, true); 776 } 777 778 void f2fs_destroy_extent_tree(struct inode *inode) 779 { 780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 781 struct extent_tree *et = F2FS_I(inode)->extent_tree; 782 unsigned int node_cnt = 0; 783 784 if (!et) 785 return; 786 787 if (inode->i_nlink && !is_bad_inode(inode) && 788 atomic_read(&et->node_cnt)) { 789 mutex_lock(&sbi->extent_tree_lock); 790 list_add_tail(&et->list, &sbi->zombie_list); 791 atomic_inc(&sbi->total_zombie_tree); 792 mutex_unlock(&sbi->extent_tree_lock); 793 return; 794 } 795 796 /* free all extent info belong to this extent tree */ 797 node_cnt = f2fs_destroy_extent_node(inode); 798 799 /* delete extent tree entry in radix tree */ 800 mutex_lock(&sbi->extent_tree_lock); 801 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 802 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino); 803 kmem_cache_free(extent_tree_slab, et); 804 atomic_dec(&sbi->total_ext_tree); 805 mutex_unlock(&sbi->extent_tree_lock); 806 807 F2FS_I(inode)->extent_tree = NULL; 808 809 trace_f2fs_destroy_extent_tree(inode, node_cnt); 810 } 811 812 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 813 struct extent_info *ei) 814 { 815 if (!f2fs_may_extent_tree(inode)) 816 return false; 817 818 return f2fs_lookup_extent_tree(inode, pgofs, ei); 819 } 820 821 void f2fs_update_extent_cache(struct dnode_of_data *dn) 822 { 823 pgoff_t fofs; 824 block_t blkaddr; 825 826 if (!f2fs_may_extent_tree(dn->inode)) 827 return; 828 829 if (dn->data_blkaddr == NEW_ADDR) 830 blkaddr = NULL_ADDR; 831 else 832 blkaddr = dn->data_blkaddr; 833 834 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 835 dn->ofs_in_node; 836 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1); 837 } 838 839 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 840 pgoff_t fofs, block_t blkaddr, unsigned int len) 841 842 { 843 if (!f2fs_may_extent_tree(dn->inode)) 844 return; 845 846 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len); 847 } 848 849 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi) 850 { 851 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO); 852 mutex_init(&sbi->extent_tree_lock); 853 INIT_LIST_HEAD(&sbi->extent_list); 854 spin_lock_init(&sbi->extent_lock); 855 atomic_set(&sbi->total_ext_tree, 0); 856 INIT_LIST_HEAD(&sbi->zombie_list); 857 atomic_set(&sbi->total_zombie_tree, 0); 858 atomic_set(&sbi->total_ext_node, 0); 859 } 860 861 int __init f2fs_create_extent_cache(void) 862 { 863 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", 864 sizeof(struct extent_tree)); 865 if (!extent_tree_slab) 866 return -ENOMEM; 867 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", 868 sizeof(struct extent_node)); 869 if (!extent_node_slab) { 870 kmem_cache_destroy(extent_tree_slab); 871 return -ENOMEM; 872 } 873 return 0; 874 } 875 876 void f2fs_destroy_extent_cache(void) 877 { 878 kmem_cache_destroy(extent_node_slab); 879 kmem_cache_destroy(extent_tree_slab); 880 } 881