xref: /linux/fs/f2fs/extent_cache.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * f2fs extent cache support
3  *
4  * Copyright (c) 2015 Motorola Mobility
5  * Copyright (c) 2015 Samsung Electronics
6  * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
7  *          Chao Yu <chao2.yu@samsung.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/f2fs_fs.h>
16 
17 #include "f2fs.h"
18 #include "node.h"
19 #include <trace/events/f2fs.h>
20 
21 static struct kmem_cache *extent_tree_slab;
22 static struct kmem_cache *extent_node_slab;
23 
24 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
25 				struct extent_tree *et, struct extent_info *ei,
26 				struct rb_node *parent, struct rb_node **p)
27 {
28 	struct extent_node *en;
29 
30 	en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
31 	if (!en)
32 		return NULL;
33 
34 	en->ei = *ei;
35 	INIT_LIST_HEAD(&en->list);
36 
37 	rb_link_node(&en->rb_node, parent, p);
38 	rb_insert_color(&en->rb_node, &et->root);
39 	et->count++;
40 	atomic_inc(&sbi->total_ext_node);
41 	return en;
42 }
43 
44 static void __detach_extent_node(struct f2fs_sb_info *sbi,
45 				struct extent_tree *et, struct extent_node *en)
46 {
47 	rb_erase(&en->rb_node, &et->root);
48 	et->count--;
49 	atomic_dec(&sbi->total_ext_node);
50 
51 	if (et->cached_en == en)
52 		et->cached_en = NULL;
53 }
54 
55 static struct extent_tree *__grab_extent_tree(struct inode *inode)
56 {
57 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
58 	struct extent_tree *et;
59 	nid_t ino = inode->i_ino;
60 
61 	down_write(&sbi->extent_tree_lock);
62 	et = radix_tree_lookup(&sbi->extent_tree_root, ino);
63 	if (!et) {
64 		et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
65 		f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
66 		memset(et, 0, sizeof(struct extent_tree));
67 		et->ino = ino;
68 		et->root = RB_ROOT;
69 		et->cached_en = NULL;
70 		rwlock_init(&et->lock);
71 		atomic_set(&et->refcount, 0);
72 		et->count = 0;
73 		sbi->total_ext_tree++;
74 	}
75 	atomic_inc(&et->refcount);
76 	up_write(&sbi->extent_tree_lock);
77 
78 	/* never died until evict_inode */
79 	F2FS_I(inode)->extent_tree = et;
80 
81 	return et;
82 }
83 
84 static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
85 				struct extent_tree *et, unsigned int fofs)
86 {
87 	struct rb_node *node = et->root.rb_node;
88 	struct extent_node *en = et->cached_en;
89 
90 	if (en) {
91 		struct extent_info *cei = &en->ei;
92 
93 		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
94 			stat_inc_cached_node_hit(sbi);
95 			return en;
96 		}
97 	}
98 
99 	while (node) {
100 		en = rb_entry(node, struct extent_node, rb_node);
101 
102 		if (fofs < en->ei.fofs) {
103 			node = node->rb_left;
104 		} else if (fofs >= en->ei.fofs + en->ei.len) {
105 			node = node->rb_right;
106 		} else {
107 			stat_inc_rbtree_node_hit(sbi);
108 			return en;
109 		}
110 	}
111 	return NULL;
112 }
113 
114 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
115 				struct extent_tree *et, struct extent_info *ei)
116 {
117 	struct rb_node **p = &et->root.rb_node;
118 	struct extent_node *en;
119 
120 	en = __attach_extent_node(sbi, et, ei, NULL, p);
121 	if (!en)
122 		return NULL;
123 
124 	et->largest = en->ei;
125 	et->cached_en = en;
126 	return en;
127 }
128 
129 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
130 					struct extent_tree *et, bool free_all)
131 {
132 	struct rb_node *node, *next;
133 	struct extent_node *en;
134 	unsigned int count = et->count;
135 
136 	node = rb_first(&et->root);
137 	while (node) {
138 		next = rb_next(node);
139 		en = rb_entry(node, struct extent_node, rb_node);
140 
141 		if (free_all) {
142 			spin_lock(&sbi->extent_lock);
143 			if (!list_empty(&en->list))
144 				list_del_init(&en->list);
145 			spin_unlock(&sbi->extent_lock);
146 		}
147 
148 		if (free_all || list_empty(&en->list)) {
149 			__detach_extent_node(sbi, et, en);
150 			kmem_cache_free(extent_node_slab, en);
151 		}
152 		node = next;
153 	}
154 
155 	return count - et->count;
156 }
157 
158 static void __drop_largest_extent(struct inode *inode,
159 					pgoff_t fofs, unsigned int len)
160 {
161 	struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
162 
163 	if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs)
164 		largest->len = 0;
165 }
166 
167 void f2fs_drop_largest_extent(struct inode *inode, pgoff_t fofs)
168 {
169 	if (!f2fs_may_extent_tree(inode))
170 		return;
171 
172 	__drop_largest_extent(inode, fofs, 1);
173 }
174 
175 void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
176 {
177 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
178 	struct extent_tree *et;
179 	struct extent_node *en;
180 	struct extent_info ei;
181 
182 	if (!f2fs_may_extent_tree(inode))
183 		return;
184 
185 	et = __grab_extent_tree(inode);
186 
187 	if (!i_ext || le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
188 		return;
189 
190 	set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
191 		le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
192 
193 	write_lock(&et->lock);
194 	if (et->count)
195 		goto out;
196 
197 	en = __init_extent_tree(sbi, et, &ei);
198 	if (en) {
199 		spin_lock(&sbi->extent_lock);
200 		list_add_tail(&en->list, &sbi->extent_list);
201 		spin_unlock(&sbi->extent_lock);
202 	}
203 out:
204 	write_unlock(&et->lock);
205 }
206 
207 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
208 							struct extent_info *ei)
209 {
210 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
211 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
212 	struct extent_node *en;
213 	bool ret = false;
214 
215 	f2fs_bug_on(sbi, !et);
216 
217 	trace_f2fs_lookup_extent_tree_start(inode, pgofs);
218 
219 	read_lock(&et->lock);
220 
221 	if (et->largest.fofs <= pgofs &&
222 			et->largest.fofs + et->largest.len > pgofs) {
223 		*ei = et->largest;
224 		ret = true;
225 		stat_inc_largest_node_hit(sbi);
226 		goto out;
227 	}
228 
229 	en = __lookup_extent_tree(sbi, et, pgofs);
230 	if (en) {
231 		*ei = en->ei;
232 		spin_lock(&sbi->extent_lock);
233 		if (!list_empty(&en->list))
234 			list_move_tail(&en->list, &sbi->extent_list);
235 		et->cached_en = en;
236 		spin_unlock(&sbi->extent_lock);
237 		ret = true;
238 	}
239 out:
240 	stat_inc_total_hit(sbi);
241 	read_unlock(&et->lock);
242 
243 	trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
244 	return ret;
245 }
246 
247 
248 /*
249  * lookup extent at @fofs, if hit, return the extent
250  * if not, return NULL and
251  * @prev_ex: extent before fofs
252  * @next_ex: extent after fofs
253  * @insert_p: insert point for new extent at fofs
254  * in order to simpfy the insertion after.
255  * tree must stay unchanged between lookup and insertion.
256  */
257 static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
258 				unsigned int fofs,
259 				struct extent_node **prev_ex,
260 				struct extent_node **next_ex,
261 				struct rb_node ***insert_p,
262 				struct rb_node **insert_parent)
263 {
264 	struct rb_node **pnode = &et->root.rb_node;
265 	struct rb_node *parent = NULL, *tmp_node;
266 	struct extent_node *en = et->cached_en;
267 
268 	*insert_p = NULL;
269 	*insert_parent = NULL;
270 	*prev_ex = NULL;
271 	*next_ex = NULL;
272 
273 	if (RB_EMPTY_ROOT(&et->root))
274 		return NULL;
275 
276 	if (en) {
277 		struct extent_info *cei = &en->ei;
278 
279 		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
280 			goto lookup_neighbors;
281 	}
282 
283 	while (*pnode) {
284 		parent = *pnode;
285 		en = rb_entry(*pnode, struct extent_node, rb_node);
286 
287 		if (fofs < en->ei.fofs)
288 			pnode = &(*pnode)->rb_left;
289 		else if (fofs >= en->ei.fofs + en->ei.len)
290 			pnode = &(*pnode)->rb_right;
291 		else
292 			goto lookup_neighbors;
293 	}
294 
295 	*insert_p = pnode;
296 	*insert_parent = parent;
297 
298 	en = rb_entry(parent, struct extent_node, rb_node);
299 	tmp_node = parent;
300 	if (parent && fofs > en->ei.fofs)
301 		tmp_node = rb_next(parent);
302 	*next_ex = tmp_node ?
303 		rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
304 
305 	tmp_node = parent;
306 	if (parent && fofs < en->ei.fofs)
307 		tmp_node = rb_prev(parent);
308 	*prev_ex = tmp_node ?
309 		rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
310 	return NULL;
311 
312 lookup_neighbors:
313 	if (fofs == en->ei.fofs) {
314 		/* lookup prev node for merging backward later */
315 		tmp_node = rb_prev(&en->rb_node);
316 		*prev_ex = tmp_node ?
317 			rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
318 	}
319 	if (fofs == en->ei.fofs + en->ei.len - 1) {
320 		/* lookup next node for merging frontward later */
321 		tmp_node = rb_next(&en->rb_node);
322 		*next_ex = tmp_node ?
323 			rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
324 	}
325 	return en;
326 }
327 
328 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
329 				struct extent_tree *et, struct extent_info *ei,
330 				struct extent_node **den,
331 				struct extent_node *prev_ex,
332 				struct extent_node *next_ex)
333 {
334 	struct extent_node *en = NULL;
335 
336 	if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
337 		prev_ex->ei.len += ei->len;
338 		ei = &prev_ex->ei;
339 		en = prev_ex;
340 	}
341 
342 	if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
343 		if (en) {
344 			__detach_extent_node(sbi, et, prev_ex);
345 			*den = prev_ex;
346 		}
347 		next_ex->ei.fofs = ei->fofs;
348 		next_ex->ei.blk = ei->blk;
349 		next_ex->ei.len += ei->len;
350 		en = next_ex;
351 	}
352 
353 	if (en) {
354 		__try_update_largest_extent(et, en);
355 		et->cached_en = en;
356 	}
357 	return en;
358 }
359 
360 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
361 				struct extent_tree *et, struct extent_info *ei,
362 				struct rb_node **insert_p,
363 				struct rb_node *insert_parent)
364 {
365 	struct rb_node **p = &et->root.rb_node;
366 	struct rb_node *parent = NULL;
367 	struct extent_node *en = NULL;
368 
369 	if (insert_p && insert_parent) {
370 		parent = insert_parent;
371 		p = insert_p;
372 		goto do_insert;
373 	}
374 
375 	while (*p) {
376 		parent = *p;
377 		en = rb_entry(parent, struct extent_node, rb_node);
378 
379 		if (ei->fofs < en->ei.fofs)
380 			p = &(*p)->rb_left;
381 		else if (ei->fofs >= en->ei.fofs + en->ei.len)
382 			p = &(*p)->rb_right;
383 		else
384 			f2fs_bug_on(sbi, 1);
385 	}
386 do_insert:
387 	en = __attach_extent_node(sbi, et, ei, parent, p);
388 	if (!en)
389 		return NULL;
390 
391 	__try_update_largest_extent(et, en);
392 	et->cached_en = en;
393 	return en;
394 }
395 
396 static unsigned int f2fs_update_extent_tree_range(struct inode *inode,
397 				pgoff_t fofs, block_t blkaddr, unsigned int len)
398 {
399 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
400 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
401 	struct extent_node *en = NULL, *en1 = NULL;
402 	struct extent_node *prev_en = NULL, *next_en = NULL;
403 	struct extent_info ei, dei, prev;
404 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
405 	unsigned int end = fofs + len;
406 	unsigned int pos = (unsigned int)fofs;
407 
408 	if (!et)
409 		return false;
410 
411 	trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
412 
413 	write_lock(&et->lock);
414 
415 	if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
416 		write_unlock(&et->lock);
417 		return false;
418 	}
419 
420 	prev = et->largest;
421 	dei.len = 0;
422 
423 	/*
424 	 * drop largest extent before lookup, in case it's already
425 	 * been shrunk from extent tree
426 	 */
427 	__drop_largest_extent(inode, fofs, len);
428 
429 	/* 1. lookup first extent node in range [fofs, fofs + len - 1] */
430 	en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
431 					&insert_p, &insert_parent);
432 	if (!en)
433 		en = next_en;
434 
435 	/* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
436 	while (en && en->ei.fofs < end) {
437 		unsigned int org_end;
438 		int parts = 0;	/* # of parts current extent split into */
439 
440 		next_en = en1 = NULL;
441 
442 		dei = en->ei;
443 		org_end = dei.fofs + dei.len;
444 		f2fs_bug_on(sbi, pos >= org_end);
445 
446 		if (pos > dei.fofs &&	pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
447 			en->ei.len = pos - en->ei.fofs;
448 			prev_en = en;
449 			parts = 1;
450 		}
451 
452 		if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
453 			if (parts) {
454 				set_extent_info(&ei, end,
455 						end - dei.fofs + dei.blk,
456 						org_end - end);
457 				en1 = __insert_extent_tree(sbi, et, &ei,
458 							NULL, NULL);
459 				next_en = en1;
460 			} else {
461 				en->ei.fofs = end;
462 				en->ei.blk += end - dei.fofs;
463 				en->ei.len -= end - dei.fofs;
464 				next_en = en;
465 			}
466 			parts++;
467 		}
468 
469 		if (!next_en) {
470 			struct rb_node *node = rb_next(&en->rb_node);
471 
472 			next_en = node ?
473 				rb_entry(node, struct extent_node, rb_node)
474 				: NULL;
475 		}
476 
477 		if (parts)
478 			__try_update_largest_extent(et, en);
479 		else
480 			__detach_extent_node(sbi, et, en);
481 
482 		/*
483 		 * if original extent is split into zero or two parts, extent
484 		 * tree has been altered by deletion or insertion, therefore
485 		 * invalidate pointers regard to tree.
486 		 */
487 		if (parts != 1) {
488 			insert_p = NULL;
489 			insert_parent = NULL;
490 		}
491 
492 		/* update in global extent list */
493 		spin_lock(&sbi->extent_lock);
494 		if (!parts && !list_empty(&en->list))
495 			list_del(&en->list);
496 		if (en1)
497 			list_add_tail(&en1->list, &sbi->extent_list);
498 		spin_unlock(&sbi->extent_lock);
499 
500 		/* release extent node */
501 		if (!parts)
502 			kmem_cache_free(extent_node_slab, en);
503 
504 		en = next_en;
505 	}
506 
507 	/* 3. update extent in extent cache */
508 	if (blkaddr) {
509 		struct extent_node *den = NULL;
510 
511 		set_extent_info(&ei, fofs, blkaddr, len);
512 		en1 = __try_merge_extent_node(sbi, et, &ei, &den,
513 							prev_en, next_en);
514 		if (!en1)
515 			en1 = __insert_extent_tree(sbi, et, &ei,
516 						insert_p, insert_parent);
517 
518 		/* give up extent_cache, if split and small updates happen */
519 		if (dei.len >= 1 &&
520 				prev.len < F2FS_MIN_EXTENT_LEN &&
521 				et->largest.len < F2FS_MIN_EXTENT_LEN) {
522 			et->largest.len = 0;
523 			set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
524 		}
525 
526 		spin_lock(&sbi->extent_lock);
527 		if (en1) {
528 			if (list_empty(&en1->list))
529 				list_add_tail(&en1->list, &sbi->extent_list);
530 			else
531 				list_move_tail(&en1->list, &sbi->extent_list);
532 		}
533 		if (den && !list_empty(&den->list))
534 			list_del(&den->list);
535 		spin_unlock(&sbi->extent_lock);
536 
537 		if (den)
538 			kmem_cache_free(extent_node_slab, den);
539 	}
540 
541 	if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
542 		__free_extent_tree(sbi, et, true);
543 
544 	write_unlock(&et->lock);
545 
546 	return !__is_extent_same(&prev, &et->largest);
547 }
548 
549 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
550 {
551 	struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
552 	struct extent_node *en, *tmp;
553 	unsigned long ino = F2FS_ROOT_INO(sbi);
554 	struct radix_tree_root *root = &sbi->extent_tree_root;
555 	unsigned int found;
556 	unsigned int node_cnt = 0, tree_cnt = 0;
557 	int remained;
558 
559 	if (!test_opt(sbi, EXTENT_CACHE))
560 		return 0;
561 
562 	if (!down_write_trylock(&sbi->extent_tree_lock))
563 		goto out;
564 
565 	/* 1. remove unreferenced extent tree */
566 	while ((found = radix_tree_gang_lookup(root,
567 				(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
568 		unsigned i;
569 
570 		ino = treevec[found - 1]->ino + 1;
571 		for (i = 0; i < found; i++) {
572 			struct extent_tree *et = treevec[i];
573 
574 			if (!atomic_read(&et->refcount)) {
575 				write_lock(&et->lock);
576 				node_cnt += __free_extent_tree(sbi, et, true);
577 				write_unlock(&et->lock);
578 
579 				radix_tree_delete(root, et->ino);
580 				kmem_cache_free(extent_tree_slab, et);
581 				sbi->total_ext_tree--;
582 				tree_cnt++;
583 
584 				if (node_cnt + tree_cnt >= nr_shrink)
585 					goto unlock_out;
586 			}
587 		}
588 	}
589 	up_write(&sbi->extent_tree_lock);
590 
591 	/* 2. remove LRU extent entries */
592 	if (!down_write_trylock(&sbi->extent_tree_lock))
593 		goto out;
594 
595 	remained = nr_shrink - (node_cnt + tree_cnt);
596 
597 	spin_lock(&sbi->extent_lock);
598 	list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
599 		if (!remained--)
600 			break;
601 		list_del_init(&en->list);
602 	}
603 	spin_unlock(&sbi->extent_lock);
604 
605 	/*
606 	 * reset ino for searching victims from beginning of global extent tree.
607 	 */
608 	ino = F2FS_ROOT_INO(sbi);
609 
610 	while ((found = radix_tree_gang_lookup(root,
611 				(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
612 		unsigned i;
613 
614 		ino = treevec[found - 1]->ino + 1;
615 		for (i = 0; i < found; i++) {
616 			struct extent_tree *et = treevec[i];
617 
618 			write_lock(&et->lock);
619 			node_cnt += __free_extent_tree(sbi, et, false);
620 			write_unlock(&et->lock);
621 
622 			if (node_cnt + tree_cnt >= nr_shrink)
623 				goto unlock_out;
624 		}
625 	}
626 unlock_out:
627 	up_write(&sbi->extent_tree_lock);
628 out:
629 	trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
630 
631 	return node_cnt + tree_cnt;
632 }
633 
634 unsigned int f2fs_destroy_extent_node(struct inode *inode)
635 {
636 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
637 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
638 	unsigned int node_cnt = 0;
639 
640 	if (!et)
641 		return 0;
642 
643 	write_lock(&et->lock);
644 	node_cnt = __free_extent_tree(sbi, et, true);
645 	write_unlock(&et->lock);
646 
647 	return node_cnt;
648 }
649 
650 void f2fs_destroy_extent_tree(struct inode *inode)
651 {
652 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
653 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
654 	unsigned int node_cnt = 0;
655 
656 	if (!et)
657 		return;
658 
659 	if (inode->i_nlink && !is_bad_inode(inode) && et->count) {
660 		atomic_dec(&et->refcount);
661 		return;
662 	}
663 
664 	/* free all extent info belong to this extent tree */
665 	node_cnt = f2fs_destroy_extent_node(inode);
666 
667 	/* delete extent tree entry in radix tree */
668 	down_write(&sbi->extent_tree_lock);
669 	atomic_dec(&et->refcount);
670 	f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
671 	radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
672 	kmem_cache_free(extent_tree_slab, et);
673 	sbi->total_ext_tree--;
674 	up_write(&sbi->extent_tree_lock);
675 
676 	F2FS_I(inode)->extent_tree = NULL;
677 
678 	trace_f2fs_destroy_extent_tree(inode, node_cnt);
679 }
680 
681 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
682 					struct extent_info *ei)
683 {
684 	if (!f2fs_may_extent_tree(inode))
685 		return false;
686 
687 	return f2fs_lookup_extent_tree(inode, pgofs, ei);
688 }
689 
690 void f2fs_update_extent_cache(struct dnode_of_data *dn)
691 {
692 	struct f2fs_inode_info *fi = F2FS_I(dn->inode);
693 	pgoff_t fofs;
694 
695 	if (!f2fs_may_extent_tree(dn->inode))
696 		return;
697 
698 	f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
699 
700 
701 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
702 							dn->ofs_in_node;
703 
704 	if (f2fs_update_extent_tree_range(dn->inode, fofs, dn->data_blkaddr, 1))
705 		sync_inode_page(dn);
706 }
707 
708 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
709 				pgoff_t fofs, block_t blkaddr, unsigned int len)
710 
711 {
712 	if (!f2fs_may_extent_tree(dn->inode))
713 		return;
714 
715 	if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len))
716 		sync_inode_page(dn);
717 }
718 
719 void init_extent_cache_info(struct f2fs_sb_info *sbi)
720 {
721 	INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
722 	init_rwsem(&sbi->extent_tree_lock);
723 	INIT_LIST_HEAD(&sbi->extent_list);
724 	spin_lock_init(&sbi->extent_lock);
725 	sbi->total_ext_tree = 0;
726 	atomic_set(&sbi->total_ext_node, 0);
727 }
728 
729 int __init create_extent_cache(void)
730 {
731 	extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
732 			sizeof(struct extent_tree));
733 	if (!extent_tree_slab)
734 		return -ENOMEM;
735 	extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
736 			sizeof(struct extent_node));
737 	if (!extent_node_slab) {
738 		kmem_cache_destroy(extent_tree_slab);
739 		return -ENOMEM;
740 	}
741 	return 0;
742 }
743 
744 void destroy_extent_cache(void)
745 {
746 	kmem_cache_destroy(extent_node_slab);
747 	kmem_cache_destroy(extent_tree_slab);
748 }
749