1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * f2fs extent cache support 4 * 5 * Copyright (c) 2015 Motorola Mobility 6 * Copyright (c) 2015 Samsung Electronics 7 * Authors: Jaegeuk Kim <jaegeuk@kernel.org> 8 * Chao Yu <chao2.yu@samsung.com> 9 * 10 * block_age-based extent cache added by: 11 * Copyright (c) 2022 xiaomi Co., Ltd. 12 * http://www.xiaomi.com/ 13 */ 14 15 #include <linux/fs.h> 16 #include <linux/f2fs_fs.h> 17 18 #include "f2fs.h" 19 #include "node.h" 20 #include <trace/events/f2fs.h> 21 22 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage) 23 { 24 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 25 struct f2fs_extent *i_ext = &F2FS_INODE(ipage)->i_ext; 26 struct extent_info ei; 27 int devi; 28 29 get_read_extent_info(&ei, i_ext); 30 31 if (!ei.len) 32 return true; 33 34 if (!f2fs_is_valid_blkaddr(sbi, ei.blk, DATA_GENERIC_ENHANCE) || 35 !f2fs_is_valid_blkaddr(sbi, ei.blk + ei.len - 1, 36 DATA_GENERIC_ENHANCE)) { 37 f2fs_warn(sbi, "%s: inode (ino=%lx) extent info [%u, %u, %u] is incorrect, run fsck to fix", 38 __func__, inode->i_ino, 39 ei.blk, ei.fofs, ei.len); 40 return false; 41 } 42 43 if (!IS_DEVICE_ALIASING(inode)) 44 return true; 45 46 for (devi = 0; devi < sbi->s_ndevs; devi++) { 47 if (FDEV(devi).start_blk != ei.blk || 48 FDEV(devi).end_blk != ei.blk + ei.len - 1) 49 continue; 50 51 if (devi == 0) { 52 f2fs_warn(sbi, 53 "%s: inode (ino=%lx) is an alias of meta device", 54 __func__, inode->i_ino); 55 return false; 56 } 57 58 if (bdev_is_zoned(FDEV(devi).bdev)) { 59 f2fs_warn(sbi, 60 "%s: device alias inode (ino=%lx)'s extent info " 61 "[%u, %u, %u] maps to zoned block device", 62 __func__, inode->i_ino, ei.blk, ei.fofs, ei.len); 63 return false; 64 } 65 return true; 66 } 67 68 f2fs_warn(sbi, "%s: device alias inode (ino=%lx)'s extent info " 69 "[%u, %u, %u] is inconsistent w/ any devices", 70 __func__, inode->i_ino, ei.blk, ei.fofs, ei.len); 71 return false; 72 } 73 74 static void __set_extent_info(struct extent_info *ei, 75 unsigned int fofs, unsigned int len, 76 block_t blk, bool keep_clen, 77 unsigned long age, unsigned long last_blocks, 78 enum extent_type type) 79 { 80 ei->fofs = fofs; 81 ei->len = len; 82 83 if (type == EX_READ) { 84 ei->blk = blk; 85 if (keep_clen) 86 return; 87 #ifdef CONFIG_F2FS_FS_COMPRESSION 88 ei->c_len = 0; 89 #endif 90 } else if (type == EX_BLOCK_AGE) { 91 ei->age = age; 92 ei->last_blocks = last_blocks; 93 } 94 } 95 96 static bool __init_may_extent_tree(struct inode *inode, enum extent_type type) 97 { 98 if (type == EX_READ) 99 return test_opt(F2FS_I_SB(inode), READ_EXTENT_CACHE) && 100 S_ISREG(inode->i_mode); 101 if (type == EX_BLOCK_AGE) 102 return test_opt(F2FS_I_SB(inode), AGE_EXTENT_CACHE) && 103 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)); 104 return false; 105 } 106 107 static bool __may_extent_tree(struct inode *inode, enum extent_type type) 108 { 109 if (IS_DEVICE_ALIASING(inode) && type == EX_READ) 110 return true; 111 112 /* 113 * for recovered files during mount do not create extents 114 * if shrinker is not registered. 115 */ 116 if (list_empty(&F2FS_I_SB(inode)->s_list)) 117 return false; 118 119 if (!__init_may_extent_tree(inode, type)) 120 return false; 121 122 if (type == EX_READ) { 123 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 124 return false; 125 if (is_inode_flag_set(inode, FI_COMPRESSED_FILE) && 126 !f2fs_sb_has_readonly(F2FS_I_SB(inode))) 127 return false; 128 } else if (type == EX_BLOCK_AGE) { 129 if (is_inode_flag_set(inode, FI_COMPRESSED_FILE)) 130 return false; 131 if (file_is_cold(inode)) 132 return false; 133 } 134 return true; 135 } 136 137 static void __try_update_largest_extent(struct extent_tree *et, 138 struct extent_node *en) 139 { 140 if (et->type != EX_READ) 141 return; 142 if (en->ei.len <= et->largest.len) 143 return; 144 145 et->largest = en->ei; 146 et->largest_updated = true; 147 } 148 149 static bool __is_extent_mergeable(struct extent_info *back, 150 struct extent_info *front, enum extent_type type) 151 { 152 if (type == EX_READ) { 153 #ifdef CONFIG_F2FS_FS_COMPRESSION 154 if (back->c_len && back->len != back->c_len) 155 return false; 156 if (front->c_len && front->len != front->c_len) 157 return false; 158 #endif 159 return (back->fofs + back->len == front->fofs && 160 back->blk + back->len == front->blk); 161 } else if (type == EX_BLOCK_AGE) { 162 return (back->fofs + back->len == front->fofs && 163 abs(back->age - front->age) <= SAME_AGE_REGION && 164 abs(back->last_blocks - front->last_blocks) <= 165 SAME_AGE_REGION); 166 } 167 return false; 168 } 169 170 static bool __is_back_mergeable(struct extent_info *cur, 171 struct extent_info *back, enum extent_type type) 172 { 173 return __is_extent_mergeable(back, cur, type); 174 } 175 176 static bool __is_front_mergeable(struct extent_info *cur, 177 struct extent_info *front, enum extent_type type) 178 { 179 return __is_extent_mergeable(cur, front, type); 180 } 181 182 static struct extent_node *__lookup_extent_node(struct rb_root_cached *root, 183 struct extent_node *cached_en, unsigned int fofs) 184 { 185 struct rb_node *node = root->rb_root.rb_node; 186 struct extent_node *en; 187 188 /* check a cached entry */ 189 if (cached_en && cached_en->ei.fofs <= fofs && 190 cached_en->ei.fofs + cached_en->ei.len > fofs) 191 return cached_en; 192 193 /* check rb_tree */ 194 while (node) { 195 en = rb_entry(node, struct extent_node, rb_node); 196 197 if (fofs < en->ei.fofs) 198 node = node->rb_left; 199 else if (fofs >= en->ei.fofs + en->ei.len) 200 node = node->rb_right; 201 else 202 return en; 203 } 204 return NULL; 205 } 206 207 /* 208 * lookup rb entry in position of @fofs in rb-tree, 209 * if hit, return the entry, otherwise, return NULL 210 * @prev_ex: extent before fofs 211 * @next_ex: extent after fofs 212 * @insert_p: insert point for new extent at fofs 213 * in order to simplify the insertion after. 214 * tree must stay unchanged between lookup and insertion. 215 */ 216 static struct extent_node *__lookup_extent_node_ret(struct rb_root_cached *root, 217 struct extent_node *cached_en, 218 unsigned int fofs, 219 struct extent_node **prev_entry, 220 struct extent_node **next_entry, 221 struct rb_node ***insert_p, 222 struct rb_node **insert_parent, 223 bool *leftmost) 224 { 225 struct rb_node **pnode = &root->rb_root.rb_node; 226 struct rb_node *parent = NULL, *tmp_node; 227 struct extent_node *en = cached_en; 228 229 *insert_p = NULL; 230 *insert_parent = NULL; 231 *prev_entry = NULL; 232 *next_entry = NULL; 233 234 if (RB_EMPTY_ROOT(&root->rb_root)) 235 return NULL; 236 237 if (en && en->ei.fofs <= fofs && en->ei.fofs + en->ei.len > fofs) 238 goto lookup_neighbors; 239 240 *leftmost = true; 241 242 while (*pnode) { 243 parent = *pnode; 244 en = rb_entry(*pnode, struct extent_node, rb_node); 245 246 if (fofs < en->ei.fofs) { 247 pnode = &(*pnode)->rb_left; 248 } else if (fofs >= en->ei.fofs + en->ei.len) { 249 pnode = &(*pnode)->rb_right; 250 *leftmost = false; 251 } else { 252 goto lookup_neighbors; 253 } 254 } 255 256 *insert_p = pnode; 257 *insert_parent = parent; 258 259 en = rb_entry(parent, struct extent_node, rb_node); 260 tmp_node = parent; 261 if (parent && fofs > en->ei.fofs) 262 tmp_node = rb_next(parent); 263 *next_entry = rb_entry_safe(tmp_node, struct extent_node, rb_node); 264 265 tmp_node = parent; 266 if (parent && fofs < en->ei.fofs) 267 tmp_node = rb_prev(parent); 268 *prev_entry = rb_entry_safe(tmp_node, struct extent_node, rb_node); 269 return NULL; 270 271 lookup_neighbors: 272 if (fofs == en->ei.fofs) { 273 /* lookup prev node for merging backward later */ 274 tmp_node = rb_prev(&en->rb_node); 275 *prev_entry = rb_entry_safe(tmp_node, 276 struct extent_node, rb_node); 277 } 278 if (fofs == en->ei.fofs + en->ei.len - 1) { 279 /* lookup next node for merging frontward later */ 280 tmp_node = rb_next(&en->rb_node); 281 *next_entry = rb_entry_safe(tmp_node, 282 struct extent_node, rb_node); 283 } 284 return en; 285 } 286 287 static struct kmem_cache *extent_tree_slab; 288 static struct kmem_cache *extent_node_slab; 289 290 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, 291 struct extent_tree *et, struct extent_info *ei, 292 struct rb_node *parent, struct rb_node **p, 293 bool leftmost) 294 { 295 struct extent_tree_info *eti = &sbi->extent_tree[et->type]; 296 struct extent_node *en; 297 298 en = f2fs_kmem_cache_alloc(extent_node_slab, GFP_ATOMIC, false, sbi); 299 if (!en) 300 return NULL; 301 302 en->ei = *ei; 303 INIT_LIST_HEAD(&en->list); 304 en->et = et; 305 306 rb_link_node(&en->rb_node, parent, p); 307 rb_insert_color_cached(&en->rb_node, &et->root, leftmost); 308 atomic_inc(&et->node_cnt); 309 atomic_inc(&eti->total_ext_node); 310 return en; 311 } 312 313 static void __detach_extent_node(struct f2fs_sb_info *sbi, 314 struct extent_tree *et, struct extent_node *en) 315 { 316 struct extent_tree_info *eti = &sbi->extent_tree[et->type]; 317 318 rb_erase_cached(&en->rb_node, &et->root); 319 atomic_dec(&et->node_cnt); 320 atomic_dec(&eti->total_ext_node); 321 322 if (et->cached_en == en) 323 et->cached_en = NULL; 324 kmem_cache_free(extent_node_slab, en); 325 } 326 327 /* 328 * Flow to release an extent_node: 329 * 1. list_del_init 330 * 2. __detach_extent_node 331 * 3. kmem_cache_free. 332 */ 333 static void __release_extent_node(struct f2fs_sb_info *sbi, 334 struct extent_tree *et, struct extent_node *en) 335 { 336 struct extent_tree_info *eti = &sbi->extent_tree[et->type]; 337 338 spin_lock(&eti->extent_lock); 339 f2fs_bug_on(sbi, list_empty(&en->list)); 340 list_del_init(&en->list); 341 spin_unlock(&eti->extent_lock); 342 343 __detach_extent_node(sbi, et, en); 344 } 345 346 static struct extent_tree *__grab_extent_tree(struct inode *inode, 347 enum extent_type type) 348 { 349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 350 struct extent_tree_info *eti = &sbi->extent_tree[type]; 351 struct extent_tree *et; 352 nid_t ino = inode->i_ino; 353 354 mutex_lock(&eti->extent_tree_lock); 355 et = radix_tree_lookup(&eti->extent_tree_root, ino); 356 if (!et) { 357 et = f2fs_kmem_cache_alloc(extent_tree_slab, 358 GFP_NOFS, true, NULL); 359 f2fs_radix_tree_insert(&eti->extent_tree_root, ino, et); 360 memset(et, 0, sizeof(struct extent_tree)); 361 et->ino = ino; 362 et->type = type; 363 et->root = RB_ROOT_CACHED; 364 et->cached_en = NULL; 365 rwlock_init(&et->lock); 366 INIT_LIST_HEAD(&et->list); 367 atomic_set(&et->node_cnt, 0); 368 atomic_inc(&eti->total_ext_tree); 369 } else { 370 atomic_dec(&eti->total_zombie_tree); 371 list_del_init(&et->list); 372 } 373 mutex_unlock(&eti->extent_tree_lock); 374 375 /* never died until evict_inode */ 376 F2FS_I(inode)->extent_tree[type] = et; 377 378 return et; 379 } 380 381 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, 382 struct extent_tree *et, unsigned int nr_shrink) 383 { 384 struct rb_node *node, *next; 385 struct extent_node *en; 386 unsigned int count; 387 388 node = rb_first_cached(&et->root); 389 390 for (count = 0; node && count < nr_shrink; count++) { 391 next = rb_next(node); 392 en = rb_entry(node, struct extent_node, rb_node); 393 __release_extent_node(sbi, et, en); 394 node = next; 395 } 396 397 return count; 398 } 399 400 static void __drop_largest_extent(struct extent_tree *et, 401 pgoff_t fofs, unsigned int len) 402 { 403 if (fofs < (pgoff_t)et->largest.fofs + et->largest.len && 404 fofs + len > et->largest.fofs) { 405 et->largest.len = 0; 406 et->largest_updated = true; 407 } 408 } 409 410 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage) 411 { 412 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 413 struct extent_tree_info *eti = &sbi->extent_tree[EX_READ]; 414 struct f2fs_extent *i_ext = &F2FS_INODE(ipage)->i_ext; 415 struct extent_tree *et; 416 struct extent_node *en; 417 struct extent_info ei; 418 419 if (!__may_extent_tree(inode, EX_READ)) { 420 /* drop largest read extent */ 421 if (i_ext->len) { 422 f2fs_wait_on_page_writeback(ipage, NODE, true, true); 423 i_ext->len = 0; 424 set_page_dirty(ipage); 425 } 426 set_inode_flag(inode, FI_NO_EXTENT); 427 return; 428 } 429 430 et = __grab_extent_tree(inode, EX_READ); 431 432 get_read_extent_info(&ei, i_ext); 433 434 write_lock(&et->lock); 435 if (atomic_read(&et->node_cnt) || !ei.len) 436 goto skip; 437 438 if (IS_DEVICE_ALIASING(inode)) { 439 et->largest = ei; 440 goto skip; 441 } 442 443 en = __attach_extent_node(sbi, et, &ei, NULL, 444 &et->root.rb_root.rb_node, true); 445 if (en) { 446 et->largest = en->ei; 447 et->cached_en = en; 448 449 spin_lock(&eti->extent_lock); 450 list_add_tail(&en->list, &eti->extent_list); 451 spin_unlock(&eti->extent_lock); 452 } 453 skip: 454 /* Let's drop, if checkpoint got corrupted. */ 455 if (f2fs_cp_error(sbi)) { 456 et->largest.len = 0; 457 et->largest_updated = true; 458 } 459 write_unlock(&et->lock); 460 } 461 462 void f2fs_init_age_extent_tree(struct inode *inode) 463 { 464 if (!__init_may_extent_tree(inode, EX_BLOCK_AGE)) 465 return; 466 __grab_extent_tree(inode, EX_BLOCK_AGE); 467 } 468 469 void f2fs_init_extent_tree(struct inode *inode) 470 { 471 /* initialize read cache */ 472 if (__init_may_extent_tree(inode, EX_READ)) 473 __grab_extent_tree(inode, EX_READ); 474 475 /* initialize block age cache */ 476 if (__init_may_extent_tree(inode, EX_BLOCK_AGE)) 477 __grab_extent_tree(inode, EX_BLOCK_AGE); 478 } 479 480 static bool __lookup_extent_tree(struct inode *inode, pgoff_t pgofs, 481 struct extent_info *ei, enum extent_type type) 482 { 483 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 484 struct extent_tree_info *eti = &sbi->extent_tree[type]; 485 struct extent_tree *et = F2FS_I(inode)->extent_tree[type]; 486 struct extent_node *en; 487 bool ret = false; 488 489 if (!et) 490 return false; 491 492 trace_f2fs_lookup_extent_tree_start(inode, pgofs, type); 493 494 read_lock(&et->lock); 495 496 if (type == EX_READ && 497 et->largest.fofs <= pgofs && 498 (pgoff_t)et->largest.fofs + et->largest.len > pgofs) { 499 *ei = et->largest; 500 ret = true; 501 stat_inc_largest_node_hit(sbi); 502 goto out; 503 } 504 505 if (IS_DEVICE_ALIASING(inode)) { 506 ret = false; 507 goto out; 508 } 509 510 en = __lookup_extent_node(&et->root, et->cached_en, pgofs); 511 if (!en) 512 goto out; 513 514 if (en == et->cached_en) 515 stat_inc_cached_node_hit(sbi, type); 516 else 517 stat_inc_rbtree_node_hit(sbi, type); 518 519 *ei = en->ei; 520 spin_lock(&eti->extent_lock); 521 if (!list_empty(&en->list)) { 522 list_move_tail(&en->list, &eti->extent_list); 523 et->cached_en = en; 524 } 525 spin_unlock(&eti->extent_lock); 526 ret = true; 527 out: 528 stat_inc_total_hit(sbi, type); 529 read_unlock(&et->lock); 530 531 if (type == EX_READ) 532 trace_f2fs_lookup_read_extent_tree_end(inode, pgofs, ei); 533 else if (type == EX_BLOCK_AGE) 534 trace_f2fs_lookup_age_extent_tree_end(inode, pgofs, ei); 535 return ret; 536 } 537 538 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi, 539 struct extent_tree *et, struct extent_info *ei, 540 struct extent_node *prev_ex, 541 struct extent_node *next_ex) 542 { 543 struct extent_tree_info *eti = &sbi->extent_tree[et->type]; 544 struct extent_node *en = NULL; 545 546 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei, et->type)) { 547 prev_ex->ei.len += ei->len; 548 ei = &prev_ex->ei; 549 en = prev_ex; 550 } 551 552 if (next_ex && __is_front_mergeable(ei, &next_ex->ei, et->type)) { 553 next_ex->ei.fofs = ei->fofs; 554 next_ex->ei.len += ei->len; 555 if (et->type == EX_READ) 556 next_ex->ei.blk = ei->blk; 557 if (en) 558 __release_extent_node(sbi, et, prev_ex); 559 560 en = next_ex; 561 } 562 563 if (!en) 564 return NULL; 565 566 __try_update_largest_extent(et, en); 567 568 spin_lock(&eti->extent_lock); 569 if (!list_empty(&en->list)) { 570 list_move_tail(&en->list, &eti->extent_list); 571 et->cached_en = en; 572 } 573 spin_unlock(&eti->extent_lock); 574 return en; 575 } 576 577 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi, 578 struct extent_tree *et, struct extent_info *ei, 579 struct rb_node **insert_p, 580 struct rb_node *insert_parent, 581 bool leftmost) 582 { 583 struct extent_tree_info *eti = &sbi->extent_tree[et->type]; 584 struct rb_node **p = &et->root.rb_root.rb_node; 585 struct rb_node *parent = NULL; 586 struct extent_node *en = NULL; 587 588 if (insert_p && insert_parent) { 589 parent = insert_parent; 590 p = insert_p; 591 goto do_insert; 592 } 593 594 leftmost = true; 595 596 /* look up extent_node in the rb tree */ 597 while (*p) { 598 parent = *p; 599 en = rb_entry(parent, struct extent_node, rb_node); 600 601 if (ei->fofs < en->ei.fofs) { 602 p = &(*p)->rb_left; 603 } else if (ei->fofs >= en->ei.fofs + en->ei.len) { 604 p = &(*p)->rb_right; 605 leftmost = false; 606 } else { 607 f2fs_bug_on(sbi, 1); 608 } 609 } 610 611 do_insert: 612 en = __attach_extent_node(sbi, et, ei, parent, p, leftmost); 613 if (!en) 614 return NULL; 615 616 __try_update_largest_extent(et, en); 617 618 /* update in global extent list */ 619 spin_lock(&eti->extent_lock); 620 list_add_tail(&en->list, &eti->extent_list); 621 et->cached_en = en; 622 spin_unlock(&eti->extent_lock); 623 return en; 624 } 625 626 static unsigned int __destroy_extent_node(struct inode *inode, 627 enum extent_type type) 628 { 629 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 630 struct extent_tree *et = F2FS_I(inode)->extent_tree[type]; 631 unsigned int nr_shrink = type == EX_READ ? 632 READ_EXTENT_CACHE_SHRINK_NUMBER : 633 AGE_EXTENT_CACHE_SHRINK_NUMBER; 634 unsigned int node_cnt = 0; 635 636 if (!et || !atomic_read(&et->node_cnt)) 637 return 0; 638 639 while (atomic_read(&et->node_cnt)) { 640 write_lock(&et->lock); 641 node_cnt += __free_extent_tree(sbi, et, nr_shrink); 642 write_unlock(&et->lock); 643 } 644 645 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 646 647 return node_cnt; 648 } 649 650 static void __update_extent_tree_range(struct inode *inode, 651 struct extent_info *tei, enum extent_type type) 652 { 653 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 654 struct extent_tree *et = F2FS_I(inode)->extent_tree[type]; 655 struct extent_node *en = NULL, *en1 = NULL; 656 struct extent_node *prev_en = NULL, *next_en = NULL; 657 struct extent_info ei, dei, prev; 658 struct rb_node **insert_p = NULL, *insert_parent = NULL; 659 unsigned int fofs = tei->fofs, len = tei->len; 660 unsigned int end = fofs + len; 661 bool updated = false; 662 bool leftmost = false; 663 664 if (!et) 665 return; 666 667 if (type == EX_READ) 668 trace_f2fs_update_read_extent_tree_range(inode, fofs, len, 669 tei->blk, 0); 670 else if (type == EX_BLOCK_AGE) 671 trace_f2fs_update_age_extent_tree_range(inode, fofs, len, 672 tei->age, tei->last_blocks); 673 674 write_lock(&et->lock); 675 676 if (type == EX_READ) { 677 if (is_inode_flag_set(inode, FI_NO_EXTENT)) { 678 write_unlock(&et->lock); 679 return; 680 } 681 682 prev = et->largest; 683 dei.len = 0; 684 685 /* 686 * drop largest extent before lookup, in case it's already 687 * been shrunk from extent tree 688 */ 689 __drop_largest_extent(et, fofs, len); 690 } 691 692 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */ 693 en = __lookup_extent_node_ret(&et->root, 694 et->cached_en, fofs, 695 &prev_en, &next_en, 696 &insert_p, &insert_parent, 697 &leftmost); 698 if (!en) 699 en = next_en; 700 701 /* 2. invalidate all extent nodes in range [fofs, fofs + len - 1] */ 702 while (en && en->ei.fofs < end) { 703 unsigned int org_end; 704 int parts = 0; /* # of parts current extent split into */ 705 706 next_en = en1 = NULL; 707 708 dei = en->ei; 709 org_end = dei.fofs + dei.len; 710 f2fs_bug_on(sbi, fofs >= org_end); 711 712 if (fofs > dei.fofs && (type != EX_READ || 713 fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN)) { 714 en->ei.len = fofs - en->ei.fofs; 715 prev_en = en; 716 parts = 1; 717 } 718 719 if (end < org_end && (type != EX_READ || 720 (org_end - end >= F2FS_MIN_EXTENT_LEN && 721 atomic_read(&et->node_cnt) < 722 sbi->max_read_extent_count))) { 723 if (parts) { 724 __set_extent_info(&ei, 725 end, org_end - end, 726 end - dei.fofs + dei.blk, false, 727 dei.age, dei.last_blocks, 728 type); 729 en1 = __insert_extent_tree(sbi, et, &ei, 730 NULL, NULL, true); 731 next_en = en1; 732 } else { 733 __set_extent_info(&en->ei, 734 end, en->ei.len - (end - dei.fofs), 735 en->ei.blk + (end - dei.fofs), true, 736 dei.age, dei.last_blocks, 737 type); 738 next_en = en; 739 } 740 parts++; 741 } 742 743 if (!next_en) { 744 struct rb_node *node = rb_next(&en->rb_node); 745 746 next_en = rb_entry_safe(node, struct extent_node, 747 rb_node); 748 } 749 750 if (parts) 751 __try_update_largest_extent(et, en); 752 else 753 __release_extent_node(sbi, et, en); 754 755 /* 756 * if original extent is split into zero or two parts, extent 757 * tree has been altered by deletion or insertion, therefore 758 * invalidate pointers regard to tree. 759 */ 760 if (parts != 1) { 761 insert_p = NULL; 762 insert_parent = NULL; 763 } 764 en = next_en; 765 } 766 767 if (type == EX_BLOCK_AGE) 768 goto update_age_extent_cache; 769 770 /* 3. update extent in read extent cache */ 771 BUG_ON(type != EX_READ); 772 773 if (tei->blk) { 774 __set_extent_info(&ei, fofs, len, tei->blk, false, 775 0, 0, EX_READ); 776 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en)) 777 __insert_extent_tree(sbi, et, &ei, 778 insert_p, insert_parent, leftmost); 779 780 /* give up extent_cache, if split and small updates happen */ 781 if (dei.len >= 1 && 782 prev.len < F2FS_MIN_EXTENT_LEN && 783 et->largest.len < F2FS_MIN_EXTENT_LEN) { 784 et->largest.len = 0; 785 et->largest_updated = true; 786 set_inode_flag(inode, FI_NO_EXTENT); 787 } 788 } 789 790 if (et->largest_updated) { 791 et->largest_updated = false; 792 updated = true; 793 } 794 goto out_read_extent_cache; 795 update_age_extent_cache: 796 if (!tei->last_blocks) 797 goto out_read_extent_cache; 798 799 __set_extent_info(&ei, fofs, len, 0, false, 800 tei->age, tei->last_blocks, EX_BLOCK_AGE); 801 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en)) 802 __insert_extent_tree(sbi, et, &ei, 803 insert_p, insert_parent, leftmost); 804 out_read_extent_cache: 805 write_unlock(&et->lock); 806 807 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 808 __destroy_extent_node(inode, EX_READ); 809 810 if (updated) 811 f2fs_mark_inode_dirty_sync(inode, true); 812 } 813 814 #ifdef CONFIG_F2FS_FS_COMPRESSION 815 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode, 816 pgoff_t fofs, block_t blkaddr, unsigned int llen, 817 unsigned int c_len) 818 { 819 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 820 struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ]; 821 struct extent_node *en = NULL; 822 struct extent_node *prev_en = NULL, *next_en = NULL; 823 struct extent_info ei; 824 struct rb_node **insert_p = NULL, *insert_parent = NULL; 825 bool leftmost = false; 826 827 trace_f2fs_update_read_extent_tree_range(inode, fofs, llen, 828 blkaddr, c_len); 829 830 /* it is safe here to check FI_NO_EXTENT w/o et->lock in ro image */ 831 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 832 return; 833 834 write_lock(&et->lock); 835 836 en = __lookup_extent_node_ret(&et->root, 837 et->cached_en, fofs, 838 &prev_en, &next_en, 839 &insert_p, &insert_parent, 840 &leftmost); 841 if (en) 842 goto unlock_out; 843 844 __set_extent_info(&ei, fofs, llen, blkaddr, true, 0, 0, EX_READ); 845 ei.c_len = c_len; 846 847 if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en)) 848 __insert_extent_tree(sbi, et, &ei, 849 insert_p, insert_parent, leftmost); 850 unlock_out: 851 write_unlock(&et->lock); 852 } 853 #endif 854 855 static unsigned long long __calculate_block_age(struct f2fs_sb_info *sbi, 856 unsigned long long new, 857 unsigned long long old) 858 { 859 unsigned int rem_old, rem_new; 860 unsigned long long res; 861 unsigned int weight = sbi->last_age_weight; 862 863 res = div_u64_rem(new, 100, &rem_new) * (100 - weight) 864 + div_u64_rem(old, 100, &rem_old) * weight; 865 866 if (rem_new) 867 res += rem_new * (100 - weight) / 100; 868 if (rem_old) 869 res += rem_old * weight / 100; 870 871 return res; 872 } 873 874 /* This returns a new age and allocated blocks in ei */ 875 static int __get_new_block_age(struct inode *inode, struct extent_info *ei, 876 block_t blkaddr) 877 { 878 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 879 loff_t f_size = i_size_read(inode); 880 unsigned long long cur_blocks = 881 atomic64_read(&sbi->allocated_data_blocks); 882 struct extent_info tei = *ei; /* only fofs and len are valid */ 883 884 /* 885 * When I/O is not aligned to a PAGE_SIZE, update will happen to the last 886 * file block even in seq write. So don't record age for newly last file 887 * block here. 888 */ 889 if ((f_size >> PAGE_SHIFT) == ei->fofs && f_size & (PAGE_SIZE - 1) && 890 blkaddr == NEW_ADDR) 891 return -EINVAL; 892 893 if (__lookup_extent_tree(inode, ei->fofs, &tei, EX_BLOCK_AGE)) { 894 unsigned long long cur_age; 895 896 if (cur_blocks >= tei.last_blocks) 897 cur_age = cur_blocks - tei.last_blocks; 898 else 899 /* allocated_data_blocks overflow */ 900 cur_age = ULLONG_MAX - tei.last_blocks + cur_blocks; 901 902 if (tei.age) 903 ei->age = __calculate_block_age(sbi, cur_age, tei.age); 904 else 905 ei->age = cur_age; 906 ei->last_blocks = cur_blocks; 907 WARN_ON(ei->age > cur_blocks); 908 return 0; 909 } 910 911 f2fs_bug_on(sbi, blkaddr == NULL_ADDR); 912 913 /* the data block was allocated for the first time */ 914 if (blkaddr == NEW_ADDR) 915 goto out; 916 917 if (__is_valid_data_blkaddr(blkaddr) && 918 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) 919 return -EINVAL; 920 out: 921 /* 922 * init block age with zero, this can happen when the block age extent 923 * was reclaimed due to memory constraint or system reboot 924 */ 925 ei->age = 0; 926 ei->last_blocks = cur_blocks; 927 return 0; 928 } 929 930 static void __update_extent_cache(struct dnode_of_data *dn, enum extent_type type) 931 { 932 struct extent_info ei = {}; 933 934 if (!__may_extent_tree(dn->inode, type)) 935 return; 936 937 ei.fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 938 dn->ofs_in_node; 939 ei.len = 1; 940 941 if (type == EX_READ) { 942 if (dn->data_blkaddr == NEW_ADDR) 943 ei.blk = NULL_ADDR; 944 else 945 ei.blk = dn->data_blkaddr; 946 } else if (type == EX_BLOCK_AGE) { 947 if (__get_new_block_age(dn->inode, &ei, dn->data_blkaddr)) 948 return; 949 } 950 __update_extent_tree_range(dn->inode, &ei, type); 951 } 952 953 static unsigned int __shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink, 954 enum extent_type type) 955 { 956 struct extent_tree_info *eti = &sbi->extent_tree[type]; 957 struct extent_tree *et, *next; 958 struct extent_node *en; 959 unsigned int node_cnt = 0, tree_cnt = 0; 960 int remained; 961 962 if (!atomic_read(&eti->total_zombie_tree)) 963 goto free_node; 964 965 if (!mutex_trylock(&eti->extent_tree_lock)) 966 goto out; 967 968 /* 1. remove unreferenced extent tree */ 969 list_for_each_entry_safe(et, next, &eti->zombie_list, list) { 970 if (atomic_read(&et->node_cnt)) { 971 write_lock(&et->lock); 972 node_cnt += __free_extent_tree(sbi, et, 973 nr_shrink - node_cnt - tree_cnt); 974 write_unlock(&et->lock); 975 } 976 977 if (atomic_read(&et->node_cnt)) 978 goto unlock_out; 979 980 list_del_init(&et->list); 981 radix_tree_delete(&eti->extent_tree_root, et->ino); 982 kmem_cache_free(extent_tree_slab, et); 983 atomic_dec(&eti->total_ext_tree); 984 atomic_dec(&eti->total_zombie_tree); 985 tree_cnt++; 986 987 if (node_cnt + tree_cnt >= nr_shrink) 988 goto unlock_out; 989 cond_resched(); 990 } 991 mutex_unlock(&eti->extent_tree_lock); 992 993 free_node: 994 /* 2. remove LRU extent entries */ 995 if (!mutex_trylock(&eti->extent_tree_lock)) 996 goto out; 997 998 remained = nr_shrink - (node_cnt + tree_cnt); 999 1000 spin_lock(&eti->extent_lock); 1001 for (; remained > 0; remained--) { 1002 if (list_empty(&eti->extent_list)) 1003 break; 1004 en = list_first_entry(&eti->extent_list, 1005 struct extent_node, list); 1006 et = en->et; 1007 if (!write_trylock(&et->lock)) { 1008 /* refresh this extent node's position in extent list */ 1009 list_move_tail(&en->list, &eti->extent_list); 1010 continue; 1011 } 1012 1013 list_del_init(&en->list); 1014 spin_unlock(&eti->extent_lock); 1015 1016 __detach_extent_node(sbi, et, en); 1017 1018 write_unlock(&et->lock); 1019 node_cnt++; 1020 spin_lock(&eti->extent_lock); 1021 } 1022 spin_unlock(&eti->extent_lock); 1023 1024 unlock_out: 1025 mutex_unlock(&eti->extent_tree_lock); 1026 out: 1027 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt, type); 1028 1029 return node_cnt + tree_cnt; 1030 } 1031 1032 /* read extent cache operations */ 1033 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs, 1034 struct extent_info *ei) 1035 { 1036 if (!__may_extent_tree(inode, EX_READ)) 1037 return false; 1038 1039 return __lookup_extent_tree(inode, pgofs, ei, EX_READ); 1040 } 1041 1042 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index, 1043 block_t *blkaddr) 1044 { 1045 struct extent_info ei = {}; 1046 1047 if (!f2fs_lookup_read_extent_cache(inode, index, &ei)) 1048 return false; 1049 *blkaddr = ei.blk + index - ei.fofs; 1050 return true; 1051 } 1052 1053 void f2fs_update_read_extent_cache(struct dnode_of_data *dn) 1054 { 1055 return __update_extent_cache(dn, EX_READ); 1056 } 1057 1058 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn, 1059 pgoff_t fofs, block_t blkaddr, unsigned int len) 1060 { 1061 struct extent_info ei = { 1062 .fofs = fofs, 1063 .len = len, 1064 .blk = blkaddr, 1065 }; 1066 1067 if (!__may_extent_tree(dn->inode, EX_READ)) 1068 return; 1069 1070 __update_extent_tree_range(dn->inode, &ei, EX_READ); 1071 } 1072 1073 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) 1074 { 1075 if (!test_opt(sbi, READ_EXTENT_CACHE)) 1076 return 0; 1077 1078 return __shrink_extent_tree(sbi, nr_shrink, EX_READ); 1079 } 1080 1081 /* block age extent cache operations */ 1082 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs, 1083 struct extent_info *ei) 1084 { 1085 if (!__may_extent_tree(inode, EX_BLOCK_AGE)) 1086 return false; 1087 1088 return __lookup_extent_tree(inode, pgofs, ei, EX_BLOCK_AGE); 1089 } 1090 1091 void f2fs_update_age_extent_cache(struct dnode_of_data *dn) 1092 { 1093 return __update_extent_cache(dn, EX_BLOCK_AGE); 1094 } 1095 1096 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn, 1097 pgoff_t fofs, unsigned int len) 1098 { 1099 struct extent_info ei = { 1100 .fofs = fofs, 1101 .len = len, 1102 }; 1103 1104 if (!__may_extent_tree(dn->inode, EX_BLOCK_AGE)) 1105 return; 1106 1107 __update_extent_tree_range(dn->inode, &ei, EX_BLOCK_AGE); 1108 } 1109 1110 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) 1111 { 1112 if (!test_opt(sbi, AGE_EXTENT_CACHE)) 1113 return 0; 1114 1115 return __shrink_extent_tree(sbi, nr_shrink, EX_BLOCK_AGE); 1116 } 1117 1118 void f2fs_destroy_extent_node(struct inode *inode) 1119 { 1120 __destroy_extent_node(inode, EX_READ); 1121 __destroy_extent_node(inode, EX_BLOCK_AGE); 1122 } 1123 1124 static void __drop_extent_tree(struct inode *inode, enum extent_type type) 1125 { 1126 struct extent_tree *et = F2FS_I(inode)->extent_tree[type]; 1127 bool updated = false; 1128 1129 if (!__may_extent_tree(inode, type)) 1130 return; 1131 1132 write_lock(&et->lock); 1133 if (type == EX_READ) { 1134 set_inode_flag(inode, FI_NO_EXTENT); 1135 if (et->largest.len) { 1136 et->largest.len = 0; 1137 updated = true; 1138 } 1139 } 1140 write_unlock(&et->lock); 1141 1142 __destroy_extent_node(inode, type); 1143 1144 if (updated) 1145 f2fs_mark_inode_dirty_sync(inode, true); 1146 } 1147 1148 void f2fs_drop_extent_tree(struct inode *inode) 1149 { 1150 __drop_extent_tree(inode, EX_READ); 1151 __drop_extent_tree(inode, EX_BLOCK_AGE); 1152 } 1153 1154 static void __destroy_extent_tree(struct inode *inode, enum extent_type type) 1155 { 1156 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1157 struct extent_tree_info *eti = &sbi->extent_tree[type]; 1158 struct extent_tree *et = F2FS_I(inode)->extent_tree[type]; 1159 unsigned int node_cnt = 0; 1160 1161 if (!et) 1162 return; 1163 1164 if (inode->i_nlink && !is_bad_inode(inode) && 1165 atomic_read(&et->node_cnt)) { 1166 mutex_lock(&eti->extent_tree_lock); 1167 list_add_tail(&et->list, &eti->zombie_list); 1168 atomic_inc(&eti->total_zombie_tree); 1169 mutex_unlock(&eti->extent_tree_lock); 1170 return; 1171 } 1172 1173 /* free all extent info belong to this extent tree */ 1174 node_cnt = __destroy_extent_node(inode, type); 1175 1176 /* delete extent tree entry in radix tree */ 1177 mutex_lock(&eti->extent_tree_lock); 1178 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 1179 radix_tree_delete(&eti->extent_tree_root, inode->i_ino); 1180 kmem_cache_free(extent_tree_slab, et); 1181 atomic_dec(&eti->total_ext_tree); 1182 mutex_unlock(&eti->extent_tree_lock); 1183 1184 F2FS_I(inode)->extent_tree[type] = NULL; 1185 1186 trace_f2fs_destroy_extent_tree(inode, node_cnt, type); 1187 } 1188 1189 void f2fs_destroy_extent_tree(struct inode *inode) 1190 { 1191 __destroy_extent_tree(inode, EX_READ); 1192 __destroy_extent_tree(inode, EX_BLOCK_AGE); 1193 } 1194 1195 static void __init_extent_tree_info(struct extent_tree_info *eti) 1196 { 1197 INIT_RADIX_TREE(&eti->extent_tree_root, GFP_NOIO); 1198 mutex_init(&eti->extent_tree_lock); 1199 INIT_LIST_HEAD(&eti->extent_list); 1200 spin_lock_init(&eti->extent_lock); 1201 atomic_set(&eti->total_ext_tree, 0); 1202 INIT_LIST_HEAD(&eti->zombie_list); 1203 atomic_set(&eti->total_zombie_tree, 0); 1204 atomic_set(&eti->total_ext_node, 0); 1205 } 1206 1207 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi) 1208 { 1209 __init_extent_tree_info(&sbi->extent_tree[EX_READ]); 1210 __init_extent_tree_info(&sbi->extent_tree[EX_BLOCK_AGE]); 1211 1212 /* initialize for block age extents */ 1213 atomic64_set(&sbi->allocated_data_blocks, 0); 1214 sbi->hot_data_age_threshold = DEF_HOT_DATA_AGE_THRESHOLD; 1215 sbi->warm_data_age_threshold = DEF_WARM_DATA_AGE_THRESHOLD; 1216 sbi->last_age_weight = LAST_AGE_WEIGHT; 1217 sbi->max_read_extent_count = DEF_MAX_READ_EXTENT_COUNT; 1218 } 1219 1220 int __init f2fs_create_extent_cache(void) 1221 { 1222 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", 1223 sizeof(struct extent_tree)); 1224 if (!extent_tree_slab) 1225 return -ENOMEM; 1226 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", 1227 sizeof(struct extent_node)); 1228 if (!extent_node_slab) { 1229 kmem_cache_destroy(extent_tree_slab); 1230 return -ENOMEM; 1231 } 1232 return 0; 1233 } 1234 1235 void f2fs_destroy_extent_cache(void) 1236 { 1237 kmem_cache_destroy(extent_node_slab); 1238 kmem_cache_destroy(extent_tree_slab); 1239 } 1240