1 /* 2 * f2fs extent cache support 3 * 4 * Copyright (c) 2015 Motorola Mobility 5 * Copyright (c) 2015 Samsung Electronics 6 * Authors: Jaegeuk Kim <jaegeuk@kernel.org> 7 * Chao Yu <chao2.yu@samsung.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 14 #include <linux/fs.h> 15 #include <linux/f2fs_fs.h> 16 17 #include "f2fs.h" 18 #include "node.h" 19 #include <trace/events/f2fs.h> 20 21 static struct kmem_cache *extent_tree_slab; 22 static struct kmem_cache *extent_node_slab; 23 24 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi, 25 struct extent_tree *et, struct extent_info *ei, 26 struct rb_node *parent, struct rb_node **p) 27 { 28 struct extent_node *en; 29 30 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC); 31 if (!en) 32 return NULL; 33 34 en->ei = *ei; 35 INIT_LIST_HEAD(&en->list); 36 en->et = et; 37 38 rb_link_node(&en->rb_node, parent, p); 39 rb_insert_color(&en->rb_node, &et->root); 40 atomic_inc(&et->node_cnt); 41 atomic_inc(&sbi->total_ext_node); 42 return en; 43 } 44 45 static void __detach_extent_node(struct f2fs_sb_info *sbi, 46 struct extent_tree *et, struct extent_node *en) 47 { 48 rb_erase(&en->rb_node, &et->root); 49 atomic_dec(&et->node_cnt); 50 atomic_dec(&sbi->total_ext_node); 51 52 if (et->cached_en == en) 53 et->cached_en = NULL; 54 kmem_cache_free(extent_node_slab, en); 55 } 56 57 /* 58 * Flow to release an extent_node: 59 * 1. list_del_init 60 * 2. __detach_extent_node 61 * 3. kmem_cache_free. 62 */ 63 static void __release_extent_node(struct f2fs_sb_info *sbi, 64 struct extent_tree *et, struct extent_node *en) 65 { 66 spin_lock(&sbi->extent_lock); 67 f2fs_bug_on(sbi, list_empty(&en->list)); 68 list_del_init(&en->list); 69 spin_unlock(&sbi->extent_lock); 70 71 __detach_extent_node(sbi, et, en); 72 } 73 74 static struct extent_tree *__grab_extent_tree(struct inode *inode) 75 { 76 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 77 struct extent_tree *et; 78 nid_t ino = inode->i_ino; 79 80 down_write(&sbi->extent_tree_lock); 81 et = radix_tree_lookup(&sbi->extent_tree_root, ino); 82 if (!et) { 83 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS); 84 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et); 85 memset(et, 0, sizeof(struct extent_tree)); 86 et->ino = ino; 87 et->root = RB_ROOT; 88 et->cached_en = NULL; 89 rwlock_init(&et->lock); 90 INIT_LIST_HEAD(&et->list); 91 atomic_set(&et->node_cnt, 0); 92 atomic_inc(&sbi->total_ext_tree); 93 } else { 94 atomic_dec(&sbi->total_zombie_tree); 95 list_del_init(&et->list); 96 } 97 up_write(&sbi->extent_tree_lock); 98 99 /* never died until evict_inode */ 100 F2FS_I(inode)->extent_tree = et; 101 102 return et; 103 } 104 105 static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi, 106 struct extent_tree *et, unsigned int fofs) 107 { 108 struct rb_node *node = et->root.rb_node; 109 struct extent_node *en = et->cached_en; 110 111 if (en) { 112 struct extent_info *cei = &en->ei; 113 114 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) { 115 stat_inc_cached_node_hit(sbi); 116 return en; 117 } 118 } 119 120 while (node) { 121 en = rb_entry(node, struct extent_node, rb_node); 122 123 if (fofs < en->ei.fofs) { 124 node = node->rb_left; 125 } else if (fofs >= en->ei.fofs + en->ei.len) { 126 node = node->rb_right; 127 } else { 128 stat_inc_rbtree_node_hit(sbi); 129 return en; 130 } 131 } 132 return NULL; 133 } 134 135 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi, 136 struct extent_tree *et, struct extent_info *ei) 137 { 138 struct rb_node **p = &et->root.rb_node; 139 struct extent_node *en; 140 141 en = __attach_extent_node(sbi, et, ei, NULL, p); 142 if (!en) 143 return NULL; 144 145 et->largest = en->ei; 146 et->cached_en = en; 147 return en; 148 } 149 150 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi, 151 struct extent_tree *et) 152 { 153 struct rb_node *node, *next; 154 struct extent_node *en; 155 unsigned int count = atomic_read(&et->node_cnt); 156 157 node = rb_first(&et->root); 158 while (node) { 159 next = rb_next(node); 160 en = rb_entry(node, struct extent_node, rb_node); 161 __release_extent_node(sbi, et, en); 162 node = next; 163 } 164 165 return count - atomic_read(&et->node_cnt); 166 } 167 168 static void __drop_largest_extent(struct inode *inode, 169 pgoff_t fofs, unsigned int len) 170 { 171 struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest; 172 173 if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs) { 174 largest->len = 0; 175 f2fs_mark_inode_dirty_sync(inode, true); 176 } 177 } 178 179 /* return true, if inode page is changed */ 180 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext) 181 { 182 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 183 struct extent_tree *et; 184 struct extent_node *en; 185 struct extent_info ei; 186 187 if (!f2fs_may_extent_tree(inode)) { 188 /* drop largest extent */ 189 if (i_ext && i_ext->len) { 190 i_ext->len = 0; 191 return true; 192 } 193 return false; 194 } 195 196 et = __grab_extent_tree(inode); 197 198 if (!i_ext || !i_ext->len) 199 return false; 200 201 get_extent_info(&ei, i_ext); 202 203 write_lock(&et->lock); 204 if (atomic_read(&et->node_cnt)) 205 goto out; 206 207 en = __init_extent_tree(sbi, et, &ei); 208 if (en) { 209 spin_lock(&sbi->extent_lock); 210 list_add_tail(&en->list, &sbi->extent_list); 211 spin_unlock(&sbi->extent_lock); 212 } 213 out: 214 write_unlock(&et->lock); 215 return false; 216 } 217 218 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs, 219 struct extent_info *ei) 220 { 221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 222 struct extent_tree *et = F2FS_I(inode)->extent_tree; 223 struct extent_node *en; 224 bool ret = false; 225 226 f2fs_bug_on(sbi, !et); 227 228 trace_f2fs_lookup_extent_tree_start(inode, pgofs); 229 230 read_lock(&et->lock); 231 232 if (et->largest.fofs <= pgofs && 233 et->largest.fofs + et->largest.len > pgofs) { 234 *ei = et->largest; 235 ret = true; 236 stat_inc_largest_node_hit(sbi); 237 goto out; 238 } 239 240 en = __lookup_extent_tree(sbi, et, pgofs); 241 if (en) { 242 *ei = en->ei; 243 spin_lock(&sbi->extent_lock); 244 if (!list_empty(&en->list)) { 245 list_move_tail(&en->list, &sbi->extent_list); 246 et->cached_en = en; 247 } 248 spin_unlock(&sbi->extent_lock); 249 ret = true; 250 } 251 out: 252 stat_inc_total_hit(sbi); 253 read_unlock(&et->lock); 254 255 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei); 256 return ret; 257 } 258 259 260 /* 261 * lookup extent at @fofs, if hit, return the extent 262 * if not, return NULL and 263 * @prev_ex: extent before fofs 264 * @next_ex: extent after fofs 265 * @insert_p: insert point for new extent at fofs 266 * in order to simpfy the insertion after. 267 * tree must stay unchanged between lookup and insertion. 268 */ 269 static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et, 270 unsigned int fofs, 271 struct extent_node **prev_ex, 272 struct extent_node **next_ex, 273 struct rb_node ***insert_p, 274 struct rb_node **insert_parent) 275 { 276 struct rb_node **pnode = &et->root.rb_node; 277 struct rb_node *parent = NULL, *tmp_node; 278 struct extent_node *en = et->cached_en; 279 280 *insert_p = NULL; 281 *insert_parent = NULL; 282 *prev_ex = NULL; 283 *next_ex = NULL; 284 285 if (RB_EMPTY_ROOT(&et->root)) 286 return NULL; 287 288 if (en) { 289 struct extent_info *cei = &en->ei; 290 291 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) 292 goto lookup_neighbors; 293 } 294 295 while (*pnode) { 296 parent = *pnode; 297 en = rb_entry(*pnode, struct extent_node, rb_node); 298 299 if (fofs < en->ei.fofs) 300 pnode = &(*pnode)->rb_left; 301 else if (fofs >= en->ei.fofs + en->ei.len) 302 pnode = &(*pnode)->rb_right; 303 else 304 goto lookup_neighbors; 305 } 306 307 *insert_p = pnode; 308 *insert_parent = parent; 309 310 en = rb_entry(parent, struct extent_node, rb_node); 311 tmp_node = parent; 312 if (parent && fofs > en->ei.fofs) 313 tmp_node = rb_next(parent); 314 *next_ex = tmp_node ? 315 rb_entry(tmp_node, struct extent_node, rb_node) : NULL; 316 317 tmp_node = parent; 318 if (parent && fofs < en->ei.fofs) 319 tmp_node = rb_prev(parent); 320 *prev_ex = tmp_node ? 321 rb_entry(tmp_node, struct extent_node, rb_node) : NULL; 322 return NULL; 323 324 lookup_neighbors: 325 if (fofs == en->ei.fofs) { 326 /* lookup prev node for merging backward later */ 327 tmp_node = rb_prev(&en->rb_node); 328 *prev_ex = tmp_node ? 329 rb_entry(tmp_node, struct extent_node, rb_node) : NULL; 330 } 331 if (fofs == en->ei.fofs + en->ei.len - 1) { 332 /* lookup next node for merging frontward later */ 333 tmp_node = rb_next(&en->rb_node); 334 *next_ex = tmp_node ? 335 rb_entry(tmp_node, struct extent_node, rb_node) : NULL; 336 } 337 return en; 338 } 339 340 static struct extent_node *__try_merge_extent_node(struct inode *inode, 341 struct extent_tree *et, struct extent_info *ei, 342 struct extent_node *prev_ex, 343 struct extent_node *next_ex) 344 { 345 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 346 struct extent_node *en = NULL; 347 348 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) { 349 prev_ex->ei.len += ei->len; 350 ei = &prev_ex->ei; 351 en = prev_ex; 352 } 353 354 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) { 355 if (en) 356 __release_extent_node(sbi, et, prev_ex); 357 next_ex->ei.fofs = ei->fofs; 358 next_ex->ei.blk = ei->blk; 359 next_ex->ei.len += ei->len; 360 en = next_ex; 361 } 362 363 if (!en) 364 return NULL; 365 366 __try_update_largest_extent(inode, et, en); 367 368 spin_lock(&sbi->extent_lock); 369 if (!list_empty(&en->list)) { 370 list_move_tail(&en->list, &sbi->extent_list); 371 et->cached_en = en; 372 } 373 spin_unlock(&sbi->extent_lock); 374 return en; 375 } 376 377 static struct extent_node *__insert_extent_tree(struct inode *inode, 378 struct extent_tree *et, struct extent_info *ei, 379 struct rb_node **insert_p, 380 struct rb_node *insert_parent) 381 { 382 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 383 struct rb_node **p = &et->root.rb_node; 384 struct rb_node *parent = NULL; 385 struct extent_node *en = NULL; 386 387 if (insert_p && insert_parent) { 388 parent = insert_parent; 389 p = insert_p; 390 goto do_insert; 391 } 392 393 while (*p) { 394 parent = *p; 395 en = rb_entry(parent, struct extent_node, rb_node); 396 397 if (ei->fofs < en->ei.fofs) 398 p = &(*p)->rb_left; 399 else if (ei->fofs >= en->ei.fofs + en->ei.len) 400 p = &(*p)->rb_right; 401 else 402 f2fs_bug_on(sbi, 1); 403 } 404 do_insert: 405 en = __attach_extent_node(sbi, et, ei, parent, p); 406 if (!en) 407 return NULL; 408 409 __try_update_largest_extent(inode, et, en); 410 411 /* update in global extent list */ 412 spin_lock(&sbi->extent_lock); 413 list_add_tail(&en->list, &sbi->extent_list); 414 et->cached_en = en; 415 spin_unlock(&sbi->extent_lock); 416 return en; 417 } 418 419 static unsigned int f2fs_update_extent_tree_range(struct inode *inode, 420 pgoff_t fofs, block_t blkaddr, unsigned int len) 421 { 422 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 423 struct extent_tree *et = F2FS_I(inode)->extent_tree; 424 struct extent_node *en = NULL, *en1 = NULL; 425 struct extent_node *prev_en = NULL, *next_en = NULL; 426 struct extent_info ei, dei, prev; 427 struct rb_node **insert_p = NULL, *insert_parent = NULL; 428 unsigned int end = fofs + len; 429 unsigned int pos = (unsigned int)fofs; 430 431 if (!et) 432 return false; 433 434 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len); 435 436 write_lock(&et->lock); 437 438 if (is_inode_flag_set(inode, FI_NO_EXTENT)) { 439 write_unlock(&et->lock); 440 return false; 441 } 442 443 prev = et->largest; 444 dei.len = 0; 445 446 /* 447 * drop largest extent before lookup, in case it's already 448 * been shrunk from extent tree 449 */ 450 __drop_largest_extent(inode, fofs, len); 451 452 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */ 453 en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en, 454 &insert_p, &insert_parent); 455 if (!en) 456 en = next_en; 457 458 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */ 459 while (en && en->ei.fofs < end) { 460 unsigned int org_end; 461 int parts = 0; /* # of parts current extent split into */ 462 463 next_en = en1 = NULL; 464 465 dei = en->ei; 466 org_end = dei.fofs + dei.len; 467 f2fs_bug_on(sbi, pos >= org_end); 468 469 if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) { 470 en->ei.len = pos - en->ei.fofs; 471 prev_en = en; 472 parts = 1; 473 } 474 475 if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) { 476 if (parts) { 477 set_extent_info(&ei, end, 478 end - dei.fofs + dei.blk, 479 org_end - end); 480 en1 = __insert_extent_tree(inode, et, &ei, 481 NULL, NULL); 482 next_en = en1; 483 } else { 484 en->ei.fofs = end; 485 en->ei.blk += end - dei.fofs; 486 en->ei.len -= end - dei.fofs; 487 next_en = en; 488 } 489 parts++; 490 } 491 492 if (!next_en) { 493 struct rb_node *node = rb_next(&en->rb_node); 494 495 next_en = node ? 496 rb_entry(node, struct extent_node, rb_node) 497 : NULL; 498 } 499 500 if (parts) 501 __try_update_largest_extent(inode, et, en); 502 else 503 __release_extent_node(sbi, et, en); 504 505 /* 506 * if original extent is split into zero or two parts, extent 507 * tree has been altered by deletion or insertion, therefore 508 * invalidate pointers regard to tree. 509 */ 510 if (parts != 1) { 511 insert_p = NULL; 512 insert_parent = NULL; 513 } 514 en = next_en; 515 } 516 517 /* 3. update extent in extent cache */ 518 if (blkaddr) { 519 520 set_extent_info(&ei, fofs, blkaddr, len); 521 if (!__try_merge_extent_node(inode, et, &ei, prev_en, next_en)) 522 __insert_extent_tree(inode, et, &ei, 523 insert_p, insert_parent); 524 525 /* give up extent_cache, if split and small updates happen */ 526 if (dei.len >= 1 && 527 prev.len < F2FS_MIN_EXTENT_LEN && 528 et->largest.len < F2FS_MIN_EXTENT_LEN) { 529 __drop_largest_extent(inode, 0, UINT_MAX); 530 set_inode_flag(inode, FI_NO_EXTENT); 531 } 532 } 533 534 if (is_inode_flag_set(inode, FI_NO_EXTENT)) 535 __free_extent_tree(sbi, et); 536 537 write_unlock(&et->lock); 538 539 return !__is_extent_same(&prev, &et->largest); 540 } 541 542 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink) 543 { 544 struct extent_tree *et, *next; 545 struct extent_node *en; 546 unsigned int node_cnt = 0, tree_cnt = 0; 547 int remained; 548 549 if (!test_opt(sbi, EXTENT_CACHE)) 550 return 0; 551 552 if (!atomic_read(&sbi->total_zombie_tree)) 553 goto free_node; 554 555 if (!down_write_trylock(&sbi->extent_tree_lock)) 556 goto out; 557 558 /* 1. remove unreferenced extent tree */ 559 list_for_each_entry_safe(et, next, &sbi->zombie_list, list) { 560 if (atomic_read(&et->node_cnt)) { 561 write_lock(&et->lock); 562 node_cnt += __free_extent_tree(sbi, et); 563 write_unlock(&et->lock); 564 } 565 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 566 list_del_init(&et->list); 567 radix_tree_delete(&sbi->extent_tree_root, et->ino); 568 kmem_cache_free(extent_tree_slab, et); 569 atomic_dec(&sbi->total_ext_tree); 570 atomic_dec(&sbi->total_zombie_tree); 571 tree_cnt++; 572 573 if (node_cnt + tree_cnt >= nr_shrink) 574 goto unlock_out; 575 cond_resched(); 576 } 577 up_write(&sbi->extent_tree_lock); 578 579 free_node: 580 /* 2. remove LRU extent entries */ 581 if (!down_write_trylock(&sbi->extent_tree_lock)) 582 goto out; 583 584 remained = nr_shrink - (node_cnt + tree_cnt); 585 586 spin_lock(&sbi->extent_lock); 587 for (; remained > 0; remained--) { 588 if (list_empty(&sbi->extent_list)) 589 break; 590 en = list_first_entry(&sbi->extent_list, 591 struct extent_node, list); 592 et = en->et; 593 if (!write_trylock(&et->lock)) { 594 /* refresh this extent node's position in extent list */ 595 list_move_tail(&en->list, &sbi->extent_list); 596 continue; 597 } 598 599 list_del_init(&en->list); 600 spin_unlock(&sbi->extent_lock); 601 602 __detach_extent_node(sbi, et, en); 603 604 write_unlock(&et->lock); 605 node_cnt++; 606 spin_lock(&sbi->extent_lock); 607 } 608 spin_unlock(&sbi->extent_lock); 609 610 unlock_out: 611 up_write(&sbi->extent_tree_lock); 612 out: 613 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt); 614 615 return node_cnt + tree_cnt; 616 } 617 618 unsigned int f2fs_destroy_extent_node(struct inode *inode) 619 { 620 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 621 struct extent_tree *et = F2FS_I(inode)->extent_tree; 622 unsigned int node_cnt = 0; 623 624 if (!et || !atomic_read(&et->node_cnt)) 625 return 0; 626 627 write_lock(&et->lock); 628 node_cnt = __free_extent_tree(sbi, et); 629 write_unlock(&et->lock); 630 631 return node_cnt; 632 } 633 634 void f2fs_drop_extent_tree(struct inode *inode) 635 { 636 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 637 struct extent_tree *et = F2FS_I(inode)->extent_tree; 638 639 set_inode_flag(inode, FI_NO_EXTENT); 640 641 write_lock(&et->lock); 642 __free_extent_tree(sbi, et); 643 __drop_largest_extent(inode, 0, UINT_MAX); 644 write_unlock(&et->lock); 645 } 646 647 void f2fs_destroy_extent_tree(struct inode *inode) 648 { 649 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 650 struct extent_tree *et = F2FS_I(inode)->extent_tree; 651 unsigned int node_cnt = 0; 652 653 if (!et) 654 return; 655 656 if (inode->i_nlink && !is_bad_inode(inode) && 657 atomic_read(&et->node_cnt)) { 658 down_write(&sbi->extent_tree_lock); 659 list_add_tail(&et->list, &sbi->zombie_list); 660 atomic_inc(&sbi->total_zombie_tree); 661 up_write(&sbi->extent_tree_lock); 662 return; 663 } 664 665 /* free all extent info belong to this extent tree */ 666 node_cnt = f2fs_destroy_extent_node(inode); 667 668 /* delete extent tree entry in radix tree */ 669 down_write(&sbi->extent_tree_lock); 670 f2fs_bug_on(sbi, atomic_read(&et->node_cnt)); 671 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino); 672 kmem_cache_free(extent_tree_slab, et); 673 atomic_dec(&sbi->total_ext_tree); 674 up_write(&sbi->extent_tree_lock); 675 676 F2FS_I(inode)->extent_tree = NULL; 677 678 trace_f2fs_destroy_extent_tree(inode, node_cnt); 679 } 680 681 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs, 682 struct extent_info *ei) 683 { 684 if (!f2fs_may_extent_tree(inode)) 685 return false; 686 687 return f2fs_lookup_extent_tree(inode, pgofs, ei); 688 } 689 690 void f2fs_update_extent_cache(struct dnode_of_data *dn) 691 { 692 pgoff_t fofs; 693 block_t blkaddr; 694 695 if (!f2fs_may_extent_tree(dn->inode)) 696 return; 697 698 if (dn->data_blkaddr == NEW_ADDR) 699 blkaddr = NULL_ADDR; 700 else 701 blkaddr = dn->data_blkaddr; 702 703 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 704 dn->ofs_in_node; 705 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1); 706 } 707 708 void f2fs_update_extent_cache_range(struct dnode_of_data *dn, 709 pgoff_t fofs, block_t blkaddr, unsigned int len) 710 711 { 712 if (!f2fs_may_extent_tree(dn->inode)) 713 return; 714 715 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len); 716 } 717 718 void init_extent_cache_info(struct f2fs_sb_info *sbi) 719 { 720 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO); 721 init_rwsem(&sbi->extent_tree_lock); 722 INIT_LIST_HEAD(&sbi->extent_list); 723 spin_lock_init(&sbi->extent_lock); 724 atomic_set(&sbi->total_ext_tree, 0); 725 INIT_LIST_HEAD(&sbi->zombie_list); 726 atomic_set(&sbi->total_zombie_tree, 0); 727 atomic_set(&sbi->total_ext_node, 0); 728 } 729 730 int __init create_extent_cache(void) 731 { 732 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree", 733 sizeof(struct extent_tree)); 734 if (!extent_tree_slab) 735 return -ENOMEM; 736 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node", 737 sizeof(struct extent_node)); 738 if (!extent_node_slab) { 739 kmem_cache_destroy(extent_tree_slab); 740 return -ENOMEM; 741 } 742 return 0; 743 } 744 745 void destroy_extent_cache(void) 746 { 747 kmem_cache_destroy(extent_node_slab); 748 kmem_cache_destroy(extent_tree_slab); 749 } 750