xref: /linux/fs/f2fs/extent_cache.c (revision 110e6f26af80dfd90b6e5c645b1aed7228aa580d)
1 /*
2  * f2fs extent cache support
3  *
4  * Copyright (c) 2015 Motorola Mobility
5  * Copyright (c) 2015 Samsung Electronics
6  * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
7  *          Chao Yu <chao2.yu@samsung.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/fs.h>
15 #include <linux/f2fs_fs.h>
16 
17 #include "f2fs.h"
18 #include "node.h"
19 #include <trace/events/f2fs.h>
20 
21 static struct kmem_cache *extent_tree_slab;
22 static struct kmem_cache *extent_node_slab;
23 
24 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
25 				struct extent_tree *et, struct extent_info *ei,
26 				struct rb_node *parent, struct rb_node **p)
27 {
28 	struct extent_node *en;
29 
30 	en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
31 	if (!en)
32 		return NULL;
33 
34 	en->ei = *ei;
35 	INIT_LIST_HEAD(&en->list);
36 	en->et = et;
37 
38 	rb_link_node(&en->rb_node, parent, p);
39 	rb_insert_color(&en->rb_node, &et->root);
40 	atomic_inc(&et->node_cnt);
41 	atomic_inc(&sbi->total_ext_node);
42 	return en;
43 }
44 
45 static void __detach_extent_node(struct f2fs_sb_info *sbi,
46 				struct extent_tree *et, struct extent_node *en)
47 {
48 	rb_erase(&en->rb_node, &et->root);
49 	atomic_dec(&et->node_cnt);
50 	atomic_dec(&sbi->total_ext_node);
51 
52 	if (et->cached_en == en)
53 		et->cached_en = NULL;
54 	kmem_cache_free(extent_node_slab, en);
55 }
56 
57 /*
58  * Flow to release an extent_node:
59  * 1. list_del_init
60  * 2. __detach_extent_node
61  * 3. kmem_cache_free.
62  */
63 static void __release_extent_node(struct f2fs_sb_info *sbi,
64 			struct extent_tree *et, struct extent_node *en)
65 {
66 	spin_lock(&sbi->extent_lock);
67 	f2fs_bug_on(sbi, list_empty(&en->list));
68 	list_del_init(&en->list);
69 	spin_unlock(&sbi->extent_lock);
70 
71 	__detach_extent_node(sbi, et, en);
72 }
73 
74 static struct extent_tree *__grab_extent_tree(struct inode *inode)
75 {
76 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
77 	struct extent_tree *et;
78 	nid_t ino = inode->i_ino;
79 
80 	down_write(&sbi->extent_tree_lock);
81 	et = radix_tree_lookup(&sbi->extent_tree_root, ino);
82 	if (!et) {
83 		et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
84 		f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
85 		memset(et, 0, sizeof(struct extent_tree));
86 		et->ino = ino;
87 		et->root = RB_ROOT;
88 		et->cached_en = NULL;
89 		rwlock_init(&et->lock);
90 		INIT_LIST_HEAD(&et->list);
91 		atomic_set(&et->node_cnt, 0);
92 		atomic_inc(&sbi->total_ext_tree);
93 	} else {
94 		atomic_dec(&sbi->total_zombie_tree);
95 		list_del_init(&et->list);
96 	}
97 	up_write(&sbi->extent_tree_lock);
98 
99 	/* never died until evict_inode */
100 	F2FS_I(inode)->extent_tree = et;
101 
102 	return et;
103 }
104 
105 static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
106 				struct extent_tree *et, unsigned int fofs)
107 {
108 	struct rb_node *node = et->root.rb_node;
109 	struct extent_node *en = et->cached_en;
110 
111 	if (en) {
112 		struct extent_info *cei = &en->ei;
113 
114 		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
115 			stat_inc_cached_node_hit(sbi);
116 			return en;
117 		}
118 	}
119 
120 	while (node) {
121 		en = rb_entry(node, struct extent_node, rb_node);
122 
123 		if (fofs < en->ei.fofs) {
124 			node = node->rb_left;
125 		} else if (fofs >= en->ei.fofs + en->ei.len) {
126 			node = node->rb_right;
127 		} else {
128 			stat_inc_rbtree_node_hit(sbi);
129 			return en;
130 		}
131 	}
132 	return NULL;
133 }
134 
135 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
136 				struct extent_tree *et, struct extent_info *ei)
137 {
138 	struct rb_node **p = &et->root.rb_node;
139 	struct extent_node *en;
140 
141 	en = __attach_extent_node(sbi, et, ei, NULL, p);
142 	if (!en)
143 		return NULL;
144 
145 	et->largest = en->ei;
146 	et->cached_en = en;
147 	return en;
148 }
149 
150 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
151 					struct extent_tree *et)
152 {
153 	struct rb_node *node, *next;
154 	struct extent_node *en;
155 	unsigned int count = atomic_read(&et->node_cnt);
156 
157 	node = rb_first(&et->root);
158 	while (node) {
159 		next = rb_next(node);
160 		en = rb_entry(node, struct extent_node, rb_node);
161 		__release_extent_node(sbi, et, en);
162 		node = next;
163 	}
164 
165 	return count - atomic_read(&et->node_cnt);
166 }
167 
168 static void __drop_largest_extent(struct inode *inode,
169 					pgoff_t fofs, unsigned int len)
170 {
171 	struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
172 
173 	if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs)
174 		largest->len = 0;
175 }
176 
177 /* return true, if inode page is changed */
178 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
179 {
180 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
181 	struct extent_tree *et;
182 	struct extent_node *en;
183 	struct extent_info ei;
184 
185 	if (!f2fs_may_extent_tree(inode)) {
186 		/* drop largest extent */
187 		if (i_ext && i_ext->len) {
188 			i_ext->len = 0;
189 			return true;
190 		}
191 		return false;
192 	}
193 
194 	et = __grab_extent_tree(inode);
195 
196 	if (!i_ext || !i_ext->len)
197 		return false;
198 
199 	set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
200 		le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
201 
202 	write_lock(&et->lock);
203 	if (atomic_read(&et->node_cnt))
204 		goto out;
205 
206 	en = __init_extent_tree(sbi, et, &ei);
207 	if (en) {
208 		spin_lock(&sbi->extent_lock);
209 		list_add_tail(&en->list, &sbi->extent_list);
210 		spin_unlock(&sbi->extent_lock);
211 	}
212 out:
213 	write_unlock(&et->lock);
214 	return false;
215 }
216 
217 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
218 							struct extent_info *ei)
219 {
220 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
222 	struct extent_node *en;
223 	bool ret = false;
224 
225 	f2fs_bug_on(sbi, !et);
226 
227 	trace_f2fs_lookup_extent_tree_start(inode, pgofs);
228 
229 	read_lock(&et->lock);
230 
231 	if (et->largest.fofs <= pgofs &&
232 			et->largest.fofs + et->largest.len > pgofs) {
233 		*ei = et->largest;
234 		ret = true;
235 		stat_inc_largest_node_hit(sbi);
236 		goto out;
237 	}
238 
239 	en = __lookup_extent_tree(sbi, et, pgofs);
240 	if (en) {
241 		*ei = en->ei;
242 		spin_lock(&sbi->extent_lock);
243 		if (!list_empty(&en->list)) {
244 			list_move_tail(&en->list, &sbi->extent_list);
245 			et->cached_en = en;
246 		}
247 		spin_unlock(&sbi->extent_lock);
248 		ret = true;
249 	}
250 out:
251 	stat_inc_total_hit(sbi);
252 	read_unlock(&et->lock);
253 
254 	trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
255 	return ret;
256 }
257 
258 
259 /*
260  * lookup extent at @fofs, if hit, return the extent
261  * if not, return NULL and
262  * @prev_ex: extent before fofs
263  * @next_ex: extent after fofs
264  * @insert_p: insert point for new extent at fofs
265  * in order to simpfy the insertion after.
266  * tree must stay unchanged between lookup and insertion.
267  */
268 static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
269 				unsigned int fofs,
270 				struct extent_node **prev_ex,
271 				struct extent_node **next_ex,
272 				struct rb_node ***insert_p,
273 				struct rb_node **insert_parent)
274 {
275 	struct rb_node **pnode = &et->root.rb_node;
276 	struct rb_node *parent = NULL, *tmp_node;
277 	struct extent_node *en = et->cached_en;
278 
279 	*insert_p = NULL;
280 	*insert_parent = NULL;
281 	*prev_ex = NULL;
282 	*next_ex = NULL;
283 
284 	if (RB_EMPTY_ROOT(&et->root))
285 		return NULL;
286 
287 	if (en) {
288 		struct extent_info *cei = &en->ei;
289 
290 		if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
291 			goto lookup_neighbors;
292 	}
293 
294 	while (*pnode) {
295 		parent = *pnode;
296 		en = rb_entry(*pnode, struct extent_node, rb_node);
297 
298 		if (fofs < en->ei.fofs)
299 			pnode = &(*pnode)->rb_left;
300 		else if (fofs >= en->ei.fofs + en->ei.len)
301 			pnode = &(*pnode)->rb_right;
302 		else
303 			goto lookup_neighbors;
304 	}
305 
306 	*insert_p = pnode;
307 	*insert_parent = parent;
308 
309 	en = rb_entry(parent, struct extent_node, rb_node);
310 	tmp_node = parent;
311 	if (parent && fofs > en->ei.fofs)
312 		tmp_node = rb_next(parent);
313 	*next_ex = tmp_node ?
314 		rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
315 
316 	tmp_node = parent;
317 	if (parent && fofs < en->ei.fofs)
318 		tmp_node = rb_prev(parent);
319 	*prev_ex = tmp_node ?
320 		rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
321 	return NULL;
322 
323 lookup_neighbors:
324 	if (fofs == en->ei.fofs) {
325 		/* lookup prev node for merging backward later */
326 		tmp_node = rb_prev(&en->rb_node);
327 		*prev_ex = tmp_node ?
328 			rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
329 	}
330 	if (fofs == en->ei.fofs + en->ei.len - 1) {
331 		/* lookup next node for merging frontward later */
332 		tmp_node = rb_next(&en->rb_node);
333 		*next_ex = tmp_node ?
334 			rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
335 	}
336 	return en;
337 }
338 
339 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
340 				struct extent_tree *et, struct extent_info *ei,
341 				struct extent_node *prev_ex,
342 				struct extent_node *next_ex)
343 {
344 	struct extent_node *en = NULL;
345 
346 	if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
347 		prev_ex->ei.len += ei->len;
348 		ei = &prev_ex->ei;
349 		en = prev_ex;
350 	}
351 
352 	if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
353 		if (en)
354 			__release_extent_node(sbi, et, prev_ex);
355 		next_ex->ei.fofs = ei->fofs;
356 		next_ex->ei.blk = ei->blk;
357 		next_ex->ei.len += ei->len;
358 		en = next_ex;
359 	}
360 
361 	if (!en)
362 		return NULL;
363 
364 	__try_update_largest_extent(et, en);
365 
366 	spin_lock(&sbi->extent_lock);
367 	if (!list_empty(&en->list)) {
368 		list_move_tail(&en->list, &sbi->extent_list);
369 		et->cached_en = en;
370 	}
371 	spin_unlock(&sbi->extent_lock);
372 	return en;
373 }
374 
375 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
376 				struct extent_tree *et, struct extent_info *ei,
377 				struct rb_node **insert_p,
378 				struct rb_node *insert_parent)
379 {
380 	struct rb_node **p = &et->root.rb_node;
381 	struct rb_node *parent = NULL;
382 	struct extent_node *en = NULL;
383 
384 	if (insert_p && insert_parent) {
385 		parent = insert_parent;
386 		p = insert_p;
387 		goto do_insert;
388 	}
389 
390 	while (*p) {
391 		parent = *p;
392 		en = rb_entry(parent, struct extent_node, rb_node);
393 
394 		if (ei->fofs < en->ei.fofs)
395 			p = &(*p)->rb_left;
396 		else if (ei->fofs >= en->ei.fofs + en->ei.len)
397 			p = &(*p)->rb_right;
398 		else
399 			f2fs_bug_on(sbi, 1);
400 	}
401 do_insert:
402 	en = __attach_extent_node(sbi, et, ei, parent, p);
403 	if (!en)
404 		return NULL;
405 
406 	__try_update_largest_extent(et, en);
407 
408 	/* update in global extent list */
409 	spin_lock(&sbi->extent_lock);
410 	list_add_tail(&en->list, &sbi->extent_list);
411 	et->cached_en = en;
412 	spin_unlock(&sbi->extent_lock);
413 	return en;
414 }
415 
416 static unsigned int f2fs_update_extent_tree_range(struct inode *inode,
417 				pgoff_t fofs, block_t blkaddr, unsigned int len)
418 {
419 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
420 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
421 	struct extent_node *en = NULL, *en1 = NULL;
422 	struct extent_node *prev_en = NULL, *next_en = NULL;
423 	struct extent_info ei, dei, prev;
424 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
425 	unsigned int end = fofs + len;
426 	unsigned int pos = (unsigned int)fofs;
427 
428 	if (!et)
429 		return false;
430 
431 	trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
432 
433 	write_lock(&et->lock);
434 
435 	if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
436 		write_unlock(&et->lock);
437 		return false;
438 	}
439 
440 	prev = et->largest;
441 	dei.len = 0;
442 
443 	/*
444 	 * drop largest extent before lookup, in case it's already
445 	 * been shrunk from extent tree
446 	 */
447 	__drop_largest_extent(inode, fofs, len);
448 
449 	/* 1. lookup first extent node in range [fofs, fofs + len - 1] */
450 	en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
451 					&insert_p, &insert_parent);
452 	if (!en)
453 		en = next_en;
454 
455 	/* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
456 	while (en && en->ei.fofs < end) {
457 		unsigned int org_end;
458 		int parts = 0;	/* # of parts current extent split into */
459 
460 		next_en = en1 = NULL;
461 
462 		dei = en->ei;
463 		org_end = dei.fofs + dei.len;
464 		f2fs_bug_on(sbi, pos >= org_end);
465 
466 		if (pos > dei.fofs &&	pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
467 			en->ei.len = pos - en->ei.fofs;
468 			prev_en = en;
469 			parts = 1;
470 		}
471 
472 		if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
473 			if (parts) {
474 				set_extent_info(&ei, end,
475 						end - dei.fofs + dei.blk,
476 						org_end - end);
477 				en1 = __insert_extent_tree(sbi, et, &ei,
478 							NULL, NULL);
479 				next_en = en1;
480 			} else {
481 				en->ei.fofs = end;
482 				en->ei.blk += end - dei.fofs;
483 				en->ei.len -= end - dei.fofs;
484 				next_en = en;
485 			}
486 			parts++;
487 		}
488 
489 		if (!next_en) {
490 			struct rb_node *node = rb_next(&en->rb_node);
491 
492 			next_en = node ?
493 				rb_entry(node, struct extent_node, rb_node)
494 				: NULL;
495 		}
496 
497 		if (parts)
498 			__try_update_largest_extent(et, en);
499 		else
500 			__release_extent_node(sbi, et, en);
501 
502 		/*
503 		 * if original extent is split into zero or two parts, extent
504 		 * tree has been altered by deletion or insertion, therefore
505 		 * invalidate pointers regard to tree.
506 		 */
507 		if (parts != 1) {
508 			insert_p = NULL;
509 			insert_parent = NULL;
510 		}
511 		en = next_en;
512 	}
513 
514 	/* 3. update extent in extent cache */
515 	if (blkaddr) {
516 
517 		set_extent_info(&ei, fofs, blkaddr, len);
518 		if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
519 			__insert_extent_tree(sbi, et, &ei,
520 						insert_p, insert_parent);
521 
522 		/* give up extent_cache, if split and small updates happen */
523 		if (dei.len >= 1 &&
524 				prev.len < F2FS_MIN_EXTENT_LEN &&
525 				et->largest.len < F2FS_MIN_EXTENT_LEN) {
526 			et->largest.len = 0;
527 			set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
528 		}
529 	}
530 
531 	if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
532 		__free_extent_tree(sbi, et);
533 
534 	write_unlock(&et->lock);
535 
536 	return !__is_extent_same(&prev, &et->largest);
537 }
538 
539 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
540 {
541 	struct extent_tree *et, *next;
542 	struct extent_node *en;
543 	unsigned int node_cnt = 0, tree_cnt = 0;
544 	int remained;
545 
546 	if (!test_opt(sbi, EXTENT_CACHE))
547 		return 0;
548 
549 	if (!atomic_read(&sbi->total_zombie_tree))
550 		goto free_node;
551 
552 	if (!down_write_trylock(&sbi->extent_tree_lock))
553 		goto out;
554 
555 	/* 1. remove unreferenced extent tree */
556 	list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
557 		if (atomic_read(&et->node_cnt)) {
558 			write_lock(&et->lock);
559 			node_cnt += __free_extent_tree(sbi, et);
560 			write_unlock(&et->lock);
561 		}
562 		f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
563 		list_del_init(&et->list);
564 		radix_tree_delete(&sbi->extent_tree_root, et->ino);
565 		kmem_cache_free(extent_tree_slab, et);
566 		atomic_dec(&sbi->total_ext_tree);
567 		atomic_dec(&sbi->total_zombie_tree);
568 		tree_cnt++;
569 
570 		if (node_cnt + tree_cnt >= nr_shrink)
571 			goto unlock_out;
572 		cond_resched();
573 	}
574 	up_write(&sbi->extent_tree_lock);
575 
576 free_node:
577 	/* 2. remove LRU extent entries */
578 	if (!down_write_trylock(&sbi->extent_tree_lock))
579 		goto out;
580 
581 	remained = nr_shrink - (node_cnt + tree_cnt);
582 
583 	spin_lock(&sbi->extent_lock);
584 	for (; remained > 0; remained--) {
585 		if (list_empty(&sbi->extent_list))
586 			break;
587 		en = list_first_entry(&sbi->extent_list,
588 					struct extent_node, list);
589 		et = en->et;
590 		if (!write_trylock(&et->lock)) {
591 			/* refresh this extent node's position in extent list */
592 			list_move_tail(&en->list, &sbi->extent_list);
593 			continue;
594 		}
595 
596 		list_del_init(&en->list);
597 		spin_unlock(&sbi->extent_lock);
598 
599 		__detach_extent_node(sbi, et, en);
600 
601 		write_unlock(&et->lock);
602 		node_cnt++;
603 		spin_lock(&sbi->extent_lock);
604 	}
605 	spin_unlock(&sbi->extent_lock);
606 
607 unlock_out:
608 	up_write(&sbi->extent_tree_lock);
609 out:
610 	trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
611 
612 	return node_cnt + tree_cnt;
613 }
614 
615 unsigned int f2fs_destroy_extent_node(struct inode *inode)
616 {
617 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
618 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
619 	unsigned int node_cnt = 0;
620 
621 	if (!et || !atomic_read(&et->node_cnt))
622 		return 0;
623 
624 	write_lock(&et->lock);
625 	node_cnt = __free_extent_tree(sbi, et);
626 	write_unlock(&et->lock);
627 
628 	return node_cnt;
629 }
630 
631 void f2fs_destroy_extent_tree(struct inode *inode)
632 {
633 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
634 	struct extent_tree *et = F2FS_I(inode)->extent_tree;
635 	unsigned int node_cnt = 0;
636 
637 	if (!et)
638 		return;
639 
640 	if (inode->i_nlink && !is_bad_inode(inode) &&
641 					atomic_read(&et->node_cnt)) {
642 		down_write(&sbi->extent_tree_lock);
643 		list_add_tail(&et->list, &sbi->zombie_list);
644 		atomic_inc(&sbi->total_zombie_tree);
645 		up_write(&sbi->extent_tree_lock);
646 		return;
647 	}
648 
649 	/* free all extent info belong to this extent tree */
650 	node_cnt = f2fs_destroy_extent_node(inode);
651 
652 	/* delete extent tree entry in radix tree */
653 	down_write(&sbi->extent_tree_lock);
654 	f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
655 	radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
656 	kmem_cache_free(extent_tree_slab, et);
657 	atomic_dec(&sbi->total_ext_tree);
658 	up_write(&sbi->extent_tree_lock);
659 
660 	F2FS_I(inode)->extent_tree = NULL;
661 
662 	trace_f2fs_destroy_extent_tree(inode, node_cnt);
663 }
664 
665 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
666 					struct extent_info *ei)
667 {
668 	if (!f2fs_may_extent_tree(inode))
669 		return false;
670 
671 	return f2fs_lookup_extent_tree(inode, pgofs, ei);
672 }
673 
674 void f2fs_update_extent_cache(struct dnode_of_data *dn)
675 {
676 	pgoff_t fofs;
677 	block_t blkaddr;
678 
679 	if (!f2fs_may_extent_tree(dn->inode))
680 		return;
681 
682 	if (dn->data_blkaddr == NEW_ADDR)
683 		blkaddr = NULL_ADDR;
684 	else
685 		blkaddr = dn->data_blkaddr;
686 
687 	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
688 								dn->ofs_in_node;
689 
690 	if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1))
691 		sync_inode_page(dn);
692 }
693 
694 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
695 				pgoff_t fofs, block_t blkaddr, unsigned int len)
696 
697 {
698 	if (!f2fs_may_extent_tree(dn->inode))
699 		return;
700 
701 	if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len))
702 		sync_inode_page(dn);
703 }
704 
705 void init_extent_cache_info(struct f2fs_sb_info *sbi)
706 {
707 	INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
708 	init_rwsem(&sbi->extent_tree_lock);
709 	INIT_LIST_HEAD(&sbi->extent_list);
710 	spin_lock_init(&sbi->extent_lock);
711 	atomic_set(&sbi->total_ext_tree, 0);
712 	INIT_LIST_HEAD(&sbi->zombie_list);
713 	atomic_set(&sbi->total_zombie_tree, 0);
714 	atomic_set(&sbi->total_ext_node, 0);
715 }
716 
717 int __init create_extent_cache(void)
718 {
719 	extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
720 			sizeof(struct extent_tree));
721 	if (!extent_tree_slab)
722 		return -ENOMEM;
723 	extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
724 			sizeof(struct extent_node));
725 	if (!extent_node_slab) {
726 		kmem_cache_destroy(extent_tree_slab);
727 		return -ENOMEM;
728 	}
729 	return 0;
730 }
731 
732 void destroy_extent_cache(void)
733 {
734 	kmem_cache_destroy(extent_node_slab);
735 	kmem_cache_destroy(extent_tree_slab);
736 }
737