1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS); 44 } 45 46 void f2fs_destroy_bioset(void) 47 { 48 bioset_exit(&f2fs_bioset); 49 } 50 51 static bool __is_cp_guaranteed(struct page *page) 52 { 53 struct address_space *mapping = page->mapping; 54 struct inode *inode; 55 struct f2fs_sb_info *sbi; 56 57 if (!mapping) 58 return false; 59 60 inode = mapping->host; 61 sbi = F2FS_I_SB(inode); 62 63 if (inode->i_ino == F2FS_META_INO(sbi) || 64 inode->i_ino == F2FS_NODE_INO(sbi) || 65 S_ISDIR(inode->i_mode)) 66 return true; 67 68 if (f2fs_is_compressed_page(page)) 69 return false; 70 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 71 page_private_gcing(page)) 72 return true; 73 return false; 74 } 75 76 static enum count_type __read_io_type(struct page *page) 77 { 78 struct address_space *mapping = page_file_mapping(page); 79 80 if (mapping) { 81 struct inode *inode = mapping->host; 82 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 83 84 if (inode->i_ino == F2FS_META_INO(sbi)) 85 return F2FS_RD_META; 86 87 if (inode->i_ino == F2FS_NODE_INO(sbi)) 88 return F2FS_RD_NODE; 89 } 90 return F2FS_RD_DATA; 91 } 92 93 /* postprocessing steps for read bios */ 94 enum bio_post_read_step { 95 #ifdef CONFIG_FS_ENCRYPTION 96 STEP_DECRYPT = BIT(0), 97 #else 98 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 99 #endif 100 #ifdef CONFIG_F2FS_FS_COMPRESSION 101 STEP_DECOMPRESS = BIT(1), 102 #else 103 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 104 #endif 105 #ifdef CONFIG_FS_VERITY 106 STEP_VERITY = BIT(2), 107 #else 108 STEP_VERITY = 0, /* compile out the verity-related code */ 109 #endif 110 }; 111 112 struct bio_post_read_ctx { 113 struct bio *bio; 114 struct f2fs_sb_info *sbi; 115 struct work_struct work; 116 unsigned int enabled_steps; 117 /* 118 * decompression_attempted keeps track of whether 119 * f2fs_end_read_compressed_page() has been called on the pages in the 120 * bio that belong to a compressed cluster yet. 121 */ 122 bool decompression_attempted; 123 block_t fs_blkaddr; 124 }; 125 126 /* 127 * Update and unlock a bio's pages, and free the bio. 128 * 129 * This marks pages up-to-date only if there was no error in the bio (I/O error, 130 * decryption error, or verity error), as indicated by bio->bi_status. 131 * 132 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) 133 * aren't marked up-to-date here, as decompression is done on a per-compression- 134 * cluster basis rather than a per-bio basis. Instead, we only must do two 135 * things for each compressed page here: call f2fs_end_read_compressed_page() 136 * with failed=true if an error occurred before it would have normally gotten 137 * called (i.e., I/O error or decryption error, but *not* verity error), and 138 * release the bio's reference to the decompress_io_ctx of the page's cluster. 139 */ 140 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 141 { 142 struct bio_vec *bv; 143 struct bvec_iter_all iter_all; 144 struct bio_post_read_ctx *ctx = bio->bi_private; 145 146 bio_for_each_segment_all(bv, bio, iter_all) { 147 struct page *page = bv->bv_page; 148 149 if (f2fs_is_compressed_page(page)) { 150 if (ctx && !ctx->decompression_attempted) 151 f2fs_end_read_compressed_page(page, true, 0, 152 in_task); 153 f2fs_put_page_dic(page, in_task); 154 continue; 155 } 156 157 if (bio->bi_status) 158 ClearPageUptodate(page); 159 else 160 SetPageUptodate(page); 161 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 162 unlock_page(page); 163 } 164 165 if (ctx) 166 mempool_free(ctx, bio_post_read_ctx_pool); 167 bio_put(bio); 168 } 169 170 static void f2fs_verify_bio(struct work_struct *work) 171 { 172 struct bio_post_read_ctx *ctx = 173 container_of(work, struct bio_post_read_ctx, work); 174 struct bio *bio = ctx->bio; 175 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 176 177 /* 178 * fsverity_verify_bio() may call readahead() again, and while verity 179 * will be disabled for this, decryption and/or decompression may still 180 * be needed, resulting in another bio_post_read_ctx being allocated. 181 * So to prevent deadlocks we need to release the current ctx to the 182 * mempool first. This assumes that verity is the last post-read step. 183 */ 184 mempool_free(ctx, bio_post_read_ctx_pool); 185 bio->bi_private = NULL; 186 187 /* 188 * Verify the bio's pages with fs-verity. Exclude compressed pages, 189 * as those were handled separately by f2fs_end_read_compressed_page(). 190 */ 191 if (may_have_compressed_pages) { 192 struct bio_vec *bv; 193 struct bvec_iter_all iter_all; 194 195 bio_for_each_segment_all(bv, bio, iter_all) { 196 struct page *page = bv->bv_page; 197 198 if (!f2fs_is_compressed_page(page) && 199 !fsverity_verify_page(page)) { 200 bio->bi_status = BLK_STS_IOERR; 201 break; 202 } 203 } 204 } else { 205 fsverity_verify_bio(bio); 206 } 207 208 f2fs_finish_read_bio(bio, true); 209 } 210 211 /* 212 * If the bio's data needs to be verified with fs-verity, then enqueue the 213 * verity work for the bio. Otherwise finish the bio now. 214 * 215 * Note that to avoid deadlocks, the verity work can't be done on the 216 * decryption/decompression workqueue. This is because verifying the data pages 217 * can involve reading verity metadata pages from the file, and these verity 218 * metadata pages may be encrypted and/or compressed. 219 */ 220 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 221 { 222 struct bio_post_read_ctx *ctx = bio->bi_private; 223 224 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 225 INIT_WORK(&ctx->work, f2fs_verify_bio); 226 fsverity_enqueue_verify_work(&ctx->work); 227 } else { 228 f2fs_finish_read_bio(bio, in_task); 229 } 230 } 231 232 /* 233 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 234 * remaining page was read by @ctx->bio. 235 * 236 * Note that a bio may span clusters (even a mix of compressed and uncompressed 237 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 238 * that the bio includes at least one compressed page. The actual decompression 239 * is done on a per-cluster basis, not a per-bio basis. 240 */ 241 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 242 bool in_task) 243 { 244 struct bio_vec *bv; 245 struct bvec_iter_all iter_all; 246 bool all_compressed = true; 247 block_t blkaddr = ctx->fs_blkaddr; 248 249 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 250 struct page *page = bv->bv_page; 251 252 if (f2fs_is_compressed_page(page)) 253 f2fs_end_read_compressed_page(page, false, blkaddr, 254 in_task); 255 else 256 all_compressed = false; 257 258 blkaddr++; 259 } 260 261 ctx->decompression_attempted = true; 262 263 /* 264 * Optimization: if all the bio's pages are compressed, then scheduling 265 * the per-bio verity work is unnecessary, as verity will be fully 266 * handled at the compression cluster level. 267 */ 268 if (all_compressed) 269 ctx->enabled_steps &= ~STEP_VERITY; 270 } 271 272 static void f2fs_post_read_work(struct work_struct *work) 273 { 274 struct bio_post_read_ctx *ctx = 275 container_of(work, struct bio_post_read_ctx, work); 276 struct bio *bio = ctx->bio; 277 278 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 279 f2fs_finish_read_bio(bio, true); 280 return; 281 } 282 283 if (ctx->enabled_steps & STEP_DECOMPRESS) 284 f2fs_handle_step_decompress(ctx, true); 285 286 f2fs_verify_and_finish_bio(bio, true); 287 } 288 289 static void f2fs_read_end_io(struct bio *bio) 290 { 291 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 292 struct bio_post_read_ctx *ctx; 293 bool intask = in_task(); 294 295 iostat_update_and_unbind_ctx(bio); 296 ctx = bio->bi_private; 297 298 if (time_to_inject(sbi, FAULT_READ_IO)) 299 bio->bi_status = BLK_STS_IOERR; 300 301 if (bio->bi_status) { 302 f2fs_finish_read_bio(bio, intask); 303 return; 304 } 305 306 if (ctx) { 307 unsigned int enabled_steps = ctx->enabled_steps & 308 (STEP_DECRYPT | STEP_DECOMPRESS); 309 310 /* 311 * If we have only decompression step between decompression and 312 * decrypt, we don't need post processing for this. 313 */ 314 if (enabled_steps == STEP_DECOMPRESS && 315 !f2fs_low_mem_mode(sbi)) { 316 f2fs_handle_step_decompress(ctx, intask); 317 } else if (enabled_steps) { 318 INIT_WORK(&ctx->work, f2fs_post_read_work); 319 queue_work(ctx->sbi->post_read_wq, &ctx->work); 320 return; 321 } 322 } 323 324 f2fs_verify_and_finish_bio(bio, intask); 325 } 326 327 static void f2fs_write_end_io(struct bio *bio) 328 { 329 struct f2fs_sb_info *sbi; 330 struct bio_vec *bvec; 331 struct bvec_iter_all iter_all; 332 333 iostat_update_and_unbind_ctx(bio); 334 sbi = bio->bi_private; 335 336 if (time_to_inject(sbi, FAULT_WRITE_IO)) 337 bio->bi_status = BLK_STS_IOERR; 338 339 bio_for_each_segment_all(bvec, bio, iter_all) { 340 struct page *page = bvec->bv_page; 341 enum count_type type = WB_DATA_TYPE(page); 342 343 if (page_private_dummy(page)) { 344 clear_page_private_dummy(page); 345 unlock_page(page); 346 mempool_free(page, sbi->write_io_dummy); 347 348 if (unlikely(bio->bi_status)) 349 f2fs_stop_checkpoint(sbi, true, 350 STOP_CP_REASON_WRITE_FAIL); 351 continue; 352 } 353 354 fscrypt_finalize_bounce_page(&page); 355 356 #ifdef CONFIG_F2FS_FS_COMPRESSION 357 if (f2fs_is_compressed_page(page)) { 358 f2fs_compress_write_end_io(bio, page); 359 continue; 360 } 361 #endif 362 363 if (unlikely(bio->bi_status)) { 364 mapping_set_error(page->mapping, -EIO); 365 if (type == F2FS_WB_CP_DATA) 366 f2fs_stop_checkpoint(sbi, true, 367 STOP_CP_REASON_WRITE_FAIL); 368 } 369 370 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 371 page->index != nid_of_node(page)); 372 373 dec_page_count(sbi, type); 374 if (f2fs_in_warm_node_list(sbi, page)) 375 f2fs_del_fsync_node_entry(sbi, page); 376 clear_page_private_gcing(page); 377 end_page_writeback(page); 378 } 379 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 380 wq_has_sleeper(&sbi->cp_wait)) 381 wake_up(&sbi->cp_wait); 382 383 bio_put(bio); 384 } 385 386 #ifdef CONFIG_BLK_DEV_ZONED 387 static void f2fs_zone_write_end_io(struct bio *bio) 388 { 389 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private; 390 391 bio->bi_private = io->bi_private; 392 complete(&io->zone_wait); 393 f2fs_write_end_io(bio); 394 } 395 #endif 396 397 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 398 block_t blk_addr, sector_t *sector) 399 { 400 struct block_device *bdev = sbi->sb->s_bdev; 401 int i; 402 403 if (f2fs_is_multi_device(sbi)) { 404 for (i = 0; i < sbi->s_ndevs; i++) { 405 if (FDEV(i).start_blk <= blk_addr && 406 FDEV(i).end_blk >= blk_addr) { 407 blk_addr -= FDEV(i).start_blk; 408 bdev = FDEV(i).bdev; 409 break; 410 } 411 } 412 } 413 414 if (sector) 415 *sector = SECTOR_FROM_BLOCK(blk_addr); 416 return bdev; 417 } 418 419 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 420 { 421 int i; 422 423 if (!f2fs_is_multi_device(sbi)) 424 return 0; 425 426 for (i = 0; i < sbi->s_ndevs; i++) 427 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 428 return i; 429 return 0; 430 } 431 432 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 433 { 434 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0); 435 unsigned int fua_flag, meta_flag, io_flag; 436 blk_opf_t op_flags = 0; 437 438 if (fio->op != REQ_OP_WRITE) 439 return 0; 440 if (fio->type == DATA) 441 io_flag = fio->sbi->data_io_flag; 442 else if (fio->type == NODE) 443 io_flag = fio->sbi->node_io_flag; 444 else 445 return 0; 446 447 fua_flag = io_flag & temp_mask; 448 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 449 450 /* 451 * data/node io flag bits per temp: 452 * REQ_META | REQ_FUA | 453 * 5 | 4 | 3 | 2 | 1 | 0 | 454 * Cold | Warm | Hot | Cold | Warm | Hot | 455 */ 456 if (BIT(fio->temp) & meta_flag) 457 op_flags |= REQ_META; 458 if (BIT(fio->temp) & fua_flag) 459 op_flags |= REQ_FUA; 460 return op_flags; 461 } 462 463 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 464 { 465 struct f2fs_sb_info *sbi = fio->sbi; 466 struct block_device *bdev; 467 sector_t sector; 468 struct bio *bio; 469 470 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 471 bio = bio_alloc_bioset(bdev, npages, 472 fio->op | fio->op_flags | f2fs_io_flags(fio), 473 GFP_NOIO, &f2fs_bioset); 474 bio->bi_iter.bi_sector = sector; 475 if (is_read_io(fio->op)) { 476 bio->bi_end_io = f2fs_read_end_io; 477 bio->bi_private = NULL; 478 } else { 479 bio->bi_end_io = f2fs_write_end_io; 480 bio->bi_private = sbi; 481 } 482 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 483 484 if (fio->io_wbc) 485 wbc_init_bio(fio->io_wbc, bio); 486 487 return bio; 488 } 489 490 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 491 pgoff_t first_idx, 492 const struct f2fs_io_info *fio, 493 gfp_t gfp_mask) 494 { 495 /* 496 * The f2fs garbage collector sets ->encrypted_page when it wants to 497 * read/write raw data without encryption. 498 */ 499 if (!fio || !fio->encrypted_page) 500 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 501 } 502 503 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 504 pgoff_t next_idx, 505 const struct f2fs_io_info *fio) 506 { 507 /* 508 * The f2fs garbage collector sets ->encrypted_page when it wants to 509 * read/write raw data without encryption. 510 */ 511 if (fio && fio->encrypted_page) 512 return !bio_has_crypt_ctx(bio); 513 514 return fscrypt_mergeable_bio(bio, inode, next_idx); 515 } 516 517 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 518 enum page_type type) 519 { 520 WARN_ON_ONCE(!is_read_io(bio_op(bio))); 521 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 522 523 iostat_update_submit_ctx(bio, type); 524 submit_bio(bio); 525 } 526 527 static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio) 528 { 529 unsigned int start = 530 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi); 531 532 if (start == 0) 533 return; 534 535 /* fill dummy pages */ 536 for (; start < F2FS_IO_SIZE(sbi); start++) { 537 struct page *page = 538 mempool_alloc(sbi->write_io_dummy, 539 GFP_NOIO | __GFP_NOFAIL); 540 f2fs_bug_on(sbi, !page); 541 542 lock_page(page); 543 544 zero_user_segment(page, 0, PAGE_SIZE); 545 set_page_private_dummy(page); 546 547 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 548 f2fs_bug_on(sbi, 1); 549 } 550 } 551 552 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio, 553 enum page_type type) 554 { 555 WARN_ON_ONCE(is_read_io(bio_op(bio))); 556 557 if (type == DATA || type == NODE) { 558 if (f2fs_lfs_mode(sbi) && current->plug) 559 blk_finish_plug(current->plug); 560 561 if (F2FS_IO_ALIGNED(sbi)) { 562 f2fs_align_write_bio(sbi, bio); 563 /* 564 * In the NODE case, we lose next block address chain. 565 * So, we need to do checkpoint in f2fs_sync_file. 566 */ 567 if (type == NODE) 568 set_sbi_flag(sbi, SBI_NEED_CP); 569 } 570 } 571 572 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 573 iostat_update_submit_ctx(bio, type); 574 submit_bio(bio); 575 } 576 577 static void __submit_merged_bio(struct f2fs_bio_info *io) 578 { 579 struct f2fs_io_info *fio = &io->fio; 580 581 if (!io->bio) 582 return; 583 584 if (is_read_io(fio->op)) { 585 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 586 f2fs_submit_read_bio(io->sbi, io->bio, fio->type); 587 } else { 588 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 589 f2fs_submit_write_bio(io->sbi, io->bio, fio->type); 590 } 591 io->bio = NULL; 592 } 593 594 static bool __has_merged_page(struct bio *bio, struct inode *inode, 595 struct page *page, nid_t ino) 596 { 597 struct bio_vec *bvec; 598 struct bvec_iter_all iter_all; 599 600 if (!bio) 601 return false; 602 603 if (!inode && !page && !ino) 604 return true; 605 606 bio_for_each_segment_all(bvec, bio, iter_all) { 607 struct page *target = bvec->bv_page; 608 609 if (fscrypt_is_bounce_page(target)) { 610 target = fscrypt_pagecache_page(target); 611 if (IS_ERR(target)) 612 continue; 613 } 614 if (f2fs_is_compressed_page(target)) { 615 target = f2fs_compress_control_page(target); 616 if (IS_ERR(target)) 617 continue; 618 } 619 620 if (inode && inode == target->mapping->host) 621 return true; 622 if (page && page == target) 623 return true; 624 if (ino && ino == ino_of_node(target)) 625 return true; 626 } 627 628 return false; 629 } 630 631 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 632 { 633 int i; 634 635 for (i = 0; i < NR_PAGE_TYPE; i++) { 636 int n = (i == META) ? 1 : NR_TEMP_TYPE; 637 int j; 638 639 sbi->write_io[i] = f2fs_kmalloc(sbi, 640 array_size(n, sizeof(struct f2fs_bio_info)), 641 GFP_KERNEL); 642 if (!sbi->write_io[i]) 643 return -ENOMEM; 644 645 for (j = HOT; j < n; j++) { 646 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem); 647 sbi->write_io[i][j].sbi = sbi; 648 sbi->write_io[i][j].bio = NULL; 649 spin_lock_init(&sbi->write_io[i][j].io_lock); 650 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 651 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 652 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock); 653 #ifdef CONFIG_BLK_DEV_ZONED 654 init_completion(&sbi->write_io[i][j].zone_wait); 655 sbi->write_io[i][j].zone_pending_bio = NULL; 656 sbi->write_io[i][j].bi_private = NULL; 657 #endif 658 } 659 } 660 661 return 0; 662 } 663 664 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 665 enum page_type type, enum temp_type temp) 666 { 667 enum page_type btype = PAGE_TYPE_OF_BIO(type); 668 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 669 670 f2fs_down_write(&io->io_rwsem); 671 672 if (!io->bio) 673 goto unlock_out; 674 675 /* change META to META_FLUSH in the checkpoint procedure */ 676 if (type >= META_FLUSH) { 677 io->fio.type = META_FLUSH; 678 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 679 if (!test_opt(sbi, NOBARRIER)) 680 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 681 } 682 __submit_merged_bio(io); 683 unlock_out: 684 f2fs_up_write(&io->io_rwsem); 685 } 686 687 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 688 struct inode *inode, struct page *page, 689 nid_t ino, enum page_type type, bool force) 690 { 691 enum temp_type temp; 692 bool ret = true; 693 694 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 695 if (!force) { 696 enum page_type btype = PAGE_TYPE_OF_BIO(type); 697 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 698 699 f2fs_down_read(&io->io_rwsem); 700 ret = __has_merged_page(io->bio, inode, page, ino); 701 f2fs_up_read(&io->io_rwsem); 702 } 703 if (ret) 704 __f2fs_submit_merged_write(sbi, type, temp); 705 706 /* TODO: use HOT temp only for meta pages now. */ 707 if (type >= META) 708 break; 709 } 710 } 711 712 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 713 { 714 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 715 } 716 717 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 718 struct inode *inode, struct page *page, 719 nid_t ino, enum page_type type) 720 { 721 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 722 } 723 724 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 725 { 726 f2fs_submit_merged_write(sbi, DATA); 727 f2fs_submit_merged_write(sbi, NODE); 728 f2fs_submit_merged_write(sbi, META); 729 } 730 731 /* 732 * Fill the locked page with data located in the block address. 733 * A caller needs to unlock the page on failure. 734 */ 735 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 736 { 737 struct bio *bio; 738 struct page *page = fio->encrypted_page ? 739 fio->encrypted_page : fio->page; 740 741 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 742 fio->is_por ? META_POR : (__is_meta_io(fio) ? 743 META_GENERIC : DATA_GENERIC_ENHANCE))) { 744 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 745 return -EFSCORRUPTED; 746 } 747 748 trace_f2fs_submit_page_bio(page, fio); 749 750 /* Allocate a new bio */ 751 bio = __bio_alloc(fio, 1); 752 753 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 754 fio->page->index, fio, GFP_NOIO); 755 756 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 757 bio_put(bio); 758 return -EFAULT; 759 } 760 761 if (fio->io_wbc && !is_read_io(fio->op)) 762 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 763 764 inc_page_count(fio->sbi, is_read_io(fio->op) ? 765 __read_io_type(page) : WB_DATA_TYPE(fio->page)); 766 767 if (is_read_io(bio_op(bio))) 768 f2fs_submit_read_bio(fio->sbi, bio, fio->type); 769 else 770 f2fs_submit_write_bio(fio->sbi, bio, fio->type); 771 return 0; 772 } 773 774 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 775 block_t last_blkaddr, block_t cur_blkaddr) 776 { 777 if (unlikely(sbi->max_io_bytes && 778 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 779 return false; 780 if (last_blkaddr + 1 != cur_blkaddr) 781 return false; 782 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 783 } 784 785 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 786 struct f2fs_io_info *fio) 787 { 788 if (io->fio.op != fio->op) 789 return false; 790 return io->fio.op_flags == fio->op_flags; 791 } 792 793 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 794 struct f2fs_bio_info *io, 795 struct f2fs_io_info *fio, 796 block_t last_blkaddr, 797 block_t cur_blkaddr) 798 { 799 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 800 unsigned int filled_blocks = 801 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 802 unsigned int io_size = F2FS_IO_SIZE(sbi); 803 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 804 805 /* IOs in bio is aligned and left space of vectors is not enough */ 806 if (!(filled_blocks % io_size) && left_vecs < io_size) 807 return false; 808 } 809 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 810 return false; 811 return io_type_is_mergeable(io, fio); 812 } 813 814 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 815 struct page *page, enum temp_type temp) 816 { 817 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 818 struct bio_entry *be; 819 820 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 821 be->bio = bio; 822 bio_get(bio); 823 824 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 825 f2fs_bug_on(sbi, 1); 826 827 f2fs_down_write(&io->bio_list_lock); 828 list_add_tail(&be->list, &io->bio_list); 829 f2fs_up_write(&io->bio_list_lock); 830 } 831 832 static void del_bio_entry(struct bio_entry *be) 833 { 834 list_del(&be->list); 835 kmem_cache_free(bio_entry_slab, be); 836 } 837 838 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 839 struct page *page) 840 { 841 struct f2fs_sb_info *sbi = fio->sbi; 842 enum temp_type temp; 843 bool found = false; 844 int ret = -EAGAIN; 845 846 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 847 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 848 struct list_head *head = &io->bio_list; 849 struct bio_entry *be; 850 851 f2fs_down_write(&io->bio_list_lock); 852 list_for_each_entry(be, head, list) { 853 if (be->bio != *bio) 854 continue; 855 856 found = true; 857 858 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 859 *fio->last_block, 860 fio->new_blkaddr)); 861 if (f2fs_crypt_mergeable_bio(*bio, 862 fio->page->mapping->host, 863 fio->page->index, fio) && 864 bio_add_page(*bio, page, PAGE_SIZE, 0) == 865 PAGE_SIZE) { 866 ret = 0; 867 break; 868 } 869 870 /* page can't be merged into bio; submit the bio */ 871 del_bio_entry(be); 872 f2fs_submit_write_bio(sbi, *bio, DATA); 873 break; 874 } 875 f2fs_up_write(&io->bio_list_lock); 876 } 877 878 if (ret) { 879 bio_put(*bio); 880 *bio = NULL; 881 } 882 883 return ret; 884 } 885 886 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 887 struct bio **bio, struct page *page) 888 { 889 enum temp_type temp; 890 bool found = false; 891 struct bio *target = bio ? *bio : NULL; 892 893 f2fs_bug_on(sbi, !target && !page); 894 895 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 896 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 897 struct list_head *head = &io->bio_list; 898 struct bio_entry *be; 899 900 if (list_empty(head)) 901 continue; 902 903 f2fs_down_read(&io->bio_list_lock); 904 list_for_each_entry(be, head, list) { 905 if (target) 906 found = (target == be->bio); 907 else 908 found = __has_merged_page(be->bio, NULL, 909 page, 0); 910 if (found) 911 break; 912 } 913 f2fs_up_read(&io->bio_list_lock); 914 915 if (!found) 916 continue; 917 918 found = false; 919 920 f2fs_down_write(&io->bio_list_lock); 921 list_for_each_entry(be, head, list) { 922 if (target) 923 found = (target == be->bio); 924 else 925 found = __has_merged_page(be->bio, NULL, 926 page, 0); 927 if (found) { 928 target = be->bio; 929 del_bio_entry(be); 930 break; 931 } 932 } 933 f2fs_up_write(&io->bio_list_lock); 934 } 935 936 if (found) 937 f2fs_submit_write_bio(sbi, target, DATA); 938 if (bio && *bio) { 939 bio_put(*bio); 940 *bio = NULL; 941 } 942 } 943 944 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 945 { 946 struct bio *bio = *fio->bio; 947 struct page *page = fio->encrypted_page ? 948 fio->encrypted_page : fio->page; 949 950 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 951 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) { 952 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 953 return -EFSCORRUPTED; 954 } 955 956 trace_f2fs_submit_page_bio(page, fio); 957 958 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 959 fio->new_blkaddr)) 960 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 961 alloc_new: 962 if (!bio) { 963 bio = __bio_alloc(fio, BIO_MAX_VECS); 964 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 965 fio->page->index, fio, GFP_NOIO); 966 967 add_bio_entry(fio->sbi, bio, page, fio->temp); 968 } else { 969 if (add_ipu_page(fio, &bio, page)) 970 goto alloc_new; 971 } 972 973 if (fio->io_wbc) 974 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 975 976 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 977 978 *fio->last_block = fio->new_blkaddr; 979 *fio->bio = bio; 980 981 return 0; 982 } 983 984 #ifdef CONFIG_BLK_DEV_ZONED 985 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr) 986 { 987 int devi = 0; 988 989 if (f2fs_is_multi_device(sbi)) { 990 devi = f2fs_target_device_index(sbi, blkaddr); 991 if (blkaddr < FDEV(devi).start_blk || 992 blkaddr > FDEV(devi).end_blk) { 993 f2fs_err(sbi, "Invalid block %x", blkaddr); 994 return false; 995 } 996 blkaddr -= FDEV(devi).start_blk; 997 } 998 return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM && 999 f2fs_blkz_is_seq(sbi, devi, blkaddr) && 1000 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1); 1001 } 1002 #endif 1003 1004 void f2fs_submit_page_write(struct f2fs_io_info *fio) 1005 { 1006 struct f2fs_sb_info *sbi = fio->sbi; 1007 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 1008 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 1009 struct page *bio_page; 1010 1011 f2fs_bug_on(sbi, is_read_io(fio->op)); 1012 1013 f2fs_down_write(&io->io_rwsem); 1014 1015 #ifdef CONFIG_BLK_DEV_ZONED 1016 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) { 1017 wait_for_completion_io(&io->zone_wait); 1018 bio_put(io->zone_pending_bio); 1019 io->zone_pending_bio = NULL; 1020 io->bi_private = NULL; 1021 } 1022 #endif 1023 1024 next: 1025 if (fio->in_list) { 1026 spin_lock(&io->io_lock); 1027 if (list_empty(&io->io_list)) { 1028 spin_unlock(&io->io_lock); 1029 goto out; 1030 } 1031 fio = list_first_entry(&io->io_list, 1032 struct f2fs_io_info, list); 1033 list_del(&fio->list); 1034 spin_unlock(&io->io_lock); 1035 } 1036 1037 verify_fio_blkaddr(fio); 1038 1039 if (fio->encrypted_page) 1040 bio_page = fio->encrypted_page; 1041 else if (fio->compressed_page) 1042 bio_page = fio->compressed_page; 1043 else 1044 bio_page = fio->page; 1045 1046 /* set submitted = true as a return value */ 1047 fio->submitted = 1; 1048 1049 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 1050 1051 if (io->bio && 1052 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 1053 fio->new_blkaddr) || 1054 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 1055 bio_page->index, fio))) 1056 __submit_merged_bio(io); 1057 alloc_new: 1058 if (io->bio == NULL) { 1059 if (F2FS_IO_ALIGNED(sbi) && 1060 (fio->type == DATA || fio->type == NODE) && 1061 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 1062 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 1063 fio->retry = 1; 1064 goto skip; 1065 } 1066 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 1067 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 1068 bio_page->index, fio, GFP_NOIO); 1069 io->fio = *fio; 1070 } 1071 1072 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 1073 __submit_merged_bio(io); 1074 goto alloc_new; 1075 } 1076 1077 if (fio->io_wbc) 1078 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE); 1079 1080 io->last_block_in_bio = fio->new_blkaddr; 1081 1082 trace_f2fs_submit_page_write(fio->page, fio); 1083 skip: 1084 if (fio->in_list) 1085 goto next; 1086 out: 1087 #ifdef CONFIG_BLK_DEV_ZONED 1088 if (f2fs_sb_has_blkzoned(sbi) && btype < META && 1089 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) { 1090 bio_get(io->bio); 1091 reinit_completion(&io->zone_wait); 1092 io->bi_private = io->bio->bi_private; 1093 io->bio->bi_private = io; 1094 io->bio->bi_end_io = f2fs_zone_write_end_io; 1095 io->zone_pending_bio = io->bio; 1096 __submit_merged_bio(io); 1097 } 1098 #endif 1099 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1100 !f2fs_is_checkpoint_ready(sbi)) 1101 __submit_merged_bio(io); 1102 f2fs_up_write(&io->io_rwsem); 1103 } 1104 1105 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1106 unsigned nr_pages, blk_opf_t op_flag, 1107 pgoff_t first_idx, bool for_write) 1108 { 1109 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1110 struct bio *bio; 1111 struct bio_post_read_ctx *ctx = NULL; 1112 unsigned int post_read_steps = 0; 1113 sector_t sector; 1114 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1115 1116 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1117 REQ_OP_READ | op_flag, 1118 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1119 if (!bio) 1120 return ERR_PTR(-ENOMEM); 1121 bio->bi_iter.bi_sector = sector; 1122 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1123 bio->bi_end_io = f2fs_read_end_io; 1124 1125 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1126 post_read_steps |= STEP_DECRYPT; 1127 1128 if (f2fs_need_verity(inode, first_idx)) 1129 post_read_steps |= STEP_VERITY; 1130 1131 /* 1132 * STEP_DECOMPRESS is handled specially, since a compressed file might 1133 * contain both compressed and uncompressed clusters. We'll allocate a 1134 * bio_post_read_ctx if the file is compressed, but the caller is 1135 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1136 */ 1137 1138 if (post_read_steps || f2fs_compressed_file(inode)) { 1139 /* Due to the mempool, this never fails. */ 1140 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1141 ctx->bio = bio; 1142 ctx->sbi = sbi; 1143 ctx->enabled_steps = post_read_steps; 1144 ctx->fs_blkaddr = blkaddr; 1145 ctx->decompression_attempted = false; 1146 bio->bi_private = ctx; 1147 } 1148 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1149 1150 return bio; 1151 } 1152 1153 /* This can handle encryption stuffs */ 1154 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1155 block_t blkaddr, blk_opf_t op_flags, 1156 bool for_write) 1157 { 1158 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1159 struct bio *bio; 1160 1161 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1162 page->index, for_write); 1163 if (IS_ERR(bio)) 1164 return PTR_ERR(bio); 1165 1166 /* wait for GCed page writeback via META_MAPPING */ 1167 f2fs_wait_on_block_writeback(inode, blkaddr); 1168 1169 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1170 iostat_update_and_unbind_ctx(bio); 1171 if (bio->bi_private) 1172 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 1173 bio_put(bio); 1174 return -EFAULT; 1175 } 1176 inc_page_count(sbi, F2FS_RD_DATA); 1177 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1178 f2fs_submit_read_bio(sbi, bio, DATA); 1179 return 0; 1180 } 1181 1182 static void __set_data_blkaddr(struct dnode_of_data *dn) 1183 { 1184 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1185 __le32 *addr_array; 1186 int base = 0; 1187 1188 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1189 base = get_extra_isize(dn->inode); 1190 1191 /* Get physical address of data block */ 1192 addr_array = blkaddr_in_node(rn); 1193 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1194 } 1195 1196 /* 1197 * Lock ordering for the change of data block address: 1198 * ->data_page 1199 * ->node_page 1200 * update block addresses in the node page 1201 */ 1202 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1203 { 1204 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1205 __set_data_blkaddr(dn); 1206 if (set_page_dirty(dn->node_page)) 1207 dn->node_changed = true; 1208 } 1209 1210 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1211 { 1212 dn->data_blkaddr = blkaddr; 1213 f2fs_set_data_blkaddr(dn); 1214 f2fs_update_read_extent_cache(dn); 1215 } 1216 1217 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1218 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1219 { 1220 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1221 int err; 1222 1223 if (!count) 1224 return 0; 1225 1226 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1227 return -EPERM; 1228 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1229 return err; 1230 1231 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1232 dn->ofs_in_node, count); 1233 1234 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1235 1236 for (; count > 0; dn->ofs_in_node++) { 1237 block_t blkaddr = f2fs_data_blkaddr(dn); 1238 1239 if (blkaddr == NULL_ADDR) { 1240 dn->data_blkaddr = NEW_ADDR; 1241 __set_data_blkaddr(dn); 1242 count--; 1243 } 1244 } 1245 1246 if (set_page_dirty(dn->node_page)) 1247 dn->node_changed = true; 1248 return 0; 1249 } 1250 1251 /* Should keep dn->ofs_in_node unchanged */ 1252 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1253 { 1254 unsigned int ofs_in_node = dn->ofs_in_node; 1255 int ret; 1256 1257 ret = f2fs_reserve_new_blocks(dn, 1); 1258 dn->ofs_in_node = ofs_in_node; 1259 return ret; 1260 } 1261 1262 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1263 { 1264 bool need_put = dn->inode_page ? false : true; 1265 int err; 1266 1267 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1268 if (err) 1269 return err; 1270 1271 if (dn->data_blkaddr == NULL_ADDR) 1272 err = f2fs_reserve_new_block(dn); 1273 if (err || need_put) 1274 f2fs_put_dnode(dn); 1275 return err; 1276 } 1277 1278 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1279 blk_opf_t op_flags, bool for_write, 1280 pgoff_t *next_pgofs) 1281 { 1282 struct address_space *mapping = inode->i_mapping; 1283 struct dnode_of_data dn; 1284 struct page *page; 1285 int err; 1286 1287 page = f2fs_grab_cache_page(mapping, index, for_write); 1288 if (!page) 1289 return ERR_PTR(-ENOMEM); 1290 1291 if (f2fs_lookup_read_extent_cache_block(inode, index, 1292 &dn.data_blkaddr)) { 1293 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1294 DATA_GENERIC_ENHANCE_READ)) { 1295 err = -EFSCORRUPTED; 1296 f2fs_handle_error(F2FS_I_SB(inode), 1297 ERROR_INVALID_BLKADDR); 1298 goto put_err; 1299 } 1300 goto got_it; 1301 } 1302 1303 set_new_dnode(&dn, inode, NULL, NULL, 0); 1304 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1305 if (err) { 1306 if (err == -ENOENT && next_pgofs) 1307 *next_pgofs = f2fs_get_next_page_offset(&dn, index); 1308 goto put_err; 1309 } 1310 f2fs_put_dnode(&dn); 1311 1312 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1313 err = -ENOENT; 1314 if (next_pgofs) 1315 *next_pgofs = index + 1; 1316 goto put_err; 1317 } 1318 if (dn.data_blkaddr != NEW_ADDR && 1319 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1320 dn.data_blkaddr, 1321 DATA_GENERIC_ENHANCE)) { 1322 err = -EFSCORRUPTED; 1323 f2fs_handle_error(F2FS_I_SB(inode), 1324 ERROR_INVALID_BLKADDR); 1325 goto put_err; 1326 } 1327 got_it: 1328 if (PageUptodate(page)) { 1329 unlock_page(page); 1330 return page; 1331 } 1332 1333 /* 1334 * A new dentry page is allocated but not able to be written, since its 1335 * new inode page couldn't be allocated due to -ENOSPC. 1336 * In such the case, its blkaddr can be remained as NEW_ADDR. 1337 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1338 * f2fs_init_inode_metadata. 1339 */ 1340 if (dn.data_blkaddr == NEW_ADDR) { 1341 zero_user_segment(page, 0, PAGE_SIZE); 1342 if (!PageUptodate(page)) 1343 SetPageUptodate(page); 1344 unlock_page(page); 1345 return page; 1346 } 1347 1348 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1349 op_flags, for_write); 1350 if (err) 1351 goto put_err; 1352 return page; 1353 1354 put_err: 1355 f2fs_put_page(page, 1); 1356 return ERR_PTR(err); 1357 } 1358 1359 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 1360 pgoff_t *next_pgofs) 1361 { 1362 struct address_space *mapping = inode->i_mapping; 1363 struct page *page; 1364 1365 page = find_get_page(mapping, index); 1366 if (page && PageUptodate(page)) 1367 return page; 1368 f2fs_put_page(page, 0); 1369 1370 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs); 1371 if (IS_ERR(page)) 1372 return page; 1373 1374 if (PageUptodate(page)) 1375 return page; 1376 1377 wait_on_page_locked(page); 1378 if (unlikely(!PageUptodate(page))) { 1379 f2fs_put_page(page, 0); 1380 return ERR_PTR(-EIO); 1381 } 1382 return page; 1383 } 1384 1385 /* 1386 * If it tries to access a hole, return an error. 1387 * Because, the callers, functions in dir.c and GC, should be able to know 1388 * whether this page exists or not. 1389 */ 1390 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1391 bool for_write) 1392 { 1393 struct address_space *mapping = inode->i_mapping; 1394 struct page *page; 1395 1396 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL); 1397 if (IS_ERR(page)) 1398 return page; 1399 1400 /* wait for read completion */ 1401 lock_page(page); 1402 if (unlikely(page->mapping != mapping || !PageUptodate(page))) { 1403 f2fs_put_page(page, 1); 1404 return ERR_PTR(-EIO); 1405 } 1406 return page; 1407 } 1408 1409 /* 1410 * Caller ensures that this data page is never allocated. 1411 * A new zero-filled data page is allocated in the page cache. 1412 * 1413 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1414 * f2fs_unlock_op(). 1415 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1416 * ipage should be released by this function. 1417 */ 1418 struct page *f2fs_get_new_data_page(struct inode *inode, 1419 struct page *ipage, pgoff_t index, bool new_i_size) 1420 { 1421 struct address_space *mapping = inode->i_mapping; 1422 struct page *page; 1423 struct dnode_of_data dn; 1424 int err; 1425 1426 page = f2fs_grab_cache_page(mapping, index, true); 1427 if (!page) { 1428 /* 1429 * before exiting, we should make sure ipage will be released 1430 * if any error occur. 1431 */ 1432 f2fs_put_page(ipage, 1); 1433 return ERR_PTR(-ENOMEM); 1434 } 1435 1436 set_new_dnode(&dn, inode, ipage, NULL, 0); 1437 err = f2fs_reserve_block(&dn, index); 1438 if (err) { 1439 f2fs_put_page(page, 1); 1440 return ERR_PTR(err); 1441 } 1442 if (!ipage) 1443 f2fs_put_dnode(&dn); 1444 1445 if (PageUptodate(page)) 1446 goto got_it; 1447 1448 if (dn.data_blkaddr == NEW_ADDR) { 1449 zero_user_segment(page, 0, PAGE_SIZE); 1450 if (!PageUptodate(page)) 1451 SetPageUptodate(page); 1452 } else { 1453 f2fs_put_page(page, 1); 1454 1455 /* if ipage exists, blkaddr should be NEW_ADDR */ 1456 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1457 page = f2fs_get_lock_data_page(inode, index, true); 1458 if (IS_ERR(page)) 1459 return page; 1460 } 1461 got_it: 1462 if (new_i_size && i_size_read(inode) < 1463 ((loff_t)(index + 1) << PAGE_SHIFT)) 1464 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1465 return page; 1466 } 1467 1468 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1469 { 1470 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1471 struct f2fs_summary sum; 1472 struct node_info ni; 1473 block_t old_blkaddr; 1474 blkcnt_t count = 1; 1475 int err; 1476 1477 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1478 return -EPERM; 1479 1480 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1481 if (err) 1482 return err; 1483 1484 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1485 if (dn->data_blkaddr == NULL_ADDR) { 1486 err = inc_valid_block_count(sbi, dn->inode, &count); 1487 if (unlikely(err)) 1488 return err; 1489 } 1490 1491 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1492 old_blkaddr = dn->data_blkaddr; 1493 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1494 &sum, seg_type, NULL); 1495 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1496 invalidate_mapping_pages(META_MAPPING(sbi), 1497 old_blkaddr, old_blkaddr); 1498 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1499 } 1500 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1501 return 0; 1502 } 1503 1504 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag) 1505 { 1506 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1507 f2fs_down_read(&sbi->node_change); 1508 else 1509 f2fs_lock_op(sbi); 1510 } 1511 1512 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag) 1513 { 1514 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1515 f2fs_up_read(&sbi->node_change); 1516 else 1517 f2fs_unlock_op(sbi); 1518 } 1519 1520 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index) 1521 { 1522 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1523 int err = 0; 1524 1525 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1526 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index, 1527 &dn->data_blkaddr)) 1528 err = f2fs_reserve_block(dn, index); 1529 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1530 1531 return err; 1532 } 1533 1534 static int f2fs_map_no_dnode(struct inode *inode, 1535 struct f2fs_map_blocks *map, struct dnode_of_data *dn, 1536 pgoff_t pgoff) 1537 { 1538 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1539 1540 /* 1541 * There is one exceptional case that read_node_page() may return 1542 * -ENOENT due to filesystem has been shutdown or cp_error, return 1543 * -EIO in that case. 1544 */ 1545 if (map->m_may_create && 1546 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi))) 1547 return -EIO; 1548 1549 if (map->m_next_pgofs) 1550 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff); 1551 if (map->m_next_extent) 1552 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff); 1553 return 0; 1554 } 1555 1556 static bool f2fs_map_blocks_cached(struct inode *inode, 1557 struct f2fs_map_blocks *map, int flag) 1558 { 1559 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1560 unsigned int maxblocks = map->m_len; 1561 pgoff_t pgoff = (pgoff_t)map->m_lblk; 1562 struct extent_info ei = {}; 1563 1564 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei)) 1565 return false; 1566 1567 map->m_pblk = ei.blk + pgoff - ei.fofs; 1568 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff); 1569 map->m_flags = F2FS_MAP_MAPPED; 1570 if (map->m_next_extent) 1571 *map->m_next_extent = pgoff + map->m_len; 1572 1573 /* for hardware encryption, but to avoid potential issue in future */ 1574 if (flag == F2FS_GET_BLOCK_DIO) 1575 f2fs_wait_on_block_writeback_range(inode, 1576 map->m_pblk, map->m_len); 1577 1578 if (f2fs_allow_multi_device_dio(sbi, flag)) { 1579 int bidx = f2fs_target_device_index(sbi, map->m_pblk); 1580 struct f2fs_dev_info *dev = &sbi->devs[bidx]; 1581 1582 map->m_bdev = dev->bdev; 1583 map->m_pblk -= dev->start_blk; 1584 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk); 1585 } else { 1586 map->m_bdev = inode->i_sb->s_bdev; 1587 } 1588 return true; 1589 } 1590 1591 /* 1592 * f2fs_map_blocks() tries to find or build mapping relationship which 1593 * maps continuous logical blocks to physical blocks, and return such 1594 * info via f2fs_map_blocks structure. 1595 */ 1596 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag) 1597 { 1598 unsigned int maxblocks = map->m_len; 1599 struct dnode_of_data dn; 1600 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1601 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1602 pgoff_t pgofs, end_offset, end; 1603 int err = 0, ofs = 1; 1604 unsigned int ofs_in_node, last_ofs_in_node; 1605 blkcnt_t prealloc; 1606 block_t blkaddr; 1607 unsigned int start_pgofs; 1608 int bidx = 0; 1609 bool is_hole; 1610 1611 if (!maxblocks) 1612 return 0; 1613 1614 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag)) 1615 goto out; 1616 1617 map->m_bdev = inode->i_sb->s_bdev; 1618 map->m_multidev_dio = 1619 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1620 1621 map->m_len = 0; 1622 map->m_flags = 0; 1623 1624 /* it only supports block size == page size */ 1625 pgofs = (pgoff_t)map->m_lblk; 1626 end = pgofs + maxblocks; 1627 1628 next_dnode: 1629 if (map->m_may_create) 1630 f2fs_map_lock(sbi, flag); 1631 1632 /* When reading holes, we need its node page */ 1633 set_new_dnode(&dn, inode, NULL, NULL, 0); 1634 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1635 if (err) { 1636 if (flag == F2FS_GET_BLOCK_BMAP) 1637 map->m_pblk = 0; 1638 if (err == -ENOENT) 1639 err = f2fs_map_no_dnode(inode, map, &dn, pgofs); 1640 goto unlock_out; 1641 } 1642 1643 start_pgofs = pgofs; 1644 prealloc = 0; 1645 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1646 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1647 1648 next_block: 1649 blkaddr = f2fs_data_blkaddr(&dn); 1650 is_hole = !__is_valid_data_blkaddr(blkaddr); 1651 if (!is_hole && 1652 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1653 err = -EFSCORRUPTED; 1654 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1655 goto sync_out; 1656 } 1657 1658 /* use out-place-update for direct IO under LFS mode */ 1659 if (map->m_may_create && 1660 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) { 1661 if (unlikely(f2fs_cp_error(sbi))) { 1662 err = -EIO; 1663 goto sync_out; 1664 } 1665 1666 switch (flag) { 1667 case F2FS_GET_BLOCK_PRE_AIO: 1668 if (blkaddr == NULL_ADDR) { 1669 prealloc++; 1670 last_ofs_in_node = dn.ofs_in_node; 1671 } 1672 break; 1673 case F2FS_GET_BLOCK_PRE_DIO: 1674 case F2FS_GET_BLOCK_DIO: 1675 err = __allocate_data_block(&dn, map->m_seg_type); 1676 if (err) 1677 goto sync_out; 1678 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1679 file_need_truncate(inode); 1680 set_inode_flag(inode, FI_APPEND_WRITE); 1681 break; 1682 default: 1683 WARN_ON_ONCE(1); 1684 err = -EIO; 1685 goto sync_out; 1686 } 1687 1688 blkaddr = dn.data_blkaddr; 1689 if (is_hole) 1690 map->m_flags |= F2FS_MAP_NEW; 1691 } else if (is_hole) { 1692 if (f2fs_compressed_file(inode) && 1693 f2fs_sanity_check_cluster(&dn) && 1694 (flag != F2FS_GET_BLOCK_FIEMAP || 1695 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1696 err = -EFSCORRUPTED; 1697 f2fs_handle_error(sbi, 1698 ERROR_CORRUPTED_CLUSTER); 1699 goto sync_out; 1700 } 1701 1702 switch (flag) { 1703 case F2FS_GET_BLOCK_PRECACHE: 1704 goto sync_out; 1705 case F2FS_GET_BLOCK_BMAP: 1706 map->m_pblk = 0; 1707 goto sync_out; 1708 case F2FS_GET_BLOCK_FIEMAP: 1709 if (blkaddr == NULL_ADDR) { 1710 if (map->m_next_pgofs) 1711 *map->m_next_pgofs = pgofs + 1; 1712 goto sync_out; 1713 } 1714 break; 1715 default: 1716 /* for defragment case */ 1717 if (map->m_next_pgofs) 1718 *map->m_next_pgofs = pgofs + 1; 1719 goto sync_out; 1720 } 1721 } 1722 1723 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1724 goto skip; 1725 1726 if (map->m_multidev_dio) 1727 bidx = f2fs_target_device_index(sbi, blkaddr); 1728 1729 if (map->m_len == 0) { 1730 /* reserved delalloc block should be mapped for fiemap. */ 1731 if (blkaddr == NEW_ADDR) 1732 map->m_flags |= F2FS_MAP_DELALLOC; 1733 map->m_flags |= F2FS_MAP_MAPPED; 1734 1735 map->m_pblk = blkaddr; 1736 map->m_len = 1; 1737 1738 if (map->m_multidev_dio) 1739 map->m_bdev = FDEV(bidx).bdev; 1740 } else if ((map->m_pblk != NEW_ADDR && 1741 blkaddr == (map->m_pblk + ofs)) || 1742 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1743 flag == F2FS_GET_BLOCK_PRE_DIO) { 1744 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1745 goto sync_out; 1746 ofs++; 1747 map->m_len++; 1748 } else { 1749 goto sync_out; 1750 } 1751 1752 skip: 1753 dn.ofs_in_node++; 1754 pgofs++; 1755 1756 /* preallocate blocks in batch for one dnode page */ 1757 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1758 (pgofs == end || dn.ofs_in_node == end_offset)) { 1759 1760 dn.ofs_in_node = ofs_in_node; 1761 err = f2fs_reserve_new_blocks(&dn, prealloc); 1762 if (err) 1763 goto sync_out; 1764 1765 map->m_len += dn.ofs_in_node - ofs_in_node; 1766 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1767 err = -ENOSPC; 1768 goto sync_out; 1769 } 1770 dn.ofs_in_node = end_offset; 1771 } 1772 1773 if (pgofs >= end) 1774 goto sync_out; 1775 else if (dn.ofs_in_node < end_offset) 1776 goto next_block; 1777 1778 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1779 if (map->m_flags & F2FS_MAP_MAPPED) { 1780 unsigned int ofs = start_pgofs - map->m_lblk; 1781 1782 f2fs_update_read_extent_cache_range(&dn, 1783 start_pgofs, map->m_pblk + ofs, 1784 map->m_len - ofs); 1785 } 1786 } 1787 1788 f2fs_put_dnode(&dn); 1789 1790 if (map->m_may_create) { 1791 f2fs_map_unlock(sbi, flag); 1792 f2fs_balance_fs(sbi, dn.node_changed); 1793 } 1794 goto next_dnode; 1795 1796 sync_out: 1797 1798 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1799 /* 1800 * for hardware encryption, but to avoid potential issue 1801 * in future 1802 */ 1803 f2fs_wait_on_block_writeback_range(inode, 1804 map->m_pblk, map->m_len); 1805 1806 if (map->m_multidev_dio) { 1807 block_t blk_addr = map->m_pblk; 1808 1809 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1810 1811 map->m_bdev = FDEV(bidx).bdev; 1812 map->m_pblk -= FDEV(bidx).start_blk; 1813 1814 if (map->m_may_create) 1815 f2fs_update_device_state(sbi, inode->i_ino, 1816 blk_addr, map->m_len); 1817 1818 f2fs_bug_on(sbi, blk_addr + map->m_len > 1819 FDEV(bidx).end_blk + 1); 1820 } 1821 } 1822 1823 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1824 if (map->m_flags & F2FS_MAP_MAPPED) { 1825 unsigned int ofs = start_pgofs - map->m_lblk; 1826 1827 f2fs_update_read_extent_cache_range(&dn, 1828 start_pgofs, map->m_pblk + ofs, 1829 map->m_len - ofs); 1830 } 1831 if (map->m_next_extent) 1832 *map->m_next_extent = pgofs + 1; 1833 } 1834 f2fs_put_dnode(&dn); 1835 unlock_out: 1836 if (map->m_may_create) { 1837 f2fs_map_unlock(sbi, flag); 1838 f2fs_balance_fs(sbi, dn.node_changed); 1839 } 1840 out: 1841 trace_f2fs_map_blocks(inode, map, flag, err); 1842 return err; 1843 } 1844 1845 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1846 { 1847 struct f2fs_map_blocks map; 1848 block_t last_lblk; 1849 int err; 1850 1851 if (pos + len > i_size_read(inode)) 1852 return false; 1853 1854 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1855 map.m_next_pgofs = NULL; 1856 map.m_next_extent = NULL; 1857 map.m_seg_type = NO_CHECK_TYPE; 1858 map.m_may_create = false; 1859 last_lblk = F2FS_BLK_ALIGN(pos + len); 1860 1861 while (map.m_lblk < last_lblk) { 1862 map.m_len = last_lblk - map.m_lblk; 1863 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 1864 if (err || map.m_len == 0) 1865 return false; 1866 map.m_lblk += map.m_len; 1867 } 1868 return true; 1869 } 1870 1871 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1872 { 1873 return (bytes >> inode->i_blkbits); 1874 } 1875 1876 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1877 { 1878 return (blks << inode->i_blkbits); 1879 } 1880 1881 static int f2fs_xattr_fiemap(struct inode *inode, 1882 struct fiemap_extent_info *fieinfo) 1883 { 1884 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1885 struct page *page; 1886 struct node_info ni; 1887 __u64 phys = 0, len; 1888 __u32 flags; 1889 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1890 int err = 0; 1891 1892 if (f2fs_has_inline_xattr(inode)) { 1893 int offset; 1894 1895 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1896 inode->i_ino, false); 1897 if (!page) 1898 return -ENOMEM; 1899 1900 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1901 if (err) { 1902 f2fs_put_page(page, 1); 1903 return err; 1904 } 1905 1906 phys = blks_to_bytes(inode, ni.blk_addr); 1907 offset = offsetof(struct f2fs_inode, i_addr) + 1908 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1909 get_inline_xattr_addrs(inode)); 1910 1911 phys += offset; 1912 len = inline_xattr_size(inode); 1913 1914 f2fs_put_page(page, 1); 1915 1916 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1917 1918 if (!xnid) 1919 flags |= FIEMAP_EXTENT_LAST; 1920 1921 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1922 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1923 if (err) 1924 return err; 1925 } 1926 1927 if (xnid) { 1928 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1929 if (!page) 1930 return -ENOMEM; 1931 1932 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1933 if (err) { 1934 f2fs_put_page(page, 1); 1935 return err; 1936 } 1937 1938 phys = blks_to_bytes(inode, ni.blk_addr); 1939 len = inode->i_sb->s_blocksize; 1940 1941 f2fs_put_page(page, 1); 1942 1943 flags = FIEMAP_EXTENT_LAST; 1944 } 1945 1946 if (phys) { 1947 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1948 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1949 } 1950 1951 return (err < 0 ? err : 0); 1952 } 1953 1954 static loff_t max_inode_blocks(struct inode *inode) 1955 { 1956 loff_t result = ADDRS_PER_INODE(inode); 1957 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1958 1959 /* two direct node blocks */ 1960 result += (leaf_count * 2); 1961 1962 /* two indirect node blocks */ 1963 leaf_count *= NIDS_PER_BLOCK; 1964 result += (leaf_count * 2); 1965 1966 /* one double indirect node block */ 1967 leaf_count *= NIDS_PER_BLOCK; 1968 result += leaf_count; 1969 1970 return result; 1971 } 1972 1973 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1974 u64 start, u64 len) 1975 { 1976 struct f2fs_map_blocks map; 1977 sector_t start_blk, last_blk; 1978 pgoff_t next_pgofs; 1979 u64 logical = 0, phys = 0, size = 0; 1980 u32 flags = 0; 1981 int ret = 0; 1982 bool compr_cluster = false, compr_appended; 1983 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1984 unsigned int count_in_cluster = 0; 1985 loff_t maxbytes; 1986 1987 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1988 ret = f2fs_precache_extents(inode); 1989 if (ret) 1990 return ret; 1991 } 1992 1993 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1994 if (ret) 1995 return ret; 1996 1997 inode_lock(inode); 1998 1999 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 2000 if (start > maxbytes) { 2001 ret = -EFBIG; 2002 goto out; 2003 } 2004 2005 if (len > maxbytes || (maxbytes - len) < start) 2006 len = maxbytes - start; 2007 2008 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 2009 ret = f2fs_xattr_fiemap(inode, fieinfo); 2010 goto out; 2011 } 2012 2013 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 2014 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 2015 if (ret != -EAGAIN) 2016 goto out; 2017 } 2018 2019 if (bytes_to_blks(inode, len) == 0) 2020 len = blks_to_bytes(inode, 1); 2021 2022 start_blk = bytes_to_blks(inode, start); 2023 last_blk = bytes_to_blks(inode, start + len - 1); 2024 2025 next: 2026 memset(&map, 0, sizeof(map)); 2027 map.m_lblk = start_blk; 2028 map.m_len = bytes_to_blks(inode, len); 2029 map.m_next_pgofs = &next_pgofs; 2030 map.m_seg_type = NO_CHECK_TYPE; 2031 2032 if (compr_cluster) { 2033 map.m_lblk += 1; 2034 map.m_len = cluster_size - count_in_cluster; 2035 } 2036 2037 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 2038 if (ret) 2039 goto out; 2040 2041 /* HOLE */ 2042 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 2043 start_blk = next_pgofs; 2044 2045 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 2046 max_inode_blocks(inode))) 2047 goto prep_next; 2048 2049 flags |= FIEMAP_EXTENT_LAST; 2050 } 2051 2052 compr_appended = false; 2053 /* In a case of compressed cluster, append this to the last extent */ 2054 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) || 2055 !(map.m_flags & F2FS_MAP_FLAGS))) { 2056 compr_appended = true; 2057 goto skip_fill; 2058 } 2059 2060 if (size) { 2061 flags |= FIEMAP_EXTENT_MERGED; 2062 if (IS_ENCRYPTED(inode)) 2063 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 2064 2065 ret = fiemap_fill_next_extent(fieinfo, logical, 2066 phys, size, flags); 2067 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 2068 if (ret) 2069 goto out; 2070 size = 0; 2071 } 2072 2073 if (start_blk > last_blk) 2074 goto out; 2075 2076 skip_fill: 2077 if (map.m_pblk == COMPRESS_ADDR) { 2078 compr_cluster = true; 2079 count_in_cluster = 1; 2080 } else if (compr_appended) { 2081 unsigned int appended_blks = cluster_size - 2082 count_in_cluster + 1; 2083 size += blks_to_bytes(inode, appended_blks); 2084 start_blk += appended_blks; 2085 compr_cluster = false; 2086 } else { 2087 logical = blks_to_bytes(inode, start_blk); 2088 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2089 blks_to_bytes(inode, map.m_pblk) : 0; 2090 size = blks_to_bytes(inode, map.m_len); 2091 flags = 0; 2092 2093 if (compr_cluster) { 2094 flags = FIEMAP_EXTENT_ENCODED; 2095 count_in_cluster += map.m_len; 2096 if (count_in_cluster == cluster_size) { 2097 compr_cluster = false; 2098 size += blks_to_bytes(inode, 1); 2099 } 2100 } else if (map.m_flags & F2FS_MAP_DELALLOC) { 2101 flags = FIEMAP_EXTENT_UNWRITTEN; 2102 } 2103 2104 start_blk += bytes_to_blks(inode, size); 2105 } 2106 2107 prep_next: 2108 cond_resched(); 2109 if (fatal_signal_pending(current)) 2110 ret = -EINTR; 2111 else 2112 goto next; 2113 out: 2114 if (ret == 1) 2115 ret = 0; 2116 2117 inode_unlock(inode); 2118 return ret; 2119 } 2120 2121 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2122 { 2123 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2124 return inode->i_sb->s_maxbytes; 2125 2126 return i_size_read(inode); 2127 } 2128 2129 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2130 unsigned nr_pages, 2131 struct f2fs_map_blocks *map, 2132 struct bio **bio_ret, 2133 sector_t *last_block_in_bio, 2134 bool is_readahead) 2135 { 2136 struct bio *bio = *bio_ret; 2137 const unsigned blocksize = blks_to_bytes(inode, 1); 2138 sector_t block_in_file; 2139 sector_t last_block; 2140 sector_t last_block_in_file; 2141 sector_t block_nr; 2142 int ret = 0; 2143 2144 block_in_file = (sector_t)page_index(page); 2145 last_block = block_in_file + nr_pages; 2146 last_block_in_file = bytes_to_blks(inode, 2147 f2fs_readpage_limit(inode) + blocksize - 1); 2148 if (last_block > last_block_in_file) 2149 last_block = last_block_in_file; 2150 2151 /* just zeroing out page which is beyond EOF */ 2152 if (block_in_file >= last_block) 2153 goto zero_out; 2154 /* 2155 * Map blocks using the previous result first. 2156 */ 2157 if ((map->m_flags & F2FS_MAP_MAPPED) && 2158 block_in_file > map->m_lblk && 2159 block_in_file < (map->m_lblk + map->m_len)) 2160 goto got_it; 2161 2162 /* 2163 * Then do more f2fs_map_blocks() calls until we are 2164 * done with this page. 2165 */ 2166 map->m_lblk = block_in_file; 2167 map->m_len = last_block - block_in_file; 2168 2169 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT); 2170 if (ret) 2171 goto out; 2172 got_it: 2173 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2174 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2175 SetPageMappedToDisk(page); 2176 2177 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2178 DATA_GENERIC_ENHANCE_READ)) { 2179 ret = -EFSCORRUPTED; 2180 f2fs_handle_error(F2FS_I_SB(inode), 2181 ERROR_INVALID_BLKADDR); 2182 goto out; 2183 } 2184 } else { 2185 zero_out: 2186 zero_user_segment(page, 0, PAGE_SIZE); 2187 if (f2fs_need_verity(inode, page->index) && 2188 !fsverity_verify_page(page)) { 2189 ret = -EIO; 2190 goto out; 2191 } 2192 if (!PageUptodate(page)) 2193 SetPageUptodate(page); 2194 unlock_page(page); 2195 goto out; 2196 } 2197 2198 /* 2199 * This page will go to BIO. Do we need to send this 2200 * BIO off first? 2201 */ 2202 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2203 *last_block_in_bio, block_nr) || 2204 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2205 submit_and_realloc: 2206 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2207 bio = NULL; 2208 } 2209 if (bio == NULL) { 2210 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2211 is_readahead ? REQ_RAHEAD : 0, page->index, 2212 false); 2213 if (IS_ERR(bio)) { 2214 ret = PTR_ERR(bio); 2215 bio = NULL; 2216 goto out; 2217 } 2218 } 2219 2220 /* 2221 * If the page is under writeback, we need to wait for 2222 * its completion to see the correct decrypted data. 2223 */ 2224 f2fs_wait_on_block_writeback(inode, block_nr); 2225 2226 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2227 goto submit_and_realloc; 2228 2229 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2230 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2231 F2FS_BLKSIZE); 2232 *last_block_in_bio = block_nr; 2233 out: 2234 *bio_ret = bio; 2235 return ret; 2236 } 2237 2238 #ifdef CONFIG_F2FS_FS_COMPRESSION 2239 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2240 unsigned nr_pages, sector_t *last_block_in_bio, 2241 bool is_readahead, bool for_write) 2242 { 2243 struct dnode_of_data dn; 2244 struct inode *inode = cc->inode; 2245 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2246 struct bio *bio = *bio_ret; 2247 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2248 sector_t last_block_in_file; 2249 const unsigned blocksize = blks_to_bytes(inode, 1); 2250 struct decompress_io_ctx *dic = NULL; 2251 struct extent_info ei = {}; 2252 bool from_dnode = true; 2253 int i; 2254 int ret = 0; 2255 2256 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2257 2258 last_block_in_file = bytes_to_blks(inode, 2259 f2fs_readpage_limit(inode) + blocksize - 1); 2260 2261 /* get rid of pages beyond EOF */ 2262 for (i = 0; i < cc->cluster_size; i++) { 2263 struct page *page = cc->rpages[i]; 2264 2265 if (!page) 2266 continue; 2267 if ((sector_t)page->index >= last_block_in_file) { 2268 zero_user_segment(page, 0, PAGE_SIZE); 2269 if (!PageUptodate(page)) 2270 SetPageUptodate(page); 2271 } else if (!PageUptodate(page)) { 2272 continue; 2273 } 2274 unlock_page(page); 2275 if (for_write) 2276 put_page(page); 2277 cc->rpages[i] = NULL; 2278 cc->nr_rpages--; 2279 } 2280 2281 /* we are done since all pages are beyond EOF */ 2282 if (f2fs_cluster_is_empty(cc)) 2283 goto out; 2284 2285 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei)) 2286 from_dnode = false; 2287 2288 if (!from_dnode) 2289 goto skip_reading_dnode; 2290 2291 set_new_dnode(&dn, inode, NULL, NULL, 0); 2292 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2293 if (ret) 2294 goto out; 2295 2296 if (unlikely(f2fs_cp_error(sbi))) { 2297 ret = -EIO; 2298 goto out_put_dnode; 2299 } 2300 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2301 2302 skip_reading_dnode: 2303 for (i = 1; i < cc->cluster_size; i++) { 2304 block_t blkaddr; 2305 2306 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2307 dn.ofs_in_node + i) : 2308 ei.blk + i - 1; 2309 2310 if (!__is_valid_data_blkaddr(blkaddr)) 2311 break; 2312 2313 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2314 ret = -EFAULT; 2315 goto out_put_dnode; 2316 } 2317 cc->nr_cpages++; 2318 2319 if (!from_dnode && i >= ei.c_len) 2320 break; 2321 } 2322 2323 /* nothing to decompress */ 2324 if (cc->nr_cpages == 0) { 2325 ret = 0; 2326 goto out_put_dnode; 2327 } 2328 2329 dic = f2fs_alloc_dic(cc); 2330 if (IS_ERR(dic)) { 2331 ret = PTR_ERR(dic); 2332 goto out_put_dnode; 2333 } 2334 2335 for (i = 0; i < cc->nr_cpages; i++) { 2336 struct page *page = dic->cpages[i]; 2337 block_t blkaddr; 2338 struct bio_post_read_ctx *ctx; 2339 2340 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2341 dn.ofs_in_node + i + 1) : 2342 ei.blk + i; 2343 2344 f2fs_wait_on_block_writeback(inode, blkaddr); 2345 2346 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2347 if (atomic_dec_and_test(&dic->remaining_pages)) 2348 f2fs_decompress_cluster(dic, true); 2349 continue; 2350 } 2351 2352 if (bio && (!page_is_mergeable(sbi, bio, 2353 *last_block_in_bio, blkaddr) || 2354 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2355 submit_and_realloc: 2356 f2fs_submit_read_bio(sbi, bio, DATA); 2357 bio = NULL; 2358 } 2359 2360 if (!bio) { 2361 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2362 is_readahead ? REQ_RAHEAD : 0, 2363 page->index, for_write); 2364 if (IS_ERR(bio)) { 2365 ret = PTR_ERR(bio); 2366 f2fs_decompress_end_io(dic, ret, true); 2367 f2fs_put_dnode(&dn); 2368 *bio_ret = NULL; 2369 return ret; 2370 } 2371 } 2372 2373 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2374 goto submit_and_realloc; 2375 2376 ctx = get_post_read_ctx(bio); 2377 ctx->enabled_steps |= STEP_DECOMPRESS; 2378 refcount_inc(&dic->refcnt); 2379 2380 inc_page_count(sbi, F2FS_RD_DATA); 2381 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2382 *last_block_in_bio = blkaddr; 2383 } 2384 2385 if (from_dnode) 2386 f2fs_put_dnode(&dn); 2387 2388 *bio_ret = bio; 2389 return 0; 2390 2391 out_put_dnode: 2392 if (from_dnode) 2393 f2fs_put_dnode(&dn); 2394 out: 2395 for (i = 0; i < cc->cluster_size; i++) { 2396 if (cc->rpages[i]) { 2397 ClearPageUptodate(cc->rpages[i]); 2398 unlock_page(cc->rpages[i]); 2399 } 2400 } 2401 *bio_ret = bio; 2402 return ret; 2403 } 2404 #endif 2405 2406 /* 2407 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2408 * Major change was from block_size == page_size in f2fs by default. 2409 */ 2410 static int f2fs_mpage_readpages(struct inode *inode, 2411 struct readahead_control *rac, struct page *page) 2412 { 2413 struct bio *bio = NULL; 2414 sector_t last_block_in_bio = 0; 2415 struct f2fs_map_blocks map; 2416 #ifdef CONFIG_F2FS_FS_COMPRESSION 2417 struct compress_ctx cc = { 2418 .inode = inode, 2419 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2420 .cluster_size = F2FS_I(inode)->i_cluster_size, 2421 .cluster_idx = NULL_CLUSTER, 2422 .rpages = NULL, 2423 .cpages = NULL, 2424 .nr_rpages = 0, 2425 .nr_cpages = 0, 2426 }; 2427 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2428 #endif 2429 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2430 unsigned max_nr_pages = nr_pages; 2431 int ret = 0; 2432 2433 map.m_pblk = 0; 2434 map.m_lblk = 0; 2435 map.m_len = 0; 2436 map.m_flags = 0; 2437 map.m_next_pgofs = NULL; 2438 map.m_next_extent = NULL; 2439 map.m_seg_type = NO_CHECK_TYPE; 2440 map.m_may_create = false; 2441 2442 for (; nr_pages; nr_pages--) { 2443 if (rac) { 2444 page = readahead_page(rac); 2445 prefetchw(&page->flags); 2446 } 2447 2448 #ifdef CONFIG_F2FS_FS_COMPRESSION 2449 if (f2fs_compressed_file(inode)) { 2450 /* there are remained compressed pages, submit them */ 2451 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2452 ret = f2fs_read_multi_pages(&cc, &bio, 2453 max_nr_pages, 2454 &last_block_in_bio, 2455 rac != NULL, false); 2456 f2fs_destroy_compress_ctx(&cc, false); 2457 if (ret) 2458 goto set_error_page; 2459 } 2460 if (cc.cluster_idx == NULL_CLUSTER) { 2461 if (nc_cluster_idx == 2462 page->index >> cc.log_cluster_size) { 2463 goto read_single_page; 2464 } 2465 2466 ret = f2fs_is_compressed_cluster(inode, page->index); 2467 if (ret < 0) 2468 goto set_error_page; 2469 else if (!ret) { 2470 nc_cluster_idx = 2471 page->index >> cc.log_cluster_size; 2472 goto read_single_page; 2473 } 2474 2475 nc_cluster_idx = NULL_CLUSTER; 2476 } 2477 ret = f2fs_init_compress_ctx(&cc); 2478 if (ret) 2479 goto set_error_page; 2480 2481 f2fs_compress_ctx_add_page(&cc, page); 2482 2483 goto next_page; 2484 } 2485 read_single_page: 2486 #endif 2487 2488 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2489 &bio, &last_block_in_bio, rac); 2490 if (ret) { 2491 #ifdef CONFIG_F2FS_FS_COMPRESSION 2492 set_error_page: 2493 #endif 2494 zero_user_segment(page, 0, PAGE_SIZE); 2495 unlock_page(page); 2496 } 2497 #ifdef CONFIG_F2FS_FS_COMPRESSION 2498 next_page: 2499 #endif 2500 if (rac) 2501 put_page(page); 2502 2503 #ifdef CONFIG_F2FS_FS_COMPRESSION 2504 if (f2fs_compressed_file(inode)) { 2505 /* last page */ 2506 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2507 ret = f2fs_read_multi_pages(&cc, &bio, 2508 max_nr_pages, 2509 &last_block_in_bio, 2510 rac != NULL, false); 2511 f2fs_destroy_compress_ctx(&cc, false); 2512 } 2513 } 2514 #endif 2515 } 2516 if (bio) 2517 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2518 return ret; 2519 } 2520 2521 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2522 { 2523 struct page *page = &folio->page; 2524 struct inode *inode = page_file_mapping(page)->host; 2525 int ret = -EAGAIN; 2526 2527 trace_f2fs_readpage(page, DATA); 2528 2529 if (!f2fs_is_compress_backend_ready(inode)) { 2530 unlock_page(page); 2531 return -EOPNOTSUPP; 2532 } 2533 2534 /* If the file has inline data, try to read it directly */ 2535 if (f2fs_has_inline_data(inode)) 2536 ret = f2fs_read_inline_data(inode, page); 2537 if (ret == -EAGAIN) 2538 ret = f2fs_mpage_readpages(inode, NULL, page); 2539 return ret; 2540 } 2541 2542 static void f2fs_readahead(struct readahead_control *rac) 2543 { 2544 struct inode *inode = rac->mapping->host; 2545 2546 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2547 2548 if (!f2fs_is_compress_backend_ready(inode)) 2549 return; 2550 2551 /* If the file has inline data, skip readahead */ 2552 if (f2fs_has_inline_data(inode)) 2553 return; 2554 2555 f2fs_mpage_readpages(inode, rac, NULL); 2556 } 2557 2558 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2559 { 2560 struct inode *inode = fio->page->mapping->host; 2561 struct page *mpage, *page; 2562 gfp_t gfp_flags = GFP_NOFS; 2563 2564 if (!f2fs_encrypted_file(inode)) 2565 return 0; 2566 2567 page = fio->compressed_page ? fio->compressed_page : fio->page; 2568 2569 /* wait for GCed page writeback via META_MAPPING */ 2570 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2571 2572 if (fscrypt_inode_uses_inline_crypto(inode)) 2573 return 0; 2574 2575 retry_encrypt: 2576 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2577 PAGE_SIZE, 0, gfp_flags); 2578 if (IS_ERR(fio->encrypted_page)) { 2579 /* flush pending IOs and wait for a while in the ENOMEM case */ 2580 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2581 f2fs_flush_merged_writes(fio->sbi); 2582 memalloc_retry_wait(GFP_NOFS); 2583 gfp_flags |= __GFP_NOFAIL; 2584 goto retry_encrypt; 2585 } 2586 return PTR_ERR(fio->encrypted_page); 2587 } 2588 2589 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2590 if (mpage) { 2591 if (PageUptodate(mpage)) 2592 memcpy(page_address(mpage), 2593 page_address(fio->encrypted_page), PAGE_SIZE); 2594 f2fs_put_page(mpage, 1); 2595 } 2596 return 0; 2597 } 2598 2599 static inline bool check_inplace_update_policy(struct inode *inode, 2600 struct f2fs_io_info *fio) 2601 { 2602 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2603 2604 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) && 2605 is_inode_flag_set(inode, FI_OPU_WRITE)) 2606 return false; 2607 if (IS_F2FS_IPU_FORCE(sbi)) 2608 return true; 2609 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi)) 2610 return true; 2611 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 2612 return true; 2613 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) && 2614 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2615 return true; 2616 2617 /* 2618 * IPU for rewrite async pages 2619 */ 2620 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE && 2621 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) 2622 return true; 2623 2624 /* this is only set during fdatasync */ 2625 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU)) 2626 return true; 2627 2628 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2629 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2630 return true; 2631 2632 return false; 2633 } 2634 2635 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2636 { 2637 /* swap file is migrating in aligned write mode */ 2638 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2639 return false; 2640 2641 if (f2fs_is_pinned_file(inode)) 2642 return true; 2643 2644 /* if this is cold file, we should overwrite to avoid fragmentation */ 2645 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2646 return true; 2647 2648 return check_inplace_update_policy(inode, fio); 2649 } 2650 2651 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2652 { 2653 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2654 2655 /* The below cases were checked when setting it. */ 2656 if (f2fs_is_pinned_file(inode)) 2657 return false; 2658 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2659 return true; 2660 if (f2fs_lfs_mode(sbi)) 2661 return true; 2662 if (S_ISDIR(inode->i_mode)) 2663 return true; 2664 if (IS_NOQUOTA(inode)) 2665 return true; 2666 if (f2fs_is_atomic_file(inode)) 2667 return true; 2668 2669 /* swap file is migrating in aligned write mode */ 2670 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2671 return true; 2672 2673 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2674 return true; 2675 2676 if (fio) { 2677 if (page_private_gcing(fio->page)) 2678 return true; 2679 if (page_private_dummy(fio->page)) 2680 return true; 2681 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2682 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2683 return true; 2684 } 2685 return false; 2686 } 2687 2688 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2689 { 2690 struct inode *inode = fio->page->mapping->host; 2691 2692 if (f2fs_should_update_outplace(inode, fio)) 2693 return false; 2694 2695 return f2fs_should_update_inplace(inode, fio); 2696 } 2697 2698 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2699 { 2700 struct page *page = fio->page; 2701 struct inode *inode = page->mapping->host; 2702 struct dnode_of_data dn; 2703 struct node_info ni; 2704 bool ipu_force = false; 2705 int err = 0; 2706 2707 /* Use COW inode to make dnode_of_data for atomic write */ 2708 if (f2fs_is_atomic_file(inode)) 2709 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2710 else 2711 set_new_dnode(&dn, inode, NULL, NULL, 0); 2712 2713 if (need_inplace_update(fio) && 2714 f2fs_lookup_read_extent_cache_block(inode, page->index, 2715 &fio->old_blkaddr)) { 2716 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2717 DATA_GENERIC_ENHANCE)) { 2718 f2fs_handle_error(fio->sbi, 2719 ERROR_INVALID_BLKADDR); 2720 return -EFSCORRUPTED; 2721 } 2722 2723 ipu_force = true; 2724 fio->need_lock = LOCK_DONE; 2725 goto got_it; 2726 } 2727 2728 /* Deadlock due to between page->lock and f2fs_lock_op */ 2729 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2730 return -EAGAIN; 2731 2732 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2733 if (err) 2734 goto out; 2735 2736 fio->old_blkaddr = dn.data_blkaddr; 2737 2738 /* This page is already truncated */ 2739 if (fio->old_blkaddr == NULL_ADDR) { 2740 ClearPageUptodate(page); 2741 clear_page_private_gcing(page); 2742 goto out_writepage; 2743 } 2744 got_it: 2745 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2746 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2747 DATA_GENERIC_ENHANCE)) { 2748 err = -EFSCORRUPTED; 2749 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 2750 goto out_writepage; 2751 } 2752 2753 /* 2754 * If current allocation needs SSR, 2755 * it had better in-place writes for updated data. 2756 */ 2757 if (ipu_force || 2758 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2759 need_inplace_update(fio))) { 2760 err = f2fs_encrypt_one_page(fio); 2761 if (err) 2762 goto out_writepage; 2763 2764 set_page_writeback(page); 2765 f2fs_put_dnode(&dn); 2766 if (fio->need_lock == LOCK_REQ) 2767 f2fs_unlock_op(fio->sbi); 2768 err = f2fs_inplace_write_data(fio); 2769 if (err) { 2770 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2771 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2772 if (PageWriteback(page)) 2773 end_page_writeback(page); 2774 } else { 2775 set_inode_flag(inode, FI_UPDATE_WRITE); 2776 } 2777 trace_f2fs_do_write_data_page(fio->page, IPU); 2778 return err; 2779 } 2780 2781 if (fio->need_lock == LOCK_RETRY) { 2782 if (!f2fs_trylock_op(fio->sbi)) { 2783 err = -EAGAIN; 2784 goto out_writepage; 2785 } 2786 fio->need_lock = LOCK_REQ; 2787 } 2788 2789 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2790 if (err) 2791 goto out_writepage; 2792 2793 fio->version = ni.version; 2794 2795 err = f2fs_encrypt_one_page(fio); 2796 if (err) 2797 goto out_writepage; 2798 2799 set_page_writeback(page); 2800 2801 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2802 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2803 2804 /* LFS mode write path */ 2805 f2fs_outplace_write_data(&dn, fio); 2806 trace_f2fs_do_write_data_page(page, OPU); 2807 set_inode_flag(inode, FI_APPEND_WRITE); 2808 if (page->index == 0) 2809 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2810 out_writepage: 2811 f2fs_put_dnode(&dn); 2812 out: 2813 if (fio->need_lock == LOCK_REQ) 2814 f2fs_unlock_op(fio->sbi); 2815 return err; 2816 } 2817 2818 int f2fs_write_single_data_page(struct page *page, int *submitted, 2819 struct bio **bio, 2820 sector_t *last_block, 2821 struct writeback_control *wbc, 2822 enum iostat_type io_type, 2823 int compr_blocks, 2824 bool allow_balance) 2825 { 2826 struct inode *inode = page->mapping->host; 2827 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2828 loff_t i_size = i_size_read(inode); 2829 const pgoff_t end_index = ((unsigned long long)i_size) 2830 >> PAGE_SHIFT; 2831 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2832 unsigned offset = 0; 2833 bool need_balance_fs = false; 2834 bool quota_inode = IS_NOQUOTA(inode); 2835 int err = 0; 2836 struct f2fs_io_info fio = { 2837 .sbi = sbi, 2838 .ino = inode->i_ino, 2839 .type = DATA, 2840 .op = REQ_OP_WRITE, 2841 .op_flags = wbc_to_write_flags(wbc), 2842 .old_blkaddr = NULL_ADDR, 2843 .page = page, 2844 .encrypted_page = NULL, 2845 .submitted = 0, 2846 .compr_blocks = compr_blocks, 2847 .need_lock = LOCK_RETRY, 2848 .post_read = f2fs_post_read_required(inode) ? 1 : 0, 2849 .io_type = io_type, 2850 .io_wbc = wbc, 2851 .bio = bio, 2852 .last_block = last_block, 2853 }; 2854 2855 trace_f2fs_writepage(page, DATA); 2856 2857 /* we should bypass data pages to proceed the kworker jobs */ 2858 if (unlikely(f2fs_cp_error(sbi))) { 2859 mapping_set_error(page->mapping, -EIO); 2860 /* 2861 * don't drop any dirty dentry pages for keeping lastest 2862 * directory structure. 2863 */ 2864 if (S_ISDIR(inode->i_mode) && 2865 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2866 goto redirty_out; 2867 2868 /* keep data pages in remount-ro mode */ 2869 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2870 goto redirty_out; 2871 goto out; 2872 } 2873 2874 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2875 goto redirty_out; 2876 2877 if (page->index < end_index || 2878 f2fs_verity_in_progress(inode) || 2879 compr_blocks) 2880 goto write; 2881 2882 /* 2883 * If the offset is out-of-range of file size, 2884 * this page does not have to be written to disk. 2885 */ 2886 offset = i_size & (PAGE_SIZE - 1); 2887 if ((page->index >= end_index + 1) || !offset) 2888 goto out; 2889 2890 zero_user_segment(page, offset, PAGE_SIZE); 2891 write: 2892 if (f2fs_is_drop_cache(inode)) 2893 goto out; 2894 2895 /* Dentry/quota blocks are controlled by checkpoint */ 2896 if (S_ISDIR(inode->i_mode) || quota_inode) { 2897 /* 2898 * We need to wait for node_write to avoid block allocation during 2899 * checkpoint. This can only happen to quota writes which can cause 2900 * the below discard race condition. 2901 */ 2902 if (quota_inode) 2903 f2fs_down_read(&sbi->node_write); 2904 2905 fio.need_lock = LOCK_DONE; 2906 err = f2fs_do_write_data_page(&fio); 2907 2908 if (quota_inode) 2909 f2fs_up_read(&sbi->node_write); 2910 2911 goto done; 2912 } 2913 2914 if (!wbc->for_reclaim) 2915 need_balance_fs = true; 2916 else if (has_not_enough_free_secs(sbi, 0, 0)) 2917 goto redirty_out; 2918 else 2919 set_inode_flag(inode, FI_HOT_DATA); 2920 2921 err = -EAGAIN; 2922 if (f2fs_has_inline_data(inode)) { 2923 err = f2fs_write_inline_data(inode, page); 2924 if (!err) 2925 goto out; 2926 } 2927 2928 if (err == -EAGAIN) { 2929 err = f2fs_do_write_data_page(&fio); 2930 if (err == -EAGAIN) { 2931 fio.need_lock = LOCK_REQ; 2932 err = f2fs_do_write_data_page(&fio); 2933 } 2934 } 2935 2936 if (err) { 2937 file_set_keep_isize(inode); 2938 } else { 2939 spin_lock(&F2FS_I(inode)->i_size_lock); 2940 if (F2FS_I(inode)->last_disk_size < psize) 2941 F2FS_I(inode)->last_disk_size = psize; 2942 spin_unlock(&F2FS_I(inode)->i_size_lock); 2943 } 2944 2945 done: 2946 if (err && err != -ENOENT) 2947 goto redirty_out; 2948 2949 out: 2950 inode_dec_dirty_pages(inode); 2951 if (err) { 2952 ClearPageUptodate(page); 2953 clear_page_private_gcing(page); 2954 } 2955 2956 if (wbc->for_reclaim) { 2957 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2958 clear_inode_flag(inode, FI_HOT_DATA); 2959 f2fs_remove_dirty_inode(inode); 2960 submitted = NULL; 2961 } 2962 unlock_page(page); 2963 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2964 !F2FS_I(inode)->wb_task && allow_balance) 2965 f2fs_balance_fs(sbi, need_balance_fs); 2966 2967 if (unlikely(f2fs_cp_error(sbi))) { 2968 f2fs_submit_merged_write(sbi, DATA); 2969 if (bio && *bio) 2970 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2971 submitted = NULL; 2972 } 2973 2974 if (submitted) 2975 *submitted = fio.submitted; 2976 2977 return 0; 2978 2979 redirty_out: 2980 redirty_page_for_writepage(wbc, page); 2981 /* 2982 * pageout() in MM translates EAGAIN, so calls handle_write_error() 2983 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2984 * file_write_and_wait_range() will see EIO error, which is critical 2985 * to return value of fsync() followed by atomic_write failure to user. 2986 */ 2987 if (!err || wbc->for_reclaim) 2988 return AOP_WRITEPAGE_ACTIVATE; 2989 unlock_page(page); 2990 return err; 2991 } 2992 2993 static int f2fs_write_data_page(struct page *page, 2994 struct writeback_control *wbc) 2995 { 2996 #ifdef CONFIG_F2FS_FS_COMPRESSION 2997 struct inode *inode = page->mapping->host; 2998 2999 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 3000 goto out; 3001 3002 if (f2fs_compressed_file(inode)) { 3003 if (f2fs_is_compressed_cluster(inode, page->index)) { 3004 redirty_page_for_writepage(wbc, page); 3005 return AOP_WRITEPAGE_ACTIVATE; 3006 } 3007 } 3008 out: 3009 #endif 3010 3011 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 3012 wbc, FS_DATA_IO, 0, true); 3013 } 3014 3015 /* 3016 * This function was copied from write_cache_pages from mm/page-writeback.c. 3017 * The major change is making write step of cold data page separately from 3018 * warm/hot data page. 3019 */ 3020 static int f2fs_write_cache_pages(struct address_space *mapping, 3021 struct writeback_control *wbc, 3022 enum iostat_type io_type) 3023 { 3024 int ret = 0; 3025 int done = 0, retry = 0; 3026 struct page *pages[F2FS_ONSTACK_PAGES]; 3027 struct folio_batch fbatch; 3028 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 3029 struct bio *bio = NULL; 3030 sector_t last_block; 3031 #ifdef CONFIG_F2FS_FS_COMPRESSION 3032 struct inode *inode = mapping->host; 3033 struct compress_ctx cc = { 3034 .inode = inode, 3035 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 3036 .cluster_size = F2FS_I(inode)->i_cluster_size, 3037 .cluster_idx = NULL_CLUSTER, 3038 .rpages = NULL, 3039 .nr_rpages = 0, 3040 .cpages = NULL, 3041 .valid_nr_cpages = 0, 3042 .rbuf = NULL, 3043 .cbuf = NULL, 3044 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 3045 .private = NULL, 3046 }; 3047 #endif 3048 int nr_folios, p, idx; 3049 int nr_pages; 3050 pgoff_t index; 3051 pgoff_t end; /* Inclusive */ 3052 pgoff_t done_index; 3053 int range_whole = 0; 3054 xa_mark_t tag; 3055 int nwritten = 0; 3056 int submitted = 0; 3057 int i; 3058 3059 folio_batch_init(&fbatch); 3060 3061 if (get_dirty_pages(mapping->host) <= 3062 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 3063 set_inode_flag(mapping->host, FI_HOT_DATA); 3064 else 3065 clear_inode_flag(mapping->host, FI_HOT_DATA); 3066 3067 if (wbc->range_cyclic) { 3068 index = mapping->writeback_index; /* prev offset */ 3069 end = -1; 3070 } else { 3071 index = wbc->range_start >> PAGE_SHIFT; 3072 end = wbc->range_end >> PAGE_SHIFT; 3073 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3074 range_whole = 1; 3075 } 3076 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3077 tag = PAGECACHE_TAG_TOWRITE; 3078 else 3079 tag = PAGECACHE_TAG_DIRTY; 3080 retry: 3081 retry = 0; 3082 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3083 tag_pages_for_writeback(mapping, index, end); 3084 done_index = index; 3085 while (!done && !retry && (index <= end)) { 3086 nr_pages = 0; 3087 again: 3088 nr_folios = filemap_get_folios_tag(mapping, &index, end, 3089 tag, &fbatch); 3090 if (nr_folios == 0) { 3091 if (nr_pages) 3092 goto write; 3093 break; 3094 } 3095 3096 for (i = 0; i < nr_folios; i++) { 3097 struct folio *folio = fbatch.folios[i]; 3098 3099 idx = 0; 3100 p = folio_nr_pages(folio); 3101 add_more: 3102 pages[nr_pages] = folio_page(folio, idx); 3103 folio_get(folio); 3104 if (++nr_pages == F2FS_ONSTACK_PAGES) { 3105 index = folio->index + idx + 1; 3106 folio_batch_release(&fbatch); 3107 goto write; 3108 } 3109 if (++idx < p) 3110 goto add_more; 3111 } 3112 folio_batch_release(&fbatch); 3113 goto again; 3114 write: 3115 for (i = 0; i < nr_pages; i++) { 3116 struct page *page = pages[i]; 3117 struct folio *folio = page_folio(page); 3118 bool need_readd; 3119 readd: 3120 need_readd = false; 3121 #ifdef CONFIG_F2FS_FS_COMPRESSION 3122 if (f2fs_compressed_file(inode)) { 3123 void *fsdata = NULL; 3124 struct page *pagep; 3125 int ret2; 3126 3127 ret = f2fs_init_compress_ctx(&cc); 3128 if (ret) { 3129 done = 1; 3130 break; 3131 } 3132 3133 if (!f2fs_cluster_can_merge_page(&cc, 3134 folio->index)) { 3135 ret = f2fs_write_multi_pages(&cc, 3136 &submitted, wbc, io_type); 3137 if (!ret) 3138 need_readd = true; 3139 goto result; 3140 } 3141 3142 if (unlikely(f2fs_cp_error(sbi))) 3143 goto lock_folio; 3144 3145 if (!f2fs_cluster_is_empty(&cc)) 3146 goto lock_folio; 3147 3148 if (f2fs_all_cluster_page_ready(&cc, 3149 pages, i, nr_pages, true)) 3150 goto lock_folio; 3151 3152 ret2 = f2fs_prepare_compress_overwrite( 3153 inode, &pagep, 3154 folio->index, &fsdata); 3155 if (ret2 < 0) { 3156 ret = ret2; 3157 done = 1; 3158 break; 3159 } else if (ret2 && 3160 (!f2fs_compress_write_end(inode, 3161 fsdata, folio->index, 1) || 3162 !f2fs_all_cluster_page_ready(&cc, 3163 pages, i, nr_pages, 3164 false))) { 3165 retry = 1; 3166 break; 3167 } 3168 } 3169 #endif 3170 /* give a priority to WB_SYNC threads */ 3171 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3172 wbc->sync_mode == WB_SYNC_NONE) { 3173 done = 1; 3174 break; 3175 } 3176 #ifdef CONFIG_F2FS_FS_COMPRESSION 3177 lock_folio: 3178 #endif 3179 done_index = folio->index; 3180 retry_write: 3181 folio_lock(folio); 3182 3183 if (unlikely(folio->mapping != mapping)) { 3184 continue_unlock: 3185 folio_unlock(folio); 3186 continue; 3187 } 3188 3189 if (!folio_test_dirty(folio)) { 3190 /* someone wrote it for us */ 3191 goto continue_unlock; 3192 } 3193 3194 if (folio_test_writeback(folio)) { 3195 if (wbc->sync_mode == WB_SYNC_NONE) 3196 goto continue_unlock; 3197 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true); 3198 } 3199 3200 if (!folio_clear_dirty_for_io(folio)) 3201 goto continue_unlock; 3202 3203 #ifdef CONFIG_F2FS_FS_COMPRESSION 3204 if (f2fs_compressed_file(inode)) { 3205 folio_get(folio); 3206 f2fs_compress_ctx_add_page(&cc, &folio->page); 3207 continue; 3208 } 3209 #endif 3210 ret = f2fs_write_single_data_page(&folio->page, 3211 &submitted, &bio, &last_block, 3212 wbc, io_type, 0, true); 3213 if (ret == AOP_WRITEPAGE_ACTIVATE) 3214 folio_unlock(folio); 3215 #ifdef CONFIG_F2FS_FS_COMPRESSION 3216 result: 3217 #endif 3218 nwritten += submitted; 3219 wbc->nr_to_write -= submitted; 3220 3221 if (unlikely(ret)) { 3222 /* 3223 * keep nr_to_write, since vfs uses this to 3224 * get # of written pages. 3225 */ 3226 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3227 ret = 0; 3228 goto next; 3229 } else if (ret == -EAGAIN) { 3230 ret = 0; 3231 if (wbc->sync_mode == WB_SYNC_ALL) { 3232 f2fs_io_schedule_timeout( 3233 DEFAULT_IO_TIMEOUT); 3234 goto retry_write; 3235 } 3236 goto next; 3237 } 3238 done_index = folio_next_index(folio); 3239 done = 1; 3240 break; 3241 } 3242 3243 if (wbc->nr_to_write <= 0 && 3244 wbc->sync_mode == WB_SYNC_NONE) { 3245 done = 1; 3246 break; 3247 } 3248 next: 3249 if (need_readd) 3250 goto readd; 3251 } 3252 release_pages(pages, nr_pages); 3253 cond_resched(); 3254 } 3255 #ifdef CONFIG_F2FS_FS_COMPRESSION 3256 /* flush remained pages in compress cluster */ 3257 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3258 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3259 nwritten += submitted; 3260 wbc->nr_to_write -= submitted; 3261 if (ret) { 3262 done = 1; 3263 retry = 0; 3264 } 3265 } 3266 if (f2fs_compressed_file(inode)) 3267 f2fs_destroy_compress_ctx(&cc, false); 3268 #endif 3269 if (retry) { 3270 index = 0; 3271 end = -1; 3272 goto retry; 3273 } 3274 if (wbc->range_cyclic && !done) 3275 done_index = 0; 3276 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3277 mapping->writeback_index = done_index; 3278 3279 if (nwritten) 3280 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3281 NULL, 0, DATA); 3282 /* submit cached bio of IPU write */ 3283 if (bio) 3284 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3285 3286 return ret; 3287 } 3288 3289 static inline bool __should_serialize_io(struct inode *inode, 3290 struct writeback_control *wbc) 3291 { 3292 /* to avoid deadlock in path of data flush */ 3293 if (F2FS_I(inode)->wb_task) 3294 return false; 3295 3296 if (!S_ISREG(inode->i_mode)) 3297 return false; 3298 if (IS_NOQUOTA(inode)) 3299 return false; 3300 3301 if (f2fs_need_compress_data(inode)) 3302 return true; 3303 if (wbc->sync_mode != WB_SYNC_ALL) 3304 return true; 3305 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3306 return true; 3307 return false; 3308 } 3309 3310 static int __f2fs_write_data_pages(struct address_space *mapping, 3311 struct writeback_control *wbc, 3312 enum iostat_type io_type) 3313 { 3314 struct inode *inode = mapping->host; 3315 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3316 struct blk_plug plug; 3317 int ret; 3318 bool locked = false; 3319 3320 /* deal with chardevs and other special file */ 3321 if (!mapping->a_ops->writepage) 3322 return 0; 3323 3324 /* skip writing if there is no dirty page in this inode */ 3325 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3326 return 0; 3327 3328 /* during POR, we don't need to trigger writepage at all. */ 3329 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3330 goto skip_write; 3331 3332 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3333 wbc->sync_mode == WB_SYNC_NONE && 3334 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3335 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3336 goto skip_write; 3337 3338 /* skip writing in file defragment preparing stage */ 3339 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3340 goto skip_write; 3341 3342 trace_f2fs_writepages(mapping->host, wbc, DATA); 3343 3344 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3345 if (wbc->sync_mode == WB_SYNC_ALL) 3346 atomic_inc(&sbi->wb_sync_req[DATA]); 3347 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3348 /* to avoid potential deadlock */ 3349 if (current->plug) 3350 blk_finish_plug(current->plug); 3351 goto skip_write; 3352 } 3353 3354 if (__should_serialize_io(inode, wbc)) { 3355 mutex_lock(&sbi->writepages); 3356 locked = true; 3357 } 3358 3359 blk_start_plug(&plug); 3360 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3361 blk_finish_plug(&plug); 3362 3363 if (locked) 3364 mutex_unlock(&sbi->writepages); 3365 3366 if (wbc->sync_mode == WB_SYNC_ALL) 3367 atomic_dec(&sbi->wb_sync_req[DATA]); 3368 /* 3369 * if some pages were truncated, we cannot guarantee its mapping->host 3370 * to detect pending bios. 3371 */ 3372 3373 f2fs_remove_dirty_inode(inode); 3374 return ret; 3375 3376 skip_write: 3377 wbc->pages_skipped += get_dirty_pages(inode); 3378 trace_f2fs_writepages(mapping->host, wbc, DATA); 3379 return 0; 3380 } 3381 3382 static int f2fs_write_data_pages(struct address_space *mapping, 3383 struct writeback_control *wbc) 3384 { 3385 struct inode *inode = mapping->host; 3386 3387 return __f2fs_write_data_pages(mapping, wbc, 3388 F2FS_I(inode)->cp_task == current ? 3389 FS_CP_DATA_IO : FS_DATA_IO); 3390 } 3391 3392 void f2fs_write_failed(struct inode *inode, loff_t to) 3393 { 3394 loff_t i_size = i_size_read(inode); 3395 3396 if (IS_NOQUOTA(inode)) 3397 return; 3398 3399 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3400 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3401 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3402 filemap_invalidate_lock(inode->i_mapping); 3403 3404 truncate_pagecache(inode, i_size); 3405 f2fs_truncate_blocks(inode, i_size, true); 3406 3407 filemap_invalidate_unlock(inode->i_mapping); 3408 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3409 } 3410 } 3411 3412 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3413 struct page *page, loff_t pos, unsigned len, 3414 block_t *blk_addr, bool *node_changed) 3415 { 3416 struct inode *inode = page->mapping->host; 3417 pgoff_t index = page->index; 3418 struct dnode_of_data dn; 3419 struct page *ipage; 3420 bool locked = false; 3421 int flag = F2FS_GET_BLOCK_PRE_AIO; 3422 int err = 0; 3423 3424 /* 3425 * If a whole page is being written and we already preallocated all the 3426 * blocks, then there is no need to get a block address now. 3427 */ 3428 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3429 return 0; 3430 3431 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3432 if (f2fs_has_inline_data(inode)) { 3433 if (pos + len > MAX_INLINE_DATA(inode)) 3434 flag = F2FS_GET_BLOCK_DEFAULT; 3435 f2fs_map_lock(sbi, flag); 3436 locked = true; 3437 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) { 3438 f2fs_map_lock(sbi, flag); 3439 locked = true; 3440 } 3441 3442 restart: 3443 /* check inline_data */ 3444 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3445 if (IS_ERR(ipage)) { 3446 err = PTR_ERR(ipage); 3447 goto unlock_out; 3448 } 3449 3450 set_new_dnode(&dn, inode, ipage, ipage, 0); 3451 3452 if (f2fs_has_inline_data(inode)) { 3453 if (pos + len <= MAX_INLINE_DATA(inode)) { 3454 f2fs_do_read_inline_data(page, ipage); 3455 set_inode_flag(inode, FI_DATA_EXIST); 3456 if (inode->i_nlink) 3457 set_page_private_inline(ipage); 3458 goto out; 3459 } 3460 err = f2fs_convert_inline_page(&dn, page); 3461 if (err || dn.data_blkaddr != NULL_ADDR) 3462 goto out; 3463 } 3464 3465 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3466 &dn.data_blkaddr)) { 3467 if (locked) { 3468 err = f2fs_reserve_block(&dn, index); 3469 goto out; 3470 } 3471 3472 /* hole case */ 3473 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3474 if (!err && dn.data_blkaddr != NULL_ADDR) 3475 goto out; 3476 f2fs_put_dnode(&dn); 3477 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3478 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3479 locked = true; 3480 goto restart; 3481 } 3482 out: 3483 if (!err) { 3484 /* convert_inline_page can make node_changed */ 3485 *blk_addr = dn.data_blkaddr; 3486 *node_changed = dn.node_changed; 3487 } 3488 f2fs_put_dnode(&dn); 3489 unlock_out: 3490 if (locked) 3491 f2fs_map_unlock(sbi, flag); 3492 return err; 3493 } 3494 3495 static int __find_data_block(struct inode *inode, pgoff_t index, 3496 block_t *blk_addr) 3497 { 3498 struct dnode_of_data dn; 3499 struct page *ipage; 3500 int err = 0; 3501 3502 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 3503 if (IS_ERR(ipage)) 3504 return PTR_ERR(ipage); 3505 3506 set_new_dnode(&dn, inode, ipage, ipage, 0); 3507 3508 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3509 &dn.data_blkaddr)) { 3510 /* hole case */ 3511 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3512 if (err) { 3513 dn.data_blkaddr = NULL_ADDR; 3514 err = 0; 3515 } 3516 } 3517 *blk_addr = dn.data_blkaddr; 3518 f2fs_put_dnode(&dn); 3519 return err; 3520 } 3521 3522 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3523 block_t *blk_addr, bool *node_changed) 3524 { 3525 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3526 struct dnode_of_data dn; 3527 struct page *ipage; 3528 int err = 0; 3529 3530 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3531 3532 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3533 if (IS_ERR(ipage)) { 3534 err = PTR_ERR(ipage); 3535 goto unlock_out; 3536 } 3537 set_new_dnode(&dn, inode, ipage, ipage, 0); 3538 3539 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index, 3540 &dn.data_blkaddr)) 3541 err = f2fs_reserve_block(&dn, index); 3542 3543 *blk_addr = dn.data_blkaddr; 3544 *node_changed = dn.node_changed; 3545 f2fs_put_dnode(&dn); 3546 3547 unlock_out: 3548 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3549 return err; 3550 } 3551 3552 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3553 struct page *page, loff_t pos, unsigned int len, 3554 block_t *blk_addr, bool *node_changed, bool *use_cow) 3555 { 3556 struct inode *inode = page->mapping->host; 3557 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3558 pgoff_t index = page->index; 3559 int err = 0; 3560 block_t ori_blk_addr = NULL_ADDR; 3561 3562 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3563 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3564 goto reserve_block; 3565 3566 /* Look for the block in COW inode first */ 3567 err = __find_data_block(cow_inode, index, blk_addr); 3568 if (err) { 3569 return err; 3570 } else if (*blk_addr != NULL_ADDR) { 3571 *use_cow = true; 3572 return 0; 3573 } 3574 3575 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE)) 3576 goto reserve_block; 3577 3578 /* Look for the block in the original inode */ 3579 err = __find_data_block(inode, index, &ori_blk_addr); 3580 if (err) 3581 return err; 3582 3583 reserve_block: 3584 /* Finally, we should reserve a new block in COW inode for the update */ 3585 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3586 if (err) 3587 return err; 3588 inc_atomic_write_cnt(inode); 3589 3590 if (ori_blk_addr != NULL_ADDR) 3591 *blk_addr = ori_blk_addr; 3592 return 0; 3593 } 3594 3595 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3596 loff_t pos, unsigned len, struct page **pagep, void **fsdata) 3597 { 3598 struct inode *inode = mapping->host; 3599 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3600 struct page *page = NULL; 3601 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3602 bool need_balance = false; 3603 bool use_cow = false; 3604 block_t blkaddr = NULL_ADDR; 3605 int err = 0; 3606 3607 trace_f2fs_write_begin(inode, pos, len); 3608 3609 if (!f2fs_is_checkpoint_ready(sbi)) { 3610 err = -ENOSPC; 3611 goto fail; 3612 } 3613 3614 /* 3615 * We should check this at this moment to avoid deadlock on inode page 3616 * and #0 page. The locking rule for inline_data conversion should be: 3617 * lock_page(page #0) -> lock_page(inode_page) 3618 */ 3619 if (index != 0) { 3620 err = f2fs_convert_inline_inode(inode); 3621 if (err) 3622 goto fail; 3623 } 3624 3625 #ifdef CONFIG_F2FS_FS_COMPRESSION 3626 if (f2fs_compressed_file(inode)) { 3627 int ret; 3628 3629 *fsdata = NULL; 3630 3631 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3632 goto repeat; 3633 3634 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3635 index, fsdata); 3636 if (ret < 0) { 3637 err = ret; 3638 goto fail; 3639 } else if (ret) { 3640 return 0; 3641 } 3642 } 3643 #endif 3644 3645 repeat: 3646 /* 3647 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3648 * wait_for_stable_page. Will wait that below with our IO control. 3649 */ 3650 page = f2fs_pagecache_get_page(mapping, index, 3651 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3652 if (!page) { 3653 err = -ENOMEM; 3654 goto fail; 3655 } 3656 3657 /* TODO: cluster can be compressed due to race with .writepage */ 3658 3659 *pagep = page; 3660 3661 if (f2fs_is_atomic_file(inode)) 3662 err = prepare_atomic_write_begin(sbi, page, pos, len, 3663 &blkaddr, &need_balance, &use_cow); 3664 else 3665 err = prepare_write_begin(sbi, page, pos, len, 3666 &blkaddr, &need_balance); 3667 if (err) 3668 goto fail; 3669 3670 if (need_balance && !IS_NOQUOTA(inode) && 3671 has_not_enough_free_secs(sbi, 0, 0)) { 3672 unlock_page(page); 3673 f2fs_balance_fs(sbi, true); 3674 lock_page(page); 3675 if (page->mapping != mapping) { 3676 /* The page got truncated from under us */ 3677 f2fs_put_page(page, 1); 3678 goto repeat; 3679 } 3680 } 3681 3682 f2fs_wait_on_page_writeback(page, DATA, false, true); 3683 3684 if (len == PAGE_SIZE || PageUptodate(page)) 3685 return 0; 3686 3687 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3688 !f2fs_verity_in_progress(inode)) { 3689 zero_user_segment(page, len, PAGE_SIZE); 3690 return 0; 3691 } 3692 3693 if (blkaddr == NEW_ADDR) { 3694 zero_user_segment(page, 0, PAGE_SIZE); 3695 SetPageUptodate(page); 3696 } else { 3697 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3698 DATA_GENERIC_ENHANCE_READ)) { 3699 err = -EFSCORRUPTED; 3700 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3701 goto fail; 3702 } 3703 err = f2fs_submit_page_read(use_cow ? 3704 F2FS_I(inode)->cow_inode : inode, page, 3705 blkaddr, 0, true); 3706 if (err) 3707 goto fail; 3708 3709 lock_page(page); 3710 if (unlikely(page->mapping != mapping)) { 3711 f2fs_put_page(page, 1); 3712 goto repeat; 3713 } 3714 if (unlikely(!PageUptodate(page))) { 3715 err = -EIO; 3716 goto fail; 3717 } 3718 } 3719 return 0; 3720 3721 fail: 3722 f2fs_put_page(page, 1); 3723 f2fs_write_failed(inode, pos + len); 3724 return err; 3725 } 3726 3727 static int f2fs_write_end(struct file *file, 3728 struct address_space *mapping, 3729 loff_t pos, unsigned len, unsigned copied, 3730 struct page *page, void *fsdata) 3731 { 3732 struct inode *inode = page->mapping->host; 3733 3734 trace_f2fs_write_end(inode, pos, len, copied); 3735 3736 /* 3737 * This should be come from len == PAGE_SIZE, and we expect copied 3738 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3739 * let generic_perform_write() try to copy data again through copied=0. 3740 */ 3741 if (!PageUptodate(page)) { 3742 if (unlikely(copied != len)) 3743 copied = 0; 3744 else 3745 SetPageUptodate(page); 3746 } 3747 3748 #ifdef CONFIG_F2FS_FS_COMPRESSION 3749 /* overwrite compressed file */ 3750 if (f2fs_compressed_file(inode) && fsdata) { 3751 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3752 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3753 3754 if (pos + copied > i_size_read(inode) && 3755 !f2fs_verity_in_progress(inode)) 3756 f2fs_i_size_write(inode, pos + copied); 3757 return copied; 3758 } 3759 #endif 3760 3761 if (!copied) 3762 goto unlock_out; 3763 3764 set_page_dirty(page); 3765 3766 if (pos + copied > i_size_read(inode) && 3767 !f2fs_verity_in_progress(inode)) { 3768 f2fs_i_size_write(inode, pos + copied); 3769 if (f2fs_is_atomic_file(inode)) 3770 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3771 pos + copied); 3772 } 3773 unlock_out: 3774 f2fs_put_page(page, 1); 3775 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3776 return copied; 3777 } 3778 3779 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3780 { 3781 struct inode *inode = folio->mapping->host; 3782 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3783 3784 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3785 (offset || length != folio_size(folio))) 3786 return; 3787 3788 if (folio_test_dirty(folio)) { 3789 if (inode->i_ino == F2FS_META_INO(sbi)) { 3790 dec_page_count(sbi, F2FS_DIRTY_META); 3791 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3792 dec_page_count(sbi, F2FS_DIRTY_NODES); 3793 } else { 3794 inode_dec_dirty_pages(inode); 3795 f2fs_remove_dirty_inode(inode); 3796 } 3797 } 3798 clear_page_private_all(&folio->page); 3799 } 3800 3801 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3802 { 3803 /* If this is dirty folio, keep private data */ 3804 if (folio_test_dirty(folio)) 3805 return false; 3806 3807 clear_page_private_all(&folio->page); 3808 return true; 3809 } 3810 3811 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3812 struct folio *folio) 3813 { 3814 struct inode *inode = mapping->host; 3815 3816 trace_f2fs_set_page_dirty(&folio->page, DATA); 3817 3818 if (!folio_test_uptodate(folio)) 3819 folio_mark_uptodate(folio); 3820 BUG_ON(folio_test_swapcache(folio)); 3821 3822 if (filemap_dirty_folio(mapping, folio)) { 3823 f2fs_update_dirty_folio(inode, folio); 3824 return true; 3825 } 3826 return false; 3827 } 3828 3829 3830 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3831 { 3832 #ifdef CONFIG_F2FS_FS_COMPRESSION 3833 struct dnode_of_data dn; 3834 sector_t start_idx, blknr = 0; 3835 int ret; 3836 3837 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3838 3839 set_new_dnode(&dn, inode, NULL, NULL, 0); 3840 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3841 if (ret) 3842 return 0; 3843 3844 if (dn.data_blkaddr != COMPRESS_ADDR) { 3845 dn.ofs_in_node += block - start_idx; 3846 blknr = f2fs_data_blkaddr(&dn); 3847 if (!__is_valid_data_blkaddr(blknr)) 3848 blknr = 0; 3849 } 3850 3851 f2fs_put_dnode(&dn); 3852 return blknr; 3853 #else 3854 return 0; 3855 #endif 3856 } 3857 3858 3859 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3860 { 3861 struct inode *inode = mapping->host; 3862 sector_t blknr = 0; 3863 3864 if (f2fs_has_inline_data(inode)) 3865 goto out; 3866 3867 /* make sure allocating whole blocks */ 3868 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3869 filemap_write_and_wait(mapping); 3870 3871 /* Block number less than F2FS MAX BLOCKS */ 3872 if (unlikely(block >= max_file_blocks(inode))) 3873 goto out; 3874 3875 if (f2fs_compressed_file(inode)) { 3876 blknr = f2fs_bmap_compress(inode, block); 3877 } else { 3878 struct f2fs_map_blocks map; 3879 3880 memset(&map, 0, sizeof(map)); 3881 map.m_lblk = block; 3882 map.m_len = 1; 3883 map.m_next_pgofs = NULL; 3884 map.m_seg_type = NO_CHECK_TYPE; 3885 3886 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP)) 3887 blknr = map.m_pblk; 3888 } 3889 out: 3890 trace_f2fs_bmap(inode, block, blknr); 3891 return blknr; 3892 } 3893 3894 #ifdef CONFIG_SWAP 3895 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3896 unsigned int blkcnt) 3897 { 3898 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3899 unsigned int blkofs; 3900 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3901 unsigned int secidx = start_blk / blk_per_sec; 3902 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3903 int ret = 0; 3904 3905 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3906 filemap_invalidate_lock(inode->i_mapping); 3907 3908 set_inode_flag(inode, FI_ALIGNED_WRITE); 3909 set_inode_flag(inode, FI_OPU_WRITE); 3910 3911 for (; secidx < end_sec; secidx++) { 3912 f2fs_down_write(&sbi->pin_sem); 3913 3914 f2fs_lock_op(sbi); 3915 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3916 f2fs_unlock_op(sbi); 3917 3918 set_inode_flag(inode, FI_SKIP_WRITES); 3919 3920 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3921 struct page *page; 3922 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3923 3924 page = f2fs_get_lock_data_page(inode, blkidx, true); 3925 if (IS_ERR(page)) { 3926 f2fs_up_write(&sbi->pin_sem); 3927 ret = PTR_ERR(page); 3928 goto done; 3929 } 3930 3931 set_page_dirty(page); 3932 f2fs_put_page(page, 1); 3933 } 3934 3935 clear_inode_flag(inode, FI_SKIP_WRITES); 3936 3937 ret = filemap_fdatawrite(inode->i_mapping); 3938 3939 f2fs_up_write(&sbi->pin_sem); 3940 3941 if (ret) 3942 break; 3943 } 3944 3945 done: 3946 clear_inode_flag(inode, FI_SKIP_WRITES); 3947 clear_inode_flag(inode, FI_OPU_WRITE); 3948 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3949 3950 filemap_invalidate_unlock(inode->i_mapping); 3951 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3952 3953 return ret; 3954 } 3955 3956 static int check_swap_activate(struct swap_info_struct *sis, 3957 struct file *swap_file, sector_t *span) 3958 { 3959 struct address_space *mapping = swap_file->f_mapping; 3960 struct inode *inode = mapping->host; 3961 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3962 sector_t cur_lblock; 3963 sector_t last_lblock; 3964 sector_t pblock; 3965 sector_t lowest_pblock = -1; 3966 sector_t highest_pblock = 0; 3967 int nr_extents = 0; 3968 unsigned long nr_pblocks; 3969 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3970 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3971 unsigned int not_aligned = 0; 3972 int ret = 0; 3973 3974 /* 3975 * Map all the blocks into the extent list. This code doesn't try 3976 * to be very smart. 3977 */ 3978 cur_lblock = 0; 3979 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3980 3981 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3982 struct f2fs_map_blocks map; 3983 retry: 3984 cond_resched(); 3985 3986 memset(&map, 0, sizeof(map)); 3987 map.m_lblk = cur_lblock; 3988 map.m_len = last_lblock - cur_lblock; 3989 map.m_next_pgofs = NULL; 3990 map.m_next_extent = NULL; 3991 map.m_seg_type = NO_CHECK_TYPE; 3992 map.m_may_create = false; 3993 3994 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 3995 if (ret) 3996 goto out; 3997 3998 /* hole */ 3999 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 4000 f2fs_err(sbi, "Swapfile has holes"); 4001 ret = -EINVAL; 4002 goto out; 4003 } 4004 4005 pblock = map.m_pblk; 4006 nr_pblocks = map.m_len; 4007 4008 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 4009 nr_pblocks & sec_blks_mask) { 4010 not_aligned++; 4011 4012 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 4013 if (cur_lblock + nr_pblocks > sis->max) 4014 nr_pblocks -= blks_per_sec; 4015 4016 if (!nr_pblocks) { 4017 /* this extent is last one */ 4018 nr_pblocks = map.m_len; 4019 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 4020 goto next; 4021 } 4022 4023 ret = f2fs_migrate_blocks(inode, cur_lblock, 4024 nr_pblocks); 4025 if (ret) 4026 goto out; 4027 goto retry; 4028 } 4029 next: 4030 if (cur_lblock + nr_pblocks >= sis->max) 4031 nr_pblocks = sis->max - cur_lblock; 4032 4033 if (cur_lblock) { /* exclude the header page */ 4034 if (pblock < lowest_pblock) 4035 lowest_pblock = pblock; 4036 if (pblock + nr_pblocks - 1 > highest_pblock) 4037 highest_pblock = pblock + nr_pblocks - 1; 4038 } 4039 4040 /* 4041 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 4042 */ 4043 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 4044 if (ret < 0) 4045 goto out; 4046 nr_extents += ret; 4047 cur_lblock += nr_pblocks; 4048 } 4049 ret = nr_extents; 4050 *span = 1 + highest_pblock - lowest_pblock; 4051 if (cur_lblock == 0) 4052 cur_lblock = 1; /* force Empty message */ 4053 sis->max = cur_lblock; 4054 sis->pages = cur_lblock - 1; 4055 sis->highest_bit = cur_lblock - 1; 4056 out: 4057 if (not_aligned) 4058 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 4059 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4060 return ret; 4061 } 4062 4063 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4064 sector_t *span) 4065 { 4066 struct inode *inode = file_inode(file); 4067 int ret; 4068 4069 if (!S_ISREG(inode->i_mode)) 4070 return -EINVAL; 4071 4072 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 4073 return -EROFS; 4074 4075 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 4076 f2fs_err(F2FS_I_SB(inode), 4077 "Swapfile not supported in LFS mode"); 4078 return -EINVAL; 4079 } 4080 4081 ret = f2fs_convert_inline_inode(inode); 4082 if (ret) 4083 return ret; 4084 4085 if (!f2fs_disable_compressed_file(inode)) 4086 return -EINVAL; 4087 4088 f2fs_precache_extents(inode); 4089 4090 ret = check_swap_activate(sis, file, span); 4091 if (ret < 0) 4092 return ret; 4093 4094 stat_inc_swapfile_inode(inode); 4095 set_inode_flag(inode, FI_PIN_FILE); 4096 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 4097 return ret; 4098 } 4099 4100 static void f2fs_swap_deactivate(struct file *file) 4101 { 4102 struct inode *inode = file_inode(file); 4103 4104 stat_dec_swapfile_inode(inode); 4105 clear_inode_flag(inode, FI_PIN_FILE); 4106 } 4107 #else 4108 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4109 sector_t *span) 4110 { 4111 return -EOPNOTSUPP; 4112 } 4113 4114 static void f2fs_swap_deactivate(struct file *file) 4115 { 4116 } 4117 #endif 4118 4119 const struct address_space_operations f2fs_dblock_aops = { 4120 .read_folio = f2fs_read_data_folio, 4121 .readahead = f2fs_readahead, 4122 .writepage = f2fs_write_data_page, 4123 .writepages = f2fs_write_data_pages, 4124 .write_begin = f2fs_write_begin, 4125 .write_end = f2fs_write_end, 4126 .dirty_folio = f2fs_dirty_data_folio, 4127 .migrate_folio = filemap_migrate_folio, 4128 .invalidate_folio = f2fs_invalidate_folio, 4129 .release_folio = f2fs_release_folio, 4130 .bmap = f2fs_bmap, 4131 .swap_activate = f2fs_swap_activate, 4132 .swap_deactivate = f2fs_swap_deactivate, 4133 }; 4134 4135 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4136 { 4137 struct address_space *mapping = page_mapping(page); 4138 unsigned long flags; 4139 4140 xa_lock_irqsave(&mapping->i_pages, flags); 4141 __xa_clear_mark(&mapping->i_pages, page_index(page), 4142 PAGECACHE_TAG_DIRTY); 4143 xa_unlock_irqrestore(&mapping->i_pages, flags); 4144 } 4145 4146 int __init f2fs_init_post_read_processing(void) 4147 { 4148 bio_post_read_ctx_cache = 4149 kmem_cache_create("f2fs_bio_post_read_ctx", 4150 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4151 if (!bio_post_read_ctx_cache) 4152 goto fail; 4153 bio_post_read_ctx_pool = 4154 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4155 bio_post_read_ctx_cache); 4156 if (!bio_post_read_ctx_pool) 4157 goto fail_free_cache; 4158 return 0; 4159 4160 fail_free_cache: 4161 kmem_cache_destroy(bio_post_read_ctx_cache); 4162 fail: 4163 return -ENOMEM; 4164 } 4165 4166 void f2fs_destroy_post_read_processing(void) 4167 { 4168 mempool_destroy(bio_post_read_ctx_pool); 4169 kmem_cache_destroy(bio_post_read_ctx_cache); 4170 } 4171 4172 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4173 { 4174 if (!f2fs_sb_has_encrypt(sbi) && 4175 !f2fs_sb_has_verity(sbi) && 4176 !f2fs_sb_has_compression(sbi)) 4177 return 0; 4178 4179 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4180 WQ_UNBOUND | WQ_HIGHPRI, 4181 num_online_cpus()); 4182 return sbi->post_read_wq ? 0 : -ENOMEM; 4183 } 4184 4185 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4186 { 4187 if (sbi->post_read_wq) 4188 destroy_workqueue(sbi->post_read_wq); 4189 } 4190 4191 int __init f2fs_init_bio_entry_cache(void) 4192 { 4193 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4194 sizeof(struct bio_entry)); 4195 return bio_entry_slab ? 0 : -ENOMEM; 4196 } 4197 4198 void f2fs_destroy_bio_entry_cache(void) 4199 { 4200 kmem_cache_destroy(bio_entry_slab); 4201 } 4202 4203 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4204 unsigned int flags, struct iomap *iomap, 4205 struct iomap *srcmap) 4206 { 4207 struct f2fs_map_blocks map = {}; 4208 pgoff_t next_pgofs = 0; 4209 int err; 4210 4211 map.m_lblk = bytes_to_blks(inode, offset); 4212 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4213 map.m_next_pgofs = &next_pgofs; 4214 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4215 if (flags & IOMAP_WRITE) 4216 map.m_may_create = true; 4217 4218 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO); 4219 if (err) 4220 return err; 4221 4222 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4223 4224 /* 4225 * When inline encryption is enabled, sometimes I/O to an encrypted file 4226 * has to be broken up to guarantee DUN contiguity. Handle this by 4227 * limiting the length of the mapping returned. 4228 */ 4229 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4230 4231 /* 4232 * We should never see delalloc or compressed extents here based on 4233 * prior flushing and checks. 4234 */ 4235 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR)) 4236 return -EINVAL; 4237 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR)) 4238 return -EINVAL; 4239 4240 if (map.m_pblk != NULL_ADDR) { 4241 iomap->length = blks_to_bytes(inode, map.m_len); 4242 iomap->type = IOMAP_MAPPED; 4243 iomap->flags |= IOMAP_F_MERGED; 4244 iomap->bdev = map.m_bdev; 4245 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4246 } else { 4247 if (flags & IOMAP_WRITE) 4248 return -ENOTBLK; 4249 iomap->length = blks_to_bytes(inode, next_pgofs) - 4250 iomap->offset; 4251 iomap->type = IOMAP_HOLE; 4252 iomap->addr = IOMAP_NULL_ADDR; 4253 } 4254 4255 if (map.m_flags & F2FS_MAP_NEW) 4256 iomap->flags |= IOMAP_F_NEW; 4257 if ((inode->i_state & I_DIRTY_DATASYNC) || 4258 offset + length > i_size_read(inode)) 4259 iomap->flags |= IOMAP_F_DIRTY; 4260 4261 return 0; 4262 } 4263 4264 const struct iomap_ops f2fs_iomap_ops = { 4265 .iomap_begin = f2fs_iomap_begin, 4266 }; 4267