1 /* 2 * fs/f2fs/data.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/mpage.h> 15 #include <linux/writeback.h> 16 #include <linux/backing-dev.h> 17 #include <linux/pagevec.h> 18 #include <linux/blkdev.h> 19 #include <linux/bio.h> 20 #include <linux/prefetch.h> 21 #include <linux/uio.h> 22 #include <linux/mm.h> 23 #include <linux/memcontrol.h> 24 #include <linux/cleancache.h> 25 26 #include "f2fs.h" 27 #include "node.h" 28 #include "segment.h" 29 #include "trace.h" 30 #include <trace/events/f2fs.h> 31 32 static void f2fs_read_end_io(struct bio *bio) 33 { 34 struct bio_vec *bvec; 35 int i; 36 37 #ifdef CONFIG_F2FS_FAULT_INJECTION 38 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) 39 bio->bi_error = -EIO; 40 #endif 41 42 if (f2fs_bio_encrypted(bio)) { 43 if (bio->bi_error) { 44 fscrypt_release_ctx(bio->bi_private); 45 } else { 46 fscrypt_decrypt_bio_pages(bio->bi_private, bio); 47 return; 48 } 49 } 50 51 bio_for_each_segment_all(bvec, bio, i) { 52 struct page *page = bvec->bv_page; 53 54 if (!bio->bi_error) { 55 if (!PageUptodate(page)) 56 SetPageUptodate(page); 57 } else { 58 ClearPageUptodate(page); 59 SetPageError(page); 60 } 61 unlock_page(page); 62 } 63 bio_put(bio); 64 } 65 66 static void f2fs_write_end_io(struct bio *bio) 67 { 68 struct f2fs_sb_info *sbi = bio->bi_private; 69 struct bio_vec *bvec; 70 int i; 71 72 bio_for_each_segment_all(bvec, bio, i) { 73 struct page *page = bvec->bv_page; 74 75 fscrypt_pullback_bio_page(&page, true); 76 77 if (unlikely(bio->bi_error)) { 78 mapping_set_error(page->mapping, -EIO); 79 f2fs_stop_checkpoint(sbi, true); 80 } 81 end_page_writeback(page); 82 } 83 if (atomic_dec_and_test(&sbi->nr_wb_bios) && 84 wq_has_sleeper(&sbi->cp_wait)) 85 wake_up(&sbi->cp_wait); 86 87 bio_put(bio); 88 } 89 90 /* 91 * Low-level block read/write IO operations. 92 */ 93 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr, 94 int npages, bool is_read) 95 { 96 struct bio *bio; 97 98 bio = f2fs_bio_alloc(npages); 99 100 bio->bi_bdev = sbi->sb->s_bdev; 101 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr); 102 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io; 103 bio->bi_private = is_read ? NULL : sbi; 104 105 return bio; 106 } 107 108 static inline void __submit_bio(struct f2fs_sb_info *sbi, 109 struct bio *bio, enum page_type type) 110 { 111 if (!is_read_io(bio_op(bio))) { 112 atomic_inc(&sbi->nr_wb_bios); 113 if (f2fs_sb_mounted_hmsmr(sbi->sb) && 114 current->plug && (type == DATA || type == NODE)) 115 blk_finish_plug(current->plug); 116 } 117 submit_bio(bio); 118 } 119 120 static void __submit_merged_bio(struct f2fs_bio_info *io) 121 { 122 struct f2fs_io_info *fio = &io->fio; 123 124 if (!io->bio) 125 return; 126 127 if (is_read_io(fio->op)) 128 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio); 129 else 130 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio); 131 132 bio_set_op_attrs(io->bio, fio->op, fio->op_flags); 133 134 __submit_bio(io->sbi, io->bio, fio->type); 135 io->bio = NULL; 136 } 137 138 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode, 139 struct page *page, nid_t ino) 140 { 141 struct bio_vec *bvec; 142 struct page *target; 143 int i; 144 145 if (!io->bio) 146 return false; 147 148 if (!inode && !page && !ino) 149 return true; 150 151 bio_for_each_segment_all(bvec, io->bio, i) { 152 153 if (bvec->bv_page->mapping) 154 target = bvec->bv_page; 155 else 156 target = fscrypt_control_page(bvec->bv_page); 157 158 if (inode && inode == target->mapping->host) 159 return true; 160 if (page && page == target) 161 return true; 162 if (ino && ino == ino_of_node(target)) 163 return true; 164 } 165 166 return false; 167 } 168 169 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode, 170 struct page *page, nid_t ino, 171 enum page_type type) 172 { 173 enum page_type btype = PAGE_TYPE_OF_BIO(type); 174 struct f2fs_bio_info *io = &sbi->write_io[btype]; 175 bool ret; 176 177 down_read(&io->io_rwsem); 178 ret = __has_merged_page(io, inode, page, ino); 179 up_read(&io->io_rwsem); 180 return ret; 181 } 182 183 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, 184 struct inode *inode, struct page *page, 185 nid_t ino, enum page_type type, int rw) 186 { 187 enum page_type btype = PAGE_TYPE_OF_BIO(type); 188 struct f2fs_bio_info *io; 189 190 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype]; 191 192 down_write(&io->io_rwsem); 193 194 if (!__has_merged_page(io, inode, page, ino)) 195 goto out; 196 197 /* change META to META_FLUSH in the checkpoint procedure */ 198 if (type >= META_FLUSH) { 199 io->fio.type = META_FLUSH; 200 io->fio.op = REQ_OP_WRITE; 201 if (test_opt(sbi, NOBARRIER)) 202 io->fio.op_flags = WRITE_FLUSH | REQ_META | REQ_PRIO; 203 else 204 io->fio.op_flags = WRITE_FLUSH_FUA | REQ_META | 205 REQ_PRIO; 206 } 207 __submit_merged_bio(io); 208 out: 209 up_write(&io->io_rwsem); 210 } 211 212 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type, 213 int rw) 214 { 215 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw); 216 } 217 218 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi, 219 struct inode *inode, struct page *page, 220 nid_t ino, enum page_type type, int rw) 221 { 222 if (has_merged_page(sbi, inode, page, ino, type)) 223 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw); 224 } 225 226 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi) 227 { 228 f2fs_submit_merged_bio(sbi, DATA, WRITE); 229 f2fs_submit_merged_bio(sbi, NODE, WRITE); 230 f2fs_submit_merged_bio(sbi, META, WRITE); 231 } 232 233 /* 234 * Fill the locked page with data located in the block address. 235 * Return unlocked page. 236 */ 237 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 238 { 239 struct bio *bio; 240 struct page *page = fio->encrypted_page ? 241 fio->encrypted_page : fio->page; 242 243 trace_f2fs_submit_page_bio(page, fio); 244 f2fs_trace_ios(fio, 0); 245 246 /* Allocate a new bio */ 247 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op)); 248 249 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 250 bio_put(bio); 251 return -EFAULT; 252 } 253 bio_set_op_attrs(bio, fio->op, fio->op_flags); 254 255 __submit_bio(fio->sbi, bio, fio->type); 256 return 0; 257 } 258 259 void f2fs_submit_page_mbio(struct f2fs_io_info *fio) 260 { 261 struct f2fs_sb_info *sbi = fio->sbi; 262 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 263 struct f2fs_bio_info *io; 264 bool is_read = is_read_io(fio->op); 265 struct page *bio_page; 266 267 io = is_read ? &sbi->read_io : &sbi->write_io[btype]; 268 269 if (fio->old_blkaddr != NEW_ADDR) 270 verify_block_addr(sbi, fio->old_blkaddr); 271 verify_block_addr(sbi, fio->new_blkaddr); 272 273 down_write(&io->io_rwsem); 274 275 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 || 276 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags))) 277 __submit_merged_bio(io); 278 alloc_new: 279 if (io->bio == NULL) { 280 int bio_blocks = MAX_BIO_BLOCKS(sbi); 281 282 io->bio = __bio_alloc(sbi, fio->new_blkaddr, 283 bio_blocks, is_read); 284 io->fio = *fio; 285 } 286 287 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page; 288 289 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < 290 PAGE_SIZE) { 291 __submit_merged_bio(io); 292 goto alloc_new; 293 } 294 295 io->last_block_in_bio = fio->new_blkaddr; 296 f2fs_trace_ios(fio, 0); 297 298 up_write(&io->io_rwsem); 299 trace_f2fs_submit_page_mbio(fio->page, fio); 300 } 301 302 static void __set_data_blkaddr(struct dnode_of_data *dn) 303 { 304 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 305 __le32 *addr_array; 306 307 /* Get physical address of data block */ 308 addr_array = blkaddr_in_node(rn); 309 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 310 } 311 312 /* 313 * Lock ordering for the change of data block address: 314 * ->data_page 315 * ->node_page 316 * update block addresses in the node page 317 */ 318 void set_data_blkaddr(struct dnode_of_data *dn) 319 { 320 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 321 __set_data_blkaddr(dn); 322 if (set_page_dirty(dn->node_page)) 323 dn->node_changed = true; 324 } 325 326 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 327 { 328 dn->data_blkaddr = blkaddr; 329 set_data_blkaddr(dn); 330 f2fs_update_extent_cache(dn); 331 } 332 333 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 334 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 335 { 336 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 337 338 if (!count) 339 return 0; 340 341 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 342 return -EPERM; 343 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 344 return -ENOSPC; 345 346 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 347 dn->ofs_in_node, count); 348 349 f2fs_wait_on_page_writeback(dn->node_page, NODE, true); 350 351 for (; count > 0; dn->ofs_in_node++) { 352 block_t blkaddr = 353 datablock_addr(dn->node_page, dn->ofs_in_node); 354 if (blkaddr == NULL_ADDR) { 355 dn->data_blkaddr = NEW_ADDR; 356 __set_data_blkaddr(dn); 357 count--; 358 } 359 } 360 361 if (set_page_dirty(dn->node_page)) 362 dn->node_changed = true; 363 return 0; 364 } 365 366 /* Should keep dn->ofs_in_node unchanged */ 367 int reserve_new_block(struct dnode_of_data *dn) 368 { 369 unsigned int ofs_in_node = dn->ofs_in_node; 370 int ret; 371 372 ret = reserve_new_blocks(dn, 1); 373 dn->ofs_in_node = ofs_in_node; 374 return ret; 375 } 376 377 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 378 { 379 bool need_put = dn->inode_page ? false : true; 380 int err; 381 382 err = get_dnode_of_data(dn, index, ALLOC_NODE); 383 if (err) 384 return err; 385 386 if (dn->data_blkaddr == NULL_ADDR) 387 err = reserve_new_block(dn); 388 if (err || need_put) 389 f2fs_put_dnode(dn); 390 return err; 391 } 392 393 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 394 { 395 struct extent_info ei; 396 struct inode *inode = dn->inode; 397 398 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 399 dn->data_blkaddr = ei.blk + index - ei.fofs; 400 return 0; 401 } 402 403 return f2fs_reserve_block(dn, index); 404 } 405 406 struct page *get_read_data_page(struct inode *inode, pgoff_t index, 407 int op_flags, bool for_write) 408 { 409 struct address_space *mapping = inode->i_mapping; 410 struct dnode_of_data dn; 411 struct page *page; 412 struct extent_info ei; 413 int err; 414 struct f2fs_io_info fio = { 415 .sbi = F2FS_I_SB(inode), 416 .type = DATA, 417 .op = REQ_OP_READ, 418 .op_flags = op_flags, 419 .encrypted_page = NULL, 420 }; 421 422 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 423 return read_mapping_page(mapping, index, NULL); 424 425 page = f2fs_grab_cache_page(mapping, index, for_write); 426 if (!page) 427 return ERR_PTR(-ENOMEM); 428 429 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 430 dn.data_blkaddr = ei.blk + index - ei.fofs; 431 goto got_it; 432 } 433 434 set_new_dnode(&dn, inode, NULL, NULL, 0); 435 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 436 if (err) 437 goto put_err; 438 f2fs_put_dnode(&dn); 439 440 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 441 err = -ENOENT; 442 goto put_err; 443 } 444 got_it: 445 if (PageUptodate(page)) { 446 unlock_page(page); 447 return page; 448 } 449 450 /* 451 * A new dentry page is allocated but not able to be written, since its 452 * new inode page couldn't be allocated due to -ENOSPC. 453 * In such the case, its blkaddr can be remained as NEW_ADDR. 454 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. 455 */ 456 if (dn.data_blkaddr == NEW_ADDR) { 457 zero_user_segment(page, 0, PAGE_SIZE); 458 if (!PageUptodate(page)) 459 SetPageUptodate(page); 460 unlock_page(page); 461 return page; 462 } 463 464 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr; 465 fio.page = page; 466 err = f2fs_submit_page_bio(&fio); 467 if (err) 468 goto put_err; 469 return page; 470 471 put_err: 472 f2fs_put_page(page, 1); 473 return ERR_PTR(err); 474 } 475 476 struct page *find_data_page(struct inode *inode, pgoff_t index) 477 { 478 struct address_space *mapping = inode->i_mapping; 479 struct page *page; 480 481 page = find_get_page(mapping, index); 482 if (page && PageUptodate(page)) 483 return page; 484 f2fs_put_page(page, 0); 485 486 page = get_read_data_page(inode, index, READ_SYNC, false); 487 if (IS_ERR(page)) 488 return page; 489 490 if (PageUptodate(page)) 491 return page; 492 493 wait_on_page_locked(page); 494 if (unlikely(!PageUptodate(page))) { 495 f2fs_put_page(page, 0); 496 return ERR_PTR(-EIO); 497 } 498 return page; 499 } 500 501 /* 502 * If it tries to access a hole, return an error. 503 * Because, the callers, functions in dir.c and GC, should be able to know 504 * whether this page exists or not. 505 */ 506 struct page *get_lock_data_page(struct inode *inode, pgoff_t index, 507 bool for_write) 508 { 509 struct address_space *mapping = inode->i_mapping; 510 struct page *page; 511 repeat: 512 page = get_read_data_page(inode, index, READ_SYNC, for_write); 513 if (IS_ERR(page)) 514 return page; 515 516 /* wait for read completion */ 517 lock_page(page); 518 if (unlikely(page->mapping != mapping)) { 519 f2fs_put_page(page, 1); 520 goto repeat; 521 } 522 if (unlikely(!PageUptodate(page))) { 523 f2fs_put_page(page, 1); 524 return ERR_PTR(-EIO); 525 } 526 return page; 527 } 528 529 /* 530 * Caller ensures that this data page is never allocated. 531 * A new zero-filled data page is allocated in the page cache. 532 * 533 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 534 * f2fs_unlock_op(). 535 * Note that, ipage is set only by make_empty_dir, and if any error occur, 536 * ipage should be released by this function. 537 */ 538 struct page *get_new_data_page(struct inode *inode, 539 struct page *ipage, pgoff_t index, bool new_i_size) 540 { 541 struct address_space *mapping = inode->i_mapping; 542 struct page *page; 543 struct dnode_of_data dn; 544 int err; 545 546 page = f2fs_grab_cache_page(mapping, index, true); 547 if (!page) { 548 /* 549 * before exiting, we should make sure ipage will be released 550 * if any error occur. 551 */ 552 f2fs_put_page(ipage, 1); 553 return ERR_PTR(-ENOMEM); 554 } 555 556 set_new_dnode(&dn, inode, ipage, NULL, 0); 557 err = f2fs_reserve_block(&dn, index); 558 if (err) { 559 f2fs_put_page(page, 1); 560 return ERR_PTR(err); 561 } 562 if (!ipage) 563 f2fs_put_dnode(&dn); 564 565 if (PageUptodate(page)) 566 goto got_it; 567 568 if (dn.data_blkaddr == NEW_ADDR) { 569 zero_user_segment(page, 0, PAGE_SIZE); 570 if (!PageUptodate(page)) 571 SetPageUptodate(page); 572 } else { 573 f2fs_put_page(page, 1); 574 575 /* if ipage exists, blkaddr should be NEW_ADDR */ 576 f2fs_bug_on(F2FS_I_SB(inode), ipage); 577 page = get_lock_data_page(inode, index, true); 578 if (IS_ERR(page)) 579 return page; 580 } 581 got_it: 582 if (new_i_size && i_size_read(inode) < 583 ((loff_t)(index + 1) << PAGE_SHIFT)) 584 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 585 return page; 586 } 587 588 static int __allocate_data_block(struct dnode_of_data *dn) 589 { 590 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 591 struct f2fs_summary sum; 592 struct node_info ni; 593 int seg = CURSEG_WARM_DATA; 594 pgoff_t fofs; 595 blkcnt_t count = 1; 596 597 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 598 return -EPERM; 599 600 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node); 601 if (dn->data_blkaddr == NEW_ADDR) 602 goto alloc; 603 604 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count))) 605 return -ENOSPC; 606 607 alloc: 608 get_node_info(sbi, dn->nid, &ni); 609 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 610 611 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page) 612 seg = CURSEG_DIRECT_IO; 613 614 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr, 615 &sum, seg); 616 set_data_blkaddr(dn); 617 618 /* update i_size */ 619 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) + 620 dn->ofs_in_node; 621 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT)) 622 f2fs_i_size_write(dn->inode, 623 ((loff_t)(fofs + 1) << PAGE_SHIFT)); 624 return 0; 625 } 626 627 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from) 628 { 629 struct inode *inode = file_inode(iocb->ki_filp); 630 struct f2fs_map_blocks map; 631 ssize_t ret = 0; 632 633 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos); 634 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from)); 635 if (map.m_len > map.m_lblk) 636 map.m_len -= map.m_lblk; 637 else 638 map.m_len = 0; 639 640 map.m_next_pgofs = NULL; 641 642 if (iocb->ki_flags & IOCB_DIRECT) { 643 ret = f2fs_convert_inline_inode(inode); 644 if (ret) 645 return ret; 646 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO); 647 } 648 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) { 649 ret = f2fs_convert_inline_inode(inode); 650 if (ret) 651 return ret; 652 } 653 if (!f2fs_has_inline_data(inode)) 654 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO); 655 return ret; 656 } 657 658 /* 659 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with 660 * f2fs_map_blocks structure. 661 * If original data blocks are allocated, then give them to blockdev. 662 * Otherwise, 663 * a. preallocate requested block addresses 664 * b. do not use extent cache for better performance 665 * c. give the block addresses to blockdev 666 */ 667 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 668 int create, int flag) 669 { 670 unsigned int maxblocks = map->m_len; 671 struct dnode_of_data dn; 672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 673 int mode = create ? ALLOC_NODE : LOOKUP_NODE; 674 pgoff_t pgofs, end_offset, end; 675 int err = 0, ofs = 1; 676 unsigned int ofs_in_node, last_ofs_in_node; 677 blkcnt_t prealloc; 678 struct extent_info ei; 679 bool allocated = false; 680 block_t blkaddr; 681 682 if (!maxblocks) 683 return 0; 684 685 map->m_len = 0; 686 map->m_flags = 0; 687 688 /* it only supports block size == page size */ 689 pgofs = (pgoff_t)map->m_lblk; 690 end = pgofs + maxblocks; 691 692 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 693 map->m_pblk = ei.blk + pgofs - ei.fofs; 694 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 695 map->m_flags = F2FS_MAP_MAPPED; 696 goto out; 697 } 698 699 next_dnode: 700 if (create) 701 f2fs_lock_op(sbi); 702 703 /* When reading holes, we need its node page */ 704 set_new_dnode(&dn, inode, NULL, NULL, 0); 705 err = get_dnode_of_data(&dn, pgofs, mode); 706 if (err) { 707 if (flag == F2FS_GET_BLOCK_BMAP) 708 map->m_pblk = 0; 709 if (err == -ENOENT) { 710 err = 0; 711 if (map->m_next_pgofs) 712 *map->m_next_pgofs = 713 get_next_page_offset(&dn, pgofs); 714 } 715 goto unlock_out; 716 } 717 718 prealloc = 0; 719 ofs_in_node = dn.ofs_in_node; 720 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 721 722 next_block: 723 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); 724 725 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) { 726 if (create) { 727 if (unlikely(f2fs_cp_error(sbi))) { 728 err = -EIO; 729 goto sync_out; 730 } 731 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 732 if (blkaddr == NULL_ADDR) { 733 prealloc++; 734 last_ofs_in_node = dn.ofs_in_node; 735 } 736 } else { 737 err = __allocate_data_block(&dn); 738 if (!err) { 739 set_inode_flag(inode, FI_APPEND_WRITE); 740 allocated = true; 741 } 742 } 743 if (err) 744 goto sync_out; 745 map->m_flags = F2FS_MAP_NEW; 746 blkaddr = dn.data_blkaddr; 747 } else { 748 if (flag == F2FS_GET_BLOCK_BMAP) { 749 map->m_pblk = 0; 750 goto sync_out; 751 } 752 if (flag == F2FS_GET_BLOCK_FIEMAP && 753 blkaddr == NULL_ADDR) { 754 if (map->m_next_pgofs) 755 *map->m_next_pgofs = pgofs + 1; 756 } 757 if (flag != F2FS_GET_BLOCK_FIEMAP || 758 blkaddr != NEW_ADDR) 759 goto sync_out; 760 } 761 } 762 763 if (flag == F2FS_GET_BLOCK_PRE_AIO) 764 goto skip; 765 766 if (map->m_len == 0) { 767 /* preallocated unwritten block should be mapped for fiemap. */ 768 if (blkaddr == NEW_ADDR) 769 map->m_flags |= F2FS_MAP_UNWRITTEN; 770 map->m_flags |= F2FS_MAP_MAPPED; 771 772 map->m_pblk = blkaddr; 773 map->m_len = 1; 774 } else if ((map->m_pblk != NEW_ADDR && 775 blkaddr == (map->m_pblk + ofs)) || 776 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 777 flag == F2FS_GET_BLOCK_PRE_DIO) { 778 ofs++; 779 map->m_len++; 780 } else { 781 goto sync_out; 782 } 783 784 skip: 785 dn.ofs_in_node++; 786 pgofs++; 787 788 /* preallocate blocks in batch for one dnode page */ 789 if (flag == F2FS_GET_BLOCK_PRE_AIO && 790 (pgofs == end || dn.ofs_in_node == end_offset)) { 791 792 dn.ofs_in_node = ofs_in_node; 793 err = reserve_new_blocks(&dn, prealloc); 794 if (err) 795 goto sync_out; 796 allocated = dn.node_changed; 797 798 map->m_len += dn.ofs_in_node - ofs_in_node; 799 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 800 err = -ENOSPC; 801 goto sync_out; 802 } 803 dn.ofs_in_node = end_offset; 804 } 805 806 if (pgofs >= end) 807 goto sync_out; 808 else if (dn.ofs_in_node < end_offset) 809 goto next_block; 810 811 f2fs_put_dnode(&dn); 812 813 if (create) { 814 f2fs_unlock_op(sbi); 815 f2fs_balance_fs(sbi, allocated); 816 } 817 allocated = false; 818 goto next_dnode; 819 820 sync_out: 821 f2fs_put_dnode(&dn); 822 unlock_out: 823 if (create) { 824 f2fs_unlock_op(sbi); 825 f2fs_balance_fs(sbi, allocated); 826 } 827 out: 828 trace_f2fs_map_blocks(inode, map, err); 829 return err; 830 } 831 832 static int __get_data_block(struct inode *inode, sector_t iblock, 833 struct buffer_head *bh, int create, int flag, 834 pgoff_t *next_pgofs) 835 { 836 struct f2fs_map_blocks map; 837 int ret; 838 839 map.m_lblk = iblock; 840 map.m_len = bh->b_size >> inode->i_blkbits; 841 map.m_next_pgofs = next_pgofs; 842 843 ret = f2fs_map_blocks(inode, &map, create, flag); 844 if (!ret) { 845 map_bh(bh, inode->i_sb, map.m_pblk); 846 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags; 847 bh->b_size = map.m_len << inode->i_blkbits; 848 } 849 return ret; 850 } 851 852 static int get_data_block(struct inode *inode, sector_t iblock, 853 struct buffer_head *bh_result, int create, int flag, 854 pgoff_t *next_pgofs) 855 { 856 return __get_data_block(inode, iblock, bh_result, create, 857 flag, next_pgofs); 858 } 859 860 static int get_data_block_dio(struct inode *inode, sector_t iblock, 861 struct buffer_head *bh_result, int create) 862 { 863 return __get_data_block(inode, iblock, bh_result, create, 864 F2FS_GET_BLOCK_DIO, NULL); 865 } 866 867 static int get_data_block_bmap(struct inode *inode, sector_t iblock, 868 struct buffer_head *bh_result, int create) 869 { 870 /* Block number less than F2FS MAX BLOCKS */ 871 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks)) 872 return -EFBIG; 873 874 return __get_data_block(inode, iblock, bh_result, create, 875 F2FS_GET_BLOCK_BMAP, NULL); 876 } 877 878 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset) 879 { 880 return (offset >> inode->i_blkbits); 881 } 882 883 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk) 884 { 885 return (blk << inode->i_blkbits); 886 } 887 888 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 889 u64 start, u64 len) 890 { 891 struct buffer_head map_bh; 892 sector_t start_blk, last_blk; 893 pgoff_t next_pgofs; 894 loff_t isize; 895 u64 logical = 0, phys = 0, size = 0; 896 u32 flags = 0; 897 int ret = 0; 898 899 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC); 900 if (ret) 901 return ret; 902 903 if (f2fs_has_inline_data(inode)) { 904 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 905 if (ret != -EAGAIN) 906 return ret; 907 } 908 909 inode_lock(inode); 910 911 isize = i_size_read(inode); 912 if (start >= isize) 913 goto out; 914 915 if (start + len > isize) 916 len = isize - start; 917 918 if (logical_to_blk(inode, len) == 0) 919 len = blk_to_logical(inode, 1); 920 921 start_blk = logical_to_blk(inode, start); 922 last_blk = logical_to_blk(inode, start + len - 1); 923 924 next: 925 memset(&map_bh, 0, sizeof(struct buffer_head)); 926 map_bh.b_size = len; 927 928 ret = get_data_block(inode, start_blk, &map_bh, 0, 929 F2FS_GET_BLOCK_FIEMAP, &next_pgofs); 930 if (ret) 931 goto out; 932 933 /* HOLE */ 934 if (!buffer_mapped(&map_bh)) { 935 start_blk = next_pgofs; 936 /* Go through holes util pass the EOF */ 937 if (blk_to_logical(inode, start_blk) < isize) 938 goto prep_next; 939 /* Found a hole beyond isize means no more extents. 940 * Note that the premise is that filesystems don't 941 * punch holes beyond isize and keep size unchanged. 942 */ 943 flags |= FIEMAP_EXTENT_LAST; 944 } 945 946 if (size) { 947 if (f2fs_encrypted_inode(inode)) 948 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 949 950 ret = fiemap_fill_next_extent(fieinfo, logical, 951 phys, size, flags); 952 } 953 954 if (start_blk > last_blk || ret) 955 goto out; 956 957 logical = blk_to_logical(inode, start_blk); 958 phys = blk_to_logical(inode, map_bh.b_blocknr); 959 size = map_bh.b_size; 960 flags = 0; 961 if (buffer_unwritten(&map_bh)) 962 flags = FIEMAP_EXTENT_UNWRITTEN; 963 964 start_blk += logical_to_blk(inode, size); 965 966 prep_next: 967 cond_resched(); 968 if (fatal_signal_pending(current)) 969 ret = -EINTR; 970 else 971 goto next; 972 out: 973 if (ret == 1) 974 ret = 0; 975 976 inode_unlock(inode); 977 return ret; 978 } 979 980 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr, 981 unsigned nr_pages) 982 { 983 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 984 struct fscrypt_ctx *ctx = NULL; 985 struct block_device *bdev = sbi->sb->s_bdev; 986 struct bio *bio; 987 988 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 989 ctx = fscrypt_get_ctx(inode, GFP_NOFS); 990 if (IS_ERR(ctx)) 991 return ERR_CAST(ctx); 992 993 /* wait the page to be moved by cleaning */ 994 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 995 } 996 997 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES)); 998 if (!bio) { 999 if (ctx) 1000 fscrypt_release_ctx(ctx); 1001 return ERR_PTR(-ENOMEM); 1002 } 1003 bio->bi_bdev = bdev; 1004 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr); 1005 bio->bi_end_io = f2fs_read_end_io; 1006 bio->bi_private = ctx; 1007 1008 return bio; 1009 } 1010 1011 /* 1012 * This function was originally taken from fs/mpage.c, and customized for f2fs. 1013 * Major change was from block_size == page_size in f2fs by default. 1014 */ 1015 static int f2fs_mpage_readpages(struct address_space *mapping, 1016 struct list_head *pages, struct page *page, 1017 unsigned nr_pages) 1018 { 1019 struct bio *bio = NULL; 1020 unsigned page_idx; 1021 sector_t last_block_in_bio = 0; 1022 struct inode *inode = mapping->host; 1023 const unsigned blkbits = inode->i_blkbits; 1024 const unsigned blocksize = 1 << blkbits; 1025 sector_t block_in_file; 1026 sector_t last_block; 1027 sector_t last_block_in_file; 1028 sector_t block_nr; 1029 struct f2fs_map_blocks map; 1030 1031 map.m_pblk = 0; 1032 map.m_lblk = 0; 1033 map.m_len = 0; 1034 map.m_flags = 0; 1035 map.m_next_pgofs = NULL; 1036 1037 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) { 1038 1039 prefetchw(&page->flags); 1040 if (pages) { 1041 page = list_entry(pages->prev, struct page, lru); 1042 list_del(&page->lru); 1043 if (add_to_page_cache_lru(page, mapping, 1044 page->index, 1045 readahead_gfp_mask(mapping))) 1046 goto next_page; 1047 } 1048 1049 block_in_file = (sector_t)page->index; 1050 last_block = block_in_file + nr_pages; 1051 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> 1052 blkbits; 1053 if (last_block > last_block_in_file) 1054 last_block = last_block_in_file; 1055 1056 /* 1057 * Map blocks using the previous result first. 1058 */ 1059 if ((map.m_flags & F2FS_MAP_MAPPED) && 1060 block_in_file > map.m_lblk && 1061 block_in_file < (map.m_lblk + map.m_len)) 1062 goto got_it; 1063 1064 /* 1065 * Then do more f2fs_map_blocks() calls until we are 1066 * done with this page. 1067 */ 1068 map.m_flags = 0; 1069 1070 if (block_in_file < last_block) { 1071 map.m_lblk = block_in_file; 1072 map.m_len = last_block - block_in_file; 1073 1074 if (f2fs_map_blocks(inode, &map, 0, 1075 F2FS_GET_BLOCK_READ)) 1076 goto set_error_page; 1077 } 1078 got_it: 1079 if ((map.m_flags & F2FS_MAP_MAPPED)) { 1080 block_nr = map.m_pblk + block_in_file - map.m_lblk; 1081 SetPageMappedToDisk(page); 1082 1083 if (!PageUptodate(page) && !cleancache_get_page(page)) { 1084 SetPageUptodate(page); 1085 goto confused; 1086 } 1087 } else { 1088 zero_user_segment(page, 0, PAGE_SIZE); 1089 if (!PageUptodate(page)) 1090 SetPageUptodate(page); 1091 unlock_page(page); 1092 goto next_page; 1093 } 1094 1095 /* 1096 * This page will go to BIO. Do we need to send this 1097 * BIO off first? 1098 */ 1099 if (bio && (last_block_in_bio != block_nr - 1)) { 1100 submit_and_realloc: 1101 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1102 bio = NULL; 1103 } 1104 if (bio == NULL) { 1105 bio = f2fs_grab_bio(inode, block_nr, nr_pages); 1106 if (IS_ERR(bio)) { 1107 bio = NULL; 1108 goto set_error_page; 1109 } 1110 bio_set_op_attrs(bio, REQ_OP_READ, 0); 1111 } 1112 1113 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 1114 goto submit_and_realloc; 1115 1116 last_block_in_bio = block_nr; 1117 goto next_page; 1118 set_error_page: 1119 SetPageError(page); 1120 zero_user_segment(page, 0, PAGE_SIZE); 1121 unlock_page(page); 1122 goto next_page; 1123 confused: 1124 if (bio) { 1125 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1126 bio = NULL; 1127 } 1128 unlock_page(page); 1129 next_page: 1130 if (pages) 1131 put_page(page); 1132 } 1133 BUG_ON(pages && !list_empty(pages)); 1134 if (bio) 1135 __submit_bio(F2FS_I_SB(inode), bio, DATA); 1136 return 0; 1137 } 1138 1139 static int f2fs_read_data_page(struct file *file, struct page *page) 1140 { 1141 struct inode *inode = page->mapping->host; 1142 int ret = -EAGAIN; 1143 1144 trace_f2fs_readpage(page, DATA); 1145 1146 /* If the file has inline data, try to read it directly */ 1147 if (f2fs_has_inline_data(inode)) 1148 ret = f2fs_read_inline_data(inode, page); 1149 if (ret == -EAGAIN) 1150 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1); 1151 return ret; 1152 } 1153 1154 static int f2fs_read_data_pages(struct file *file, 1155 struct address_space *mapping, 1156 struct list_head *pages, unsigned nr_pages) 1157 { 1158 struct inode *inode = file->f_mapping->host; 1159 struct page *page = list_entry(pages->prev, struct page, lru); 1160 1161 trace_f2fs_readpages(inode, page, nr_pages); 1162 1163 /* If the file has inline data, skip readpages */ 1164 if (f2fs_has_inline_data(inode)) 1165 return 0; 1166 1167 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages); 1168 } 1169 1170 int do_write_data_page(struct f2fs_io_info *fio) 1171 { 1172 struct page *page = fio->page; 1173 struct inode *inode = page->mapping->host; 1174 struct dnode_of_data dn; 1175 int err = 0; 1176 1177 set_new_dnode(&dn, inode, NULL, NULL, 0); 1178 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 1179 if (err) 1180 return err; 1181 1182 fio->old_blkaddr = dn.data_blkaddr; 1183 1184 /* This page is already truncated */ 1185 if (fio->old_blkaddr == NULL_ADDR) { 1186 ClearPageUptodate(page); 1187 goto out_writepage; 1188 } 1189 1190 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { 1191 gfp_t gfp_flags = GFP_NOFS; 1192 1193 /* wait for GCed encrypted page writeback */ 1194 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode), 1195 fio->old_blkaddr); 1196 retry_encrypt: 1197 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page, 1198 gfp_flags); 1199 if (IS_ERR(fio->encrypted_page)) { 1200 err = PTR_ERR(fio->encrypted_page); 1201 if (err == -ENOMEM) { 1202 /* flush pending ios and wait for a while */ 1203 f2fs_flush_merged_bios(F2FS_I_SB(inode)); 1204 congestion_wait(BLK_RW_ASYNC, HZ/50); 1205 gfp_flags |= __GFP_NOFAIL; 1206 err = 0; 1207 goto retry_encrypt; 1208 } 1209 goto out_writepage; 1210 } 1211 } 1212 1213 set_page_writeback(page); 1214 1215 /* 1216 * If current allocation needs SSR, 1217 * it had better in-place writes for updated data. 1218 */ 1219 if (unlikely(fio->old_blkaddr != NEW_ADDR && 1220 !is_cold_data(page) && 1221 !IS_ATOMIC_WRITTEN_PAGE(page) && 1222 need_inplace_update(inode))) { 1223 rewrite_data_page(fio); 1224 set_inode_flag(inode, FI_UPDATE_WRITE); 1225 trace_f2fs_do_write_data_page(page, IPU); 1226 } else { 1227 write_data_page(&dn, fio); 1228 trace_f2fs_do_write_data_page(page, OPU); 1229 set_inode_flag(inode, FI_APPEND_WRITE); 1230 if (page->index == 0) 1231 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 1232 } 1233 out_writepage: 1234 f2fs_put_dnode(&dn); 1235 return err; 1236 } 1237 1238 static int f2fs_write_data_page(struct page *page, 1239 struct writeback_control *wbc) 1240 { 1241 struct inode *inode = page->mapping->host; 1242 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1243 loff_t i_size = i_size_read(inode); 1244 const pgoff_t end_index = ((unsigned long long) i_size) 1245 >> PAGE_SHIFT; 1246 loff_t psize = (page->index + 1) << PAGE_SHIFT; 1247 unsigned offset = 0; 1248 bool need_balance_fs = false; 1249 int err = 0; 1250 struct f2fs_io_info fio = { 1251 .sbi = sbi, 1252 .type = DATA, 1253 .op = REQ_OP_WRITE, 1254 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0, 1255 .page = page, 1256 .encrypted_page = NULL, 1257 }; 1258 1259 trace_f2fs_writepage(page, DATA); 1260 1261 if (page->index < end_index) 1262 goto write; 1263 1264 /* 1265 * If the offset is out-of-range of file size, 1266 * this page does not have to be written to disk. 1267 */ 1268 offset = i_size & (PAGE_SIZE - 1); 1269 if ((page->index >= end_index + 1) || !offset) 1270 goto out; 1271 1272 zero_user_segment(page, offset, PAGE_SIZE); 1273 write: 1274 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1275 goto redirty_out; 1276 if (f2fs_is_drop_cache(inode)) 1277 goto out; 1278 /* we should not write 0'th page having journal header */ 1279 if (f2fs_is_volatile_file(inode) && (!page->index || 1280 (!wbc->for_reclaim && 1281 available_free_memory(sbi, BASE_CHECK)))) 1282 goto redirty_out; 1283 1284 /* we should bypass data pages to proceed the kworkder jobs */ 1285 if (unlikely(f2fs_cp_error(sbi))) { 1286 mapping_set_error(page->mapping, -EIO); 1287 goto out; 1288 } 1289 1290 /* Dentry blocks are controlled by checkpoint */ 1291 if (S_ISDIR(inode->i_mode)) { 1292 err = do_write_data_page(&fio); 1293 goto done; 1294 } 1295 1296 if (!wbc->for_reclaim) 1297 need_balance_fs = true; 1298 else if (has_not_enough_free_secs(sbi, 0, 0)) 1299 goto redirty_out; 1300 1301 err = -EAGAIN; 1302 f2fs_lock_op(sbi); 1303 if (f2fs_has_inline_data(inode)) 1304 err = f2fs_write_inline_data(inode, page); 1305 if (err == -EAGAIN) 1306 err = do_write_data_page(&fio); 1307 if (F2FS_I(inode)->last_disk_size < psize) 1308 F2FS_I(inode)->last_disk_size = psize; 1309 f2fs_unlock_op(sbi); 1310 done: 1311 if (err && err != -ENOENT) 1312 goto redirty_out; 1313 1314 clear_cold_data(page); 1315 out: 1316 inode_dec_dirty_pages(inode); 1317 if (err) 1318 ClearPageUptodate(page); 1319 1320 if (wbc->for_reclaim) { 1321 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE); 1322 remove_dirty_inode(inode); 1323 } 1324 1325 unlock_page(page); 1326 f2fs_balance_fs(sbi, need_balance_fs); 1327 1328 if (unlikely(f2fs_cp_error(sbi))) 1329 f2fs_submit_merged_bio(sbi, DATA, WRITE); 1330 1331 return 0; 1332 1333 redirty_out: 1334 redirty_page_for_writepage(wbc, page); 1335 unlock_page(page); 1336 return err; 1337 } 1338 1339 /* 1340 * This function was copied from write_cche_pages from mm/page-writeback.c. 1341 * The major change is making write step of cold data page separately from 1342 * warm/hot data page. 1343 */ 1344 static int f2fs_write_cache_pages(struct address_space *mapping, 1345 struct writeback_control *wbc) 1346 { 1347 int ret = 0; 1348 int done = 0; 1349 struct pagevec pvec; 1350 int nr_pages; 1351 pgoff_t uninitialized_var(writeback_index); 1352 pgoff_t index; 1353 pgoff_t end; /* Inclusive */ 1354 pgoff_t done_index; 1355 int cycled; 1356 int range_whole = 0; 1357 int tag; 1358 int nwritten = 0; 1359 1360 pagevec_init(&pvec, 0); 1361 1362 if (wbc->range_cyclic) { 1363 writeback_index = mapping->writeback_index; /* prev offset */ 1364 index = writeback_index; 1365 if (index == 0) 1366 cycled = 1; 1367 else 1368 cycled = 0; 1369 end = -1; 1370 } else { 1371 index = wbc->range_start >> PAGE_SHIFT; 1372 end = wbc->range_end >> PAGE_SHIFT; 1373 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1374 range_whole = 1; 1375 cycled = 1; /* ignore range_cyclic tests */ 1376 } 1377 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1378 tag = PAGECACHE_TAG_TOWRITE; 1379 else 1380 tag = PAGECACHE_TAG_DIRTY; 1381 retry: 1382 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1383 tag_pages_for_writeback(mapping, index, end); 1384 done_index = index; 1385 while (!done && (index <= end)) { 1386 int i; 1387 1388 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1389 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1); 1390 if (nr_pages == 0) 1391 break; 1392 1393 for (i = 0; i < nr_pages; i++) { 1394 struct page *page = pvec.pages[i]; 1395 1396 if (page->index > end) { 1397 done = 1; 1398 break; 1399 } 1400 1401 done_index = page->index; 1402 1403 lock_page(page); 1404 1405 if (unlikely(page->mapping != mapping)) { 1406 continue_unlock: 1407 unlock_page(page); 1408 continue; 1409 } 1410 1411 if (!PageDirty(page)) { 1412 /* someone wrote it for us */ 1413 goto continue_unlock; 1414 } 1415 1416 if (PageWriteback(page)) { 1417 if (wbc->sync_mode != WB_SYNC_NONE) 1418 f2fs_wait_on_page_writeback(page, 1419 DATA, true); 1420 else 1421 goto continue_unlock; 1422 } 1423 1424 BUG_ON(PageWriteback(page)); 1425 if (!clear_page_dirty_for_io(page)) 1426 goto continue_unlock; 1427 1428 ret = mapping->a_ops->writepage(page, wbc); 1429 if (unlikely(ret)) { 1430 done_index = page->index + 1; 1431 done = 1; 1432 break; 1433 } else { 1434 nwritten++; 1435 } 1436 1437 if (--wbc->nr_to_write <= 0 && 1438 wbc->sync_mode == WB_SYNC_NONE) { 1439 done = 1; 1440 break; 1441 } 1442 } 1443 pagevec_release(&pvec); 1444 cond_resched(); 1445 } 1446 1447 if (!cycled && !done) { 1448 cycled = 1; 1449 index = 0; 1450 end = writeback_index - 1; 1451 goto retry; 1452 } 1453 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1454 mapping->writeback_index = done_index; 1455 1456 if (nwritten) 1457 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host, 1458 NULL, 0, DATA, WRITE); 1459 1460 return ret; 1461 } 1462 1463 static int f2fs_write_data_pages(struct address_space *mapping, 1464 struct writeback_control *wbc) 1465 { 1466 struct inode *inode = mapping->host; 1467 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1468 struct blk_plug plug; 1469 int ret; 1470 1471 /* deal with chardevs and other special file */ 1472 if (!mapping->a_ops->writepage) 1473 return 0; 1474 1475 /* skip writing if there is no dirty page in this inode */ 1476 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 1477 return 0; 1478 1479 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE && 1480 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 1481 available_free_memory(sbi, DIRTY_DENTS)) 1482 goto skip_write; 1483 1484 /* skip writing during file defragment */ 1485 if (is_inode_flag_set(inode, FI_DO_DEFRAG)) 1486 goto skip_write; 1487 1488 /* during POR, we don't need to trigger writepage at all. */ 1489 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1490 goto skip_write; 1491 1492 trace_f2fs_writepages(mapping->host, wbc, DATA); 1493 1494 blk_start_plug(&plug); 1495 ret = f2fs_write_cache_pages(mapping, wbc); 1496 blk_finish_plug(&plug); 1497 /* 1498 * if some pages were truncated, we cannot guarantee its mapping->host 1499 * to detect pending bios. 1500 */ 1501 1502 remove_dirty_inode(inode); 1503 return ret; 1504 1505 skip_write: 1506 wbc->pages_skipped += get_dirty_pages(inode); 1507 trace_f2fs_writepages(mapping->host, wbc, DATA); 1508 return 0; 1509 } 1510 1511 static void f2fs_write_failed(struct address_space *mapping, loff_t to) 1512 { 1513 struct inode *inode = mapping->host; 1514 loff_t i_size = i_size_read(inode); 1515 1516 if (to > i_size) { 1517 truncate_pagecache(inode, i_size); 1518 truncate_blocks(inode, i_size, true); 1519 } 1520 } 1521 1522 static int prepare_write_begin(struct f2fs_sb_info *sbi, 1523 struct page *page, loff_t pos, unsigned len, 1524 block_t *blk_addr, bool *node_changed) 1525 { 1526 struct inode *inode = page->mapping->host; 1527 pgoff_t index = page->index; 1528 struct dnode_of_data dn; 1529 struct page *ipage; 1530 bool locked = false; 1531 struct extent_info ei; 1532 int err = 0; 1533 1534 /* 1535 * we already allocated all the blocks, so we don't need to get 1536 * the block addresses when there is no need to fill the page. 1537 */ 1538 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE) 1539 return 0; 1540 1541 if (f2fs_has_inline_data(inode) || 1542 (pos & PAGE_MASK) >= i_size_read(inode)) { 1543 f2fs_lock_op(sbi); 1544 locked = true; 1545 } 1546 restart: 1547 /* check inline_data */ 1548 ipage = get_node_page(sbi, inode->i_ino); 1549 if (IS_ERR(ipage)) { 1550 err = PTR_ERR(ipage); 1551 goto unlock_out; 1552 } 1553 1554 set_new_dnode(&dn, inode, ipage, ipage, 0); 1555 1556 if (f2fs_has_inline_data(inode)) { 1557 if (pos + len <= MAX_INLINE_DATA) { 1558 read_inline_data(page, ipage); 1559 set_inode_flag(inode, FI_DATA_EXIST); 1560 if (inode->i_nlink) 1561 set_inline_node(ipage); 1562 } else { 1563 err = f2fs_convert_inline_page(&dn, page); 1564 if (err) 1565 goto out; 1566 if (dn.data_blkaddr == NULL_ADDR) 1567 err = f2fs_get_block(&dn, index); 1568 } 1569 } else if (locked) { 1570 err = f2fs_get_block(&dn, index); 1571 } else { 1572 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1573 dn.data_blkaddr = ei.blk + index - ei.fofs; 1574 } else { 1575 /* hole case */ 1576 err = get_dnode_of_data(&dn, index, LOOKUP_NODE); 1577 if (err || dn.data_blkaddr == NULL_ADDR) { 1578 f2fs_put_dnode(&dn); 1579 f2fs_lock_op(sbi); 1580 locked = true; 1581 goto restart; 1582 } 1583 } 1584 } 1585 1586 /* convert_inline_page can make node_changed */ 1587 *blk_addr = dn.data_blkaddr; 1588 *node_changed = dn.node_changed; 1589 out: 1590 f2fs_put_dnode(&dn); 1591 unlock_out: 1592 if (locked) 1593 f2fs_unlock_op(sbi); 1594 return err; 1595 } 1596 1597 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 1598 loff_t pos, unsigned len, unsigned flags, 1599 struct page **pagep, void **fsdata) 1600 { 1601 struct inode *inode = mapping->host; 1602 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1603 struct page *page = NULL; 1604 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 1605 bool need_balance = false; 1606 block_t blkaddr = NULL_ADDR; 1607 int err = 0; 1608 1609 trace_f2fs_write_begin(inode, pos, len, flags); 1610 1611 /* 1612 * We should check this at this moment to avoid deadlock on inode page 1613 * and #0 page. The locking rule for inline_data conversion should be: 1614 * lock_page(page #0) -> lock_page(inode_page) 1615 */ 1616 if (index != 0) { 1617 err = f2fs_convert_inline_inode(inode); 1618 if (err) 1619 goto fail; 1620 } 1621 repeat: 1622 page = grab_cache_page_write_begin(mapping, index, flags); 1623 if (!page) { 1624 err = -ENOMEM; 1625 goto fail; 1626 } 1627 1628 *pagep = page; 1629 1630 err = prepare_write_begin(sbi, page, pos, len, 1631 &blkaddr, &need_balance); 1632 if (err) 1633 goto fail; 1634 1635 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) { 1636 unlock_page(page); 1637 f2fs_balance_fs(sbi, true); 1638 lock_page(page); 1639 if (page->mapping != mapping) { 1640 /* The page got truncated from under us */ 1641 f2fs_put_page(page, 1); 1642 goto repeat; 1643 } 1644 } 1645 1646 f2fs_wait_on_page_writeback(page, DATA, false); 1647 1648 /* wait for GCed encrypted page writeback */ 1649 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1650 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr); 1651 1652 if (len == PAGE_SIZE || PageUptodate(page)) 1653 return 0; 1654 1655 if (blkaddr == NEW_ADDR) { 1656 zero_user_segment(page, 0, PAGE_SIZE); 1657 SetPageUptodate(page); 1658 } else { 1659 struct bio *bio; 1660 1661 bio = f2fs_grab_bio(inode, blkaddr, 1); 1662 if (IS_ERR(bio)) { 1663 err = PTR_ERR(bio); 1664 goto fail; 1665 } 1666 bio_set_op_attrs(bio, REQ_OP_READ, READ_SYNC); 1667 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1668 bio_put(bio); 1669 err = -EFAULT; 1670 goto fail; 1671 } 1672 1673 __submit_bio(sbi, bio, DATA); 1674 1675 lock_page(page); 1676 if (unlikely(page->mapping != mapping)) { 1677 f2fs_put_page(page, 1); 1678 goto repeat; 1679 } 1680 if (unlikely(!PageUptodate(page))) { 1681 err = -EIO; 1682 goto fail; 1683 } 1684 } 1685 return 0; 1686 1687 fail: 1688 f2fs_put_page(page, 1); 1689 f2fs_write_failed(mapping, pos + len); 1690 return err; 1691 } 1692 1693 static int f2fs_write_end(struct file *file, 1694 struct address_space *mapping, 1695 loff_t pos, unsigned len, unsigned copied, 1696 struct page *page, void *fsdata) 1697 { 1698 struct inode *inode = page->mapping->host; 1699 1700 trace_f2fs_write_end(inode, pos, len, copied); 1701 1702 /* 1703 * This should be come from len == PAGE_SIZE, and we expect copied 1704 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 1705 * let generic_perform_write() try to copy data again through copied=0. 1706 */ 1707 if (!PageUptodate(page)) { 1708 if (unlikely(copied != PAGE_SIZE)) 1709 copied = 0; 1710 else 1711 SetPageUptodate(page); 1712 } 1713 if (!copied) 1714 goto unlock_out; 1715 1716 set_page_dirty(page); 1717 clear_cold_data(page); 1718 1719 if (pos + copied > i_size_read(inode)) 1720 f2fs_i_size_write(inode, pos + copied); 1721 unlock_out: 1722 f2fs_put_page(page, 1); 1723 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 1724 return copied; 1725 } 1726 1727 static int check_direct_IO(struct inode *inode, struct iov_iter *iter, 1728 loff_t offset) 1729 { 1730 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1; 1731 1732 if (offset & blocksize_mask) 1733 return -EINVAL; 1734 1735 if (iov_iter_alignment(iter) & blocksize_mask) 1736 return -EINVAL; 1737 1738 return 0; 1739 } 1740 1741 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1742 { 1743 struct address_space *mapping = iocb->ki_filp->f_mapping; 1744 struct inode *inode = mapping->host; 1745 size_t count = iov_iter_count(iter); 1746 loff_t offset = iocb->ki_pos; 1747 int rw = iov_iter_rw(iter); 1748 int err; 1749 1750 err = check_direct_IO(inode, iter, offset); 1751 if (err) 1752 return err; 1753 1754 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 1755 return 0; 1756 if (test_opt(F2FS_I_SB(inode), LFS)) 1757 return 0; 1758 1759 trace_f2fs_direct_IO_enter(inode, offset, count, rw); 1760 1761 down_read(&F2FS_I(inode)->dio_rwsem[rw]); 1762 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio); 1763 up_read(&F2FS_I(inode)->dio_rwsem[rw]); 1764 1765 if (rw == WRITE) { 1766 if (err > 0) 1767 set_inode_flag(inode, FI_UPDATE_WRITE); 1768 else if (err < 0) 1769 f2fs_write_failed(mapping, offset + count); 1770 } 1771 1772 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err); 1773 1774 return err; 1775 } 1776 1777 void f2fs_invalidate_page(struct page *page, unsigned int offset, 1778 unsigned int length) 1779 { 1780 struct inode *inode = page->mapping->host; 1781 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1782 1783 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 1784 (offset % PAGE_SIZE || length != PAGE_SIZE)) 1785 return; 1786 1787 if (PageDirty(page)) { 1788 if (inode->i_ino == F2FS_META_INO(sbi)) 1789 dec_page_count(sbi, F2FS_DIRTY_META); 1790 else if (inode->i_ino == F2FS_NODE_INO(sbi)) 1791 dec_page_count(sbi, F2FS_DIRTY_NODES); 1792 else 1793 inode_dec_dirty_pages(inode); 1794 } 1795 1796 /* This is atomic written page, keep Private */ 1797 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1798 return; 1799 1800 set_page_private(page, 0); 1801 ClearPagePrivate(page); 1802 } 1803 1804 int f2fs_release_page(struct page *page, gfp_t wait) 1805 { 1806 /* If this is dirty page, keep PagePrivate */ 1807 if (PageDirty(page)) 1808 return 0; 1809 1810 /* This is atomic written page, keep Private */ 1811 if (IS_ATOMIC_WRITTEN_PAGE(page)) 1812 return 0; 1813 1814 set_page_private(page, 0); 1815 ClearPagePrivate(page); 1816 return 1; 1817 } 1818 1819 /* 1820 * This was copied from __set_page_dirty_buffers which gives higher performance 1821 * in very high speed storages. (e.g., pmem) 1822 */ 1823 void f2fs_set_page_dirty_nobuffers(struct page *page) 1824 { 1825 struct address_space *mapping = page->mapping; 1826 unsigned long flags; 1827 1828 if (unlikely(!mapping)) 1829 return; 1830 1831 spin_lock(&mapping->private_lock); 1832 lock_page_memcg(page); 1833 SetPageDirty(page); 1834 spin_unlock(&mapping->private_lock); 1835 1836 spin_lock_irqsave(&mapping->tree_lock, flags); 1837 WARN_ON_ONCE(!PageUptodate(page)); 1838 account_page_dirtied(page, mapping); 1839 radix_tree_tag_set(&mapping->page_tree, 1840 page_index(page), PAGECACHE_TAG_DIRTY); 1841 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1842 unlock_page_memcg(page); 1843 1844 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1845 return; 1846 } 1847 1848 static int f2fs_set_data_page_dirty(struct page *page) 1849 { 1850 struct address_space *mapping = page->mapping; 1851 struct inode *inode = mapping->host; 1852 1853 trace_f2fs_set_page_dirty(page, DATA); 1854 1855 if (!PageUptodate(page)) 1856 SetPageUptodate(page); 1857 1858 if (f2fs_is_atomic_file(inode)) { 1859 if (!IS_ATOMIC_WRITTEN_PAGE(page)) { 1860 register_inmem_page(inode, page); 1861 return 1; 1862 } 1863 /* 1864 * Previously, this page has been registered, we just 1865 * return here. 1866 */ 1867 return 0; 1868 } 1869 1870 if (!PageDirty(page)) { 1871 f2fs_set_page_dirty_nobuffers(page); 1872 update_dirty_page(inode, page); 1873 return 1; 1874 } 1875 return 0; 1876 } 1877 1878 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 1879 { 1880 struct inode *inode = mapping->host; 1881 1882 if (f2fs_has_inline_data(inode)) 1883 return 0; 1884 1885 /* make sure allocating whole blocks */ 1886 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1887 filemap_write_and_wait(mapping); 1888 1889 return generic_block_bmap(mapping, block, get_data_block_bmap); 1890 } 1891 1892 #ifdef CONFIG_MIGRATION 1893 #include <linux/migrate.h> 1894 1895 int f2fs_migrate_page(struct address_space *mapping, 1896 struct page *newpage, struct page *page, enum migrate_mode mode) 1897 { 1898 int rc, extra_count; 1899 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 1900 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page); 1901 1902 BUG_ON(PageWriteback(page)); 1903 1904 /* migrating an atomic written page is safe with the inmem_lock hold */ 1905 if (atomic_written && !mutex_trylock(&fi->inmem_lock)) 1906 return -EAGAIN; 1907 1908 /* 1909 * A reference is expected if PagePrivate set when move mapping, 1910 * however F2FS breaks this for maintaining dirty page counts when 1911 * truncating pages. So here adjusting the 'extra_count' make it work. 1912 */ 1913 extra_count = (atomic_written ? 1 : 0) - page_has_private(page); 1914 rc = migrate_page_move_mapping(mapping, newpage, 1915 page, NULL, mode, extra_count); 1916 if (rc != MIGRATEPAGE_SUCCESS) { 1917 if (atomic_written) 1918 mutex_unlock(&fi->inmem_lock); 1919 return rc; 1920 } 1921 1922 if (atomic_written) { 1923 struct inmem_pages *cur; 1924 list_for_each_entry(cur, &fi->inmem_pages, list) 1925 if (cur->page == page) { 1926 cur->page = newpage; 1927 break; 1928 } 1929 mutex_unlock(&fi->inmem_lock); 1930 put_page(page); 1931 get_page(newpage); 1932 } 1933 1934 if (PagePrivate(page)) 1935 SetPagePrivate(newpage); 1936 set_page_private(newpage, page_private(page)); 1937 1938 migrate_page_copy(newpage, page); 1939 1940 return MIGRATEPAGE_SUCCESS; 1941 } 1942 #endif 1943 1944 const struct address_space_operations f2fs_dblock_aops = { 1945 .readpage = f2fs_read_data_page, 1946 .readpages = f2fs_read_data_pages, 1947 .writepage = f2fs_write_data_page, 1948 .writepages = f2fs_write_data_pages, 1949 .write_begin = f2fs_write_begin, 1950 .write_end = f2fs_write_end, 1951 .set_page_dirty = f2fs_set_data_page_dirty, 1952 .invalidatepage = f2fs_invalidate_page, 1953 .releasepage = f2fs_release_page, 1954 .direct_IO = f2fs_direct_IO, 1955 .bmap = f2fs_bmap, 1956 #ifdef CONFIG_MIGRATION 1957 .migratepage = f2fs_migrate_page, 1958 #endif 1959 }; 1960