xref: /linux/fs/f2fs/data.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/sched/mm.h>
12 #include <linux/mpage.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/sched/signal.h>
22 #include <linux/fiemap.h>
23 #include <linux/iomap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "iostat.h"
29 #include <trace/events/f2fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
40 int __init f2fs_init_bioset(void)
41 {
42 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS);
44 }
45 
46 void f2fs_destroy_bioset(void)
47 {
48 	bioset_exit(&f2fs_bioset);
49 }
50 
51 bool f2fs_is_cp_guaranteed(struct page *page)
52 {
53 	struct address_space *mapping = page->mapping;
54 	struct inode *inode;
55 	struct f2fs_sb_info *sbi;
56 
57 	if (!mapping)
58 		return false;
59 
60 	inode = mapping->host;
61 	sbi = F2FS_I_SB(inode);
62 
63 	if (inode->i_ino == F2FS_META_INO(sbi) ||
64 			inode->i_ino == F2FS_NODE_INO(sbi) ||
65 			S_ISDIR(inode->i_mode))
66 		return true;
67 
68 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
69 			page_private_gcing(page))
70 		return true;
71 	return false;
72 }
73 
74 static enum count_type __read_io_type(struct page *page)
75 {
76 	struct address_space *mapping = page_file_mapping(page);
77 
78 	if (mapping) {
79 		struct inode *inode = mapping->host;
80 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
81 
82 		if (inode->i_ino == F2FS_META_INO(sbi))
83 			return F2FS_RD_META;
84 
85 		if (inode->i_ino == F2FS_NODE_INO(sbi))
86 			return F2FS_RD_NODE;
87 	}
88 	return F2FS_RD_DATA;
89 }
90 
91 /* postprocessing steps for read bios */
92 enum bio_post_read_step {
93 #ifdef CONFIG_FS_ENCRYPTION
94 	STEP_DECRYPT	= BIT(0),
95 #else
96 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
97 #endif
98 #ifdef CONFIG_F2FS_FS_COMPRESSION
99 	STEP_DECOMPRESS	= BIT(1),
100 #else
101 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
102 #endif
103 #ifdef CONFIG_FS_VERITY
104 	STEP_VERITY	= BIT(2),
105 #else
106 	STEP_VERITY	= 0,	/* compile out the verity-related code */
107 #endif
108 };
109 
110 struct bio_post_read_ctx {
111 	struct bio *bio;
112 	struct f2fs_sb_info *sbi;
113 	struct work_struct work;
114 	unsigned int enabled_steps;
115 	/*
116 	 * decompression_attempted keeps track of whether
117 	 * f2fs_end_read_compressed_page() has been called on the pages in the
118 	 * bio that belong to a compressed cluster yet.
119 	 */
120 	bool decompression_attempted;
121 	block_t fs_blkaddr;
122 };
123 
124 /*
125  * Update and unlock a bio's pages, and free the bio.
126  *
127  * This marks pages up-to-date only if there was no error in the bio (I/O error,
128  * decryption error, or verity error), as indicated by bio->bi_status.
129  *
130  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
131  * aren't marked up-to-date here, as decompression is done on a per-compression-
132  * cluster basis rather than a per-bio basis.  Instead, we only must do two
133  * things for each compressed page here: call f2fs_end_read_compressed_page()
134  * with failed=true if an error occurred before it would have normally gotten
135  * called (i.e., I/O error or decryption error, but *not* verity error), and
136  * release the bio's reference to the decompress_io_ctx of the page's cluster.
137  */
138 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
139 {
140 	struct bio_vec *bv;
141 	struct bvec_iter_all iter_all;
142 	struct bio_post_read_ctx *ctx = bio->bi_private;
143 
144 	bio_for_each_segment_all(bv, bio, iter_all) {
145 		struct page *page = bv->bv_page;
146 
147 		if (f2fs_is_compressed_page(page)) {
148 			if (ctx && !ctx->decompression_attempted)
149 				f2fs_end_read_compressed_page(page, true, 0,
150 							in_task);
151 			f2fs_put_page_dic(page, in_task);
152 			continue;
153 		}
154 
155 		if (bio->bi_status)
156 			ClearPageUptodate(page);
157 		else
158 			SetPageUptodate(page);
159 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
160 		unlock_page(page);
161 	}
162 
163 	if (ctx)
164 		mempool_free(ctx, bio_post_read_ctx_pool);
165 	bio_put(bio);
166 }
167 
168 static void f2fs_verify_bio(struct work_struct *work)
169 {
170 	struct bio_post_read_ctx *ctx =
171 		container_of(work, struct bio_post_read_ctx, work);
172 	struct bio *bio = ctx->bio;
173 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
174 
175 	/*
176 	 * fsverity_verify_bio() may call readahead() again, and while verity
177 	 * will be disabled for this, decryption and/or decompression may still
178 	 * be needed, resulting in another bio_post_read_ctx being allocated.
179 	 * So to prevent deadlocks we need to release the current ctx to the
180 	 * mempool first.  This assumes that verity is the last post-read step.
181 	 */
182 	mempool_free(ctx, bio_post_read_ctx_pool);
183 	bio->bi_private = NULL;
184 
185 	/*
186 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
187 	 * as those were handled separately by f2fs_end_read_compressed_page().
188 	 */
189 	if (may_have_compressed_pages) {
190 		struct bio_vec *bv;
191 		struct bvec_iter_all iter_all;
192 
193 		bio_for_each_segment_all(bv, bio, iter_all) {
194 			struct page *page = bv->bv_page;
195 
196 			if (!f2fs_is_compressed_page(page) &&
197 			    !fsverity_verify_page(page)) {
198 				bio->bi_status = BLK_STS_IOERR;
199 				break;
200 			}
201 		}
202 	} else {
203 		fsverity_verify_bio(bio);
204 	}
205 
206 	f2fs_finish_read_bio(bio, true);
207 }
208 
209 /*
210  * If the bio's data needs to be verified with fs-verity, then enqueue the
211  * verity work for the bio.  Otherwise finish the bio now.
212  *
213  * Note that to avoid deadlocks, the verity work can't be done on the
214  * decryption/decompression workqueue.  This is because verifying the data pages
215  * can involve reading verity metadata pages from the file, and these verity
216  * metadata pages may be encrypted and/or compressed.
217  */
218 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
219 {
220 	struct bio_post_read_ctx *ctx = bio->bi_private;
221 
222 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
223 		INIT_WORK(&ctx->work, f2fs_verify_bio);
224 		fsverity_enqueue_verify_work(&ctx->work);
225 	} else {
226 		f2fs_finish_read_bio(bio, in_task);
227 	}
228 }
229 
230 /*
231  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
232  * remaining page was read by @ctx->bio.
233  *
234  * Note that a bio may span clusters (even a mix of compressed and uncompressed
235  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
236  * that the bio includes at least one compressed page.  The actual decompression
237  * is done on a per-cluster basis, not a per-bio basis.
238  */
239 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
240 		bool in_task)
241 {
242 	struct bio_vec *bv;
243 	struct bvec_iter_all iter_all;
244 	bool all_compressed = true;
245 	block_t blkaddr = ctx->fs_blkaddr;
246 
247 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
248 		struct page *page = bv->bv_page;
249 
250 		if (f2fs_is_compressed_page(page))
251 			f2fs_end_read_compressed_page(page, false, blkaddr,
252 						      in_task);
253 		else
254 			all_compressed = false;
255 
256 		blkaddr++;
257 	}
258 
259 	ctx->decompression_attempted = true;
260 
261 	/*
262 	 * Optimization: if all the bio's pages are compressed, then scheduling
263 	 * the per-bio verity work is unnecessary, as verity will be fully
264 	 * handled at the compression cluster level.
265 	 */
266 	if (all_compressed)
267 		ctx->enabled_steps &= ~STEP_VERITY;
268 }
269 
270 static void f2fs_post_read_work(struct work_struct *work)
271 {
272 	struct bio_post_read_ctx *ctx =
273 		container_of(work, struct bio_post_read_ctx, work);
274 	struct bio *bio = ctx->bio;
275 
276 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
277 		f2fs_finish_read_bio(bio, true);
278 		return;
279 	}
280 
281 	if (ctx->enabled_steps & STEP_DECOMPRESS)
282 		f2fs_handle_step_decompress(ctx, true);
283 
284 	f2fs_verify_and_finish_bio(bio, true);
285 }
286 
287 static void f2fs_read_end_io(struct bio *bio)
288 {
289 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
290 	struct bio_post_read_ctx *ctx;
291 	bool intask = in_task();
292 
293 	iostat_update_and_unbind_ctx(bio);
294 	ctx = bio->bi_private;
295 
296 	if (time_to_inject(sbi, FAULT_READ_IO))
297 		bio->bi_status = BLK_STS_IOERR;
298 
299 	if (bio->bi_status) {
300 		f2fs_finish_read_bio(bio, intask);
301 		return;
302 	}
303 
304 	if (ctx) {
305 		unsigned int enabled_steps = ctx->enabled_steps &
306 					(STEP_DECRYPT | STEP_DECOMPRESS);
307 
308 		/*
309 		 * If we have only decompression step between decompression and
310 		 * decrypt, we don't need post processing for this.
311 		 */
312 		if (enabled_steps == STEP_DECOMPRESS &&
313 				!f2fs_low_mem_mode(sbi)) {
314 			f2fs_handle_step_decompress(ctx, intask);
315 		} else if (enabled_steps) {
316 			INIT_WORK(&ctx->work, f2fs_post_read_work);
317 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
318 			return;
319 		}
320 	}
321 
322 	f2fs_verify_and_finish_bio(bio, intask);
323 }
324 
325 static void f2fs_write_end_io(struct bio *bio)
326 {
327 	struct f2fs_sb_info *sbi;
328 	struct bio_vec *bvec;
329 	struct bvec_iter_all iter_all;
330 
331 	iostat_update_and_unbind_ctx(bio);
332 	sbi = bio->bi_private;
333 
334 	if (time_to_inject(sbi, FAULT_WRITE_IO))
335 		bio->bi_status = BLK_STS_IOERR;
336 
337 	bio_for_each_segment_all(bvec, bio, iter_all) {
338 		struct page *page = bvec->bv_page;
339 		enum count_type type = WB_DATA_TYPE(page, false);
340 
341 		fscrypt_finalize_bounce_page(&page);
342 
343 #ifdef CONFIG_F2FS_FS_COMPRESSION
344 		if (f2fs_is_compressed_page(page)) {
345 			f2fs_compress_write_end_io(bio, page);
346 			continue;
347 		}
348 #endif
349 
350 		if (unlikely(bio->bi_status)) {
351 			mapping_set_error(page->mapping, -EIO);
352 			if (type == F2FS_WB_CP_DATA)
353 				f2fs_stop_checkpoint(sbi, true,
354 						STOP_CP_REASON_WRITE_FAIL);
355 		}
356 
357 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
358 					page->index != nid_of_node(page));
359 
360 		dec_page_count(sbi, type);
361 		if (f2fs_in_warm_node_list(sbi, page))
362 			f2fs_del_fsync_node_entry(sbi, page);
363 		clear_page_private_gcing(page);
364 		end_page_writeback(page);
365 	}
366 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
367 				wq_has_sleeper(&sbi->cp_wait))
368 		wake_up(&sbi->cp_wait);
369 
370 	bio_put(bio);
371 }
372 
373 #ifdef CONFIG_BLK_DEV_ZONED
374 static void f2fs_zone_write_end_io(struct bio *bio)
375 {
376 	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377 
378 	bio->bi_private = io->bi_private;
379 	complete(&io->zone_wait);
380 	f2fs_write_end_io(bio);
381 }
382 #endif
383 
384 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385 		block_t blk_addr, sector_t *sector)
386 {
387 	struct block_device *bdev = sbi->sb->s_bdev;
388 	int i;
389 
390 	if (f2fs_is_multi_device(sbi)) {
391 		for (i = 0; i < sbi->s_ndevs; i++) {
392 			if (FDEV(i).start_blk <= blk_addr &&
393 			    FDEV(i).end_blk >= blk_addr) {
394 				blk_addr -= FDEV(i).start_blk;
395 				bdev = FDEV(i).bdev;
396 				break;
397 			}
398 		}
399 	}
400 
401 	if (sector)
402 		*sector = SECTOR_FROM_BLOCK(blk_addr);
403 	return bdev;
404 }
405 
406 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407 {
408 	int i;
409 
410 	if (!f2fs_is_multi_device(sbi))
411 		return 0;
412 
413 	for (i = 0; i < sbi->s_ndevs; i++)
414 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415 			return i;
416 	return 0;
417 }
418 
419 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420 {
421 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422 	unsigned int fua_flag, meta_flag, io_flag;
423 	blk_opf_t op_flags = 0;
424 
425 	if (fio->op != REQ_OP_WRITE)
426 		return 0;
427 	if (fio->type == DATA)
428 		io_flag = fio->sbi->data_io_flag;
429 	else if (fio->type == NODE)
430 		io_flag = fio->sbi->node_io_flag;
431 	else
432 		return 0;
433 
434 	fua_flag = io_flag & temp_mask;
435 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
436 
437 	/*
438 	 * data/node io flag bits per temp:
439 	 *      REQ_META     |      REQ_FUA      |
440 	 *    5 |    4 |   3 |    2 |    1 |   0 |
441 	 * Cold | Warm | Hot | Cold | Warm | Hot |
442 	 */
443 	if (BIT(fio->temp) & meta_flag)
444 		op_flags |= REQ_META;
445 	if (BIT(fio->temp) & fua_flag)
446 		op_flags |= REQ_FUA;
447 	return op_flags;
448 }
449 
450 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
451 {
452 	struct f2fs_sb_info *sbi = fio->sbi;
453 	struct block_device *bdev;
454 	sector_t sector;
455 	struct bio *bio;
456 
457 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
458 	bio = bio_alloc_bioset(bdev, npages,
459 				fio->op | fio->op_flags | f2fs_io_flags(fio),
460 				GFP_NOIO, &f2fs_bioset);
461 	bio->bi_iter.bi_sector = sector;
462 	if (is_read_io(fio->op)) {
463 		bio->bi_end_io = f2fs_read_end_io;
464 		bio->bi_private = NULL;
465 	} else {
466 		bio->bi_end_io = f2fs_write_end_io;
467 		bio->bi_private = sbi;
468 	}
469 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
470 
471 	if (fio->io_wbc)
472 		wbc_init_bio(fio->io_wbc, bio);
473 
474 	return bio;
475 }
476 
477 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
478 				  pgoff_t first_idx,
479 				  const struct f2fs_io_info *fio,
480 				  gfp_t gfp_mask)
481 {
482 	/*
483 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
484 	 * read/write raw data without encryption.
485 	 */
486 	if (!fio || !fio->encrypted_page)
487 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
488 }
489 
490 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
491 				     pgoff_t next_idx,
492 				     const struct f2fs_io_info *fio)
493 {
494 	/*
495 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
496 	 * read/write raw data without encryption.
497 	 */
498 	if (fio && fio->encrypted_page)
499 		return !bio_has_crypt_ctx(bio);
500 
501 	return fscrypt_mergeable_bio(bio, inode, next_idx);
502 }
503 
504 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
505 				 enum page_type type)
506 {
507 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
508 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
509 
510 	iostat_update_submit_ctx(bio, type);
511 	submit_bio(bio);
512 }
513 
514 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
515 				  enum page_type type)
516 {
517 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
518 
519 	if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
520 		blk_finish_plug(current->plug);
521 
522 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
523 	iostat_update_submit_ctx(bio, type);
524 	submit_bio(bio);
525 }
526 
527 static void __submit_merged_bio(struct f2fs_bio_info *io)
528 {
529 	struct f2fs_io_info *fio = &io->fio;
530 
531 	if (!io->bio)
532 		return;
533 
534 	if (is_read_io(fio->op)) {
535 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
536 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
537 	} else {
538 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
539 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
540 	}
541 	io->bio = NULL;
542 }
543 
544 static bool __has_merged_page(struct bio *bio, struct inode *inode,
545 						struct page *page, nid_t ino)
546 {
547 	struct bio_vec *bvec;
548 	struct bvec_iter_all iter_all;
549 
550 	if (!bio)
551 		return false;
552 
553 	if (!inode && !page && !ino)
554 		return true;
555 
556 	bio_for_each_segment_all(bvec, bio, iter_all) {
557 		struct page *target = bvec->bv_page;
558 
559 		if (fscrypt_is_bounce_page(target)) {
560 			target = fscrypt_pagecache_page(target);
561 			if (IS_ERR(target))
562 				continue;
563 		}
564 		if (f2fs_is_compressed_page(target)) {
565 			target = f2fs_compress_control_page(target);
566 			if (IS_ERR(target))
567 				continue;
568 		}
569 
570 		if (inode && inode == target->mapping->host)
571 			return true;
572 		if (page && page == target)
573 			return true;
574 		if (ino && ino == ino_of_node(target))
575 			return true;
576 	}
577 
578 	return false;
579 }
580 
581 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
582 {
583 	int i;
584 
585 	for (i = 0; i < NR_PAGE_TYPE; i++) {
586 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
587 		int j;
588 
589 		sbi->write_io[i] = f2fs_kmalloc(sbi,
590 				array_size(n, sizeof(struct f2fs_bio_info)),
591 				GFP_KERNEL);
592 		if (!sbi->write_io[i])
593 			return -ENOMEM;
594 
595 		for (j = HOT; j < n; j++) {
596 			init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
597 			sbi->write_io[i][j].sbi = sbi;
598 			sbi->write_io[i][j].bio = NULL;
599 			spin_lock_init(&sbi->write_io[i][j].io_lock);
600 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
601 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
602 			init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
603 #ifdef CONFIG_BLK_DEV_ZONED
604 			init_completion(&sbi->write_io[i][j].zone_wait);
605 			sbi->write_io[i][j].zone_pending_bio = NULL;
606 			sbi->write_io[i][j].bi_private = NULL;
607 #endif
608 		}
609 	}
610 
611 	return 0;
612 }
613 
614 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
615 				enum page_type type, enum temp_type temp)
616 {
617 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
618 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
619 
620 	f2fs_down_write(&io->io_rwsem);
621 
622 	if (!io->bio)
623 		goto unlock_out;
624 
625 	/* change META to META_FLUSH in the checkpoint procedure */
626 	if (type >= META_FLUSH) {
627 		io->fio.type = META_FLUSH;
628 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
629 		if (!test_opt(sbi, NOBARRIER))
630 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
631 	}
632 	__submit_merged_bio(io);
633 unlock_out:
634 	f2fs_up_write(&io->io_rwsem);
635 }
636 
637 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
638 				struct inode *inode, struct page *page,
639 				nid_t ino, enum page_type type, bool force)
640 {
641 	enum temp_type temp;
642 	bool ret = true;
643 
644 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
645 		if (!force)	{
646 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
647 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
648 
649 			f2fs_down_read(&io->io_rwsem);
650 			ret = __has_merged_page(io->bio, inode, page, ino);
651 			f2fs_up_read(&io->io_rwsem);
652 		}
653 		if (ret)
654 			__f2fs_submit_merged_write(sbi, type, temp);
655 
656 		/* TODO: use HOT temp only for meta pages now. */
657 		if (type >= META)
658 			break;
659 	}
660 }
661 
662 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
663 {
664 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
665 }
666 
667 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
668 				struct inode *inode, struct page *page,
669 				nid_t ino, enum page_type type)
670 {
671 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
672 }
673 
674 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
675 {
676 	f2fs_submit_merged_write(sbi, DATA);
677 	f2fs_submit_merged_write(sbi, NODE);
678 	f2fs_submit_merged_write(sbi, META);
679 }
680 
681 /*
682  * Fill the locked page with data located in the block address.
683  * A caller needs to unlock the page on failure.
684  */
685 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
686 {
687 	struct bio *bio;
688 	struct page *page = fio->encrypted_page ?
689 			fio->encrypted_page : fio->page;
690 
691 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
692 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
693 			META_GENERIC : DATA_GENERIC_ENHANCE)))
694 		return -EFSCORRUPTED;
695 
696 	trace_f2fs_submit_page_bio(page, fio);
697 
698 	/* Allocate a new bio */
699 	bio = __bio_alloc(fio, 1);
700 
701 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
702 			       fio->page->index, fio, GFP_NOIO);
703 
704 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
705 		bio_put(bio);
706 		return -EFAULT;
707 	}
708 
709 	if (fio->io_wbc && !is_read_io(fio->op))
710 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
711 
712 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
713 			__read_io_type(page) : WB_DATA_TYPE(fio->page, false));
714 
715 	if (is_read_io(bio_op(bio)))
716 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
717 	else
718 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
719 	return 0;
720 }
721 
722 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
723 				block_t last_blkaddr, block_t cur_blkaddr)
724 {
725 	if (unlikely(sbi->max_io_bytes &&
726 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
727 		return false;
728 	if (last_blkaddr + 1 != cur_blkaddr)
729 		return false;
730 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
731 }
732 
733 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
734 						struct f2fs_io_info *fio)
735 {
736 	if (io->fio.op != fio->op)
737 		return false;
738 	return io->fio.op_flags == fio->op_flags;
739 }
740 
741 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
742 					struct f2fs_bio_info *io,
743 					struct f2fs_io_info *fio,
744 					block_t last_blkaddr,
745 					block_t cur_blkaddr)
746 {
747 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
748 		return false;
749 	return io_type_is_mergeable(io, fio);
750 }
751 
752 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
753 				struct page *page, enum temp_type temp)
754 {
755 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
756 	struct bio_entry *be;
757 
758 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
759 	be->bio = bio;
760 	bio_get(bio);
761 
762 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
763 		f2fs_bug_on(sbi, 1);
764 
765 	f2fs_down_write(&io->bio_list_lock);
766 	list_add_tail(&be->list, &io->bio_list);
767 	f2fs_up_write(&io->bio_list_lock);
768 }
769 
770 static void del_bio_entry(struct bio_entry *be)
771 {
772 	list_del(&be->list);
773 	kmem_cache_free(bio_entry_slab, be);
774 }
775 
776 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
777 							struct page *page)
778 {
779 	struct f2fs_sb_info *sbi = fio->sbi;
780 	enum temp_type temp;
781 	bool found = false;
782 	int ret = -EAGAIN;
783 
784 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
785 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
786 		struct list_head *head = &io->bio_list;
787 		struct bio_entry *be;
788 
789 		f2fs_down_write(&io->bio_list_lock);
790 		list_for_each_entry(be, head, list) {
791 			if (be->bio != *bio)
792 				continue;
793 
794 			found = true;
795 
796 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
797 							    *fio->last_block,
798 							    fio->new_blkaddr));
799 			if (f2fs_crypt_mergeable_bio(*bio,
800 					fio->page->mapping->host,
801 					fio->page->index, fio) &&
802 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
803 					PAGE_SIZE) {
804 				ret = 0;
805 				break;
806 			}
807 
808 			/* page can't be merged into bio; submit the bio */
809 			del_bio_entry(be);
810 			f2fs_submit_write_bio(sbi, *bio, DATA);
811 			break;
812 		}
813 		f2fs_up_write(&io->bio_list_lock);
814 	}
815 
816 	if (ret) {
817 		bio_put(*bio);
818 		*bio = NULL;
819 	}
820 
821 	return ret;
822 }
823 
824 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
825 					struct bio **bio, struct page *page)
826 {
827 	enum temp_type temp;
828 	bool found = false;
829 	struct bio *target = bio ? *bio : NULL;
830 
831 	f2fs_bug_on(sbi, !target && !page);
832 
833 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
834 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
835 		struct list_head *head = &io->bio_list;
836 		struct bio_entry *be;
837 
838 		if (list_empty(head))
839 			continue;
840 
841 		f2fs_down_read(&io->bio_list_lock);
842 		list_for_each_entry(be, head, list) {
843 			if (target)
844 				found = (target == be->bio);
845 			else
846 				found = __has_merged_page(be->bio, NULL,
847 								page, 0);
848 			if (found)
849 				break;
850 		}
851 		f2fs_up_read(&io->bio_list_lock);
852 
853 		if (!found)
854 			continue;
855 
856 		found = false;
857 
858 		f2fs_down_write(&io->bio_list_lock);
859 		list_for_each_entry(be, head, list) {
860 			if (target)
861 				found = (target == be->bio);
862 			else
863 				found = __has_merged_page(be->bio, NULL,
864 								page, 0);
865 			if (found) {
866 				target = be->bio;
867 				del_bio_entry(be);
868 				break;
869 			}
870 		}
871 		f2fs_up_write(&io->bio_list_lock);
872 	}
873 
874 	if (found)
875 		f2fs_submit_write_bio(sbi, target, DATA);
876 	if (bio && *bio) {
877 		bio_put(*bio);
878 		*bio = NULL;
879 	}
880 }
881 
882 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
883 {
884 	struct bio *bio = *fio->bio;
885 	struct page *page = fio->encrypted_page ?
886 			fio->encrypted_page : fio->page;
887 
888 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
889 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
890 		return -EFSCORRUPTED;
891 
892 	trace_f2fs_submit_page_bio(page, fio);
893 
894 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
895 						fio->new_blkaddr))
896 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
897 alloc_new:
898 	if (!bio) {
899 		bio = __bio_alloc(fio, BIO_MAX_VECS);
900 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
901 				       fio->page->index, fio, GFP_NOIO);
902 
903 		add_bio_entry(fio->sbi, bio, page, fio->temp);
904 	} else {
905 		if (add_ipu_page(fio, &bio, page))
906 			goto alloc_new;
907 	}
908 
909 	if (fio->io_wbc)
910 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
911 
912 	inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
913 
914 	*fio->last_block = fio->new_blkaddr;
915 	*fio->bio = bio;
916 
917 	return 0;
918 }
919 
920 #ifdef CONFIG_BLK_DEV_ZONED
921 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
922 {
923 	int devi = 0;
924 
925 	if (f2fs_is_multi_device(sbi)) {
926 		devi = f2fs_target_device_index(sbi, blkaddr);
927 		if (blkaddr < FDEV(devi).start_blk ||
928 		    blkaddr > FDEV(devi).end_blk) {
929 			f2fs_err(sbi, "Invalid block %x", blkaddr);
930 			return false;
931 		}
932 		blkaddr -= FDEV(devi).start_blk;
933 	}
934 	return bdev_is_zoned(FDEV(devi).bdev) &&
935 		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
936 		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
937 }
938 #endif
939 
940 void f2fs_submit_page_write(struct f2fs_io_info *fio)
941 {
942 	struct f2fs_sb_info *sbi = fio->sbi;
943 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
944 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
945 	struct page *bio_page;
946 	enum count_type type;
947 
948 	f2fs_bug_on(sbi, is_read_io(fio->op));
949 
950 	f2fs_down_write(&io->io_rwsem);
951 next:
952 #ifdef CONFIG_BLK_DEV_ZONED
953 	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
954 		wait_for_completion_io(&io->zone_wait);
955 		bio_put(io->zone_pending_bio);
956 		io->zone_pending_bio = NULL;
957 		io->bi_private = NULL;
958 	}
959 #endif
960 
961 	if (fio->in_list) {
962 		spin_lock(&io->io_lock);
963 		if (list_empty(&io->io_list)) {
964 			spin_unlock(&io->io_lock);
965 			goto out;
966 		}
967 		fio = list_first_entry(&io->io_list,
968 						struct f2fs_io_info, list);
969 		list_del(&fio->list);
970 		spin_unlock(&io->io_lock);
971 	}
972 
973 	verify_fio_blkaddr(fio);
974 
975 	if (fio->encrypted_page)
976 		bio_page = fio->encrypted_page;
977 	else if (fio->compressed_page)
978 		bio_page = fio->compressed_page;
979 	else
980 		bio_page = fio->page;
981 
982 	/* set submitted = true as a return value */
983 	fio->submitted = 1;
984 
985 	type = WB_DATA_TYPE(bio_page, fio->compressed_page);
986 	inc_page_count(sbi, type);
987 
988 	if (io->bio &&
989 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
990 			      fio->new_blkaddr) ||
991 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
992 				       bio_page->index, fio)))
993 		__submit_merged_bio(io);
994 alloc_new:
995 	if (io->bio == NULL) {
996 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
997 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
998 				       bio_page->index, fio, GFP_NOIO);
999 		io->fio = *fio;
1000 	}
1001 
1002 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1003 		__submit_merged_bio(io);
1004 		goto alloc_new;
1005 	}
1006 
1007 	if (fio->io_wbc)
1008 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1009 
1010 	io->last_block_in_bio = fio->new_blkaddr;
1011 
1012 	trace_f2fs_submit_page_write(fio->page, fio);
1013 #ifdef CONFIG_BLK_DEV_ZONED
1014 	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1015 			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1016 		bio_get(io->bio);
1017 		reinit_completion(&io->zone_wait);
1018 		io->bi_private = io->bio->bi_private;
1019 		io->bio->bi_private = io;
1020 		io->bio->bi_end_io = f2fs_zone_write_end_io;
1021 		io->zone_pending_bio = io->bio;
1022 		__submit_merged_bio(io);
1023 	}
1024 #endif
1025 	if (fio->in_list)
1026 		goto next;
1027 out:
1028 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1029 				!f2fs_is_checkpoint_ready(sbi))
1030 		__submit_merged_bio(io);
1031 	f2fs_up_write(&io->io_rwsem);
1032 }
1033 
1034 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1035 				      unsigned nr_pages, blk_opf_t op_flag,
1036 				      pgoff_t first_idx, bool for_write)
1037 {
1038 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039 	struct bio *bio;
1040 	struct bio_post_read_ctx *ctx = NULL;
1041 	unsigned int post_read_steps = 0;
1042 	sector_t sector;
1043 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1044 
1045 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1046 			       REQ_OP_READ | op_flag,
1047 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1048 	if (!bio)
1049 		return ERR_PTR(-ENOMEM);
1050 	bio->bi_iter.bi_sector = sector;
1051 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1052 	bio->bi_end_io = f2fs_read_end_io;
1053 
1054 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1055 		post_read_steps |= STEP_DECRYPT;
1056 
1057 	if (f2fs_need_verity(inode, first_idx))
1058 		post_read_steps |= STEP_VERITY;
1059 
1060 	/*
1061 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1062 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1063 	 * bio_post_read_ctx if the file is compressed, but the caller is
1064 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1065 	 */
1066 
1067 	if (post_read_steps || f2fs_compressed_file(inode)) {
1068 		/* Due to the mempool, this never fails. */
1069 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1070 		ctx->bio = bio;
1071 		ctx->sbi = sbi;
1072 		ctx->enabled_steps = post_read_steps;
1073 		ctx->fs_blkaddr = blkaddr;
1074 		ctx->decompression_attempted = false;
1075 		bio->bi_private = ctx;
1076 	}
1077 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1078 
1079 	return bio;
1080 }
1081 
1082 /* This can handle encryption stuffs */
1083 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1084 				 block_t blkaddr, blk_opf_t op_flags,
1085 				 bool for_write)
1086 {
1087 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1088 	struct bio *bio;
1089 
1090 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1091 					page->index, for_write);
1092 	if (IS_ERR(bio))
1093 		return PTR_ERR(bio);
1094 
1095 	/* wait for GCed page writeback via META_MAPPING */
1096 	f2fs_wait_on_block_writeback(inode, blkaddr);
1097 
1098 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1099 		iostat_update_and_unbind_ctx(bio);
1100 		if (bio->bi_private)
1101 			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1102 		bio_put(bio);
1103 		return -EFAULT;
1104 	}
1105 	inc_page_count(sbi, F2FS_RD_DATA);
1106 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1107 	f2fs_submit_read_bio(sbi, bio, DATA);
1108 	return 0;
1109 }
1110 
1111 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1112 {
1113 	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1114 
1115 	dn->data_blkaddr = blkaddr;
1116 	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1117 }
1118 
1119 /*
1120  * Lock ordering for the change of data block address:
1121  * ->data_page
1122  *  ->node_page
1123  *    update block addresses in the node page
1124  */
1125 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1126 {
1127 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1128 	__set_data_blkaddr(dn, blkaddr);
1129 	if (set_page_dirty(dn->node_page))
1130 		dn->node_changed = true;
1131 }
1132 
1133 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1134 {
1135 	f2fs_set_data_blkaddr(dn, blkaddr);
1136 	f2fs_update_read_extent_cache(dn);
1137 }
1138 
1139 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1140 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1141 {
1142 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1143 	int err;
1144 
1145 	if (!count)
1146 		return 0;
1147 
1148 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1149 		return -EPERM;
1150 	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1151 	if (unlikely(err))
1152 		return err;
1153 
1154 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1155 						dn->ofs_in_node, count);
1156 
1157 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1158 
1159 	for (; count > 0; dn->ofs_in_node++) {
1160 		block_t blkaddr = f2fs_data_blkaddr(dn);
1161 
1162 		if (blkaddr == NULL_ADDR) {
1163 			__set_data_blkaddr(dn, NEW_ADDR);
1164 			count--;
1165 		}
1166 	}
1167 
1168 	if (set_page_dirty(dn->node_page))
1169 		dn->node_changed = true;
1170 	return 0;
1171 }
1172 
1173 /* Should keep dn->ofs_in_node unchanged */
1174 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1175 {
1176 	unsigned int ofs_in_node = dn->ofs_in_node;
1177 	int ret;
1178 
1179 	ret = f2fs_reserve_new_blocks(dn, 1);
1180 	dn->ofs_in_node = ofs_in_node;
1181 	return ret;
1182 }
1183 
1184 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1185 {
1186 	bool need_put = dn->inode_page ? false : true;
1187 	int err;
1188 
1189 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1190 	if (err)
1191 		return err;
1192 
1193 	if (dn->data_blkaddr == NULL_ADDR)
1194 		err = f2fs_reserve_new_block(dn);
1195 	if (err || need_put)
1196 		f2fs_put_dnode(dn);
1197 	return err;
1198 }
1199 
1200 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1201 				     blk_opf_t op_flags, bool for_write,
1202 				     pgoff_t *next_pgofs)
1203 {
1204 	struct address_space *mapping = inode->i_mapping;
1205 	struct dnode_of_data dn;
1206 	struct page *page;
1207 	int err;
1208 
1209 	page = f2fs_grab_cache_page(mapping, index, for_write);
1210 	if (!page)
1211 		return ERR_PTR(-ENOMEM);
1212 
1213 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1214 						&dn.data_blkaddr)) {
1215 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1216 						DATA_GENERIC_ENHANCE_READ)) {
1217 			err = -EFSCORRUPTED;
1218 			goto put_err;
1219 		}
1220 		goto got_it;
1221 	}
1222 
1223 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1224 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1225 	if (err) {
1226 		if (err == -ENOENT && next_pgofs)
1227 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1228 		goto put_err;
1229 	}
1230 	f2fs_put_dnode(&dn);
1231 
1232 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1233 		err = -ENOENT;
1234 		if (next_pgofs)
1235 			*next_pgofs = index + 1;
1236 		goto put_err;
1237 	}
1238 	if (dn.data_blkaddr != NEW_ADDR &&
1239 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1240 						dn.data_blkaddr,
1241 						DATA_GENERIC_ENHANCE)) {
1242 		err = -EFSCORRUPTED;
1243 		goto put_err;
1244 	}
1245 got_it:
1246 	if (PageUptodate(page)) {
1247 		unlock_page(page);
1248 		return page;
1249 	}
1250 
1251 	/*
1252 	 * A new dentry page is allocated but not able to be written, since its
1253 	 * new inode page couldn't be allocated due to -ENOSPC.
1254 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1255 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1256 	 * f2fs_init_inode_metadata.
1257 	 */
1258 	if (dn.data_blkaddr == NEW_ADDR) {
1259 		zero_user_segment(page, 0, PAGE_SIZE);
1260 		if (!PageUptodate(page))
1261 			SetPageUptodate(page);
1262 		unlock_page(page);
1263 		return page;
1264 	}
1265 
1266 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1267 						op_flags, for_write);
1268 	if (err)
1269 		goto put_err;
1270 	return page;
1271 
1272 put_err:
1273 	f2fs_put_page(page, 1);
1274 	return ERR_PTR(err);
1275 }
1276 
1277 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1278 					pgoff_t *next_pgofs)
1279 {
1280 	struct address_space *mapping = inode->i_mapping;
1281 	struct page *page;
1282 
1283 	page = find_get_page(mapping, index);
1284 	if (page && PageUptodate(page))
1285 		return page;
1286 	f2fs_put_page(page, 0);
1287 
1288 	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1289 	if (IS_ERR(page))
1290 		return page;
1291 
1292 	if (PageUptodate(page))
1293 		return page;
1294 
1295 	wait_on_page_locked(page);
1296 	if (unlikely(!PageUptodate(page))) {
1297 		f2fs_put_page(page, 0);
1298 		return ERR_PTR(-EIO);
1299 	}
1300 	return page;
1301 }
1302 
1303 /*
1304  * If it tries to access a hole, return an error.
1305  * Because, the callers, functions in dir.c and GC, should be able to know
1306  * whether this page exists or not.
1307  */
1308 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1309 							bool for_write)
1310 {
1311 	struct address_space *mapping = inode->i_mapping;
1312 	struct page *page;
1313 
1314 	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1315 	if (IS_ERR(page))
1316 		return page;
1317 
1318 	/* wait for read completion */
1319 	lock_page(page);
1320 	if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1321 		f2fs_put_page(page, 1);
1322 		return ERR_PTR(-EIO);
1323 	}
1324 	return page;
1325 }
1326 
1327 /*
1328  * Caller ensures that this data page is never allocated.
1329  * A new zero-filled data page is allocated in the page cache.
1330  *
1331  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1332  * f2fs_unlock_op().
1333  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1334  * ipage should be released by this function.
1335  */
1336 struct page *f2fs_get_new_data_page(struct inode *inode,
1337 		struct page *ipage, pgoff_t index, bool new_i_size)
1338 {
1339 	struct address_space *mapping = inode->i_mapping;
1340 	struct page *page;
1341 	struct dnode_of_data dn;
1342 	int err;
1343 
1344 	page = f2fs_grab_cache_page(mapping, index, true);
1345 	if (!page) {
1346 		/*
1347 		 * before exiting, we should make sure ipage will be released
1348 		 * if any error occur.
1349 		 */
1350 		f2fs_put_page(ipage, 1);
1351 		return ERR_PTR(-ENOMEM);
1352 	}
1353 
1354 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1355 	err = f2fs_reserve_block(&dn, index);
1356 	if (err) {
1357 		f2fs_put_page(page, 1);
1358 		return ERR_PTR(err);
1359 	}
1360 	if (!ipage)
1361 		f2fs_put_dnode(&dn);
1362 
1363 	if (PageUptodate(page))
1364 		goto got_it;
1365 
1366 	if (dn.data_blkaddr == NEW_ADDR) {
1367 		zero_user_segment(page, 0, PAGE_SIZE);
1368 		if (!PageUptodate(page))
1369 			SetPageUptodate(page);
1370 	} else {
1371 		f2fs_put_page(page, 1);
1372 
1373 		/* if ipage exists, blkaddr should be NEW_ADDR */
1374 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1375 		page = f2fs_get_lock_data_page(inode, index, true);
1376 		if (IS_ERR(page))
1377 			return page;
1378 	}
1379 got_it:
1380 	if (new_i_size && i_size_read(inode) <
1381 				((loff_t)(index + 1) << PAGE_SHIFT))
1382 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1383 	return page;
1384 }
1385 
1386 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1387 {
1388 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1389 	struct f2fs_summary sum;
1390 	struct node_info ni;
1391 	block_t old_blkaddr;
1392 	blkcnt_t count = 1;
1393 	int err;
1394 
1395 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1396 		return -EPERM;
1397 
1398 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1399 	if (err)
1400 		return err;
1401 
1402 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1403 	if (dn->data_blkaddr == NULL_ADDR) {
1404 		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1405 		if (unlikely(err))
1406 			return err;
1407 	}
1408 
1409 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1410 	old_blkaddr = dn->data_blkaddr;
1411 	err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1412 				&dn->data_blkaddr, &sum, seg_type, NULL);
1413 	if (err)
1414 		return err;
1415 
1416 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1417 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1418 
1419 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1420 	return 0;
1421 }
1422 
1423 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1424 {
1425 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1426 		f2fs_down_read(&sbi->node_change);
1427 	else
1428 		f2fs_lock_op(sbi);
1429 }
1430 
1431 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1432 {
1433 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1434 		f2fs_up_read(&sbi->node_change);
1435 	else
1436 		f2fs_unlock_op(sbi);
1437 }
1438 
1439 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1440 {
1441 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1442 	int err = 0;
1443 
1444 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1445 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1446 						&dn->data_blkaddr))
1447 		err = f2fs_reserve_block(dn, index);
1448 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1449 
1450 	return err;
1451 }
1452 
1453 static int f2fs_map_no_dnode(struct inode *inode,
1454 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1455 		pgoff_t pgoff)
1456 {
1457 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1458 
1459 	/*
1460 	 * There is one exceptional case that read_node_page() may return
1461 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1462 	 * -EIO in that case.
1463 	 */
1464 	if (map->m_may_create &&
1465 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1466 		return -EIO;
1467 
1468 	if (map->m_next_pgofs)
1469 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1470 	if (map->m_next_extent)
1471 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1472 	return 0;
1473 }
1474 
1475 static bool f2fs_map_blocks_cached(struct inode *inode,
1476 		struct f2fs_map_blocks *map, int flag)
1477 {
1478 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1479 	unsigned int maxblocks = map->m_len;
1480 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1481 	struct extent_info ei = {};
1482 
1483 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1484 		return false;
1485 
1486 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1487 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1488 	map->m_flags = F2FS_MAP_MAPPED;
1489 	if (map->m_next_extent)
1490 		*map->m_next_extent = pgoff + map->m_len;
1491 
1492 	/* for hardware encryption, but to avoid potential issue in future */
1493 	if (flag == F2FS_GET_BLOCK_DIO)
1494 		f2fs_wait_on_block_writeback_range(inode,
1495 					map->m_pblk, map->m_len);
1496 
1497 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1498 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1499 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1500 
1501 		map->m_bdev = dev->bdev;
1502 		map->m_pblk -= dev->start_blk;
1503 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1504 	} else {
1505 		map->m_bdev = inode->i_sb->s_bdev;
1506 	}
1507 	return true;
1508 }
1509 
1510 /*
1511  * f2fs_map_blocks() tries to find or build mapping relationship which
1512  * maps continuous logical blocks to physical blocks, and return such
1513  * info via f2fs_map_blocks structure.
1514  */
1515 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1516 {
1517 	unsigned int maxblocks = map->m_len;
1518 	struct dnode_of_data dn;
1519 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1520 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1521 	pgoff_t pgofs, end_offset, end;
1522 	int err = 0, ofs = 1;
1523 	unsigned int ofs_in_node, last_ofs_in_node;
1524 	blkcnt_t prealloc;
1525 	block_t blkaddr;
1526 	unsigned int start_pgofs;
1527 	int bidx = 0;
1528 	bool is_hole;
1529 
1530 	if (!maxblocks)
1531 		return 0;
1532 
1533 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1534 		goto out;
1535 
1536 	map->m_bdev = inode->i_sb->s_bdev;
1537 	map->m_multidev_dio =
1538 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1539 
1540 	map->m_len = 0;
1541 	map->m_flags = 0;
1542 
1543 	/* it only supports block size == page size */
1544 	pgofs =	(pgoff_t)map->m_lblk;
1545 	end = pgofs + maxblocks;
1546 
1547 next_dnode:
1548 	if (map->m_may_create)
1549 		f2fs_map_lock(sbi, flag);
1550 
1551 	/* When reading holes, we need its node page */
1552 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1553 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1554 	if (err) {
1555 		if (flag == F2FS_GET_BLOCK_BMAP)
1556 			map->m_pblk = 0;
1557 		if (err == -ENOENT)
1558 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1559 		goto unlock_out;
1560 	}
1561 
1562 	start_pgofs = pgofs;
1563 	prealloc = 0;
1564 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1565 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1566 
1567 next_block:
1568 	blkaddr = f2fs_data_blkaddr(&dn);
1569 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1570 	if (!is_hole &&
1571 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1572 		err = -EFSCORRUPTED;
1573 		goto sync_out;
1574 	}
1575 
1576 	/* use out-place-update for direct IO under LFS mode */
1577 	if (map->m_may_create &&
1578 	    (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1579 		if (unlikely(f2fs_cp_error(sbi))) {
1580 			err = -EIO;
1581 			goto sync_out;
1582 		}
1583 
1584 		switch (flag) {
1585 		case F2FS_GET_BLOCK_PRE_AIO:
1586 			if (blkaddr == NULL_ADDR) {
1587 				prealloc++;
1588 				last_ofs_in_node = dn.ofs_in_node;
1589 			}
1590 			break;
1591 		case F2FS_GET_BLOCK_PRE_DIO:
1592 		case F2FS_GET_BLOCK_DIO:
1593 			err = __allocate_data_block(&dn, map->m_seg_type);
1594 			if (err)
1595 				goto sync_out;
1596 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1597 				file_need_truncate(inode);
1598 			set_inode_flag(inode, FI_APPEND_WRITE);
1599 			break;
1600 		default:
1601 			WARN_ON_ONCE(1);
1602 			err = -EIO;
1603 			goto sync_out;
1604 		}
1605 
1606 		blkaddr = dn.data_blkaddr;
1607 		if (is_hole)
1608 			map->m_flags |= F2FS_MAP_NEW;
1609 	} else if (is_hole) {
1610 		if (f2fs_compressed_file(inode) &&
1611 		    f2fs_sanity_check_cluster(&dn)) {
1612 			err = -EFSCORRUPTED;
1613 			f2fs_handle_error(sbi,
1614 					ERROR_CORRUPTED_CLUSTER);
1615 			goto sync_out;
1616 		}
1617 
1618 		switch (flag) {
1619 		case F2FS_GET_BLOCK_PRECACHE:
1620 			goto sync_out;
1621 		case F2FS_GET_BLOCK_BMAP:
1622 			map->m_pblk = 0;
1623 			goto sync_out;
1624 		case F2FS_GET_BLOCK_FIEMAP:
1625 			if (blkaddr == NULL_ADDR) {
1626 				if (map->m_next_pgofs)
1627 					*map->m_next_pgofs = pgofs + 1;
1628 				goto sync_out;
1629 			}
1630 			break;
1631 		default:
1632 			/* for defragment case */
1633 			if (map->m_next_pgofs)
1634 				*map->m_next_pgofs = pgofs + 1;
1635 			goto sync_out;
1636 		}
1637 	}
1638 
1639 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1640 		goto skip;
1641 
1642 	if (map->m_multidev_dio)
1643 		bidx = f2fs_target_device_index(sbi, blkaddr);
1644 
1645 	if (map->m_len == 0) {
1646 		/* reserved delalloc block should be mapped for fiemap. */
1647 		if (blkaddr == NEW_ADDR)
1648 			map->m_flags |= F2FS_MAP_DELALLOC;
1649 		map->m_flags |= F2FS_MAP_MAPPED;
1650 
1651 		map->m_pblk = blkaddr;
1652 		map->m_len = 1;
1653 
1654 		if (map->m_multidev_dio)
1655 			map->m_bdev = FDEV(bidx).bdev;
1656 	} else if ((map->m_pblk != NEW_ADDR &&
1657 			blkaddr == (map->m_pblk + ofs)) ||
1658 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1659 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1660 		if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1661 			goto sync_out;
1662 		ofs++;
1663 		map->m_len++;
1664 	} else {
1665 		goto sync_out;
1666 	}
1667 
1668 skip:
1669 	dn.ofs_in_node++;
1670 	pgofs++;
1671 
1672 	/* preallocate blocks in batch for one dnode page */
1673 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1674 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1675 
1676 		dn.ofs_in_node = ofs_in_node;
1677 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1678 		if (err)
1679 			goto sync_out;
1680 
1681 		map->m_len += dn.ofs_in_node - ofs_in_node;
1682 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1683 			err = -ENOSPC;
1684 			goto sync_out;
1685 		}
1686 		dn.ofs_in_node = end_offset;
1687 	}
1688 
1689 	if (pgofs >= end)
1690 		goto sync_out;
1691 	else if (dn.ofs_in_node < end_offset)
1692 		goto next_block;
1693 
1694 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1695 		if (map->m_flags & F2FS_MAP_MAPPED) {
1696 			unsigned int ofs = start_pgofs - map->m_lblk;
1697 
1698 			f2fs_update_read_extent_cache_range(&dn,
1699 				start_pgofs, map->m_pblk + ofs,
1700 				map->m_len - ofs);
1701 		}
1702 	}
1703 
1704 	f2fs_put_dnode(&dn);
1705 
1706 	if (map->m_may_create) {
1707 		f2fs_map_unlock(sbi, flag);
1708 		f2fs_balance_fs(sbi, dn.node_changed);
1709 	}
1710 	goto next_dnode;
1711 
1712 sync_out:
1713 
1714 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1715 		/*
1716 		 * for hardware encryption, but to avoid potential issue
1717 		 * in future
1718 		 */
1719 		f2fs_wait_on_block_writeback_range(inode,
1720 						map->m_pblk, map->m_len);
1721 
1722 		if (map->m_multidev_dio) {
1723 			block_t blk_addr = map->m_pblk;
1724 
1725 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1726 
1727 			map->m_bdev = FDEV(bidx).bdev;
1728 			map->m_pblk -= FDEV(bidx).start_blk;
1729 
1730 			if (map->m_may_create)
1731 				f2fs_update_device_state(sbi, inode->i_ino,
1732 							blk_addr, map->m_len);
1733 
1734 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1735 						FDEV(bidx).end_blk + 1);
1736 		}
1737 	}
1738 
1739 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1740 		if (map->m_flags & F2FS_MAP_MAPPED) {
1741 			unsigned int ofs = start_pgofs - map->m_lblk;
1742 
1743 			f2fs_update_read_extent_cache_range(&dn,
1744 				start_pgofs, map->m_pblk + ofs,
1745 				map->m_len - ofs);
1746 		}
1747 		if (map->m_next_extent)
1748 			*map->m_next_extent = pgofs + 1;
1749 	}
1750 	f2fs_put_dnode(&dn);
1751 unlock_out:
1752 	if (map->m_may_create) {
1753 		f2fs_map_unlock(sbi, flag);
1754 		f2fs_balance_fs(sbi, dn.node_changed);
1755 	}
1756 out:
1757 	trace_f2fs_map_blocks(inode, map, flag, err);
1758 	return err;
1759 }
1760 
1761 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1762 {
1763 	struct f2fs_map_blocks map;
1764 	block_t last_lblk;
1765 	int err;
1766 
1767 	if (pos + len > i_size_read(inode))
1768 		return false;
1769 
1770 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1771 	map.m_next_pgofs = NULL;
1772 	map.m_next_extent = NULL;
1773 	map.m_seg_type = NO_CHECK_TYPE;
1774 	map.m_may_create = false;
1775 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1776 
1777 	while (map.m_lblk < last_lblk) {
1778 		map.m_len = last_lblk - map.m_lblk;
1779 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1780 		if (err || map.m_len == 0)
1781 			return false;
1782 		map.m_lblk += map.m_len;
1783 	}
1784 	return true;
1785 }
1786 
1787 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1788 {
1789 	return (bytes >> inode->i_blkbits);
1790 }
1791 
1792 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1793 {
1794 	return (blks << inode->i_blkbits);
1795 }
1796 
1797 static int f2fs_xattr_fiemap(struct inode *inode,
1798 				struct fiemap_extent_info *fieinfo)
1799 {
1800 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1801 	struct page *page;
1802 	struct node_info ni;
1803 	__u64 phys = 0, len;
1804 	__u32 flags;
1805 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1806 	int err = 0;
1807 
1808 	if (f2fs_has_inline_xattr(inode)) {
1809 		int offset;
1810 
1811 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1812 						inode->i_ino, false);
1813 		if (!page)
1814 			return -ENOMEM;
1815 
1816 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1817 		if (err) {
1818 			f2fs_put_page(page, 1);
1819 			return err;
1820 		}
1821 
1822 		phys = blks_to_bytes(inode, ni.blk_addr);
1823 		offset = offsetof(struct f2fs_inode, i_addr) +
1824 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1825 					get_inline_xattr_addrs(inode));
1826 
1827 		phys += offset;
1828 		len = inline_xattr_size(inode);
1829 
1830 		f2fs_put_page(page, 1);
1831 
1832 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1833 
1834 		if (!xnid)
1835 			flags |= FIEMAP_EXTENT_LAST;
1836 
1837 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1838 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1839 		if (err)
1840 			return err;
1841 	}
1842 
1843 	if (xnid) {
1844 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1845 		if (!page)
1846 			return -ENOMEM;
1847 
1848 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1849 		if (err) {
1850 			f2fs_put_page(page, 1);
1851 			return err;
1852 		}
1853 
1854 		phys = blks_to_bytes(inode, ni.blk_addr);
1855 		len = inode->i_sb->s_blocksize;
1856 
1857 		f2fs_put_page(page, 1);
1858 
1859 		flags = FIEMAP_EXTENT_LAST;
1860 	}
1861 
1862 	if (phys) {
1863 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1864 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1865 	}
1866 
1867 	return (err < 0 ? err : 0);
1868 }
1869 
1870 static loff_t max_inode_blocks(struct inode *inode)
1871 {
1872 	loff_t result = ADDRS_PER_INODE(inode);
1873 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1874 
1875 	/* two direct node blocks */
1876 	result += (leaf_count * 2);
1877 
1878 	/* two indirect node blocks */
1879 	leaf_count *= NIDS_PER_BLOCK;
1880 	result += (leaf_count * 2);
1881 
1882 	/* one double indirect node block */
1883 	leaf_count *= NIDS_PER_BLOCK;
1884 	result += leaf_count;
1885 
1886 	return result;
1887 }
1888 
1889 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1890 		u64 start, u64 len)
1891 {
1892 	struct f2fs_map_blocks map;
1893 	sector_t start_blk, last_blk;
1894 	pgoff_t next_pgofs;
1895 	u64 logical = 0, phys = 0, size = 0;
1896 	u32 flags = 0;
1897 	int ret = 0;
1898 	bool compr_cluster = false, compr_appended;
1899 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1900 	unsigned int count_in_cluster = 0;
1901 	loff_t maxbytes;
1902 
1903 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1904 		ret = f2fs_precache_extents(inode);
1905 		if (ret)
1906 			return ret;
1907 	}
1908 
1909 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1910 	if (ret)
1911 		return ret;
1912 
1913 	inode_lock_shared(inode);
1914 
1915 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1916 	if (start > maxbytes) {
1917 		ret = -EFBIG;
1918 		goto out;
1919 	}
1920 
1921 	if (len > maxbytes || (maxbytes - len) < start)
1922 		len = maxbytes - start;
1923 
1924 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1925 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1926 		goto out;
1927 	}
1928 
1929 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1930 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1931 		if (ret != -EAGAIN)
1932 			goto out;
1933 	}
1934 
1935 	if (bytes_to_blks(inode, len) == 0)
1936 		len = blks_to_bytes(inode, 1);
1937 
1938 	start_blk = bytes_to_blks(inode, start);
1939 	last_blk = bytes_to_blks(inode, start + len - 1);
1940 
1941 next:
1942 	memset(&map, 0, sizeof(map));
1943 	map.m_lblk = start_blk;
1944 	map.m_len = bytes_to_blks(inode, len);
1945 	map.m_next_pgofs = &next_pgofs;
1946 	map.m_seg_type = NO_CHECK_TYPE;
1947 
1948 	if (compr_cluster) {
1949 		map.m_lblk += 1;
1950 		map.m_len = cluster_size - count_in_cluster;
1951 	}
1952 
1953 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1954 	if (ret)
1955 		goto out;
1956 
1957 	/* HOLE */
1958 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1959 		start_blk = next_pgofs;
1960 
1961 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1962 						max_inode_blocks(inode)))
1963 			goto prep_next;
1964 
1965 		flags |= FIEMAP_EXTENT_LAST;
1966 	}
1967 
1968 	compr_appended = false;
1969 	/* In a case of compressed cluster, append this to the last extent */
1970 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1971 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1972 		compr_appended = true;
1973 		goto skip_fill;
1974 	}
1975 
1976 	if (size) {
1977 		flags |= FIEMAP_EXTENT_MERGED;
1978 		if (IS_ENCRYPTED(inode))
1979 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1980 
1981 		ret = fiemap_fill_next_extent(fieinfo, logical,
1982 				phys, size, flags);
1983 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1984 		if (ret)
1985 			goto out;
1986 		size = 0;
1987 	}
1988 
1989 	if (start_blk > last_blk)
1990 		goto out;
1991 
1992 skip_fill:
1993 	if (map.m_pblk == COMPRESS_ADDR) {
1994 		compr_cluster = true;
1995 		count_in_cluster = 1;
1996 	} else if (compr_appended) {
1997 		unsigned int appended_blks = cluster_size -
1998 						count_in_cluster + 1;
1999 		size += blks_to_bytes(inode, appended_blks);
2000 		start_blk += appended_blks;
2001 		compr_cluster = false;
2002 	} else {
2003 		logical = blks_to_bytes(inode, start_blk);
2004 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2005 			blks_to_bytes(inode, map.m_pblk) : 0;
2006 		size = blks_to_bytes(inode, map.m_len);
2007 		flags = 0;
2008 
2009 		if (compr_cluster) {
2010 			flags = FIEMAP_EXTENT_ENCODED;
2011 			count_in_cluster += map.m_len;
2012 			if (count_in_cluster == cluster_size) {
2013 				compr_cluster = false;
2014 				size += blks_to_bytes(inode, 1);
2015 			}
2016 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2017 			flags = FIEMAP_EXTENT_UNWRITTEN;
2018 		}
2019 
2020 		start_blk += bytes_to_blks(inode, size);
2021 	}
2022 
2023 prep_next:
2024 	cond_resched();
2025 	if (fatal_signal_pending(current))
2026 		ret = -EINTR;
2027 	else
2028 		goto next;
2029 out:
2030 	if (ret == 1)
2031 		ret = 0;
2032 
2033 	inode_unlock_shared(inode);
2034 	return ret;
2035 }
2036 
2037 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2038 {
2039 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2040 		return inode->i_sb->s_maxbytes;
2041 
2042 	return i_size_read(inode);
2043 }
2044 
2045 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2046 					unsigned nr_pages,
2047 					struct f2fs_map_blocks *map,
2048 					struct bio **bio_ret,
2049 					sector_t *last_block_in_bio,
2050 					bool is_readahead)
2051 {
2052 	struct bio *bio = *bio_ret;
2053 	const unsigned blocksize = blks_to_bytes(inode, 1);
2054 	sector_t block_in_file;
2055 	sector_t last_block;
2056 	sector_t last_block_in_file;
2057 	sector_t block_nr;
2058 	int ret = 0;
2059 
2060 	block_in_file = (sector_t)page_index(page);
2061 	last_block = block_in_file + nr_pages;
2062 	last_block_in_file = bytes_to_blks(inode,
2063 			f2fs_readpage_limit(inode) + blocksize - 1);
2064 	if (last_block > last_block_in_file)
2065 		last_block = last_block_in_file;
2066 
2067 	/* just zeroing out page which is beyond EOF */
2068 	if (block_in_file >= last_block)
2069 		goto zero_out;
2070 	/*
2071 	 * Map blocks using the previous result first.
2072 	 */
2073 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2074 			block_in_file > map->m_lblk &&
2075 			block_in_file < (map->m_lblk + map->m_len))
2076 		goto got_it;
2077 
2078 	/*
2079 	 * Then do more f2fs_map_blocks() calls until we are
2080 	 * done with this page.
2081 	 */
2082 	map->m_lblk = block_in_file;
2083 	map->m_len = last_block - block_in_file;
2084 
2085 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2086 	if (ret)
2087 		goto out;
2088 got_it:
2089 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2090 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2091 		SetPageMappedToDisk(page);
2092 
2093 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2094 						DATA_GENERIC_ENHANCE_READ)) {
2095 			ret = -EFSCORRUPTED;
2096 			goto out;
2097 		}
2098 	} else {
2099 zero_out:
2100 		zero_user_segment(page, 0, PAGE_SIZE);
2101 		if (f2fs_need_verity(inode, page->index) &&
2102 		    !fsverity_verify_page(page)) {
2103 			ret = -EIO;
2104 			goto out;
2105 		}
2106 		if (!PageUptodate(page))
2107 			SetPageUptodate(page);
2108 		unlock_page(page);
2109 		goto out;
2110 	}
2111 
2112 	/*
2113 	 * This page will go to BIO.  Do we need to send this
2114 	 * BIO off first?
2115 	 */
2116 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2117 				       *last_block_in_bio, block_nr) ||
2118 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2119 submit_and_realloc:
2120 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2121 		bio = NULL;
2122 	}
2123 	if (bio == NULL) {
2124 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2125 				is_readahead ? REQ_RAHEAD : 0, page->index,
2126 				false);
2127 		if (IS_ERR(bio)) {
2128 			ret = PTR_ERR(bio);
2129 			bio = NULL;
2130 			goto out;
2131 		}
2132 	}
2133 
2134 	/*
2135 	 * If the page is under writeback, we need to wait for
2136 	 * its completion to see the correct decrypted data.
2137 	 */
2138 	f2fs_wait_on_block_writeback(inode, block_nr);
2139 
2140 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2141 		goto submit_and_realloc;
2142 
2143 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2144 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2145 							F2FS_BLKSIZE);
2146 	*last_block_in_bio = block_nr;
2147 out:
2148 	*bio_ret = bio;
2149 	return ret;
2150 }
2151 
2152 #ifdef CONFIG_F2FS_FS_COMPRESSION
2153 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2154 				unsigned nr_pages, sector_t *last_block_in_bio,
2155 				bool is_readahead, bool for_write)
2156 {
2157 	struct dnode_of_data dn;
2158 	struct inode *inode = cc->inode;
2159 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2160 	struct bio *bio = *bio_ret;
2161 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2162 	sector_t last_block_in_file;
2163 	const unsigned blocksize = blks_to_bytes(inode, 1);
2164 	struct decompress_io_ctx *dic = NULL;
2165 	struct extent_info ei = {};
2166 	bool from_dnode = true;
2167 	int i;
2168 	int ret = 0;
2169 
2170 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2171 
2172 	last_block_in_file = bytes_to_blks(inode,
2173 			f2fs_readpage_limit(inode) + blocksize - 1);
2174 
2175 	/* get rid of pages beyond EOF */
2176 	for (i = 0; i < cc->cluster_size; i++) {
2177 		struct page *page = cc->rpages[i];
2178 
2179 		if (!page)
2180 			continue;
2181 		if ((sector_t)page->index >= last_block_in_file) {
2182 			zero_user_segment(page, 0, PAGE_SIZE);
2183 			if (!PageUptodate(page))
2184 				SetPageUptodate(page);
2185 		} else if (!PageUptodate(page)) {
2186 			continue;
2187 		}
2188 		unlock_page(page);
2189 		if (for_write)
2190 			put_page(page);
2191 		cc->rpages[i] = NULL;
2192 		cc->nr_rpages--;
2193 	}
2194 
2195 	/* we are done since all pages are beyond EOF */
2196 	if (f2fs_cluster_is_empty(cc))
2197 		goto out;
2198 
2199 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2200 		from_dnode = false;
2201 
2202 	if (!from_dnode)
2203 		goto skip_reading_dnode;
2204 
2205 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2206 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2207 	if (ret)
2208 		goto out;
2209 
2210 	if (unlikely(f2fs_cp_error(sbi))) {
2211 		ret = -EIO;
2212 		goto out_put_dnode;
2213 	}
2214 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2215 
2216 skip_reading_dnode:
2217 	for (i = 1; i < cc->cluster_size; i++) {
2218 		block_t blkaddr;
2219 
2220 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2221 					dn.ofs_in_node + i) :
2222 					ei.blk + i - 1;
2223 
2224 		if (!__is_valid_data_blkaddr(blkaddr))
2225 			break;
2226 
2227 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2228 			ret = -EFAULT;
2229 			goto out_put_dnode;
2230 		}
2231 		cc->nr_cpages++;
2232 
2233 		if (!from_dnode && i >= ei.c_len)
2234 			break;
2235 	}
2236 
2237 	/* nothing to decompress */
2238 	if (cc->nr_cpages == 0) {
2239 		ret = 0;
2240 		goto out_put_dnode;
2241 	}
2242 
2243 	dic = f2fs_alloc_dic(cc);
2244 	if (IS_ERR(dic)) {
2245 		ret = PTR_ERR(dic);
2246 		goto out_put_dnode;
2247 	}
2248 
2249 	for (i = 0; i < cc->nr_cpages; i++) {
2250 		struct page *page = dic->cpages[i];
2251 		block_t blkaddr;
2252 		struct bio_post_read_ctx *ctx;
2253 
2254 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2255 					dn.ofs_in_node + i + 1) :
2256 					ei.blk + i;
2257 
2258 		f2fs_wait_on_block_writeback(inode, blkaddr);
2259 
2260 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2261 			if (atomic_dec_and_test(&dic->remaining_pages)) {
2262 				f2fs_decompress_cluster(dic, true);
2263 				break;
2264 			}
2265 			continue;
2266 		}
2267 
2268 		if (bio && (!page_is_mergeable(sbi, bio,
2269 					*last_block_in_bio, blkaddr) ||
2270 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2271 submit_and_realloc:
2272 			f2fs_submit_read_bio(sbi, bio, DATA);
2273 			bio = NULL;
2274 		}
2275 
2276 		if (!bio) {
2277 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2278 					is_readahead ? REQ_RAHEAD : 0,
2279 					page->index, for_write);
2280 			if (IS_ERR(bio)) {
2281 				ret = PTR_ERR(bio);
2282 				f2fs_decompress_end_io(dic, ret, true);
2283 				f2fs_put_dnode(&dn);
2284 				*bio_ret = NULL;
2285 				return ret;
2286 			}
2287 		}
2288 
2289 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2290 			goto submit_and_realloc;
2291 
2292 		ctx = get_post_read_ctx(bio);
2293 		ctx->enabled_steps |= STEP_DECOMPRESS;
2294 		refcount_inc(&dic->refcnt);
2295 
2296 		inc_page_count(sbi, F2FS_RD_DATA);
2297 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2298 		*last_block_in_bio = blkaddr;
2299 	}
2300 
2301 	if (from_dnode)
2302 		f2fs_put_dnode(&dn);
2303 
2304 	*bio_ret = bio;
2305 	return 0;
2306 
2307 out_put_dnode:
2308 	if (from_dnode)
2309 		f2fs_put_dnode(&dn);
2310 out:
2311 	for (i = 0; i < cc->cluster_size; i++) {
2312 		if (cc->rpages[i]) {
2313 			ClearPageUptodate(cc->rpages[i]);
2314 			unlock_page(cc->rpages[i]);
2315 		}
2316 	}
2317 	*bio_ret = bio;
2318 	return ret;
2319 }
2320 #endif
2321 
2322 /*
2323  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2324  * Major change was from block_size == page_size in f2fs by default.
2325  */
2326 static int f2fs_mpage_readpages(struct inode *inode,
2327 		struct readahead_control *rac, struct page *page)
2328 {
2329 	struct bio *bio = NULL;
2330 	sector_t last_block_in_bio = 0;
2331 	struct f2fs_map_blocks map;
2332 #ifdef CONFIG_F2FS_FS_COMPRESSION
2333 	struct compress_ctx cc = {
2334 		.inode = inode,
2335 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2336 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2337 		.cluster_idx = NULL_CLUSTER,
2338 		.rpages = NULL,
2339 		.cpages = NULL,
2340 		.nr_rpages = 0,
2341 		.nr_cpages = 0,
2342 	};
2343 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2344 #endif
2345 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2346 	unsigned max_nr_pages = nr_pages;
2347 	int ret = 0;
2348 
2349 	map.m_pblk = 0;
2350 	map.m_lblk = 0;
2351 	map.m_len = 0;
2352 	map.m_flags = 0;
2353 	map.m_next_pgofs = NULL;
2354 	map.m_next_extent = NULL;
2355 	map.m_seg_type = NO_CHECK_TYPE;
2356 	map.m_may_create = false;
2357 
2358 	for (; nr_pages; nr_pages--) {
2359 		if (rac) {
2360 			page = readahead_page(rac);
2361 			prefetchw(&page->flags);
2362 		}
2363 
2364 #ifdef CONFIG_F2FS_FS_COMPRESSION
2365 		if (f2fs_compressed_file(inode)) {
2366 			/* there are remained compressed pages, submit them */
2367 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2368 				ret = f2fs_read_multi_pages(&cc, &bio,
2369 							max_nr_pages,
2370 							&last_block_in_bio,
2371 							rac != NULL, false);
2372 				f2fs_destroy_compress_ctx(&cc, false);
2373 				if (ret)
2374 					goto set_error_page;
2375 			}
2376 			if (cc.cluster_idx == NULL_CLUSTER) {
2377 				if (nc_cluster_idx ==
2378 					page->index >> cc.log_cluster_size) {
2379 					goto read_single_page;
2380 				}
2381 
2382 				ret = f2fs_is_compressed_cluster(inode, page->index);
2383 				if (ret < 0)
2384 					goto set_error_page;
2385 				else if (!ret) {
2386 					nc_cluster_idx =
2387 						page->index >> cc.log_cluster_size;
2388 					goto read_single_page;
2389 				}
2390 
2391 				nc_cluster_idx = NULL_CLUSTER;
2392 			}
2393 			ret = f2fs_init_compress_ctx(&cc);
2394 			if (ret)
2395 				goto set_error_page;
2396 
2397 			f2fs_compress_ctx_add_page(&cc, page);
2398 
2399 			goto next_page;
2400 		}
2401 read_single_page:
2402 #endif
2403 
2404 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2405 					&bio, &last_block_in_bio, rac);
2406 		if (ret) {
2407 #ifdef CONFIG_F2FS_FS_COMPRESSION
2408 set_error_page:
2409 #endif
2410 			zero_user_segment(page, 0, PAGE_SIZE);
2411 			unlock_page(page);
2412 		}
2413 #ifdef CONFIG_F2FS_FS_COMPRESSION
2414 next_page:
2415 #endif
2416 		if (rac)
2417 			put_page(page);
2418 
2419 #ifdef CONFIG_F2FS_FS_COMPRESSION
2420 		if (f2fs_compressed_file(inode)) {
2421 			/* last page */
2422 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2423 				ret = f2fs_read_multi_pages(&cc, &bio,
2424 							max_nr_pages,
2425 							&last_block_in_bio,
2426 							rac != NULL, false);
2427 				f2fs_destroy_compress_ctx(&cc, false);
2428 			}
2429 		}
2430 #endif
2431 	}
2432 	if (bio)
2433 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2434 	return ret;
2435 }
2436 
2437 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2438 {
2439 	struct page *page = &folio->page;
2440 	struct inode *inode = page_file_mapping(page)->host;
2441 	int ret = -EAGAIN;
2442 
2443 	trace_f2fs_readpage(page, DATA);
2444 
2445 	if (!f2fs_is_compress_backend_ready(inode)) {
2446 		unlock_page(page);
2447 		return -EOPNOTSUPP;
2448 	}
2449 
2450 	/* If the file has inline data, try to read it directly */
2451 	if (f2fs_has_inline_data(inode))
2452 		ret = f2fs_read_inline_data(inode, page);
2453 	if (ret == -EAGAIN)
2454 		ret = f2fs_mpage_readpages(inode, NULL, page);
2455 	return ret;
2456 }
2457 
2458 static void f2fs_readahead(struct readahead_control *rac)
2459 {
2460 	struct inode *inode = rac->mapping->host;
2461 
2462 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2463 
2464 	if (!f2fs_is_compress_backend_ready(inode))
2465 		return;
2466 
2467 	/* If the file has inline data, skip readahead */
2468 	if (f2fs_has_inline_data(inode))
2469 		return;
2470 
2471 	f2fs_mpage_readpages(inode, rac, NULL);
2472 }
2473 
2474 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2475 {
2476 	struct inode *inode = fio->page->mapping->host;
2477 	struct page *mpage, *page;
2478 	gfp_t gfp_flags = GFP_NOFS;
2479 
2480 	if (!f2fs_encrypted_file(inode))
2481 		return 0;
2482 
2483 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2484 
2485 	if (fscrypt_inode_uses_inline_crypto(inode))
2486 		return 0;
2487 
2488 retry_encrypt:
2489 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2490 					PAGE_SIZE, 0, gfp_flags);
2491 	if (IS_ERR(fio->encrypted_page)) {
2492 		/* flush pending IOs and wait for a while in the ENOMEM case */
2493 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2494 			f2fs_flush_merged_writes(fio->sbi);
2495 			memalloc_retry_wait(GFP_NOFS);
2496 			gfp_flags |= __GFP_NOFAIL;
2497 			goto retry_encrypt;
2498 		}
2499 		return PTR_ERR(fio->encrypted_page);
2500 	}
2501 
2502 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2503 	if (mpage) {
2504 		if (PageUptodate(mpage))
2505 			memcpy(page_address(mpage),
2506 				page_address(fio->encrypted_page), PAGE_SIZE);
2507 		f2fs_put_page(mpage, 1);
2508 	}
2509 	return 0;
2510 }
2511 
2512 static inline bool check_inplace_update_policy(struct inode *inode,
2513 				struct f2fs_io_info *fio)
2514 {
2515 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2516 
2517 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2518 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2519 		return false;
2520 	if (IS_F2FS_IPU_FORCE(sbi))
2521 		return true;
2522 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2523 		return true;
2524 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2525 		return true;
2526 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2527 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2528 		return true;
2529 
2530 	/*
2531 	 * IPU for rewrite async pages
2532 	 */
2533 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2534 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2535 		return true;
2536 
2537 	/* this is only set during fdatasync */
2538 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2539 		return true;
2540 
2541 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2542 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2543 		return true;
2544 
2545 	return false;
2546 }
2547 
2548 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2549 {
2550 	/* swap file is migrating in aligned write mode */
2551 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2552 		return false;
2553 
2554 	if (f2fs_is_pinned_file(inode))
2555 		return true;
2556 
2557 	/* if this is cold file, we should overwrite to avoid fragmentation */
2558 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2559 		return true;
2560 
2561 	return check_inplace_update_policy(inode, fio);
2562 }
2563 
2564 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2565 {
2566 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2567 
2568 	/* The below cases were checked when setting it. */
2569 	if (f2fs_is_pinned_file(inode))
2570 		return false;
2571 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2572 		return true;
2573 	if (f2fs_lfs_mode(sbi))
2574 		return true;
2575 	if (S_ISDIR(inode->i_mode))
2576 		return true;
2577 	if (IS_NOQUOTA(inode))
2578 		return true;
2579 	if (f2fs_is_atomic_file(inode))
2580 		return true;
2581 	/* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2582 	if (f2fs_compressed_file(inode) &&
2583 		F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2584 		is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2585 		return true;
2586 
2587 	/* swap file is migrating in aligned write mode */
2588 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2589 		return true;
2590 
2591 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2592 		return true;
2593 
2594 	if (fio) {
2595 		if (page_private_gcing(fio->page))
2596 			return true;
2597 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2598 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2599 			return true;
2600 	}
2601 	return false;
2602 }
2603 
2604 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2605 {
2606 	struct inode *inode = fio->page->mapping->host;
2607 
2608 	if (f2fs_should_update_outplace(inode, fio))
2609 		return false;
2610 
2611 	return f2fs_should_update_inplace(inode, fio);
2612 }
2613 
2614 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2615 {
2616 	struct page *page = fio->page;
2617 	struct inode *inode = page->mapping->host;
2618 	struct dnode_of_data dn;
2619 	struct node_info ni;
2620 	bool ipu_force = false;
2621 	int err = 0;
2622 
2623 	/* Use COW inode to make dnode_of_data for atomic write */
2624 	if (f2fs_is_atomic_file(inode))
2625 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2626 	else
2627 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2628 
2629 	if (need_inplace_update(fio) &&
2630 	    f2fs_lookup_read_extent_cache_block(inode, page->index,
2631 						&fio->old_blkaddr)) {
2632 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2633 						DATA_GENERIC_ENHANCE))
2634 			return -EFSCORRUPTED;
2635 
2636 		ipu_force = true;
2637 		fio->need_lock = LOCK_DONE;
2638 		goto got_it;
2639 	}
2640 
2641 	/* Deadlock due to between page->lock and f2fs_lock_op */
2642 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2643 		return -EAGAIN;
2644 
2645 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2646 	if (err)
2647 		goto out;
2648 
2649 	fio->old_blkaddr = dn.data_blkaddr;
2650 
2651 	/* This page is already truncated */
2652 	if (fio->old_blkaddr == NULL_ADDR) {
2653 		ClearPageUptodate(page);
2654 		clear_page_private_gcing(page);
2655 		goto out_writepage;
2656 	}
2657 got_it:
2658 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2659 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2660 						DATA_GENERIC_ENHANCE)) {
2661 		err = -EFSCORRUPTED;
2662 		goto out_writepage;
2663 	}
2664 
2665 	/* wait for GCed page writeback via META_MAPPING */
2666 	if (fio->post_read)
2667 		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2668 
2669 	/*
2670 	 * If current allocation needs SSR,
2671 	 * it had better in-place writes for updated data.
2672 	 */
2673 	if (ipu_force ||
2674 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2675 					need_inplace_update(fio))) {
2676 		err = f2fs_encrypt_one_page(fio);
2677 		if (err)
2678 			goto out_writepage;
2679 
2680 		set_page_writeback(page);
2681 		f2fs_put_dnode(&dn);
2682 		if (fio->need_lock == LOCK_REQ)
2683 			f2fs_unlock_op(fio->sbi);
2684 		err = f2fs_inplace_write_data(fio);
2685 		if (err) {
2686 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2687 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2688 			if (PageWriteback(page))
2689 				end_page_writeback(page);
2690 		} else {
2691 			set_inode_flag(inode, FI_UPDATE_WRITE);
2692 		}
2693 		trace_f2fs_do_write_data_page(fio->page, IPU);
2694 		return err;
2695 	}
2696 
2697 	if (fio->need_lock == LOCK_RETRY) {
2698 		if (!f2fs_trylock_op(fio->sbi)) {
2699 			err = -EAGAIN;
2700 			goto out_writepage;
2701 		}
2702 		fio->need_lock = LOCK_REQ;
2703 	}
2704 
2705 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2706 	if (err)
2707 		goto out_writepage;
2708 
2709 	fio->version = ni.version;
2710 
2711 	err = f2fs_encrypt_one_page(fio);
2712 	if (err)
2713 		goto out_writepage;
2714 
2715 	set_page_writeback(page);
2716 
2717 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2718 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2719 
2720 	/* LFS mode write path */
2721 	f2fs_outplace_write_data(&dn, fio);
2722 	trace_f2fs_do_write_data_page(page, OPU);
2723 	set_inode_flag(inode, FI_APPEND_WRITE);
2724 out_writepage:
2725 	f2fs_put_dnode(&dn);
2726 out:
2727 	if (fio->need_lock == LOCK_REQ)
2728 		f2fs_unlock_op(fio->sbi);
2729 	return err;
2730 }
2731 
2732 int f2fs_write_single_data_page(struct page *page, int *submitted,
2733 				struct bio **bio,
2734 				sector_t *last_block,
2735 				struct writeback_control *wbc,
2736 				enum iostat_type io_type,
2737 				int compr_blocks,
2738 				bool allow_balance)
2739 {
2740 	struct inode *inode = page->mapping->host;
2741 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2742 	loff_t i_size = i_size_read(inode);
2743 	const pgoff_t end_index = ((unsigned long long)i_size)
2744 							>> PAGE_SHIFT;
2745 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2746 	unsigned offset = 0;
2747 	bool need_balance_fs = false;
2748 	bool quota_inode = IS_NOQUOTA(inode);
2749 	int err = 0;
2750 	struct f2fs_io_info fio = {
2751 		.sbi = sbi,
2752 		.ino = inode->i_ino,
2753 		.type = DATA,
2754 		.op = REQ_OP_WRITE,
2755 		.op_flags = wbc_to_write_flags(wbc),
2756 		.old_blkaddr = NULL_ADDR,
2757 		.page = page,
2758 		.encrypted_page = NULL,
2759 		.submitted = 0,
2760 		.compr_blocks = compr_blocks,
2761 		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2762 		.post_read = f2fs_post_read_required(inode) ? 1 : 0,
2763 		.io_type = io_type,
2764 		.io_wbc = wbc,
2765 		.bio = bio,
2766 		.last_block = last_block,
2767 	};
2768 
2769 	trace_f2fs_writepage(page, DATA);
2770 
2771 	/* we should bypass data pages to proceed the kworker jobs */
2772 	if (unlikely(f2fs_cp_error(sbi))) {
2773 		mapping_set_error(page->mapping, -EIO);
2774 		/*
2775 		 * don't drop any dirty dentry pages for keeping lastest
2776 		 * directory structure.
2777 		 */
2778 		if (S_ISDIR(inode->i_mode) &&
2779 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2780 			goto redirty_out;
2781 
2782 		/* keep data pages in remount-ro mode */
2783 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2784 			goto redirty_out;
2785 		goto out;
2786 	}
2787 
2788 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2789 		goto redirty_out;
2790 
2791 	if (page->index < end_index ||
2792 			f2fs_verity_in_progress(inode) ||
2793 			compr_blocks)
2794 		goto write;
2795 
2796 	/*
2797 	 * If the offset is out-of-range of file size,
2798 	 * this page does not have to be written to disk.
2799 	 */
2800 	offset = i_size & (PAGE_SIZE - 1);
2801 	if ((page->index >= end_index + 1) || !offset)
2802 		goto out;
2803 
2804 	zero_user_segment(page, offset, PAGE_SIZE);
2805 write:
2806 	/* Dentry/quota blocks are controlled by checkpoint */
2807 	if (S_ISDIR(inode->i_mode) || quota_inode) {
2808 		/*
2809 		 * We need to wait for node_write to avoid block allocation during
2810 		 * checkpoint. This can only happen to quota writes which can cause
2811 		 * the below discard race condition.
2812 		 */
2813 		if (quota_inode)
2814 			f2fs_down_read(&sbi->node_write);
2815 
2816 		fio.need_lock = LOCK_DONE;
2817 		err = f2fs_do_write_data_page(&fio);
2818 
2819 		if (quota_inode)
2820 			f2fs_up_read(&sbi->node_write);
2821 
2822 		goto done;
2823 	}
2824 
2825 	if (!wbc->for_reclaim)
2826 		need_balance_fs = true;
2827 	else if (has_not_enough_free_secs(sbi, 0, 0))
2828 		goto redirty_out;
2829 	else
2830 		set_inode_flag(inode, FI_HOT_DATA);
2831 
2832 	err = -EAGAIN;
2833 	if (f2fs_has_inline_data(inode)) {
2834 		err = f2fs_write_inline_data(inode, page);
2835 		if (!err)
2836 			goto out;
2837 	}
2838 
2839 	if (err == -EAGAIN) {
2840 		err = f2fs_do_write_data_page(&fio);
2841 		if (err == -EAGAIN) {
2842 			f2fs_bug_on(sbi, compr_blocks);
2843 			fio.need_lock = LOCK_REQ;
2844 			err = f2fs_do_write_data_page(&fio);
2845 		}
2846 	}
2847 
2848 	if (err) {
2849 		file_set_keep_isize(inode);
2850 	} else {
2851 		spin_lock(&F2FS_I(inode)->i_size_lock);
2852 		if (F2FS_I(inode)->last_disk_size < psize)
2853 			F2FS_I(inode)->last_disk_size = psize;
2854 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2855 	}
2856 
2857 done:
2858 	if (err && err != -ENOENT)
2859 		goto redirty_out;
2860 
2861 out:
2862 	inode_dec_dirty_pages(inode);
2863 	if (err) {
2864 		ClearPageUptodate(page);
2865 		clear_page_private_gcing(page);
2866 	}
2867 
2868 	if (wbc->for_reclaim) {
2869 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2870 		clear_inode_flag(inode, FI_HOT_DATA);
2871 		f2fs_remove_dirty_inode(inode);
2872 		submitted = NULL;
2873 	}
2874 	unlock_page(page);
2875 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2876 			!F2FS_I(inode)->wb_task && allow_balance)
2877 		f2fs_balance_fs(sbi, need_balance_fs);
2878 
2879 	if (unlikely(f2fs_cp_error(sbi))) {
2880 		f2fs_submit_merged_write(sbi, DATA);
2881 		if (bio && *bio)
2882 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2883 		submitted = NULL;
2884 	}
2885 
2886 	if (submitted)
2887 		*submitted = fio.submitted;
2888 
2889 	return 0;
2890 
2891 redirty_out:
2892 	redirty_page_for_writepage(wbc, page);
2893 	/*
2894 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2895 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2896 	 * file_write_and_wait_range() will see EIO error, which is critical
2897 	 * to return value of fsync() followed by atomic_write failure to user.
2898 	 */
2899 	if (!err || wbc->for_reclaim)
2900 		return AOP_WRITEPAGE_ACTIVATE;
2901 	unlock_page(page);
2902 	return err;
2903 }
2904 
2905 static int f2fs_write_data_page(struct page *page,
2906 					struct writeback_control *wbc)
2907 {
2908 #ifdef CONFIG_F2FS_FS_COMPRESSION
2909 	struct inode *inode = page->mapping->host;
2910 
2911 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2912 		goto out;
2913 
2914 	if (f2fs_compressed_file(inode)) {
2915 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2916 			redirty_page_for_writepage(wbc, page);
2917 			return AOP_WRITEPAGE_ACTIVATE;
2918 		}
2919 	}
2920 out:
2921 #endif
2922 
2923 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2924 						wbc, FS_DATA_IO, 0, true);
2925 }
2926 
2927 /*
2928  * This function was copied from write_cache_pages from mm/page-writeback.c.
2929  * The major change is making write step of cold data page separately from
2930  * warm/hot data page.
2931  */
2932 static int f2fs_write_cache_pages(struct address_space *mapping,
2933 					struct writeback_control *wbc,
2934 					enum iostat_type io_type)
2935 {
2936 	int ret = 0;
2937 	int done = 0, retry = 0;
2938 	struct page *pages_local[F2FS_ONSTACK_PAGES];
2939 	struct page **pages = pages_local;
2940 	struct folio_batch fbatch;
2941 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2942 	struct bio *bio = NULL;
2943 	sector_t last_block;
2944 #ifdef CONFIG_F2FS_FS_COMPRESSION
2945 	struct inode *inode = mapping->host;
2946 	struct compress_ctx cc = {
2947 		.inode = inode,
2948 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2949 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2950 		.cluster_idx = NULL_CLUSTER,
2951 		.rpages = NULL,
2952 		.nr_rpages = 0,
2953 		.cpages = NULL,
2954 		.valid_nr_cpages = 0,
2955 		.rbuf = NULL,
2956 		.cbuf = NULL,
2957 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2958 		.private = NULL,
2959 	};
2960 #endif
2961 	int nr_folios, p, idx;
2962 	int nr_pages;
2963 	unsigned int max_pages = F2FS_ONSTACK_PAGES;
2964 	pgoff_t index;
2965 	pgoff_t end;		/* Inclusive */
2966 	pgoff_t done_index;
2967 	int range_whole = 0;
2968 	xa_mark_t tag;
2969 	int nwritten = 0;
2970 	int submitted = 0;
2971 	int i;
2972 
2973 #ifdef CONFIG_F2FS_FS_COMPRESSION
2974 	if (f2fs_compressed_file(inode) &&
2975 		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2976 		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
2977 				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2978 		max_pages = 1 << cc.log_cluster_size;
2979 	}
2980 #endif
2981 
2982 	folio_batch_init(&fbatch);
2983 
2984 	if (get_dirty_pages(mapping->host) <=
2985 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2986 		set_inode_flag(mapping->host, FI_HOT_DATA);
2987 	else
2988 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2989 
2990 	if (wbc->range_cyclic) {
2991 		index = mapping->writeback_index; /* prev offset */
2992 		end = -1;
2993 	} else {
2994 		index = wbc->range_start >> PAGE_SHIFT;
2995 		end = wbc->range_end >> PAGE_SHIFT;
2996 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2997 			range_whole = 1;
2998 	}
2999 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3000 		tag = PAGECACHE_TAG_TOWRITE;
3001 	else
3002 		tag = PAGECACHE_TAG_DIRTY;
3003 retry:
3004 	retry = 0;
3005 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3006 		tag_pages_for_writeback(mapping, index, end);
3007 	done_index = index;
3008 	while (!done && !retry && (index <= end)) {
3009 		nr_pages = 0;
3010 again:
3011 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3012 				tag, &fbatch);
3013 		if (nr_folios == 0) {
3014 			if (nr_pages)
3015 				goto write;
3016 			break;
3017 		}
3018 
3019 		for (i = 0; i < nr_folios; i++) {
3020 			struct folio *folio = fbatch.folios[i];
3021 
3022 			idx = 0;
3023 			p = folio_nr_pages(folio);
3024 add_more:
3025 			pages[nr_pages] = folio_page(folio, idx);
3026 			folio_get(folio);
3027 			if (++nr_pages == max_pages) {
3028 				index = folio->index + idx + 1;
3029 				folio_batch_release(&fbatch);
3030 				goto write;
3031 			}
3032 			if (++idx < p)
3033 				goto add_more;
3034 		}
3035 		folio_batch_release(&fbatch);
3036 		goto again;
3037 write:
3038 		for (i = 0; i < nr_pages; i++) {
3039 			struct page *page = pages[i];
3040 			struct folio *folio = page_folio(page);
3041 			bool need_readd;
3042 readd:
3043 			need_readd = false;
3044 #ifdef CONFIG_F2FS_FS_COMPRESSION
3045 			if (f2fs_compressed_file(inode)) {
3046 				void *fsdata = NULL;
3047 				struct page *pagep;
3048 				int ret2;
3049 
3050 				ret = f2fs_init_compress_ctx(&cc);
3051 				if (ret) {
3052 					done = 1;
3053 					break;
3054 				}
3055 
3056 				if (!f2fs_cluster_can_merge_page(&cc,
3057 								folio->index)) {
3058 					ret = f2fs_write_multi_pages(&cc,
3059 						&submitted, wbc, io_type);
3060 					if (!ret)
3061 						need_readd = true;
3062 					goto result;
3063 				}
3064 
3065 				if (unlikely(f2fs_cp_error(sbi)))
3066 					goto lock_folio;
3067 
3068 				if (!f2fs_cluster_is_empty(&cc))
3069 					goto lock_folio;
3070 
3071 				if (f2fs_all_cluster_page_ready(&cc,
3072 					pages, i, nr_pages, true))
3073 					goto lock_folio;
3074 
3075 				ret2 = f2fs_prepare_compress_overwrite(
3076 							inode, &pagep,
3077 							folio->index, &fsdata);
3078 				if (ret2 < 0) {
3079 					ret = ret2;
3080 					done = 1;
3081 					break;
3082 				} else if (ret2 &&
3083 					(!f2fs_compress_write_end(inode,
3084 						fsdata, folio->index, 1) ||
3085 					 !f2fs_all_cluster_page_ready(&cc,
3086 						pages, i, nr_pages,
3087 						false))) {
3088 					retry = 1;
3089 					break;
3090 				}
3091 			}
3092 #endif
3093 			/* give a priority to WB_SYNC threads */
3094 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3095 					wbc->sync_mode == WB_SYNC_NONE) {
3096 				done = 1;
3097 				break;
3098 			}
3099 #ifdef CONFIG_F2FS_FS_COMPRESSION
3100 lock_folio:
3101 #endif
3102 			done_index = folio->index;
3103 retry_write:
3104 			folio_lock(folio);
3105 
3106 			if (unlikely(folio->mapping != mapping)) {
3107 continue_unlock:
3108 				folio_unlock(folio);
3109 				continue;
3110 			}
3111 
3112 			if (!folio_test_dirty(folio)) {
3113 				/* someone wrote it for us */
3114 				goto continue_unlock;
3115 			}
3116 
3117 			if (folio_test_writeback(folio)) {
3118 				if (wbc->sync_mode == WB_SYNC_NONE)
3119 					goto continue_unlock;
3120 				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3121 			}
3122 
3123 			if (!folio_clear_dirty_for_io(folio))
3124 				goto continue_unlock;
3125 
3126 #ifdef CONFIG_F2FS_FS_COMPRESSION
3127 			if (f2fs_compressed_file(inode)) {
3128 				folio_get(folio);
3129 				f2fs_compress_ctx_add_page(&cc, &folio->page);
3130 				continue;
3131 			}
3132 #endif
3133 			ret = f2fs_write_single_data_page(&folio->page,
3134 					&submitted, &bio, &last_block,
3135 					wbc, io_type, 0, true);
3136 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3137 				folio_unlock(folio);
3138 #ifdef CONFIG_F2FS_FS_COMPRESSION
3139 result:
3140 #endif
3141 			nwritten += submitted;
3142 			wbc->nr_to_write -= submitted;
3143 
3144 			if (unlikely(ret)) {
3145 				/*
3146 				 * keep nr_to_write, since vfs uses this to
3147 				 * get # of written pages.
3148 				 */
3149 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3150 					ret = 0;
3151 					goto next;
3152 				} else if (ret == -EAGAIN) {
3153 					ret = 0;
3154 					if (wbc->sync_mode == WB_SYNC_ALL) {
3155 						f2fs_io_schedule_timeout(
3156 							DEFAULT_IO_TIMEOUT);
3157 						goto retry_write;
3158 					}
3159 					goto next;
3160 				}
3161 				done_index = folio_next_index(folio);
3162 				done = 1;
3163 				break;
3164 			}
3165 
3166 			if (wbc->nr_to_write <= 0 &&
3167 					wbc->sync_mode == WB_SYNC_NONE) {
3168 				done = 1;
3169 				break;
3170 			}
3171 next:
3172 			if (need_readd)
3173 				goto readd;
3174 		}
3175 		release_pages(pages, nr_pages);
3176 		cond_resched();
3177 	}
3178 #ifdef CONFIG_F2FS_FS_COMPRESSION
3179 	/* flush remained pages in compress cluster */
3180 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3181 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3182 		nwritten += submitted;
3183 		wbc->nr_to_write -= submitted;
3184 		if (ret) {
3185 			done = 1;
3186 			retry = 0;
3187 		}
3188 	}
3189 	if (f2fs_compressed_file(inode))
3190 		f2fs_destroy_compress_ctx(&cc, false);
3191 #endif
3192 	if (retry) {
3193 		index = 0;
3194 		end = -1;
3195 		goto retry;
3196 	}
3197 	if (wbc->range_cyclic && !done)
3198 		done_index = 0;
3199 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3200 		mapping->writeback_index = done_index;
3201 
3202 	if (nwritten)
3203 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3204 								NULL, 0, DATA);
3205 	/* submit cached bio of IPU write */
3206 	if (bio)
3207 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3208 
3209 #ifdef CONFIG_F2FS_FS_COMPRESSION
3210 	if (pages != pages_local)
3211 		kfree(pages);
3212 #endif
3213 
3214 	return ret;
3215 }
3216 
3217 static inline bool __should_serialize_io(struct inode *inode,
3218 					struct writeback_control *wbc)
3219 {
3220 	/* to avoid deadlock in path of data flush */
3221 	if (F2FS_I(inode)->wb_task)
3222 		return false;
3223 
3224 	if (!S_ISREG(inode->i_mode))
3225 		return false;
3226 	if (IS_NOQUOTA(inode))
3227 		return false;
3228 
3229 	if (f2fs_need_compress_data(inode))
3230 		return true;
3231 	if (wbc->sync_mode != WB_SYNC_ALL)
3232 		return true;
3233 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3234 		return true;
3235 	return false;
3236 }
3237 
3238 static int __f2fs_write_data_pages(struct address_space *mapping,
3239 						struct writeback_control *wbc,
3240 						enum iostat_type io_type)
3241 {
3242 	struct inode *inode = mapping->host;
3243 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3244 	struct blk_plug plug;
3245 	int ret;
3246 	bool locked = false;
3247 
3248 	/* deal with chardevs and other special file */
3249 	if (!mapping->a_ops->writepage)
3250 		return 0;
3251 
3252 	/* skip writing if there is no dirty page in this inode */
3253 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3254 		return 0;
3255 
3256 	/* during POR, we don't need to trigger writepage at all. */
3257 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3258 		goto skip_write;
3259 
3260 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3261 			wbc->sync_mode == WB_SYNC_NONE &&
3262 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3263 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3264 		goto skip_write;
3265 
3266 	/* skip writing in file defragment preparing stage */
3267 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3268 		goto skip_write;
3269 
3270 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3271 
3272 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3273 	if (wbc->sync_mode == WB_SYNC_ALL)
3274 		atomic_inc(&sbi->wb_sync_req[DATA]);
3275 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3276 		/* to avoid potential deadlock */
3277 		if (current->plug)
3278 			blk_finish_plug(current->plug);
3279 		goto skip_write;
3280 	}
3281 
3282 	if (__should_serialize_io(inode, wbc)) {
3283 		mutex_lock(&sbi->writepages);
3284 		locked = true;
3285 	}
3286 
3287 	blk_start_plug(&plug);
3288 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3289 	blk_finish_plug(&plug);
3290 
3291 	if (locked)
3292 		mutex_unlock(&sbi->writepages);
3293 
3294 	if (wbc->sync_mode == WB_SYNC_ALL)
3295 		atomic_dec(&sbi->wb_sync_req[DATA]);
3296 	/*
3297 	 * if some pages were truncated, we cannot guarantee its mapping->host
3298 	 * to detect pending bios.
3299 	 */
3300 
3301 	f2fs_remove_dirty_inode(inode);
3302 	return ret;
3303 
3304 skip_write:
3305 	wbc->pages_skipped += get_dirty_pages(inode);
3306 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3307 	return 0;
3308 }
3309 
3310 static int f2fs_write_data_pages(struct address_space *mapping,
3311 			    struct writeback_control *wbc)
3312 {
3313 	struct inode *inode = mapping->host;
3314 
3315 	return __f2fs_write_data_pages(mapping, wbc,
3316 			F2FS_I(inode)->cp_task == current ?
3317 			FS_CP_DATA_IO : FS_DATA_IO);
3318 }
3319 
3320 void f2fs_write_failed(struct inode *inode, loff_t to)
3321 {
3322 	loff_t i_size = i_size_read(inode);
3323 
3324 	if (IS_NOQUOTA(inode))
3325 		return;
3326 
3327 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3328 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3329 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3330 		filemap_invalidate_lock(inode->i_mapping);
3331 
3332 		truncate_pagecache(inode, i_size);
3333 		f2fs_truncate_blocks(inode, i_size, true);
3334 
3335 		filemap_invalidate_unlock(inode->i_mapping);
3336 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3337 	}
3338 }
3339 
3340 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3341 			struct page *page, loff_t pos, unsigned len,
3342 			block_t *blk_addr, bool *node_changed)
3343 {
3344 	struct inode *inode = page->mapping->host;
3345 	pgoff_t index = page->index;
3346 	struct dnode_of_data dn;
3347 	struct page *ipage;
3348 	bool locked = false;
3349 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3350 	int err = 0;
3351 
3352 	/*
3353 	 * If a whole page is being written and we already preallocated all the
3354 	 * blocks, then there is no need to get a block address now.
3355 	 */
3356 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3357 		return 0;
3358 
3359 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3360 	if (f2fs_has_inline_data(inode)) {
3361 		if (pos + len > MAX_INLINE_DATA(inode))
3362 			flag = F2FS_GET_BLOCK_DEFAULT;
3363 		f2fs_map_lock(sbi, flag);
3364 		locked = true;
3365 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3366 		f2fs_map_lock(sbi, flag);
3367 		locked = true;
3368 	}
3369 
3370 restart:
3371 	/* check inline_data */
3372 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3373 	if (IS_ERR(ipage)) {
3374 		err = PTR_ERR(ipage);
3375 		goto unlock_out;
3376 	}
3377 
3378 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3379 
3380 	if (f2fs_has_inline_data(inode)) {
3381 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3382 			f2fs_do_read_inline_data(page, ipage);
3383 			set_inode_flag(inode, FI_DATA_EXIST);
3384 			if (inode->i_nlink)
3385 				set_page_private_inline(ipage);
3386 			goto out;
3387 		}
3388 		err = f2fs_convert_inline_page(&dn, page);
3389 		if (err || dn.data_blkaddr != NULL_ADDR)
3390 			goto out;
3391 	}
3392 
3393 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3394 						 &dn.data_blkaddr)) {
3395 		if (locked) {
3396 			err = f2fs_reserve_block(&dn, index);
3397 			goto out;
3398 		}
3399 
3400 		/* hole case */
3401 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3402 		if (!err && dn.data_blkaddr != NULL_ADDR)
3403 			goto out;
3404 		f2fs_put_dnode(&dn);
3405 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3406 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3407 		locked = true;
3408 		goto restart;
3409 	}
3410 out:
3411 	if (!err) {
3412 		/* convert_inline_page can make node_changed */
3413 		*blk_addr = dn.data_blkaddr;
3414 		*node_changed = dn.node_changed;
3415 	}
3416 	f2fs_put_dnode(&dn);
3417 unlock_out:
3418 	if (locked)
3419 		f2fs_map_unlock(sbi, flag);
3420 	return err;
3421 }
3422 
3423 static int __find_data_block(struct inode *inode, pgoff_t index,
3424 				block_t *blk_addr)
3425 {
3426 	struct dnode_of_data dn;
3427 	struct page *ipage;
3428 	int err = 0;
3429 
3430 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3431 	if (IS_ERR(ipage))
3432 		return PTR_ERR(ipage);
3433 
3434 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3435 
3436 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3437 						 &dn.data_blkaddr)) {
3438 		/* hole case */
3439 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3440 		if (err) {
3441 			dn.data_blkaddr = NULL_ADDR;
3442 			err = 0;
3443 		}
3444 	}
3445 	*blk_addr = dn.data_blkaddr;
3446 	f2fs_put_dnode(&dn);
3447 	return err;
3448 }
3449 
3450 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3451 				block_t *blk_addr, bool *node_changed)
3452 {
3453 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3454 	struct dnode_of_data dn;
3455 	struct page *ipage;
3456 	int err = 0;
3457 
3458 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3459 
3460 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3461 	if (IS_ERR(ipage)) {
3462 		err = PTR_ERR(ipage);
3463 		goto unlock_out;
3464 	}
3465 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3466 
3467 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3468 						&dn.data_blkaddr))
3469 		err = f2fs_reserve_block(&dn, index);
3470 
3471 	*blk_addr = dn.data_blkaddr;
3472 	*node_changed = dn.node_changed;
3473 	f2fs_put_dnode(&dn);
3474 
3475 unlock_out:
3476 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3477 	return err;
3478 }
3479 
3480 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3481 			struct page *page, loff_t pos, unsigned int len,
3482 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3483 {
3484 	struct inode *inode = page->mapping->host;
3485 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3486 	pgoff_t index = page->index;
3487 	int err = 0;
3488 	block_t ori_blk_addr = NULL_ADDR;
3489 
3490 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3491 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3492 		goto reserve_block;
3493 
3494 	/* Look for the block in COW inode first */
3495 	err = __find_data_block(cow_inode, index, blk_addr);
3496 	if (err) {
3497 		return err;
3498 	} else if (*blk_addr != NULL_ADDR) {
3499 		*use_cow = true;
3500 		return 0;
3501 	}
3502 
3503 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3504 		goto reserve_block;
3505 
3506 	/* Look for the block in the original inode */
3507 	err = __find_data_block(inode, index, &ori_blk_addr);
3508 	if (err)
3509 		return err;
3510 
3511 reserve_block:
3512 	/* Finally, we should reserve a new block in COW inode for the update */
3513 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3514 	if (err)
3515 		return err;
3516 	inc_atomic_write_cnt(inode);
3517 
3518 	if (ori_blk_addr != NULL_ADDR)
3519 		*blk_addr = ori_blk_addr;
3520 	return 0;
3521 }
3522 
3523 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3524 		loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3525 {
3526 	struct inode *inode = mapping->host;
3527 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3528 	struct page *page = NULL;
3529 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3530 	bool need_balance = false;
3531 	bool use_cow = false;
3532 	block_t blkaddr = NULL_ADDR;
3533 	int err = 0;
3534 
3535 	trace_f2fs_write_begin(inode, pos, len);
3536 
3537 	if (!f2fs_is_checkpoint_ready(sbi)) {
3538 		err = -ENOSPC;
3539 		goto fail;
3540 	}
3541 
3542 	/*
3543 	 * We should check this at this moment to avoid deadlock on inode page
3544 	 * and #0 page. The locking rule for inline_data conversion should be:
3545 	 * lock_page(page #0) -> lock_page(inode_page)
3546 	 */
3547 	if (index != 0) {
3548 		err = f2fs_convert_inline_inode(inode);
3549 		if (err)
3550 			goto fail;
3551 	}
3552 
3553 #ifdef CONFIG_F2FS_FS_COMPRESSION
3554 	if (f2fs_compressed_file(inode)) {
3555 		int ret;
3556 
3557 		*fsdata = NULL;
3558 
3559 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3560 			goto repeat;
3561 
3562 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3563 							index, fsdata);
3564 		if (ret < 0) {
3565 			err = ret;
3566 			goto fail;
3567 		} else if (ret) {
3568 			return 0;
3569 		}
3570 	}
3571 #endif
3572 
3573 repeat:
3574 	/*
3575 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3576 	 * wait_for_stable_page. Will wait that below with our IO control.
3577 	 */
3578 	page = f2fs_pagecache_get_page(mapping, index,
3579 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3580 	if (!page) {
3581 		err = -ENOMEM;
3582 		goto fail;
3583 	}
3584 
3585 	/* TODO: cluster can be compressed due to race with .writepage */
3586 
3587 	*pagep = page;
3588 
3589 	if (f2fs_is_atomic_file(inode))
3590 		err = prepare_atomic_write_begin(sbi, page, pos, len,
3591 					&blkaddr, &need_balance, &use_cow);
3592 	else
3593 		err = prepare_write_begin(sbi, page, pos, len,
3594 					&blkaddr, &need_balance);
3595 	if (err)
3596 		goto fail;
3597 
3598 	if (need_balance && !IS_NOQUOTA(inode) &&
3599 			has_not_enough_free_secs(sbi, 0, 0)) {
3600 		unlock_page(page);
3601 		f2fs_balance_fs(sbi, true);
3602 		lock_page(page);
3603 		if (page->mapping != mapping) {
3604 			/* The page got truncated from under us */
3605 			f2fs_put_page(page, 1);
3606 			goto repeat;
3607 		}
3608 	}
3609 
3610 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3611 
3612 	if (len == PAGE_SIZE || PageUptodate(page))
3613 		return 0;
3614 
3615 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3616 	    !f2fs_verity_in_progress(inode)) {
3617 		zero_user_segment(page, len, PAGE_SIZE);
3618 		return 0;
3619 	}
3620 
3621 	if (blkaddr == NEW_ADDR) {
3622 		zero_user_segment(page, 0, PAGE_SIZE);
3623 		SetPageUptodate(page);
3624 	} else {
3625 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3626 				DATA_GENERIC_ENHANCE_READ)) {
3627 			err = -EFSCORRUPTED;
3628 			goto fail;
3629 		}
3630 		err = f2fs_submit_page_read(use_cow ?
3631 				F2FS_I(inode)->cow_inode : inode, page,
3632 				blkaddr, 0, true);
3633 		if (err)
3634 			goto fail;
3635 
3636 		lock_page(page);
3637 		if (unlikely(page->mapping != mapping)) {
3638 			f2fs_put_page(page, 1);
3639 			goto repeat;
3640 		}
3641 		if (unlikely(!PageUptodate(page))) {
3642 			err = -EIO;
3643 			goto fail;
3644 		}
3645 	}
3646 	return 0;
3647 
3648 fail:
3649 	f2fs_put_page(page, 1);
3650 	f2fs_write_failed(inode, pos + len);
3651 	return err;
3652 }
3653 
3654 static int f2fs_write_end(struct file *file,
3655 			struct address_space *mapping,
3656 			loff_t pos, unsigned len, unsigned copied,
3657 			struct page *page, void *fsdata)
3658 {
3659 	struct inode *inode = page->mapping->host;
3660 
3661 	trace_f2fs_write_end(inode, pos, len, copied);
3662 
3663 	/*
3664 	 * This should be come from len == PAGE_SIZE, and we expect copied
3665 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3666 	 * let generic_perform_write() try to copy data again through copied=0.
3667 	 */
3668 	if (!PageUptodate(page)) {
3669 		if (unlikely(copied != len))
3670 			copied = 0;
3671 		else
3672 			SetPageUptodate(page);
3673 	}
3674 
3675 #ifdef CONFIG_F2FS_FS_COMPRESSION
3676 	/* overwrite compressed file */
3677 	if (f2fs_compressed_file(inode) && fsdata) {
3678 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3679 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3680 
3681 		if (pos + copied > i_size_read(inode) &&
3682 				!f2fs_verity_in_progress(inode))
3683 			f2fs_i_size_write(inode, pos + copied);
3684 		return copied;
3685 	}
3686 #endif
3687 
3688 	if (!copied)
3689 		goto unlock_out;
3690 
3691 	set_page_dirty(page);
3692 
3693 	if (pos + copied > i_size_read(inode) &&
3694 	    !f2fs_verity_in_progress(inode)) {
3695 		f2fs_i_size_write(inode, pos + copied);
3696 		if (f2fs_is_atomic_file(inode))
3697 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3698 					pos + copied);
3699 	}
3700 unlock_out:
3701 	f2fs_put_page(page, 1);
3702 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3703 	return copied;
3704 }
3705 
3706 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3707 {
3708 	struct inode *inode = folio->mapping->host;
3709 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3710 
3711 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3712 				(offset || length != folio_size(folio)))
3713 		return;
3714 
3715 	if (folio_test_dirty(folio)) {
3716 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3717 			dec_page_count(sbi, F2FS_DIRTY_META);
3718 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3719 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3720 		} else {
3721 			inode_dec_dirty_pages(inode);
3722 			f2fs_remove_dirty_inode(inode);
3723 		}
3724 	}
3725 	clear_page_private_all(&folio->page);
3726 }
3727 
3728 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3729 {
3730 	/* If this is dirty folio, keep private data */
3731 	if (folio_test_dirty(folio))
3732 		return false;
3733 
3734 	clear_page_private_all(&folio->page);
3735 	return true;
3736 }
3737 
3738 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3739 		struct folio *folio)
3740 {
3741 	struct inode *inode = mapping->host;
3742 
3743 	trace_f2fs_set_page_dirty(&folio->page, DATA);
3744 
3745 	if (!folio_test_uptodate(folio))
3746 		folio_mark_uptodate(folio);
3747 	BUG_ON(folio_test_swapcache(folio));
3748 
3749 	if (filemap_dirty_folio(mapping, folio)) {
3750 		f2fs_update_dirty_folio(inode, folio);
3751 		return true;
3752 	}
3753 	return false;
3754 }
3755 
3756 
3757 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3758 {
3759 #ifdef CONFIG_F2FS_FS_COMPRESSION
3760 	struct dnode_of_data dn;
3761 	sector_t start_idx, blknr = 0;
3762 	int ret;
3763 
3764 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3765 
3766 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3767 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3768 	if (ret)
3769 		return 0;
3770 
3771 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3772 		dn.ofs_in_node += block - start_idx;
3773 		blknr = f2fs_data_blkaddr(&dn);
3774 		if (!__is_valid_data_blkaddr(blknr))
3775 			blknr = 0;
3776 	}
3777 
3778 	f2fs_put_dnode(&dn);
3779 	return blknr;
3780 #else
3781 	return 0;
3782 #endif
3783 }
3784 
3785 
3786 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3787 {
3788 	struct inode *inode = mapping->host;
3789 	sector_t blknr = 0;
3790 
3791 	if (f2fs_has_inline_data(inode))
3792 		goto out;
3793 
3794 	/* make sure allocating whole blocks */
3795 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3796 		filemap_write_and_wait(mapping);
3797 
3798 	/* Block number less than F2FS MAX BLOCKS */
3799 	if (unlikely(block >= max_file_blocks(inode)))
3800 		goto out;
3801 
3802 	if (f2fs_compressed_file(inode)) {
3803 		blknr = f2fs_bmap_compress(inode, block);
3804 	} else {
3805 		struct f2fs_map_blocks map;
3806 
3807 		memset(&map, 0, sizeof(map));
3808 		map.m_lblk = block;
3809 		map.m_len = 1;
3810 		map.m_next_pgofs = NULL;
3811 		map.m_seg_type = NO_CHECK_TYPE;
3812 
3813 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3814 			blknr = map.m_pblk;
3815 	}
3816 out:
3817 	trace_f2fs_bmap(inode, block, blknr);
3818 	return blknr;
3819 }
3820 
3821 #ifdef CONFIG_SWAP
3822 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3823 							unsigned int blkcnt)
3824 {
3825 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3826 	unsigned int blkofs;
3827 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3828 	unsigned int end_blk = start_blk + blkcnt - 1;
3829 	unsigned int secidx = start_blk / blk_per_sec;
3830 	unsigned int end_sec;
3831 	int ret = 0;
3832 
3833 	if (!blkcnt)
3834 		return 0;
3835 	end_sec = end_blk / blk_per_sec;
3836 
3837 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3838 	filemap_invalidate_lock(inode->i_mapping);
3839 
3840 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3841 	set_inode_flag(inode, FI_OPU_WRITE);
3842 
3843 	for (; secidx <= end_sec; secidx++) {
3844 		unsigned int blkofs_end = secidx == end_sec ?
3845 				end_blk % blk_per_sec : blk_per_sec - 1;
3846 
3847 		f2fs_down_write(&sbi->pin_sem);
3848 
3849 		ret = f2fs_allocate_pinning_section(sbi);
3850 		if (ret) {
3851 			f2fs_up_write(&sbi->pin_sem);
3852 			break;
3853 		}
3854 
3855 		set_inode_flag(inode, FI_SKIP_WRITES);
3856 
3857 		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3858 			struct page *page;
3859 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3860 
3861 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3862 			if (IS_ERR(page)) {
3863 				f2fs_up_write(&sbi->pin_sem);
3864 				ret = PTR_ERR(page);
3865 				goto done;
3866 			}
3867 
3868 			set_page_dirty(page);
3869 			f2fs_put_page(page, 1);
3870 		}
3871 
3872 		clear_inode_flag(inode, FI_SKIP_WRITES);
3873 
3874 		ret = filemap_fdatawrite(inode->i_mapping);
3875 
3876 		f2fs_up_write(&sbi->pin_sem);
3877 
3878 		if (ret)
3879 			break;
3880 	}
3881 
3882 done:
3883 	clear_inode_flag(inode, FI_SKIP_WRITES);
3884 	clear_inode_flag(inode, FI_OPU_WRITE);
3885 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3886 
3887 	filemap_invalidate_unlock(inode->i_mapping);
3888 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3889 
3890 	return ret;
3891 }
3892 
3893 static int check_swap_activate(struct swap_info_struct *sis,
3894 				struct file *swap_file, sector_t *span)
3895 {
3896 	struct address_space *mapping = swap_file->f_mapping;
3897 	struct inode *inode = mapping->host;
3898 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3899 	sector_t cur_lblock;
3900 	sector_t last_lblock;
3901 	sector_t pblock;
3902 	sector_t lowest_pblock = -1;
3903 	sector_t highest_pblock = 0;
3904 	int nr_extents = 0;
3905 	unsigned long nr_pblocks;
3906 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3907 	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3908 	unsigned int not_aligned = 0;
3909 	int ret = 0;
3910 
3911 	/*
3912 	 * Map all the blocks into the extent list.  This code doesn't try
3913 	 * to be very smart.
3914 	 */
3915 	cur_lblock = 0;
3916 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3917 
3918 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3919 		struct f2fs_map_blocks map;
3920 retry:
3921 		cond_resched();
3922 
3923 		memset(&map, 0, sizeof(map));
3924 		map.m_lblk = cur_lblock;
3925 		map.m_len = last_lblock - cur_lblock;
3926 		map.m_next_pgofs = NULL;
3927 		map.m_next_extent = NULL;
3928 		map.m_seg_type = NO_CHECK_TYPE;
3929 		map.m_may_create = false;
3930 
3931 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3932 		if (ret)
3933 			goto out;
3934 
3935 		/* hole */
3936 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3937 			f2fs_err(sbi, "Swapfile has holes");
3938 			ret = -EINVAL;
3939 			goto out;
3940 		}
3941 
3942 		pblock = map.m_pblk;
3943 		nr_pblocks = map.m_len;
3944 
3945 		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3946 				nr_pblocks & sec_blks_mask ||
3947 				!f2fs_valid_pinned_area(sbi, pblock)) {
3948 			bool last_extent = false;
3949 
3950 			not_aligned++;
3951 
3952 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3953 			if (cur_lblock + nr_pblocks > sis->max)
3954 				nr_pblocks -= blks_per_sec;
3955 
3956 			/* this extent is last one */
3957 			if (!nr_pblocks) {
3958 				nr_pblocks = last_lblock - cur_lblock;
3959 				last_extent = true;
3960 			}
3961 
3962 			ret = f2fs_migrate_blocks(inode, cur_lblock,
3963 							nr_pblocks);
3964 			if (ret) {
3965 				if (ret == -ENOENT)
3966 					ret = -EINVAL;
3967 				goto out;
3968 			}
3969 
3970 			if (!last_extent)
3971 				goto retry;
3972 		}
3973 
3974 		if (cur_lblock + nr_pblocks >= sis->max)
3975 			nr_pblocks = sis->max - cur_lblock;
3976 
3977 		if (cur_lblock) {	/* exclude the header page */
3978 			if (pblock < lowest_pblock)
3979 				lowest_pblock = pblock;
3980 			if (pblock + nr_pblocks - 1 > highest_pblock)
3981 				highest_pblock = pblock + nr_pblocks - 1;
3982 		}
3983 
3984 		/*
3985 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3986 		 */
3987 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3988 		if (ret < 0)
3989 			goto out;
3990 		nr_extents += ret;
3991 		cur_lblock += nr_pblocks;
3992 	}
3993 	ret = nr_extents;
3994 	*span = 1 + highest_pblock - lowest_pblock;
3995 	if (cur_lblock == 0)
3996 		cur_lblock = 1;	/* force Empty message */
3997 	sis->max = cur_lblock;
3998 	sis->pages = cur_lblock - 1;
3999 	sis->highest_bit = cur_lblock - 1;
4000 out:
4001 	if (not_aligned)
4002 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4003 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4004 	return ret;
4005 }
4006 
4007 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4008 				sector_t *span)
4009 {
4010 	struct inode *inode = file_inode(file);
4011 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4012 	int ret;
4013 
4014 	if (!S_ISREG(inode->i_mode))
4015 		return -EINVAL;
4016 
4017 	if (f2fs_readonly(sbi->sb))
4018 		return -EROFS;
4019 
4020 	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4021 		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4022 		return -EINVAL;
4023 	}
4024 
4025 	ret = f2fs_convert_inline_inode(inode);
4026 	if (ret)
4027 		return ret;
4028 
4029 	if (!f2fs_disable_compressed_file(inode))
4030 		return -EINVAL;
4031 
4032 	ret = filemap_fdatawrite(inode->i_mapping);
4033 	if (ret < 0)
4034 		return ret;
4035 
4036 	f2fs_precache_extents(inode);
4037 
4038 	ret = check_swap_activate(sis, file, span);
4039 	if (ret < 0)
4040 		return ret;
4041 
4042 	stat_inc_swapfile_inode(inode);
4043 	set_inode_flag(inode, FI_PIN_FILE);
4044 	f2fs_update_time(sbi, REQ_TIME);
4045 	return ret;
4046 }
4047 
4048 static void f2fs_swap_deactivate(struct file *file)
4049 {
4050 	struct inode *inode = file_inode(file);
4051 
4052 	stat_dec_swapfile_inode(inode);
4053 	clear_inode_flag(inode, FI_PIN_FILE);
4054 }
4055 #else
4056 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4057 				sector_t *span)
4058 {
4059 	return -EOPNOTSUPP;
4060 }
4061 
4062 static void f2fs_swap_deactivate(struct file *file)
4063 {
4064 }
4065 #endif
4066 
4067 const struct address_space_operations f2fs_dblock_aops = {
4068 	.read_folio	= f2fs_read_data_folio,
4069 	.readahead	= f2fs_readahead,
4070 	.writepage	= f2fs_write_data_page,
4071 	.writepages	= f2fs_write_data_pages,
4072 	.write_begin	= f2fs_write_begin,
4073 	.write_end	= f2fs_write_end,
4074 	.dirty_folio	= f2fs_dirty_data_folio,
4075 	.migrate_folio	= filemap_migrate_folio,
4076 	.invalidate_folio = f2fs_invalidate_folio,
4077 	.release_folio	= f2fs_release_folio,
4078 	.bmap		= f2fs_bmap,
4079 	.swap_activate  = f2fs_swap_activate,
4080 	.swap_deactivate = f2fs_swap_deactivate,
4081 };
4082 
4083 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4084 {
4085 	struct address_space *mapping = page_mapping(page);
4086 	unsigned long flags;
4087 
4088 	xa_lock_irqsave(&mapping->i_pages, flags);
4089 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4090 						PAGECACHE_TAG_DIRTY);
4091 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4092 }
4093 
4094 int __init f2fs_init_post_read_processing(void)
4095 {
4096 	bio_post_read_ctx_cache =
4097 		kmem_cache_create("f2fs_bio_post_read_ctx",
4098 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4099 	if (!bio_post_read_ctx_cache)
4100 		goto fail;
4101 	bio_post_read_ctx_pool =
4102 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4103 					 bio_post_read_ctx_cache);
4104 	if (!bio_post_read_ctx_pool)
4105 		goto fail_free_cache;
4106 	return 0;
4107 
4108 fail_free_cache:
4109 	kmem_cache_destroy(bio_post_read_ctx_cache);
4110 fail:
4111 	return -ENOMEM;
4112 }
4113 
4114 void f2fs_destroy_post_read_processing(void)
4115 {
4116 	mempool_destroy(bio_post_read_ctx_pool);
4117 	kmem_cache_destroy(bio_post_read_ctx_cache);
4118 }
4119 
4120 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4121 {
4122 	if (!f2fs_sb_has_encrypt(sbi) &&
4123 		!f2fs_sb_has_verity(sbi) &&
4124 		!f2fs_sb_has_compression(sbi))
4125 		return 0;
4126 
4127 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4128 						 WQ_UNBOUND | WQ_HIGHPRI,
4129 						 num_online_cpus());
4130 	return sbi->post_read_wq ? 0 : -ENOMEM;
4131 }
4132 
4133 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4134 {
4135 	if (sbi->post_read_wq)
4136 		destroy_workqueue(sbi->post_read_wq);
4137 }
4138 
4139 int __init f2fs_init_bio_entry_cache(void)
4140 {
4141 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4142 			sizeof(struct bio_entry));
4143 	return bio_entry_slab ? 0 : -ENOMEM;
4144 }
4145 
4146 void f2fs_destroy_bio_entry_cache(void)
4147 {
4148 	kmem_cache_destroy(bio_entry_slab);
4149 }
4150 
4151 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4152 			    unsigned int flags, struct iomap *iomap,
4153 			    struct iomap *srcmap)
4154 {
4155 	struct f2fs_map_blocks map = {};
4156 	pgoff_t next_pgofs = 0;
4157 	int err;
4158 
4159 	map.m_lblk = bytes_to_blks(inode, offset);
4160 	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4161 	map.m_next_pgofs = &next_pgofs;
4162 	map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4163 	if (flags & IOMAP_WRITE)
4164 		map.m_may_create = true;
4165 
4166 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4167 	if (err)
4168 		return err;
4169 
4170 	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4171 
4172 	/*
4173 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4174 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4175 	 * limiting the length of the mapping returned.
4176 	 */
4177 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4178 
4179 	/*
4180 	 * We should never see delalloc or compressed extents here based on
4181 	 * prior flushing and checks.
4182 	 */
4183 	if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4184 		return -EINVAL;
4185 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4186 		return -EINVAL;
4187 
4188 	if (map.m_pblk != NULL_ADDR) {
4189 		iomap->length = blks_to_bytes(inode, map.m_len);
4190 		iomap->type = IOMAP_MAPPED;
4191 		iomap->flags |= IOMAP_F_MERGED;
4192 		iomap->bdev = map.m_bdev;
4193 		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4194 	} else {
4195 		if (flags & IOMAP_WRITE)
4196 			return -ENOTBLK;
4197 		iomap->length = blks_to_bytes(inode, next_pgofs) -
4198 				iomap->offset;
4199 		iomap->type = IOMAP_HOLE;
4200 		iomap->addr = IOMAP_NULL_ADDR;
4201 	}
4202 
4203 	if (map.m_flags & F2FS_MAP_NEW)
4204 		iomap->flags |= IOMAP_F_NEW;
4205 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4206 	    offset + length > i_size_read(inode))
4207 		iomap->flags |= IOMAP_F_DIRTY;
4208 
4209 	return 0;
4210 }
4211 
4212 const struct iomap_ops f2fs_iomap_ops = {
4213 	.iomap_begin	= f2fs_iomap_begin,
4214 };
4215