1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static bool __is_cp_guaranteed(struct page *page) 54 { 55 struct address_space *mapping = page->mapping; 56 struct inode *inode; 57 struct f2fs_sb_info *sbi; 58 59 if (!mapping) 60 return false; 61 62 inode = mapping->host; 63 sbi = F2FS_I_SB(inode); 64 65 if (inode->i_ino == F2FS_META_INO(sbi) || 66 inode->i_ino == F2FS_NODE_INO(sbi) || 67 S_ISDIR(inode->i_mode)) 68 return true; 69 70 if (f2fs_is_compressed_page(page)) 71 return false; 72 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 73 page_private_gcing(page)) 74 return true; 75 return false; 76 } 77 78 static enum count_type __read_io_type(struct page *page) 79 { 80 struct address_space *mapping = page_file_mapping(page); 81 82 if (mapping) { 83 struct inode *inode = mapping->host; 84 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 85 86 if (inode->i_ino == F2FS_META_INO(sbi)) 87 return F2FS_RD_META; 88 89 if (inode->i_ino == F2FS_NODE_INO(sbi)) 90 return F2FS_RD_NODE; 91 } 92 return F2FS_RD_DATA; 93 } 94 95 /* postprocessing steps for read bios */ 96 enum bio_post_read_step { 97 #ifdef CONFIG_FS_ENCRYPTION 98 STEP_DECRYPT = 1 << 0, 99 #else 100 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 101 #endif 102 #ifdef CONFIG_F2FS_FS_COMPRESSION 103 STEP_DECOMPRESS = 1 << 1, 104 #else 105 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 106 #endif 107 #ifdef CONFIG_FS_VERITY 108 STEP_VERITY = 1 << 2, 109 #else 110 STEP_VERITY = 0, /* compile out the verity-related code */ 111 #endif 112 }; 113 114 struct bio_post_read_ctx { 115 struct bio *bio; 116 struct f2fs_sb_info *sbi; 117 struct work_struct work; 118 unsigned int enabled_steps; 119 /* 120 * decompression_attempted keeps track of whether 121 * f2fs_end_read_compressed_page() has been called on the pages in the 122 * bio that belong to a compressed cluster yet. 123 */ 124 bool decompression_attempted; 125 block_t fs_blkaddr; 126 }; 127 128 /* 129 * Update and unlock a bio's pages, and free the bio. 130 * 131 * This marks pages up-to-date only if there was no error in the bio (I/O error, 132 * decryption error, or verity error), as indicated by bio->bi_status. 133 * 134 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) 135 * aren't marked up-to-date here, as decompression is done on a per-compression- 136 * cluster basis rather than a per-bio basis. Instead, we only must do two 137 * things for each compressed page here: call f2fs_end_read_compressed_page() 138 * with failed=true if an error occurred before it would have normally gotten 139 * called (i.e., I/O error or decryption error, but *not* verity error), and 140 * release the bio's reference to the decompress_io_ctx of the page's cluster. 141 */ 142 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 143 { 144 struct bio_vec *bv; 145 struct bvec_iter_all iter_all; 146 struct bio_post_read_ctx *ctx = bio->bi_private; 147 148 bio_for_each_segment_all(bv, bio, iter_all) { 149 struct page *page = bv->bv_page; 150 151 if (f2fs_is_compressed_page(page)) { 152 if (ctx && !ctx->decompression_attempted) 153 f2fs_end_read_compressed_page(page, true, 0, 154 in_task); 155 f2fs_put_page_dic(page, in_task); 156 continue; 157 } 158 159 if (bio->bi_status) 160 ClearPageUptodate(page); 161 else 162 SetPageUptodate(page); 163 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 164 unlock_page(page); 165 } 166 167 if (ctx) 168 mempool_free(ctx, bio_post_read_ctx_pool); 169 bio_put(bio); 170 } 171 172 static void f2fs_verify_bio(struct work_struct *work) 173 { 174 struct bio_post_read_ctx *ctx = 175 container_of(work, struct bio_post_read_ctx, work); 176 struct bio *bio = ctx->bio; 177 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 178 179 /* 180 * fsverity_verify_bio() may call readahead() again, and while verity 181 * will be disabled for this, decryption and/or decompression may still 182 * be needed, resulting in another bio_post_read_ctx being allocated. 183 * So to prevent deadlocks we need to release the current ctx to the 184 * mempool first. This assumes that verity is the last post-read step. 185 */ 186 mempool_free(ctx, bio_post_read_ctx_pool); 187 bio->bi_private = NULL; 188 189 /* 190 * Verify the bio's pages with fs-verity. Exclude compressed pages, 191 * as those were handled separately by f2fs_end_read_compressed_page(). 192 */ 193 if (may_have_compressed_pages) { 194 struct bio_vec *bv; 195 struct bvec_iter_all iter_all; 196 197 bio_for_each_segment_all(bv, bio, iter_all) { 198 struct page *page = bv->bv_page; 199 200 if (!f2fs_is_compressed_page(page) && 201 !fsverity_verify_page(page)) { 202 bio->bi_status = BLK_STS_IOERR; 203 break; 204 } 205 } 206 } else { 207 fsverity_verify_bio(bio); 208 } 209 210 f2fs_finish_read_bio(bio, true); 211 } 212 213 /* 214 * If the bio's data needs to be verified with fs-verity, then enqueue the 215 * verity work for the bio. Otherwise finish the bio now. 216 * 217 * Note that to avoid deadlocks, the verity work can't be done on the 218 * decryption/decompression workqueue. This is because verifying the data pages 219 * can involve reading verity metadata pages from the file, and these verity 220 * metadata pages may be encrypted and/or compressed. 221 */ 222 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 223 { 224 struct bio_post_read_ctx *ctx = bio->bi_private; 225 226 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 227 INIT_WORK(&ctx->work, f2fs_verify_bio); 228 fsverity_enqueue_verify_work(&ctx->work); 229 } else { 230 f2fs_finish_read_bio(bio, in_task); 231 } 232 } 233 234 /* 235 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 236 * remaining page was read by @ctx->bio. 237 * 238 * Note that a bio may span clusters (even a mix of compressed and uncompressed 239 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 240 * that the bio includes at least one compressed page. The actual decompression 241 * is done on a per-cluster basis, not a per-bio basis. 242 */ 243 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 244 bool in_task) 245 { 246 struct bio_vec *bv; 247 struct bvec_iter_all iter_all; 248 bool all_compressed = true; 249 block_t blkaddr = ctx->fs_blkaddr; 250 251 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 252 struct page *page = bv->bv_page; 253 254 if (f2fs_is_compressed_page(page)) 255 f2fs_end_read_compressed_page(page, false, blkaddr, 256 in_task); 257 else 258 all_compressed = false; 259 260 blkaddr++; 261 } 262 263 ctx->decompression_attempted = true; 264 265 /* 266 * Optimization: if all the bio's pages are compressed, then scheduling 267 * the per-bio verity work is unnecessary, as verity will be fully 268 * handled at the compression cluster level. 269 */ 270 if (all_compressed) 271 ctx->enabled_steps &= ~STEP_VERITY; 272 } 273 274 static void f2fs_post_read_work(struct work_struct *work) 275 { 276 struct bio_post_read_ctx *ctx = 277 container_of(work, struct bio_post_read_ctx, work); 278 struct bio *bio = ctx->bio; 279 280 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 281 f2fs_finish_read_bio(bio, true); 282 return; 283 } 284 285 if (ctx->enabled_steps & STEP_DECOMPRESS) 286 f2fs_handle_step_decompress(ctx, true); 287 288 f2fs_verify_and_finish_bio(bio, true); 289 } 290 291 static void f2fs_read_end_io(struct bio *bio) 292 { 293 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 294 struct bio_post_read_ctx *ctx; 295 bool intask = in_task(); 296 297 iostat_update_and_unbind_ctx(bio, 0); 298 ctx = bio->bi_private; 299 300 if (time_to_inject(sbi, FAULT_READ_IO)) { 301 f2fs_show_injection_info(sbi, FAULT_READ_IO); 302 bio->bi_status = BLK_STS_IOERR; 303 } 304 305 if (bio->bi_status) { 306 f2fs_finish_read_bio(bio, intask); 307 return; 308 } 309 310 if (ctx) { 311 unsigned int enabled_steps = ctx->enabled_steps & 312 (STEP_DECRYPT | STEP_DECOMPRESS); 313 314 /* 315 * If we have only decompression step between decompression and 316 * decrypt, we don't need post processing for this. 317 */ 318 if (enabled_steps == STEP_DECOMPRESS && 319 !f2fs_low_mem_mode(sbi)) { 320 f2fs_handle_step_decompress(ctx, intask); 321 } else if (enabled_steps) { 322 INIT_WORK(&ctx->work, f2fs_post_read_work); 323 queue_work(ctx->sbi->post_read_wq, &ctx->work); 324 return; 325 } 326 } 327 328 f2fs_verify_and_finish_bio(bio, intask); 329 } 330 331 static void f2fs_write_end_io(struct bio *bio) 332 { 333 struct f2fs_sb_info *sbi; 334 struct bio_vec *bvec; 335 struct bvec_iter_all iter_all; 336 337 iostat_update_and_unbind_ctx(bio, 1); 338 sbi = bio->bi_private; 339 340 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 341 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 342 bio->bi_status = BLK_STS_IOERR; 343 } 344 345 bio_for_each_segment_all(bvec, bio, iter_all) { 346 struct page *page = bvec->bv_page; 347 enum count_type type = WB_DATA_TYPE(page); 348 349 if (page_private_dummy(page)) { 350 clear_page_private_dummy(page); 351 unlock_page(page); 352 mempool_free(page, sbi->write_io_dummy); 353 354 if (unlikely(bio->bi_status)) 355 f2fs_stop_checkpoint(sbi, true, 356 STOP_CP_REASON_WRITE_FAIL); 357 continue; 358 } 359 360 fscrypt_finalize_bounce_page(&page); 361 362 #ifdef CONFIG_F2FS_FS_COMPRESSION 363 if (f2fs_is_compressed_page(page)) { 364 f2fs_compress_write_end_io(bio, page); 365 continue; 366 } 367 #endif 368 369 if (unlikely(bio->bi_status)) { 370 mapping_set_error(page->mapping, -EIO); 371 if (type == F2FS_WB_CP_DATA) 372 f2fs_stop_checkpoint(sbi, true, 373 STOP_CP_REASON_WRITE_FAIL); 374 } 375 376 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 377 page->index != nid_of_node(page)); 378 379 dec_page_count(sbi, type); 380 if (f2fs_in_warm_node_list(sbi, page)) 381 f2fs_del_fsync_node_entry(sbi, page); 382 clear_page_private_gcing(page); 383 end_page_writeback(page); 384 } 385 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 386 wq_has_sleeper(&sbi->cp_wait)) 387 wake_up(&sbi->cp_wait); 388 389 bio_put(bio); 390 } 391 392 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 393 block_t blk_addr, sector_t *sector) 394 { 395 struct block_device *bdev = sbi->sb->s_bdev; 396 int i; 397 398 if (f2fs_is_multi_device(sbi)) { 399 for (i = 0; i < sbi->s_ndevs; i++) { 400 if (FDEV(i).start_blk <= blk_addr && 401 FDEV(i).end_blk >= blk_addr) { 402 blk_addr -= FDEV(i).start_blk; 403 bdev = FDEV(i).bdev; 404 break; 405 } 406 } 407 } 408 409 if (sector) 410 *sector = SECTOR_FROM_BLOCK(blk_addr); 411 return bdev; 412 } 413 414 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 415 { 416 int i; 417 418 if (!f2fs_is_multi_device(sbi)) 419 return 0; 420 421 for (i = 0; i < sbi->s_ndevs; i++) 422 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 423 return i; 424 return 0; 425 } 426 427 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 428 { 429 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 430 unsigned int fua_flag, meta_flag, io_flag; 431 blk_opf_t op_flags = 0; 432 433 if (fio->op != REQ_OP_WRITE) 434 return 0; 435 if (fio->type == DATA) 436 io_flag = fio->sbi->data_io_flag; 437 else if (fio->type == NODE) 438 io_flag = fio->sbi->node_io_flag; 439 else 440 return 0; 441 442 fua_flag = io_flag & temp_mask; 443 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 444 445 /* 446 * data/node io flag bits per temp: 447 * REQ_META | REQ_FUA | 448 * 5 | 4 | 3 | 2 | 1 | 0 | 449 * Cold | Warm | Hot | Cold | Warm | Hot | 450 */ 451 if ((1 << fio->temp) & meta_flag) 452 op_flags |= REQ_META; 453 if ((1 << fio->temp) & fua_flag) 454 op_flags |= REQ_FUA; 455 return op_flags; 456 } 457 458 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 459 { 460 struct f2fs_sb_info *sbi = fio->sbi; 461 struct block_device *bdev; 462 sector_t sector; 463 struct bio *bio; 464 465 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 466 bio = bio_alloc_bioset(bdev, npages, 467 fio->op | fio->op_flags | f2fs_io_flags(fio), 468 GFP_NOIO, &f2fs_bioset); 469 bio->bi_iter.bi_sector = sector; 470 if (is_read_io(fio->op)) { 471 bio->bi_end_io = f2fs_read_end_io; 472 bio->bi_private = NULL; 473 } else { 474 bio->bi_end_io = f2fs_write_end_io; 475 bio->bi_private = sbi; 476 } 477 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 478 479 if (fio->io_wbc) 480 wbc_init_bio(fio->io_wbc, bio); 481 482 return bio; 483 } 484 485 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 486 pgoff_t first_idx, 487 const struct f2fs_io_info *fio, 488 gfp_t gfp_mask) 489 { 490 /* 491 * The f2fs garbage collector sets ->encrypted_page when it wants to 492 * read/write raw data without encryption. 493 */ 494 if (!fio || !fio->encrypted_page) 495 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 496 } 497 498 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 499 pgoff_t next_idx, 500 const struct f2fs_io_info *fio) 501 { 502 /* 503 * The f2fs garbage collector sets ->encrypted_page when it wants to 504 * read/write raw data without encryption. 505 */ 506 if (fio && fio->encrypted_page) 507 return !bio_has_crypt_ctx(bio); 508 509 return fscrypt_mergeable_bio(bio, inode, next_idx); 510 } 511 512 static inline void __submit_bio(struct f2fs_sb_info *sbi, 513 struct bio *bio, enum page_type type) 514 { 515 if (!is_read_io(bio_op(bio))) { 516 unsigned int start; 517 518 if (type != DATA && type != NODE) 519 goto submit_io; 520 521 if (f2fs_lfs_mode(sbi) && current->plug) 522 blk_finish_plug(current->plug); 523 524 if (!F2FS_IO_ALIGNED(sbi)) 525 goto submit_io; 526 527 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 528 start %= F2FS_IO_SIZE(sbi); 529 530 if (start == 0) 531 goto submit_io; 532 533 /* fill dummy pages */ 534 for (; start < F2FS_IO_SIZE(sbi); start++) { 535 struct page *page = 536 mempool_alloc(sbi->write_io_dummy, 537 GFP_NOIO | __GFP_NOFAIL); 538 f2fs_bug_on(sbi, !page); 539 540 lock_page(page); 541 542 zero_user_segment(page, 0, PAGE_SIZE); 543 set_page_private_dummy(page); 544 545 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 546 f2fs_bug_on(sbi, 1); 547 } 548 /* 549 * In the NODE case, we lose next block address chain. So, we 550 * need to do checkpoint in f2fs_sync_file. 551 */ 552 if (type == NODE) 553 set_sbi_flag(sbi, SBI_NEED_CP); 554 } 555 submit_io: 556 if (is_read_io(bio_op(bio))) 557 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 558 else 559 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 560 561 iostat_update_submit_ctx(bio, type); 562 submit_bio(bio); 563 } 564 565 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 566 struct bio *bio, enum page_type type) 567 { 568 __submit_bio(sbi, bio, type); 569 } 570 571 static void __submit_merged_bio(struct f2fs_bio_info *io) 572 { 573 struct f2fs_io_info *fio = &io->fio; 574 575 if (!io->bio) 576 return; 577 578 if (is_read_io(fio->op)) 579 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 580 else 581 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 582 583 __submit_bio(io->sbi, io->bio, fio->type); 584 io->bio = NULL; 585 } 586 587 static bool __has_merged_page(struct bio *bio, struct inode *inode, 588 struct page *page, nid_t ino) 589 { 590 struct bio_vec *bvec; 591 struct bvec_iter_all iter_all; 592 593 if (!bio) 594 return false; 595 596 if (!inode && !page && !ino) 597 return true; 598 599 bio_for_each_segment_all(bvec, bio, iter_all) { 600 struct page *target = bvec->bv_page; 601 602 if (fscrypt_is_bounce_page(target)) { 603 target = fscrypt_pagecache_page(target); 604 if (IS_ERR(target)) 605 continue; 606 } 607 if (f2fs_is_compressed_page(target)) { 608 target = f2fs_compress_control_page(target); 609 if (IS_ERR(target)) 610 continue; 611 } 612 613 if (inode && inode == target->mapping->host) 614 return true; 615 if (page && page == target) 616 return true; 617 if (ino && ino == ino_of_node(target)) 618 return true; 619 } 620 621 return false; 622 } 623 624 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 625 { 626 int i; 627 628 for (i = 0; i < NR_PAGE_TYPE; i++) { 629 int n = (i == META) ? 1 : NR_TEMP_TYPE; 630 int j; 631 632 sbi->write_io[i] = f2fs_kmalloc(sbi, 633 array_size(n, sizeof(struct f2fs_bio_info)), 634 GFP_KERNEL); 635 if (!sbi->write_io[i]) 636 return -ENOMEM; 637 638 for (j = HOT; j < n; j++) { 639 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem); 640 sbi->write_io[i][j].sbi = sbi; 641 sbi->write_io[i][j].bio = NULL; 642 spin_lock_init(&sbi->write_io[i][j].io_lock); 643 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 644 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 645 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock); 646 } 647 } 648 649 return 0; 650 } 651 652 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 653 enum page_type type, enum temp_type temp) 654 { 655 enum page_type btype = PAGE_TYPE_OF_BIO(type); 656 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 657 658 f2fs_down_write(&io->io_rwsem); 659 660 /* change META to META_FLUSH in the checkpoint procedure */ 661 if (type >= META_FLUSH) { 662 io->fio.type = META_FLUSH; 663 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 664 if (!test_opt(sbi, NOBARRIER)) 665 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 666 } 667 __submit_merged_bio(io); 668 f2fs_up_write(&io->io_rwsem); 669 } 670 671 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 672 struct inode *inode, struct page *page, 673 nid_t ino, enum page_type type, bool force) 674 { 675 enum temp_type temp; 676 bool ret = true; 677 678 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 679 if (!force) { 680 enum page_type btype = PAGE_TYPE_OF_BIO(type); 681 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 682 683 f2fs_down_read(&io->io_rwsem); 684 ret = __has_merged_page(io->bio, inode, page, ino); 685 f2fs_up_read(&io->io_rwsem); 686 } 687 if (ret) 688 __f2fs_submit_merged_write(sbi, type, temp); 689 690 /* TODO: use HOT temp only for meta pages now. */ 691 if (type >= META) 692 break; 693 } 694 } 695 696 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 697 { 698 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 699 } 700 701 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 702 struct inode *inode, struct page *page, 703 nid_t ino, enum page_type type) 704 { 705 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 706 } 707 708 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 709 { 710 f2fs_submit_merged_write(sbi, DATA); 711 f2fs_submit_merged_write(sbi, NODE); 712 f2fs_submit_merged_write(sbi, META); 713 } 714 715 /* 716 * Fill the locked page with data located in the block address. 717 * A caller needs to unlock the page on failure. 718 */ 719 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 720 { 721 struct bio *bio; 722 struct page *page = fio->encrypted_page ? 723 fio->encrypted_page : fio->page; 724 725 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 726 fio->is_por ? META_POR : (__is_meta_io(fio) ? 727 META_GENERIC : DATA_GENERIC_ENHANCE))) { 728 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 729 return -EFSCORRUPTED; 730 } 731 732 trace_f2fs_submit_page_bio(page, fio); 733 734 /* Allocate a new bio */ 735 bio = __bio_alloc(fio, 1); 736 737 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 738 fio->page->index, fio, GFP_NOIO); 739 740 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 741 bio_put(bio); 742 return -EFAULT; 743 } 744 745 if (fio->io_wbc && !is_read_io(fio->op)) 746 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 747 748 inc_page_count(fio->sbi, is_read_io(fio->op) ? 749 __read_io_type(page) : WB_DATA_TYPE(fio->page)); 750 751 __submit_bio(fio->sbi, bio, fio->type); 752 return 0; 753 } 754 755 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 756 block_t last_blkaddr, block_t cur_blkaddr) 757 { 758 if (unlikely(sbi->max_io_bytes && 759 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 760 return false; 761 if (last_blkaddr + 1 != cur_blkaddr) 762 return false; 763 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 764 } 765 766 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 767 struct f2fs_io_info *fio) 768 { 769 if (io->fio.op != fio->op) 770 return false; 771 return io->fio.op_flags == fio->op_flags; 772 } 773 774 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 775 struct f2fs_bio_info *io, 776 struct f2fs_io_info *fio, 777 block_t last_blkaddr, 778 block_t cur_blkaddr) 779 { 780 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 781 unsigned int filled_blocks = 782 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 783 unsigned int io_size = F2FS_IO_SIZE(sbi); 784 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 785 786 /* IOs in bio is aligned and left space of vectors is not enough */ 787 if (!(filled_blocks % io_size) && left_vecs < io_size) 788 return false; 789 } 790 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 791 return false; 792 return io_type_is_mergeable(io, fio); 793 } 794 795 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 796 struct page *page, enum temp_type temp) 797 { 798 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 799 struct bio_entry *be; 800 801 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 802 be->bio = bio; 803 bio_get(bio); 804 805 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 806 f2fs_bug_on(sbi, 1); 807 808 f2fs_down_write(&io->bio_list_lock); 809 list_add_tail(&be->list, &io->bio_list); 810 f2fs_up_write(&io->bio_list_lock); 811 } 812 813 static void del_bio_entry(struct bio_entry *be) 814 { 815 list_del(&be->list); 816 kmem_cache_free(bio_entry_slab, be); 817 } 818 819 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 820 struct page *page) 821 { 822 struct f2fs_sb_info *sbi = fio->sbi; 823 enum temp_type temp; 824 bool found = false; 825 int ret = -EAGAIN; 826 827 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 828 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 829 struct list_head *head = &io->bio_list; 830 struct bio_entry *be; 831 832 f2fs_down_write(&io->bio_list_lock); 833 list_for_each_entry(be, head, list) { 834 if (be->bio != *bio) 835 continue; 836 837 found = true; 838 839 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 840 *fio->last_block, 841 fio->new_blkaddr)); 842 if (f2fs_crypt_mergeable_bio(*bio, 843 fio->page->mapping->host, 844 fio->page->index, fio) && 845 bio_add_page(*bio, page, PAGE_SIZE, 0) == 846 PAGE_SIZE) { 847 ret = 0; 848 break; 849 } 850 851 /* page can't be merged into bio; submit the bio */ 852 del_bio_entry(be); 853 __submit_bio(sbi, *bio, DATA); 854 break; 855 } 856 f2fs_up_write(&io->bio_list_lock); 857 } 858 859 if (ret) { 860 bio_put(*bio); 861 *bio = NULL; 862 } 863 864 return ret; 865 } 866 867 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 868 struct bio **bio, struct page *page) 869 { 870 enum temp_type temp; 871 bool found = false; 872 struct bio *target = bio ? *bio : NULL; 873 874 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 875 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 876 struct list_head *head = &io->bio_list; 877 struct bio_entry *be; 878 879 if (list_empty(head)) 880 continue; 881 882 f2fs_down_read(&io->bio_list_lock); 883 list_for_each_entry(be, head, list) { 884 if (target) 885 found = (target == be->bio); 886 else 887 found = __has_merged_page(be->bio, NULL, 888 page, 0); 889 if (found) 890 break; 891 } 892 f2fs_up_read(&io->bio_list_lock); 893 894 if (!found) 895 continue; 896 897 found = false; 898 899 f2fs_down_write(&io->bio_list_lock); 900 list_for_each_entry(be, head, list) { 901 if (target) 902 found = (target == be->bio); 903 else 904 found = __has_merged_page(be->bio, NULL, 905 page, 0); 906 if (found) { 907 target = be->bio; 908 del_bio_entry(be); 909 break; 910 } 911 } 912 f2fs_up_write(&io->bio_list_lock); 913 } 914 915 if (found) 916 __submit_bio(sbi, target, DATA); 917 if (bio && *bio) { 918 bio_put(*bio); 919 *bio = NULL; 920 } 921 } 922 923 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 924 { 925 struct bio *bio = *fio->bio; 926 struct page *page = fio->encrypted_page ? 927 fio->encrypted_page : fio->page; 928 929 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 930 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) { 931 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 932 return -EFSCORRUPTED; 933 } 934 935 trace_f2fs_submit_page_bio(page, fio); 936 937 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 938 fio->new_blkaddr)) 939 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 940 alloc_new: 941 if (!bio) { 942 bio = __bio_alloc(fio, BIO_MAX_VECS); 943 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 944 fio->page->index, fio, GFP_NOIO); 945 946 add_bio_entry(fio->sbi, bio, page, fio->temp); 947 } else { 948 if (add_ipu_page(fio, &bio, page)) 949 goto alloc_new; 950 } 951 952 if (fio->io_wbc) 953 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 954 955 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 956 957 *fio->last_block = fio->new_blkaddr; 958 *fio->bio = bio; 959 960 return 0; 961 } 962 963 void f2fs_submit_page_write(struct f2fs_io_info *fio) 964 { 965 struct f2fs_sb_info *sbi = fio->sbi; 966 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 967 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 968 struct page *bio_page; 969 970 f2fs_bug_on(sbi, is_read_io(fio->op)); 971 972 f2fs_down_write(&io->io_rwsem); 973 next: 974 if (fio->in_list) { 975 spin_lock(&io->io_lock); 976 if (list_empty(&io->io_list)) { 977 spin_unlock(&io->io_lock); 978 goto out; 979 } 980 fio = list_first_entry(&io->io_list, 981 struct f2fs_io_info, list); 982 list_del(&fio->list); 983 spin_unlock(&io->io_lock); 984 } 985 986 verify_fio_blkaddr(fio); 987 988 if (fio->encrypted_page) 989 bio_page = fio->encrypted_page; 990 else if (fio->compressed_page) 991 bio_page = fio->compressed_page; 992 else 993 bio_page = fio->page; 994 995 /* set submitted = true as a return value */ 996 fio->submitted = true; 997 998 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 999 1000 if (io->bio && 1001 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 1002 fio->new_blkaddr) || 1003 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 1004 bio_page->index, fio))) 1005 __submit_merged_bio(io); 1006 alloc_new: 1007 if (io->bio == NULL) { 1008 if (F2FS_IO_ALIGNED(sbi) && 1009 (fio->type == DATA || fio->type == NODE) && 1010 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 1011 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 1012 fio->retry = true; 1013 goto skip; 1014 } 1015 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 1016 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 1017 bio_page->index, fio, GFP_NOIO); 1018 io->fio = *fio; 1019 } 1020 1021 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 1022 __submit_merged_bio(io); 1023 goto alloc_new; 1024 } 1025 1026 if (fio->io_wbc) 1027 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 1028 1029 io->last_block_in_bio = fio->new_blkaddr; 1030 1031 trace_f2fs_submit_page_write(fio->page, fio); 1032 skip: 1033 if (fio->in_list) 1034 goto next; 1035 out: 1036 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1037 !f2fs_is_checkpoint_ready(sbi)) 1038 __submit_merged_bio(io); 1039 f2fs_up_write(&io->io_rwsem); 1040 } 1041 1042 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1043 unsigned nr_pages, blk_opf_t op_flag, 1044 pgoff_t first_idx, bool for_write) 1045 { 1046 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1047 struct bio *bio; 1048 struct bio_post_read_ctx *ctx = NULL; 1049 unsigned int post_read_steps = 0; 1050 sector_t sector; 1051 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1052 1053 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1054 REQ_OP_READ | op_flag, 1055 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1056 if (!bio) 1057 return ERR_PTR(-ENOMEM); 1058 bio->bi_iter.bi_sector = sector; 1059 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1060 bio->bi_end_io = f2fs_read_end_io; 1061 1062 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1063 post_read_steps |= STEP_DECRYPT; 1064 1065 if (f2fs_need_verity(inode, first_idx)) 1066 post_read_steps |= STEP_VERITY; 1067 1068 /* 1069 * STEP_DECOMPRESS is handled specially, since a compressed file might 1070 * contain both compressed and uncompressed clusters. We'll allocate a 1071 * bio_post_read_ctx if the file is compressed, but the caller is 1072 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1073 */ 1074 1075 if (post_read_steps || f2fs_compressed_file(inode)) { 1076 /* Due to the mempool, this never fails. */ 1077 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1078 ctx->bio = bio; 1079 ctx->sbi = sbi; 1080 ctx->enabled_steps = post_read_steps; 1081 ctx->fs_blkaddr = blkaddr; 1082 ctx->decompression_attempted = false; 1083 bio->bi_private = ctx; 1084 } 1085 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1086 1087 return bio; 1088 } 1089 1090 /* This can handle encryption stuffs */ 1091 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1092 block_t blkaddr, blk_opf_t op_flags, 1093 bool for_write) 1094 { 1095 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1096 struct bio *bio; 1097 1098 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1099 page->index, for_write); 1100 if (IS_ERR(bio)) 1101 return PTR_ERR(bio); 1102 1103 /* wait for GCed page writeback via META_MAPPING */ 1104 f2fs_wait_on_block_writeback(inode, blkaddr); 1105 1106 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1107 bio_put(bio); 1108 return -EFAULT; 1109 } 1110 inc_page_count(sbi, F2FS_RD_DATA); 1111 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1112 __submit_bio(sbi, bio, DATA); 1113 return 0; 1114 } 1115 1116 static void __set_data_blkaddr(struct dnode_of_data *dn) 1117 { 1118 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1119 __le32 *addr_array; 1120 int base = 0; 1121 1122 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1123 base = get_extra_isize(dn->inode); 1124 1125 /* Get physical address of data block */ 1126 addr_array = blkaddr_in_node(rn); 1127 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1128 } 1129 1130 /* 1131 * Lock ordering for the change of data block address: 1132 * ->data_page 1133 * ->node_page 1134 * update block addresses in the node page 1135 */ 1136 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1137 { 1138 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1139 __set_data_blkaddr(dn); 1140 if (set_page_dirty(dn->node_page)) 1141 dn->node_changed = true; 1142 } 1143 1144 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1145 { 1146 dn->data_blkaddr = blkaddr; 1147 f2fs_set_data_blkaddr(dn); 1148 f2fs_update_extent_cache(dn); 1149 } 1150 1151 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1152 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1153 { 1154 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1155 int err; 1156 1157 if (!count) 1158 return 0; 1159 1160 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1161 return -EPERM; 1162 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1163 return err; 1164 1165 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1166 dn->ofs_in_node, count); 1167 1168 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1169 1170 for (; count > 0; dn->ofs_in_node++) { 1171 block_t blkaddr = f2fs_data_blkaddr(dn); 1172 1173 if (blkaddr == NULL_ADDR) { 1174 dn->data_blkaddr = NEW_ADDR; 1175 __set_data_blkaddr(dn); 1176 count--; 1177 } 1178 } 1179 1180 if (set_page_dirty(dn->node_page)) 1181 dn->node_changed = true; 1182 return 0; 1183 } 1184 1185 /* Should keep dn->ofs_in_node unchanged */ 1186 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1187 { 1188 unsigned int ofs_in_node = dn->ofs_in_node; 1189 int ret; 1190 1191 ret = f2fs_reserve_new_blocks(dn, 1); 1192 dn->ofs_in_node = ofs_in_node; 1193 return ret; 1194 } 1195 1196 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1197 { 1198 bool need_put = dn->inode_page ? false : true; 1199 int err; 1200 1201 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1202 if (err) 1203 return err; 1204 1205 if (dn->data_blkaddr == NULL_ADDR) 1206 err = f2fs_reserve_new_block(dn); 1207 if (err || need_put) 1208 f2fs_put_dnode(dn); 1209 return err; 1210 } 1211 1212 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1213 { 1214 struct extent_info ei = {0, }; 1215 struct inode *inode = dn->inode; 1216 1217 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1218 dn->data_blkaddr = ei.blk + index - ei.fofs; 1219 return 0; 1220 } 1221 1222 return f2fs_reserve_block(dn, index); 1223 } 1224 1225 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1226 blk_opf_t op_flags, bool for_write) 1227 { 1228 struct address_space *mapping = inode->i_mapping; 1229 struct dnode_of_data dn; 1230 struct page *page; 1231 struct extent_info ei = {0, }; 1232 int err; 1233 1234 page = f2fs_grab_cache_page(mapping, index, for_write); 1235 if (!page) 1236 return ERR_PTR(-ENOMEM); 1237 1238 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1239 dn.data_blkaddr = ei.blk + index - ei.fofs; 1240 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1241 DATA_GENERIC_ENHANCE_READ)) { 1242 err = -EFSCORRUPTED; 1243 f2fs_handle_error(F2FS_I_SB(inode), 1244 ERROR_INVALID_BLKADDR); 1245 goto put_err; 1246 } 1247 goto got_it; 1248 } 1249 1250 set_new_dnode(&dn, inode, NULL, NULL, 0); 1251 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1252 if (err) 1253 goto put_err; 1254 f2fs_put_dnode(&dn); 1255 1256 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1257 err = -ENOENT; 1258 goto put_err; 1259 } 1260 if (dn.data_blkaddr != NEW_ADDR && 1261 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1262 dn.data_blkaddr, 1263 DATA_GENERIC_ENHANCE)) { 1264 err = -EFSCORRUPTED; 1265 f2fs_handle_error(F2FS_I_SB(inode), 1266 ERROR_INVALID_BLKADDR); 1267 goto put_err; 1268 } 1269 got_it: 1270 if (PageUptodate(page)) { 1271 unlock_page(page); 1272 return page; 1273 } 1274 1275 /* 1276 * A new dentry page is allocated but not able to be written, since its 1277 * new inode page couldn't be allocated due to -ENOSPC. 1278 * In such the case, its blkaddr can be remained as NEW_ADDR. 1279 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1280 * f2fs_init_inode_metadata. 1281 */ 1282 if (dn.data_blkaddr == NEW_ADDR) { 1283 zero_user_segment(page, 0, PAGE_SIZE); 1284 if (!PageUptodate(page)) 1285 SetPageUptodate(page); 1286 unlock_page(page); 1287 return page; 1288 } 1289 1290 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1291 op_flags, for_write); 1292 if (err) 1293 goto put_err; 1294 return page; 1295 1296 put_err: 1297 f2fs_put_page(page, 1); 1298 return ERR_PTR(err); 1299 } 1300 1301 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1302 { 1303 struct address_space *mapping = inode->i_mapping; 1304 struct page *page; 1305 1306 page = find_get_page(mapping, index); 1307 if (page && PageUptodate(page)) 1308 return page; 1309 f2fs_put_page(page, 0); 1310 1311 page = f2fs_get_read_data_page(inode, index, 0, false); 1312 if (IS_ERR(page)) 1313 return page; 1314 1315 if (PageUptodate(page)) 1316 return page; 1317 1318 wait_on_page_locked(page); 1319 if (unlikely(!PageUptodate(page))) { 1320 f2fs_put_page(page, 0); 1321 return ERR_PTR(-EIO); 1322 } 1323 return page; 1324 } 1325 1326 /* 1327 * If it tries to access a hole, return an error. 1328 * Because, the callers, functions in dir.c and GC, should be able to know 1329 * whether this page exists or not. 1330 */ 1331 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1332 bool for_write) 1333 { 1334 struct address_space *mapping = inode->i_mapping; 1335 struct page *page; 1336 repeat: 1337 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1338 if (IS_ERR(page)) 1339 return page; 1340 1341 /* wait for read completion */ 1342 lock_page(page); 1343 if (unlikely(page->mapping != mapping)) { 1344 f2fs_put_page(page, 1); 1345 goto repeat; 1346 } 1347 if (unlikely(!PageUptodate(page))) { 1348 f2fs_put_page(page, 1); 1349 return ERR_PTR(-EIO); 1350 } 1351 return page; 1352 } 1353 1354 /* 1355 * Caller ensures that this data page is never allocated. 1356 * A new zero-filled data page is allocated in the page cache. 1357 * 1358 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1359 * f2fs_unlock_op(). 1360 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1361 * ipage should be released by this function. 1362 */ 1363 struct page *f2fs_get_new_data_page(struct inode *inode, 1364 struct page *ipage, pgoff_t index, bool new_i_size) 1365 { 1366 struct address_space *mapping = inode->i_mapping; 1367 struct page *page; 1368 struct dnode_of_data dn; 1369 int err; 1370 1371 page = f2fs_grab_cache_page(mapping, index, true); 1372 if (!page) { 1373 /* 1374 * before exiting, we should make sure ipage will be released 1375 * if any error occur. 1376 */ 1377 f2fs_put_page(ipage, 1); 1378 return ERR_PTR(-ENOMEM); 1379 } 1380 1381 set_new_dnode(&dn, inode, ipage, NULL, 0); 1382 err = f2fs_reserve_block(&dn, index); 1383 if (err) { 1384 f2fs_put_page(page, 1); 1385 return ERR_PTR(err); 1386 } 1387 if (!ipage) 1388 f2fs_put_dnode(&dn); 1389 1390 if (PageUptodate(page)) 1391 goto got_it; 1392 1393 if (dn.data_blkaddr == NEW_ADDR) { 1394 zero_user_segment(page, 0, PAGE_SIZE); 1395 if (!PageUptodate(page)) 1396 SetPageUptodate(page); 1397 } else { 1398 f2fs_put_page(page, 1); 1399 1400 /* if ipage exists, blkaddr should be NEW_ADDR */ 1401 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1402 page = f2fs_get_lock_data_page(inode, index, true); 1403 if (IS_ERR(page)) 1404 return page; 1405 } 1406 got_it: 1407 if (new_i_size && i_size_read(inode) < 1408 ((loff_t)(index + 1) << PAGE_SHIFT)) 1409 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1410 return page; 1411 } 1412 1413 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1414 { 1415 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1416 struct f2fs_summary sum; 1417 struct node_info ni; 1418 block_t old_blkaddr; 1419 blkcnt_t count = 1; 1420 int err; 1421 1422 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1423 return -EPERM; 1424 1425 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1426 if (err) 1427 return err; 1428 1429 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1430 if (dn->data_blkaddr != NULL_ADDR) 1431 goto alloc; 1432 1433 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1434 return err; 1435 1436 alloc: 1437 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1438 old_blkaddr = dn->data_blkaddr; 1439 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1440 &sum, seg_type, NULL); 1441 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1442 invalidate_mapping_pages(META_MAPPING(sbi), 1443 old_blkaddr, old_blkaddr); 1444 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1445 } 1446 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1447 return 0; 1448 } 1449 1450 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1451 { 1452 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1453 if (lock) 1454 f2fs_down_read(&sbi->node_change); 1455 else 1456 f2fs_up_read(&sbi->node_change); 1457 } else { 1458 if (lock) 1459 f2fs_lock_op(sbi); 1460 else 1461 f2fs_unlock_op(sbi); 1462 } 1463 } 1464 1465 /* 1466 * f2fs_map_blocks() tries to find or build mapping relationship which 1467 * maps continuous logical blocks to physical blocks, and return such 1468 * info via f2fs_map_blocks structure. 1469 */ 1470 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1471 int create, int flag) 1472 { 1473 unsigned int maxblocks = map->m_len; 1474 struct dnode_of_data dn; 1475 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1476 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1477 pgoff_t pgofs, end_offset, end; 1478 int err = 0, ofs = 1; 1479 unsigned int ofs_in_node, last_ofs_in_node; 1480 blkcnt_t prealloc; 1481 struct extent_info ei = {0, }; 1482 block_t blkaddr; 1483 unsigned int start_pgofs; 1484 int bidx = 0; 1485 1486 if (!maxblocks) 1487 return 0; 1488 1489 map->m_bdev = inode->i_sb->s_bdev; 1490 map->m_multidev_dio = 1491 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1492 1493 map->m_len = 0; 1494 map->m_flags = 0; 1495 1496 /* it only supports block size == page size */ 1497 pgofs = (pgoff_t)map->m_lblk; 1498 end = pgofs + maxblocks; 1499 1500 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1501 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1502 map->m_may_create) 1503 goto next_dnode; 1504 1505 map->m_pblk = ei.blk + pgofs - ei.fofs; 1506 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1507 map->m_flags = F2FS_MAP_MAPPED; 1508 if (map->m_next_extent) 1509 *map->m_next_extent = pgofs + map->m_len; 1510 1511 /* for hardware encryption, but to avoid potential issue in future */ 1512 if (flag == F2FS_GET_BLOCK_DIO) 1513 f2fs_wait_on_block_writeback_range(inode, 1514 map->m_pblk, map->m_len); 1515 1516 if (map->m_multidev_dio) { 1517 block_t blk_addr = map->m_pblk; 1518 1519 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1520 1521 map->m_bdev = FDEV(bidx).bdev; 1522 map->m_pblk -= FDEV(bidx).start_blk; 1523 map->m_len = min(map->m_len, 1524 FDEV(bidx).end_blk + 1 - map->m_pblk); 1525 1526 if (map->m_may_create) 1527 f2fs_update_device_state(sbi, inode->i_ino, 1528 blk_addr, map->m_len); 1529 } 1530 goto out; 1531 } 1532 1533 next_dnode: 1534 if (map->m_may_create) 1535 f2fs_do_map_lock(sbi, flag, true); 1536 1537 /* When reading holes, we need its node page */ 1538 set_new_dnode(&dn, inode, NULL, NULL, 0); 1539 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1540 if (err) { 1541 if (flag == F2FS_GET_BLOCK_BMAP) 1542 map->m_pblk = 0; 1543 1544 if (err == -ENOENT) { 1545 /* 1546 * There is one exceptional case that read_node_page() 1547 * may return -ENOENT due to filesystem has been 1548 * shutdown or cp_error, so force to convert error 1549 * number to EIO for such case. 1550 */ 1551 if (map->m_may_create && 1552 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1553 f2fs_cp_error(sbi))) { 1554 err = -EIO; 1555 goto unlock_out; 1556 } 1557 1558 err = 0; 1559 if (map->m_next_pgofs) 1560 *map->m_next_pgofs = 1561 f2fs_get_next_page_offset(&dn, pgofs); 1562 if (map->m_next_extent) 1563 *map->m_next_extent = 1564 f2fs_get_next_page_offset(&dn, pgofs); 1565 } 1566 goto unlock_out; 1567 } 1568 1569 start_pgofs = pgofs; 1570 prealloc = 0; 1571 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1572 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1573 1574 next_block: 1575 blkaddr = f2fs_data_blkaddr(&dn); 1576 1577 if (__is_valid_data_blkaddr(blkaddr) && 1578 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1579 err = -EFSCORRUPTED; 1580 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 1581 goto sync_out; 1582 } 1583 1584 if (__is_valid_data_blkaddr(blkaddr)) { 1585 /* use out-place-update for driect IO under LFS mode */ 1586 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1587 map->m_may_create) { 1588 err = __allocate_data_block(&dn, map->m_seg_type); 1589 if (err) 1590 goto sync_out; 1591 blkaddr = dn.data_blkaddr; 1592 set_inode_flag(inode, FI_APPEND_WRITE); 1593 } 1594 } else { 1595 if (create) { 1596 if (unlikely(f2fs_cp_error(sbi))) { 1597 err = -EIO; 1598 goto sync_out; 1599 } 1600 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1601 if (blkaddr == NULL_ADDR) { 1602 prealloc++; 1603 last_ofs_in_node = dn.ofs_in_node; 1604 } 1605 } else { 1606 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1607 flag != F2FS_GET_BLOCK_DIO); 1608 err = __allocate_data_block(&dn, 1609 map->m_seg_type); 1610 if (!err) { 1611 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1612 file_need_truncate(inode); 1613 set_inode_flag(inode, FI_APPEND_WRITE); 1614 } 1615 } 1616 if (err) 1617 goto sync_out; 1618 map->m_flags |= F2FS_MAP_NEW; 1619 blkaddr = dn.data_blkaddr; 1620 } else { 1621 if (f2fs_compressed_file(inode) && 1622 f2fs_sanity_check_cluster(&dn) && 1623 (flag != F2FS_GET_BLOCK_FIEMAP || 1624 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1625 err = -EFSCORRUPTED; 1626 f2fs_handle_error(sbi, 1627 ERROR_CORRUPTED_CLUSTER); 1628 goto sync_out; 1629 } 1630 if (flag == F2FS_GET_BLOCK_BMAP) { 1631 map->m_pblk = 0; 1632 goto sync_out; 1633 } 1634 if (flag == F2FS_GET_BLOCK_PRECACHE) 1635 goto sync_out; 1636 if (flag == F2FS_GET_BLOCK_FIEMAP && 1637 blkaddr == NULL_ADDR) { 1638 if (map->m_next_pgofs) 1639 *map->m_next_pgofs = pgofs + 1; 1640 goto sync_out; 1641 } 1642 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1643 /* for defragment case */ 1644 if (map->m_next_pgofs) 1645 *map->m_next_pgofs = pgofs + 1; 1646 goto sync_out; 1647 } 1648 } 1649 } 1650 1651 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1652 goto skip; 1653 1654 if (map->m_multidev_dio) 1655 bidx = f2fs_target_device_index(sbi, blkaddr); 1656 1657 if (map->m_len == 0) { 1658 /* preallocated unwritten block should be mapped for fiemap. */ 1659 if (blkaddr == NEW_ADDR) 1660 map->m_flags |= F2FS_MAP_UNWRITTEN; 1661 map->m_flags |= F2FS_MAP_MAPPED; 1662 1663 map->m_pblk = blkaddr; 1664 map->m_len = 1; 1665 1666 if (map->m_multidev_dio) 1667 map->m_bdev = FDEV(bidx).bdev; 1668 } else if ((map->m_pblk != NEW_ADDR && 1669 blkaddr == (map->m_pblk + ofs)) || 1670 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1671 flag == F2FS_GET_BLOCK_PRE_DIO) { 1672 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1673 goto sync_out; 1674 ofs++; 1675 map->m_len++; 1676 } else { 1677 goto sync_out; 1678 } 1679 1680 skip: 1681 dn.ofs_in_node++; 1682 pgofs++; 1683 1684 /* preallocate blocks in batch for one dnode page */ 1685 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1686 (pgofs == end || dn.ofs_in_node == end_offset)) { 1687 1688 dn.ofs_in_node = ofs_in_node; 1689 err = f2fs_reserve_new_blocks(&dn, prealloc); 1690 if (err) 1691 goto sync_out; 1692 1693 map->m_len += dn.ofs_in_node - ofs_in_node; 1694 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1695 err = -ENOSPC; 1696 goto sync_out; 1697 } 1698 dn.ofs_in_node = end_offset; 1699 } 1700 1701 if (pgofs >= end) 1702 goto sync_out; 1703 else if (dn.ofs_in_node < end_offset) 1704 goto next_block; 1705 1706 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1707 if (map->m_flags & F2FS_MAP_MAPPED) { 1708 unsigned int ofs = start_pgofs - map->m_lblk; 1709 1710 f2fs_update_extent_cache_range(&dn, 1711 start_pgofs, map->m_pblk + ofs, 1712 map->m_len - ofs); 1713 } 1714 } 1715 1716 f2fs_put_dnode(&dn); 1717 1718 if (map->m_may_create) { 1719 f2fs_do_map_lock(sbi, flag, false); 1720 f2fs_balance_fs(sbi, dn.node_changed); 1721 } 1722 goto next_dnode; 1723 1724 sync_out: 1725 1726 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1727 /* 1728 * for hardware encryption, but to avoid potential issue 1729 * in future 1730 */ 1731 f2fs_wait_on_block_writeback_range(inode, 1732 map->m_pblk, map->m_len); 1733 1734 if (map->m_multidev_dio) { 1735 block_t blk_addr = map->m_pblk; 1736 1737 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1738 1739 map->m_bdev = FDEV(bidx).bdev; 1740 map->m_pblk -= FDEV(bidx).start_blk; 1741 1742 if (map->m_may_create) 1743 f2fs_update_device_state(sbi, inode->i_ino, 1744 blk_addr, map->m_len); 1745 1746 f2fs_bug_on(sbi, blk_addr + map->m_len > 1747 FDEV(bidx).end_blk + 1); 1748 } 1749 } 1750 1751 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1752 if (map->m_flags & F2FS_MAP_MAPPED) { 1753 unsigned int ofs = start_pgofs - map->m_lblk; 1754 1755 f2fs_update_extent_cache_range(&dn, 1756 start_pgofs, map->m_pblk + ofs, 1757 map->m_len - ofs); 1758 } 1759 if (map->m_next_extent) 1760 *map->m_next_extent = pgofs + 1; 1761 } 1762 f2fs_put_dnode(&dn); 1763 unlock_out: 1764 if (map->m_may_create) { 1765 f2fs_do_map_lock(sbi, flag, false); 1766 f2fs_balance_fs(sbi, dn.node_changed); 1767 } 1768 out: 1769 trace_f2fs_map_blocks(inode, map, create, flag, err); 1770 return err; 1771 } 1772 1773 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1774 { 1775 struct f2fs_map_blocks map; 1776 block_t last_lblk; 1777 int err; 1778 1779 if (pos + len > i_size_read(inode)) 1780 return false; 1781 1782 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1783 map.m_next_pgofs = NULL; 1784 map.m_next_extent = NULL; 1785 map.m_seg_type = NO_CHECK_TYPE; 1786 map.m_may_create = false; 1787 last_lblk = F2FS_BLK_ALIGN(pos + len); 1788 1789 while (map.m_lblk < last_lblk) { 1790 map.m_len = last_lblk - map.m_lblk; 1791 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1792 if (err || map.m_len == 0) 1793 return false; 1794 map.m_lblk += map.m_len; 1795 } 1796 return true; 1797 } 1798 1799 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1800 { 1801 return (bytes >> inode->i_blkbits); 1802 } 1803 1804 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1805 { 1806 return (blks << inode->i_blkbits); 1807 } 1808 1809 static int f2fs_xattr_fiemap(struct inode *inode, 1810 struct fiemap_extent_info *fieinfo) 1811 { 1812 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1813 struct page *page; 1814 struct node_info ni; 1815 __u64 phys = 0, len; 1816 __u32 flags; 1817 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1818 int err = 0; 1819 1820 if (f2fs_has_inline_xattr(inode)) { 1821 int offset; 1822 1823 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1824 inode->i_ino, false); 1825 if (!page) 1826 return -ENOMEM; 1827 1828 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1829 if (err) { 1830 f2fs_put_page(page, 1); 1831 return err; 1832 } 1833 1834 phys = blks_to_bytes(inode, ni.blk_addr); 1835 offset = offsetof(struct f2fs_inode, i_addr) + 1836 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1837 get_inline_xattr_addrs(inode)); 1838 1839 phys += offset; 1840 len = inline_xattr_size(inode); 1841 1842 f2fs_put_page(page, 1); 1843 1844 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1845 1846 if (!xnid) 1847 flags |= FIEMAP_EXTENT_LAST; 1848 1849 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1850 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1851 if (err) 1852 return err; 1853 } 1854 1855 if (xnid) { 1856 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1857 if (!page) 1858 return -ENOMEM; 1859 1860 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1861 if (err) { 1862 f2fs_put_page(page, 1); 1863 return err; 1864 } 1865 1866 phys = blks_to_bytes(inode, ni.blk_addr); 1867 len = inode->i_sb->s_blocksize; 1868 1869 f2fs_put_page(page, 1); 1870 1871 flags = FIEMAP_EXTENT_LAST; 1872 } 1873 1874 if (phys) { 1875 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1876 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1877 } 1878 1879 return (err < 0 ? err : 0); 1880 } 1881 1882 static loff_t max_inode_blocks(struct inode *inode) 1883 { 1884 loff_t result = ADDRS_PER_INODE(inode); 1885 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1886 1887 /* two direct node blocks */ 1888 result += (leaf_count * 2); 1889 1890 /* two indirect node blocks */ 1891 leaf_count *= NIDS_PER_BLOCK; 1892 result += (leaf_count * 2); 1893 1894 /* one double indirect node block */ 1895 leaf_count *= NIDS_PER_BLOCK; 1896 result += leaf_count; 1897 1898 return result; 1899 } 1900 1901 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1902 u64 start, u64 len) 1903 { 1904 struct f2fs_map_blocks map; 1905 sector_t start_blk, last_blk; 1906 pgoff_t next_pgofs; 1907 u64 logical = 0, phys = 0, size = 0; 1908 u32 flags = 0; 1909 int ret = 0; 1910 bool compr_cluster = false, compr_appended; 1911 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1912 unsigned int count_in_cluster = 0; 1913 loff_t maxbytes; 1914 1915 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1916 ret = f2fs_precache_extents(inode); 1917 if (ret) 1918 return ret; 1919 } 1920 1921 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1922 if (ret) 1923 return ret; 1924 1925 inode_lock(inode); 1926 1927 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1928 if (start > maxbytes) { 1929 ret = -EFBIG; 1930 goto out; 1931 } 1932 1933 if (len > maxbytes || (maxbytes - len) < start) 1934 len = maxbytes - start; 1935 1936 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1937 ret = f2fs_xattr_fiemap(inode, fieinfo); 1938 goto out; 1939 } 1940 1941 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1942 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1943 if (ret != -EAGAIN) 1944 goto out; 1945 } 1946 1947 if (bytes_to_blks(inode, len) == 0) 1948 len = blks_to_bytes(inode, 1); 1949 1950 start_blk = bytes_to_blks(inode, start); 1951 last_blk = bytes_to_blks(inode, start + len - 1); 1952 1953 next: 1954 memset(&map, 0, sizeof(map)); 1955 map.m_lblk = start_blk; 1956 map.m_len = bytes_to_blks(inode, len); 1957 map.m_next_pgofs = &next_pgofs; 1958 map.m_seg_type = NO_CHECK_TYPE; 1959 1960 if (compr_cluster) { 1961 map.m_lblk += 1; 1962 map.m_len = cluster_size - count_in_cluster; 1963 } 1964 1965 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1966 if (ret) 1967 goto out; 1968 1969 /* HOLE */ 1970 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1971 start_blk = next_pgofs; 1972 1973 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1974 max_inode_blocks(inode))) 1975 goto prep_next; 1976 1977 flags |= FIEMAP_EXTENT_LAST; 1978 } 1979 1980 compr_appended = false; 1981 /* In a case of compressed cluster, append this to the last extent */ 1982 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) || 1983 !(map.m_flags & F2FS_MAP_FLAGS))) { 1984 compr_appended = true; 1985 goto skip_fill; 1986 } 1987 1988 if (size) { 1989 flags |= FIEMAP_EXTENT_MERGED; 1990 if (IS_ENCRYPTED(inode)) 1991 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1992 1993 ret = fiemap_fill_next_extent(fieinfo, logical, 1994 phys, size, flags); 1995 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1996 if (ret) 1997 goto out; 1998 size = 0; 1999 } 2000 2001 if (start_blk > last_blk) 2002 goto out; 2003 2004 skip_fill: 2005 if (map.m_pblk == COMPRESS_ADDR) { 2006 compr_cluster = true; 2007 count_in_cluster = 1; 2008 } else if (compr_appended) { 2009 unsigned int appended_blks = cluster_size - 2010 count_in_cluster + 1; 2011 size += blks_to_bytes(inode, appended_blks); 2012 start_blk += appended_blks; 2013 compr_cluster = false; 2014 } else { 2015 logical = blks_to_bytes(inode, start_blk); 2016 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2017 blks_to_bytes(inode, map.m_pblk) : 0; 2018 size = blks_to_bytes(inode, map.m_len); 2019 flags = 0; 2020 2021 if (compr_cluster) { 2022 flags = FIEMAP_EXTENT_ENCODED; 2023 count_in_cluster += map.m_len; 2024 if (count_in_cluster == cluster_size) { 2025 compr_cluster = false; 2026 size += blks_to_bytes(inode, 1); 2027 } 2028 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) { 2029 flags = FIEMAP_EXTENT_UNWRITTEN; 2030 } 2031 2032 start_blk += bytes_to_blks(inode, size); 2033 } 2034 2035 prep_next: 2036 cond_resched(); 2037 if (fatal_signal_pending(current)) 2038 ret = -EINTR; 2039 else 2040 goto next; 2041 out: 2042 if (ret == 1) 2043 ret = 0; 2044 2045 inode_unlock(inode); 2046 return ret; 2047 } 2048 2049 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2050 { 2051 if (IS_ENABLED(CONFIG_FS_VERITY) && 2052 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 2053 return inode->i_sb->s_maxbytes; 2054 2055 return i_size_read(inode); 2056 } 2057 2058 static int f2fs_read_single_page(struct inode *inode, struct page *page, 2059 unsigned nr_pages, 2060 struct f2fs_map_blocks *map, 2061 struct bio **bio_ret, 2062 sector_t *last_block_in_bio, 2063 bool is_readahead) 2064 { 2065 struct bio *bio = *bio_ret; 2066 const unsigned blocksize = blks_to_bytes(inode, 1); 2067 sector_t block_in_file; 2068 sector_t last_block; 2069 sector_t last_block_in_file; 2070 sector_t block_nr; 2071 int ret = 0; 2072 2073 block_in_file = (sector_t)page_index(page); 2074 last_block = block_in_file + nr_pages; 2075 last_block_in_file = bytes_to_blks(inode, 2076 f2fs_readpage_limit(inode) + blocksize - 1); 2077 if (last_block > last_block_in_file) 2078 last_block = last_block_in_file; 2079 2080 /* just zeroing out page which is beyond EOF */ 2081 if (block_in_file >= last_block) 2082 goto zero_out; 2083 /* 2084 * Map blocks using the previous result first. 2085 */ 2086 if ((map->m_flags & F2FS_MAP_MAPPED) && 2087 block_in_file > map->m_lblk && 2088 block_in_file < (map->m_lblk + map->m_len)) 2089 goto got_it; 2090 2091 /* 2092 * Then do more f2fs_map_blocks() calls until we are 2093 * done with this page. 2094 */ 2095 map->m_lblk = block_in_file; 2096 map->m_len = last_block - block_in_file; 2097 2098 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2099 if (ret) 2100 goto out; 2101 got_it: 2102 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2103 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2104 SetPageMappedToDisk(page); 2105 2106 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2107 DATA_GENERIC_ENHANCE_READ)) { 2108 ret = -EFSCORRUPTED; 2109 f2fs_handle_error(F2FS_I_SB(inode), 2110 ERROR_INVALID_BLKADDR); 2111 goto out; 2112 } 2113 } else { 2114 zero_out: 2115 zero_user_segment(page, 0, PAGE_SIZE); 2116 if (f2fs_need_verity(inode, page->index) && 2117 !fsverity_verify_page(page)) { 2118 ret = -EIO; 2119 goto out; 2120 } 2121 if (!PageUptodate(page)) 2122 SetPageUptodate(page); 2123 unlock_page(page); 2124 goto out; 2125 } 2126 2127 /* 2128 * This page will go to BIO. Do we need to send this 2129 * BIO off first? 2130 */ 2131 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2132 *last_block_in_bio, block_nr) || 2133 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2134 submit_and_realloc: 2135 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2136 bio = NULL; 2137 } 2138 if (bio == NULL) { 2139 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2140 is_readahead ? REQ_RAHEAD : 0, page->index, 2141 false); 2142 if (IS_ERR(bio)) { 2143 ret = PTR_ERR(bio); 2144 bio = NULL; 2145 goto out; 2146 } 2147 } 2148 2149 /* 2150 * If the page is under writeback, we need to wait for 2151 * its completion to see the correct decrypted data. 2152 */ 2153 f2fs_wait_on_block_writeback(inode, block_nr); 2154 2155 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2156 goto submit_and_realloc; 2157 2158 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2159 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2160 F2FS_BLKSIZE); 2161 *last_block_in_bio = block_nr; 2162 goto out; 2163 out: 2164 *bio_ret = bio; 2165 return ret; 2166 } 2167 2168 #ifdef CONFIG_F2FS_FS_COMPRESSION 2169 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2170 unsigned nr_pages, sector_t *last_block_in_bio, 2171 bool is_readahead, bool for_write) 2172 { 2173 struct dnode_of_data dn; 2174 struct inode *inode = cc->inode; 2175 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2176 struct bio *bio = *bio_ret; 2177 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2178 sector_t last_block_in_file; 2179 const unsigned blocksize = blks_to_bytes(inode, 1); 2180 struct decompress_io_ctx *dic = NULL; 2181 struct extent_info ei = {0, }; 2182 bool from_dnode = true; 2183 int i; 2184 int ret = 0; 2185 2186 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2187 2188 last_block_in_file = bytes_to_blks(inode, 2189 f2fs_readpage_limit(inode) + blocksize - 1); 2190 2191 /* get rid of pages beyond EOF */ 2192 for (i = 0; i < cc->cluster_size; i++) { 2193 struct page *page = cc->rpages[i]; 2194 2195 if (!page) 2196 continue; 2197 if ((sector_t)page->index >= last_block_in_file) { 2198 zero_user_segment(page, 0, PAGE_SIZE); 2199 if (!PageUptodate(page)) 2200 SetPageUptodate(page); 2201 } else if (!PageUptodate(page)) { 2202 continue; 2203 } 2204 unlock_page(page); 2205 if (for_write) 2206 put_page(page); 2207 cc->rpages[i] = NULL; 2208 cc->nr_rpages--; 2209 } 2210 2211 /* we are done since all pages are beyond EOF */ 2212 if (f2fs_cluster_is_empty(cc)) 2213 goto out; 2214 2215 if (f2fs_lookup_extent_cache(inode, start_idx, &ei)) 2216 from_dnode = false; 2217 2218 if (!from_dnode) 2219 goto skip_reading_dnode; 2220 2221 set_new_dnode(&dn, inode, NULL, NULL, 0); 2222 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2223 if (ret) 2224 goto out; 2225 2226 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2227 2228 skip_reading_dnode: 2229 for (i = 1; i < cc->cluster_size; i++) { 2230 block_t blkaddr; 2231 2232 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2233 dn.ofs_in_node + i) : 2234 ei.blk + i - 1; 2235 2236 if (!__is_valid_data_blkaddr(blkaddr)) 2237 break; 2238 2239 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2240 ret = -EFAULT; 2241 goto out_put_dnode; 2242 } 2243 cc->nr_cpages++; 2244 2245 if (!from_dnode && i >= ei.c_len) 2246 break; 2247 } 2248 2249 /* nothing to decompress */ 2250 if (cc->nr_cpages == 0) { 2251 ret = 0; 2252 goto out_put_dnode; 2253 } 2254 2255 dic = f2fs_alloc_dic(cc); 2256 if (IS_ERR(dic)) { 2257 ret = PTR_ERR(dic); 2258 goto out_put_dnode; 2259 } 2260 2261 for (i = 0; i < cc->nr_cpages; i++) { 2262 struct page *page = dic->cpages[i]; 2263 block_t blkaddr; 2264 struct bio_post_read_ctx *ctx; 2265 2266 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2267 dn.ofs_in_node + i + 1) : 2268 ei.blk + i; 2269 2270 f2fs_wait_on_block_writeback(inode, blkaddr); 2271 2272 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2273 if (atomic_dec_and_test(&dic->remaining_pages)) 2274 f2fs_decompress_cluster(dic, true); 2275 continue; 2276 } 2277 2278 if (bio && (!page_is_mergeable(sbi, bio, 2279 *last_block_in_bio, blkaddr) || 2280 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2281 submit_and_realloc: 2282 __submit_bio(sbi, bio, DATA); 2283 bio = NULL; 2284 } 2285 2286 if (!bio) { 2287 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2288 is_readahead ? REQ_RAHEAD : 0, 2289 page->index, for_write); 2290 if (IS_ERR(bio)) { 2291 ret = PTR_ERR(bio); 2292 f2fs_decompress_end_io(dic, ret, true); 2293 f2fs_put_dnode(&dn); 2294 *bio_ret = NULL; 2295 return ret; 2296 } 2297 } 2298 2299 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2300 goto submit_and_realloc; 2301 2302 ctx = get_post_read_ctx(bio); 2303 ctx->enabled_steps |= STEP_DECOMPRESS; 2304 refcount_inc(&dic->refcnt); 2305 2306 inc_page_count(sbi, F2FS_RD_DATA); 2307 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2308 *last_block_in_bio = blkaddr; 2309 } 2310 2311 if (from_dnode) 2312 f2fs_put_dnode(&dn); 2313 2314 *bio_ret = bio; 2315 return 0; 2316 2317 out_put_dnode: 2318 if (from_dnode) 2319 f2fs_put_dnode(&dn); 2320 out: 2321 for (i = 0; i < cc->cluster_size; i++) { 2322 if (cc->rpages[i]) { 2323 ClearPageUptodate(cc->rpages[i]); 2324 unlock_page(cc->rpages[i]); 2325 } 2326 } 2327 *bio_ret = bio; 2328 return ret; 2329 } 2330 #endif 2331 2332 /* 2333 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2334 * Major change was from block_size == page_size in f2fs by default. 2335 */ 2336 static int f2fs_mpage_readpages(struct inode *inode, 2337 struct readahead_control *rac, struct page *page) 2338 { 2339 struct bio *bio = NULL; 2340 sector_t last_block_in_bio = 0; 2341 struct f2fs_map_blocks map; 2342 #ifdef CONFIG_F2FS_FS_COMPRESSION 2343 struct compress_ctx cc = { 2344 .inode = inode, 2345 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2346 .cluster_size = F2FS_I(inode)->i_cluster_size, 2347 .cluster_idx = NULL_CLUSTER, 2348 .rpages = NULL, 2349 .cpages = NULL, 2350 .nr_rpages = 0, 2351 .nr_cpages = 0, 2352 }; 2353 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2354 #endif 2355 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2356 unsigned max_nr_pages = nr_pages; 2357 int ret = 0; 2358 2359 map.m_pblk = 0; 2360 map.m_lblk = 0; 2361 map.m_len = 0; 2362 map.m_flags = 0; 2363 map.m_next_pgofs = NULL; 2364 map.m_next_extent = NULL; 2365 map.m_seg_type = NO_CHECK_TYPE; 2366 map.m_may_create = false; 2367 2368 for (; nr_pages; nr_pages--) { 2369 if (rac) { 2370 page = readahead_page(rac); 2371 prefetchw(&page->flags); 2372 } 2373 2374 #ifdef CONFIG_F2FS_FS_COMPRESSION 2375 if (f2fs_compressed_file(inode)) { 2376 /* there are remained comressed pages, submit them */ 2377 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2378 ret = f2fs_read_multi_pages(&cc, &bio, 2379 max_nr_pages, 2380 &last_block_in_bio, 2381 rac != NULL, false); 2382 f2fs_destroy_compress_ctx(&cc, false); 2383 if (ret) 2384 goto set_error_page; 2385 } 2386 if (cc.cluster_idx == NULL_CLUSTER) { 2387 if (nc_cluster_idx == 2388 page->index >> cc.log_cluster_size) { 2389 goto read_single_page; 2390 } 2391 2392 ret = f2fs_is_compressed_cluster(inode, page->index); 2393 if (ret < 0) 2394 goto set_error_page; 2395 else if (!ret) { 2396 nc_cluster_idx = 2397 page->index >> cc.log_cluster_size; 2398 goto read_single_page; 2399 } 2400 2401 nc_cluster_idx = NULL_CLUSTER; 2402 } 2403 ret = f2fs_init_compress_ctx(&cc); 2404 if (ret) 2405 goto set_error_page; 2406 2407 f2fs_compress_ctx_add_page(&cc, page); 2408 2409 goto next_page; 2410 } 2411 read_single_page: 2412 #endif 2413 2414 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2415 &bio, &last_block_in_bio, rac); 2416 if (ret) { 2417 #ifdef CONFIG_F2FS_FS_COMPRESSION 2418 set_error_page: 2419 #endif 2420 zero_user_segment(page, 0, PAGE_SIZE); 2421 unlock_page(page); 2422 } 2423 #ifdef CONFIG_F2FS_FS_COMPRESSION 2424 next_page: 2425 #endif 2426 if (rac) 2427 put_page(page); 2428 2429 #ifdef CONFIG_F2FS_FS_COMPRESSION 2430 if (f2fs_compressed_file(inode)) { 2431 /* last page */ 2432 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2433 ret = f2fs_read_multi_pages(&cc, &bio, 2434 max_nr_pages, 2435 &last_block_in_bio, 2436 rac != NULL, false); 2437 f2fs_destroy_compress_ctx(&cc, false); 2438 } 2439 } 2440 #endif 2441 } 2442 if (bio) 2443 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2444 return ret; 2445 } 2446 2447 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2448 { 2449 struct page *page = &folio->page; 2450 struct inode *inode = page_file_mapping(page)->host; 2451 int ret = -EAGAIN; 2452 2453 trace_f2fs_readpage(page, DATA); 2454 2455 if (!f2fs_is_compress_backend_ready(inode)) { 2456 unlock_page(page); 2457 return -EOPNOTSUPP; 2458 } 2459 2460 /* If the file has inline data, try to read it directly */ 2461 if (f2fs_has_inline_data(inode)) 2462 ret = f2fs_read_inline_data(inode, page); 2463 if (ret == -EAGAIN) 2464 ret = f2fs_mpage_readpages(inode, NULL, page); 2465 return ret; 2466 } 2467 2468 static void f2fs_readahead(struct readahead_control *rac) 2469 { 2470 struct inode *inode = rac->mapping->host; 2471 2472 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2473 2474 if (!f2fs_is_compress_backend_ready(inode)) 2475 return; 2476 2477 /* If the file has inline data, skip readahead */ 2478 if (f2fs_has_inline_data(inode)) 2479 return; 2480 2481 f2fs_mpage_readpages(inode, rac, NULL); 2482 } 2483 2484 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2485 { 2486 struct inode *inode = fio->page->mapping->host; 2487 struct page *mpage, *page; 2488 gfp_t gfp_flags = GFP_NOFS; 2489 2490 if (!f2fs_encrypted_file(inode)) 2491 return 0; 2492 2493 page = fio->compressed_page ? fio->compressed_page : fio->page; 2494 2495 /* wait for GCed page writeback via META_MAPPING */ 2496 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2497 2498 if (fscrypt_inode_uses_inline_crypto(inode)) 2499 return 0; 2500 2501 retry_encrypt: 2502 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2503 PAGE_SIZE, 0, gfp_flags); 2504 if (IS_ERR(fio->encrypted_page)) { 2505 /* flush pending IOs and wait for a while in the ENOMEM case */ 2506 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2507 f2fs_flush_merged_writes(fio->sbi); 2508 memalloc_retry_wait(GFP_NOFS); 2509 gfp_flags |= __GFP_NOFAIL; 2510 goto retry_encrypt; 2511 } 2512 return PTR_ERR(fio->encrypted_page); 2513 } 2514 2515 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2516 if (mpage) { 2517 if (PageUptodate(mpage)) 2518 memcpy(page_address(mpage), 2519 page_address(fio->encrypted_page), PAGE_SIZE); 2520 f2fs_put_page(mpage, 1); 2521 } 2522 return 0; 2523 } 2524 2525 static inline bool check_inplace_update_policy(struct inode *inode, 2526 struct f2fs_io_info *fio) 2527 { 2528 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2529 unsigned int policy = SM_I(sbi)->ipu_policy; 2530 2531 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) && 2532 is_inode_flag_set(inode, FI_OPU_WRITE)) 2533 return false; 2534 if (policy & (0x1 << F2FS_IPU_FORCE)) 2535 return true; 2536 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2537 return true; 2538 if (policy & (0x1 << F2FS_IPU_UTIL) && 2539 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2540 return true; 2541 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2542 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2543 return true; 2544 2545 /* 2546 * IPU for rewrite async pages 2547 */ 2548 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2549 fio && fio->op == REQ_OP_WRITE && 2550 !(fio->op_flags & REQ_SYNC) && 2551 !IS_ENCRYPTED(inode)) 2552 return true; 2553 2554 /* this is only set during fdatasync */ 2555 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2556 is_inode_flag_set(inode, FI_NEED_IPU)) 2557 return true; 2558 2559 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2560 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2561 return true; 2562 2563 return false; 2564 } 2565 2566 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2567 { 2568 /* swap file is migrating in aligned write mode */ 2569 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2570 return false; 2571 2572 if (f2fs_is_pinned_file(inode)) 2573 return true; 2574 2575 /* if this is cold file, we should overwrite to avoid fragmentation */ 2576 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2577 return true; 2578 2579 return check_inplace_update_policy(inode, fio); 2580 } 2581 2582 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2583 { 2584 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2585 2586 /* The below cases were checked when setting it. */ 2587 if (f2fs_is_pinned_file(inode)) 2588 return false; 2589 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2590 return true; 2591 if (f2fs_lfs_mode(sbi)) 2592 return true; 2593 if (S_ISDIR(inode->i_mode)) 2594 return true; 2595 if (IS_NOQUOTA(inode)) 2596 return true; 2597 if (f2fs_is_atomic_file(inode)) 2598 return true; 2599 2600 /* swap file is migrating in aligned write mode */ 2601 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2602 return true; 2603 2604 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2605 return true; 2606 2607 if (fio) { 2608 if (page_private_gcing(fio->page)) 2609 return true; 2610 if (page_private_dummy(fio->page)) 2611 return true; 2612 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2613 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2614 return true; 2615 } 2616 return false; 2617 } 2618 2619 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2620 { 2621 struct inode *inode = fio->page->mapping->host; 2622 2623 if (f2fs_should_update_outplace(inode, fio)) 2624 return false; 2625 2626 return f2fs_should_update_inplace(inode, fio); 2627 } 2628 2629 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2630 { 2631 struct page *page = fio->page; 2632 struct inode *inode = page->mapping->host; 2633 struct dnode_of_data dn; 2634 struct extent_info ei = {0, }; 2635 struct node_info ni; 2636 bool ipu_force = false; 2637 int err = 0; 2638 2639 /* Use COW inode to make dnode_of_data for atomic write */ 2640 if (f2fs_is_atomic_file(inode)) 2641 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2642 else 2643 set_new_dnode(&dn, inode, NULL, NULL, 0); 2644 2645 if (need_inplace_update(fio) && 2646 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2647 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2648 2649 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2650 DATA_GENERIC_ENHANCE)) { 2651 f2fs_handle_error(fio->sbi, 2652 ERROR_INVALID_BLKADDR); 2653 return -EFSCORRUPTED; 2654 } 2655 2656 ipu_force = true; 2657 fio->need_lock = LOCK_DONE; 2658 goto got_it; 2659 } 2660 2661 /* Deadlock due to between page->lock and f2fs_lock_op */ 2662 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2663 return -EAGAIN; 2664 2665 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2666 if (err) 2667 goto out; 2668 2669 fio->old_blkaddr = dn.data_blkaddr; 2670 2671 /* This page is already truncated */ 2672 if (fio->old_blkaddr == NULL_ADDR) { 2673 ClearPageUptodate(page); 2674 clear_page_private_gcing(page); 2675 goto out_writepage; 2676 } 2677 got_it: 2678 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2679 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2680 DATA_GENERIC_ENHANCE)) { 2681 err = -EFSCORRUPTED; 2682 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR); 2683 goto out_writepage; 2684 } 2685 2686 /* 2687 * If current allocation needs SSR, 2688 * it had better in-place writes for updated data. 2689 */ 2690 if (ipu_force || 2691 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2692 need_inplace_update(fio))) { 2693 err = f2fs_encrypt_one_page(fio); 2694 if (err) 2695 goto out_writepage; 2696 2697 set_page_writeback(page); 2698 ClearPageError(page); 2699 f2fs_put_dnode(&dn); 2700 if (fio->need_lock == LOCK_REQ) 2701 f2fs_unlock_op(fio->sbi); 2702 err = f2fs_inplace_write_data(fio); 2703 if (err) { 2704 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2705 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2706 if (PageWriteback(page)) 2707 end_page_writeback(page); 2708 } else { 2709 set_inode_flag(inode, FI_UPDATE_WRITE); 2710 } 2711 trace_f2fs_do_write_data_page(fio->page, IPU); 2712 return err; 2713 } 2714 2715 if (fio->need_lock == LOCK_RETRY) { 2716 if (!f2fs_trylock_op(fio->sbi)) { 2717 err = -EAGAIN; 2718 goto out_writepage; 2719 } 2720 fio->need_lock = LOCK_REQ; 2721 } 2722 2723 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2724 if (err) 2725 goto out_writepage; 2726 2727 fio->version = ni.version; 2728 2729 err = f2fs_encrypt_one_page(fio); 2730 if (err) 2731 goto out_writepage; 2732 2733 set_page_writeback(page); 2734 ClearPageError(page); 2735 2736 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2737 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2738 2739 /* LFS mode write path */ 2740 f2fs_outplace_write_data(&dn, fio); 2741 trace_f2fs_do_write_data_page(page, OPU); 2742 set_inode_flag(inode, FI_APPEND_WRITE); 2743 if (page->index == 0) 2744 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2745 out_writepage: 2746 f2fs_put_dnode(&dn); 2747 out: 2748 if (fio->need_lock == LOCK_REQ) 2749 f2fs_unlock_op(fio->sbi); 2750 return err; 2751 } 2752 2753 int f2fs_write_single_data_page(struct page *page, int *submitted, 2754 struct bio **bio, 2755 sector_t *last_block, 2756 struct writeback_control *wbc, 2757 enum iostat_type io_type, 2758 int compr_blocks, 2759 bool allow_balance) 2760 { 2761 struct inode *inode = page->mapping->host; 2762 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2763 loff_t i_size = i_size_read(inode); 2764 const pgoff_t end_index = ((unsigned long long)i_size) 2765 >> PAGE_SHIFT; 2766 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2767 unsigned offset = 0; 2768 bool need_balance_fs = false; 2769 int err = 0; 2770 struct f2fs_io_info fio = { 2771 .sbi = sbi, 2772 .ino = inode->i_ino, 2773 .type = DATA, 2774 .op = REQ_OP_WRITE, 2775 .op_flags = wbc_to_write_flags(wbc), 2776 .old_blkaddr = NULL_ADDR, 2777 .page = page, 2778 .encrypted_page = NULL, 2779 .submitted = false, 2780 .compr_blocks = compr_blocks, 2781 .need_lock = LOCK_RETRY, 2782 .post_read = f2fs_post_read_required(inode), 2783 .io_type = io_type, 2784 .io_wbc = wbc, 2785 .bio = bio, 2786 .last_block = last_block, 2787 }; 2788 2789 trace_f2fs_writepage(page, DATA); 2790 2791 /* we should bypass data pages to proceed the kworkder jobs */ 2792 if (unlikely(f2fs_cp_error(sbi))) { 2793 mapping_set_error(page->mapping, -EIO); 2794 /* 2795 * don't drop any dirty dentry pages for keeping lastest 2796 * directory structure. 2797 */ 2798 if (S_ISDIR(inode->i_mode)) 2799 goto redirty_out; 2800 goto out; 2801 } 2802 2803 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2804 goto redirty_out; 2805 2806 if (page->index < end_index || 2807 f2fs_verity_in_progress(inode) || 2808 compr_blocks) 2809 goto write; 2810 2811 /* 2812 * If the offset is out-of-range of file size, 2813 * this page does not have to be written to disk. 2814 */ 2815 offset = i_size & (PAGE_SIZE - 1); 2816 if ((page->index >= end_index + 1) || !offset) 2817 goto out; 2818 2819 zero_user_segment(page, offset, PAGE_SIZE); 2820 write: 2821 if (f2fs_is_drop_cache(inode)) 2822 goto out; 2823 2824 /* Dentry/quota blocks are controlled by checkpoint */ 2825 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2826 /* 2827 * We need to wait for node_write to avoid block allocation during 2828 * checkpoint. This can only happen to quota writes which can cause 2829 * the below discard race condition. 2830 */ 2831 if (IS_NOQUOTA(inode)) 2832 f2fs_down_read(&sbi->node_write); 2833 2834 fio.need_lock = LOCK_DONE; 2835 err = f2fs_do_write_data_page(&fio); 2836 2837 if (IS_NOQUOTA(inode)) 2838 f2fs_up_read(&sbi->node_write); 2839 2840 goto done; 2841 } 2842 2843 if (!wbc->for_reclaim) 2844 need_balance_fs = true; 2845 else if (has_not_enough_free_secs(sbi, 0, 0)) 2846 goto redirty_out; 2847 else 2848 set_inode_flag(inode, FI_HOT_DATA); 2849 2850 err = -EAGAIN; 2851 if (f2fs_has_inline_data(inode)) { 2852 err = f2fs_write_inline_data(inode, page); 2853 if (!err) 2854 goto out; 2855 } 2856 2857 if (err == -EAGAIN) { 2858 err = f2fs_do_write_data_page(&fio); 2859 if (err == -EAGAIN) { 2860 fio.need_lock = LOCK_REQ; 2861 err = f2fs_do_write_data_page(&fio); 2862 } 2863 } 2864 2865 if (err) { 2866 file_set_keep_isize(inode); 2867 } else { 2868 spin_lock(&F2FS_I(inode)->i_size_lock); 2869 if (F2FS_I(inode)->last_disk_size < psize) 2870 F2FS_I(inode)->last_disk_size = psize; 2871 spin_unlock(&F2FS_I(inode)->i_size_lock); 2872 } 2873 2874 done: 2875 if (err && err != -ENOENT) 2876 goto redirty_out; 2877 2878 out: 2879 inode_dec_dirty_pages(inode); 2880 if (err) { 2881 ClearPageUptodate(page); 2882 clear_page_private_gcing(page); 2883 } 2884 2885 if (wbc->for_reclaim) { 2886 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2887 clear_inode_flag(inode, FI_HOT_DATA); 2888 f2fs_remove_dirty_inode(inode); 2889 submitted = NULL; 2890 } 2891 unlock_page(page); 2892 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2893 !F2FS_I(inode)->wb_task && allow_balance) 2894 f2fs_balance_fs(sbi, need_balance_fs); 2895 2896 if (unlikely(f2fs_cp_error(sbi))) { 2897 f2fs_submit_merged_write(sbi, DATA); 2898 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2899 submitted = NULL; 2900 } 2901 2902 if (submitted) 2903 *submitted = fio.submitted ? 1 : 0; 2904 2905 return 0; 2906 2907 redirty_out: 2908 redirty_page_for_writepage(wbc, page); 2909 /* 2910 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2911 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2912 * file_write_and_wait_range() will see EIO error, which is critical 2913 * to return value of fsync() followed by atomic_write failure to user. 2914 */ 2915 if (!err || wbc->for_reclaim) 2916 return AOP_WRITEPAGE_ACTIVATE; 2917 unlock_page(page); 2918 return err; 2919 } 2920 2921 static int f2fs_write_data_page(struct page *page, 2922 struct writeback_control *wbc) 2923 { 2924 #ifdef CONFIG_F2FS_FS_COMPRESSION 2925 struct inode *inode = page->mapping->host; 2926 2927 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2928 goto out; 2929 2930 if (f2fs_compressed_file(inode)) { 2931 if (f2fs_is_compressed_cluster(inode, page->index)) { 2932 redirty_page_for_writepage(wbc, page); 2933 return AOP_WRITEPAGE_ACTIVATE; 2934 } 2935 } 2936 out: 2937 #endif 2938 2939 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2940 wbc, FS_DATA_IO, 0, true); 2941 } 2942 2943 /* 2944 * This function was copied from write_cche_pages from mm/page-writeback.c. 2945 * The major change is making write step of cold data page separately from 2946 * warm/hot data page. 2947 */ 2948 static int f2fs_write_cache_pages(struct address_space *mapping, 2949 struct writeback_control *wbc, 2950 enum iostat_type io_type) 2951 { 2952 int ret = 0; 2953 int done = 0, retry = 0; 2954 struct page *pages[F2FS_ONSTACK_PAGES]; 2955 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2956 struct bio *bio = NULL; 2957 sector_t last_block; 2958 #ifdef CONFIG_F2FS_FS_COMPRESSION 2959 struct inode *inode = mapping->host; 2960 struct compress_ctx cc = { 2961 .inode = inode, 2962 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2963 .cluster_size = F2FS_I(inode)->i_cluster_size, 2964 .cluster_idx = NULL_CLUSTER, 2965 .rpages = NULL, 2966 .nr_rpages = 0, 2967 .cpages = NULL, 2968 .valid_nr_cpages = 0, 2969 .rbuf = NULL, 2970 .cbuf = NULL, 2971 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2972 .private = NULL, 2973 }; 2974 #endif 2975 int nr_pages; 2976 pgoff_t index; 2977 pgoff_t end; /* Inclusive */ 2978 pgoff_t done_index; 2979 int range_whole = 0; 2980 xa_mark_t tag; 2981 int nwritten = 0; 2982 int submitted = 0; 2983 int i; 2984 2985 if (get_dirty_pages(mapping->host) <= 2986 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2987 set_inode_flag(mapping->host, FI_HOT_DATA); 2988 else 2989 clear_inode_flag(mapping->host, FI_HOT_DATA); 2990 2991 if (wbc->range_cyclic) { 2992 index = mapping->writeback_index; /* prev offset */ 2993 end = -1; 2994 } else { 2995 index = wbc->range_start >> PAGE_SHIFT; 2996 end = wbc->range_end >> PAGE_SHIFT; 2997 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2998 range_whole = 1; 2999 } 3000 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3001 tag = PAGECACHE_TAG_TOWRITE; 3002 else 3003 tag = PAGECACHE_TAG_DIRTY; 3004 retry: 3005 retry = 0; 3006 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3007 tag_pages_for_writeback(mapping, index, end); 3008 done_index = index; 3009 while (!done && !retry && (index <= end)) { 3010 nr_pages = find_get_pages_range_tag(mapping, &index, end, 3011 tag, F2FS_ONSTACK_PAGES, pages); 3012 if (nr_pages == 0) 3013 break; 3014 3015 for (i = 0; i < nr_pages; i++) { 3016 struct page *page = pages[i]; 3017 bool need_readd; 3018 readd: 3019 need_readd = false; 3020 #ifdef CONFIG_F2FS_FS_COMPRESSION 3021 if (f2fs_compressed_file(inode)) { 3022 void *fsdata = NULL; 3023 struct page *pagep; 3024 int ret2; 3025 3026 ret = f2fs_init_compress_ctx(&cc); 3027 if (ret) { 3028 done = 1; 3029 break; 3030 } 3031 3032 if (!f2fs_cluster_can_merge_page(&cc, 3033 page->index)) { 3034 ret = f2fs_write_multi_pages(&cc, 3035 &submitted, wbc, io_type); 3036 if (!ret) 3037 need_readd = true; 3038 goto result; 3039 } 3040 3041 if (unlikely(f2fs_cp_error(sbi))) 3042 goto lock_page; 3043 3044 if (!f2fs_cluster_is_empty(&cc)) 3045 goto lock_page; 3046 3047 if (f2fs_all_cluster_page_ready(&cc, 3048 pages, i, nr_pages, true)) 3049 goto lock_page; 3050 3051 ret2 = f2fs_prepare_compress_overwrite( 3052 inode, &pagep, 3053 page->index, &fsdata); 3054 if (ret2 < 0) { 3055 ret = ret2; 3056 done = 1; 3057 break; 3058 } else if (ret2 && 3059 (!f2fs_compress_write_end(inode, 3060 fsdata, page->index, 1) || 3061 !f2fs_all_cluster_page_ready(&cc, 3062 pages, i, nr_pages, false))) { 3063 retry = 1; 3064 break; 3065 } 3066 } 3067 #endif 3068 /* give a priority to WB_SYNC threads */ 3069 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3070 wbc->sync_mode == WB_SYNC_NONE) { 3071 done = 1; 3072 break; 3073 } 3074 #ifdef CONFIG_F2FS_FS_COMPRESSION 3075 lock_page: 3076 #endif 3077 done_index = page->index; 3078 retry_write: 3079 lock_page(page); 3080 3081 if (unlikely(page->mapping != mapping)) { 3082 continue_unlock: 3083 unlock_page(page); 3084 continue; 3085 } 3086 3087 if (!PageDirty(page)) { 3088 /* someone wrote it for us */ 3089 goto continue_unlock; 3090 } 3091 3092 if (PageWriteback(page)) { 3093 if (wbc->sync_mode != WB_SYNC_NONE) 3094 f2fs_wait_on_page_writeback(page, 3095 DATA, true, true); 3096 else 3097 goto continue_unlock; 3098 } 3099 3100 if (!clear_page_dirty_for_io(page)) 3101 goto continue_unlock; 3102 3103 #ifdef CONFIG_F2FS_FS_COMPRESSION 3104 if (f2fs_compressed_file(inode)) { 3105 get_page(page); 3106 f2fs_compress_ctx_add_page(&cc, page); 3107 continue; 3108 } 3109 #endif 3110 ret = f2fs_write_single_data_page(page, &submitted, 3111 &bio, &last_block, wbc, io_type, 3112 0, true); 3113 if (ret == AOP_WRITEPAGE_ACTIVATE) 3114 unlock_page(page); 3115 #ifdef CONFIG_F2FS_FS_COMPRESSION 3116 result: 3117 #endif 3118 nwritten += submitted; 3119 wbc->nr_to_write -= submitted; 3120 3121 if (unlikely(ret)) { 3122 /* 3123 * keep nr_to_write, since vfs uses this to 3124 * get # of written pages. 3125 */ 3126 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3127 ret = 0; 3128 goto next; 3129 } else if (ret == -EAGAIN) { 3130 ret = 0; 3131 if (wbc->sync_mode == WB_SYNC_ALL) { 3132 f2fs_io_schedule_timeout( 3133 DEFAULT_IO_TIMEOUT); 3134 goto retry_write; 3135 } 3136 goto next; 3137 } 3138 done_index = page->index + 1; 3139 done = 1; 3140 break; 3141 } 3142 3143 if (wbc->nr_to_write <= 0 && 3144 wbc->sync_mode == WB_SYNC_NONE) { 3145 done = 1; 3146 break; 3147 } 3148 next: 3149 if (need_readd) 3150 goto readd; 3151 } 3152 release_pages(pages, nr_pages); 3153 cond_resched(); 3154 } 3155 #ifdef CONFIG_F2FS_FS_COMPRESSION 3156 /* flush remained pages in compress cluster */ 3157 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3158 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3159 nwritten += submitted; 3160 wbc->nr_to_write -= submitted; 3161 if (ret) { 3162 done = 1; 3163 retry = 0; 3164 } 3165 } 3166 if (f2fs_compressed_file(inode)) 3167 f2fs_destroy_compress_ctx(&cc, false); 3168 #endif 3169 if (retry) { 3170 index = 0; 3171 end = -1; 3172 goto retry; 3173 } 3174 if (wbc->range_cyclic && !done) 3175 done_index = 0; 3176 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3177 mapping->writeback_index = done_index; 3178 3179 if (nwritten) 3180 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3181 NULL, 0, DATA); 3182 /* submit cached bio of IPU write */ 3183 if (bio) 3184 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3185 3186 return ret; 3187 } 3188 3189 static inline bool __should_serialize_io(struct inode *inode, 3190 struct writeback_control *wbc) 3191 { 3192 /* to avoid deadlock in path of data flush */ 3193 if (F2FS_I(inode)->wb_task) 3194 return false; 3195 3196 if (!S_ISREG(inode->i_mode)) 3197 return false; 3198 if (IS_NOQUOTA(inode)) 3199 return false; 3200 3201 if (f2fs_need_compress_data(inode)) 3202 return true; 3203 if (wbc->sync_mode != WB_SYNC_ALL) 3204 return true; 3205 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3206 return true; 3207 return false; 3208 } 3209 3210 static int __f2fs_write_data_pages(struct address_space *mapping, 3211 struct writeback_control *wbc, 3212 enum iostat_type io_type) 3213 { 3214 struct inode *inode = mapping->host; 3215 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3216 struct blk_plug plug; 3217 int ret; 3218 bool locked = false; 3219 3220 /* deal with chardevs and other special file */ 3221 if (!mapping->a_ops->writepage) 3222 return 0; 3223 3224 /* skip writing if there is no dirty page in this inode */ 3225 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3226 return 0; 3227 3228 /* during POR, we don't need to trigger writepage at all. */ 3229 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3230 goto skip_write; 3231 3232 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3233 wbc->sync_mode == WB_SYNC_NONE && 3234 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3235 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3236 goto skip_write; 3237 3238 /* skip writing in file defragment preparing stage */ 3239 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3240 goto skip_write; 3241 3242 trace_f2fs_writepages(mapping->host, wbc, DATA); 3243 3244 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3245 if (wbc->sync_mode == WB_SYNC_ALL) 3246 atomic_inc(&sbi->wb_sync_req[DATA]); 3247 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3248 /* to avoid potential deadlock */ 3249 if (current->plug) 3250 blk_finish_plug(current->plug); 3251 goto skip_write; 3252 } 3253 3254 if (__should_serialize_io(inode, wbc)) { 3255 mutex_lock(&sbi->writepages); 3256 locked = true; 3257 } 3258 3259 blk_start_plug(&plug); 3260 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3261 blk_finish_plug(&plug); 3262 3263 if (locked) 3264 mutex_unlock(&sbi->writepages); 3265 3266 if (wbc->sync_mode == WB_SYNC_ALL) 3267 atomic_dec(&sbi->wb_sync_req[DATA]); 3268 /* 3269 * if some pages were truncated, we cannot guarantee its mapping->host 3270 * to detect pending bios. 3271 */ 3272 3273 f2fs_remove_dirty_inode(inode); 3274 return ret; 3275 3276 skip_write: 3277 wbc->pages_skipped += get_dirty_pages(inode); 3278 trace_f2fs_writepages(mapping->host, wbc, DATA); 3279 return 0; 3280 } 3281 3282 static int f2fs_write_data_pages(struct address_space *mapping, 3283 struct writeback_control *wbc) 3284 { 3285 struct inode *inode = mapping->host; 3286 3287 return __f2fs_write_data_pages(mapping, wbc, 3288 F2FS_I(inode)->cp_task == current ? 3289 FS_CP_DATA_IO : FS_DATA_IO); 3290 } 3291 3292 void f2fs_write_failed(struct inode *inode, loff_t to) 3293 { 3294 loff_t i_size = i_size_read(inode); 3295 3296 if (IS_NOQUOTA(inode)) 3297 return; 3298 3299 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3300 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3301 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3302 filemap_invalidate_lock(inode->i_mapping); 3303 3304 truncate_pagecache(inode, i_size); 3305 f2fs_truncate_blocks(inode, i_size, true); 3306 3307 filemap_invalidate_unlock(inode->i_mapping); 3308 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3309 } 3310 } 3311 3312 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3313 struct page *page, loff_t pos, unsigned len, 3314 block_t *blk_addr, bool *node_changed) 3315 { 3316 struct inode *inode = page->mapping->host; 3317 pgoff_t index = page->index; 3318 struct dnode_of_data dn; 3319 struct page *ipage; 3320 bool locked = false; 3321 struct extent_info ei = {0, }; 3322 int err = 0; 3323 int flag; 3324 3325 /* 3326 * If a whole page is being written and we already preallocated all the 3327 * blocks, then there is no need to get a block address now. 3328 */ 3329 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3330 return 0; 3331 3332 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3333 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3334 flag = F2FS_GET_BLOCK_DEFAULT; 3335 else 3336 flag = F2FS_GET_BLOCK_PRE_AIO; 3337 3338 if (f2fs_has_inline_data(inode) || 3339 (pos & PAGE_MASK) >= i_size_read(inode)) { 3340 f2fs_do_map_lock(sbi, flag, true); 3341 locked = true; 3342 } 3343 3344 restart: 3345 /* check inline_data */ 3346 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3347 if (IS_ERR(ipage)) { 3348 err = PTR_ERR(ipage); 3349 goto unlock_out; 3350 } 3351 3352 set_new_dnode(&dn, inode, ipage, ipage, 0); 3353 3354 if (f2fs_has_inline_data(inode)) { 3355 if (pos + len <= MAX_INLINE_DATA(inode)) { 3356 f2fs_do_read_inline_data(page, ipage); 3357 set_inode_flag(inode, FI_DATA_EXIST); 3358 if (inode->i_nlink) 3359 set_page_private_inline(ipage); 3360 } else { 3361 err = f2fs_convert_inline_page(&dn, page); 3362 if (err) 3363 goto out; 3364 if (dn.data_blkaddr == NULL_ADDR) 3365 err = f2fs_get_block(&dn, index); 3366 } 3367 } else if (locked) { 3368 err = f2fs_get_block(&dn, index); 3369 } else { 3370 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3371 dn.data_blkaddr = ei.blk + index - ei.fofs; 3372 } else { 3373 /* hole case */ 3374 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3375 if (err || dn.data_blkaddr == NULL_ADDR) { 3376 f2fs_put_dnode(&dn); 3377 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3378 true); 3379 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3380 locked = true; 3381 goto restart; 3382 } 3383 } 3384 } 3385 3386 /* convert_inline_page can make node_changed */ 3387 *blk_addr = dn.data_blkaddr; 3388 *node_changed = dn.node_changed; 3389 out: 3390 f2fs_put_dnode(&dn); 3391 unlock_out: 3392 if (locked) 3393 f2fs_do_map_lock(sbi, flag, false); 3394 return err; 3395 } 3396 3397 static int __find_data_block(struct inode *inode, pgoff_t index, 3398 block_t *blk_addr) 3399 { 3400 struct dnode_of_data dn; 3401 struct page *ipage; 3402 struct extent_info ei = {0, }; 3403 int err = 0; 3404 3405 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 3406 if (IS_ERR(ipage)) 3407 return PTR_ERR(ipage); 3408 3409 set_new_dnode(&dn, inode, ipage, ipage, 0); 3410 3411 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3412 dn.data_blkaddr = ei.blk + index - ei.fofs; 3413 } else { 3414 /* hole case */ 3415 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3416 if (err) { 3417 dn.data_blkaddr = NULL_ADDR; 3418 err = 0; 3419 } 3420 } 3421 *blk_addr = dn.data_blkaddr; 3422 f2fs_put_dnode(&dn); 3423 return err; 3424 } 3425 3426 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3427 block_t *blk_addr, bool *node_changed) 3428 { 3429 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3430 struct dnode_of_data dn; 3431 struct page *ipage; 3432 int err = 0; 3433 3434 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true); 3435 3436 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3437 if (IS_ERR(ipage)) { 3438 err = PTR_ERR(ipage); 3439 goto unlock_out; 3440 } 3441 set_new_dnode(&dn, inode, ipage, ipage, 0); 3442 3443 err = f2fs_get_block(&dn, index); 3444 3445 *blk_addr = dn.data_blkaddr; 3446 *node_changed = dn.node_changed; 3447 f2fs_put_dnode(&dn); 3448 3449 unlock_out: 3450 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false); 3451 return err; 3452 } 3453 3454 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3455 struct page *page, loff_t pos, unsigned int len, 3456 block_t *blk_addr, bool *node_changed) 3457 { 3458 struct inode *inode = page->mapping->host; 3459 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3460 pgoff_t index = page->index; 3461 int err = 0; 3462 block_t ori_blk_addr = NULL_ADDR; 3463 3464 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3465 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3466 goto reserve_block; 3467 3468 /* Look for the block in COW inode first */ 3469 err = __find_data_block(cow_inode, index, blk_addr); 3470 if (err) 3471 return err; 3472 else if (*blk_addr != NULL_ADDR) 3473 return 0; 3474 3475 /* Look for the block in the original inode */ 3476 err = __find_data_block(inode, index, &ori_blk_addr); 3477 if (err) 3478 return err; 3479 3480 reserve_block: 3481 /* Finally, we should reserve a new block in COW inode for the update */ 3482 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3483 if (err) 3484 return err; 3485 inc_atomic_write_cnt(inode); 3486 3487 if (ori_blk_addr != NULL_ADDR) 3488 *blk_addr = ori_blk_addr; 3489 return 0; 3490 } 3491 3492 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3493 loff_t pos, unsigned len, struct page **pagep, void **fsdata) 3494 { 3495 struct inode *inode = mapping->host; 3496 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3497 struct page *page = NULL; 3498 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3499 bool need_balance = false; 3500 block_t blkaddr = NULL_ADDR; 3501 int err = 0; 3502 3503 trace_f2fs_write_begin(inode, pos, len); 3504 3505 if (!f2fs_is_checkpoint_ready(sbi)) { 3506 err = -ENOSPC; 3507 goto fail; 3508 } 3509 3510 /* 3511 * We should check this at this moment to avoid deadlock on inode page 3512 * and #0 page. The locking rule for inline_data conversion should be: 3513 * lock_page(page #0) -> lock_page(inode_page) 3514 */ 3515 if (index != 0) { 3516 err = f2fs_convert_inline_inode(inode); 3517 if (err) 3518 goto fail; 3519 } 3520 3521 #ifdef CONFIG_F2FS_FS_COMPRESSION 3522 if (f2fs_compressed_file(inode)) { 3523 int ret; 3524 3525 *fsdata = NULL; 3526 3527 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3528 goto repeat; 3529 3530 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3531 index, fsdata); 3532 if (ret < 0) { 3533 err = ret; 3534 goto fail; 3535 } else if (ret) { 3536 return 0; 3537 } 3538 } 3539 #endif 3540 3541 repeat: 3542 /* 3543 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3544 * wait_for_stable_page. Will wait that below with our IO control. 3545 */ 3546 page = f2fs_pagecache_get_page(mapping, index, 3547 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3548 if (!page) { 3549 err = -ENOMEM; 3550 goto fail; 3551 } 3552 3553 /* TODO: cluster can be compressed due to race with .writepage */ 3554 3555 *pagep = page; 3556 3557 if (f2fs_is_atomic_file(inode)) 3558 err = prepare_atomic_write_begin(sbi, page, pos, len, 3559 &blkaddr, &need_balance); 3560 else 3561 err = prepare_write_begin(sbi, page, pos, len, 3562 &blkaddr, &need_balance); 3563 if (err) 3564 goto fail; 3565 3566 if (need_balance && !IS_NOQUOTA(inode) && 3567 has_not_enough_free_secs(sbi, 0, 0)) { 3568 unlock_page(page); 3569 f2fs_balance_fs(sbi, true); 3570 lock_page(page); 3571 if (page->mapping != mapping) { 3572 /* The page got truncated from under us */ 3573 f2fs_put_page(page, 1); 3574 goto repeat; 3575 } 3576 } 3577 3578 f2fs_wait_on_page_writeback(page, DATA, false, true); 3579 3580 if (len == PAGE_SIZE || PageUptodate(page)) 3581 return 0; 3582 3583 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3584 !f2fs_verity_in_progress(inode)) { 3585 zero_user_segment(page, len, PAGE_SIZE); 3586 return 0; 3587 } 3588 3589 if (blkaddr == NEW_ADDR) { 3590 zero_user_segment(page, 0, PAGE_SIZE); 3591 SetPageUptodate(page); 3592 } else { 3593 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3594 DATA_GENERIC_ENHANCE_READ)) { 3595 err = -EFSCORRUPTED; 3596 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR); 3597 goto fail; 3598 } 3599 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3600 if (err) 3601 goto fail; 3602 3603 lock_page(page); 3604 if (unlikely(page->mapping != mapping)) { 3605 f2fs_put_page(page, 1); 3606 goto repeat; 3607 } 3608 if (unlikely(!PageUptodate(page))) { 3609 err = -EIO; 3610 goto fail; 3611 } 3612 } 3613 return 0; 3614 3615 fail: 3616 f2fs_put_page(page, 1); 3617 f2fs_write_failed(inode, pos + len); 3618 return err; 3619 } 3620 3621 static int f2fs_write_end(struct file *file, 3622 struct address_space *mapping, 3623 loff_t pos, unsigned len, unsigned copied, 3624 struct page *page, void *fsdata) 3625 { 3626 struct inode *inode = page->mapping->host; 3627 3628 trace_f2fs_write_end(inode, pos, len, copied); 3629 3630 /* 3631 * This should be come from len == PAGE_SIZE, and we expect copied 3632 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3633 * let generic_perform_write() try to copy data again through copied=0. 3634 */ 3635 if (!PageUptodate(page)) { 3636 if (unlikely(copied != len)) 3637 copied = 0; 3638 else 3639 SetPageUptodate(page); 3640 } 3641 3642 #ifdef CONFIG_F2FS_FS_COMPRESSION 3643 /* overwrite compressed file */ 3644 if (f2fs_compressed_file(inode) && fsdata) { 3645 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3646 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3647 3648 if (pos + copied > i_size_read(inode) && 3649 !f2fs_verity_in_progress(inode)) 3650 f2fs_i_size_write(inode, pos + copied); 3651 return copied; 3652 } 3653 #endif 3654 3655 if (!copied) 3656 goto unlock_out; 3657 3658 set_page_dirty(page); 3659 3660 if (pos + copied > i_size_read(inode) && 3661 !f2fs_verity_in_progress(inode)) { 3662 f2fs_i_size_write(inode, pos + copied); 3663 if (f2fs_is_atomic_file(inode)) 3664 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3665 pos + copied); 3666 } 3667 unlock_out: 3668 f2fs_put_page(page, 1); 3669 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3670 return copied; 3671 } 3672 3673 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3674 { 3675 struct inode *inode = folio->mapping->host; 3676 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3677 3678 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3679 (offset || length != folio_size(folio))) 3680 return; 3681 3682 if (folio_test_dirty(folio)) { 3683 if (inode->i_ino == F2FS_META_INO(sbi)) { 3684 dec_page_count(sbi, F2FS_DIRTY_META); 3685 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3686 dec_page_count(sbi, F2FS_DIRTY_NODES); 3687 } else { 3688 inode_dec_dirty_pages(inode); 3689 f2fs_remove_dirty_inode(inode); 3690 } 3691 } 3692 3693 clear_page_private_gcing(&folio->page); 3694 3695 if (test_opt(sbi, COMPRESS_CACHE) && 3696 inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3697 clear_page_private_data(&folio->page); 3698 3699 folio_detach_private(folio); 3700 } 3701 3702 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3703 { 3704 struct f2fs_sb_info *sbi; 3705 3706 /* If this is dirty folio, keep private data */ 3707 if (folio_test_dirty(folio)) 3708 return false; 3709 3710 sbi = F2FS_M_SB(folio->mapping); 3711 if (test_opt(sbi, COMPRESS_CACHE)) { 3712 struct inode *inode = folio->mapping->host; 3713 3714 if (inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3715 clear_page_private_data(&folio->page); 3716 } 3717 3718 clear_page_private_gcing(&folio->page); 3719 3720 folio_detach_private(folio); 3721 return true; 3722 } 3723 3724 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3725 struct folio *folio) 3726 { 3727 struct inode *inode = mapping->host; 3728 3729 trace_f2fs_set_page_dirty(&folio->page, DATA); 3730 3731 if (!folio_test_uptodate(folio)) 3732 folio_mark_uptodate(folio); 3733 BUG_ON(folio_test_swapcache(folio)); 3734 3735 if (filemap_dirty_folio(mapping, folio)) { 3736 f2fs_update_dirty_folio(inode, folio); 3737 return true; 3738 } 3739 return false; 3740 } 3741 3742 3743 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3744 { 3745 #ifdef CONFIG_F2FS_FS_COMPRESSION 3746 struct dnode_of_data dn; 3747 sector_t start_idx, blknr = 0; 3748 int ret; 3749 3750 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3751 3752 set_new_dnode(&dn, inode, NULL, NULL, 0); 3753 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3754 if (ret) 3755 return 0; 3756 3757 if (dn.data_blkaddr != COMPRESS_ADDR) { 3758 dn.ofs_in_node += block - start_idx; 3759 blknr = f2fs_data_blkaddr(&dn); 3760 if (!__is_valid_data_blkaddr(blknr)) 3761 blknr = 0; 3762 } 3763 3764 f2fs_put_dnode(&dn); 3765 return blknr; 3766 #else 3767 return 0; 3768 #endif 3769 } 3770 3771 3772 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3773 { 3774 struct inode *inode = mapping->host; 3775 sector_t blknr = 0; 3776 3777 if (f2fs_has_inline_data(inode)) 3778 goto out; 3779 3780 /* make sure allocating whole blocks */ 3781 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3782 filemap_write_and_wait(mapping); 3783 3784 /* Block number less than F2FS MAX BLOCKS */ 3785 if (unlikely(block >= max_file_blocks(inode))) 3786 goto out; 3787 3788 if (f2fs_compressed_file(inode)) { 3789 blknr = f2fs_bmap_compress(inode, block); 3790 } else { 3791 struct f2fs_map_blocks map; 3792 3793 memset(&map, 0, sizeof(map)); 3794 map.m_lblk = block; 3795 map.m_len = 1; 3796 map.m_next_pgofs = NULL; 3797 map.m_seg_type = NO_CHECK_TYPE; 3798 3799 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3800 blknr = map.m_pblk; 3801 } 3802 out: 3803 trace_f2fs_bmap(inode, block, blknr); 3804 return blknr; 3805 } 3806 3807 #ifdef CONFIG_SWAP 3808 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3809 unsigned int blkcnt) 3810 { 3811 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3812 unsigned int blkofs; 3813 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3814 unsigned int secidx = start_blk / blk_per_sec; 3815 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3816 int ret = 0; 3817 3818 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3819 filemap_invalidate_lock(inode->i_mapping); 3820 3821 set_inode_flag(inode, FI_ALIGNED_WRITE); 3822 set_inode_flag(inode, FI_OPU_WRITE); 3823 3824 for (; secidx < end_sec; secidx++) { 3825 f2fs_down_write(&sbi->pin_sem); 3826 3827 f2fs_lock_op(sbi); 3828 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3829 f2fs_unlock_op(sbi); 3830 3831 set_inode_flag(inode, FI_SKIP_WRITES); 3832 3833 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3834 struct page *page; 3835 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3836 3837 page = f2fs_get_lock_data_page(inode, blkidx, true); 3838 if (IS_ERR(page)) { 3839 f2fs_up_write(&sbi->pin_sem); 3840 ret = PTR_ERR(page); 3841 goto done; 3842 } 3843 3844 set_page_dirty(page); 3845 f2fs_put_page(page, 1); 3846 } 3847 3848 clear_inode_flag(inode, FI_SKIP_WRITES); 3849 3850 ret = filemap_fdatawrite(inode->i_mapping); 3851 3852 f2fs_up_write(&sbi->pin_sem); 3853 3854 if (ret) 3855 break; 3856 } 3857 3858 done: 3859 clear_inode_flag(inode, FI_SKIP_WRITES); 3860 clear_inode_flag(inode, FI_OPU_WRITE); 3861 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3862 3863 filemap_invalidate_unlock(inode->i_mapping); 3864 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3865 3866 return ret; 3867 } 3868 3869 static int check_swap_activate(struct swap_info_struct *sis, 3870 struct file *swap_file, sector_t *span) 3871 { 3872 struct address_space *mapping = swap_file->f_mapping; 3873 struct inode *inode = mapping->host; 3874 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3875 sector_t cur_lblock; 3876 sector_t last_lblock; 3877 sector_t pblock; 3878 sector_t lowest_pblock = -1; 3879 sector_t highest_pblock = 0; 3880 int nr_extents = 0; 3881 unsigned long nr_pblocks; 3882 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3883 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3884 unsigned int not_aligned = 0; 3885 int ret = 0; 3886 3887 /* 3888 * Map all the blocks into the extent list. This code doesn't try 3889 * to be very smart. 3890 */ 3891 cur_lblock = 0; 3892 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3893 3894 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3895 struct f2fs_map_blocks map; 3896 retry: 3897 cond_resched(); 3898 3899 memset(&map, 0, sizeof(map)); 3900 map.m_lblk = cur_lblock; 3901 map.m_len = last_lblock - cur_lblock; 3902 map.m_next_pgofs = NULL; 3903 map.m_next_extent = NULL; 3904 map.m_seg_type = NO_CHECK_TYPE; 3905 map.m_may_create = false; 3906 3907 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3908 if (ret) 3909 goto out; 3910 3911 /* hole */ 3912 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3913 f2fs_err(sbi, "Swapfile has holes"); 3914 ret = -EINVAL; 3915 goto out; 3916 } 3917 3918 pblock = map.m_pblk; 3919 nr_pblocks = map.m_len; 3920 3921 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 3922 nr_pblocks & sec_blks_mask) { 3923 not_aligned++; 3924 3925 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3926 if (cur_lblock + nr_pblocks > sis->max) 3927 nr_pblocks -= blks_per_sec; 3928 3929 if (!nr_pblocks) { 3930 /* this extent is last one */ 3931 nr_pblocks = map.m_len; 3932 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 3933 goto next; 3934 } 3935 3936 ret = f2fs_migrate_blocks(inode, cur_lblock, 3937 nr_pblocks); 3938 if (ret) 3939 goto out; 3940 goto retry; 3941 } 3942 next: 3943 if (cur_lblock + nr_pblocks >= sis->max) 3944 nr_pblocks = sis->max - cur_lblock; 3945 3946 if (cur_lblock) { /* exclude the header page */ 3947 if (pblock < lowest_pblock) 3948 lowest_pblock = pblock; 3949 if (pblock + nr_pblocks - 1 > highest_pblock) 3950 highest_pblock = pblock + nr_pblocks - 1; 3951 } 3952 3953 /* 3954 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3955 */ 3956 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3957 if (ret < 0) 3958 goto out; 3959 nr_extents += ret; 3960 cur_lblock += nr_pblocks; 3961 } 3962 ret = nr_extents; 3963 *span = 1 + highest_pblock - lowest_pblock; 3964 if (cur_lblock == 0) 3965 cur_lblock = 1; /* force Empty message */ 3966 sis->max = cur_lblock; 3967 sis->pages = cur_lblock - 1; 3968 sis->highest_bit = cur_lblock - 1; 3969 out: 3970 if (not_aligned) 3971 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 3972 not_aligned, blks_per_sec * F2FS_BLKSIZE); 3973 return ret; 3974 } 3975 3976 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3977 sector_t *span) 3978 { 3979 struct inode *inode = file_inode(file); 3980 int ret; 3981 3982 if (!S_ISREG(inode->i_mode)) 3983 return -EINVAL; 3984 3985 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3986 return -EROFS; 3987 3988 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 3989 f2fs_err(F2FS_I_SB(inode), 3990 "Swapfile not supported in LFS mode"); 3991 return -EINVAL; 3992 } 3993 3994 ret = f2fs_convert_inline_inode(inode); 3995 if (ret) 3996 return ret; 3997 3998 if (!f2fs_disable_compressed_file(inode)) 3999 return -EINVAL; 4000 4001 f2fs_precache_extents(inode); 4002 4003 ret = check_swap_activate(sis, file, span); 4004 if (ret < 0) 4005 return ret; 4006 4007 stat_inc_swapfile_inode(inode); 4008 set_inode_flag(inode, FI_PIN_FILE); 4009 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 4010 return ret; 4011 } 4012 4013 static void f2fs_swap_deactivate(struct file *file) 4014 { 4015 struct inode *inode = file_inode(file); 4016 4017 stat_dec_swapfile_inode(inode); 4018 clear_inode_flag(inode, FI_PIN_FILE); 4019 } 4020 #else 4021 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4022 sector_t *span) 4023 { 4024 return -EOPNOTSUPP; 4025 } 4026 4027 static void f2fs_swap_deactivate(struct file *file) 4028 { 4029 } 4030 #endif 4031 4032 const struct address_space_operations f2fs_dblock_aops = { 4033 .read_folio = f2fs_read_data_folio, 4034 .readahead = f2fs_readahead, 4035 .writepage = f2fs_write_data_page, 4036 .writepages = f2fs_write_data_pages, 4037 .write_begin = f2fs_write_begin, 4038 .write_end = f2fs_write_end, 4039 .dirty_folio = f2fs_dirty_data_folio, 4040 .migrate_folio = filemap_migrate_folio, 4041 .invalidate_folio = f2fs_invalidate_folio, 4042 .release_folio = f2fs_release_folio, 4043 .direct_IO = noop_direct_IO, 4044 .bmap = f2fs_bmap, 4045 .swap_activate = f2fs_swap_activate, 4046 .swap_deactivate = f2fs_swap_deactivate, 4047 }; 4048 4049 void f2fs_clear_page_cache_dirty_tag(struct page *page) 4050 { 4051 struct address_space *mapping = page_mapping(page); 4052 unsigned long flags; 4053 4054 xa_lock_irqsave(&mapping->i_pages, flags); 4055 __xa_clear_mark(&mapping->i_pages, page_index(page), 4056 PAGECACHE_TAG_DIRTY); 4057 xa_unlock_irqrestore(&mapping->i_pages, flags); 4058 } 4059 4060 int __init f2fs_init_post_read_processing(void) 4061 { 4062 bio_post_read_ctx_cache = 4063 kmem_cache_create("f2fs_bio_post_read_ctx", 4064 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4065 if (!bio_post_read_ctx_cache) 4066 goto fail; 4067 bio_post_read_ctx_pool = 4068 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4069 bio_post_read_ctx_cache); 4070 if (!bio_post_read_ctx_pool) 4071 goto fail_free_cache; 4072 return 0; 4073 4074 fail_free_cache: 4075 kmem_cache_destroy(bio_post_read_ctx_cache); 4076 fail: 4077 return -ENOMEM; 4078 } 4079 4080 void f2fs_destroy_post_read_processing(void) 4081 { 4082 mempool_destroy(bio_post_read_ctx_pool); 4083 kmem_cache_destroy(bio_post_read_ctx_cache); 4084 } 4085 4086 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4087 { 4088 if (!f2fs_sb_has_encrypt(sbi) && 4089 !f2fs_sb_has_verity(sbi) && 4090 !f2fs_sb_has_compression(sbi)) 4091 return 0; 4092 4093 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4094 WQ_UNBOUND | WQ_HIGHPRI, 4095 num_online_cpus()); 4096 if (!sbi->post_read_wq) 4097 return -ENOMEM; 4098 return 0; 4099 } 4100 4101 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4102 { 4103 if (sbi->post_read_wq) 4104 destroy_workqueue(sbi->post_read_wq); 4105 } 4106 4107 int __init f2fs_init_bio_entry_cache(void) 4108 { 4109 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4110 sizeof(struct bio_entry)); 4111 if (!bio_entry_slab) 4112 return -ENOMEM; 4113 return 0; 4114 } 4115 4116 void f2fs_destroy_bio_entry_cache(void) 4117 { 4118 kmem_cache_destroy(bio_entry_slab); 4119 } 4120 4121 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4122 unsigned int flags, struct iomap *iomap, 4123 struct iomap *srcmap) 4124 { 4125 struct f2fs_map_blocks map = {}; 4126 pgoff_t next_pgofs = 0; 4127 int err; 4128 4129 map.m_lblk = bytes_to_blks(inode, offset); 4130 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4131 map.m_next_pgofs = &next_pgofs; 4132 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4133 if (flags & IOMAP_WRITE) 4134 map.m_may_create = true; 4135 4136 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE, 4137 F2FS_GET_BLOCK_DIO); 4138 if (err) 4139 return err; 4140 4141 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4142 4143 /* 4144 * When inline encryption is enabled, sometimes I/O to an encrypted file 4145 * has to be broken up to guarantee DUN contiguity. Handle this by 4146 * limiting the length of the mapping returned. 4147 */ 4148 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4149 4150 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) { 4151 iomap->length = blks_to_bytes(inode, map.m_len); 4152 if (map.m_flags & F2FS_MAP_MAPPED) { 4153 iomap->type = IOMAP_MAPPED; 4154 iomap->flags |= IOMAP_F_MERGED; 4155 } else { 4156 iomap->type = IOMAP_UNWRITTEN; 4157 } 4158 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk))) 4159 return -EINVAL; 4160 4161 iomap->bdev = map.m_bdev; 4162 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4163 } else { 4164 iomap->length = blks_to_bytes(inode, next_pgofs) - 4165 iomap->offset; 4166 iomap->type = IOMAP_HOLE; 4167 iomap->addr = IOMAP_NULL_ADDR; 4168 } 4169 4170 if (map.m_flags & F2FS_MAP_NEW) 4171 iomap->flags |= IOMAP_F_NEW; 4172 if ((inode->i_state & I_DIRTY_DATASYNC) || 4173 offset + length > i_size_read(inode)) 4174 iomap->flags |= IOMAP_F_DIRTY; 4175 4176 return 0; 4177 } 4178 4179 const struct iomap_ops f2fs_iomap_ops = { 4180 .iomap_begin = f2fs_iomap_begin, 4181 }; 4182