1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/sched/mm.h> 11 #include <linux/mpage.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/blkdev.h> 15 #include <linux/bio.h> 16 #include <linux/blk-crypto.h> 17 #include <linux/swap.h> 18 #include <linux/prefetch.h> 19 #include <linux/uio.h> 20 #include <linux/sched/signal.h> 21 #include <linux/fiemap.h> 22 #include <linux/iomap.h> 23 24 #include "f2fs.h" 25 #include "node.h" 26 #include "segment.h" 27 #include "iostat.h" 28 #include <trace/events/f2fs.h> 29 30 #define NUM_PREALLOC_POST_READ_CTXS 128 31 32 static struct kmem_cache *bio_post_read_ctx_cache; 33 static struct kmem_cache *bio_entry_slab; 34 static mempool_t *bio_post_read_ctx_pool; 35 static struct bio_set f2fs_bioset; 36 37 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 38 39 int __init f2fs_init_bioset(void) 40 { 41 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 42 0, BIOSET_NEED_BVECS); 43 } 44 45 void f2fs_destroy_bioset(void) 46 { 47 bioset_exit(&f2fs_bioset); 48 } 49 50 bool f2fs_is_cp_guaranteed(struct page *page) 51 { 52 struct address_space *mapping = page->mapping; 53 struct inode *inode; 54 struct f2fs_sb_info *sbi; 55 56 if (!mapping) 57 return false; 58 59 inode = mapping->host; 60 sbi = F2FS_I_SB(inode); 61 62 if (inode->i_ino == F2FS_META_INO(sbi) || 63 inode->i_ino == F2FS_NODE_INO(sbi) || 64 S_ISDIR(inode->i_mode)) 65 return true; 66 67 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) || 68 page_private_gcing(page)) 69 return true; 70 return false; 71 } 72 73 static enum count_type __read_io_type(struct folio *folio) 74 { 75 struct address_space *mapping = folio->mapping; 76 77 if (mapping) { 78 struct inode *inode = mapping->host; 79 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 80 81 if (inode->i_ino == F2FS_META_INO(sbi)) 82 return F2FS_RD_META; 83 84 if (inode->i_ino == F2FS_NODE_INO(sbi)) 85 return F2FS_RD_NODE; 86 } 87 return F2FS_RD_DATA; 88 } 89 90 /* postprocessing steps for read bios */ 91 enum bio_post_read_step { 92 #ifdef CONFIG_FS_ENCRYPTION 93 STEP_DECRYPT = BIT(0), 94 #else 95 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 96 #endif 97 #ifdef CONFIG_F2FS_FS_COMPRESSION 98 STEP_DECOMPRESS = BIT(1), 99 #else 100 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 101 #endif 102 #ifdef CONFIG_FS_VERITY 103 STEP_VERITY = BIT(2), 104 #else 105 STEP_VERITY = 0, /* compile out the verity-related code */ 106 #endif 107 }; 108 109 struct bio_post_read_ctx { 110 struct bio *bio; 111 struct f2fs_sb_info *sbi; 112 struct work_struct work; 113 unsigned int enabled_steps; 114 /* 115 * decompression_attempted keeps track of whether 116 * f2fs_end_read_compressed_page() has been called on the pages in the 117 * bio that belong to a compressed cluster yet. 118 */ 119 bool decompression_attempted; 120 block_t fs_blkaddr; 121 }; 122 123 /* 124 * Update and unlock a bio's pages, and free the bio. 125 * 126 * This marks pages up-to-date only if there was no error in the bio (I/O error, 127 * decryption error, or verity error), as indicated by bio->bi_status. 128 * 129 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk) 130 * aren't marked up-to-date here, as decompression is done on a per-compression- 131 * cluster basis rather than a per-bio basis. Instead, we only must do two 132 * things for each compressed page here: call f2fs_end_read_compressed_page() 133 * with failed=true if an error occurred before it would have normally gotten 134 * called (i.e., I/O error or decryption error, but *not* verity error), and 135 * release the bio's reference to the decompress_io_ctx of the page's cluster. 136 */ 137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task) 138 { 139 struct folio_iter fi; 140 struct bio_post_read_ctx *ctx = bio->bi_private; 141 142 bio_for_each_folio_all(fi, bio) { 143 struct folio *folio = fi.folio; 144 145 if (f2fs_is_compressed_page(&folio->page)) { 146 if (ctx && !ctx->decompression_attempted) 147 f2fs_end_read_compressed_page(&folio->page, true, 0, 148 in_task); 149 f2fs_put_page_dic(&folio->page, in_task); 150 continue; 151 } 152 153 dec_page_count(F2FS_F_SB(folio), __read_io_type(folio)); 154 folio_end_read(folio, bio->bi_status == 0); 155 } 156 157 if (ctx) 158 mempool_free(ctx, bio_post_read_ctx_pool); 159 bio_put(bio); 160 } 161 162 static void f2fs_verify_bio(struct work_struct *work) 163 { 164 struct bio_post_read_ctx *ctx = 165 container_of(work, struct bio_post_read_ctx, work); 166 struct bio *bio = ctx->bio; 167 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 168 169 /* 170 * fsverity_verify_bio() may call readahead() again, and while verity 171 * will be disabled for this, decryption and/or decompression may still 172 * be needed, resulting in another bio_post_read_ctx being allocated. 173 * So to prevent deadlocks we need to release the current ctx to the 174 * mempool first. This assumes that verity is the last post-read step. 175 */ 176 mempool_free(ctx, bio_post_read_ctx_pool); 177 bio->bi_private = NULL; 178 179 /* 180 * Verify the bio's pages with fs-verity. Exclude compressed pages, 181 * as those were handled separately by f2fs_end_read_compressed_page(). 182 */ 183 if (may_have_compressed_pages) { 184 struct bio_vec *bv; 185 struct bvec_iter_all iter_all; 186 187 bio_for_each_segment_all(bv, bio, iter_all) { 188 struct page *page = bv->bv_page; 189 190 if (!f2fs_is_compressed_page(page) && 191 !fsverity_verify_page(page)) { 192 bio->bi_status = BLK_STS_IOERR; 193 break; 194 } 195 } 196 } else { 197 fsverity_verify_bio(bio); 198 } 199 200 f2fs_finish_read_bio(bio, true); 201 } 202 203 /* 204 * If the bio's data needs to be verified with fs-verity, then enqueue the 205 * verity work for the bio. Otherwise finish the bio now. 206 * 207 * Note that to avoid deadlocks, the verity work can't be done on the 208 * decryption/decompression workqueue. This is because verifying the data pages 209 * can involve reading verity metadata pages from the file, and these verity 210 * metadata pages may be encrypted and/or compressed. 211 */ 212 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task) 213 { 214 struct bio_post_read_ctx *ctx = bio->bi_private; 215 216 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 217 INIT_WORK(&ctx->work, f2fs_verify_bio); 218 fsverity_enqueue_verify_work(&ctx->work); 219 } else { 220 f2fs_finish_read_bio(bio, in_task); 221 } 222 } 223 224 /* 225 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 226 * remaining page was read by @ctx->bio. 227 * 228 * Note that a bio may span clusters (even a mix of compressed and uncompressed 229 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 230 * that the bio includes at least one compressed page. The actual decompression 231 * is done on a per-cluster basis, not a per-bio basis. 232 */ 233 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx, 234 bool in_task) 235 { 236 struct bio_vec *bv; 237 struct bvec_iter_all iter_all; 238 bool all_compressed = true; 239 block_t blkaddr = ctx->fs_blkaddr; 240 241 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 242 struct page *page = bv->bv_page; 243 244 if (f2fs_is_compressed_page(page)) 245 f2fs_end_read_compressed_page(page, false, blkaddr, 246 in_task); 247 else 248 all_compressed = false; 249 250 blkaddr++; 251 } 252 253 ctx->decompression_attempted = true; 254 255 /* 256 * Optimization: if all the bio's pages are compressed, then scheduling 257 * the per-bio verity work is unnecessary, as verity will be fully 258 * handled at the compression cluster level. 259 */ 260 if (all_compressed) 261 ctx->enabled_steps &= ~STEP_VERITY; 262 } 263 264 static void f2fs_post_read_work(struct work_struct *work) 265 { 266 struct bio_post_read_ctx *ctx = 267 container_of(work, struct bio_post_read_ctx, work); 268 struct bio *bio = ctx->bio; 269 270 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) { 271 f2fs_finish_read_bio(bio, true); 272 return; 273 } 274 275 if (ctx->enabled_steps & STEP_DECOMPRESS) 276 f2fs_handle_step_decompress(ctx, true); 277 278 f2fs_verify_and_finish_bio(bio, true); 279 } 280 281 static void f2fs_read_end_io(struct bio *bio) 282 { 283 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 284 struct bio_post_read_ctx *ctx; 285 bool intask = in_task(); 286 287 iostat_update_and_unbind_ctx(bio); 288 ctx = bio->bi_private; 289 290 if (time_to_inject(sbi, FAULT_READ_IO)) 291 bio->bi_status = BLK_STS_IOERR; 292 293 if (bio->bi_status) { 294 f2fs_finish_read_bio(bio, intask); 295 return; 296 } 297 298 if (ctx) { 299 unsigned int enabled_steps = ctx->enabled_steps & 300 (STEP_DECRYPT | STEP_DECOMPRESS); 301 302 /* 303 * If we have only decompression step between decompression and 304 * decrypt, we don't need post processing for this. 305 */ 306 if (enabled_steps == STEP_DECOMPRESS && 307 !f2fs_low_mem_mode(sbi)) { 308 f2fs_handle_step_decompress(ctx, intask); 309 } else if (enabled_steps) { 310 INIT_WORK(&ctx->work, f2fs_post_read_work); 311 queue_work(ctx->sbi->post_read_wq, &ctx->work); 312 return; 313 } 314 } 315 316 f2fs_verify_and_finish_bio(bio, intask); 317 } 318 319 static void f2fs_write_end_io(struct bio *bio) 320 { 321 struct f2fs_sb_info *sbi; 322 struct bio_vec *bvec; 323 struct bvec_iter_all iter_all; 324 325 iostat_update_and_unbind_ctx(bio); 326 sbi = bio->bi_private; 327 328 if (time_to_inject(sbi, FAULT_WRITE_IO)) 329 bio->bi_status = BLK_STS_IOERR; 330 331 bio_for_each_segment_all(bvec, bio, iter_all) { 332 struct page *page = bvec->bv_page; 333 enum count_type type = WB_DATA_TYPE(page, false); 334 335 fscrypt_finalize_bounce_page(&page); 336 337 #ifdef CONFIG_F2FS_FS_COMPRESSION 338 if (f2fs_is_compressed_page(page)) { 339 f2fs_compress_write_end_io(bio, page); 340 continue; 341 } 342 #endif 343 344 if (unlikely(bio->bi_status)) { 345 mapping_set_error(page->mapping, -EIO); 346 if (type == F2FS_WB_CP_DATA) 347 f2fs_stop_checkpoint(sbi, true, 348 STOP_CP_REASON_WRITE_FAIL); 349 } 350 351 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 352 page_folio(page)->index != nid_of_node(page)); 353 354 dec_page_count(sbi, type); 355 if (f2fs_in_warm_node_list(sbi, page)) 356 f2fs_del_fsync_node_entry(sbi, page); 357 clear_page_private_gcing(page); 358 end_page_writeback(page); 359 } 360 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 361 wq_has_sleeper(&sbi->cp_wait)) 362 wake_up(&sbi->cp_wait); 363 364 bio_put(bio); 365 } 366 367 #ifdef CONFIG_BLK_DEV_ZONED 368 static void f2fs_zone_write_end_io(struct bio *bio) 369 { 370 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private; 371 372 bio->bi_private = io->bi_private; 373 complete(&io->zone_wait); 374 f2fs_write_end_io(bio); 375 } 376 #endif 377 378 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 379 block_t blk_addr, sector_t *sector) 380 { 381 struct block_device *bdev = sbi->sb->s_bdev; 382 int i; 383 384 if (f2fs_is_multi_device(sbi)) { 385 for (i = 0; i < sbi->s_ndevs; i++) { 386 if (FDEV(i).start_blk <= blk_addr && 387 FDEV(i).end_blk >= blk_addr) { 388 blk_addr -= FDEV(i).start_blk; 389 bdev = FDEV(i).bdev; 390 break; 391 } 392 } 393 } 394 395 if (sector) 396 *sector = SECTOR_FROM_BLOCK(blk_addr); 397 return bdev; 398 } 399 400 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 401 { 402 int i; 403 404 if (!f2fs_is_multi_device(sbi)) 405 return 0; 406 407 for (i = 0; i < sbi->s_ndevs; i++) 408 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 409 return i; 410 return 0; 411 } 412 413 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio) 414 { 415 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0); 416 unsigned int fua_flag, meta_flag, io_flag; 417 blk_opf_t op_flags = 0; 418 419 if (fio->op != REQ_OP_WRITE) 420 return 0; 421 if (fio->type == DATA) 422 io_flag = fio->sbi->data_io_flag; 423 else if (fio->type == NODE) 424 io_flag = fio->sbi->node_io_flag; 425 else 426 return 0; 427 428 fua_flag = io_flag & temp_mask; 429 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 430 431 /* 432 * data/node io flag bits per temp: 433 * REQ_META | REQ_FUA | 434 * 5 | 4 | 3 | 2 | 1 | 0 | 435 * Cold | Warm | Hot | Cold | Warm | Hot | 436 */ 437 if (BIT(fio->temp) & meta_flag) 438 op_flags |= REQ_META; 439 if (BIT(fio->temp) & fua_flag) 440 op_flags |= REQ_FUA; 441 return op_flags; 442 } 443 444 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 445 { 446 struct f2fs_sb_info *sbi = fio->sbi; 447 struct block_device *bdev; 448 sector_t sector; 449 struct bio *bio; 450 451 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 452 bio = bio_alloc_bioset(bdev, npages, 453 fio->op | fio->op_flags | f2fs_io_flags(fio), 454 GFP_NOIO, &f2fs_bioset); 455 bio->bi_iter.bi_sector = sector; 456 if (is_read_io(fio->op)) { 457 bio->bi_end_io = f2fs_read_end_io; 458 bio->bi_private = NULL; 459 } else { 460 bio->bi_end_io = f2fs_write_end_io; 461 bio->bi_private = sbi; 462 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 463 fio->type, fio->temp); 464 } 465 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 466 467 if (fio->io_wbc) 468 wbc_init_bio(fio->io_wbc, bio); 469 470 return bio; 471 } 472 473 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 474 pgoff_t first_idx, 475 const struct f2fs_io_info *fio, 476 gfp_t gfp_mask) 477 { 478 /* 479 * The f2fs garbage collector sets ->encrypted_page when it wants to 480 * read/write raw data without encryption. 481 */ 482 if (!fio || !fio->encrypted_page) 483 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 484 } 485 486 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 487 pgoff_t next_idx, 488 const struct f2fs_io_info *fio) 489 { 490 /* 491 * The f2fs garbage collector sets ->encrypted_page when it wants to 492 * read/write raw data without encryption. 493 */ 494 if (fio && fio->encrypted_page) 495 return !bio_has_crypt_ctx(bio); 496 497 return fscrypt_mergeable_bio(bio, inode, next_idx); 498 } 499 500 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio, 501 enum page_type type) 502 { 503 WARN_ON_ONCE(!is_read_io(bio_op(bio))); 504 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 505 506 iostat_update_submit_ctx(bio, type); 507 submit_bio(bio); 508 } 509 510 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio, 511 enum page_type type) 512 { 513 WARN_ON_ONCE(is_read_io(bio_op(bio))); 514 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 515 iostat_update_submit_ctx(bio, type); 516 submit_bio(bio); 517 } 518 519 static void __submit_merged_bio(struct f2fs_bio_info *io) 520 { 521 struct f2fs_io_info *fio = &io->fio; 522 523 if (!io->bio) 524 return; 525 526 if (is_read_io(fio->op)) { 527 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 528 f2fs_submit_read_bio(io->sbi, io->bio, fio->type); 529 } else { 530 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 531 f2fs_submit_write_bio(io->sbi, io->bio, fio->type); 532 } 533 io->bio = NULL; 534 } 535 536 static bool __has_merged_page(struct bio *bio, struct inode *inode, 537 struct page *page, nid_t ino) 538 { 539 struct bio_vec *bvec; 540 struct bvec_iter_all iter_all; 541 542 if (!bio) 543 return false; 544 545 if (!inode && !page && !ino) 546 return true; 547 548 bio_for_each_segment_all(bvec, bio, iter_all) { 549 struct page *target = bvec->bv_page; 550 551 if (fscrypt_is_bounce_page(target)) { 552 target = fscrypt_pagecache_page(target); 553 if (IS_ERR(target)) 554 continue; 555 } 556 if (f2fs_is_compressed_page(target)) { 557 target = f2fs_compress_control_page(target); 558 if (IS_ERR(target)) 559 continue; 560 } 561 562 if (inode && inode == target->mapping->host) 563 return true; 564 if (page && page == target) 565 return true; 566 if (ino && ino == ino_of_node(target)) 567 return true; 568 } 569 570 return false; 571 } 572 573 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi) 574 { 575 int i; 576 577 for (i = 0; i < NR_PAGE_TYPE; i++) { 578 int n = (i == META) ? 1 : NR_TEMP_TYPE; 579 int j; 580 581 sbi->write_io[i] = f2fs_kmalloc(sbi, 582 array_size(n, sizeof(struct f2fs_bio_info)), 583 GFP_KERNEL); 584 if (!sbi->write_io[i]) 585 return -ENOMEM; 586 587 for (j = HOT; j < n; j++) { 588 struct f2fs_bio_info *io = &sbi->write_io[i][j]; 589 590 init_f2fs_rwsem(&io->io_rwsem); 591 io->sbi = sbi; 592 io->bio = NULL; 593 io->last_block_in_bio = 0; 594 spin_lock_init(&io->io_lock); 595 INIT_LIST_HEAD(&io->io_list); 596 INIT_LIST_HEAD(&io->bio_list); 597 init_f2fs_rwsem(&io->bio_list_lock); 598 #ifdef CONFIG_BLK_DEV_ZONED 599 init_completion(&io->zone_wait); 600 io->zone_pending_bio = NULL; 601 io->bi_private = NULL; 602 #endif 603 } 604 } 605 606 return 0; 607 } 608 609 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 610 enum page_type type, enum temp_type temp) 611 { 612 enum page_type btype = PAGE_TYPE_OF_BIO(type); 613 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 614 615 f2fs_down_write(&io->io_rwsem); 616 617 if (!io->bio) 618 goto unlock_out; 619 620 /* change META to META_FLUSH in the checkpoint procedure */ 621 if (type >= META_FLUSH) { 622 io->fio.type = META_FLUSH; 623 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 624 if (!test_opt(sbi, NOBARRIER)) 625 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 626 } 627 __submit_merged_bio(io); 628 unlock_out: 629 f2fs_up_write(&io->io_rwsem); 630 } 631 632 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 633 struct inode *inode, struct page *page, 634 nid_t ino, enum page_type type, bool force) 635 { 636 enum temp_type temp; 637 bool ret = true; 638 639 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 640 if (!force) { 641 enum page_type btype = PAGE_TYPE_OF_BIO(type); 642 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 643 644 f2fs_down_read(&io->io_rwsem); 645 ret = __has_merged_page(io->bio, inode, page, ino); 646 f2fs_up_read(&io->io_rwsem); 647 } 648 if (ret) 649 __f2fs_submit_merged_write(sbi, type, temp); 650 651 /* TODO: use HOT temp only for meta pages now. */ 652 if (type >= META) 653 break; 654 } 655 } 656 657 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 658 { 659 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 660 } 661 662 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 663 struct inode *inode, struct page *page, 664 nid_t ino, enum page_type type) 665 { 666 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 667 } 668 669 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 670 { 671 f2fs_submit_merged_write(sbi, DATA); 672 f2fs_submit_merged_write(sbi, NODE); 673 f2fs_submit_merged_write(sbi, META); 674 } 675 676 /* 677 * Fill the locked page with data located in the block address. 678 * A caller needs to unlock the page on failure. 679 */ 680 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 681 { 682 struct bio *bio; 683 struct folio *fio_folio = page_folio(fio->page); 684 struct folio *data_folio = fio->encrypted_page ? 685 page_folio(fio->encrypted_page) : fio_folio; 686 687 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 688 fio->is_por ? META_POR : (__is_meta_io(fio) ? 689 META_GENERIC : DATA_GENERIC_ENHANCE))) 690 return -EFSCORRUPTED; 691 692 trace_f2fs_submit_folio_bio(data_folio, fio); 693 694 /* Allocate a new bio */ 695 bio = __bio_alloc(fio, 1); 696 697 f2fs_set_bio_crypt_ctx(bio, fio_folio->mapping->host, 698 fio_folio->index, fio, GFP_NOIO); 699 bio_add_folio_nofail(bio, data_folio, folio_size(data_folio), 0); 700 701 if (fio->io_wbc && !is_read_io(fio->op)) 702 wbc_account_cgroup_owner(fio->io_wbc, fio_folio, PAGE_SIZE); 703 704 inc_page_count(fio->sbi, is_read_io(fio->op) ? 705 __read_io_type(data_folio) : WB_DATA_TYPE(fio->page, false)); 706 707 if (is_read_io(bio_op(bio))) 708 f2fs_submit_read_bio(fio->sbi, bio, fio->type); 709 else 710 f2fs_submit_write_bio(fio->sbi, bio, fio->type); 711 return 0; 712 } 713 714 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 715 block_t last_blkaddr, block_t cur_blkaddr) 716 { 717 if (unlikely(sbi->max_io_bytes && 718 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 719 return false; 720 if (last_blkaddr + 1 != cur_blkaddr) 721 return false; 722 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 723 } 724 725 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 726 struct f2fs_io_info *fio) 727 { 728 if (io->fio.op != fio->op) 729 return false; 730 return io->fio.op_flags == fio->op_flags; 731 } 732 733 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 734 struct f2fs_bio_info *io, 735 struct f2fs_io_info *fio, 736 block_t last_blkaddr, 737 block_t cur_blkaddr) 738 { 739 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 740 return false; 741 return io_type_is_mergeable(io, fio); 742 } 743 744 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 745 struct page *page, enum temp_type temp) 746 { 747 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 748 struct bio_entry *be; 749 750 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 751 be->bio = bio; 752 bio_get(bio); 753 754 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 755 f2fs_bug_on(sbi, 1); 756 757 f2fs_down_write(&io->bio_list_lock); 758 list_add_tail(&be->list, &io->bio_list); 759 f2fs_up_write(&io->bio_list_lock); 760 } 761 762 static void del_bio_entry(struct bio_entry *be) 763 { 764 list_del(&be->list); 765 kmem_cache_free(bio_entry_slab, be); 766 } 767 768 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 769 struct page *page) 770 { 771 struct f2fs_sb_info *sbi = fio->sbi; 772 enum temp_type temp; 773 bool found = false; 774 int ret = -EAGAIN; 775 776 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 777 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 778 struct list_head *head = &io->bio_list; 779 struct bio_entry *be; 780 781 f2fs_down_write(&io->bio_list_lock); 782 list_for_each_entry(be, head, list) { 783 if (be->bio != *bio) 784 continue; 785 786 found = true; 787 788 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 789 *fio->last_block, 790 fio->new_blkaddr)); 791 if (f2fs_crypt_mergeable_bio(*bio, 792 fio->page->mapping->host, 793 page_folio(fio->page)->index, fio) && 794 bio_add_page(*bio, page, PAGE_SIZE, 0) == 795 PAGE_SIZE) { 796 ret = 0; 797 break; 798 } 799 800 /* page can't be merged into bio; submit the bio */ 801 del_bio_entry(be); 802 f2fs_submit_write_bio(sbi, *bio, DATA); 803 break; 804 } 805 f2fs_up_write(&io->bio_list_lock); 806 } 807 808 if (ret) { 809 bio_put(*bio); 810 *bio = NULL; 811 } 812 813 return ret; 814 } 815 816 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 817 struct bio **bio, struct page *page) 818 { 819 enum temp_type temp; 820 bool found = false; 821 struct bio *target = bio ? *bio : NULL; 822 823 f2fs_bug_on(sbi, !target && !page); 824 825 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 826 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 827 struct list_head *head = &io->bio_list; 828 struct bio_entry *be; 829 830 if (list_empty(head)) 831 continue; 832 833 f2fs_down_read(&io->bio_list_lock); 834 list_for_each_entry(be, head, list) { 835 if (target) 836 found = (target == be->bio); 837 else 838 found = __has_merged_page(be->bio, NULL, 839 page, 0); 840 if (found) 841 break; 842 } 843 f2fs_up_read(&io->bio_list_lock); 844 845 if (!found) 846 continue; 847 848 found = false; 849 850 f2fs_down_write(&io->bio_list_lock); 851 list_for_each_entry(be, head, list) { 852 if (target) 853 found = (target == be->bio); 854 else 855 found = __has_merged_page(be->bio, NULL, 856 page, 0); 857 if (found) { 858 target = be->bio; 859 del_bio_entry(be); 860 break; 861 } 862 } 863 f2fs_up_write(&io->bio_list_lock); 864 } 865 866 if (found) 867 f2fs_submit_write_bio(sbi, target, DATA); 868 if (bio && *bio) { 869 bio_put(*bio); 870 *bio = NULL; 871 } 872 } 873 874 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 875 { 876 struct bio *bio = *fio->bio; 877 struct page *page = fio->encrypted_page ? 878 fio->encrypted_page : fio->page; 879 880 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 881 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 882 return -EFSCORRUPTED; 883 884 trace_f2fs_submit_folio_bio(page_folio(page), fio); 885 886 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 887 fio->new_blkaddr)) 888 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 889 alloc_new: 890 if (!bio) { 891 bio = __bio_alloc(fio, BIO_MAX_VECS); 892 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 893 page_folio(fio->page)->index, fio, GFP_NOIO); 894 895 add_bio_entry(fio->sbi, bio, page, fio->temp); 896 } else { 897 if (add_ipu_page(fio, &bio, page)) 898 goto alloc_new; 899 } 900 901 if (fio->io_wbc) 902 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page), 903 PAGE_SIZE); 904 905 inc_page_count(fio->sbi, WB_DATA_TYPE(page, false)); 906 907 *fio->last_block = fio->new_blkaddr; 908 *fio->bio = bio; 909 910 return 0; 911 } 912 913 #ifdef CONFIG_BLK_DEV_ZONED 914 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr) 915 { 916 struct block_device *bdev = sbi->sb->s_bdev; 917 int devi = 0; 918 919 if (f2fs_is_multi_device(sbi)) { 920 devi = f2fs_target_device_index(sbi, blkaddr); 921 if (blkaddr < FDEV(devi).start_blk || 922 blkaddr > FDEV(devi).end_blk) { 923 f2fs_err(sbi, "Invalid block %x", blkaddr); 924 return false; 925 } 926 blkaddr -= FDEV(devi).start_blk; 927 bdev = FDEV(devi).bdev; 928 } 929 return bdev_is_zoned(bdev) && 930 f2fs_blkz_is_seq(sbi, devi, blkaddr) && 931 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1); 932 } 933 #endif 934 935 void f2fs_submit_page_write(struct f2fs_io_info *fio) 936 { 937 struct f2fs_sb_info *sbi = fio->sbi; 938 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 939 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 940 struct page *bio_page; 941 enum count_type type; 942 943 f2fs_bug_on(sbi, is_read_io(fio->op)); 944 945 f2fs_down_write(&io->io_rwsem); 946 next: 947 #ifdef CONFIG_BLK_DEV_ZONED 948 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) { 949 wait_for_completion_io(&io->zone_wait); 950 bio_put(io->zone_pending_bio); 951 io->zone_pending_bio = NULL; 952 io->bi_private = NULL; 953 } 954 #endif 955 956 if (fio->in_list) { 957 spin_lock(&io->io_lock); 958 if (list_empty(&io->io_list)) { 959 spin_unlock(&io->io_lock); 960 goto out; 961 } 962 fio = list_first_entry(&io->io_list, 963 struct f2fs_io_info, list); 964 list_del(&fio->list); 965 spin_unlock(&io->io_lock); 966 } 967 968 verify_fio_blkaddr(fio); 969 970 if (fio->encrypted_page) 971 bio_page = fio->encrypted_page; 972 else if (fio->compressed_page) 973 bio_page = fio->compressed_page; 974 else 975 bio_page = fio->page; 976 977 /* set submitted = true as a return value */ 978 fio->submitted = 1; 979 980 type = WB_DATA_TYPE(bio_page, fio->compressed_page); 981 inc_page_count(sbi, type); 982 983 if (io->bio && 984 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 985 fio->new_blkaddr) || 986 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 987 page_folio(bio_page)->index, fio))) 988 __submit_merged_bio(io); 989 alloc_new: 990 if (io->bio == NULL) { 991 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 992 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 993 page_folio(bio_page)->index, fio, GFP_NOIO); 994 io->fio = *fio; 995 } 996 997 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 998 __submit_merged_bio(io); 999 goto alloc_new; 1000 } 1001 1002 if (fio->io_wbc) 1003 wbc_account_cgroup_owner(fio->io_wbc, page_folio(fio->page), 1004 PAGE_SIZE); 1005 1006 io->last_block_in_bio = fio->new_blkaddr; 1007 1008 trace_f2fs_submit_folio_write(page_folio(fio->page), fio); 1009 #ifdef CONFIG_BLK_DEV_ZONED 1010 if (f2fs_sb_has_blkzoned(sbi) && btype < META && 1011 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) { 1012 bio_get(io->bio); 1013 reinit_completion(&io->zone_wait); 1014 io->bi_private = io->bio->bi_private; 1015 io->bio->bi_private = io; 1016 io->bio->bi_end_io = f2fs_zone_write_end_io; 1017 io->zone_pending_bio = io->bio; 1018 __submit_merged_bio(io); 1019 } 1020 #endif 1021 if (fio->in_list) 1022 goto next; 1023 out: 1024 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1025 !f2fs_is_checkpoint_ready(sbi)) 1026 __submit_merged_bio(io); 1027 f2fs_up_write(&io->io_rwsem); 1028 } 1029 1030 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 1031 unsigned nr_pages, blk_opf_t op_flag, 1032 pgoff_t first_idx, bool for_write) 1033 { 1034 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1035 struct bio *bio; 1036 struct bio_post_read_ctx *ctx = NULL; 1037 unsigned int post_read_steps = 0; 1038 sector_t sector; 1039 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 1040 1041 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 1042 REQ_OP_READ | op_flag, 1043 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 1044 if (!bio) 1045 return ERR_PTR(-ENOMEM); 1046 bio->bi_iter.bi_sector = sector; 1047 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 1048 bio->bi_end_io = f2fs_read_end_io; 1049 1050 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 1051 post_read_steps |= STEP_DECRYPT; 1052 1053 if (f2fs_need_verity(inode, first_idx)) 1054 post_read_steps |= STEP_VERITY; 1055 1056 /* 1057 * STEP_DECOMPRESS is handled specially, since a compressed file might 1058 * contain both compressed and uncompressed clusters. We'll allocate a 1059 * bio_post_read_ctx if the file is compressed, but the caller is 1060 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 1061 */ 1062 1063 if (post_read_steps || f2fs_compressed_file(inode)) { 1064 /* Due to the mempool, this never fails. */ 1065 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1066 ctx->bio = bio; 1067 ctx->sbi = sbi; 1068 ctx->enabled_steps = post_read_steps; 1069 ctx->fs_blkaddr = blkaddr; 1070 ctx->decompression_attempted = false; 1071 bio->bi_private = ctx; 1072 } 1073 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1074 1075 return bio; 1076 } 1077 1078 /* This can handle encryption stuffs */ 1079 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio, 1080 block_t blkaddr, blk_opf_t op_flags, 1081 bool for_write) 1082 { 1083 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1084 struct bio *bio; 1085 1086 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1087 folio->index, for_write); 1088 if (IS_ERR(bio)) 1089 return PTR_ERR(bio); 1090 1091 /* wait for GCed page writeback via META_MAPPING */ 1092 f2fs_wait_on_block_writeback(inode, blkaddr); 1093 1094 if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) { 1095 iostat_update_and_unbind_ctx(bio); 1096 if (bio->bi_private) 1097 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 1098 bio_put(bio); 1099 return -EFAULT; 1100 } 1101 inc_page_count(sbi, F2FS_RD_DATA); 1102 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE); 1103 f2fs_submit_read_bio(sbi, bio, DATA); 1104 return 0; 1105 } 1106 1107 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1108 { 1109 __le32 *addr = get_dnode_addr(dn->inode, dn->node_page); 1110 1111 dn->data_blkaddr = blkaddr; 1112 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1113 } 1114 1115 /* 1116 * Lock ordering for the change of data block address: 1117 * ->data_page 1118 * ->node_page 1119 * update block addresses in the node page 1120 */ 1121 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1122 { 1123 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1124 __set_data_blkaddr(dn, blkaddr); 1125 if (set_page_dirty(dn->node_page)) 1126 dn->node_changed = true; 1127 } 1128 1129 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1130 { 1131 f2fs_set_data_blkaddr(dn, blkaddr); 1132 f2fs_update_read_extent_cache(dn); 1133 } 1134 1135 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1136 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1137 { 1138 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1139 int err; 1140 1141 if (!count) 1142 return 0; 1143 1144 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1145 return -EPERM; 1146 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1147 if (unlikely(err)) 1148 return err; 1149 1150 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1151 dn->ofs_in_node, count); 1152 1153 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1154 1155 for (; count > 0; dn->ofs_in_node++) { 1156 block_t blkaddr = f2fs_data_blkaddr(dn); 1157 1158 if (blkaddr == NULL_ADDR) { 1159 __set_data_blkaddr(dn, NEW_ADDR); 1160 count--; 1161 } 1162 } 1163 1164 if (set_page_dirty(dn->node_page)) 1165 dn->node_changed = true; 1166 return 0; 1167 } 1168 1169 /* Should keep dn->ofs_in_node unchanged */ 1170 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1171 { 1172 unsigned int ofs_in_node = dn->ofs_in_node; 1173 int ret; 1174 1175 ret = f2fs_reserve_new_blocks(dn, 1); 1176 dn->ofs_in_node = ofs_in_node; 1177 return ret; 1178 } 1179 1180 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1181 { 1182 bool need_put = dn->inode_page ? false : true; 1183 int err; 1184 1185 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1186 if (err) 1187 return err; 1188 1189 if (dn->data_blkaddr == NULL_ADDR) 1190 err = f2fs_reserve_new_block(dn); 1191 if (err || need_put) 1192 f2fs_put_dnode(dn); 1193 return err; 1194 } 1195 1196 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1197 blk_opf_t op_flags, bool for_write, 1198 pgoff_t *next_pgofs) 1199 { 1200 struct address_space *mapping = inode->i_mapping; 1201 struct dnode_of_data dn; 1202 struct page *page; 1203 int err; 1204 1205 page = f2fs_grab_cache_page(mapping, index, for_write); 1206 if (!page) 1207 return ERR_PTR(-ENOMEM); 1208 1209 if (f2fs_lookup_read_extent_cache_block(inode, index, 1210 &dn.data_blkaddr)) { 1211 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1212 DATA_GENERIC_ENHANCE_READ)) { 1213 err = -EFSCORRUPTED; 1214 goto put_err; 1215 } 1216 goto got_it; 1217 } 1218 1219 set_new_dnode(&dn, inode, NULL, NULL, 0); 1220 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1221 if (err) { 1222 if (err == -ENOENT && next_pgofs) 1223 *next_pgofs = f2fs_get_next_page_offset(&dn, index); 1224 goto put_err; 1225 } 1226 f2fs_put_dnode(&dn); 1227 1228 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1229 err = -ENOENT; 1230 if (next_pgofs) 1231 *next_pgofs = index + 1; 1232 goto put_err; 1233 } 1234 if (dn.data_blkaddr != NEW_ADDR && 1235 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1236 dn.data_blkaddr, 1237 DATA_GENERIC_ENHANCE)) { 1238 err = -EFSCORRUPTED; 1239 goto put_err; 1240 } 1241 got_it: 1242 if (PageUptodate(page)) { 1243 unlock_page(page); 1244 return page; 1245 } 1246 1247 /* 1248 * A new dentry page is allocated but not able to be written, since its 1249 * new inode page couldn't be allocated due to -ENOSPC. 1250 * In such the case, its blkaddr can be remained as NEW_ADDR. 1251 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1252 * f2fs_init_inode_metadata. 1253 */ 1254 if (dn.data_blkaddr == NEW_ADDR) { 1255 zero_user_segment(page, 0, PAGE_SIZE); 1256 if (!PageUptodate(page)) 1257 SetPageUptodate(page); 1258 unlock_page(page); 1259 return page; 1260 } 1261 1262 err = f2fs_submit_page_read(inode, page_folio(page), dn.data_blkaddr, 1263 op_flags, for_write); 1264 if (err) 1265 goto put_err; 1266 return page; 1267 1268 put_err: 1269 f2fs_put_page(page, 1); 1270 return ERR_PTR(err); 1271 } 1272 1273 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index, 1274 pgoff_t *next_pgofs) 1275 { 1276 struct address_space *mapping = inode->i_mapping; 1277 struct page *page; 1278 1279 page = find_get_page_flags(mapping, index, FGP_ACCESSED); 1280 if (page && PageUptodate(page)) 1281 return page; 1282 f2fs_put_page(page, 0); 1283 1284 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs); 1285 if (IS_ERR(page)) 1286 return page; 1287 1288 if (PageUptodate(page)) 1289 return page; 1290 1291 wait_on_page_locked(page); 1292 if (unlikely(!PageUptodate(page))) { 1293 f2fs_put_page(page, 0); 1294 return ERR_PTR(-EIO); 1295 } 1296 return page; 1297 } 1298 1299 /* 1300 * If it tries to access a hole, return an error. 1301 * Because, the callers, functions in dir.c and GC, should be able to know 1302 * whether this page exists or not. 1303 */ 1304 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1305 bool for_write) 1306 { 1307 struct address_space *mapping = inode->i_mapping; 1308 struct page *page; 1309 1310 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL); 1311 if (IS_ERR(page)) 1312 return page; 1313 1314 /* wait for read completion */ 1315 lock_page(page); 1316 if (unlikely(page->mapping != mapping || !PageUptodate(page))) { 1317 f2fs_put_page(page, 1); 1318 return ERR_PTR(-EIO); 1319 } 1320 return page; 1321 } 1322 1323 /* 1324 * Caller ensures that this data page is never allocated. 1325 * A new zero-filled data page is allocated in the page cache. 1326 * 1327 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1328 * f2fs_unlock_op(). 1329 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1330 * ipage should be released by this function. 1331 */ 1332 struct page *f2fs_get_new_data_page(struct inode *inode, 1333 struct page *ipage, pgoff_t index, bool new_i_size) 1334 { 1335 struct address_space *mapping = inode->i_mapping; 1336 struct page *page; 1337 struct dnode_of_data dn; 1338 int err; 1339 1340 page = f2fs_grab_cache_page(mapping, index, true); 1341 if (!page) { 1342 /* 1343 * before exiting, we should make sure ipage will be released 1344 * if any error occur. 1345 */ 1346 f2fs_put_page(ipage, 1); 1347 return ERR_PTR(-ENOMEM); 1348 } 1349 1350 set_new_dnode(&dn, inode, ipage, NULL, 0); 1351 err = f2fs_reserve_block(&dn, index); 1352 if (err) { 1353 f2fs_put_page(page, 1); 1354 return ERR_PTR(err); 1355 } 1356 if (!ipage) 1357 f2fs_put_dnode(&dn); 1358 1359 if (PageUptodate(page)) 1360 goto got_it; 1361 1362 if (dn.data_blkaddr == NEW_ADDR) { 1363 zero_user_segment(page, 0, PAGE_SIZE); 1364 if (!PageUptodate(page)) 1365 SetPageUptodate(page); 1366 } else { 1367 f2fs_put_page(page, 1); 1368 1369 /* if ipage exists, blkaddr should be NEW_ADDR */ 1370 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1371 page = f2fs_get_lock_data_page(inode, index, true); 1372 if (IS_ERR(page)) 1373 return page; 1374 } 1375 got_it: 1376 if (new_i_size && i_size_read(inode) < 1377 ((loff_t)(index + 1) << PAGE_SHIFT)) 1378 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1379 return page; 1380 } 1381 1382 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1383 { 1384 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1385 struct f2fs_summary sum; 1386 struct node_info ni; 1387 block_t old_blkaddr; 1388 blkcnt_t count = 1; 1389 int err; 1390 1391 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1392 return -EPERM; 1393 1394 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1395 if (err) 1396 return err; 1397 1398 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1399 if (dn->data_blkaddr == NULL_ADDR) { 1400 err = inc_valid_block_count(sbi, dn->inode, &count, true); 1401 if (unlikely(err)) 1402 return err; 1403 } 1404 1405 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1406 old_blkaddr = dn->data_blkaddr; 1407 err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr, 1408 &dn->data_blkaddr, &sum, seg_type, NULL); 1409 if (err) 1410 return err; 1411 1412 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1413 f2fs_invalidate_internal_cache(sbi, old_blkaddr, 1); 1414 1415 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1416 return 0; 1417 } 1418 1419 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag) 1420 { 1421 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1422 f2fs_down_read(&sbi->node_change); 1423 else 1424 f2fs_lock_op(sbi); 1425 } 1426 1427 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag) 1428 { 1429 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1430 f2fs_up_read(&sbi->node_change); 1431 else 1432 f2fs_unlock_op(sbi); 1433 } 1434 1435 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index) 1436 { 1437 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1438 int err = 0; 1439 1440 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1441 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index, 1442 &dn->data_blkaddr)) 1443 err = f2fs_reserve_block(dn, index); 1444 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 1445 1446 return err; 1447 } 1448 1449 static int f2fs_map_no_dnode(struct inode *inode, 1450 struct f2fs_map_blocks *map, struct dnode_of_data *dn, 1451 pgoff_t pgoff) 1452 { 1453 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1454 1455 /* 1456 * There is one exceptional case that read_node_page() may return 1457 * -ENOENT due to filesystem has been shutdown or cp_error, return 1458 * -EIO in that case. 1459 */ 1460 if (map->m_may_create && 1461 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi))) 1462 return -EIO; 1463 1464 if (map->m_next_pgofs) 1465 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff); 1466 if (map->m_next_extent) 1467 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff); 1468 return 0; 1469 } 1470 1471 static bool f2fs_map_blocks_cached(struct inode *inode, 1472 struct f2fs_map_blocks *map, int flag) 1473 { 1474 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1475 unsigned int maxblocks = map->m_len; 1476 pgoff_t pgoff = (pgoff_t)map->m_lblk; 1477 struct extent_info ei = {}; 1478 1479 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei)) 1480 return false; 1481 1482 map->m_pblk = ei.blk + pgoff - ei.fofs; 1483 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff); 1484 map->m_flags = F2FS_MAP_MAPPED; 1485 if (map->m_next_extent) 1486 *map->m_next_extent = pgoff + map->m_len; 1487 1488 /* for hardware encryption, but to avoid potential issue in future */ 1489 if (flag == F2FS_GET_BLOCK_DIO) 1490 f2fs_wait_on_block_writeback_range(inode, 1491 map->m_pblk, map->m_len); 1492 1493 if (f2fs_allow_multi_device_dio(sbi, flag)) { 1494 int bidx = f2fs_target_device_index(sbi, map->m_pblk); 1495 struct f2fs_dev_info *dev = &sbi->devs[bidx]; 1496 1497 map->m_bdev = dev->bdev; 1498 map->m_pblk -= dev->start_blk; 1499 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk); 1500 } else { 1501 map->m_bdev = inode->i_sb->s_bdev; 1502 } 1503 return true; 1504 } 1505 1506 static bool map_is_mergeable(struct f2fs_sb_info *sbi, 1507 struct f2fs_map_blocks *map, 1508 block_t blkaddr, int flag, int bidx, 1509 int ofs) 1510 { 1511 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1512 return false; 1513 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs)) 1514 return true; 1515 if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) 1516 return true; 1517 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1518 return true; 1519 if (flag == F2FS_GET_BLOCK_DIO && 1520 map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR) 1521 return true; 1522 return false; 1523 } 1524 1525 /* 1526 * f2fs_map_blocks() tries to find or build mapping relationship which 1527 * maps continuous logical blocks to physical blocks, and return such 1528 * info via f2fs_map_blocks structure. 1529 */ 1530 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag) 1531 { 1532 unsigned int maxblocks = map->m_len; 1533 struct dnode_of_data dn; 1534 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1535 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1536 pgoff_t pgofs, end_offset, end; 1537 int err = 0, ofs = 1; 1538 unsigned int ofs_in_node, last_ofs_in_node; 1539 blkcnt_t prealloc; 1540 block_t blkaddr; 1541 unsigned int start_pgofs; 1542 int bidx = 0; 1543 bool is_hole; 1544 1545 if (!maxblocks) 1546 return 0; 1547 1548 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag)) 1549 goto out; 1550 1551 map->m_bdev = inode->i_sb->s_bdev; 1552 map->m_multidev_dio = 1553 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1554 1555 map->m_len = 0; 1556 map->m_flags = 0; 1557 1558 /* it only supports block size == page size */ 1559 pgofs = (pgoff_t)map->m_lblk; 1560 end = pgofs + maxblocks; 1561 1562 next_dnode: 1563 if (map->m_may_create) 1564 f2fs_map_lock(sbi, flag); 1565 1566 /* When reading holes, we need its node page */ 1567 set_new_dnode(&dn, inode, NULL, NULL, 0); 1568 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1569 if (err) { 1570 if (flag == F2FS_GET_BLOCK_BMAP) 1571 map->m_pblk = 0; 1572 if (err == -ENOENT) 1573 err = f2fs_map_no_dnode(inode, map, &dn, pgofs); 1574 goto unlock_out; 1575 } 1576 1577 start_pgofs = pgofs; 1578 prealloc = 0; 1579 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1580 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1581 1582 next_block: 1583 blkaddr = f2fs_data_blkaddr(&dn); 1584 is_hole = !__is_valid_data_blkaddr(blkaddr); 1585 if (!is_hole && 1586 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1587 err = -EFSCORRUPTED; 1588 goto sync_out; 1589 } 1590 1591 /* use out-place-update for direct IO under LFS mode */ 1592 if (map->m_may_create && (is_hole || 1593 (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) && 1594 !f2fs_is_pinned_file(inode)))) { 1595 if (unlikely(f2fs_cp_error(sbi))) { 1596 err = -EIO; 1597 goto sync_out; 1598 } 1599 1600 switch (flag) { 1601 case F2FS_GET_BLOCK_PRE_AIO: 1602 if (blkaddr == NULL_ADDR) { 1603 prealloc++; 1604 last_ofs_in_node = dn.ofs_in_node; 1605 } 1606 break; 1607 case F2FS_GET_BLOCK_PRE_DIO: 1608 case F2FS_GET_BLOCK_DIO: 1609 err = __allocate_data_block(&dn, map->m_seg_type); 1610 if (err) 1611 goto sync_out; 1612 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1613 file_need_truncate(inode); 1614 set_inode_flag(inode, FI_APPEND_WRITE); 1615 break; 1616 default: 1617 WARN_ON_ONCE(1); 1618 err = -EIO; 1619 goto sync_out; 1620 } 1621 1622 blkaddr = dn.data_blkaddr; 1623 if (is_hole) 1624 map->m_flags |= F2FS_MAP_NEW; 1625 } else if (is_hole) { 1626 if (f2fs_compressed_file(inode) && 1627 f2fs_sanity_check_cluster(&dn)) { 1628 err = -EFSCORRUPTED; 1629 f2fs_handle_error(sbi, 1630 ERROR_CORRUPTED_CLUSTER); 1631 goto sync_out; 1632 } 1633 1634 switch (flag) { 1635 case F2FS_GET_BLOCK_PRECACHE: 1636 goto sync_out; 1637 case F2FS_GET_BLOCK_BMAP: 1638 map->m_pblk = 0; 1639 goto sync_out; 1640 case F2FS_GET_BLOCK_FIEMAP: 1641 if (blkaddr == NULL_ADDR) { 1642 if (map->m_next_pgofs) 1643 *map->m_next_pgofs = pgofs + 1; 1644 goto sync_out; 1645 } 1646 break; 1647 case F2FS_GET_BLOCK_DIO: 1648 if (map->m_next_pgofs) 1649 *map->m_next_pgofs = pgofs + 1; 1650 break; 1651 default: 1652 /* for defragment case */ 1653 if (map->m_next_pgofs) 1654 *map->m_next_pgofs = pgofs + 1; 1655 goto sync_out; 1656 } 1657 } 1658 1659 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1660 goto skip; 1661 1662 if (map->m_multidev_dio) 1663 bidx = f2fs_target_device_index(sbi, blkaddr); 1664 1665 if (map->m_len == 0) { 1666 /* reserved delalloc block should be mapped for fiemap. */ 1667 if (blkaddr == NEW_ADDR) 1668 map->m_flags |= F2FS_MAP_DELALLOC; 1669 /* DIO READ and hole case, should not map the blocks. */ 1670 if (!(flag == F2FS_GET_BLOCK_DIO && is_hole && !map->m_may_create)) 1671 map->m_flags |= F2FS_MAP_MAPPED; 1672 1673 map->m_pblk = blkaddr; 1674 map->m_len = 1; 1675 1676 if (map->m_multidev_dio) 1677 map->m_bdev = FDEV(bidx).bdev; 1678 } else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) { 1679 ofs++; 1680 map->m_len++; 1681 } else { 1682 goto sync_out; 1683 } 1684 1685 skip: 1686 dn.ofs_in_node++; 1687 pgofs++; 1688 1689 /* preallocate blocks in batch for one dnode page */ 1690 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1691 (pgofs == end || dn.ofs_in_node == end_offset)) { 1692 1693 dn.ofs_in_node = ofs_in_node; 1694 err = f2fs_reserve_new_blocks(&dn, prealloc); 1695 if (err) 1696 goto sync_out; 1697 1698 map->m_len += dn.ofs_in_node - ofs_in_node; 1699 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1700 err = -ENOSPC; 1701 goto sync_out; 1702 } 1703 dn.ofs_in_node = end_offset; 1704 } 1705 1706 if (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) && 1707 map->m_may_create) { 1708 /* the next block to be allocated may not be contiguous. */ 1709 if (GET_SEGOFF_FROM_SEG0(sbi, blkaddr) % BLKS_PER_SEC(sbi) == 1710 CAP_BLKS_PER_SEC(sbi) - 1) 1711 goto sync_out; 1712 } 1713 1714 if (pgofs >= end) 1715 goto sync_out; 1716 else if (dn.ofs_in_node < end_offset) 1717 goto next_block; 1718 1719 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1720 if (map->m_flags & F2FS_MAP_MAPPED) { 1721 unsigned int ofs = start_pgofs - map->m_lblk; 1722 1723 f2fs_update_read_extent_cache_range(&dn, 1724 start_pgofs, map->m_pblk + ofs, 1725 map->m_len - ofs); 1726 } 1727 } 1728 1729 f2fs_put_dnode(&dn); 1730 1731 if (map->m_may_create) { 1732 f2fs_map_unlock(sbi, flag); 1733 f2fs_balance_fs(sbi, dn.node_changed); 1734 } 1735 goto next_dnode; 1736 1737 sync_out: 1738 1739 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1740 /* 1741 * for hardware encryption, but to avoid potential issue 1742 * in future 1743 */ 1744 f2fs_wait_on_block_writeback_range(inode, 1745 map->m_pblk, map->m_len); 1746 1747 if (map->m_multidev_dio) { 1748 block_t blk_addr = map->m_pblk; 1749 1750 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1751 1752 map->m_bdev = FDEV(bidx).bdev; 1753 map->m_pblk -= FDEV(bidx).start_blk; 1754 1755 if (map->m_may_create) 1756 f2fs_update_device_state(sbi, inode->i_ino, 1757 blk_addr, map->m_len); 1758 1759 f2fs_bug_on(sbi, blk_addr + map->m_len > 1760 FDEV(bidx).end_blk + 1); 1761 } 1762 } 1763 1764 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1765 if (map->m_flags & F2FS_MAP_MAPPED) { 1766 unsigned int ofs = start_pgofs - map->m_lblk; 1767 1768 f2fs_update_read_extent_cache_range(&dn, 1769 start_pgofs, map->m_pblk + ofs, 1770 map->m_len - ofs); 1771 } 1772 if (map->m_next_extent) 1773 *map->m_next_extent = pgofs + 1; 1774 } 1775 f2fs_put_dnode(&dn); 1776 unlock_out: 1777 if (map->m_may_create) { 1778 f2fs_map_unlock(sbi, flag); 1779 f2fs_balance_fs(sbi, dn.node_changed); 1780 } 1781 out: 1782 trace_f2fs_map_blocks(inode, map, flag, err); 1783 return err; 1784 } 1785 1786 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1787 { 1788 struct f2fs_map_blocks map; 1789 block_t last_lblk; 1790 int err; 1791 1792 if (pos + len > i_size_read(inode)) 1793 return false; 1794 1795 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1796 map.m_next_pgofs = NULL; 1797 map.m_next_extent = NULL; 1798 map.m_seg_type = NO_CHECK_TYPE; 1799 map.m_may_create = false; 1800 last_lblk = F2FS_BLK_ALIGN(pos + len); 1801 1802 while (map.m_lblk < last_lblk) { 1803 map.m_len = last_lblk - map.m_lblk; 1804 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT); 1805 if (err || map.m_len == 0) 1806 return false; 1807 map.m_lblk += map.m_len; 1808 } 1809 return true; 1810 } 1811 1812 static int f2fs_xattr_fiemap(struct inode *inode, 1813 struct fiemap_extent_info *fieinfo) 1814 { 1815 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1816 struct page *page; 1817 struct node_info ni; 1818 __u64 phys = 0, len; 1819 __u32 flags; 1820 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1821 int err = 0; 1822 1823 if (f2fs_has_inline_xattr(inode)) { 1824 int offset; 1825 1826 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1827 inode->i_ino, false); 1828 if (!page) 1829 return -ENOMEM; 1830 1831 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1832 if (err) { 1833 f2fs_put_page(page, 1); 1834 return err; 1835 } 1836 1837 phys = F2FS_BLK_TO_BYTES(ni.blk_addr); 1838 offset = offsetof(struct f2fs_inode, i_addr) + 1839 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1840 get_inline_xattr_addrs(inode)); 1841 1842 phys += offset; 1843 len = inline_xattr_size(inode); 1844 1845 f2fs_put_page(page, 1); 1846 1847 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1848 1849 if (!xnid) 1850 flags |= FIEMAP_EXTENT_LAST; 1851 1852 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1853 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1854 if (err) 1855 return err; 1856 } 1857 1858 if (xnid) { 1859 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1860 if (!page) 1861 return -ENOMEM; 1862 1863 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1864 if (err) { 1865 f2fs_put_page(page, 1); 1866 return err; 1867 } 1868 1869 phys = F2FS_BLK_TO_BYTES(ni.blk_addr); 1870 len = inode->i_sb->s_blocksize; 1871 1872 f2fs_put_page(page, 1); 1873 1874 flags = FIEMAP_EXTENT_LAST; 1875 } 1876 1877 if (phys) { 1878 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1879 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1880 } 1881 1882 return (err < 0 ? err : 0); 1883 } 1884 1885 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1886 u64 start, u64 len) 1887 { 1888 struct f2fs_map_blocks map; 1889 sector_t start_blk, last_blk, blk_len, max_len; 1890 pgoff_t next_pgofs; 1891 u64 logical = 0, phys = 0, size = 0; 1892 u32 flags = 0; 1893 int ret = 0; 1894 bool compr_cluster = false, compr_appended; 1895 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1896 unsigned int count_in_cluster = 0; 1897 loff_t maxbytes; 1898 1899 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1900 ret = f2fs_precache_extents(inode); 1901 if (ret) 1902 return ret; 1903 } 1904 1905 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1906 if (ret) 1907 return ret; 1908 1909 inode_lock_shared(inode); 1910 1911 maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 1912 if (start > maxbytes) { 1913 ret = -EFBIG; 1914 goto out; 1915 } 1916 1917 if (len > maxbytes || (maxbytes - len) < start) 1918 len = maxbytes - start; 1919 1920 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1921 ret = f2fs_xattr_fiemap(inode, fieinfo); 1922 goto out; 1923 } 1924 1925 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1926 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1927 if (ret != -EAGAIN) 1928 goto out; 1929 } 1930 1931 start_blk = F2FS_BYTES_TO_BLK(start); 1932 last_blk = F2FS_BYTES_TO_BLK(start + len - 1); 1933 blk_len = last_blk - start_blk + 1; 1934 max_len = F2FS_BYTES_TO_BLK(maxbytes) - start_blk; 1935 1936 next: 1937 memset(&map, 0, sizeof(map)); 1938 map.m_lblk = start_blk; 1939 map.m_len = blk_len; 1940 map.m_next_pgofs = &next_pgofs; 1941 map.m_seg_type = NO_CHECK_TYPE; 1942 1943 if (compr_cluster) { 1944 map.m_lblk += 1; 1945 map.m_len = cluster_size - count_in_cluster; 1946 } 1947 1948 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 1949 if (ret) 1950 goto out; 1951 1952 /* HOLE */ 1953 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1954 start_blk = next_pgofs; 1955 1956 if (F2FS_BLK_TO_BYTES(start_blk) < maxbytes) 1957 goto prep_next; 1958 1959 flags |= FIEMAP_EXTENT_LAST; 1960 } 1961 1962 /* 1963 * current extent may cross boundary of inquiry, increase len to 1964 * requery. 1965 */ 1966 if (!compr_cluster && (map.m_flags & F2FS_MAP_MAPPED) && 1967 map.m_lblk + map.m_len - 1 == last_blk && 1968 blk_len != max_len) { 1969 blk_len = max_len; 1970 goto next; 1971 } 1972 1973 compr_appended = false; 1974 /* In a case of compressed cluster, append this to the last extent */ 1975 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) || 1976 !(map.m_flags & F2FS_MAP_FLAGS))) { 1977 compr_appended = true; 1978 goto skip_fill; 1979 } 1980 1981 if (size) { 1982 flags |= FIEMAP_EXTENT_MERGED; 1983 if (IS_ENCRYPTED(inode)) 1984 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1985 1986 ret = fiemap_fill_next_extent(fieinfo, logical, 1987 phys, size, flags); 1988 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1989 if (ret) 1990 goto out; 1991 size = 0; 1992 } 1993 1994 if (start_blk > last_blk) 1995 goto out; 1996 1997 skip_fill: 1998 if (map.m_pblk == COMPRESS_ADDR) { 1999 compr_cluster = true; 2000 count_in_cluster = 1; 2001 } else if (compr_appended) { 2002 unsigned int appended_blks = cluster_size - 2003 count_in_cluster + 1; 2004 size += F2FS_BLK_TO_BYTES(appended_blks); 2005 start_blk += appended_blks; 2006 compr_cluster = false; 2007 } else { 2008 logical = F2FS_BLK_TO_BYTES(start_blk); 2009 phys = __is_valid_data_blkaddr(map.m_pblk) ? 2010 F2FS_BLK_TO_BYTES(map.m_pblk) : 0; 2011 size = F2FS_BLK_TO_BYTES(map.m_len); 2012 flags = 0; 2013 2014 if (compr_cluster) { 2015 flags = FIEMAP_EXTENT_ENCODED; 2016 count_in_cluster += map.m_len; 2017 if (count_in_cluster == cluster_size) { 2018 compr_cluster = false; 2019 size += F2FS_BLKSIZE; 2020 } 2021 } else if (map.m_flags & F2FS_MAP_DELALLOC) { 2022 flags = FIEMAP_EXTENT_UNWRITTEN; 2023 } 2024 2025 start_blk += F2FS_BYTES_TO_BLK(size); 2026 } 2027 2028 prep_next: 2029 cond_resched(); 2030 if (fatal_signal_pending(current)) 2031 ret = -EINTR; 2032 else 2033 goto next; 2034 out: 2035 if (ret == 1) 2036 ret = 0; 2037 2038 inode_unlock_shared(inode); 2039 return ret; 2040 } 2041 2042 static inline loff_t f2fs_readpage_limit(struct inode *inode) 2043 { 2044 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2045 return F2FS_BLK_TO_BYTES(max_file_blocks(inode)); 2046 2047 return i_size_read(inode); 2048 } 2049 2050 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac) 2051 { 2052 return rac ? REQ_RAHEAD : 0; 2053 } 2054 2055 static int f2fs_read_single_page(struct inode *inode, struct folio *folio, 2056 unsigned nr_pages, 2057 struct f2fs_map_blocks *map, 2058 struct bio **bio_ret, 2059 sector_t *last_block_in_bio, 2060 struct readahead_control *rac) 2061 { 2062 struct bio *bio = *bio_ret; 2063 const unsigned int blocksize = F2FS_BLKSIZE; 2064 sector_t block_in_file; 2065 sector_t last_block; 2066 sector_t last_block_in_file; 2067 sector_t block_nr; 2068 pgoff_t index = folio_index(folio); 2069 int ret = 0; 2070 2071 block_in_file = (sector_t)index; 2072 last_block = block_in_file + nr_pages; 2073 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) + 2074 blocksize - 1); 2075 if (last_block > last_block_in_file) 2076 last_block = last_block_in_file; 2077 2078 /* just zeroing out page which is beyond EOF */ 2079 if (block_in_file >= last_block) 2080 goto zero_out; 2081 /* 2082 * Map blocks using the previous result first. 2083 */ 2084 if ((map->m_flags & F2FS_MAP_MAPPED) && 2085 block_in_file > map->m_lblk && 2086 block_in_file < (map->m_lblk + map->m_len)) 2087 goto got_it; 2088 2089 /* 2090 * Then do more f2fs_map_blocks() calls until we are 2091 * done with this page. 2092 */ 2093 map->m_lblk = block_in_file; 2094 map->m_len = last_block - block_in_file; 2095 2096 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT); 2097 if (ret) 2098 goto out; 2099 got_it: 2100 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2101 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2102 folio_set_mappedtodisk(folio); 2103 2104 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2105 DATA_GENERIC_ENHANCE_READ)) { 2106 ret = -EFSCORRUPTED; 2107 goto out; 2108 } 2109 } else { 2110 zero_out: 2111 folio_zero_segment(folio, 0, folio_size(folio)); 2112 if (f2fs_need_verity(inode, index) && 2113 !fsverity_verify_folio(folio)) { 2114 ret = -EIO; 2115 goto out; 2116 } 2117 if (!folio_test_uptodate(folio)) 2118 folio_mark_uptodate(folio); 2119 folio_unlock(folio); 2120 goto out; 2121 } 2122 2123 /* 2124 * This page will go to BIO. Do we need to send this 2125 * BIO off first? 2126 */ 2127 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2128 *last_block_in_bio, block_nr) || 2129 !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) { 2130 submit_and_realloc: 2131 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2132 bio = NULL; 2133 } 2134 if (bio == NULL) { 2135 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2136 f2fs_ra_op_flags(rac), index, 2137 false); 2138 if (IS_ERR(bio)) { 2139 ret = PTR_ERR(bio); 2140 bio = NULL; 2141 goto out; 2142 } 2143 } 2144 2145 /* 2146 * If the page is under writeback, we need to wait for 2147 * its completion to see the correct decrypted data. 2148 */ 2149 f2fs_wait_on_block_writeback(inode, block_nr); 2150 2151 if (!bio_add_folio(bio, folio, blocksize, 0)) 2152 goto submit_and_realloc; 2153 2154 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2155 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO, 2156 F2FS_BLKSIZE); 2157 *last_block_in_bio = block_nr; 2158 out: 2159 *bio_ret = bio; 2160 return ret; 2161 } 2162 2163 #ifdef CONFIG_F2FS_FS_COMPRESSION 2164 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2165 unsigned nr_pages, sector_t *last_block_in_bio, 2166 struct readahead_control *rac, bool for_write) 2167 { 2168 struct dnode_of_data dn; 2169 struct inode *inode = cc->inode; 2170 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2171 struct bio *bio = *bio_ret; 2172 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2173 sector_t last_block_in_file; 2174 const unsigned int blocksize = F2FS_BLKSIZE; 2175 struct decompress_io_ctx *dic = NULL; 2176 struct extent_info ei = {}; 2177 bool from_dnode = true; 2178 int i; 2179 int ret = 0; 2180 2181 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2182 2183 last_block_in_file = F2FS_BYTES_TO_BLK(f2fs_readpage_limit(inode) + 2184 blocksize - 1); 2185 2186 /* get rid of pages beyond EOF */ 2187 for (i = 0; i < cc->cluster_size; i++) { 2188 struct page *page = cc->rpages[i]; 2189 struct folio *folio; 2190 2191 if (!page) 2192 continue; 2193 2194 folio = page_folio(page); 2195 if ((sector_t)folio->index >= last_block_in_file) { 2196 folio_zero_segment(folio, 0, folio_size(folio)); 2197 if (!folio_test_uptodate(folio)) 2198 folio_mark_uptodate(folio); 2199 } else if (!folio_test_uptodate(folio)) { 2200 continue; 2201 } 2202 folio_unlock(folio); 2203 if (for_write) 2204 folio_put(folio); 2205 cc->rpages[i] = NULL; 2206 cc->nr_rpages--; 2207 } 2208 2209 /* we are done since all pages are beyond EOF */ 2210 if (f2fs_cluster_is_empty(cc)) 2211 goto out; 2212 2213 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei)) 2214 from_dnode = false; 2215 2216 if (!from_dnode) 2217 goto skip_reading_dnode; 2218 2219 set_new_dnode(&dn, inode, NULL, NULL, 0); 2220 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2221 if (ret) 2222 goto out; 2223 2224 if (unlikely(f2fs_cp_error(sbi))) { 2225 ret = -EIO; 2226 goto out_put_dnode; 2227 } 2228 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2229 2230 skip_reading_dnode: 2231 for (i = 1; i < cc->cluster_size; i++) { 2232 block_t blkaddr; 2233 2234 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2235 dn.ofs_in_node + i) : 2236 ei.blk + i - 1; 2237 2238 if (!__is_valid_data_blkaddr(blkaddr)) 2239 break; 2240 2241 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2242 ret = -EFAULT; 2243 goto out_put_dnode; 2244 } 2245 cc->nr_cpages++; 2246 2247 if (!from_dnode && i >= ei.c_len) 2248 break; 2249 } 2250 2251 /* nothing to decompress */ 2252 if (cc->nr_cpages == 0) { 2253 ret = 0; 2254 goto out_put_dnode; 2255 } 2256 2257 dic = f2fs_alloc_dic(cc); 2258 if (IS_ERR(dic)) { 2259 ret = PTR_ERR(dic); 2260 goto out_put_dnode; 2261 } 2262 2263 for (i = 0; i < cc->nr_cpages; i++) { 2264 struct folio *folio = page_folio(dic->cpages[i]); 2265 block_t blkaddr; 2266 struct bio_post_read_ctx *ctx; 2267 2268 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2269 dn.ofs_in_node + i + 1) : 2270 ei.blk + i; 2271 2272 f2fs_wait_on_block_writeback(inode, blkaddr); 2273 2274 if (f2fs_load_compressed_page(sbi, folio_page(folio, 0), 2275 blkaddr)) { 2276 if (atomic_dec_and_test(&dic->remaining_pages)) { 2277 f2fs_decompress_cluster(dic, true); 2278 break; 2279 } 2280 continue; 2281 } 2282 2283 if (bio && (!page_is_mergeable(sbi, bio, 2284 *last_block_in_bio, blkaddr) || 2285 !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) { 2286 submit_and_realloc: 2287 f2fs_submit_read_bio(sbi, bio, DATA); 2288 bio = NULL; 2289 } 2290 2291 if (!bio) { 2292 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2293 f2fs_ra_op_flags(rac), 2294 folio->index, for_write); 2295 if (IS_ERR(bio)) { 2296 ret = PTR_ERR(bio); 2297 f2fs_decompress_end_io(dic, ret, true); 2298 f2fs_put_dnode(&dn); 2299 *bio_ret = NULL; 2300 return ret; 2301 } 2302 } 2303 2304 if (!bio_add_folio(bio, folio, blocksize, 0)) 2305 goto submit_and_realloc; 2306 2307 ctx = get_post_read_ctx(bio); 2308 ctx->enabled_steps |= STEP_DECOMPRESS; 2309 refcount_inc(&dic->refcnt); 2310 2311 inc_page_count(sbi, F2FS_RD_DATA); 2312 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE); 2313 *last_block_in_bio = blkaddr; 2314 } 2315 2316 if (from_dnode) 2317 f2fs_put_dnode(&dn); 2318 2319 *bio_ret = bio; 2320 return 0; 2321 2322 out_put_dnode: 2323 if (from_dnode) 2324 f2fs_put_dnode(&dn); 2325 out: 2326 for (i = 0; i < cc->cluster_size; i++) { 2327 if (cc->rpages[i]) { 2328 ClearPageUptodate(cc->rpages[i]); 2329 unlock_page(cc->rpages[i]); 2330 } 2331 } 2332 *bio_ret = bio; 2333 return ret; 2334 } 2335 #endif 2336 2337 /* 2338 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2339 * Major change was from block_size == page_size in f2fs by default. 2340 */ 2341 static int f2fs_mpage_readpages(struct inode *inode, 2342 struct readahead_control *rac, struct folio *folio) 2343 { 2344 struct bio *bio = NULL; 2345 sector_t last_block_in_bio = 0; 2346 struct f2fs_map_blocks map; 2347 #ifdef CONFIG_F2FS_FS_COMPRESSION 2348 struct compress_ctx cc = { 2349 .inode = inode, 2350 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2351 .cluster_size = F2FS_I(inode)->i_cluster_size, 2352 .cluster_idx = NULL_CLUSTER, 2353 .rpages = NULL, 2354 .cpages = NULL, 2355 .nr_rpages = 0, 2356 .nr_cpages = 0, 2357 }; 2358 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2359 pgoff_t index; 2360 #endif 2361 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2362 unsigned max_nr_pages = nr_pages; 2363 int ret = 0; 2364 2365 map.m_pblk = 0; 2366 map.m_lblk = 0; 2367 map.m_len = 0; 2368 map.m_flags = 0; 2369 map.m_next_pgofs = NULL; 2370 map.m_next_extent = NULL; 2371 map.m_seg_type = NO_CHECK_TYPE; 2372 map.m_may_create = false; 2373 2374 for (; nr_pages; nr_pages--) { 2375 if (rac) { 2376 folio = readahead_folio(rac); 2377 prefetchw(&folio->flags); 2378 } 2379 2380 #ifdef CONFIG_F2FS_FS_COMPRESSION 2381 index = folio_index(folio); 2382 2383 if (!f2fs_compressed_file(inode)) 2384 goto read_single_page; 2385 2386 /* there are remained compressed pages, submit them */ 2387 if (!f2fs_cluster_can_merge_page(&cc, index)) { 2388 ret = f2fs_read_multi_pages(&cc, &bio, 2389 max_nr_pages, 2390 &last_block_in_bio, 2391 rac, false); 2392 f2fs_destroy_compress_ctx(&cc, false); 2393 if (ret) 2394 goto set_error_page; 2395 } 2396 if (cc.cluster_idx == NULL_CLUSTER) { 2397 if (nc_cluster_idx == index >> cc.log_cluster_size) 2398 goto read_single_page; 2399 2400 ret = f2fs_is_compressed_cluster(inode, index); 2401 if (ret < 0) 2402 goto set_error_page; 2403 else if (!ret) { 2404 nc_cluster_idx = 2405 index >> cc.log_cluster_size; 2406 goto read_single_page; 2407 } 2408 2409 nc_cluster_idx = NULL_CLUSTER; 2410 } 2411 ret = f2fs_init_compress_ctx(&cc); 2412 if (ret) 2413 goto set_error_page; 2414 2415 f2fs_compress_ctx_add_page(&cc, folio); 2416 2417 goto next_page; 2418 read_single_page: 2419 #endif 2420 2421 ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map, 2422 &bio, &last_block_in_bio, rac); 2423 if (ret) { 2424 #ifdef CONFIG_F2FS_FS_COMPRESSION 2425 set_error_page: 2426 #endif 2427 folio_zero_segment(folio, 0, folio_size(folio)); 2428 folio_unlock(folio); 2429 } 2430 #ifdef CONFIG_F2FS_FS_COMPRESSION 2431 next_page: 2432 #endif 2433 2434 #ifdef CONFIG_F2FS_FS_COMPRESSION 2435 if (f2fs_compressed_file(inode)) { 2436 /* last page */ 2437 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2438 ret = f2fs_read_multi_pages(&cc, &bio, 2439 max_nr_pages, 2440 &last_block_in_bio, 2441 rac, false); 2442 f2fs_destroy_compress_ctx(&cc, false); 2443 } 2444 } 2445 #endif 2446 } 2447 if (bio) 2448 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA); 2449 return ret; 2450 } 2451 2452 static int f2fs_read_data_folio(struct file *file, struct folio *folio) 2453 { 2454 struct inode *inode = folio->mapping->host; 2455 int ret = -EAGAIN; 2456 2457 trace_f2fs_readpage(folio, DATA); 2458 2459 if (!f2fs_is_compress_backend_ready(inode)) { 2460 folio_unlock(folio); 2461 return -EOPNOTSUPP; 2462 } 2463 2464 /* If the file has inline data, try to read it directly */ 2465 if (f2fs_has_inline_data(inode)) 2466 ret = f2fs_read_inline_data(inode, folio); 2467 if (ret == -EAGAIN) 2468 ret = f2fs_mpage_readpages(inode, NULL, folio); 2469 return ret; 2470 } 2471 2472 static void f2fs_readahead(struct readahead_control *rac) 2473 { 2474 struct inode *inode = rac->mapping->host; 2475 2476 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2477 2478 if (!f2fs_is_compress_backend_ready(inode)) 2479 return; 2480 2481 /* If the file has inline data, skip readahead */ 2482 if (f2fs_has_inline_data(inode)) 2483 return; 2484 2485 f2fs_mpage_readpages(inode, rac, NULL); 2486 } 2487 2488 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2489 { 2490 struct inode *inode = fio->page->mapping->host; 2491 struct page *mpage, *page; 2492 gfp_t gfp_flags = GFP_NOFS; 2493 2494 if (!f2fs_encrypted_file(inode)) 2495 return 0; 2496 2497 page = fio->compressed_page ? fio->compressed_page : fio->page; 2498 2499 if (fscrypt_inode_uses_inline_crypto(inode)) 2500 return 0; 2501 2502 retry_encrypt: 2503 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2504 PAGE_SIZE, 0, gfp_flags); 2505 if (IS_ERR(fio->encrypted_page)) { 2506 /* flush pending IOs and wait for a while in the ENOMEM case */ 2507 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2508 f2fs_flush_merged_writes(fio->sbi); 2509 memalloc_retry_wait(GFP_NOFS); 2510 gfp_flags |= __GFP_NOFAIL; 2511 goto retry_encrypt; 2512 } 2513 return PTR_ERR(fio->encrypted_page); 2514 } 2515 2516 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2517 if (mpage) { 2518 if (PageUptodate(mpage)) 2519 memcpy(page_address(mpage), 2520 page_address(fio->encrypted_page), PAGE_SIZE); 2521 f2fs_put_page(mpage, 1); 2522 } 2523 return 0; 2524 } 2525 2526 static inline bool check_inplace_update_policy(struct inode *inode, 2527 struct f2fs_io_info *fio) 2528 { 2529 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2530 2531 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) && 2532 is_inode_flag_set(inode, FI_OPU_WRITE)) 2533 return false; 2534 if (IS_F2FS_IPU_FORCE(sbi)) 2535 return true; 2536 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi)) 2537 return true; 2538 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 2539 return true; 2540 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) && 2541 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2542 return true; 2543 2544 /* 2545 * IPU for rewrite async pages 2546 */ 2547 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE && 2548 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode)) 2549 return true; 2550 2551 /* this is only set during fdatasync */ 2552 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU)) 2553 return true; 2554 2555 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2556 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2557 return true; 2558 2559 return false; 2560 } 2561 2562 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2563 { 2564 /* swap file is migrating in aligned write mode */ 2565 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2566 return false; 2567 2568 if (f2fs_is_pinned_file(inode)) 2569 return true; 2570 2571 /* if this is cold file, we should overwrite to avoid fragmentation */ 2572 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE)) 2573 return true; 2574 2575 return check_inplace_update_policy(inode, fio); 2576 } 2577 2578 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2579 { 2580 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2581 2582 /* The below cases were checked when setting it. */ 2583 if (f2fs_is_pinned_file(inode)) 2584 return false; 2585 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2586 return true; 2587 if (f2fs_lfs_mode(sbi)) 2588 return true; 2589 if (S_ISDIR(inode->i_mode)) 2590 return true; 2591 if (IS_NOQUOTA(inode)) 2592 return true; 2593 if (f2fs_used_in_atomic_write(inode)) 2594 return true; 2595 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */ 2596 if (f2fs_compressed_file(inode) && 2597 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER && 2598 is_inode_flag_set(inode, FI_ENABLE_COMPRESS)) 2599 return true; 2600 2601 /* swap file is migrating in aligned write mode */ 2602 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2603 return true; 2604 2605 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2606 return true; 2607 2608 if (fio) { 2609 if (page_private_gcing(fio->page)) 2610 return true; 2611 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2612 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2613 return true; 2614 } 2615 return false; 2616 } 2617 2618 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2619 { 2620 struct inode *inode = fio->page->mapping->host; 2621 2622 if (f2fs_should_update_outplace(inode, fio)) 2623 return false; 2624 2625 return f2fs_should_update_inplace(inode, fio); 2626 } 2627 2628 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2629 { 2630 struct folio *folio = page_folio(fio->page); 2631 struct inode *inode = folio->mapping->host; 2632 struct dnode_of_data dn; 2633 struct node_info ni; 2634 bool ipu_force = false; 2635 bool atomic_commit; 2636 int err = 0; 2637 2638 /* Use COW inode to make dnode_of_data for atomic write */ 2639 atomic_commit = f2fs_is_atomic_file(inode) && 2640 page_private_atomic(folio_page(folio, 0)); 2641 if (atomic_commit) 2642 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0); 2643 else 2644 set_new_dnode(&dn, inode, NULL, NULL, 0); 2645 2646 if (need_inplace_update(fio) && 2647 f2fs_lookup_read_extent_cache_block(inode, folio->index, 2648 &fio->old_blkaddr)) { 2649 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2650 DATA_GENERIC_ENHANCE)) 2651 return -EFSCORRUPTED; 2652 2653 ipu_force = true; 2654 fio->need_lock = LOCK_DONE; 2655 goto got_it; 2656 } 2657 2658 /* Deadlock due to between page->lock and f2fs_lock_op */ 2659 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2660 return -EAGAIN; 2661 2662 err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE); 2663 if (err) 2664 goto out; 2665 2666 fio->old_blkaddr = dn.data_blkaddr; 2667 2668 /* This page is already truncated */ 2669 if (fio->old_blkaddr == NULL_ADDR) { 2670 folio_clear_uptodate(folio); 2671 clear_page_private_gcing(folio_page(folio, 0)); 2672 goto out_writepage; 2673 } 2674 got_it: 2675 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2676 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2677 DATA_GENERIC_ENHANCE)) { 2678 err = -EFSCORRUPTED; 2679 goto out_writepage; 2680 } 2681 2682 /* wait for GCed page writeback via META_MAPPING */ 2683 if (fio->meta_gc) 2684 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2685 2686 /* 2687 * If current allocation needs SSR, 2688 * it had better in-place writes for updated data. 2689 */ 2690 if (ipu_force || 2691 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2692 need_inplace_update(fio))) { 2693 err = f2fs_encrypt_one_page(fio); 2694 if (err) 2695 goto out_writepage; 2696 2697 folio_start_writeback(folio); 2698 f2fs_put_dnode(&dn); 2699 if (fio->need_lock == LOCK_REQ) 2700 f2fs_unlock_op(fio->sbi); 2701 err = f2fs_inplace_write_data(fio); 2702 if (err) { 2703 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2704 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2705 folio_end_writeback(folio); 2706 } else { 2707 set_inode_flag(inode, FI_UPDATE_WRITE); 2708 } 2709 trace_f2fs_do_write_data_page(folio, IPU); 2710 return err; 2711 } 2712 2713 if (fio->need_lock == LOCK_RETRY) { 2714 if (!f2fs_trylock_op(fio->sbi)) { 2715 err = -EAGAIN; 2716 goto out_writepage; 2717 } 2718 fio->need_lock = LOCK_REQ; 2719 } 2720 2721 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2722 if (err) 2723 goto out_writepage; 2724 2725 fio->version = ni.version; 2726 2727 err = f2fs_encrypt_one_page(fio); 2728 if (err) 2729 goto out_writepage; 2730 2731 folio_start_writeback(folio); 2732 2733 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2734 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2735 2736 /* LFS mode write path */ 2737 f2fs_outplace_write_data(&dn, fio); 2738 trace_f2fs_do_write_data_page(folio, OPU); 2739 set_inode_flag(inode, FI_APPEND_WRITE); 2740 if (atomic_commit) 2741 clear_page_private_atomic(folio_page(folio, 0)); 2742 out_writepage: 2743 f2fs_put_dnode(&dn); 2744 out: 2745 if (fio->need_lock == LOCK_REQ) 2746 f2fs_unlock_op(fio->sbi); 2747 return err; 2748 } 2749 2750 int f2fs_write_single_data_page(struct folio *folio, int *submitted, 2751 struct bio **bio, 2752 sector_t *last_block, 2753 struct writeback_control *wbc, 2754 enum iostat_type io_type, 2755 int compr_blocks, 2756 bool allow_balance) 2757 { 2758 struct inode *inode = folio->mapping->host; 2759 struct page *page = folio_page(folio, 0); 2760 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2761 loff_t i_size = i_size_read(inode); 2762 const pgoff_t end_index = ((unsigned long long)i_size) 2763 >> PAGE_SHIFT; 2764 loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT; 2765 unsigned offset = 0; 2766 bool need_balance_fs = false; 2767 bool quota_inode = IS_NOQUOTA(inode); 2768 int err = 0; 2769 struct f2fs_io_info fio = { 2770 .sbi = sbi, 2771 .ino = inode->i_ino, 2772 .type = DATA, 2773 .op = REQ_OP_WRITE, 2774 .op_flags = wbc_to_write_flags(wbc), 2775 .old_blkaddr = NULL_ADDR, 2776 .page = page, 2777 .encrypted_page = NULL, 2778 .submitted = 0, 2779 .compr_blocks = compr_blocks, 2780 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY, 2781 .meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0, 2782 .io_type = io_type, 2783 .io_wbc = wbc, 2784 .bio = bio, 2785 .last_block = last_block, 2786 }; 2787 2788 trace_f2fs_writepage(folio, DATA); 2789 2790 /* we should bypass data pages to proceed the kworker jobs */ 2791 if (unlikely(f2fs_cp_error(sbi))) { 2792 mapping_set_error(folio->mapping, -EIO); 2793 /* 2794 * don't drop any dirty dentry pages for keeping lastest 2795 * directory structure. 2796 */ 2797 if (S_ISDIR(inode->i_mode) && 2798 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)) 2799 goto redirty_out; 2800 2801 /* keep data pages in remount-ro mode */ 2802 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2803 goto redirty_out; 2804 goto out; 2805 } 2806 2807 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2808 goto redirty_out; 2809 2810 if (folio->index < end_index || 2811 f2fs_verity_in_progress(inode) || 2812 compr_blocks) 2813 goto write; 2814 2815 /* 2816 * If the offset is out-of-range of file size, 2817 * this page does not have to be written to disk. 2818 */ 2819 offset = i_size & (PAGE_SIZE - 1); 2820 if ((folio->index >= end_index + 1) || !offset) 2821 goto out; 2822 2823 folio_zero_segment(folio, offset, folio_size(folio)); 2824 write: 2825 /* Dentry/quota blocks are controlled by checkpoint */ 2826 if (S_ISDIR(inode->i_mode) || quota_inode) { 2827 /* 2828 * We need to wait for node_write to avoid block allocation during 2829 * checkpoint. This can only happen to quota writes which can cause 2830 * the below discard race condition. 2831 */ 2832 if (quota_inode) 2833 f2fs_down_read(&sbi->node_write); 2834 2835 fio.need_lock = LOCK_DONE; 2836 err = f2fs_do_write_data_page(&fio); 2837 2838 if (quota_inode) 2839 f2fs_up_read(&sbi->node_write); 2840 2841 goto done; 2842 } 2843 2844 if (!wbc->for_reclaim) 2845 need_balance_fs = true; 2846 else if (has_not_enough_free_secs(sbi, 0, 0)) 2847 goto redirty_out; 2848 else 2849 set_inode_flag(inode, FI_HOT_DATA); 2850 2851 err = -EAGAIN; 2852 if (f2fs_has_inline_data(inode)) { 2853 err = f2fs_write_inline_data(inode, folio); 2854 if (!err) 2855 goto out; 2856 } 2857 2858 if (err == -EAGAIN) { 2859 err = f2fs_do_write_data_page(&fio); 2860 if (err == -EAGAIN) { 2861 f2fs_bug_on(sbi, compr_blocks); 2862 fio.need_lock = LOCK_REQ; 2863 err = f2fs_do_write_data_page(&fio); 2864 } 2865 } 2866 2867 if (err) { 2868 file_set_keep_isize(inode); 2869 } else { 2870 spin_lock(&F2FS_I(inode)->i_size_lock); 2871 if (F2FS_I(inode)->last_disk_size < psize) 2872 F2FS_I(inode)->last_disk_size = psize; 2873 spin_unlock(&F2FS_I(inode)->i_size_lock); 2874 } 2875 2876 done: 2877 if (err && err != -ENOENT) 2878 goto redirty_out; 2879 2880 out: 2881 inode_dec_dirty_pages(inode); 2882 if (err) { 2883 folio_clear_uptodate(folio); 2884 clear_page_private_gcing(page); 2885 } 2886 2887 if (wbc->for_reclaim) { 2888 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2889 clear_inode_flag(inode, FI_HOT_DATA); 2890 f2fs_remove_dirty_inode(inode); 2891 submitted = NULL; 2892 } 2893 folio_unlock(folio); 2894 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2895 !F2FS_I(inode)->wb_task && allow_balance) 2896 f2fs_balance_fs(sbi, need_balance_fs); 2897 2898 if (unlikely(f2fs_cp_error(sbi))) { 2899 f2fs_submit_merged_write(sbi, DATA); 2900 if (bio && *bio) 2901 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2902 submitted = NULL; 2903 } 2904 2905 if (submitted) 2906 *submitted = fio.submitted; 2907 2908 return 0; 2909 2910 redirty_out: 2911 folio_redirty_for_writepage(wbc, folio); 2912 /* 2913 * pageout() in MM translates EAGAIN, so calls handle_write_error() 2914 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2915 * file_write_and_wait_range() will see EIO error, which is critical 2916 * to return value of fsync() followed by atomic_write failure to user. 2917 */ 2918 if (!err || wbc->for_reclaim) 2919 return AOP_WRITEPAGE_ACTIVATE; 2920 folio_unlock(folio); 2921 return err; 2922 } 2923 2924 static int f2fs_write_data_page(struct page *page, 2925 struct writeback_control *wbc) 2926 { 2927 struct folio *folio = page_folio(page); 2928 #ifdef CONFIG_F2FS_FS_COMPRESSION 2929 struct inode *inode = folio->mapping->host; 2930 2931 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2932 goto out; 2933 2934 if (f2fs_compressed_file(inode)) { 2935 if (f2fs_is_compressed_cluster(inode, folio->index)) { 2936 folio_redirty_for_writepage(wbc, folio); 2937 return AOP_WRITEPAGE_ACTIVATE; 2938 } 2939 } 2940 out: 2941 #endif 2942 2943 return f2fs_write_single_data_page(folio, NULL, NULL, NULL, 2944 wbc, FS_DATA_IO, 0, true); 2945 } 2946 2947 /* 2948 * This function was copied from write_cache_pages from mm/page-writeback.c. 2949 * The major change is making write step of cold data page separately from 2950 * warm/hot data page. 2951 */ 2952 static int f2fs_write_cache_pages(struct address_space *mapping, 2953 struct writeback_control *wbc, 2954 enum iostat_type io_type) 2955 { 2956 int ret = 0; 2957 int done = 0, retry = 0; 2958 struct page *pages_local[F2FS_ONSTACK_PAGES]; 2959 struct page **pages = pages_local; 2960 struct folio_batch fbatch; 2961 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2962 struct bio *bio = NULL; 2963 sector_t last_block; 2964 #ifdef CONFIG_F2FS_FS_COMPRESSION 2965 struct inode *inode = mapping->host; 2966 struct compress_ctx cc = { 2967 .inode = inode, 2968 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2969 .cluster_size = F2FS_I(inode)->i_cluster_size, 2970 .cluster_idx = NULL_CLUSTER, 2971 .rpages = NULL, 2972 .nr_rpages = 0, 2973 .cpages = NULL, 2974 .valid_nr_cpages = 0, 2975 .rbuf = NULL, 2976 .cbuf = NULL, 2977 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2978 .private = NULL, 2979 }; 2980 #endif 2981 int nr_folios, p, idx; 2982 int nr_pages; 2983 unsigned int max_pages = F2FS_ONSTACK_PAGES; 2984 pgoff_t index; 2985 pgoff_t end; /* Inclusive */ 2986 pgoff_t done_index; 2987 int range_whole = 0; 2988 xa_mark_t tag; 2989 int nwritten = 0; 2990 int submitted = 0; 2991 int i; 2992 2993 #ifdef CONFIG_F2FS_FS_COMPRESSION 2994 if (f2fs_compressed_file(inode) && 2995 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) { 2996 pages = f2fs_kzalloc(sbi, sizeof(struct page *) << 2997 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL); 2998 max_pages = 1 << cc.log_cluster_size; 2999 } 3000 #endif 3001 3002 folio_batch_init(&fbatch); 3003 3004 if (get_dirty_pages(mapping->host) <= 3005 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 3006 set_inode_flag(mapping->host, FI_HOT_DATA); 3007 else 3008 clear_inode_flag(mapping->host, FI_HOT_DATA); 3009 3010 if (wbc->range_cyclic) { 3011 index = mapping->writeback_index; /* prev offset */ 3012 end = -1; 3013 } else { 3014 index = wbc->range_start >> PAGE_SHIFT; 3015 end = wbc->range_end >> PAGE_SHIFT; 3016 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 3017 range_whole = 1; 3018 } 3019 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3020 tag = PAGECACHE_TAG_TOWRITE; 3021 else 3022 tag = PAGECACHE_TAG_DIRTY; 3023 retry: 3024 retry = 0; 3025 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 3026 tag_pages_for_writeback(mapping, index, end); 3027 done_index = index; 3028 while (!done && !retry && (index <= end)) { 3029 nr_pages = 0; 3030 again: 3031 nr_folios = filemap_get_folios_tag(mapping, &index, end, 3032 tag, &fbatch); 3033 if (nr_folios == 0) { 3034 if (nr_pages) 3035 goto write; 3036 break; 3037 } 3038 3039 for (i = 0; i < nr_folios; i++) { 3040 struct folio *folio = fbatch.folios[i]; 3041 3042 idx = 0; 3043 p = folio_nr_pages(folio); 3044 add_more: 3045 pages[nr_pages] = folio_page(folio, idx); 3046 folio_get(folio); 3047 if (++nr_pages == max_pages) { 3048 index = folio->index + idx + 1; 3049 folio_batch_release(&fbatch); 3050 goto write; 3051 } 3052 if (++idx < p) 3053 goto add_more; 3054 } 3055 folio_batch_release(&fbatch); 3056 goto again; 3057 write: 3058 for (i = 0; i < nr_pages; i++) { 3059 struct page *page = pages[i]; 3060 struct folio *folio = page_folio(page); 3061 bool need_readd; 3062 readd: 3063 need_readd = false; 3064 #ifdef CONFIG_F2FS_FS_COMPRESSION 3065 if (f2fs_compressed_file(inode)) { 3066 void *fsdata = NULL; 3067 struct page *pagep; 3068 int ret2; 3069 3070 ret = f2fs_init_compress_ctx(&cc); 3071 if (ret) { 3072 done = 1; 3073 break; 3074 } 3075 3076 if (!f2fs_cluster_can_merge_page(&cc, 3077 folio->index)) { 3078 ret = f2fs_write_multi_pages(&cc, 3079 &submitted, wbc, io_type); 3080 if (!ret) 3081 need_readd = true; 3082 goto result; 3083 } 3084 3085 if (unlikely(f2fs_cp_error(sbi))) 3086 goto lock_folio; 3087 3088 if (!f2fs_cluster_is_empty(&cc)) 3089 goto lock_folio; 3090 3091 if (f2fs_all_cluster_page_ready(&cc, 3092 pages, i, nr_pages, true)) 3093 goto lock_folio; 3094 3095 ret2 = f2fs_prepare_compress_overwrite( 3096 inode, &pagep, 3097 folio->index, &fsdata); 3098 if (ret2 < 0) { 3099 ret = ret2; 3100 done = 1; 3101 break; 3102 } else if (ret2 && 3103 (!f2fs_compress_write_end(inode, 3104 fsdata, folio->index, 1) || 3105 !f2fs_all_cluster_page_ready(&cc, 3106 pages, i, nr_pages, 3107 false))) { 3108 retry = 1; 3109 break; 3110 } 3111 } 3112 #endif 3113 /* give a priority to WB_SYNC threads */ 3114 if (atomic_read(&sbi->wb_sync_req[DATA]) && 3115 wbc->sync_mode == WB_SYNC_NONE) { 3116 done = 1; 3117 break; 3118 } 3119 #ifdef CONFIG_F2FS_FS_COMPRESSION 3120 lock_folio: 3121 #endif 3122 done_index = folio->index; 3123 retry_write: 3124 folio_lock(folio); 3125 3126 if (unlikely(folio->mapping != mapping)) { 3127 continue_unlock: 3128 folio_unlock(folio); 3129 continue; 3130 } 3131 3132 if (!folio_test_dirty(folio)) { 3133 /* someone wrote it for us */ 3134 goto continue_unlock; 3135 } 3136 3137 if (folio_test_writeback(folio)) { 3138 if (wbc->sync_mode == WB_SYNC_NONE) 3139 goto continue_unlock; 3140 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true); 3141 } 3142 3143 if (!folio_clear_dirty_for_io(folio)) 3144 goto continue_unlock; 3145 3146 #ifdef CONFIG_F2FS_FS_COMPRESSION 3147 if (f2fs_compressed_file(inode)) { 3148 folio_get(folio); 3149 f2fs_compress_ctx_add_page(&cc, folio); 3150 continue; 3151 } 3152 #endif 3153 submitted = 0; 3154 ret = f2fs_write_single_data_page(folio, 3155 &submitted, &bio, &last_block, 3156 wbc, io_type, 0, true); 3157 if (ret == AOP_WRITEPAGE_ACTIVATE) 3158 folio_unlock(folio); 3159 #ifdef CONFIG_F2FS_FS_COMPRESSION 3160 result: 3161 #endif 3162 nwritten += submitted; 3163 wbc->nr_to_write -= submitted; 3164 3165 if (unlikely(ret)) { 3166 /* 3167 * keep nr_to_write, since vfs uses this to 3168 * get # of written pages. 3169 */ 3170 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3171 ret = 0; 3172 goto next; 3173 } else if (ret == -EAGAIN) { 3174 ret = 0; 3175 if (wbc->sync_mode == WB_SYNC_ALL) { 3176 f2fs_io_schedule_timeout( 3177 DEFAULT_IO_TIMEOUT); 3178 goto retry_write; 3179 } 3180 goto next; 3181 } 3182 done_index = folio_next_index(folio); 3183 done = 1; 3184 break; 3185 } 3186 3187 if (wbc->nr_to_write <= 0 && 3188 wbc->sync_mode == WB_SYNC_NONE) { 3189 done = 1; 3190 break; 3191 } 3192 next: 3193 if (need_readd) 3194 goto readd; 3195 } 3196 release_pages(pages, nr_pages); 3197 cond_resched(); 3198 } 3199 #ifdef CONFIG_F2FS_FS_COMPRESSION 3200 /* flush remained pages in compress cluster */ 3201 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3202 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3203 nwritten += submitted; 3204 wbc->nr_to_write -= submitted; 3205 if (ret) { 3206 done = 1; 3207 retry = 0; 3208 } 3209 } 3210 if (f2fs_compressed_file(inode)) 3211 f2fs_destroy_compress_ctx(&cc, false); 3212 #endif 3213 if (retry) { 3214 index = 0; 3215 end = -1; 3216 goto retry; 3217 } 3218 if (wbc->range_cyclic && !done) 3219 done_index = 0; 3220 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3221 mapping->writeback_index = done_index; 3222 3223 if (nwritten) 3224 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3225 NULL, 0, DATA); 3226 /* submit cached bio of IPU write */ 3227 if (bio) 3228 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3229 3230 #ifdef CONFIG_F2FS_FS_COMPRESSION 3231 if (pages != pages_local) 3232 kfree(pages); 3233 #endif 3234 3235 return ret; 3236 } 3237 3238 static inline bool __should_serialize_io(struct inode *inode, 3239 struct writeback_control *wbc) 3240 { 3241 /* to avoid deadlock in path of data flush */ 3242 if (F2FS_I(inode)->wb_task) 3243 return false; 3244 3245 if (!S_ISREG(inode->i_mode)) 3246 return false; 3247 if (IS_NOQUOTA(inode)) 3248 return false; 3249 3250 if (f2fs_need_compress_data(inode)) 3251 return true; 3252 if (wbc->sync_mode != WB_SYNC_ALL) 3253 return true; 3254 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3255 return true; 3256 return false; 3257 } 3258 3259 static int __f2fs_write_data_pages(struct address_space *mapping, 3260 struct writeback_control *wbc, 3261 enum iostat_type io_type) 3262 { 3263 struct inode *inode = mapping->host; 3264 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3265 struct blk_plug plug; 3266 int ret; 3267 bool locked = false; 3268 3269 /* deal with chardevs and other special file */ 3270 if (!mapping->a_ops->writepage) 3271 return 0; 3272 3273 /* skip writing if there is no dirty page in this inode */ 3274 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3275 return 0; 3276 3277 /* during POR, we don't need to trigger writepage at all. */ 3278 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3279 goto skip_write; 3280 3281 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3282 wbc->sync_mode == WB_SYNC_NONE && 3283 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3284 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3285 goto skip_write; 3286 3287 /* skip writing in file defragment preparing stage */ 3288 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3289 goto skip_write; 3290 3291 trace_f2fs_writepages(mapping->host, wbc, DATA); 3292 3293 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3294 if (wbc->sync_mode == WB_SYNC_ALL) 3295 atomic_inc(&sbi->wb_sync_req[DATA]); 3296 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3297 /* to avoid potential deadlock */ 3298 if (current->plug) 3299 blk_finish_plug(current->plug); 3300 goto skip_write; 3301 } 3302 3303 if (__should_serialize_io(inode, wbc)) { 3304 mutex_lock(&sbi->writepages); 3305 locked = true; 3306 } 3307 3308 blk_start_plug(&plug); 3309 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3310 blk_finish_plug(&plug); 3311 3312 if (locked) 3313 mutex_unlock(&sbi->writepages); 3314 3315 if (wbc->sync_mode == WB_SYNC_ALL) 3316 atomic_dec(&sbi->wb_sync_req[DATA]); 3317 /* 3318 * if some pages were truncated, we cannot guarantee its mapping->host 3319 * to detect pending bios. 3320 */ 3321 3322 f2fs_remove_dirty_inode(inode); 3323 return ret; 3324 3325 skip_write: 3326 wbc->pages_skipped += get_dirty_pages(inode); 3327 trace_f2fs_writepages(mapping->host, wbc, DATA); 3328 return 0; 3329 } 3330 3331 static int f2fs_write_data_pages(struct address_space *mapping, 3332 struct writeback_control *wbc) 3333 { 3334 struct inode *inode = mapping->host; 3335 3336 return __f2fs_write_data_pages(mapping, wbc, 3337 F2FS_I(inode)->cp_task == current ? 3338 FS_CP_DATA_IO : FS_DATA_IO); 3339 } 3340 3341 void f2fs_write_failed(struct inode *inode, loff_t to) 3342 { 3343 loff_t i_size = i_size_read(inode); 3344 3345 if (IS_NOQUOTA(inode)) 3346 return; 3347 3348 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3349 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3350 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3351 filemap_invalidate_lock(inode->i_mapping); 3352 3353 truncate_pagecache(inode, i_size); 3354 f2fs_truncate_blocks(inode, i_size, true); 3355 3356 filemap_invalidate_unlock(inode->i_mapping); 3357 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3358 } 3359 } 3360 3361 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3362 struct folio *folio, loff_t pos, unsigned int len, 3363 block_t *blk_addr, bool *node_changed) 3364 { 3365 struct inode *inode = folio->mapping->host; 3366 pgoff_t index = folio->index; 3367 struct dnode_of_data dn; 3368 struct page *ipage; 3369 bool locked = false; 3370 int flag = F2FS_GET_BLOCK_PRE_AIO; 3371 int err = 0; 3372 3373 /* 3374 * If a whole page is being written and we already preallocated all the 3375 * blocks, then there is no need to get a block address now. 3376 */ 3377 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3378 return 0; 3379 3380 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3381 if (f2fs_has_inline_data(inode)) { 3382 if (pos + len > MAX_INLINE_DATA(inode)) 3383 flag = F2FS_GET_BLOCK_DEFAULT; 3384 f2fs_map_lock(sbi, flag); 3385 locked = true; 3386 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) { 3387 f2fs_map_lock(sbi, flag); 3388 locked = true; 3389 } 3390 3391 restart: 3392 /* check inline_data */ 3393 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3394 if (IS_ERR(ipage)) { 3395 err = PTR_ERR(ipage); 3396 goto unlock_out; 3397 } 3398 3399 set_new_dnode(&dn, inode, ipage, ipage, 0); 3400 3401 if (f2fs_has_inline_data(inode)) { 3402 if (pos + len <= MAX_INLINE_DATA(inode)) { 3403 f2fs_do_read_inline_data(folio, ipage); 3404 set_inode_flag(inode, FI_DATA_EXIST); 3405 if (inode->i_nlink) 3406 set_page_private_inline(ipage); 3407 goto out; 3408 } 3409 err = f2fs_convert_inline_page(&dn, folio_page(folio, 0)); 3410 if (err || dn.data_blkaddr != NULL_ADDR) 3411 goto out; 3412 } 3413 3414 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3415 &dn.data_blkaddr)) { 3416 if (IS_DEVICE_ALIASING(inode)) { 3417 err = -ENODATA; 3418 goto out; 3419 } 3420 3421 if (locked) { 3422 err = f2fs_reserve_block(&dn, index); 3423 goto out; 3424 } 3425 3426 /* hole case */ 3427 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3428 if (!err && dn.data_blkaddr != NULL_ADDR) 3429 goto out; 3430 f2fs_put_dnode(&dn); 3431 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3432 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3433 locked = true; 3434 goto restart; 3435 } 3436 out: 3437 if (!err) { 3438 /* convert_inline_page can make node_changed */ 3439 *blk_addr = dn.data_blkaddr; 3440 *node_changed = dn.node_changed; 3441 } 3442 f2fs_put_dnode(&dn); 3443 unlock_out: 3444 if (locked) 3445 f2fs_map_unlock(sbi, flag); 3446 return err; 3447 } 3448 3449 static int __find_data_block(struct inode *inode, pgoff_t index, 3450 block_t *blk_addr) 3451 { 3452 struct dnode_of_data dn; 3453 struct page *ipage; 3454 int err = 0; 3455 3456 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); 3457 if (IS_ERR(ipage)) 3458 return PTR_ERR(ipage); 3459 3460 set_new_dnode(&dn, inode, ipage, ipage, 0); 3461 3462 if (!f2fs_lookup_read_extent_cache_block(inode, index, 3463 &dn.data_blkaddr)) { 3464 /* hole case */ 3465 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3466 if (err) { 3467 dn.data_blkaddr = NULL_ADDR; 3468 err = 0; 3469 } 3470 } 3471 *blk_addr = dn.data_blkaddr; 3472 f2fs_put_dnode(&dn); 3473 return err; 3474 } 3475 3476 static int __reserve_data_block(struct inode *inode, pgoff_t index, 3477 block_t *blk_addr, bool *node_changed) 3478 { 3479 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3480 struct dnode_of_data dn; 3481 struct page *ipage; 3482 int err = 0; 3483 3484 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3485 3486 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3487 if (IS_ERR(ipage)) { 3488 err = PTR_ERR(ipage); 3489 goto unlock_out; 3490 } 3491 set_new_dnode(&dn, inode, ipage, ipage, 0); 3492 3493 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index, 3494 &dn.data_blkaddr)) 3495 err = f2fs_reserve_block(&dn, index); 3496 3497 *blk_addr = dn.data_blkaddr; 3498 *node_changed = dn.node_changed; 3499 f2fs_put_dnode(&dn); 3500 3501 unlock_out: 3502 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO); 3503 return err; 3504 } 3505 3506 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi, 3507 struct folio *folio, loff_t pos, unsigned int len, 3508 block_t *blk_addr, bool *node_changed, bool *use_cow) 3509 { 3510 struct inode *inode = folio->mapping->host; 3511 struct inode *cow_inode = F2FS_I(inode)->cow_inode; 3512 pgoff_t index = folio->index; 3513 int err = 0; 3514 block_t ori_blk_addr = NULL_ADDR; 3515 3516 /* If pos is beyond the end of file, reserve a new block in COW inode */ 3517 if ((pos & PAGE_MASK) >= i_size_read(inode)) 3518 goto reserve_block; 3519 3520 /* Look for the block in COW inode first */ 3521 err = __find_data_block(cow_inode, index, blk_addr); 3522 if (err) { 3523 return err; 3524 } else if (*blk_addr != NULL_ADDR) { 3525 *use_cow = true; 3526 return 0; 3527 } 3528 3529 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE)) 3530 goto reserve_block; 3531 3532 /* Look for the block in the original inode */ 3533 err = __find_data_block(inode, index, &ori_blk_addr); 3534 if (err) 3535 return err; 3536 3537 reserve_block: 3538 /* Finally, we should reserve a new block in COW inode for the update */ 3539 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed); 3540 if (err) 3541 return err; 3542 inc_atomic_write_cnt(inode); 3543 3544 if (ori_blk_addr != NULL_ADDR) 3545 *blk_addr = ori_blk_addr; 3546 return 0; 3547 } 3548 3549 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3550 loff_t pos, unsigned len, struct folio **foliop, void **fsdata) 3551 { 3552 struct inode *inode = mapping->host; 3553 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3554 struct folio *folio; 3555 pgoff_t index = pos >> PAGE_SHIFT; 3556 bool need_balance = false; 3557 bool use_cow = false; 3558 block_t blkaddr = NULL_ADDR; 3559 int err = 0; 3560 3561 trace_f2fs_write_begin(inode, pos, len); 3562 3563 if (!f2fs_is_checkpoint_ready(sbi)) { 3564 err = -ENOSPC; 3565 goto fail; 3566 } 3567 3568 /* 3569 * We should check this at this moment to avoid deadlock on inode page 3570 * and #0 page. The locking rule for inline_data conversion should be: 3571 * folio_lock(folio #0) -> folio_lock(inode_page) 3572 */ 3573 if (index != 0) { 3574 err = f2fs_convert_inline_inode(inode); 3575 if (err) 3576 goto fail; 3577 } 3578 3579 #ifdef CONFIG_F2FS_FS_COMPRESSION 3580 if (f2fs_compressed_file(inode)) { 3581 int ret; 3582 struct page *page; 3583 3584 *fsdata = NULL; 3585 3586 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3587 goto repeat; 3588 3589 ret = f2fs_prepare_compress_overwrite(inode, &page, 3590 index, fsdata); 3591 if (ret < 0) { 3592 err = ret; 3593 goto fail; 3594 } else if (ret) { 3595 *foliop = page_folio(page); 3596 return 0; 3597 } 3598 } 3599 #endif 3600 3601 repeat: 3602 /* 3603 * Do not use FGP_STABLE to avoid deadlock. 3604 * Will wait that below with our IO control. 3605 */ 3606 folio = __filemap_get_folio(mapping, index, 3607 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3608 if (IS_ERR(folio)) { 3609 err = PTR_ERR(folio); 3610 goto fail; 3611 } 3612 3613 /* TODO: cluster can be compressed due to race with .writepage */ 3614 3615 *foliop = folio; 3616 3617 if (f2fs_is_atomic_file(inode)) 3618 err = prepare_atomic_write_begin(sbi, folio, pos, len, 3619 &blkaddr, &need_balance, &use_cow); 3620 else 3621 err = prepare_write_begin(sbi, folio, pos, len, 3622 &blkaddr, &need_balance); 3623 if (err) 3624 goto put_folio; 3625 3626 if (need_balance && !IS_NOQUOTA(inode) && 3627 has_not_enough_free_secs(sbi, 0, 0)) { 3628 folio_unlock(folio); 3629 f2fs_balance_fs(sbi, true); 3630 folio_lock(folio); 3631 if (folio->mapping != mapping) { 3632 /* The folio got truncated from under us */ 3633 folio_unlock(folio); 3634 folio_put(folio); 3635 goto repeat; 3636 } 3637 } 3638 3639 f2fs_wait_on_page_writeback(&folio->page, DATA, false, true); 3640 3641 if (len == folio_size(folio) || folio_test_uptodate(folio)) 3642 return 0; 3643 3644 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3645 !f2fs_verity_in_progress(inode)) { 3646 folio_zero_segment(folio, len, folio_size(folio)); 3647 return 0; 3648 } 3649 3650 if (blkaddr == NEW_ADDR) { 3651 folio_zero_segment(folio, 0, folio_size(folio)); 3652 folio_mark_uptodate(folio); 3653 } else { 3654 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3655 DATA_GENERIC_ENHANCE_READ)) { 3656 err = -EFSCORRUPTED; 3657 goto put_folio; 3658 } 3659 err = f2fs_submit_page_read(use_cow ? 3660 F2FS_I(inode)->cow_inode : inode, 3661 folio, blkaddr, 0, true); 3662 if (err) 3663 goto put_folio; 3664 3665 folio_lock(folio); 3666 if (unlikely(folio->mapping != mapping)) { 3667 folio_unlock(folio); 3668 folio_put(folio); 3669 goto repeat; 3670 } 3671 if (unlikely(!folio_test_uptodate(folio))) { 3672 err = -EIO; 3673 goto put_folio; 3674 } 3675 } 3676 return 0; 3677 3678 put_folio: 3679 folio_unlock(folio); 3680 folio_put(folio); 3681 fail: 3682 f2fs_write_failed(inode, pos + len); 3683 return err; 3684 } 3685 3686 static int f2fs_write_end(struct file *file, 3687 struct address_space *mapping, 3688 loff_t pos, unsigned len, unsigned copied, 3689 struct folio *folio, void *fsdata) 3690 { 3691 struct inode *inode = folio->mapping->host; 3692 3693 trace_f2fs_write_end(inode, pos, len, copied); 3694 3695 /* 3696 * This should be come from len == PAGE_SIZE, and we expect copied 3697 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3698 * let generic_perform_write() try to copy data again through copied=0. 3699 */ 3700 if (!folio_test_uptodate(folio)) { 3701 if (unlikely(copied != len)) 3702 copied = 0; 3703 else 3704 folio_mark_uptodate(folio); 3705 } 3706 3707 #ifdef CONFIG_F2FS_FS_COMPRESSION 3708 /* overwrite compressed file */ 3709 if (f2fs_compressed_file(inode) && fsdata) { 3710 f2fs_compress_write_end(inode, fsdata, folio->index, copied); 3711 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3712 3713 if (pos + copied > i_size_read(inode) && 3714 !f2fs_verity_in_progress(inode)) 3715 f2fs_i_size_write(inode, pos + copied); 3716 return copied; 3717 } 3718 #endif 3719 3720 if (!copied) 3721 goto unlock_out; 3722 3723 folio_mark_dirty(folio); 3724 3725 if (f2fs_is_atomic_file(inode)) 3726 set_page_private_atomic(folio_page(folio, 0)); 3727 3728 if (pos + copied > i_size_read(inode) && 3729 !f2fs_verity_in_progress(inode)) { 3730 f2fs_i_size_write(inode, pos + copied); 3731 if (f2fs_is_atomic_file(inode)) 3732 f2fs_i_size_write(F2FS_I(inode)->cow_inode, 3733 pos + copied); 3734 } 3735 unlock_out: 3736 folio_unlock(folio); 3737 folio_put(folio); 3738 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3739 return copied; 3740 } 3741 3742 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3743 { 3744 struct inode *inode = folio->mapping->host; 3745 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3746 3747 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3748 (offset || length != folio_size(folio))) 3749 return; 3750 3751 if (folio_test_dirty(folio)) { 3752 if (inode->i_ino == F2FS_META_INO(sbi)) { 3753 dec_page_count(sbi, F2FS_DIRTY_META); 3754 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3755 dec_page_count(sbi, F2FS_DIRTY_NODES); 3756 } else { 3757 inode_dec_dirty_pages(inode); 3758 f2fs_remove_dirty_inode(inode); 3759 } 3760 } 3761 clear_page_private_all(&folio->page); 3762 } 3763 3764 bool f2fs_release_folio(struct folio *folio, gfp_t wait) 3765 { 3766 /* If this is dirty folio, keep private data */ 3767 if (folio_test_dirty(folio)) 3768 return false; 3769 3770 clear_page_private_all(&folio->page); 3771 return true; 3772 } 3773 3774 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3775 struct folio *folio) 3776 { 3777 struct inode *inode = mapping->host; 3778 3779 trace_f2fs_set_page_dirty(folio, DATA); 3780 3781 if (!folio_test_uptodate(folio)) 3782 folio_mark_uptodate(folio); 3783 BUG_ON(folio_test_swapcache(folio)); 3784 3785 if (filemap_dirty_folio(mapping, folio)) { 3786 f2fs_update_dirty_folio(inode, folio); 3787 return true; 3788 } 3789 return false; 3790 } 3791 3792 3793 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3794 { 3795 #ifdef CONFIG_F2FS_FS_COMPRESSION 3796 struct dnode_of_data dn; 3797 sector_t start_idx, blknr = 0; 3798 int ret; 3799 3800 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3801 3802 set_new_dnode(&dn, inode, NULL, NULL, 0); 3803 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3804 if (ret) 3805 return 0; 3806 3807 if (dn.data_blkaddr != COMPRESS_ADDR) { 3808 dn.ofs_in_node += block - start_idx; 3809 blknr = f2fs_data_blkaddr(&dn); 3810 if (!__is_valid_data_blkaddr(blknr)) 3811 blknr = 0; 3812 } 3813 3814 f2fs_put_dnode(&dn); 3815 return blknr; 3816 #else 3817 return 0; 3818 #endif 3819 } 3820 3821 3822 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3823 { 3824 struct inode *inode = mapping->host; 3825 sector_t blknr = 0; 3826 3827 if (f2fs_has_inline_data(inode)) 3828 goto out; 3829 3830 /* make sure allocating whole blocks */ 3831 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3832 filemap_write_and_wait(mapping); 3833 3834 /* Block number less than F2FS MAX BLOCKS */ 3835 if (unlikely(block >= max_file_blocks(inode))) 3836 goto out; 3837 3838 if (f2fs_compressed_file(inode)) { 3839 blknr = f2fs_bmap_compress(inode, block); 3840 } else { 3841 struct f2fs_map_blocks map; 3842 3843 memset(&map, 0, sizeof(map)); 3844 map.m_lblk = block; 3845 map.m_len = 1; 3846 map.m_next_pgofs = NULL; 3847 map.m_seg_type = NO_CHECK_TYPE; 3848 3849 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP)) 3850 blknr = map.m_pblk; 3851 } 3852 out: 3853 trace_f2fs_bmap(inode, block, blknr); 3854 return blknr; 3855 } 3856 3857 #ifdef CONFIG_SWAP 3858 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3859 unsigned int blkcnt) 3860 { 3861 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3862 unsigned int blkofs; 3863 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3864 unsigned int end_blk = start_blk + blkcnt - 1; 3865 unsigned int secidx = start_blk / blk_per_sec; 3866 unsigned int end_sec; 3867 int ret = 0; 3868 3869 if (!blkcnt) 3870 return 0; 3871 end_sec = end_blk / blk_per_sec; 3872 3873 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3874 filemap_invalidate_lock(inode->i_mapping); 3875 3876 set_inode_flag(inode, FI_ALIGNED_WRITE); 3877 set_inode_flag(inode, FI_OPU_WRITE); 3878 3879 for (; secidx <= end_sec; secidx++) { 3880 unsigned int blkofs_end = secidx == end_sec ? 3881 end_blk % blk_per_sec : blk_per_sec - 1; 3882 3883 f2fs_down_write(&sbi->pin_sem); 3884 3885 ret = f2fs_allocate_pinning_section(sbi); 3886 if (ret) { 3887 f2fs_up_write(&sbi->pin_sem); 3888 break; 3889 } 3890 3891 set_inode_flag(inode, FI_SKIP_WRITES); 3892 3893 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) { 3894 struct page *page; 3895 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3896 3897 page = f2fs_get_lock_data_page(inode, blkidx, true); 3898 if (IS_ERR(page)) { 3899 f2fs_up_write(&sbi->pin_sem); 3900 ret = PTR_ERR(page); 3901 goto done; 3902 } 3903 3904 set_page_dirty(page); 3905 f2fs_put_page(page, 1); 3906 } 3907 3908 clear_inode_flag(inode, FI_SKIP_WRITES); 3909 3910 ret = filemap_fdatawrite(inode->i_mapping); 3911 3912 f2fs_up_write(&sbi->pin_sem); 3913 3914 if (ret) 3915 break; 3916 } 3917 3918 done: 3919 clear_inode_flag(inode, FI_SKIP_WRITES); 3920 clear_inode_flag(inode, FI_OPU_WRITE); 3921 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3922 3923 filemap_invalidate_unlock(inode->i_mapping); 3924 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3925 3926 return ret; 3927 } 3928 3929 static int check_swap_activate(struct swap_info_struct *sis, 3930 struct file *swap_file, sector_t *span) 3931 { 3932 struct address_space *mapping = swap_file->f_mapping; 3933 struct inode *inode = mapping->host; 3934 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3935 block_t cur_lblock; 3936 block_t last_lblock; 3937 block_t pblock; 3938 block_t lowest_pblock = -1; 3939 block_t highest_pblock = 0; 3940 int nr_extents = 0; 3941 unsigned int nr_pblocks; 3942 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3943 unsigned int not_aligned = 0; 3944 int ret = 0; 3945 3946 /* 3947 * Map all the blocks into the extent list. This code doesn't try 3948 * to be very smart. 3949 */ 3950 cur_lblock = 0; 3951 last_lblock = F2FS_BYTES_TO_BLK(i_size_read(inode)); 3952 3953 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3954 struct f2fs_map_blocks map; 3955 retry: 3956 cond_resched(); 3957 3958 memset(&map, 0, sizeof(map)); 3959 map.m_lblk = cur_lblock; 3960 map.m_len = last_lblock - cur_lblock; 3961 map.m_next_pgofs = NULL; 3962 map.m_next_extent = NULL; 3963 map.m_seg_type = NO_CHECK_TYPE; 3964 map.m_may_create = false; 3965 3966 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP); 3967 if (ret) 3968 goto out; 3969 3970 /* hole */ 3971 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3972 f2fs_err(sbi, "Swapfile has holes"); 3973 ret = -EINVAL; 3974 goto out; 3975 } 3976 3977 pblock = map.m_pblk; 3978 nr_pblocks = map.m_len; 3979 3980 if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec || 3981 nr_pblocks % blks_per_sec || 3982 !f2fs_valid_pinned_area(sbi, pblock)) { 3983 bool last_extent = false; 3984 3985 not_aligned++; 3986 3987 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3988 if (cur_lblock + nr_pblocks > sis->max) 3989 nr_pblocks -= blks_per_sec; 3990 3991 /* this extent is last one */ 3992 if (!nr_pblocks) { 3993 nr_pblocks = last_lblock - cur_lblock; 3994 last_extent = true; 3995 } 3996 3997 ret = f2fs_migrate_blocks(inode, cur_lblock, 3998 nr_pblocks); 3999 if (ret) { 4000 if (ret == -ENOENT) 4001 ret = -EINVAL; 4002 goto out; 4003 } 4004 4005 if (!last_extent) 4006 goto retry; 4007 } 4008 4009 if (cur_lblock + nr_pblocks >= sis->max) 4010 nr_pblocks = sis->max - cur_lblock; 4011 4012 if (cur_lblock) { /* exclude the header page */ 4013 if (pblock < lowest_pblock) 4014 lowest_pblock = pblock; 4015 if (pblock + nr_pblocks - 1 > highest_pblock) 4016 highest_pblock = pblock + nr_pblocks - 1; 4017 } 4018 4019 /* 4020 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 4021 */ 4022 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 4023 if (ret < 0) 4024 goto out; 4025 nr_extents += ret; 4026 cur_lblock += nr_pblocks; 4027 } 4028 ret = nr_extents; 4029 *span = 1 + highest_pblock - lowest_pblock; 4030 if (cur_lblock == 0) 4031 cur_lblock = 1; /* force Empty message */ 4032 sis->max = cur_lblock; 4033 sis->pages = cur_lblock - 1; 4034 out: 4035 if (not_aligned) 4036 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)", 4037 not_aligned, blks_per_sec * F2FS_BLKSIZE); 4038 return ret; 4039 } 4040 4041 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4042 sector_t *span) 4043 { 4044 struct inode *inode = file_inode(file); 4045 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 4046 int ret; 4047 4048 if (!S_ISREG(inode->i_mode)) 4049 return -EINVAL; 4050 4051 if (f2fs_readonly(sbi->sb)) 4052 return -EROFS; 4053 4054 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) { 4055 f2fs_err(sbi, "Swapfile not supported in LFS mode"); 4056 return -EINVAL; 4057 } 4058 4059 ret = f2fs_convert_inline_inode(inode); 4060 if (ret) 4061 return ret; 4062 4063 if (!f2fs_disable_compressed_file(inode)) 4064 return -EINVAL; 4065 4066 ret = filemap_fdatawrite(inode->i_mapping); 4067 if (ret < 0) 4068 return ret; 4069 4070 f2fs_precache_extents(inode); 4071 4072 ret = check_swap_activate(sis, file, span); 4073 if (ret < 0) 4074 return ret; 4075 4076 stat_inc_swapfile_inode(inode); 4077 set_inode_flag(inode, FI_PIN_FILE); 4078 f2fs_update_time(sbi, REQ_TIME); 4079 return ret; 4080 } 4081 4082 static void f2fs_swap_deactivate(struct file *file) 4083 { 4084 struct inode *inode = file_inode(file); 4085 4086 stat_dec_swapfile_inode(inode); 4087 clear_inode_flag(inode, FI_PIN_FILE); 4088 } 4089 #else 4090 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 4091 sector_t *span) 4092 { 4093 return -EOPNOTSUPP; 4094 } 4095 4096 static void f2fs_swap_deactivate(struct file *file) 4097 { 4098 } 4099 #endif 4100 4101 const struct address_space_operations f2fs_dblock_aops = { 4102 .read_folio = f2fs_read_data_folio, 4103 .readahead = f2fs_readahead, 4104 .writepage = f2fs_write_data_page, 4105 .writepages = f2fs_write_data_pages, 4106 .write_begin = f2fs_write_begin, 4107 .write_end = f2fs_write_end, 4108 .dirty_folio = f2fs_dirty_data_folio, 4109 .migrate_folio = filemap_migrate_folio, 4110 .invalidate_folio = f2fs_invalidate_folio, 4111 .release_folio = f2fs_release_folio, 4112 .bmap = f2fs_bmap, 4113 .swap_activate = f2fs_swap_activate, 4114 .swap_deactivate = f2fs_swap_deactivate, 4115 }; 4116 4117 void f2fs_clear_page_cache_dirty_tag(struct folio *folio) 4118 { 4119 struct address_space *mapping = folio->mapping; 4120 unsigned long flags; 4121 4122 xa_lock_irqsave(&mapping->i_pages, flags); 4123 __xa_clear_mark(&mapping->i_pages, folio->index, 4124 PAGECACHE_TAG_DIRTY); 4125 xa_unlock_irqrestore(&mapping->i_pages, flags); 4126 } 4127 4128 int __init f2fs_init_post_read_processing(void) 4129 { 4130 bio_post_read_ctx_cache = 4131 kmem_cache_create("f2fs_bio_post_read_ctx", 4132 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 4133 if (!bio_post_read_ctx_cache) 4134 goto fail; 4135 bio_post_read_ctx_pool = 4136 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 4137 bio_post_read_ctx_cache); 4138 if (!bio_post_read_ctx_pool) 4139 goto fail_free_cache; 4140 return 0; 4141 4142 fail_free_cache: 4143 kmem_cache_destroy(bio_post_read_ctx_cache); 4144 fail: 4145 return -ENOMEM; 4146 } 4147 4148 void f2fs_destroy_post_read_processing(void) 4149 { 4150 mempool_destroy(bio_post_read_ctx_pool); 4151 kmem_cache_destroy(bio_post_read_ctx_cache); 4152 } 4153 4154 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 4155 { 4156 if (!f2fs_sb_has_encrypt(sbi) && 4157 !f2fs_sb_has_verity(sbi) && 4158 !f2fs_sb_has_compression(sbi)) 4159 return 0; 4160 4161 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 4162 WQ_UNBOUND | WQ_HIGHPRI, 4163 num_online_cpus()); 4164 return sbi->post_read_wq ? 0 : -ENOMEM; 4165 } 4166 4167 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4168 { 4169 if (sbi->post_read_wq) 4170 destroy_workqueue(sbi->post_read_wq); 4171 } 4172 4173 int __init f2fs_init_bio_entry_cache(void) 4174 { 4175 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4176 sizeof(struct bio_entry)); 4177 return bio_entry_slab ? 0 : -ENOMEM; 4178 } 4179 4180 void f2fs_destroy_bio_entry_cache(void) 4181 { 4182 kmem_cache_destroy(bio_entry_slab); 4183 } 4184 4185 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4186 unsigned int flags, struct iomap *iomap, 4187 struct iomap *srcmap) 4188 { 4189 struct f2fs_map_blocks map = {}; 4190 pgoff_t next_pgofs = 0; 4191 int err; 4192 4193 map.m_lblk = F2FS_BYTES_TO_BLK(offset); 4194 map.m_len = F2FS_BYTES_TO_BLK(offset + length - 1) - map.m_lblk + 1; 4195 map.m_next_pgofs = &next_pgofs; 4196 map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode), 4197 inode->i_write_hint); 4198 if (flags & IOMAP_WRITE) 4199 map.m_may_create = true; 4200 4201 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO); 4202 if (err) 4203 return err; 4204 4205 iomap->offset = F2FS_BLK_TO_BYTES(map.m_lblk); 4206 4207 /* 4208 * When inline encryption is enabled, sometimes I/O to an encrypted file 4209 * has to be broken up to guarantee DUN contiguity. Handle this by 4210 * limiting the length of the mapping returned. 4211 */ 4212 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4213 4214 /* 4215 * We should never see delalloc or compressed extents here based on 4216 * prior flushing and checks. 4217 */ 4218 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR)) 4219 return -EINVAL; 4220 4221 if (map.m_flags & F2FS_MAP_MAPPED) { 4222 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR)) 4223 return -EINVAL; 4224 4225 iomap->length = F2FS_BLK_TO_BYTES(map.m_len); 4226 iomap->type = IOMAP_MAPPED; 4227 iomap->flags |= IOMAP_F_MERGED; 4228 iomap->bdev = map.m_bdev; 4229 iomap->addr = F2FS_BLK_TO_BYTES(map.m_pblk); 4230 } else { 4231 if (flags & IOMAP_WRITE) 4232 return -ENOTBLK; 4233 4234 if (map.m_pblk == NULL_ADDR) { 4235 iomap->length = F2FS_BLK_TO_BYTES(next_pgofs) - 4236 iomap->offset; 4237 iomap->type = IOMAP_HOLE; 4238 } else if (map.m_pblk == NEW_ADDR) { 4239 iomap->length = F2FS_BLK_TO_BYTES(map.m_len); 4240 iomap->type = IOMAP_UNWRITTEN; 4241 } else { 4242 f2fs_bug_on(F2FS_I_SB(inode), 1); 4243 } 4244 iomap->addr = IOMAP_NULL_ADDR; 4245 } 4246 4247 if (map.m_flags & F2FS_MAP_NEW) 4248 iomap->flags |= IOMAP_F_NEW; 4249 if ((inode->i_state & I_DIRTY_DATASYNC) || 4250 offset + length > i_size_read(inode)) 4251 iomap->flags |= IOMAP_F_DIRTY; 4252 4253 return 0; 4254 } 4255 4256 const struct iomap_ops f2fs_iomap_ops = { 4257 .iomap_begin = f2fs_iomap_begin, 4258 }; 4259