xref: /linux/fs/f2fs/data.c (revision c7546e2c3cb739a3c1a2f5acaf9bb629d401afe5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/sched/mm.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/blkdev.h>
15 #include <linux/bio.h>
16 #include <linux/blk-crypto.h>
17 #include <linux/swap.h>
18 #include <linux/prefetch.h>
19 #include <linux/uio.h>
20 #include <linux/sched/signal.h>
21 #include <linux/fiemap.h>
22 #include <linux/iomap.h>
23 
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "iostat.h"
28 #include <trace/events/f2fs.h>
29 
30 #define NUM_PREALLOC_POST_READ_CTXS	128
31 
32 static struct kmem_cache *bio_post_read_ctx_cache;
33 static struct kmem_cache *bio_entry_slab;
34 static mempool_t *bio_post_read_ctx_pool;
35 static struct bio_set f2fs_bioset;
36 
37 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
38 
39 int __init f2fs_init_bioset(void)
40 {
41 	return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
42 					0, BIOSET_NEED_BVECS);
43 }
44 
45 void f2fs_destroy_bioset(void)
46 {
47 	bioset_exit(&f2fs_bioset);
48 }
49 
50 bool f2fs_is_cp_guaranteed(struct page *page)
51 {
52 	struct address_space *mapping = page->mapping;
53 	struct inode *inode;
54 	struct f2fs_sb_info *sbi;
55 
56 	if (!mapping)
57 		return false;
58 
59 	inode = mapping->host;
60 	sbi = F2FS_I_SB(inode);
61 
62 	if (inode->i_ino == F2FS_META_INO(sbi) ||
63 			inode->i_ino == F2FS_NODE_INO(sbi) ||
64 			S_ISDIR(inode->i_mode))
65 		return true;
66 
67 	if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
68 			page_private_gcing(page))
69 		return true;
70 	return false;
71 }
72 
73 static enum count_type __read_io_type(struct page *page)
74 {
75 	struct address_space *mapping = page_file_mapping(page);
76 
77 	if (mapping) {
78 		struct inode *inode = mapping->host;
79 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
80 
81 		if (inode->i_ino == F2FS_META_INO(sbi))
82 			return F2FS_RD_META;
83 
84 		if (inode->i_ino == F2FS_NODE_INO(sbi))
85 			return F2FS_RD_NODE;
86 	}
87 	return F2FS_RD_DATA;
88 }
89 
90 /* postprocessing steps for read bios */
91 enum bio_post_read_step {
92 #ifdef CONFIG_FS_ENCRYPTION
93 	STEP_DECRYPT	= BIT(0),
94 #else
95 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
96 #endif
97 #ifdef CONFIG_F2FS_FS_COMPRESSION
98 	STEP_DECOMPRESS	= BIT(1),
99 #else
100 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
101 #endif
102 #ifdef CONFIG_FS_VERITY
103 	STEP_VERITY	= BIT(2),
104 #else
105 	STEP_VERITY	= 0,	/* compile out the verity-related code */
106 #endif
107 };
108 
109 struct bio_post_read_ctx {
110 	struct bio *bio;
111 	struct f2fs_sb_info *sbi;
112 	struct work_struct work;
113 	unsigned int enabled_steps;
114 	/*
115 	 * decompression_attempted keeps track of whether
116 	 * f2fs_end_read_compressed_page() has been called on the pages in the
117 	 * bio that belong to a compressed cluster yet.
118 	 */
119 	bool decompression_attempted;
120 	block_t fs_blkaddr;
121 };
122 
123 /*
124  * Update and unlock a bio's pages, and free the bio.
125  *
126  * This marks pages up-to-date only if there was no error in the bio (I/O error,
127  * decryption error, or verity error), as indicated by bio->bi_status.
128  *
129  * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
130  * aren't marked up-to-date here, as decompression is done on a per-compression-
131  * cluster basis rather than a per-bio basis.  Instead, we only must do two
132  * things for each compressed page here: call f2fs_end_read_compressed_page()
133  * with failed=true if an error occurred before it would have normally gotten
134  * called (i.e., I/O error or decryption error, but *not* verity error), and
135  * release the bio's reference to the decompress_io_ctx of the page's cluster.
136  */
137 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
138 {
139 	struct bio_vec *bv;
140 	struct bvec_iter_all iter_all;
141 	struct bio_post_read_ctx *ctx = bio->bi_private;
142 
143 	bio_for_each_segment_all(bv, bio, iter_all) {
144 		struct page *page = bv->bv_page;
145 
146 		if (f2fs_is_compressed_page(page)) {
147 			if (ctx && !ctx->decompression_attempted)
148 				f2fs_end_read_compressed_page(page, true, 0,
149 							in_task);
150 			f2fs_put_page_dic(page, in_task);
151 			continue;
152 		}
153 
154 		if (bio->bi_status)
155 			ClearPageUptodate(page);
156 		else
157 			SetPageUptodate(page);
158 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
159 		unlock_page(page);
160 	}
161 
162 	if (ctx)
163 		mempool_free(ctx, bio_post_read_ctx_pool);
164 	bio_put(bio);
165 }
166 
167 static void f2fs_verify_bio(struct work_struct *work)
168 {
169 	struct bio_post_read_ctx *ctx =
170 		container_of(work, struct bio_post_read_ctx, work);
171 	struct bio *bio = ctx->bio;
172 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
173 
174 	/*
175 	 * fsverity_verify_bio() may call readahead() again, and while verity
176 	 * will be disabled for this, decryption and/or decompression may still
177 	 * be needed, resulting in another bio_post_read_ctx being allocated.
178 	 * So to prevent deadlocks we need to release the current ctx to the
179 	 * mempool first.  This assumes that verity is the last post-read step.
180 	 */
181 	mempool_free(ctx, bio_post_read_ctx_pool);
182 	bio->bi_private = NULL;
183 
184 	/*
185 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
186 	 * as those were handled separately by f2fs_end_read_compressed_page().
187 	 */
188 	if (may_have_compressed_pages) {
189 		struct bio_vec *bv;
190 		struct bvec_iter_all iter_all;
191 
192 		bio_for_each_segment_all(bv, bio, iter_all) {
193 			struct page *page = bv->bv_page;
194 
195 			if (!f2fs_is_compressed_page(page) &&
196 			    !fsverity_verify_page(page)) {
197 				bio->bi_status = BLK_STS_IOERR;
198 				break;
199 			}
200 		}
201 	} else {
202 		fsverity_verify_bio(bio);
203 	}
204 
205 	f2fs_finish_read_bio(bio, true);
206 }
207 
208 /*
209  * If the bio's data needs to be verified with fs-verity, then enqueue the
210  * verity work for the bio.  Otherwise finish the bio now.
211  *
212  * Note that to avoid deadlocks, the verity work can't be done on the
213  * decryption/decompression workqueue.  This is because verifying the data pages
214  * can involve reading verity metadata pages from the file, and these verity
215  * metadata pages may be encrypted and/or compressed.
216  */
217 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
218 {
219 	struct bio_post_read_ctx *ctx = bio->bi_private;
220 
221 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
222 		INIT_WORK(&ctx->work, f2fs_verify_bio);
223 		fsverity_enqueue_verify_work(&ctx->work);
224 	} else {
225 		f2fs_finish_read_bio(bio, in_task);
226 	}
227 }
228 
229 /*
230  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
231  * remaining page was read by @ctx->bio.
232  *
233  * Note that a bio may span clusters (even a mix of compressed and uncompressed
234  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
235  * that the bio includes at least one compressed page.  The actual decompression
236  * is done on a per-cluster basis, not a per-bio basis.
237  */
238 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
239 		bool in_task)
240 {
241 	struct bio_vec *bv;
242 	struct bvec_iter_all iter_all;
243 	bool all_compressed = true;
244 	block_t blkaddr = ctx->fs_blkaddr;
245 
246 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
247 		struct page *page = bv->bv_page;
248 
249 		if (f2fs_is_compressed_page(page))
250 			f2fs_end_read_compressed_page(page, false, blkaddr,
251 						      in_task);
252 		else
253 			all_compressed = false;
254 
255 		blkaddr++;
256 	}
257 
258 	ctx->decompression_attempted = true;
259 
260 	/*
261 	 * Optimization: if all the bio's pages are compressed, then scheduling
262 	 * the per-bio verity work is unnecessary, as verity will be fully
263 	 * handled at the compression cluster level.
264 	 */
265 	if (all_compressed)
266 		ctx->enabled_steps &= ~STEP_VERITY;
267 }
268 
269 static void f2fs_post_read_work(struct work_struct *work)
270 {
271 	struct bio_post_read_ctx *ctx =
272 		container_of(work, struct bio_post_read_ctx, work);
273 	struct bio *bio = ctx->bio;
274 
275 	if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
276 		f2fs_finish_read_bio(bio, true);
277 		return;
278 	}
279 
280 	if (ctx->enabled_steps & STEP_DECOMPRESS)
281 		f2fs_handle_step_decompress(ctx, true);
282 
283 	f2fs_verify_and_finish_bio(bio, true);
284 }
285 
286 static void f2fs_read_end_io(struct bio *bio)
287 {
288 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
289 	struct bio_post_read_ctx *ctx;
290 	bool intask = in_task();
291 
292 	iostat_update_and_unbind_ctx(bio);
293 	ctx = bio->bi_private;
294 
295 	if (time_to_inject(sbi, FAULT_READ_IO))
296 		bio->bi_status = BLK_STS_IOERR;
297 
298 	if (bio->bi_status) {
299 		f2fs_finish_read_bio(bio, intask);
300 		return;
301 	}
302 
303 	if (ctx) {
304 		unsigned int enabled_steps = ctx->enabled_steps &
305 					(STEP_DECRYPT | STEP_DECOMPRESS);
306 
307 		/*
308 		 * If we have only decompression step between decompression and
309 		 * decrypt, we don't need post processing for this.
310 		 */
311 		if (enabled_steps == STEP_DECOMPRESS &&
312 				!f2fs_low_mem_mode(sbi)) {
313 			f2fs_handle_step_decompress(ctx, intask);
314 		} else if (enabled_steps) {
315 			INIT_WORK(&ctx->work, f2fs_post_read_work);
316 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
317 			return;
318 		}
319 	}
320 
321 	f2fs_verify_and_finish_bio(bio, intask);
322 }
323 
324 static void f2fs_write_end_io(struct bio *bio)
325 {
326 	struct f2fs_sb_info *sbi;
327 	struct bio_vec *bvec;
328 	struct bvec_iter_all iter_all;
329 
330 	iostat_update_and_unbind_ctx(bio);
331 	sbi = bio->bi_private;
332 
333 	if (time_to_inject(sbi, FAULT_WRITE_IO))
334 		bio->bi_status = BLK_STS_IOERR;
335 
336 	bio_for_each_segment_all(bvec, bio, iter_all) {
337 		struct page *page = bvec->bv_page;
338 		enum count_type type = WB_DATA_TYPE(page, false);
339 
340 		fscrypt_finalize_bounce_page(&page);
341 
342 #ifdef CONFIG_F2FS_FS_COMPRESSION
343 		if (f2fs_is_compressed_page(page)) {
344 			f2fs_compress_write_end_io(bio, page);
345 			continue;
346 		}
347 #endif
348 
349 		if (unlikely(bio->bi_status)) {
350 			mapping_set_error(page->mapping, -EIO);
351 			if (type == F2FS_WB_CP_DATA)
352 				f2fs_stop_checkpoint(sbi, true,
353 						STOP_CP_REASON_WRITE_FAIL);
354 		}
355 
356 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
357 				page_folio(page)->index != nid_of_node(page));
358 
359 		dec_page_count(sbi, type);
360 		if (f2fs_in_warm_node_list(sbi, page))
361 			f2fs_del_fsync_node_entry(sbi, page);
362 		clear_page_private_gcing(page);
363 		end_page_writeback(page);
364 	}
365 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
366 				wq_has_sleeper(&sbi->cp_wait))
367 		wake_up(&sbi->cp_wait);
368 
369 	bio_put(bio);
370 }
371 
372 #ifdef CONFIG_BLK_DEV_ZONED
373 static void f2fs_zone_write_end_io(struct bio *bio)
374 {
375 	struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
376 
377 	bio->bi_private = io->bi_private;
378 	complete(&io->zone_wait);
379 	f2fs_write_end_io(bio);
380 }
381 #endif
382 
383 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
384 		block_t blk_addr, sector_t *sector)
385 {
386 	struct block_device *bdev = sbi->sb->s_bdev;
387 	int i;
388 
389 	if (f2fs_is_multi_device(sbi)) {
390 		for (i = 0; i < sbi->s_ndevs; i++) {
391 			if (FDEV(i).start_blk <= blk_addr &&
392 			    FDEV(i).end_blk >= blk_addr) {
393 				blk_addr -= FDEV(i).start_blk;
394 				bdev = FDEV(i).bdev;
395 				break;
396 			}
397 		}
398 	}
399 
400 	if (sector)
401 		*sector = SECTOR_FROM_BLOCK(blk_addr);
402 	return bdev;
403 }
404 
405 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
406 {
407 	int i;
408 
409 	if (!f2fs_is_multi_device(sbi))
410 		return 0;
411 
412 	for (i = 0; i < sbi->s_ndevs; i++)
413 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
414 			return i;
415 	return 0;
416 }
417 
418 static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
419 {
420 	unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
421 	unsigned int fua_flag, meta_flag, io_flag;
422 	blk_opf_t op_flags = 0;
423 
424 	if (fio->op != REQ_OP_WRITE)
425 		return 0;
426 	if (fio->type == DATA)
427 		io_flag = fio->sbi->data_io_flag;
428 	else if (fio->type == NODE)
429 		io_flag = fio->sbi->node_io_flag;
430 	else
431 		return 0;
432 
433 	fua_flag = io_flag & temp_mask;
434 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
435 
436 	/*
437 	 * data/node io flag bits per temp:
438 	 *      REQ_META     |      REQ_FUA      |
439 	 *    5 |    4 |   3 |    2 |    1 |   0 |
440 	 * Cold | Warm | Hot | Cold | Warm | Hot |
441 	 */
442 	if (BIT(fio->temp) & meta_flag)
443 		op_flags |= REQ_META;
444 	if (BIT(fio->temp) & fua_flag)
445 		op_flags |= REQ_FUA;
446 	return op_flags;
447 }
448 
449 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
450 {
451 	struct f2fs_sb_info *sbi = fio->sbi;
452 	struct block_device *bdev;
453 	sector_t sector;
454 	struct bio *bio;
455 
456 	bdev = f2fs_target_device(sbi, fio->new_blkaddr, &sector);
457 	bio = bio_alloc_bioset(bdev, npages,
458 				fio->op | fio->op_flags | f2fs_io_flags(fio),
459 				GFP_NOIO, &f2fs_bioset);
460 	bio->bi_iter.bi_sector = sector;
461 	if (is_read_io(fio->op)) {
462 		bio->bi_end_io = f2fs_read_end_io;
463 		bio->bi_private = NULL;
464 	} else {
465 		bio->bi_end_io = f2fs_write_end_io;
466 		bio->bi_private = sbi;
467 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
468 						fio->type, fio->temp);
469 	}
470 	iostat_alloc_and_bind_ctx(sbi, bio, NULL);
471 
472 	if (fio->io_wbc)
473 		wbc_init_bio(fio->io_wbc, bio);
474 
475 	return bio;
476 }
477 
478 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
479 				  pgoff_t first_idx,
480 				  const struct f2fs_io_info *fio,
481 				  gfp_t gfp_mask)
482 {
483 	/*
484 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
485 	 * read/write raw data without encryption.
486 	 */
487 	if (!fio || !fio->encrypted_page)
488 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
489 }
490 
491 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
492 				     pgoff_t next_idx,
493 				     const struct f2fs_io_info *fio)
494 {
495 	/*
496 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
497 	 * read/write raw data without encryption.
498 	 */
499 	if (fio && fio->encrypted_page)
500 		return !bio_has_crypt_ctx(bio);
501 
502 	return fscrypt_mergeable_bio(bio, inode, next_idx);
503 }
504 
505 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
506 				 enum page_type type)
507 {
508 	WARN_ON_ONCE(!is_read_io(bio_op(bio)));
509 	trace_f2fs_submit_read_bio(sbi->sb, type, bio);
510 
511 	iostat_update_submit_ctx(bio, type);
512 	submit_bio(bio);
513 }
514 
515 static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
516 				  enum page_type type)
517 {
518 	WARN_ON_ONCE(is_read_io(bio_op(bio)));
519 
520 	if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
521 		blk_finish_plug(current->plug);
522 
523 	trace_f2fs_submit_write_bio(sbi->sb, type, bio);
524 	iostat_update_submit_ctx(bio, type);
525 	submit_bio(bio);
526 }
527 
528 static void __submit_merged_bio(struct f2fs_bio_info *io)
529 {
530 	struct f2fs_io_info *fio = &io->fio;
531 
532 	if (!io->bio)
533 		return;
534 
535 	if (is_read_io(fio->op)) {
536 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
537 		f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
538 	} else {
539 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
540 		f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
541 	}
542 	io->bio = NULL;
543 }
544 
545 static bool __has_merged_page(struct bio *bio, struct inode *inode,
546 						struct page *page, nid_t ino)
547 {
548 	struct bio_vec *bvec;
549 	struct bvec_iter_all iter_all;
550 
551 	if (!bio)
552 		return false;
553 
554 	if (!inode && !page && !ino)
555 		return true;
556 
557 	bio_for_each_segment_all(bvec, bio, iter_all) {
558 		struct page *target = bvec->bv_page;
559 
560 		if (fscrypt_is_bounce_page(target)) {
561 			target = fscrypt_pagecache_page(target);
562 			if (IS_ERR(target))
563 				continue;
564 		}
565 		if (f2fs_is_compressed_page(target)) {
566 			target = f2fs_compress_control_page(target);
567 			if (IS_ERR(target))
568 				continue;
569 		}
570 
571 		if (inode && inode == target->mapping->host)
572 			return true;
573 		if (page && page == target)
574 			return true;
575 		if (ino && ino == ino_of_node(target))
576 			return true;
577 	}
578 
579 	return false;
580 }
581 
582 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
583 {
584 	int i;
585 
586 	for (i = 0; i < NR_PAGE_TYPE; i++) {
587 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
588 		int j;
589 
590 		sbi->write_io[i] = f2fs_kmalloc(sbi,
591 				array_size(n, sizeof(struct f2fs_bio_info)),
592 				GFP_KERNEL);
593 		if (!sbi->write_io[i])
594 			return -ENOMEM;
595 
596 		for (j = HOT; j < n; j++) {
597 			struct f2fs_bio_info *io = &sbi->write_io[i][j];
598 
599 			init_f2fs_rwsem(&io->io_rwsem);
600 			io->sbi = sbi;
601 			io->bio = NULL;
602 			io->last_block_in_bio = 0;
603 			spin_lock_init(&io->io_lock);
604 			INIT_LIST_HEAD(&io->io_list);
605 			INIT_LIST_HEAD(&io->bio_list);
606 			init_f2fs_rwsem(&io->bio_list_lock);
607 #ifdef CONFIG_BLK_DEV_ZONED
608 			init_completion(&io->zone_wait);
609 			io->zone_pending_bio = NULL;
610 			io->bi_private = NULL;
611 #endif
612 		}
613 	}
614 
615 	return 0;
616 }
617 
618 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
619 				enum page_type type, enum temp_type temp)
620 {
621 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
622 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
623 
624 	f2fs_down_write(&io->io_rwsem);
625 
626 	if (!io->bio)
627 		goto unlock_out;
628 
629 	/* change META to META_FLUSH in the checkpoint procedure */
630 	if (type >= META_FLUSH) {
631 		io->fio.type = META_FLUSH;
632 		io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
633 		if (!test_opt(sbi, NOBARRIER))
634 			io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
635 	}
636 	__submit_merged_bio(io);
637 unlock_out:
638 	f2fs_up_write(&io->io_rwsem);
639 }
640 
641 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
642 				struct inode *inode, struct page *page,
643 				nid_t ino, enum page_type type, bool force)
644 {
645 	enum temp_type temp;
646 	bool ret = true;
647 
648 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
649 		if (!force)	{
650 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
651 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
652 
653 			f2fs_down_read(&io->io_rwsem);
654 			ret = __has_merged_page(io->bio, inode, page, ino);
655 			f2fs_up_read(&io->io_rwsem);
656 		}
657 		if (ret)
658 			__f2fs_submit_merged_write(sbi, type, temp);
659 
660 		/* TODO: use HOT temp only for meta pages now. */
661 		if (type >= META)
662 			break;
663 	}
664 }
665 
666 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
667 {
668 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
669 }
670 
671 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
672 				struct inode *inode, struct page *page,
673 				nid_t ino, enum page_type type)
674 {
675 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
676 }
677 
678 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
679 {
680 	f2fs_submit_merged_write(sbi, DATA);
681 	f2fs_submit_merged_write(sbi, NODE);
682 	f2fs_submit_merged_write(sbi, META);
683 }
684 
685 /*
686  * Fill the locked page with data located in the block address.
687  * A caller needs to unlock the page on failure.
688  */
689 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
690 {
691 	struct bio *bio;
692 	struct page *page = fio->encrypted_page ?
693 			fio->encrypted_page : fio->page;
694 
695 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
696 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
697 			META_GENERIC : DATA_GENERIC_ENHANCE)))
698 		return -EFSCORRUPTED;
699 
700 	trace_f2fs_submit_page_bio(page, fio);
701 
702 	/* Allocate a new bio */
703 	bio = __bio_alloc(fio, 1);
704 
705 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
706 			page_folio(fio->page)->index, fio, GFP_NOIO);
707 
708 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
709 		bio_put(bio);
710 		return -EFAULT;
711 	}
712 
713 	if (fio->io_wbc && !is_read_io(fio->op))
714 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
715 
716 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
717 			__read_io_type(page) : WB_DATA_TYPE(fio->page, false));
718 
719 	if (is_read_io(bio_op(bio)))
720 		f2fs_submit_read_bio(fio->sbi, bio, fio->type);
721 	else
722 		f2fs_submit_write_bio(fio->sbi, bio, fio->type);
723 	return 0;
724 }
725 
726 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
727 				block_t last_blkaddr, block_t cur_blkaddr)
728 {
729 	if (unlikely(sbi->max_io_bytes &&
730 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
731 		return false;
732 	if (last_blkaddr + 1 != cur_blkaddr)
733 		return false;
734 	return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
735 }
736 
737 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
738 						struct f2fs_io_info *fio)
739 {
740 	if (io->fio.op != fio->op)
741 		return false;
742 	return io->fio.op_flags == fio->op_flags;
743 }
744 
745 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
746 					struct f2fs_bio_info *io,
747 					struct f2fs_io_info *fio,
748 					block_t last_blkaddr,
749 					block_t cur_blkaddr)
750 {
751 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
752 		return false;
753 	return io_type_is_mergeable(io, fio);
754 }
755 
756 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
757 				struct page *page, enum temp_type temp)
758 {
759 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
760 	struct bio_entry *be;
761 
762 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
763 	be->bio = bio;
764 	bio_get(bio);
765 
766 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
767 		f2fs_bug_on(sbi, 1);
768 
769 	f2fs_down_write(&io->bio_list_lock);
770 	list_add_tail(&be->list, &io->bio_list);
771 	f2fs_up_write(&io->bio_list_lock);
772 }
773 
774 static void del_bio_entry(struct bio_entry *be)
775 {
776 	list_del(&be->list);
777 	kmem_cache_free(bio_entry_slab, be);
778 }
779 
780 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
781 							struct page *page)
782 {
783 	struct f2fs_sb_info *sbi = fio->sbi;
784 	enum temp_type temp;
785 	bool found = false;
786 	int ret = -EAGAIN;
787 
788 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
789 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
790 		struct list_head *head = &io->bio_list;
791 		struct bio_entry *be;
792 
793 		f2fs_down_write(&io->bio_list_lock);
794 		list_for_each_entry(be, head, list) {
795 			if (be->bio != *bio)
796 				continue;
797 
798 			found = true;
799 
800 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
801 							    *fio->last_block,
802 							    fio->new_blkaddr));
803 			if (f2fs_crypt_mergeable_bio(*bio,
804 					fio->page->mapping->host,
805 					page_folio(fio->page)->index, fio) &&
806 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
807 					PAGE_SIZE) {
808 				ret = 0;
809 				break;
810 			}
811 
812 			/* page can't be merged into bio; submit the bio */
813 			del_bio_entry(be);
814 			f2fs_submit_write_bio(sbi, *bio, DATA);
815 			break;
816 		}
817 		f2fs_up_write(&io->bio_list_lock);
818 	}
819 
820 	if (ret) {
821 		bio_put(*bio);
822 		*bio = NULL;
823 	}
824 
825 	return ret;
826 }
827 
828 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
829 					struct bio **bio, struct page *page)
830 {
831 	enum temp_type temp;
832 	bool found = false;
833 	struct bio *target = bio ? *bio : NULL;
834 
835 	f2fs_bug_on(sbi, !target && !page);
836 
837 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
838 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
839 		struct list_head *head = &io->bio_list;
840 		struct bio_entry *be;
841 
842 		if (list_empty(head))
843 			continue;
844 
845 		f2fs_down_read(&io->bio_list_lock);
846 		list_for_each_entry(be, head, list) {
847 			if (target)
848 				found = (target == be->bio);
849 			else
850 				found = __has_merged_page(be->bio, NULL,
851 								page, 0);
852 			if (found)
853 				break;
854 		}
855 		f2fs_up_read(&io->bio_list_lock);
856 
857 		if (!found)
858 			continue;
859 
860 		found = false;
861 
862 		f2fs_down_write(&io->bio_list_lock);
863 		list_for_each_entry(be, head, list) {
864 			if (target)
865 				found = (target == be->bio);
866 			else
867 				found = __has_merged_page(be->bio, NULL,
868 								page, 0);
869 			if (found) {
870 				target = be->bio;
871 				del_bio_entry(be);
872 				break;
873 			}
874 		}
875 		f2fs_up_write(&io->bio_list_lock);
876 	}
877 
878 	if (found)
879 		f2fs_submit_write_bio(sbi, target, DATA);
880 	if (bio && *bio) {
881 		bio_put(*bio);
882 		*bio = NULL;
883 	}
884 }
885 
886 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
887 {
888 	struct bio *bio = *fio->bio;
889 	struct page *page = fio->encrypted_page ?
890 			fio->encrypted_page : fio->page;
891 
892 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
893 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
894 		return -EFSCORRUPTED;
895 
896 	trace_f2fs_submit_page_bio(page, fio);
897 
898 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
899 						fio->new_blkaddr))
900 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
901 alloc_new:
902 	if (!bio) {
903 		bio = __bio_alloc(fio, BIO_MAX_VECS);
904 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
905 				page_folio(fio->page)->index, fio, GFP_NOIO);
906 
907 		add_bio_entry(fio->sbi, bio, page, fio->temp);
908 	} else {
909 		if (add_ipu_page(fio, &bio, page))
910 			goto alloc_new;
911 	}
912 
913 	if (fio->io_wbc)
914 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
915 
916 	inc_page_count(fio->sbi, WB_DATA_TYPE(page, false));
917 
918 	*fio->last_block = fio->new_blkaddr;
919 	*fio->bio = bio;
920 
921 	return 0;
922 }
923 
924 #ifdef CONFIG_BLK_DEV_ZONED
925 static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
926 {
927 	struct block_device *bdev = sbi->sb->s_bdev;
928 	int devi = 0;
929 
930 	if (f2fs_is_multi_device(sbi)) {
931 		devi = f2fs_target_device_index(sbi, blkaddr);
932 		if (blkaddr < FDEV(devi).start_blk ||
933 		    blkaddr > FDEV(devi).end_blk) {
934 			f2fs_err(sbi, "Invalid block %x", blkaddr);
935 			return false;
936 		}
937 		blkaddr -= FDEV(devi).start_blk;
938 		bdev = FDEV(devi).bdev;
939 	}
940 	return bdev_is_zoned(bdev) &&
941 		f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
942 		(blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
943 }
944 #endif
945 
946 void f2fs_submit_page_write(struct f2fs_io_info *fio)
947 {
948 	struct f2fs_sb_info *sbi = fio->sbi;
949 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
950 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
951 	struct page *bio_page;
952 	enum count_type type;
953 
954 	f2fs_bug_on(sbi, is_read_io(fio->op));
955 
956 	f2fs_down_write(&io->io_rwsem);
957 next:
958 #ifdef CONFIG_BLK_DEV_ZONED
959 	if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
960 		wait_for_completion_io(&io->zone_wait);
961 		bio_put(io->zone_pending_bio);
962 		io->zone_pending_bio = NULL;
963 		io->bi_private = NULL;
964 	}
965 #endif
966 
967 	if (fio->in_list) {
968 		spin_lock(&io->io_lock);
969 		if (list_empty(&io->io_list)) {
970 			spin_unlock(&io->io_lock);
971 			goto out;
972 		}
973 		fio = list_first_entry(&io->io_list,
974 						struct f2fs_io_info, list);
975 		list_del(&fio->list);
976 		spin_unlock(&io->io_lock);
977 	}
978 
979 	verify_fio_blkaddr(fio);
980 
981 	if (fio->encrypted_page)
982 		bio_page = fio->encrypted_page;
983 	else if (fio->compressed_page)
984 		bio_page = fio->compressed_page;
985 	else
986 		bio_page = fio->page;
987 
988 	/* set submitted = true as a return value */
989 	fio->submitted = 1;
990 
991 	type = WB_DATA_TYPE(bio_page, fio->compressed_page);
992 	inc_page_count(sbi, type);
993 
994 	if (io->bio &&
995 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
996 			      fio->new_blkaddr) ||
997 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
998 				page_folio(bio_page)->index, fio)))
999 		__submit_merged_bio(io);
1000 alloc_new:
1001 	if (io->bio == NULL) {
1002 		io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1003 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1004 				page_folio(bio_page)->index, fio, GFP_NOIO);
1005 		io->fio = *fio;
1006 	}
1007 
1008 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1009 		__submit_merged_bio(io);
1010 		goto alloc_new;
1011 	}
1012 
1013 	if (fio->io_wbc)
1014 		wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1015 
1016 	io->last_block_in_bio = fio->new_blkaddr;
1017 
1018 	trace_f2fs_submit_page_write(fio->page, fio);
1019 #ifdef CONFIG_BLK_DEV_ZONED
1020 	if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1021 			is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1022 		bio_get(io->bio);
1023 		reinit_completion(&io->zone_wait);
1024 		io->bi_private = io->bio->bi_private;
1025 		io->bio->bi_private = io;
1026 		io->bio->bi_end_io = f2fs_zone_write_end_io;
1027 		io->zone_pending_bio = io->bio;
1028 		__submit_merged_bio(io);
1029 	}
1030 #endif
1031 	if (fio->in_list)
1032 		goto next;
1033 out:
1034 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1035 				!f2fs_is_checkpoint_ready(sbi))
1036 		__submit_merged_bio(io);
1037 	f2fs_up_write(&io->io_rwsem);
1038 }
1039 
1040 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1041 				      unsigned nr_pages, blk_opf_t op_flag,
1042 				      pgoff_t first_idx, bool for_write)
1043 {
1044 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1045 	struct bio *bio;
1046 	struct bio_post_read_ctx *ctx = NULL;
1047 	unsigned int post_read_steps = 0;
1048 	sector_t sector;
1049 	struct block_device *bdev = f2fs_target_device(sbi, blkaddr, &sector);
1050 
1051 	bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1052 			       REQ_OP_READ | op_flag,
1053 			       for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1054 	if (!bio)
1055 		return ERR_PTR(-ENOMEM);
1056 	bio->bi_iter.bi_sector = sector;
1057 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1058 	bio->bi_end_io = f2fs_read_end_io;
1059 
1060 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1061 		post_read_steps |= STEP_DECRYPT;
1062 
1063 	if (f2fs_need_verity(inode, first_idx))
1064 		post_read_steps |= STEP_VERITY;
1065 
1066 	/*
1067 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1068 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1069 	 * bio_post_read_ctx if the file is compressed, but the caller is
1070 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1071 	 */
1072 
1073 	if (post_read_steps || f2fs_compressed_file(inode)) {
1074 		/* Due to the mempool, this never fails. */
1075 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1076 		ctx->bio = bio;
1077 		ctx->sbi = sbi;
1078 		ctx->enabled_steps = post_read_steps;
1079 		ctx->fs_blkaddr = blkaddr;
1080 		ctx->decompression_attempted = false;
1081 		bio->bi_private = ctx;
1082 	}
1083 	iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1084 
1085 	return bio;
1086 }
1087 
1088 /* This can handle encryption stuffs */
1089 static int f2fs_submit_page_read(struct inode *inode, struct folio *folio,
1090 				 block_t blkaddr, blk_opf_t op_flags,
1091 				 bool for_write)
1092 {
1093 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1094 	struct bio *bio;
1095 
1096 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1097 					folio->index, for_write);
1098 	if (IS_ERR(bio))
1099 		return PTR_ERR(bio);
1100 
1101 	/* wait for GCed page writeback via META_MAPPING */
1102 	f2fs_wait_on_block_writeback(inode, blkaddr);
1103 
1104 	if (!bio_add_folio(bio, folio, PAGE_SIZE, 0)) {
1105 		iostat_update_and_unbind_ctx(bio);
1106 		if (bio->bi_private)
1107 			mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1108 		bio_put(bio);
1109 		return -EFAULT;
1110 	}
1111 	inc_page_count(sbi, F2FS_RD_DATA);
1112 	f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1113 	f2fs_submit_read_bio(sbi, bio, DATA);
1114 	return 0;
1115 }
1116 
1117 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1118 {
1119 	__le32 *addr = get_dnode_addr(dn->inode, dn->node_page);
1120 
1121 	dn->data_blkaddr = blkaddr;
1122 	addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1123 }
1124 
1125 /*
1126  * Lock ordering for the change of data block address:
1127  * ->data_page
1128  *  ->node_page
1129  *    update block addresses in the node page
1130  */
1131 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1132 {
1133 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1134 	__set_data_blkaddr(dn, blkaddr);
1135 	if (set_page_dirty(dn->node_page))
1136 		dn->node_changed = true;
1137 }
1138 
1139 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1140 {
1141 	f2fs_set_data_blkaddr(dn, blkaddr);
1142 	f2fs_update_read_extent_cache(dn);
1143 }
1144 
1145 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
1146 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1147 {
1148 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1149 	int err;
1150 
1151 	if (!count)
1152 		return 0;
1153 
1154 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1155 		return -EPERM;
1156 	err = inc_valid_block_count(sbi, dn->inode, &count, true);
1157 	if (unlikely(err))
1158 		return err;
1159 
1160 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1161 						dn->ofs_in_node, count);
1162 
1163 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1164 
1165 	for (; count > 0; dn->ofs_in_node++) {
1166 		block_t blkaddr = f2fs_data_blkaddr(dn);
1167 
1168 		if (blkaddr == NULL_ADDR) {
1169 			__set_data_blkaddr(dn, NEW_ADDR);
1170 			count--;
1171 		}
1172 	}
1173 
1174 	if (set_page_dirty(dn->node_page))
1175 		dn->node_changed = true;
1176 	return 0;
1177 }
1178 
1179 /* Should keep dn->ofs_in_node unchanged */
1180 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1181 {
1182 	unsigned int ofs_in_node = dn->ofs_in_node;
1183 	int ret;
1184 
1185 	ret = f2fs_reserve_new_blocks(dn, 1);
1186 	dn->ofs_in_node = ofs_in_node;
1187 	return ret;
1188 }
1189 
1190 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1191 {
1192 	bool need_put = dn->inode_page ? false : true;
1193 	int err;
1194 
1195 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1196 	if (err)
1197 		return err;
1198 
1199 	if (dn->data_blkaddr == NULL_ADDR)
1200 		err = f2fs_reserve_new_block(dn);
1201 	if (err || need_put)
1202 		f2fs_put_dnode(dn);
1203 	return err;
1204 }
1205 
1206 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1207 				     blk_opf_t op_flags, bool for_write,
1208 				     pgoff_t *next_pgofs)
1209 {
1210 	struct address_space *mapping = inode->i_mapping;
1211 	struct dnode_of_data dn;
1212 	struct page *page;
1213 	int err;
1214 
1215 	page = f2fs_grab_cache_page(mapping, index, for_write);
1216 	if (!page)
1217 		return ERR_PTR(-ENOMEM);
1218 
1219 	if (f2fs_lookup_read_extent_cache_block(inode, index,
1220 						&dn.data_blkaddr)) {
1221 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1222 						DATA_GENERIC_ENHANCE_READ)) {
1223 			err = -EFSCORRUPTED;
1224 			goto put_err;
1225 		}
1226 		goto got_it;
1227 	}
1228 
1229 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1230 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1231 	if (err) {
1232 		if (err == -ENOENT && next_pgofs)
1233 			*next_pgofs = f2fs_get_next_page_offset(&dn, index);
1234 		goto put_err;
1235 	}
1236 	f2fs_put_dnode(&dn);
1237 
1238 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1239 		err = -ENOENT;
1240 		if (next_pgofs)
1241 			*next_pgofs = index + 1;
1242 		goto put_err;
1243 	}
1244 	if (dn.data_blkaddr != NEW_ADDR &&
1245 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1246 						dn.data_blkaddr,
1247 						DATA_GENERIC_ENHANCE)) {
1248 		err = -EFSCORRUPTED;
1249 		goto put_err;
1250 	}
1251 got_it:
1252 	if (PageUptodate(page)) {
1253 		unlock_page(page);
1254 		return page;
1255 	}
1256 
1257 	/*
1258 	 * A new dentry page is allocated but not able to be written, since its
1259 	 * new inode page couldn't be allocated due to -ENOSPC.
1260 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1261 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1262 	 * f2fs_init_inode_metadata.
1263 	 */
1264 	if (dn.data_blkaddr == NEW_ADDR) {
1265 		zero_user_segment(page, 0, PAGE_SIZE);
1266 		if (!PageUptodate(page))
1267 			SetPageUptodate(page);
1268 		unlock_page(page);
1269 		return page;
1270 	}
1271 
1272 	err = f2fs_submit_page_read(inode, page_folio(page), dn.data_blkaddr,
1273 						op_flags, for_write);
1274 	if (err)
1275 		goto put_err;
1276 	return page;
1277 
1278 put_err:
1279 	f2fs_put_page(page, 1);
1280 	return ERR_PTR(err);
1281 }
1282 
1283 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1284 					pgoff_t *next_pgofs)
1285 {
1286 	struct address_space *mapping = inode->i_mapping;
1287 	struct page *page;
1288 
1289 	page = find_get_page(mapping, index);
1290 	if (page && PageUptodate(page))
1291 		return page;
1292 	f2fs_put_page(page, 0);
1293 
1294 	page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1295 	if (IS_ERR(page))
1296 		return page;
1297 
1298 	if (PageUptodate(page))
1299 		return page;
1300 
1301 	wait_on_page_locked(page);
1302 	if (unlikely(!PageUptodate(page))) {
1303 		f2fs_put_page(page, 0);
1304 		return ERR_PTR(-EIO);
1305 	}
1306 	return page;
1307 }
1308 
1309 /*
1310  * If it tries to access a hole, return an error.
1311  * Because, the callers, functions in dir.c and GC, should be able to know
1312  * whether this page exists or not.
1313  */
1314 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1315 							bool for_write)
1316 {
1317 	struct address_space *mapping = inode->i_mapping;
1318 	struct page *page;
1319 
1320 	page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1321 	if (IS_ERR(page))
1322 		return page;
1323 
1324 	/* wait for read completion */
1325 	lock_page(page);
1326 	if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1327 		f2fs_put_page(page, 1);
1328 		return ERR_PTR(-EIO);
1329 	}
1330 	return page;
1331 }
1332 
1333 /*
1334  * Caller ensures that this data page is never allocated.
1335  * A new zero-filled data page is allocated in the page cache.
1336  *
1337  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1338  * f2fs_unlock_op().
1339  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1340  * ipage should be released by this function.
1341  */
1342 struct page *f2fs_get_new_data_page(struct inode *inode,
1343 		struct page *ipage, pgoff_t index, bool new_i_size)
1344 {
1345 	struct address_space *mapping = inode->i_mapping;
1346 	struct page *page;
1347 	struct dnode_of_data dn;
1348 	int err;
1349 
1350 	page = f2fs_grab_cache_page(mapping, index, true);
1351 	if (!page) {
1352 		/*
1353 		 * before exiting, we should make sure ipage will be released
1354 		 * if any error occur.
1355 		 */
1356 		f2fs_put_page(ipage, 1);
1357 		return ERR_PTR(-ENOMEM);
1358 	}
1359 
1360 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1361 	err = f2fs_reserve_block(&dn, index);
1362 	if (err) {
1363 		f2fs_put_page(page, 1);
1364 		return ERR_PTR(err);
1365 	}
1366 	if (!ipage)
1367 		f2fs_put_dnode(&dn);
1368 
1369 	if (PageUptodate(page))
1370 		goto got_it;
1371 
1372 	if (dn.data_blkaddr == NEW_ADDR) {
1373 		zero_user_segment(page, 0, PAGE_SIZE);
1374 		if (!PageUptodate(page))
1375 			SetPageUptodate(page);
1376 	} else {
1377 		f2fs_put_page(page, 1);
1378 
1379 		/* if ipage exists, blkaddr should be NEW_ADDR */
1380 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1381 		page = f2fs_get_lock_data_page(inode, index, true);
1382 		if (IS_ERR(page))
1383 			return page;
1384 	}
1385 got_it:
1386 	if (new_i_size && i_size_read(inode) <
1387 				((loff_t)(index + 1) << PAGE_SHIFT))
1388 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1389 	return page;
1390 }
1391 
1392 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1393 {
1394 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1395 	struct f2fs_summary sum;
1396 	struct node_info ni;
1397 	block_t old_blkaddr;
1398 	blkcnt_t count = 1;
1399 	int err;
1400 
1401 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1402 		return -EPERM;
1403 
1404 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1405 	if (err)
1406 		return err;
1407 
1408 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1409 	if (dn->data_blkaddr == NULL_ADDR) {
1410 		err = inc_valid_block_count(sbi, dn->inode, &count, true);
1411 		if (unlikely(err))
1412 			return err;
1413 	}
1414 
1415 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1416 	old_blkaddr = dn->data_blkaddr;
1417 	err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1418 				&dn->data_blkaddr, &sum, seg_type, NULL);
1419 	if (err)
1420 		return err;
1421 
1422 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1423 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
1424 
1425 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1426 	return 0;
1427 }
1428 
1429 static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1430 {
1431 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1432 		f2fs_down_read(&sbi->node_change);
1433 	else
1434 		f2fs_lock_op(sbi);
1435 }
1436 
1437 static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1438 {
1439 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1440 		f2fs_up_read(&sbi->node_change);
1441 	else
1442 		f2fs_unlock_op(sbi);
1443 }
1444 
1445 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1446 {
1447 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1448 	int err = 0;
1449 
1450 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1451 	if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1452 						&dn->data_blkaddr))
1453 		err = f2fs_reserve_block(dn, index);
1454 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1455 
1456 	return err;
1457 }
1458 
1459 static int f2fs_map_no_dnode(struct inode *inode,
1460 		struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1461 		pgoff_t pgoff)
1462 {
1463 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1464 
1465 	/*
1466 	 * There is one exceptional case that read_node_page() may return
1467 	 * -ENOENT due to filesystem has been shutdown or cp_error, return
1468 	 * -EIO in that case.
1469 	 */
1470 	if (map->m_may_create &&
1471 	    (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1472 		return -EIO;
1473 
1474 	if (map->m_next_pgofs)
1475 		*map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1476 	if (map->m_next_extent)
1477 		*map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1478 	return 0;
1479 }
1480 
1481 static bool f2fs_map_blocks_cached(struct inode *inode,
1482 		struct f2fs_map_blocks *map, int flag)
1483 {
1484 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1485 	unsigned int maxblocks = map->m_len;
1486 	pgoff_t pgoff = (pgoff_t)map->m_lblk;
1487 	struct extent_info ei = {};
1488 
1489 	if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1490 		return false;
1491 
1492 	map->m_pblk = ei.blk + pgoff - ei.fofs;
1493 	map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1494 	map->m_flags = F2FS_MAP_MAPPED;
1495 	if (map->m_next_extent)
1496 		*map->m_next_extent = pgoff + map->m_len;
1497 
1498 	/* for hardware encryption, but to avoid potential issue in future */
1499 	if (flag == F2FS_GET_BLOCK_DIO)
1500 		f2fs_wait_on_block_writeback_range(inode,
1501 					map->m_pblk, map->m_len);
1502 
1503 	if (f2fs_allow_multi_device_dio(sbi, flag)) {
1504 		int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1505 		struct f2fs_dev_info *dev = &sbi->devs[bidx];
1506 
1507 		map->m_bdev = dev->bdev;
1508 		map->m_pblk -= dev->start_blk;
1509 		map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1510 	} else {
1511 		map->m_bdev = inode->i_sb->s_bdev;
1512 	}
1513 	return true;
1514 }
1515 
1516 static bool map_is_mergeable(struct f2fs_sb_info *sbi,
1517 				struct f2fs_map_blocks *map,
1518 				block_t blkaddr, int flag, int bidx,
1519 				int ofs)
1520 {
1521 	if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1522 		return false;
1523 	if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs))
1524 		return true;
1525 	if (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)
1526 		return true;
1527 	if (flag == F2FS_GET_BLOCK_PRE_DIO)
1528 		return true;
1529 	if (flag == F2FS_GET_BLOCK_DIO &&
1530 		map->m_pblk == NULL_ADDR && blkaddr == NULL_ADDR)
1531 		return true;
1532 	return false;
1533 }
1534 
1535 /*
1536  * f2fs_map_blocks() tries to find or build mapping relationship which
1537  * maps continuous logical blocks to physical blocks, and return such
1538  * info via f2fs_map_blocks structure.
1539  */
1540 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1541 {
1542 	unsigned int maxblocks = map->m_len;
1543 	struct dnode_of_data dn;
1544 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1545 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1546 	pgoff_t pgofs, end_offset, end;
1547 	int err = 0, ofs = 1;
1548 	unsigned int ofs_in_node, last_ofs_in_node;
1549 	blkcnt_t prealloc;
1550 	block_t blkaddr;
1551 	unsigned int start_pgofs;
1552 	int bidx = 0;
1553 	bool is_hole;
1554 
1555 	if (!maxblocks)
1556 		return 0;
1557 
1558 	if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1559 		goto out;
1560 
1561 	map->m_bdev = inode->i_sb->s_bdev;
1562 	map->m_multidev_dio =
1563 		f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1564 
1565 	map->m_len = 0;
1566 	map->m_flags = 0;
1567 
1568 	/* it only supports block size == page size */
1569 	pgofs =	(pgoff_t)map->m_lblk;
1570 	end = pgofs + maxblocks;
1571 
1572 next_dnode:
1573 	if (map->m_may_create)
1574 		f2fs_map_lock(sbi, flag);
1575 
1576 	/* When reading holes, we need its node page */
1577 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1578 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1579 	if (err) {
1580 		if (flag == F2FS_GET_BLOCK_BMAP)
1581 			map->m_pblk = 0;
1582 		if (err == -ENOENT)
1583 			err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1584 		goto unlock_out;
1585 	}
1586 
1587 	start_pgofs = pgofs;
1588 	prealloc = 0;
1589 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1590 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1591 
1592 next_block:
1593 	blkaddr = f2fs_data_blkaddr(&dn);
1594 	is_hole = !__is_valid_data_blkaddr(blkaddr);
1595 	if (!is_hole &&
1596 	    !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1597 		err = -EFSCORRUPTED;
1598 		goto sync_out;
1599 	}
1600 
1601 	/* use out-place-update for direct IO under LFS mode */
1602 	if (map->m_may_create && (is_hole ||
1603 		(flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1604 		!f2fs_is_pinned_file(inode)))) {
1605 		if (unlikely(f2fs_cp_error(sbi))) {
1606 			err = -EIO;
1607 			goto sync_out;
1608 		}
1609 
1610 		switch (flag) {
1611 		case F2FS_GET_BLOCK_PRE_AIO:
1612 			if (blkaddr == NULL_ADDR) {
1613 				prealloc++;
1614 				last_ofs_in_node = dn.ofs_in_node;
1615 			}
1616 			break;
1617 		case F2FS_GET_BLOCK_PRE_DIO:
1618 		case F2FS_GET_BLOCK_DIO:
1619 			err = __allocate_data_block(&dn, map->m_seg_type);
1620 			if (err)
1621 				goto sync_out;
1622 			if (flag == F2FS_GET_BLOCK_PRE_DIO)
1623 				file_need_truncate(inode);
1624 			set_inode_flag(inode, FI_APPEND_WRITE);
1625 			break;
1626 		default:
1627 			WARN_ON_ONCE(1);
1628 			err = -EIO;
1629 			goto sync_out;
1630 		}
1631 
1632 		blkaddr = dn.data_blkaddr;
1633 		if (is_hole)
1634 			map->m_flags |= F2FS_MAP_NEW;
1635 	} else if (is_hole) {
1636 		if (f2fs_compressed_file(inode) &&
1637 		    f2fs_sanity_check_cluster(&dn)) {
1638 			err = -EFSCORRUPTED;
1639 			f2fs_handle_error(sbi,
1640 					ERROR_CORRUPTED_CLUSTER);
1641 			goto sync_out;
1642 		}
1643 
1644 		switch (flag) {
1645 		case F2FS_GET_BLOCK_PRECACHE:
1646 			goto sync_out;
1647 		case F2FS_GET_BLOCK_BMAP:
1648 			map->m_pblk = 0;
1649 			goto sync_out;
1650 		case F2FS_GET_BLOCK_FIEMAP:
1651 			if (blkaddr == NULL_ADDR) {
1652 				if (map->m_next_pgofs)
1653 					*map->m_next_pgofs = pgofs + 1;
1654 				goto sync_out;
1655 			}
1656 			break;
1657 		case F2FS_GET_BLOCK_DIO:
1658 			if (map->m_next_pgofs)
1659 				*map->m_next_pgofs = pgofs + 1;
1660 			break;
1661 		default:
1662 			/* for defragment case */
1663 			if (map->m_next_pgofs)
1664 				*map->m_next_pgofs = pgofs + 1;
1665 			goto sync_out;
1666 		}
1667 	}
1668 
1669 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1670 		goto skip;
1671 
1672 	if (map->m_multidev_dio)
1673 		bidx = f2fs_target_device_index(sbi, blkaddr);
1674 
1675 	if (map->m_len == 0) {
1676 		/* reserved delalloc block should be mapped for fiemap. */
1677 		if (blkaddr == NEW_ADDR)
1678 			map->m_flags |= F2FS_MAP_DELALLOC;
1679 		if (flag != F2FS_GET_BLOCK_DIO || !is_hole)
1680 			map->m_flags |= F2FS_MAP_MAPPED;
1681 
1682 		map->m_pblk = blkaddr;
1683 		map->m_len = 1;
1684 
1685 		if (map->m_multidev_dio)
1686 			map->m_bdev = FDEV(bidx).bdev;
1687 	} else if (map_is_mergeable(sbi, map, blkaddr, flag, bidx, ofs)) {
1688 		ofs++;
1689 		map->m_len++;
1690 	} else {
1691 		goto sync_out;
1692 	}
1693 
1694 skip:
1695 	dn.ofs_in_node++;
1696 	pgofs++;
1697 
1698 	/* preallocate blocks in batch for one dnode page */
1699 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1700 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1701 
1702 		dn.ofs_in_node = ofs_in_node;
1703 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1704 		if (err)
1705 			goto sync_out;
1706 
1707 		map->m_len += dn.ofs_in_node - ofs_in_node;
1708 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1709 			err = -ENOSPC;
1710 			goto sync_out;
1711 		}
1712 		dn.ofs_in_node = end_offset;
1713 	}
1714 
1715 	if (flag == F2FS_GET_BLOCK_DIO && f2fs_lfs_mode(sbi) &&
1716 	    map->m_may_create) {
1717 		/* the next block to be allocated may not be contiguous. */
1718 		if (GET_SEGOFF_FROM_SEG0(sbi, blkaddr) % BLKS_PER_SEC(sbi) ==
1719 		    CAP_BLKS_PER_SEC(sbi) - 1)
1720 			goto sync_out;
1721 	}
1722 
1723 	if (pgofs >= end)
1724 		goto sync_out;
1725 	else if (dn.ofs_in_node < end_offset)
1726 		goto next_block;
1727 
1728 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1729 		if (map->m_flags & F2FS_MAP_MAPPED) {
1730 			unsigned int ofs = start_pgofs - map->m_lblk;
1731 
1732 			f2fs_update_read_extent_cache_range(&dn,
1733 				start_pgofs, map->m_pblk + ofs,
1734 				map->m_len - ofs);
1735 		}
1736 	}
1737 
1738 	f2fs_put_dnode(&dn);
1739 
1740 	if (map->m_may_create) {
1741 		f2fs_map_unlock(sbi, flag);
1742 		f2fs_balance_fs(sbi, dn.node_changed);
1743 	}
1744 	goto next_dnode;
1745 
1746 sync_out:
1747 
1748 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1749 		/*
1750 		 * for hardware encryption, but to avoid potential issue
1751 		 * in future
1752 		 */
1753 		f2fs_wait_on_block_writeback_range(inode,
1754 						map->m_pblk, map->m_len);
1755 
1756 		if (map->m_multidev_dio) {
1757 			block_t blk_addr = map->m_pblk;
1758 
1759 			bidx = f2fs_target_device_index(sbi, map->m_pblk);
1760 
1761 			map->m_bdev = FDEV(bidx).bdev;
1762 			map->m_pblk -= FDEV(bidx).start_blk;
1763 
1764 			if (map->m_may_create)
1765 				f2fs_update_device_state(sbi, inode->i_ino,
1766 							blk_addr, map->m_len);
1767 
1768 			f2fs_bug_on(sbi, blk_addr + map->m_len >
1769 						FDEV(bidx).end_blk + 1);
1770 		}
1771 	}
1772 
1773 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1774 		if (map->m_flags & F2FS_MAP_MAPPED) {
1775 			unsigned int ofs = start_pgofs - map->m_lblk;
1776 
1777 			f2fs_update_read_extent_cache_range(&dn,
1778 				start_pgofs, map->m_pblk + ofs,
1779 				map->m_len - ofs);
1780 		}
1781 		if (map->m_next_extent)
1782 			*map->m_next_extent = pgofs + 1;
1783 	}
1784 	f2fs_put_dnode(&dn);
1785 unlock_out:
1786 	if (map->m_may_create) {
1787 		f2fs_map_unlock(sbi, flag);
1788 		f2fs_balance_fs(sbi, dn.node_changed);
1789 	}
1790 out:
1791 	trace_f2fs_map_blocks(inode, map, flag, err);
1792 	return err;
1793 }
1794 
1795 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1796 {
1797 	struct f2fs_map_blocks map;
1798 	block_t last_lblk;
1799 	int err;
1800 
1801 	if (pos + len > i_size_read(inode))
1802 		return false;
1803 
1804 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1805 	map.m_next_pgofs = NULL;
1806 	map.m_next_extent = NULL;
1807 	map.m_seg_type = NO_CHECK_TYPE;
1808 	map.m_may_create = false;
1809 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1810 
1811 	while (map.m_lblk < last_lblk) {
1812 		map.m_len = last_lblk - map.m_lblk;
1813 		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1814 		if (err || map.m_len == 0)
1815 			return false;
1816 		map.m_lblk += map.m_len;
1817 	}
1818 	return true;
1819 }
1820 
1821 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1822 {
1823 	return (bytes >> inode->i_blkbits);
1824 }
1825 
1826 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1827 {
1828 	return (blks << inode->i_blkbits);
1829 }
1830 
1831 static int f2fs_xattr_fiemap(struct inode *inode,
1832 				struct fiemap_extent_info *fieinfo)
1833 {
1834 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1835 	struct page *page;
1836 	struct node_info ni;
1837 	__u64 phys = 0, len;
1838 	__u32 flags;
1839 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1840 	int err = 0;
1841 
1842 	if (f2fs_has_inline_xattr(inode)) {
1843 		int offset;
1844 
1845 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1846 						inode->i_ino, false);
1847 		if (!page)
1848 			return -ENOMEM;
1849 
1850 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1851 		if (err) {
1852 			f2fs_put_page(page, 1);
1853 			return err;
1854 		}
1855 
1856 		phys = blks_to_bytes(inode, ni.blk_addr);
1857 		offset = offsetof(struct f2fs_inode, i_addr) +
1858 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1859 					get_inline_xattr_addrs(inode));
1860 
1861 		phys += offset;
1862 		len = inline_xattr_size(inode);
1863 
1864 		f2fs_put_page(page, 1);
1865 
1866 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1867 
1868 		if (!xnid)
1869 			flags |= FIEMAP_EXTENT_LAST;
1870 
1871 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1872 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1873 		if (err)
1874 			return err;
1875 	}
1876 
1877 	if (xnid) {
1878 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1879 		if (!page)
1880 			return -ENOMEM;
1881 
1882 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1883 		if (err) {
1884 			f2fs_put_page(page, 1);
1885 			return err;
1886 		}
1887 
1888 		phys = blks_to_bytes(inode, ni.blk_addr);
1889 		len = inode->i_sb->s_blocksize;
1890 
1891 		f2fs_put_page(page, 1);
1892 
1893 		flags = FIEMAP_EXTENT_LAST;
1894 	}
1895 
1896 	if (phys) {
1897 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1898 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1899 	}
1900 
1901 	return (err < 0 ? err : 0);
1902 }
1903 
1904 static loff_t max_inode_blocks(struct inode *inode)
1905 {
1906 	loff_t result = ADDRS_PER_INODE(inode);
1907 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1908 
1909 	/* two direct node blocks */
1910 	result += (leaf_count * 2);
1911 
1912 	/* two indirect node blocks */
1913 	leaf_count *= NIDS_PER_BLOCK;
1914 	result += (leaf_count * 2);
1915 
1916 	/* one double indirect node block */
1917 	leaf_count *= NIDS_PER_BLOCK;
1918 	result += leaf_count;
1919 
1920 	return result;
1921 }
1922 
1923 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1924 		u64 start, u64 len)
1925 {
1926 	struct f2fs_map_blocks map;
1927 	sector_t start_blk, last_blk;
1928 	pgoff_t next_pgofs;
1929 	u64 logical = 0, phys = 0, size = 0;
1930 	u32 flags = 0;
1931 	int ret = 0;
1932 	bool compr_cluster = false, compr_appended;
1933 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1934 	unsigned int count_in_cluster = 0;
1935 	loff_t maxbytes;
1936 
1937 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1938 		ret = f2fs_precache_extents(inode);
1939 		if (ret)
1940 			return ret;
1941 	}
1942 
1943 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1944 	if (ret)
1945 		return ret;
1946 
1947 	inode_lock_shared(inode);
1948 
1949 	maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
1950 	if (start > maxbytes) {
1951 		ret = -EFBIG;
1952 		goto out;
1953 	}
1954 
1955 	if (len > maxbytes || (maxbytes - len) < start)
1956 		len = maxbytes - start;
1957 
1958 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1959 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1960 		goto out;
1961 	}
1962 
1963 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1964 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1965 		if (ret != -EAGAIN)
1966 			goto out;
1967 	}
1968 
1969 	if (bytes_to_blks(inode, len) == 0)
1970 		len = blks_to_bytes(inode, 1);
1971 
1972 	start_blk = bytes_to_blks(inode, start);
1973 	last_blk = bytes_to_blks(inode, start + len - 1);
1974 
1975 next:
1976 	memset(&map, 0, sizeof(map));
1977 	map.m_lblk = start_blk;
1978 	map.m_len = bytes_to_blks(inode, len);
1979 	map.m_next_pgofs = &next_pgofs;
1980 	map.m_seg_type = NO_CHECK_TYPE;
1981 
1982 	if (compr_cluster) {
1983 		map.m_lblk += 1;
1984 		map.m_len = cluster_size - count_in_cluster;
1985 	}
1986 
1987 	ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1988 	if (ret)
1989 		goto out;
1990 
1991 	/* HOLE */
1992 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1993 		start_blk = next_pgofs;
1994 
1995 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1996 						max_inode_blocks(inode)))
1997 			goto prep_next;
1998 
1999 		flags |= FIEMAP_EXTENT_LAST;
2000 	}
2001 
2002 	compr_appended = false;
2003 	/* In a case of compressed cluster, append this to the last extent */
2004 	if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2005 			!(map.m_flags & F2FS_MAP_FLAGS))) {
2006 		compr_appended = true;
2007 		goto skip_fill;
2008 	}
2009 
2010 	if (size) {
2011 		flags |= FIEMAP_EXTENT_MERGED;
2012 		if (IS_ENCRYPTED(inode))
2013 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2014 
2015 		ret = fiemap_fill_next_extent(fieinfo, logical,
2016 				phys, size, flags);
2017 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2018 		if (ret)
2019 			goto out;
2020 		size = 0;
2021 	}
2022 
2023 	if (start_blk > last_blk)
2024 		goto out;
2025 
2026 skip_fill:
2027 	if (map.m_pblk == COMPRESS_ADDR) {
2028 		compr_cluster = true;
2029 		count_in_cluster = 1;
2030 	} else if (compr_appended) {
2031 		unsigned int appended_blks = cluster_size -
2032 						count_in_cluster + 1;
2033 		size += blks_to_bytes(inode, appended_blks);
2034 		start_blk += appended_blks;
2035 		compr_cluster = false;
2036 	} else {
2037 		logical = blks_to_bytes(inode, start_blk);
2038 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2039 			blks_to_bytes(inode, map.m_pblk) : 0;
2040 		size = blks_to_bytes(inode, map.m_len);
2041 		flags = 0;
2042 
2043 		if (compr_cluster) {
2044 			flags = FIEMAP_EXTENT_ENCODED;
2045 			count_in_cluster += map.m_len;
2046 			if (count_in_cluster == cluster_size) {
2047 				compr_cluster = false;
2048 				size += blks_to_bytes(inode, 1);
2049 			}
2050 		} else if (map.m_flags & F2FS_MAP_DELALLOC) {
2051 			flags = FIEMAP_EXTENT_UNWRITTEN;
2052 		}
2053 
2054 		start_blk += bytes_to_blks(inode, size);
2055 	}
2056 
2057 prep_next:
2058 	cond_resched();
2059 	if (fatal_signal_pending(current))
2060 		ret = -EINTR;
2061 	else
2062 		goto next;
2063 out:
2064 	if (ret == 1)
2065 		ret = 0;
2066 
2067 	inode_unlock_shared(inode);
2068 	return ret;
2069 }
2070 
2071 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2072 {
2073 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2074 		return F2FS_BLK_TO_BYTES(max_file_blocks(inode));
2075 
2076 	return i_size_read(inode);
2077 }
2078 
2079 static inline blk_opf_t f2fs_ra_op_flags(struct readahead_control *rac)
2080 {
2081 	return rac ? REQ_RAHEAD : 0;
2082 }
2083 
2084 static int f2fs_read_single_page(struct inode *inode, struct folio *folio,
2085 					unsigned nr_pages,
2086 					struct f2fs_map_blocks *map,
2087 					struct bio **bio_ret,
2088 					sector_t *last_block_in_bio,
2089 					struct readahead_control *rac)
2090 {
2091 	struct bio *bio = *bio_ret;
2092 	const unsigned blocksize = blks_to_bytes(inode, 1);
2093 	sector_t block_in_file;
2094 	sector_t last_block;
2095 	sector_t last_block_in_file;
2096 	sector_t block_nr;
2097 	pgoff_t index = folio_index(folio);
2098 	int ret = 0;
2099 
2100 	block_in_file = (sector_t)index;
2101 	last_block = block_in_file + nr_pages;
2102 	last_block_in_file = bytes_to_blks(inode,
2103 			f2fs_readpage_limit(inode) + blocksize - 1);
2104 	if (last_block > last_block_in_file)
2105 		last_block = last_block_in_file;
2106 
2107 	/* just zeroing out page which is beyond EOF */
2108 	if (block_in_file >= last_block)
2109 		goto zero_out;
2110 	/*
2111 	 * Map blocks using the previous result first.
2112 	 */
2113 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2114 			block_in_file > map->m_lblk &&
2115 			block_in_file < (map->m_lblk + map->m_len))
2116 		goto got_it;
2117 
2118 	/*
2119 	 * Then do more f2fs_map_blocks() calls until we are
2120 	 * done with this page.
2121 	 */
2122 	map->m_lblk = block_in_file;
2123 	map->m_len = last_block - block_in_file;
2124 
2125 	ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2126 	if (ret)
2127 		goto out;
2128 got_it:
2129 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2130 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2131 		folio_set_mappedtodisk(folio);
2132 
2133 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2134 						DATA_GENERIC_ENHANCE_READ)) {
2135 			ret = -EFSCORRUPTED;
2136 			goto out;
2137 		}
2138 	} else {
2139 zero_out:
2140 		folio_zero_segment(folio, 0, folio_size(folio));
2141 		if (f2fs_need_verity(inode, index) &&
2142 		    !fsverity_verify_folio(folio)) {
2143 			ret = -EIO;
2144 			goto out;
2145 		}
2146 		if (!folio_test_uptodate(folio))
2147 			folio_mark_uptodate(folio);
2148 		folio_unlock(folio);
2149 		goto out;
2150 	}
2151 
2152 	/*
2153 	 * This page will go to BIO.  Do we need to send this
2154 	 * BIO off first?
2155 	 */
2156 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2157 				       *last_block_in_bio, block_nr) ||
2158 		    !f2fs_crypt_mergeable_bio(bio, inode, index, NULL))) {
2159 submit_and_realloc:
2160 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2161 		bio = NULL;
2162 	}
2163 	if (bio == NULL) {
2164 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2165 				f2fs_ra_op_flags(rac), index,
2166 				false);
2167 		if (IS_ERR(bio)) {
2168 			ret = PTR_ERR(bio);
2169 			bio = NULL;
2170 			goto out;
2171 		}
2172 	}
2173 
2174 	/*
2175 	 * If the page is under writeback, we need to wait for
2176 	 * its completion to see the correct decrypted data.
2177 	 */
2178 	f2fs_wait_on_block_writeback(inode, block_nr);
2179 
2180 	if (!bio_add_folio(bio, folio, blocksize, 0))
2181 		goto submit_and_realloc;
2182 
2183 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2184 	f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2185 							F2FS_BLKSIZE);
2186 	*last_block_in_bio = block_nr;
2187 out:
2188 	*bio_ret = bio;
2189 	return ret;
2190 }
2191 
2192 #ifdef CONFIG_F2FS_FS_COMPRESSION
2193 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2194 				unsigned nr_pages, sector_t *last_block_in_bio,
2195 				struct readahead_control *rac, bool for_write)
2196 {
2197 	struct dnode_of_data dn;
2198 	struct inode *inode = cc->inode;
2199 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2200 	struct bio *bio = *bio_ret;
2201 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2202 	sector_t last_block_in_file;
2203 	const unsigned blocksize = blks_to_bytes(inode, 1);
2204 	struct decompress_io_ctx *dic = NULL;
2205 	struct extent_info ei = {};
2206 	bool from_dnode = true;
2207 	int i;
2208 	int ret = 0;
2209 
2210 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2211 
2212 	last_block_in_file = bytes_to_blks(inode,
2213 			f2fs_readpage_limit(inode) + blocksize - 1);
2214 
2215 	/* get rid of pages beyond EOF */
2216 	for (i = 0; i < cc->cluster_size; i++) {
2217 		struct page *page = cc->rpages[i];
2218 		struct folio *folio;
2219 
2220 		if (!page)
2221 			continue;
2222 
2223 		folio = page_folio(page);
2224 		if ((sector_t)folio->index >= last_block_in_file) {
2225 			folio_zero_segment(folio, 0, folio_size(folio));
2226 			if (!folio_test_uptodate(folio))
2227 				folio_mark_uptodate(folio);
2228 		} else if (!folio_test_uptodate(folio)) {
2229 			continue;
2230 		}
2231 		folio_unlock(folio);
2232 		if (for_write)
2233 			folio_put(folio);
2234 		cc->rpages[i] = NULL;
2235 		cc->nr_rpages--;
2236 	}
2237 
2238 	/* we are done since all pages are beyond EOF */
2239 	if (f2fs_cluster_is_empty(cc))
2240 		goto out;
2241 
2242 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2243 		from_dnode = false;
2244 
2245 	if (!from_dnode)
2246 		goto skip_reading_dnode;
2247 
2248 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2249 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2250 	if (ret)
2251 		goto out;
2252 
2253 	if (unlikely(f2fs_cp_error(sbi))) {
2254 		ret = -EIO;
2255 		goto out_put_dnode;
2256 	}
2257 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2258 
2259 skip_reading_dnode:
2260 	for (i = 1; i < cc->cluster_size; i++) {
2261 		block_t blkaddr;
2262 
2263 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2264 					dn.ofs_in_node + i) :
2265 					ei.blk + i - 1;
2266 
2267 		if (!__is_valid_data_blkaddr(blkaddr))
2268 			break;
2269 
2270 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2271 			ret = -EFAULT;
2272 			goto out_put_dnode;
2273 		}
2274 		cc->nr_cpages++;
2275 
2276 		if (!from_dnode && i >= ei.c_len)
2277 			break;
2278 	}
2279 
2280 	/* nothing to decompress */
2281 	if (cc->nr_cpages == 0) {
2282 		ret = 0;
2283 		goto out_put_dnode;
2284 	}
2285 
2286 	dic = f2fs_alloc_dic(cc);
2287 	if (IS_ERR(dic)) {
2288 		ret = PTR_ERR(dic);
2289 		goto out_put_dnode;
2290 	}
2291 
2292 	for (i = 0; i < cc->nr_cpages; i++) {
2293 		struct folio *folio = page_folio(dic->cpages[i]);
2294 		block_t blkaddr;
2295 		struct bio_post_read_ctx *ctx;
2296 
2297 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2298 					dn.ofs_in_node + i + 1) :
2299 					ei.blk + i;
2300 
2301 		f2fs_wait_on_block_writeback(inode, blkaddr);
2302 
2303 		if (f2fs_load_compressed_page(sbi, folio_page(folio, 0),
2304 								blkaddr)) {
2305 			if (atomic_dec_and_test(&dic->remaining_pages)) {
2306 				f2fs_decompress_cluster(dic, true);
2307 				break;
2308 			}
2309 			continue;
2310 		}
2311 
2312 		if (bio && (!page_is_mergeable(sbi, bio,
2313 					*last_block_in_bio, blkaddr) ||
2314 		    !f2fs_crypt_mergeable_bio(bio, inode, folio->index, NULL))) {
2315 submit_and_realloc:
2316 			f2fs_submit_read_bio(sbi, bio, DATA);
2317 			bio = NULL;
2318 		}
2319 
2320 		if (!bio) {
2321 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2322 					f2fs_ra_op_flags(rac),
2323 					folio->index, for_write);
2324 			if (IS_ERR(bio)) {
2325 				ret = PTR_ERR(bio);
2326 				f2fs_decompress_end_io(dic, ret, true);
2327 				f2fs_put_dnode(&dn);
2328 				*bio_ret = NULL;
2329 				return ret;
2330 			}
2331 		}
2332 
2333 		if (!bio_add_folio(bio, folio, blocksize, 0))
2334 			goto submit_and_realloc;
2335 
2336 		ctx = get_post_read_ctx(bio);
2337 		ctx->enabled_steps |= STEP_DECOMPRESS;
2338 		refcount_inc(&dic->refcnt);
2339 
2340 		inc_page_count(sbi, F2FS_RD_DATA);
2341 		f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2342 		*last_block_in_bio = blkaddr;
2343 	}
2344 
2345 	if (from_dnode)
2346 		f2fs_put_dnode(&dn);
2347 
2348 	*bio_ret = bio;
2349 	return 0;
2350 
2351 out_put_dnode:
2352 	if (from_dnode)
2353 		f2fs_put_dnode(&dn);
2354 out:
2355 	for (i = 0; i < cc->cluster_size; i++) {
2356 		if (cc->rpages[i]) {
2357 			ClearPageUptodate(cc->rpages[i]);
2358 			unlock_page(cc->rpages[i]);
2359 		}
2360 	}
2361 	*bio_ret = bio;
2362 	return ret;
2363 }
2364 #endif
2365 
2366 /*
2367  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2368  * Major change was from block_size == page_size in f2fs by default.
2369  */
2370 static int f2fs_mpage_readpages(struct inode *inode,
2371 		struct readahead_control *rac, struct folio *folio)
2372 {
2373 	struct bio *bio = NULL;
2374 	sector_t last_block_in_bio = 0;
2375 	struct f2fs_map_blocks map;
2376 #ifdef CONFIG_F2FS_FS_COMPRESSION
2377 	struct compress_ctx cc = {
2378 		.inode = inode,
2379 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2380 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2381 		.cluster_idx = NULL_CLUSTER,
2382 		.rpages = NULL,
2383 		.cpages = NULL,
2384 		.nr_rpages = 0,
2385 		.nr_cpages = 0,
2386 	};
2387 	pgoff_t nc_cluster_idx = NULL_CLUSTER;
2388 #endif
2389 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2390 	unsigned max_nr_pages = nr_pages;
2391 	pgoff_t index;
2392 	int ret = 0;
2393 
2394 	map.m_pblk = 0;
2395 	map.m_lblk = 0;
2396 	map.m_len = 0;
2397 	map.m_flags = 0;
2398 	map.m_next_pgofs = NULL;
2399 	map.m_next_extent = NULL;
2400 	map.m_seg_type = NO_CHECK_TYPE;
2401 	map.m_may_create = false;
2402 
2403 	for (; nr_pages; nr_pages--) {
2404 		if (rac) {
2405 			folio = readahead_folio(rac);
2406 			prefetchw(&folio->flags);
2407 		}
2408 
2409 		index = folio_index(folio);
2410 
2411 #ifdef CONFIG_F2FS_FS_COMPRESSION
2412 		if (!f2fs_compressed_file(inode))
2413 			goto read_single_page;
2414 
2415 		/* there are remained compressed pages, submit them */
2416 		if (!f2fs_cluster_can_merge_page(&cc, index)) {
2417 			ret = f2fs_read_multi_pages(&cc, &bio,
2418 						max_nr_pages,
2419 						&last_block_in_bio,
2420 						rac, false);
2421 			f2fs_destroy_compress_ctx(&cc, false);
2422 			if (ret)
2423 				goto set_error_page;
2424 		}
2425 		if (cc.cluster_idx == NULL_CLUSTER) {
2426 			if (nc_cluster_idx == index >> cc.log_cluster_size)
2427 				goto read_single_page;
2428 
2429 			ret = f2fs_is_compressed_cluster(inode, index);
2430 			if (ret < 0)
2431 				goto set_error_page;
2432 			else if (!ret) {
2433 				nc_cluster_idx =
2434 					index >> cc.log_cluster_size;
2435 				goto read_single_page;
2436 			}
2437 
2438 			nc_cluster_idx = NULL_CLUSTER;
2439 		}
2440 		ret = f2fs_init_compress_ctx(&cc);
2441 		if (ret)
2442 			goto set_error_page;
2443 
2444 		f2fs_compress_ctx_add_page(&cc, folio);
2445 
2446 		goto next_page;
2447 read_single_page:
2448 #endif
2449 
2450 		ret = f2fs_read_single_page(inode, folio, max_nr_pages, &map,
2451 					&bio, &last_block_in_bio, rac);
2452 		if (ret) {
2453 #ifdef CONFIG_F2FS_FS_COMPRESSION
2454 set_error_page:
2455 #endif
2456 			folio_zero_segment(folio, 0, folio_size(folio));
2457 			folio_unlock(folio);
2458 		}
2459 #ifdef CONFIG_F2FS_FS_COMPRESSION
2460 next_page:
2461 #endif
2462 
2463 #ifdef CONFIG_F2FS_FS_COMPRESSION
2464 		if (f2fs_compressed_file(inode)) {
2465 			/* last page */
2466 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2467 				ret = f2fs_read_multi_pages(&cc, &bio,
2468 							max_nr_pages,
2469 							&last_block_in_bio,
2470 							rac, false);
2471 				f2fs_destroy_compress_ctx(&cc, false);
2472 			}
2473 		}
2474 #endif
2475 	}
2476 	if (bio)
2477 		f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2478 	return ret;
2479 }
2480 
2481 static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2482 {
2483 	struct inode *inode = folio_file_mapping(folio)->host;
2484 	int ret = -EAGAIN;
2485 
2486 	trace_f2fs_readpage(folio, DATA);
2487 
2488 	if (!f2fs_is_compress_backend_ready(inode)) {
2489 		folio_unlock(folio);
2490 		return -EOPNOTSUPP;
2491 	}
2492 
2493 	/* If the file has inline data, try to read it directly */
2494 	if (f2fs_has_inline_data(inode))
2495 		ret = f2fs_read_inline_data(inode, folio);
2496 	if (ret == -EAGAIN)
2497 		ret = f2fs_mpage_readpages(inode, NULL, folio);
2498 	return ret;
2499 }
2500 
2501 static void f2fs_readahead(struct readahead_control *rac)
2502 {
2503 	struct inode *inode = rac->mapping->host;
2504 
2505 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2506 
2507 	if (!f2fs_is_compress_backend_ready(inode))
2508 		return;
2509 
2510 	/* If the file has inline data, skip readahead */
2511 	if (f2fs_has_inline_data(inode))
2512 		return;
2513 
2514 	f2fs_mpage_readpages(inode, rac, NULL);
2515 }
2516 
2517 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2518 {
2519 	struct inode *inode = fio->page->mapping->host;
2520 	struct page *mpage, *page;
2521 	gfp_t gfp_flags = GFP_NOFS;
2522 
2523 	if (!f2fs_encrypted_file(inode))
2524 		return 0;
2525 
2526 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2527 
2528 	if (fscrypt_inode_uses_inline_crypto(inode))
2529 		return 0;
2530 
2531 retry_encrypt:
2532 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2533 					PAGE_SIZE, 0, gfp_flags);
2534 	if (IS_ERR(fio->encrypted_page)) {
2535 		/* flush pending IOs and wait for a while in the ENOMEM case */
2536 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2537 			f2fs_flush_merged_writes(fio->sbi);
2538 			memalloc_retry_wait(GFP_NOFS);
2539 			gfp_flags |= __GFP_NOFAIL;
2540 			goto retry_encrypt;
2541 		}
2542 		return PTR_ERR(fio->encrypted_page);
2543 	}
2544 
2545 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2546 	if (mpage) {
2547 		if (PageUptodate(mpage))
2548 			memcpy(page_address(mpage),
2549 				page_address(fio->encrypted_page), PAGE_SIZE);
2550 		f2fs_put_page(mpage, 1);
2551 	}
2552 	return 0;
2553 }
2554 
2555 static inline bool check_inplace_update_policy(struct inode *inode,
2556 				struct f2fs_io_info *fio)
2557 {
2558 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2559 
2560 	if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2561 	    is_inode_flag_set(inode, FI_OPU_WRITE))
2562 		return false;
2563 	if (IS_F2FS_IPU_FORCE(sbi))
2564 		return true;
2565 	if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2566 		return true;
2567 	if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2568 		return true;
2569 	if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2570 	    utilization(sbi) > SM_I(sbi)->min_ipu_util)
2571 		return true;
2572 
2573 	/*
2574 	 * IPU for rewrite async pages
2575 	 */
2576 	if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2577 	    !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2578 		return true;
2579 
2580 	/* this is only set during fdatasync */
2581 	if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2582 		return true;
2583 
2584 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2585 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2586 		return true;
2587 
2588 	return false;
2589 }
2590 
2591 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2592 {
2593 	/* swap file is migrating in aligned write mode */
2594 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2595 		return false;
2596 
2597 	if (f2fs_is_pinned_file(inode))
2598 		return true;
2599 
2600 	/* if this is cold file, we should overwrite to avoid fragmentation */
2601 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2602 		return true;
2603 
2604 	return check_inplace_update_policy(inode, fio);
2605 }
2606 
2607 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2608 {
2609 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2610 
2611 	/* The below cases were checked when setting it. */
2612 	if (f2fs_is_pinned_file(inode))
2613 		return false;
2614 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2615 		return true;
2616 	if (f2fs_lfs_mode(sbi))
2617 		return true;
2618 	if (S_ISDIR(inode->i_mode))
2619 		return true;
2620 	if (IS_NOQUOTA(inode))
2621 		return true;
2622 	if (f2fs_used_in_atomic_write(inode))
2623 		return true;
2624 	/* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2625 	if (f2fs_compressed_file(inode) &&
2626 		F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2627 		is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2628 		return true;
2629 
2630 	/* swap file is migrating in aligned write mode */
2631 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2632 		return true;
2633 
2634 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2635 		return true;
2636 
2637 	if (fio) {
2638 		if (page_private_gcing(fio->page))
2639 			return true;
2640 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2641 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2642 			return true;
2643 	}
2644 	return false;
2645 }
2646 
2647 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2648 {
2649 	struct inode *inode = fio->page->mapping->host;
2650 
2651 	if (f2fs_should_update_outplace(inode, fio))
2652 		return false;
2653 
2654 	return f2fs_should_update_inplace(inode, fio);
2655 }
2656 
2657 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2658 {
2659 	struct folio *folio = page_folio(fio->page);
2660 	struct inode *inode = folio->mapping->host;
2661 	struct dnode_of_data dn;
2662 	struct node_info ni;
2663 	bool ipu_force = false;
2664 	bool atomic_commit;
2665 	int err = 0;
2666 
2667 	/* Use COW inode to make dnode_of_data for atomic write */
2668 	atomic_commit = f2fs_is_atomic_file(inode) &&
2669 				page_private_atomic(folio_page(folio, 0));
2670 	if (atomic_commit)
2671 		set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2672 	else
2673 		set_new_dnode(&dn, inode, NULL, NULL, 0);
2674 
2675 	if (need_inplace_update(fio) &&
2676 	    f2fs_lookup_read_extent_cache_block(inode, folio->index,
2677 						&fio->old_blkaddr)) {
2678 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2679 						DATA_GENERIC_ENHANCE))
2680 			return -EFSCORRUPTED;
2681 
2682 		ipu_force = true;
2683 		fio->need_lock = LOCK_DONE;
2684 		goto got_it;
2685 	}
2686 
2687 	/* Deadlock due to between page->lock and f2fs_lock_op */
2688 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2689 		return -EAGAIN;
2690 
2691 	err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
2692 	if (err)
2693 		goto out;
2694 
2695 	fio->old_blkaddr = dn.data_blkaddr;
2696 
2697 	/* This page is already truncated */
2698 	if (fio->old_blkaddr == NULL_ADDR) {
2699 		folio_clear_uptodate(folio);
2700 		clear_page_private_gcing(folio_page(folio, 0));
2701 		goto out_writepage;
2702 	}
2703 got_it:
2704 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2705 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2706 						DATA_GENERIC_ENHANCE)) {
2707 		err = -EFSCORRUPTED;
2708 		goto out_writepage;
2709 	}
2710 
2711 	/* wait for GCed page writeback via META_MAPPING */
2712 	if (fio->meta_gc)
2713 		f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2714 
2715 	/*
2716 	 * If current allocation needs SSR,
2717 	 * it had better in-place writes for updated data.
2718 	 */
2719 	if (ipu_force ||
2720 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2721 					need_inplace_update(fio))) {
2722 		err = f2fs_encrypt_one_page(fio);
2723 		if (err)
2724 			goto out_writepage;
2725 
2726 		folio_start_writeback(folio);
2727 		f2fs_put_dnode(&dn);
2728 		if (fio->need_lock == LOCK_REQ)
2729 			f2fs_unlock_op(fio->sbi);
2730 		err = f2fs_inplace_write_data(fio);
2731 		if (err) {
2732 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2733 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2734 			folio_end_writeback(folio);
2735 		} else {
2736 			set_inode_flag(inode, FI_UPDATE_WRITE);
2737 		}
2738 		trace_f2fs_do_write_data_page(folio, IPU);
2739 		return err;
2740 	}
2741 
2742 	if (fio->need_lock == LOCK_RETRY) {
2743 		if (!f2fs_trylock_op(fio->sbi)) {
2744 			err = -EAGAIN;
2745 			goto out_writepage;
2746 		}
2747 		fio->need_lock = LOCK_REQ;
2748 	}
2749 
2750 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2751 	if (err)
2752 		goto out_writepage;
2753 
2754 	fio->version = ni.version;
2755 
2756 	err = f2fs_encrypt_one_page(fio);
2757 	if (err)
2758 		goto out_writepage;
2759 
2760 	folio_start_writeback(folio);
2761 
2762 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2763 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2764 
2765 	/* LFS mode write path */
2766 	f2fs_outplace_write_data(&dn, fio);
2767 	trace_f2fs_do_write_data_page(folio, OPU);
2768 	set_inode_flag(inode, FI_APPEND_WRITE);
2769 	if (atomic_commit)
2770 		clear_page_private_atomic(folio_page(folio, 0));
2771 out_writepage:
2772 	f2fs_put_dnode(&dn);
2773 out:
2774 	if (fio->need_lock == LOCK_REQ)
2775 		f2fs_unlock_op(fio->sbi);
2776 	return err;
2777 }
2778 
2779 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
2780 				struct bio **bio,
2781 				sector_t *last_block,
2782 				struct writeback_control *wbc,
2783 				enum iostat_type io_type,
2784 				int compr_blocks,
2785 				bool allow_balance)
2786 {
2787 	struct inode *inode = folio->mapping->host;
2788 	struct page *page = folio_page(folio, 0);
2789 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2790 	loff_t i_size = i_size_read(inode);
2791 	const pgoff_t end_index = ((unsigned long long)i_size)
2792 							>> PAGE_SHIFT;
2793 	loff_t psize = (loff_t)(folio->index + 1) << PAGE_SHIFT;
2794 	unsigned offset = 0;
2795 	bool need_balance_fs = false;
2796 	bool quota_inode = IS_NOQUOTA(inode);
2797 	int err = 0;
2798 	struct f2fs_io_info fio = {
2799 		.sbi = sbi,
2800 		.ino = inode->i_ino,
2801 		.type = DATA,
2802 		.op = REQ_OP_WRITE,
2803 		.op_flags = wbc_to_write_flags(wbc),
2804 		.old_blkaddr = NULL_ADDR,
2805 		.page = page,
2806 		.encrypted_page = NULL,
2807 		.submitted = 0,
2808 		.compr_blocks = compr_blocks,
2809 		.need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2810 		.meta_gc = f2fs_meta_inode_gc_required(inode) ? 1 : 0,
2811 		.io_type = io_type,
2812 		.io_wbc = wbc,
2813 		.bio = bio,
2814 		.last_block = last_block,
2815 	};
2816 
2817 	trace_f2fs_writepage(folio, DATA);
2818 
2819 	/* we should bypass data pages to proceed the kworker jobs */
2820 	if (unlikely(f2fs_cp_error(sbi))) {
2821 		mapping_set_error(folio->mapping, -EIO);
2822 		/*
2823 		 * don't drop any dirty dentry pages for keeping lastest
2824 		 * directory structure.
2825 		 */
2826 		if (S_ISDIR(inode->i_mode) &&
2827 				!is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2828 			goto redirty_out;
2829 
2830 		/* keep data pages in remount-ro mode */
2831 		if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2832 			goto redirty_out;
2833 		goto out;
2834 	}
2835 
2836 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2837 		goto redirty_out;
2838 
2839 	if (folio->index < end_index ||
2840 			f2fs_verity_in_progress(inode) ||
2841 			compr_blocks)
2842 		goto write;
2843 
2844 	/*
2845 	 * If the offset is out-of-range of file size,
2846 	 * this page does not have to be written to disk.
2847 	 */
2848 	offset = i_size & (PAGE_SIZE - 1);
2849 	if ((folio->index >= end_index + 1) || !offset)
2850 		goto out;
2851 
2852 	folio_zero_segment(folio, offset, folio_size(folio));
2853 write:
2854 	/* Dentry/quota blocks are controlled by checkpoint */
2855 	if (S_ISDIR(inode->i_mode) || quota_inode) {
2856 		/*
2857 		 * We need to wait for node_write to avoid block allocation during
2858 		 * checkpoint. This can only happen to quota writes which can cause
2859 		 * the below discard race condition.
2860 		 */
2861 		if (quota_inode)
2862 			f2fs_down_read(&sbi->node_write);
2863 
2864 		fio.need_lock = LOCK_DONE;
2865 		err = f2fs_do_write_data_page(&fio);
2866 
2867 		if (quota_inode)
2868 			f2fs_up_read(&sbi->node_write);
2869 
2870 		goto done;
2871 	}
2872 
2873 	if (!wbc->for_reclaim)
2874 		need_balance_fs = true;
2875 	else if (has_not_enough_free_secs(sbi, 0, 0))
2876 		goto redirty_out;
2877 	else
2878 		set_inode_flag(inode, FI_HOT_DATA);
2879 
2880 	err = -EAGAIN;
2881 	if (f2fs_has_inline_data(inode)) {
2882 		err = f2fs_write_inline_data(inode, folio);
2883 		if (!err)
2884 			goto out;
2885 	}
2886 
2887 	if (err == -EAGAIN) {
2888 		err = f2fs_do_write_data_page(&fio);
2889 		if (err == -EAGAIN) {
2890 			f2fs_bug_on(sbi, compr_blocks);
2891 			fio.need_lock = LOCK_REQ;
2892 			err = f2fs_do_write_data_page(&fio);
2893 		}
2894 	}
2895 
2896 	if (err) {
2897 		file_set_keep_isize(inode);
2898 	} else {
2899 		spin_lock(&F2FS_I(inode)->i_size_lock);
2900 		if (F2FS_I(inode)->last_disk_size < psize)
2901 			F2FS_I(inode)->last_disk_size = psize;
2902 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2903 	}
2904 
2905 done:
2906 	if (err && err != -ENOENT)
2907 		goto redirty_out;
2908 
2909 out:
2910 	inode_dec_dirty_pages(inode);
2911 	if (err) {
2912 		folio_clear_uptodate(folio);
2913 		clear_page_private_gcing(page);
2914 	}
2915 
2916 	if (wbc->for_reclaim) {
2917 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2918 		clear_inode_flag(inode, FI_HOT_DATA);
2919 		f2fs_remove_dirty_inode(inode);
2920 		submitted = NULL;
2921 	}
2922 	folio_unlock(folio);
2923 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2924 			!F2FS_I(inode)->wb_task && allow_balance)
2925 		f2fs_balance_fs(sbi, need_balance_fs);
2926 
2927 	if (unlikely(f2fs_cp_error(sbi))) {
2928 		f2fs_submit_merged_write(sbi, DATA);
2929 		if (bio && *bio)
2930 			f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2931 		submitted = NULL;
2932 	}
2933 
2934 	if (submitted)
2935 		*submitted = fio.submitted;
2936 
2937 	return 0;
2938 
2939 redirty_out:
2940 	folio_redirty_for_writepage(wbc, folio);
2941 	/*
2942 	 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2943 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2944 	 * file_write_and_wait_range() will see EIO error, which is critical
2945 	 * to return value of fsync() followed by atomic_write failure to user.
2946 	 */
2947 	if (!err || wbc->for_reclaim)
2948 		return AOP_WRITEPAGE_ACTIVATE;
2949 	folio_unlock(folio);
2950 	return err;
2951 }
2952 
2953 static int f2fs_write_data_page(struct page *page,
2954 					struct writeback_control *wbc)
2955 {
2956 	struct folio *folio = page_folio(page);
2957 #ifdef CONFIG_F2FS_FS_COMPRESSION
2958 	struct inode *inode = folio->mapping->host;
2959 
2960 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2961 		goto out;
2962 
2963 	if (f2fs_compressed_file(inode)) {
2964 		if (f2fs_is_compressed_cluster(inode, folio->index)) {
2965 			folio_redirty_for_writepage(wbc, folio);
2966 			return AOP_WRITEPAGE_ACTIVATE;
2967 		}
2968 	}
2969 out:
2970 #endif
2971 
2972 	return f2fs_write_single_data_page(folio, NULL, NULL, NULL,
2973 						wbc, FS_DATA_IO, 0, true);
2974 }
2975 
2976 /*
2977  * This function was copied from write_cache_pages from mm/page-writeback.c.
2978  * The major change is making write step of cold data page separately from
2979  * warm/hot data page.
2980  */
2981 static int f2fs_write_cache_pages(struct address_space *mapping,
2982 					struct writeback_control *wbc,
2983 					enum iostat_type io_type)
2984 {
2985 	int ret = 0;
2986 	int done = 0, retry = 0;
2987 	struct page *pages_local[F2FS_ONSTACK_PAGES];
2988 	struct page **pages = pages_local;
2989 	struct folio_batch fbatch;
2990 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2991 	struct bio *bio = NULL;
2992 	sector_t last_block;
2993 #ifdef CONFIG_F2FS_FS_COMPRESSION
2994 	struct inode *inode = mapping->host;
2995 	struct compress_ctx cc = {
2996 		.inode = inode,
2997 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2998 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2999 		.cluster_idx = NULL_CLUSTER,
3000 		.rpages = NULL,
3001 		.nr_rpages = 0,
3002 		.cpages = NULL,
3003 		.valid_nr_cpages = 0,
3004 		.rbuf = NULL,
3005 		.cbuf = NULL,
3006 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3007 		.private = NULL,
3008 	};
3009 #endif
3010 	int nr_folios, p, idx;
3011 	int nr_pages;
3012 	unsigned int max_pages = F2FS_ONSTACK_PAGES;
3013 	pgoff_t index;
3014 	pgoff_t end;		/* Inclusive */
3015 	pgoff_t done_index;
3016 	int range_whole = 0;
3017 	xa_mark_t tag;
3018 	int nwritten = 0;
3019 	int submitted = 0;
3020 	int i;
3021 
3022 #ifdef CONFIG_F2FS_FS_COMPRESSION
3023 	if (f2fs_compressed_file(inode) &&
3024 		1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
3025 		pages = f2fs_kzalloc(sbi, sizeof(struct page *) <<
3026 				cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
3027 		max_pages = 1 << cc.log_cluster_size;
3028 	}
3029 #endif
3030 
3031 	folio_batch_init(&fbatch);
3032 
3033 	if (get_dirty_pages(mapping->host) <=
3034 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3035 		set_inode_flag(mapping->host, FI_HOT_DATA);
3036 	else
3037 		clear_inode_flag(mapping->host, FI_HOT_DATA);
3038 
3039 	if (wbc->range_cyclic) {
3040 		index = mapping->writeback_index; /* prev offset */
3041 		end = -1;
3042 	} else {
3043 		index = wbc->range_start >> PAGE_SHIFT;
3044 		end = wbc->range_end >> PAGE_SHIFT;
3045 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3046 			range_whole = 1;
3047 	}
3048 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3049 		tag = PAGECACHE_TAG_TOWRITE;
3050 	else
3051 		tag = PAGECACHE_TAG_DIRTY;
3052 retry:
3053 	retry = 0;
3054 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3055 		tag_pages_for_writeback(mapping, index, end);
3056 	done_index = index;
3057 	while (!done && !retry && (index <= end)) {
3058 		nr_pages = 0;
3059 again:
3060 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
3061 				tag, &fbatch);
3062 		if (nr_folios == 0) {
3063 			if (nr_pages)
3064 				goto write;
3065 			break;
3066 		}
3067 
3068 		for (i = 0; i < nr_folios; i++) {
3069 			struct folio *folio = fbatch.folios[i];
3070 
3071 			idx = 0;
3072 			p = folio_nr_pages(folio);
3073 add_more:
3074 			pages[nr_pages] = folio_page(folio, idx);
3075 			folio_get(folio);
3076 			if (++nr_pages == max_pages) {
3077 				index = folio->index + idx + 1;
3078 				folio_batch_release(&fbatch);
3079 				goto write;
3080 			}
3081 			if (++idx < p)
3082 				goto add_more;
3083 		}
3084 		folio_batch_release(&fbatch);
3085 		goto again;
3086 write:
3087 		for (i = 0; i < nr_pages; i++) {
3088 			struct page *page = pages[i];
3089 			struct folio *folio = page_folio(page);
3090 			bool need_readd;
3091 readd:
3092 			need_readd = false;
3093 #ifdef CONFIG_F2FS_FS_COMPRESSION
3094 			if (f2fs_compressed_file(inode)) {
3095 				void *fsdata = NULL;
3096 				struct page *pagep;
3097 				int ret2;
3098 
3099 				ret = f2fs_init_compress_ctx(&cc);
3100 				if (ret) {
3101 					done = 1;
3102 					break;
3103 				}
3104 
3105 				if (!f2fs_cluster_can_merge_page(&cc,
3106 								folio->index)) {
3107 					ret = f2fs_write_multi_pages(&cc,
3108 						&submitted, wbc, io_type);
3109 					if (!ret)
3110 						need_readd = true;
3111 					goto result;
3112 				}
3113 
3114 				if (unlikely(f2fs_cp_error(sbi)))
3115 					goto lock_folio;
3116 
3117 				if (!f2fs_cluster_is_empty(&cc))
3118 					goto lock_folio;
3119 
3120 				if (f2fs_all_cluster_page_ready(&cc,
3121 					pages, i, nr_pages, true))
3122 					goto lock_folio;
3123 
3124 				ret2 = f2fs_prepare_compress_overwrite(
3125 							inode, &pagep,
3126 							folio->index, &fsdata);
3127 				if (ret2 < 0) {
3128 					ret = ret2;
3129 					done = 1;
3130 					break;
3131 				} else if (ret2 &&
3132 					(!f2fs_compress_write_end(inode,
3133 						fsdata, folio->index, 1) ||
3134 					 !f2fs_all_cluster_page_ready(&cc,
3135 						pages, i, nr_pages,
3136 						false))) {
3137 					retry = 1;
3138 					break;
3139 				}
3140 			}
3141 #endif
3142 			/* give a priority to WB_SYNC threads */
3143 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3144 					wbc->sync_mode == WB_SYNC_NONE) {
3145 				done = 1;
3146 				break;
3147 			}
3148 #ifdef CONFIG_F2FS_FS_COMPRESSION
3149 lock_folio:
3150 #endif
3151 			done_index = folio->index;
3152 retry_write:
3153 			folio_lock(folio);
3154 
3155 			if (unlikely(folio->mapping != mapping)) {
3156 continue_unlock:
3157 				folio_unlock(folio);
3158 				continue;
3159 			}
3160 
3161 			if (!folio_test_dirty(folio)) {
3162 				/* someone wrote it for us */
3163 				goto continue_unlock;
3164 			}
3165 
3166 			if (folio_test_writeback(folio)) {
3167 				if (wbc->sync_mode == WB_SYNC_NONE)
3168 					goto continue_unlock;
3169 				f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3170 			}
3171 
3172 			if (!folio_clear_dirty_for_io(folio))
3173 				goto continue_unlock;
3174 
3175 #ifdef CONFIG_F2FS_FS_COMPRESSION
3176 			if (f2fs_compressed_file(inode)) {
3177 				folio_get(folio);
3178 				f2fs_compress_ctx_add_page(&cc, folio);
3179 				continue;
3180 			}
3181 #endif
3182 			ret = f2fs_write_single_data_page(folio,
3183 					&submitted, &bio, &last_block,
3184 					wbc, io_type, 0, true);
3185 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3186 				folio_unlock(folio);
3187 #ifdef CONFIG_F2FS_FS_COMPRESSION
3188 result:
3189 #endif
3190 			nwritten += submitted;
3191 			wbc->nr_to_write -= submitted;
3192 
3193 			if (unlikely(ret)) {
3194 				/*
3195 				 * keep nr_to_write, since vfs uses this to
3196 				 * get # of written pages.
3197 				 */
3198 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3199 					ret = 0;
3200 					goto next;
3201 				} else if (ret == -EAGAIN) {
3202 					ret = 0;
3203 					if (wbc->sync_mode == WB_SYNC_ALL) {
3204 						f2fs_io_schedule_timeout(
3205 							DEFAULT_IO_TIMEOUT);
3206 						goto retry_write;
3207 					}
3208 					goto next;
3209 				}
3210 				done_index = folio_next_index(folio);
3211 				done = 1;
3212 				break;
3213 			}
3214 
3215 			if (wbc->nr_to_write <= 0 &&
3216 					wbc->sync_mode == WB_SYNC_NONE) {
3217 				done = 1;
3218 				break;
3219 			}
3220 next:
3221 			if (need_readd)
3222 				goto readd;
3223 		}
3224 		release_pages(pages, nr_pages);
3225 		cond_resched();
3226 	}
3227 #ifdef CONFIG_F2FS_FS_COMPRESSION
3228 	/* flush remained pages in compress cluster */
3229 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3230 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3231 		nwritten += submitted;
3232 		wbc->nr_to_write -= submitted;
3233 		if (ret) {
3234 			done = 1;
3235 			retry = 0;
3236 		}
3237 	}
3238 	if (f2fs_compressed_file(inode))
3239 		f2fs_destroy_compress_ctx(&cc, false);
3240 #endif
3241 	if (retry) {
3242 		index = 0;
3243 		end = -1;
3244 		goto retry;
3245 	}
3246 	if (wbc->range_cyclic && !done)
3247 		done_index = 0;
3248 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3249 		mapping->writeback_index = done_index;
3250 
3251 	if (nwritten)
3252 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3253 								NULL, 0, DATA);
3254 	/* submit cached bio of IPU write */
3255 	if (bio)
3256 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3257 
3258 #ifdef CONFIG_F2FS_FS_COMPRESSION
3259 	if (pages != pages_local)
3260 		kfree(pages);
3261 #endif
3262 
3263 	return ret;
3264 }
3265 
3266 static inline bool __should_serialize_io(struct inode *inode,
3267 					struct writeback_control *wbc)
3268 {
3269 	/* to avoid deadlock in path of data flush */
3270 	if (F2FS_I(inode)->wb_task)
3271 		return false;
3272 
3273 	if (!S_ISREG(inode->i_mode))
3274 		return false;
3275 	if (IS_NOQUOTA(inode))
3276 		return false;
3277 
3278 	if (f2fs_need_compress_data(inode))
3279 		return true;
3280 	if (wbc->sync_mode != WB_SYNC_ALL)
3281 		return true;
3282 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3283 		return true;
3284 	return false;
3285 }
3286 
3287 static int __f2fs_write_data_pages(struct address_space *mapping,
3288 						struct writeback_control *wbc,
3289 						enum iostat_type io_type)
3290 {
3291 	struct inode *inode = mapping->host;
3292 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3293 	struct blk_plug plug;
3294 	int ret;
3295 	bool locked = false;
3296 
3297 	/* deal with chardevs and other special file */
3298 	if (!mapping->a_ops->writepage)
3299 		return 0;
3300 
3301 	/* skip writing if there is no dirty page in this inode */
3302 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3303 		return 0;
3304 
3305 	/* during POR, we don't need to trigger writepage at all. */
3306 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3307 		goto skip_write;
3308 
3309 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3310 			wbc->sync_mode == WB_SYNC_NONE &&
3311 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3312 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3313 		goto skip_write;
3314 
3315 	/* skip writing in file defragment preparing stage */
3316 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3317 		goto skip_write;
3318 
3319 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3320 
3321 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3322 	if (wbc->sync_mode == WB_SYNC_ALL)
3323 		atomic_inc(&sbi->wb_sync_req[DATA]);
3324 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3325 		/* to avoid potential deadlock */
3326 		if (current->plug)
3327 			blk_finish_plug(current->plug);
3328 		goto skip_write;
3329 	}
3330 
3331 	if (__should_serialize_io(inode, wbc)) {
3332 		mutex_lock(&sbi->writepages);
3333 		locked = true;
3334 	}
3335 
3336 	blk_start_plug(&plug);
3337 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3338 	blk_finish_plug(&plug);
3339 
3340 	if (locked)
3341 		mutex_unlock(&sbi->writepages);
3342 
3343 	if (wbc->sync_mode == WB_SYNC_ALL)
3344 		atomic_dec(&sbi->wb_sync_req[DATA]);
3345 	/*
3346 	 * if some pages were truncated, we cannot guarantee its mapping->host
3347 	 * to detect pending bios.
3348 	 */
3349 
3350 	f2fs_remove_dirty_inode(inode);
3351 	return ret;
3352 
3353 skip_write:
3354 	wbc->pages_skipped += get_dirty_pages(inode);
3355 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3356 	return 0;
3357 }
3358 
3359 static int f2fs_write_data_pages(struct address_space *mapping,
3360 			    struct writeback_control *wbc)
3361 {
3362 	struct inode *inode = mapping->host;
3363 
3364 	return __f2fs_write_data_pages(mapping, wbc,
3365 			F2FS_I(inode)->cp_task == current ?
3366 			FS_CP_DATA_IO : FS_DATA_IO);
3367 }
3368 
3369 void f2fs_write_failed(struct inode *inode, loff_t to)
3370 {
3371 	loff_t i_size = i_size_read(inode);
3372 
3373 	if (IS_NOQUOTA(inode))
3374 		return;
3375 
3376 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3377 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3378 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3379 		filemap_invalidate_lock(inode->i_mapping);
3380 
3381 		truncate_pagecache(inode, i_size);
3382 		f2fs_truncate_blocks(inode, i_size, true);
3383 
3384 		filemap_invalidate_unlock(inode->i_mapping);
3385 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3386 	}
3387 }
3388 
3389 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3390 			struct folio *folio, loff_t pos, unsigned int len,
3391 			block_t *blk_addr, bool *node_changed)
3392 {
3393 	struct inode *inode = folio->mapping->host;
3394 	pgoff_t index = folio->index;
3395 	struct dnode_of_data dn;
3396 	struct page *ipage;
3397 	bool locked = false;
3398 	int flag = F2FS_GET_BLOCK_PRE_AIO;
3399 	int err = 0;
3400 
3401 	/*
3402 	 * If a whole page is being written and we already preallocated all the
3403 	 * blocks, then there is no need to get a block address now.
3404 	 */
3405 	if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3406 		return 0;
3407 
3408 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3409 	if (f2fs_has_inline_data(inode)) {
3410 		if (pos + len > MAX_INLINE_DATA(inode))
3411 			flag = F2FS_GET_BLOCK_DEFAULT;
3412 		f2fs_map_lock(sbi, flag);
3413 		locked = true;
3414 	} else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3415 		f2fs_map_lock(sbi, flag);
3416 		locked = true;
3417 	}
3418 
3419 restart:
3420 	/* check inline_data */
3421 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3422 	if (IS_ERR(ipage)) {
3423 		err = PTR_ERR(ipage);
3424 		goto unlock_out;
3425 	}
3426 
3427 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3428 
3429 	if (f2fs_has_inline_data(inode)) {
3430 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3431 			f2fs_do_read_inline_data(folio, ipage);
3432 			set_inode_flag(inode, FI_DATA_EXIST);
3433 			if (inode->i_nlink)
3434 				set_page_private_inline(ipage);
3435 			goto out;
3436 		}
3437 		err = f2fs_convert_inline_page(&dn, folio_page(folio, 0));
3438 		if (err || dn.data_blkaddr != NULL_ADDR)
3439 			goto out;
3440 	}
3441 
3442 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3443 						 &dn.data_blkaddr)) {
3444 		if (locked) {
3445 			err = f2fs_reserve_block(&dn, index);
3446 			goto out;
3447 		}
3448 
3449 		/* hole case */
3450 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3451 		if (!err && dn.data_blkaddr != NULL_ADDR)
3452 			goto out;
3453 		f2fs_put_dnode(&dn);
3454 		f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3455 		WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3456 		locked = true;
3457 		goto restart;
3458 	}
3459 out:
3460 	if (!err) {
3461 		/* convert_inline_page can make node_changed */
3462 		*blk_addr = dn.data_blkaddr;
3463 		*node_changed = dn.node_changed;
3464 	}
3465 	f2fs_put_dnode(&dn);
3466 unlock_out:
3467 	if (locked)
3468 		f2fs_map_unlock(sbi, flag);
3469 	return err;
3470 }
3471 
3472 static int __find_data_block(struct inode *inode, pgoff_t index,
3473 				block_t *blk_addr)
3474 {
3475 	struct dnode_of_data dn;
3476 	struct page *ipage;
3477 	int err = 0;
3478 
3479 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3480 	if (IS_ERR(ipage))
3481 		return PTR_ERR(ipage);
3482 
3483 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3484 
3485 	if (!f2fs_lookup_read_extent_cache_block(inode, index,
3486 						 &dn.data_blkaddr)) {
3487 		/* hole case */
3488 		err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3489 		if (err) {
3490 			dn.data_blkaddr = NULL_ADDR;
3491 			err = 0;
3492 		}
3493 	}
3494 	*blk_addr = dn.data_blkaddr;
3495 	f2fs_put_dnode(&dn);
3496 	return err;
3497 }
3498 
3499 static int __reserve_data_block(struct inode *inode, pgoff_t index,
3500 				block_t *blk_addr, bool *node_changed)
3501 {
3502 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3503 	struct dnode_of_data dn;
3504 	struct page *ipage;
3505 	int err = 0;
3506 
3507 	f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3508 
3509 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3510 	if (IS_ERR(ipage)) {
3511 		err = PTR_ERR(ipage);
3512 		goto unlock_out;
3513 	}
3514 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3515 
3516 	if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3517 						&dn.data_blkaddr))
3518 		err = f2fs_reserve_block(&dn, index);
3519 
3520 	*blk_addr = dn.data_blkaddr;
3521 	*node_changed = dn.node_changed;
3522 	f2fs_put_dnode(&dn);
3523 
3524 unlock_out:
3525 	f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3526 	return err;
3527 }
3528 
3529 static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3530 			struct folio *folio, loff_t pos, unsigned int len,
3531 			block_t *blk_addr, bool *node_changed, bool *use_cow)
3532 {
3533 	struct inode *inode = folio->mapping->host;
3534 	struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3535 	pgoff_t index = folio->index;
3536 	int err = 0;
3537 	block_t ori_blk_addr = NULL_ADDR;
3538 
3539 	/* If pos is beyond the end of file, reserve a new block in COW inode */
3540 	if ((pos & PAGE_MASK) >= i_size_read(inode))
3541 		goto reserve_block;
3542 
3543 	/* Look for the block in COW inode first */
3544 	err = __find_data_block(cow_inode, index, blk_addr);
3545 	if (err) {
3546 		return err;
3547 	} else if (*blk_addr != NULL_ADDR) {
3548 		*use_cow = true;
3549 		return 0;
3550 	}
3551 
3552 	if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3553 		goto reserve_block;
3554 
3555 	/* Look for the block in the original inode */
3556 	err = __find_data_block(inode, index, &ori_blk_addr);
3557 	if (err)
3558 		return err;
3559 
3560 reserve_block:
3561 	/* Finally, we should reserve a new block in COW inode for the update */
3562 	err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3563 	if (err)
3564 		return err;
3565 	inc_atomic_write_cnt(inode);
3566 
3567 	if (ori_blk_addr != NULL_ADDR)
3568 		*blk_addr = ori_blk_addr;
3569 	return 0;
3570 }
3571 
3572 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3573 		loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
3574 {
3575 	struct inode *inode = mapping->host;
3576 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3577 	struct folio *folio;
3578 	pgoff_t index = pos >> PAGE_SHIFT;
3579 	bool need_balance = false;
3580 	bool use_cow = false;
3581 	block_t blkaddr = NULL_ADDR;
3582 	int err = 0;
3583 
3584 	trace_f2fs_write_begin(inode, pos, len);
3585 
3586 	if (!f2fs_is_checkpoint_ready(sbi)) {
3587 		err = -ENOSPC;
3588 		goto fail;
3589 	}
3590 
3591 	/*
3592 	 * We should check this at this moment to avoid deadlock on inode page
3593 	 * and #0 page. The locking rule for inline_data conversion should be:
3594 	 * folio_lock(folio #0) -> folio_lock(inode_page)
3595 	 */
3596 	if (index != 0) {
3597 		err = f2fs_convert_inline_inode(inode);
3598 		if (err)
3599 			goto fail;
3600 	}
3601 
3602 #ifdef CONFIG_F2FS_FS_COMPRESSION
3603 	if (f2fs_compressed_file(inode)) {
3604 		int ret;
3605 		struct page *page;
3606 
3607 		*fsdata = NULL;
3608 
3609 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3610 			goto repeat;
3611 
3612 		ret = f2fs_prepare_compress_overwrite(inode, &page,
3613 							index, fsdata);
3614 		if (ret < 0) {
3615 			err = ret;
3616 			goto fail;
3617 		} else if (ret) {
3618 			*foliop = page_folio(page);
3619 			return 0;
3620 		}
3621 	}
3622 #endif
3623 
3624 repeat:
3625 	/*
3626 	 * Do not use FGP_STABLE to avoid deadlock.
3627 	 * Will wait that below with our IO control.
3628 	 */
3629 	folio = __filemap_get_folio(mapping, index,
3630 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3631 	if (IS_ERR(folio)) {
3632 		err = PTR_ERR(folio);
3633 		goto fail;
3634 	}
3635 
3636 	/* TODO: cluster can be compressed due to race with .writepage */
3637 
3638 	*foliop = folio;
3639 
3640 	if (f2fs_is_atomic_file(inode))
3641 		err = prepare_atomic_write_begin(sbi, folio, pos, len,
3642 					&blkaddr, &need_balance, &use_cow);
3643 	else
3644 		err = prepare_write_begin(sbi, folio, pos, len,
3645 					&blkaddr, &need_balance);
3646 	if (err)
3647 		goto put_folio;
3648 
3649 	if (need_balance && !IS_NOQUOTA(inode) &&
3650 			has_not_enough_free_secs(sbi, 0, 0)) {
3651 		folio_unlock(folio);
3652 		f2fs_balance_fs(sbi, true);
3653 		folio_lock(folio);
3654 		if (folio->mapping != mapping) {
3655 			/* The folio got truncated from under us */
3656 			folio_unlock(folio);
3657 			folio_put(folio);
3658 			goto repeat;
3659 		}
3660 	}
3661 
3662 	f2fs_wait_on_page_writeback(&folio->page, DATA, false, true);
3663 
3664 	if (len == folio_size(folio) || folio_test_uptodate(folio))
3665 		return 0;
3666 
3667 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3668 	    !f2fs_verity_in_progress(inode)) {
3669 		folio_zero_segment(folio, len, folio_size(folio));
3670 		return 0;
3671 	}
3672 
3673 	if (blkaddr == NEW_ADDR) {
3674 		folio_zero_segment(folio, 0, folio_size(folio));
3675 		folio_mark_uptodate(folio);
3676 	} else {
3677 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3678 				DATA_GENERIC_ENHANCE_READ)) {
3679 			err = -EFSCORRUPTED;
3680 			goto put_folio;
3681 		}
3682 		err = f2fs_submit_page_read(use_cow ?
3683 				F2FS_I(inode)->cow_inode : inode,
3684 				folio, blkaddr, 0, true);
3685 		if (err)
3686 			goto put_folio;
3687 
3688 		folio_lock(folio);
3689 		if (unlikely(folio->mapping != mapping)) {
3690 			folio_unlock(folio);
3691 			folio_put(folio);
3692 			goto repeat;
3693 		}
3694 		if (unlikely(!folio_test_uptodate(folio))) {
3695 			err = -EIO;
3696 			goto put_folio;
3697 		}
3698 	}
3699 	return 0;
3700 
3701 put_folio:
3702 	folio_unlock(folio);
3703 	folio_put(folio);
3704 fail:
3705 	f2fs_write_failed(inode, pos + len);
3706 	return err;
3707 }
3708 
3709 static int f2fs_write_end(struct file *file,
3710 			struct address_space *mapping,
3711 			loff_t pos, unsigned len, unsigned copied,
3712 			struct folio *folio, void *fsdata)
3713 {
3714 	struct inode *inode = folio->mapping->host;
3715 
3716 	trace_f2fs_write_end(inode, pos, len, copied);
3717 
3718 	/*
3719 	 * This should be come from len == PAGE_SIZE, and we expect copied
3720 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3721 	 * let generic_perform_write() try to copy data again through copied=0.
3722 	 */
3723 	if (!folio_test_uptodate(folio)) {
3724 		if (unlikely(copied != len))
3725 			copied = 0;
3726 		else
3727 			folio_mark_uptodate(folio);
3728 	}
3729 
3730 #ifdef CONFIG_F2FS_FS_COMPRESSION
3731 	/* overwrite compressed file */
3732 	if (f2fs_compressed_file(inode) && fsdata) {
3733 		f2fs_compress_write_end(inode, fsdata, folio->index, copied);
3734 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3735 
3736 		if (pos + copied > i_size_read(inode) &&
3737 				!f2fs_verity_in_progress(inode))
3738 			f2fs_i_size_write(inode, pos + copied);
3739 		return copied;
3740 	}
3741 #endif
3742 
3743 	if (!copied)
3744 		goto unlock_out;
3745 
3746 	folio_mark_dirty(folio);
3747 
3748 	if (f2fs_is_atomic_file(inode))
3749 		set_page_private_atomic(folio_page(folio, 0));
3750 
3751 	if (pos + copied > i_size_read(inode) &&
3752 	    !f2fs_verity_in_progress(inode)) {
3753 		f2fs_i_size_write(inode, pos + copied);
3754 		if (f2fs_is_atomic_file(inode))
3755 			f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3756 					pos + copied);
3757 	}
3758 unlock_out:
3759 	folio_unlock(folio);
3760 	folio_put(folio);
3761 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3762 	return copied;
3763 }
3764 
3765 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3766 {
3767 	struct inode *inode = folio->mapping->host;
3768 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3769 
3770 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3771 				(offset || length != folio_size(folio)))
3772 		return;
3773 
3774 	if (folio_test_dirty(folio)) {
3775 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3776 			dec_page_count(sbi, F2FS_DIRTY_META);
3777 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3778 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3779 		} else {
3780 			inode_dec_dirty_pages(inode);
3781 			f2fs_remove_dirty_inode(inode);
3782 		}
3783 	}
3784 	clear_page_private_all(&folio->page);
3785 }
3786 
3787 bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3788 {
3789 	/* If this is dirty folio, keep private data */
3790 	if (folio_test_dirty(folio))
3791 		return false;
3792 
3793 	clear_page_private_all(&folio->page);
3794 	return true;
3795 }
3796 
3797 static bool f2fs_dirty_data_folio(struct address_space *mapping,
3798 		struct folio *folio)
3799 {
3800 	struct inode *inode = mapping->host;
3801 
3802 	trace_f2fs_set_page_dirty(folio, DATA);
3803 
3804 	if (!folio_test_uptodate(folio))
3805 		folio_mark_uptodate(folio);
3806 	BUG_ON(folio_test_swapcache(folio));
3807 
3808 	if (filemap_dirty_folio(mapping, folio)) {
3809 		f2fs_update_dirty_folio(inode, folio);
3810 		return true;
3811 	}
3812 	return false;
3813 }
3814 
3815 
3816 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3817 {
3818 #ifdef CONFIG_F2FS_FS_COMPRESSION
3819 	struct dnode_of_data dn;
3820 	sector_t start_idx, blknr = 0;
3821 	int ret;
3822 
3823 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3824 
3825 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3826 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3827 	if (ret)
3828 		return 0;
3829 
3830 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3831 		dn.ofs_in_node += block - start_idx;
3832 		blknr = f2fs_data_blkaddr(&dn);
3833 		if (!__is_valid_data_blkaddr(blknr))
3834 			blknr = 0;
3835 	}
3836 
3837 	f2fs_put_dnode(&dn);
3838 	return blknr;
3839 #else
3840 	return 0;
3841 #endif
3842 }
3843 
3844 
3845 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3846 {
3847 	struct inode *inode = mapping->host;
3848 	sector_t blknr = 0;
3849 
3850 	if (f2fs_has_inline_data(inode))
3851 		goto out;
3852 
3853 	/* make sure allocating whole blocks */
3854 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3855 		filemap_write_and_wait(mapping);
3856 
3857 	/* Block number less than F2FS MAX BLOCKS */
3858 	if (unlikely(block >= max_file_blocks(inode)))
3859 		goto out;
3860 
3861 	if (f2fs_compressed_file(inode)) {
3862 		blknr = f2fs_bmap_compress(inode, block);
3863 	} else {
3864 		struct f2fs_map_blocks map;
3865 
3866 		memset(&map, 0, sizeof(map));
3867 		map.m_lblk = block;
3868 		map.m_len = 1;
3869 		map.m_next_pgofs = NULL;
3870 		map.m_seg_type = NO_CHECK_TYPE;
3871 
3872 		if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3873 			blknr = map.m_pblk;
3874 	}
3875 out:
3876 	trace_f2fs_bmap(inode, block, blknr);
3877 	return blknr;
3878 }
3879 
3880 #ifdef CONFIG_SWAP
3881 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3882 							unsigned int blkcnt)
3883 {
3884 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3885 	unsigned int blkofs;
3886 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3887 	unsigned int end_blk = start_blk + blkcnt - 1;
3888 	unsigned int secidx = start_blk / blk_per_sec;
3889 	unsigned int end_sec;
3890 	int ret = 0;
3891 
3892 	if (!blkcnt)
3893 		return 0;
3894 	end_sec = end_blk / blk_per_sec;
3895 
3896 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3897 	filemap_invalidate_lock(inode->i_mapping);
3898 
3899 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3900 	set_inode_flag(inode, FI_OPU_WRITE);
3901 
3902 	for (; secidx <= end_sec; secidx++) {
3903 		unsigned int blkofs_end = secidx == end_sec ?
3904 				end_blk % blk_per_sec : blk_per_sec - 1;
3905 
3906 		f2fs_down_write(&sbi->pin_sem);
3907 
3908 		ret = f2fs_allocate_pinning_section(sbi);
3909 		if (ret) {
3910 			f2fs_up_write(&sbi->pin_sem);
3911 			break;
3912 		}
3913 
3914 		set_inode_flag(inode, FI_SKIP_WRITES);
3915 
3916 		for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3917 			struct page *page;
3918 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
3919 
3920 			page = f2fs_get_lock_data_page(inode, blkidx, true);
3921 			if (IS_ERR(page)) {
3922 				f2fs_up_write(&sbi->pin_sem);
3923 				ret = PTR_ERR(page);
3924 				goto done;
3925 			}
3926 
3927 			set_page_dirty(page);
3928 			f2fs_put_page(page, 1);
3929 		}
3930 
3931 		clear_inode_flag(inode, FI_SKIP_WRITES);
3932 
3933 		ret = filemap_fdatawrite(inode->i_mapping);
3934 
3935 		f2fs_up_write(&sbi->pin_sem);
3936 
3937 		if (ret)
3938 			break;
3939 	}
3940 
3941 done:
3942 	clear_inode_flag(inode, FI_SKIP_WRITES);
3943 	clear_inode_flag(inode, FI_OPU_WRITE);
3944 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
3945 
3946 	filemap_invalidate_unlock(inode->i_mapping);
3947 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3948 
3949 	return ret;
3950 }
3951 
3952 static int check_swap_activate(struct swap_info_struct *sis,
3953 				struct file *swap_file, sector_t *span)
3954 {
3955 	struct address_space *mapping = swap_file->f_mapping;
3956 	struct inode *inode = mapping->host;
3957 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3958 	block_t cur_lblock;
3959 	block_t last_lblock;
3960 	block_t pblock;
3961 	block_t lowest_pblock = -1;
3962 	block_t highest_pblock = 0;
3963 	int nr_extents = 0;
3964 	unsigned int nr_pblocks;
3965 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3966 	unsigned int not_aligned = 0;
3967 	int ret = 0;
3968 
3969 	/*
3970 	 * Map all the blocks into the extent list.  This code doesn't try
3971 	 * to be very smart.
3972 	 */
3973 	cur_lblock = 0;
3974 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
3975 
3976 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3977 		struct f2fs_map_blocks map;
3978 retry:
3979 		cond_resched();
3980 
3981 		memset(&map, 0, sizeof(map));
3982 		map.m_lblk = cur_lblock;
3983 		map.m_len = last_lblock - cur_lblock;
3984 		map.m_next_pgofs = NULL;
3985 		map.m_next_extent = NULL;
3986 		map.m_seg_type = NO_CHECK_TYPE;
3987 		map.m_may_create = false;
3988 
3989 		ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3990 		if (ret)
3991 			goto out;
3992 
3993 		/* hole */
3994 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3995 			f2fs_err(sbi, "Swapfile has holes");
3996 			ret = -EINVAL;
3997 			goto out;
3998 		}
3999 
4000 		pblock = map.m_pblk;
4001 		nr_pblocks = map.m_len;
4002 
4003 		if ((pblock - SM_I(sbi)->main_blkaddr) % blks_per_sec ||
4004 				nr_pblocks % blks_per_sec ||
4005 				!f2fs_valid_pinned_area(sbi, pblock)) {
4006 			bool last_extent = false;
4007 
4008 			not_aligned++;
4009 
4010 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4011 			if (cur_lblock + nr_pblocks > sis->max)
4012 				nr_pblocks -= blks_per_sec;
4013 
4014 			/* this extent is last one */
4015 			if (!nr_pblocks) {
4016 				nr_pblocks = last_lblock - cur_lblock;
4017 				last_extent = true;
4018 			}
4019 
4020 			ret = f2fs_migrate_blocks(inode, cur_lblock,
4021 							nr_pblocks);
4022 			if (ret) {
4023 				if (ret == -ENOENT)
4024 					ret = -EINVAL;
4025 				goto out;
4026 			}
4027 
4028 			if (!last_extent)
4029 				goto retry;
4030 		}
4031 
4032 		if (cur_lblock + nr_pblocks >= sis->max)
4033 			nr_pblocks = sis->max - cur_lblock;
4034 
4035 		if (cur_lblock) {	/* exclude the header page */
4036 			if (pblock < lowest_pblock)
4037 				lowest_pblock = pblock;
4038 			if (pblock + nr_pblocks - 1 > highest_pblock)
4039 				highest_pblock = pblock + nr_pblocks - 1;
4040 		}
4041 
4042 		/*
4043 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4044 		 */
4045 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4046 		if (ret < 0)
4047 			goto out;
4048 		nr_extents += ret;
4049 		cur_lblock += nr_pblocks;
4050 	}
4051 	ret = nr_extents;
4052 	*span = 1 + highest_pblock - lowest_pblock;
4053 	if (cur_lblock == 0)
4054 		cur_lblock = 1;	/* force Empty message */
4055 	sis->max = cur_lblock;
4056 	sis->pages = cur_lblock - 1;
4057 	sis->highest_bit = cur_lblock - 1;
4058 out:
4059 	if (not_aligned)
4060 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4061 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4062 	return ret;
4063 }
4064 
4065 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4066 				sector_t *span)
4067 {
4068 	struct inode *inode = file_inode(file);
4069 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4070 	int ret;
4071 
4072 	if (!S_ISREG(inode->i_mode))
4073 		return -EINVAL;
4074 
4075 	if (f2fs_readonly(sbi->sb))
4076 		return -EROFS;
4077 
4078 	if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4079 		f2fs_err(sbi, "Swapfile not supported in LFS mode");
4080 		return -EINVAL;
4081 	}
4082 
4083 	ret = f2fs_convert_inline_inode(inode);
4084 	if (ret)
4085 		return ret;
4086 
4087 	if (!f2fs_disable_compressed_file(inode))
4088 		return -EINVAL;
4089 
4090 	ret = filemap_fdatawrite(inode->i_mapping);
4091 	if (ret < 0)
4092 		return ret;
4093 
4094 	f2fs_precache_extents(inode);
4095 
4096 	ret = check_swap_activate(sis, file, span);
4097 	if (ret < 0)
4098 		return ret;
4099 
4100 	stat_inc_swapfile_inode(inode);
4101 	set_inode_flag(inode, FI_PIN_FILE);
4102 	f2fs_update_time(sbi, REQ_TIME);
4103 	return ret;
4104 }
4105 
4106 static void f2fs_swap_deactivate(struct file *file)
4107 {
4108 	struct inode *inode = file_inode(file);
4109 
4110 	stat_dec_swapfile_inode(inode);
4111 	clear_inode_flag(inode, FI_PIN_FILE);
4112 }
4113 #else
4114 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4115 				sector_t *span)
4116 {
4117 	return -EOPNOTSUPP;
4118 }
4119 
4120 static void f2fs_swap_deactivate(struct file *file)
4121 {
4122 }
4123 #endif
4124 
4125 const struct address_space_operations f2fs_dblock_aops = {
4126 	.read_folio	= f2fs_read_data_folio,
4127 	.readahead	= f2fs_readahead,
4128 	.writepage	= f2fs_write_data_page,
4129 	.writepages	= f2fs_write_data_pages,
4130 	.write_begin	= f2fs_write_begin,
4131 	.write_end	= f2fs_write_end,
4132 	.dirty_folio	= f2fs_dirty_data_folio,
4133 	.migrate_folio	= filemap_migrate_folio,
4134 	.invalidate_folio = f2fs_invalidate_folio,
4135 	.release_folio	= f2fs_release_folio,
4136 	.bmap		= f2fs_bmap,
4137 	.swap_activate  = f2fs_swap_activate,
4138 	.swap_deactivate = f2fs_swap_deactivate,
4139 };
4140 
4141 void f2fs_clear_page_cache_dirty_tag(struct folio *folio)
4142 {
4143 	struct address_space *mapping = folio->mapping;
4144 	unsigned long flags;
4145 
4146 	xa_lock_irqsave(&mapping->i_pages, flags);
4147 	__xa_clear_mark(&mapping->i_pages, folio->index,
4148 						PAGECACHE_TAG_DIRTY);
4149 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4150 }
4151 
4152 int __init f2fs_init_post_read_processing(void)
4153 {
4154 	bio_post_read_ctx_cache =
4155 		kmem_cache_create("f2fs_bio_post_read_ctx",
4156 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4157 	if (!bio_post_read_ctx_cache)
4158 		goto fail;
4159 	bio_post_read_ctx_pool =
4160 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4161 					 bio_post_read_ctx_cache);
4162 	if (!bio_post_read_ctx_pool)
4163 		goto fail_free_cache;
4164 	return 0;
4165 
4166 fail_free_cache:
4167 	kmem_cache_destroy(bio_post_read_ctx_cache);
4168 fail:
4169 	return -ENOMEM;
4170 }
4171 
4172 void f2fs_destroy_post_read_processing(void)
4173 {
4174 	mempool_destroy(bio_post_read_ctx_pool);
4175 	kmem_cache_destroy(bio_post_read_ctx_cache);
4176 }
4177 
4178 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4179 {
4180 	if (!f2fs_sb_has_encrypt(sbi) &&
4181 		!f2fs_sb_has_verity(sbi) &&
4182 		!f2fs_sb_has_compression(sbi))
4183 		return 0;
4184 
4185 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4186 						 WQ_UNBOUND | WQ_HIGHPRI,
4187 						 num_online_cpus());
4188 	return sbi->post_read_wq ? 0 : -ENOMEM;
4189 }
4190 
4191 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4192 {
4193 	if (sbi->post_read_wq)
4194 		destroy_workqueue(sbi->post_read_wq);
4195 }
4196 
4197 int __init f2fs_init_bio_entry_cache(void)
4198 {
4199 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4200 			sizeof(struct bio_entry));
4201 	return bio_entry_slab ? 0 : -ENOMEM;
4202 }
4203 
4204 void f2fs_destroy_bio_entry_cache(void)
4205 {
4206 	kmem_cache_destroy(bio_entry_slab);
4207 }
4208 
4209 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4210 			    unsigned int flags, struct iomap *iomap,
4211 			    struct iomap *srcmap)
4212 {
4213 	struct f2fs_map_blocks map = {};
4214 	pgoff_t next_pgofs = 0;
4215 	int err;
4216 
4217 	map.m_lblk = bytes_to_blks(inode, offset);
4218 	map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4219 	map.m_next_pgofs = &next_pgofs;
4220 	map.m_seg_type = f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
4221 						inode->i_write_hint);
4222 	if (flags & IOMAP_WRITE)
4223 		map.m_may_create = true;
4224 
4225 	err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4226 	if (err)
4227 		return err;
4228 
4229 	iomap->offset = blks_to_bytes(inode, map.m_lblk);
4230 
4231 	/*
4232 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
4233 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
4234 	 * limiting the length of the mapping returned.
4235 	 */
4236 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4237 
4238 	/*
4239 	 * We should never see delalloc or compressed extents here based on
4240 	 * prior flushing and checks.
4241 	 */
4242 	if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4243 		return -EINVAL;
4244 
4245 	if (map.m_flags & F2FS_MAP_MAPPED) {
4246 		if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4247 			return -EINVAL;
4248 
4249 		iomap->length = blks_to_bytes(inode, map.m_len);
4250 		iomap->type = IOMAP_MAPPED;
4251 		iomap->flags |= IOMAP_F_MERGED;
4252 		iomap->bdev = map.m_bdev;
4253 		iomap->addr = blks_to_bytes(inode, map.m_pblk);
4254 	} else {
4255 		if (flags & IOMAP_WRITE)
4256 			return -ENOTBLK;
4257 
4258 		if (map.m_pblk == NULL_ADDR) {
4259 			iomap->length = blks_to_bytes(inode, next_pgofs) -
4260 								iomap->offset;
4261 			iomap->type = IOMAP_HOLE;
4262 		} else if (map.m_pblk == NEW_ADDR) {
4263 			iomap->length = blks_to_bytes(inode, map.m_len);
4264 			iomap->type = IOMAP_UNWRITTEN;
4265 		} else {
4266 			f2fs_bug_on(F2FS_I_SB(inode), 1);
4267 		}
4268 		iomap->addr = IOMAP_NULL_ADDR;
4269 	}
4270 
4271 	if (map.m_flags & F2FS_MAP_NEW)
4272 		iomap->flags |= IOMAP_F_NEW;
4273 	if ((inode->i_state & I_DIRTY_DATASYNC) ||
4274 	    offset + length > i_size_read(inode))
4275 		iomap->flags |= IOMAP_F_DIRTY;
4276 
4277 	return 0;
4278 }
4279 
4280 const struct iomap_ops f2fs_iomap_ops = {
4281 	.iomap_begin	= f2fs_iomap_begin,
4282 };
4283