1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/data.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/buffer_head.h> 11 #include <linux/sched/mm.h> 12 #include <linux/mpage.h> 13 #include <linux/writeback.h> 14 #include <linux/pagevec.h> 15 #include <linux/blkdev.h> 16 #include <linux/bio.h> 17 #include <linux/blk-crypto.h> 18 #include <linux/swap.h> 19 #include <linux/prefetch.h> 20 #include <linux/uio.h> 21 #include <linux/sched/signal.h> 22 #include <linux/fiemap.h> 23 #include <linux/iomap.h> 24 25 #include "f2fs.h" 26 #include "node.h" 27 #include "segment.h" 28 #include "iostat.h" 29 #include <trace/events/f2fs.h> 30 31 #define NUM_PREALLOC_POST_READ_CTXS 128 32 33 static struct kmem_cache *bio_post_read_ctx_cache; 34 static struct kmem_cache *bio_entry_slab; 35 static mempool_t *bio_post_read_ctx_pool; 36 static struct bio_set f2fs_bioset; 37 38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE 39 40 int __init f2fs_init_bioset(void) 41 { 42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE, 43 0, BIOSET_NEED_BVECS)) 44 return -ENOMEM; 45 return 0; 46 } 47 48 void f2fs_destroy_bioset(void) 49 { 50 bioset_exit(&f2fs_bioset); 51 } 52 53 static bool __is_cp_guaranteed(struct page *page) 54 { 55 struct address_space *mapping = page->mapping; 56 struct inode *inode; 57 struct f2fs_sb_info *sbi; 58 59 if (!mapping) 60 return false; 61 62 inode = mapping->host; 63 sbi = F2FS_I_SB(inode); 64 65 if (inode->i_ino == F2FS_META_INO(sbi) || 66 inode->i_ino == F2FS_NODE_INO(sbi) || 67 S_ISDIR(inode->i_mode)) 68 return true; 69 70 if (f2fs_is_compressed_page(page)) 71 return false; 72 if ((S_ISREG(inode->i_mode) && 73 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) || 74 page_private_gcing(page)) 75 return true; 76 return false; 77 } 78 79 static enum count_type __read_io_type(struct page *page) 80 { 81 struct address_space *mapping = page_file_mapping(page); 82 83 if (mapping) { 84 struct inode *inode = mapping->host; 85 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 86 87 if (inode->i_ino == F2FS_META_INO(sbi)) 88 return F2FS_RD_META; 89 90 if (inode->i_ino == F2FS_NODE_INO(sbi)) 91 return F2FS_RD_NODE; 92 } 93 return F2FS_RD_DATA; 94 } 95 96 /* postprocessing steps for read bios */ 97 enum bio_post_read_step { 98 #ifdef CONFIG_FS_ENCRYPTION 99 STEP_DECRYPT = 1 << 0, 100 #else 101 STEP_DECRYPT = 0, /* compile out the decryption-related code */ 102 #endif 103 #ifdef CONFIG_F2FS_FS_COMPRESSION 104 STEP_DECOMPRESS = 1 << 1, 105 #else 106 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */ 107 #endif 108 #ifdef CONFIG_FS_VERITY 109 STEP_VERITY = 1 << 2, 110 #else 111 STEP_VERITY = 0, /* compile out the verity-related code */ 112 #endif 113 }; 114 115 struct bio_post_read_ctx { 116 struct bio *bio; 117 struct f2fs_sb_info *sbi; 118 struct work_struct work; 119 unsigned int enabled_steps; 120 block_t fs_blkaddr; 121 }; 122 123 static void f2fs_finish_read_bio(struct bio *bio) 124 { 125 struct bio_vec *bv; 126 struct bvec_iter_all iter_all; 127 128 /* 129 * Update and unlock the bio's pagecache pages, and put the 130 * decompression context for any compressed pages. 131 */ 132 bio_for_each_segment_all(bv, bio, iter_all) { 133 struct page *page = bv->bv_page; 134 135 if (f2fs_is_compressed_page(page)) { 136 if (bio->bi_status) 137 f2fs_end_read_compressed_page(page, true, 0); 138 f2fs_put_page_dic(page); 139 continue; 140 } 141 142 /* PG_error was set if decryption or verity failed. */ 143 if (bio->bi_status || PageError(page)) { 144 ClearPageUptodate(page); 145 /* will re-read again later */ 146 ClearPageError(page); 147 } else { 148 SetPageUptodate(page); 149 } 150 dec_page_count(F2FS_P_SB(page), __read_io_type(page)); 151 unlock_page(page); 152 } 153 154 if (bio->bi_private) 155 mempool_free(bio->bi_private, bio_post_read_ctx_pool); 156 bio_put(bio); 157 } 158 159 static void f2fs_verify_bio(struct work_struct *work) 160 { 161 struct bio_post_read_ctx *ctx = 162 container_of(work, struct bio_post_read_ctx, work); 163 struct bio *bio = ctx->bio; 164 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS); 165 166 /* 167 * fsverity_verify_bio() may call readpages() again, and while verity 168 * will be disabled for this, decryption and/or decompression may still 169 * be needed, resulting in another bio_post_read_ctx being allocated. 170 * So to prevent deadlocks we need to release the current ctx to the 171 * mempool first. This assumes that verity is the last post-read step. 172 */ 173 mempool_free(ctx, bio_post_read_ctx_pool); 174 bio->bi_private = NULL; 175 176 /* 177 * Verify the bio's pages with fs-verity. Exclude compressed pages, 178 * as those were handled separately by f2fs_end_read_compressed_page(). 179 */ 180 if (may_have_compressed_pages) { 181 struct bio_vec *bv; 182 struct bvec_iter_all iter_all; 183 184 bio_for_each_segment_all(bv, bio, iter_all) { 185 struct page *page = bv->bv_page; 186 187 if (!f2fs_is_compressed_page(page) && 188 !PageError(page) && !fsverity_verify_page(page)) 189 SetPageError(page); 190 } 191 } else { 192 fsverity_verify_bio(bio); 193 } 194 195 f2fs_finish_read_bio(bio); 196 } 197 198 /* 199 * If the bio's data needs to be verified with fs-verity, then enqueue the 200 * verity work for the bio. Otherwise finish the bio now. 201 * 202 * Note that to avoid deadlocks, the verity work can't be done on the 203 * decryption/decompression workqueue. This is because verifying the data pages 204 * can involve reading verity metadata pages from the file, and these verity 205 * metadata pages may be encrypted and/or compressed. 206 */ 207 static void f2fs_verify_and_finish_bio(struct bio *bio) 208 { 209 struct bio_post_read_ctx *ctx = bio->bi_private; 210 211 if (ctx && (ctx->enabled_steps & STEP_VERITY)) { 212 INIT_WORK(&ctx->work, f2fs_verify_bio); 213 fsverity_enqueue_verify_work(&ctx->work); 214 } else { 215 f2fs_finish_read_bio(bio); 216 } 217 } 218 219 /* 220 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last 221 * remaining page was read by @ctx->bio. 222 * 223 * Note that a bio may span clusters (even a mix of compressed and uncompressed 224 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates 225 * that the bio includes at least one compressed page. The actual decompression 226 * is done on a per-cluster basis, not a per-bio basis. 227 */ 228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx) 229 { 230 struct bio_vec *bv; 231 struct bvec_iter_all iter_all; 232 bool all_compressed = true; 233 block_t blkaddr = ctx->fs_blkaddr; 234 235 bio_for_each_segment_all(bv, ctx->bio, iter_all) { 236 struct page *page = bv->bv_page; 237 238 /* PG_error was set if decryption failed. */ 239 if (f2fs_is_compressed_page(page)) 240 f2fs_end_read_compressed_page(page, PageError(page), 241 blkaddr); 242 else 243 all_compressed = false; 244 245 blkaddr++; 246 } 247 248 /* 249 * Optimization: if all the bio's pages are compressed, then scheduling 250 * the per-bio verity work is unnecessary, as verity will be fully 251 * handled at the compression cluster level. 252 */ 253 if (all_compressed) 254 ctx->enabled_steps &= ~STEP_VERITY; 255 } 256 257 static void f2fs_post_read_work(struct work_struct *work) 258 { 259 struct bio_post_read_ctx *ctx = 260 container_of(work, struct bio_post_read_ctx, work); 261 262 if (ctx->enabled_steps & STEP_DECRYPT) 263 fscrypt_decrypt_bio(ctx->bio); 264 265 if (ctx->enabled_steps & STEP_DECOMPRESS) 266 f2fs_handle_step_decompress(ctx); 267 268 f2fs_verify_and_finish_bio(ctx->bio); 269 } 270 271 static void f2fs_read_end_io(struct bio *bio) 272 { 273 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio)); 274 struct bio_post_read_ctx *ctx; 275 276 iostat_update_and_unbind_ctx(bio, 0); 277 ctx = bio->bi_private; 278 279 if (time_to_inject(sbi, FAULT_READ_IO)) { 280 f2fs_show_injection_info(sbi, FAULT_READ_IO); 281 bio->bi_status = BLK_STS_IOERR; 282 } 283 284 if (bio->bi_status) { 285 f2fs_finish_read_bio(bio); 286 return; 287 } 288 289 if (ctx && (ctx->enabled_steps & (STEP_DECRYPT | STEP_DECOMPRESS))) { 290 INIT_WORK(&ctx->work, f2fs_post_read_work); 291 queue_work(ctx->sbi->post_read_wq, &ctx->work); 292 } else { 293 f2fs_verify_and_finish_bio(bio); 294 } 295 } 296 297 static void f2fs_write_end_io(struct bio *bio) 298 { 299 struct f2fs_sb_info *sbi; 300 struct bio_vec *bvec; 301 struct bvec_iter_all iter_all; 302 303 iostat_update_and_unbind_ctx(bio, 1); 304 sbi = bio->bi_private; 305 306 if (time_to_inject(sbi, FAULT_WRITE_IO)) { 307 f2fs_show_injection_info(sbi, FAULT_WRITE_IO); 308 bio->bi_status = BLK_STS_IOERR; 309 } 310 311 bio_for_each_segment_all(bvec, bio, iter_all) { 312 struct page *page = bvec->bv_page; 313 enum count_type type = WB_DATA_TYPE(page); 314 315 if (page_private_dummy(page)) { 316 clear_page_private_dummy(page); 317 unlock_page(page); 318 mempool_free(page, sbi->write_io_dummy); 319 320 if (unlikely(bio->bi_status)) 321 f2fs_stop_checkpoint(sbi, true); 322 continue; 323 } 324 325 fscrypt_finalize_bounce_page(&page); 326 327 #ifdef CONFIG_F2FS_FS_COMPRESSION 328 if (f2fs_is_compressed_page(page)) { 329 f2fs_compress_write_end_io(bio, page); 330 continue; 331 } 332 #endif 333 334 if (unlikely(bio->bi_status)) { 335 mapping_set_error(page->mapping, -EIO); 336 if (type == F2FS_WB_CP_DATA) 337 f2fs_stop_checkpoint(sbi, true); 338 } 339 340 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) && 341 page->index != nid_of_node(page)); 342 343 dec_page_count(sbi, type); 344 if (f2fs_in_warm_node_list(sbi, page)) 345 f2fs_del_fsync_node_entry(sbi, page); 346 clear_page_private_gcing(page); 347 end_page_writeback(page); 348 } 349 if (!get_pages(sbi, F2FS_WB_CP_DATA) && 350 wq_has_sleeper(&sbi->cp_wait)) 351 wake_up(&sbi->cp_wait); 352 353 bio_put(bio); 354 } 355 356 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi, 357 block_t blk_addr, sector_t *sector) 358 { 359 struct block_device *bdev = sbi->sb->s_bdev; 360 int i; 361 362 if (f2fs_is_multi_device(sbi)) { 363 for (i = 0; i < sbi->s_ndevs; i++) { 364 if (FDEV(i).start_blk <= blk_addr && 365 FDEV(i).end_blk >= blk_addr) { 366 blk_addr -= FDEV(i).start_blk; 367 bdev = FDEV(i).bdev; 368 break; 369 } 370 } 371 } 372 373 if (sector) 374 *sector = SECTOR_FROM_BLOCK(blk_addr); 375 return bdev; 376 } 377 378 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr) 379 { 380 int i; 381 382 if (!f2fs_is_multi_device(sbi)) 383 return 0; 384 385 for (i = 0; i < sbi->s_ndevs; i++) 386 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr) 387 return i; 388 return 0; 389 } 390 391 static void __attach_io_flag(struct f2fs_io_info *fio, unsigned int io_flag) 392 { 393 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1; 394 unsigned int fua_flag = io_flag & temp_mask; 395 unsigned int meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask; 396 397 /* 398 * data/node io flag bits per temp: 399 * REQ_META | REQ_FUA | 400 * 5 | 4 | 3 | 2 | 1 | 0 | 401 * Cold | Warm | Hot | Cold | Warm | Hot | 402 */ 403 if ((1 << fio->temp) & meta_flag) 404 fio->op_flags |= REQ_META; 405 if ((1 << fio->temp) & fua_flag) 406 fio->op_flags |= REQ_FUA; 407 } 408 409 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages) 410 { 411 struct f2fs_sb_info *sbi = fio->sbi; 412 struct block_device *bdev; 413 sector_t sector; 414 struct bio *bio; 415 416 if (fio->type == DATA) 417 __attach_io_flag(fio, sbi->data_io_flag); 418 else if (fio->type == NODE) 419 __attach_io_flag(fio, sbi->node_io_flag); 420 421 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or); 422 bio = bio_alloc_bioset(bdev, npages, fio->op | fio->op_flags, GFP_NOIO, 423 &f2fs_bioset); 424 bio->bi_iter.bi_sector = sector; 425 if (is_read_io(fio->op)) { 426 bio->bi_end_io = f2fs_read_end_io; 427 bio->bi_private = NULL; 428 } else { 429 bio->bi_end_io = f2fs_write_end_io; 430 bio->bi_private = sbi; 431 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, 432 fio->type, fio->temp); 433 } 434 iostat_alloc_and_bind_ctx(sbi, bio, NULL); 435 436 if (fio->io_wbc) 437 wbc_init_bio(fio->io_wbc, bio); 438 439 return bio; 440 } 441 442 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode, 443 pgoff_t first_idx, 444 const struct f2fs_io_info *fio, 445 gfp_t gfp_mask) 446 { 447 /* 448 * The f2fs garbage collector sets ->encrypted_page when it wants to 449 * read/write raw data without encryption. 450 */ 451 if (!fio || !fio->encrypted_page) 452 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask); 453 } 454 455 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode, 456 pgoff_t next_idx, 457 const struct f2fs_io_info *fio) 458 { 459 /* 460 * The f2fs garbage collector sets ->encrypted_page when it wants to 461 * read/write raw data without encryption. 462 */ 463 if (fio && fio->encrypted_page) 464 return !bio_has_crypt_ctx(bio); 465 466 return fscrypt_mergeable_bio(bio, inode, next_idx); 467 } 468 469 static inline void __submit_bio(struct f2fs_sb_info *sbi, 470 struct bio *bio, enum page_type type) 471 { 472 if (!is_read_io(bio_op(bio))) { 473 unsigned int start; 474 475 if (type != DATA && type != NODE) 476 goto submit_io; 477 478 if (f2fs_lfs_mode(sbi) && current->plug) 479 blk_finish_plug(current->plug); 480 481 if (!F2FS_IO_ALIGNED(sbi)) 482 goto submit_io; 483 484 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS; 485 start %= F2FS_IO_SIZE(sbi); 486 487 if (start == 0) 488 goto submit_io; 489 490 /* fill dummy pages */ 491 for (; start < F2FS_IO_SIZE(sbi); start++) { 492 struct page *page = 493 mempool_alloc(sbi->write_io_dummy, 494 GFP_NOIO | __GFP_NOFAIL); 495 f2fs_bug_on(sbi, !page); 496 497 lock_page(page); 498 499 zero_user_segment(page, 0, PAGE_SIZE); 500 set_page_private_dummy(page); 501 502 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) 503 f2fs_bug_on(sbi, 1); 504 } 505 /* 506 * In the NODE case, we lose next block address chain. So, we 507 * need to do checkpoint in f2fs_sync_file. 508 */ 509 if (type == NODE) 510 set_sbi_flag(sbi, SBI_NEED_CP); 511 } 512 submit_io: 513 if (is_read_io(bio_op(bio))) 514 trace_f2fs_submit_read_bio(sbi->sb, type, bio); 515 else 516 trace_f2fs_submit_write_bio(sbi->sb, type, bio); 517 518 iostat_update_submit_ctx(bio, type); 519 submit_bio(bio); 520 } 521 522 void f2fs_submit_bio(struct f2fs_sb_info *sbi, 523 struct bio *bio, enum page_type type) 524 { 525 __submit_bio(sbi, bio, type); 526 } 527 528 static void __submit_merged_bio(struct f2fs_bio_info *io) 529 { 530 struct f2fs_io_info *fio = &io->fio; 531 532 if (!io->bio) 533 return; 534 535 if (is_read_io(fio->op)) 536 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio); 537 else 538 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio); 539 540 __submit_bio(io->sbi, io->bio, fio->type); 541 io->bio = NULL; 542 } 543 544 static bool __has_merged_page(struct bio *bio, struct inode *inode, 545 struct page *page, nid_t ino) 546 { 547 struct bio_vec *bvec; 548 struct bvec_iter_all iter_all; 549 550 if (!bio) 551 return false; 552 553 if (!inode && !page && !ino) 554 return true; 555 556 bio_for_each_segment_all(bvec, bio, iter_all) { 557 struct page *target = bvec->bv_page; 558 559 if (fscrypt_is_bounce_page(target)) { 560 target = fscrypt_pagecache_page(target); 561 if (IS_ERR(target)) 562 continue; 563 } 564 if (f2fs_is_compressed_page(target)) { 565 target = f2fs_compress_control_page(target); 566 if (IS_ERR(target)) 567 continue; 568 } 569 570 if (inode && inode == target->mapping->host) 571 return true; 572 if (page && page == target) 573 return true; 574 if (ino && ino == ino_of_node(target)) 575 return true; 576 } 577 578 return false; 579 } 580 581 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi, 582 enum page_type type, enum temp_type temp) 583 { 584 enum page_type btype = PAGE_TYPE_OF_BIO(type); 585 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 586 587 f2fs_down_write(&io->io_rwsem); 588 589 /* change META to META_FLUSH in the checkpoint procedure */ 590 if (type >= META_FLUSH) { 591 io->fio.type = META_FLUSH; 592 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC; 593 if (!test_opt(sbi, NOBARRIER)) 594 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA; 595 } 596 __submit_merged_bio(io); 597 f2fs_up_write(&io->io_rwsem); 598 } 599 600 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi, 601 struct inode *inode, struct page *page, 602 nid_t ino, enum page_type type, bool force) 603 { 604 enum temp_type temp; 605 bool ret = true; 606 607 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) { 608 if (!force) { 609 enum page_type btype = PAGE_TYPE_OF_BIO(type); 610 struct f2fs_bio_info *io = sbi->write_io[btype] + temp; 611 612 f2fs_down_read(&io->io_rwsem); 613 ret = __has_merged_page(io->bio, inode, page, ino); 614 f2fs_up_read(&io->io_rwsem); 615 } 616 if (ret) 617 __f2fs_submit_merged_write(sbi, type, temp); 618 619 /* TODO: use HOT temp only for meta pages now. */ 620 if (type >= META) 621 break; 622 } 623 } 624 625 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type) 626 { 627 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true); 628 } 629 630 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi, 631 struct inode *inode, struct page *page, 632 nid_t ino, enum page_type type) 633 { 634 __submit_merged_write_cond(sbi, inode, page, ino, type, false); 635 } 636 637 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi) 638 { 639 f2fs_submit_merged_write(sbi, DATA); 640 f2fs_submit_merged_write(sbi, NODE); 641 f2fs_submit_merged_write(sbi, META); 642 } 643 644 /* 645 * Fill the locked page with data located in the block address. 646 * A caller needs to unlock the page on failure. 647 */ 648 int f2fs_submit_page_bio(struct f2fs_io_info *fio) 649 { 650 struct bio *bio; 651 struct page *page = fio->encrypted_page ? 652 fio->encrypted_page : fio->page; 653 654 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 655 fio->is_por ? META_POR : (__is_meta_io(fio) ? 656 META_GENERIC : DATA_GENERIC_ENHANCE))) 657 return -EFSCORRUPTED; 658 659 trace_f2fs_submit_page_bio(page, fio); 660 661 /* Allocate a new bio */ 662 bio = __bio_alloc(fio, 1); 663 664 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 665 fio->page->index, fio, GFP_NOIO); 666 667 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 668 bio_put(bio); 669 return -EFAULT; 670 } 671 672 if (fio->io_wbc && !is_read_io(fio->op)) 673 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 674 675 inc_page_count(fio->sbi, is_read_io(fio->op) ? 676 __read_io_type(page): WB_DATA_TYPE(fio->page)); 677 678 __submit_bio(fio->sbi, bio, fio->type); 679 return 0; 680 } 681 682 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 683 block_t last_blkaddr, block_t cur_blkaddr) 684 { 685 if (unlikely(sbi->max_io_bytes && 686 bio->bi_iter.bi_size >= sbi->max_io_bytes)) 687 return false; 688 if (last_blkaddr + 1 != cur_blkaddr) 689 return false; 690 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL); 691 } 692 693 static bool io_type_is_mergeable(struct f2fs_bio_info *io, 694 struct f2fs_io_info *fio) 695 { 696 if (io->fio.op != fio->op) 697 return false; 698 return io->fio.op_flags == fio->op_flags; 699 } 700 701 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio, 702 struct f2fs_bio_info *io, 703 struct f2fs_io_info *fio, 704 block_t last_blkaddr, 705 block_t cur_blkaddr) 706 { 707 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) { 708 unsigned int filled_blocks = 709 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size); 710 unsigned int io_size = F2FS_IO_SIZE(sbi); 711 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt; 712 713 /* IOs in bio is aligned and left space of vectors is not enough */ 714 if (!(filled_blocks % io_size) && left_vecs < io_size) 715 return false; 716 } 717 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr)) 718 return false; 719 return io_type_is_mergeable(io, fio); 720 } 721 722 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio, 723 struct page *page, enum temp_type temp) 724 { 725 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 726 struct bio_entry *be; 727 728 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL); 729 be->bio = bio; 730 bio_get(bio); 731 732 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE) 733 f2fs_bug_on(sbi, 1); 734 735 f2fs_down_write(&io->bio_list_lock); 736 list_add_tail(&be->list, &io->bio_list); 737 f2fs_up_write(&io->bio_list_lock); 738 } 739 740 static void del_bio_entry(struct bio_entry *be) 741 { 742 list_del(&be->list); 743 kmem_cache_free(bio_entry_slab, be); 744 } 745 746 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio, 747 struct page *page) 748 { 749 struct f2fs_sb_info *sbi = fio->sbi; 750 enum temp_type temp; 751 bool found = false; 752 int ret = -EAGAIN; 753 754 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 755 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 756 struct list_head *head = &io->bio_list; 757 struct bio_entry *be; 758 759 f2fs_down_write(&io->bio_list_lock); 760 list_for_each_entry(be, head, list) { 761 if (be->bio != *bio) 762 continue; 763 764 found = true; 765 766 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio, 767 *fio->last_block, 768 fio->new_blkaddr)); 769 if (f2fs_crypt_mergeable_bio(*bio, 770 fio->page->mapping->host, 771 fio->page->index, fio) && 772 bio_add_page(*bio, page, PAGE_SIZE, 0) == 773 PAGE_SIZE) { 774 ret = 0; 775 break; 776 } 777 778 /* page can't be merged into bio; submit the bio */ 779 del_bio_entry(be); 780 __submit_bio(sbi, *bio, DATA); 781 break; 782 } 783 f2fs_up_write(&io->bio_list_lock); 784 } 785 786 if (ret) { 787 bio_put(*bio); 788 *bio = NULL; 789 } 790 791 return ret; 792 } 793 794 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi, 795 struct bio **bio, struct page *page) 796 { 797 enum temp_type temp; 798 bool found = false; 799 struct bio *target = bio ? *bio : NULL; 800 801 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) { 802 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp; 803 struct list_head *head = &io->bio_list; 804 struct bio_entry *be; 805 806 if (list_empty(head)) 807 continue; 808 809 f2fs_down_read(&io->bio_list_lock); 810 list_for_each_entry(be, head, list) { 811 if (target) 812 found = (target == be->bio); 813 else 814 found = __has_merged_page(be->bio, NULL, 815 page, 0); 816 if (found) 817 break; 818 } 819 f2fs_up_read(&io->bio_list_lock); 820 821 if (!found) 822 continue; 823 824 found = false; 825 826 f2fs_down_write(&io->bio_list_lock); 827 list_for_each_entry(be, head, list) { 828 if (target) 829 found = (target == be->bio); 830 else 831 found = __has_merged_page(be->bio, NULL, 832 page, 0); 833 if (found) { 834 target = be->bio; 835 del_bio_entry(be); 836 break; 837 } 838 } 839 f2fs_up_write(&io->bio_list_lock); 840 } 841 842 if (found) 843 __submit_bio(sbi, target, DATA); 844 if (bio && *bio) { 845 bio_put(*bio); 846 *bio = NULL; 847 } 848 } 849 850 int f2fs_merge_page_bio(struct f2fs_io_info *fio) 851 { 852 struct bio *bio = *fio->bio; 853 struct page *page = fio->encrypted_page ? 854 fio->encrypted_page : fio->page; 855 856 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr, 857 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) 858 return -EFSCORRUPTED; 859 860 trace_f2fs_submit_page_bio(page, fio); 861 862 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block, 863 fio->new_blkaddr)) 864 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL); 865 alloc_new: 866 if (!bio) { 867 bio = __bio_alloc(fio, BIO_MAX_VECS); 868 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host, 869 fio->page->index, fio, GFP_NOIO); 870 871 add_bio_entry(fio->sbi, bio, page, fio->temp); 872 } else { 873 if (add_ipu_page(fio, &bio, page)) 874 goto alloc_new; 875 } 876 877 if (fio->io_wbc) 878 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE); 879 880 inc_page_count(fio->sbi, WB_DATA_TYPE(page)); 881 882 *fio->last_block = fio->new_blkaddr; 883 *fio->bio = bio; 884 885 return 0; 886 } 887 888 void f2fs_submit_page_write(struct f2fs_io_info *fio) 889 { 890 struct f2fs_sb_info *sbi = fio->sbi; 891 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type); 892 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp; 893 struct page *bio_page; 894 895 f2fs_bug_on(sbi, is_read_io(fio->op)); 896 897 f2fs_down_write(&io->io_rwsem); 898 next: 899 if (fio->in_list) { 900 spin_lock(&io->io_lock); 901 if (list_empty(&io->io_list)) { 902 spin_unlock(&io->io_lock); 903 goto out; 904 } 905 fio = list_first_entry(&io->io_list, 906 struct f2fs_io_info, list); 907 list_del(&fio->list); 908 spin_unlock(&io->io_lock); 909 } 910 911 verify_fio_blkaddr(fio); 912 913 if (fio->encrypted_page) 914 bio_page = fio->encrypted_page; 915 else if (fio->compressed_page) 916 bio_page = fio->compressed_page; 917 else 918 bio_page = fio->page; 919 920 /* set submitted = true as a return value */ 921 fio->submitted = true; 922 923 inc_page_count(sbi, WB_DATA_TYPE(bio_page)); 924 925 if (io->bio && 926 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio, 927 fio->new_blkaddr) || 928 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host, 929 bio_page->index, fio))) 930 __submit_merged_bio(io); 931 alloc_new: 932 if (io->bio == NULL) { 933 if (F2FS_IO_ALIGNED(sbi) && 934 (fio->type == DATA || fio->type == NODE) && 935 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) { 936 dec_page_count(sbi, WB_DATA_TYPE(bio_page)); 937 fio->retry = true; 938 goto skip; 939 } 940 io->bio = __bio_alloc(fio, BIO_MAX_VECS); 941 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host, 942 bio_page->index, fio, GFP_NOIO); 943 io->fio = *fio; 944 } 945 946 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) { 947 __submit_merged_bio(io); 948 goto alloc_new; 949 } 950 951 if (fio->io_wbc) 952 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE); 953 954 io->last_block_in_bio = fio->new_blkaddr; 955 956 trace_f2fs_submit_page_write(fio->page, fio); 957 skip: 958 if (fio->in_list) 959 goto next; 960 out: 961 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 962 !f2fs_is_checkpoint_ready(sbi)) 963 __submit_merged_bio(io); 964 f2fs_up_write(&io->io_rwsem); 965 } 966 967 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr, 968 unsigned nr_pages, unsigned op_flag, 969 pgoff_t first_idx, bool for_write) 970 { 971 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 972 struct bio *bio; 973 struct bio_post_read_ctx *ctx = NULL; 974 unsigned int post_read_steps = 0; 975 sector_t sector; 976 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or); 977 978 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages), 979 REQ_OP_READ | op_flag, 980 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset); 981 if (!bio) 982 return ERR_PTR(-ENOMEM); 983 bio->bi_iter.bi_sector = sector; 984 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS); 985 bio->bi_end_io = f2fs_read_end_io; 986 987 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 988 post_read_steps |= STEP_DECRYPT; 989 990 if (f2fs_need_verity(inode, first_idx)) 991 post_read_steps |= STEP_VERITY; 992 993 /* 994 * STEP_DECOMPRESS is handled specially, since a compressed file might 995 * contain both compressed and uncompressed clusters. We'll allocate a 996 * bio_post_read_ctx if the file is compressed, but the caller is 997 * responsible for enabling STEP_DECOMPRESS if it's actually needed. 998 */ 999 1000 if (post_read_steps || f2fs_compressed_file(inode)) { 1001 /* Due to the mempool, this never fails. */ 1002 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS); 1003 ctx->bio = bio; 1004 ctx->sbi = sbi; 1005 ctx->enabled_steps = post_read_steps; 1006 ctx->fs_blkaddr = blkaddr; 1007 bio->bi_private = ctx; 1008 } 1009 iostat_alloc_and_bind_ctx(sbi, bio, ctx); 1010 1011 return bio; 1012 } 1013 1014 /* This can handle encryption stuffs */ 1015 static int f2fs_submit_page_read(struct inode *inode, struct page *page, 1016 block_t blkaddr, int op_flags, bool for_write) 1017 { 1018 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1019 struct bio *bio; 1020 1021 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags, 1022 page->index, for_write); 1023 if (IS_ERR(bio)) 1024 return PTR_ERR(bio); 1025 1026 /* wait for GCed page writeback via META_MAPPING */ 1027 f2fs_wait_on_block_writeback(inode, blkaddr); 1028 1029 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 1030 bio_put(bio); 1031 return -EFAULT; 1032 } 1033 ClearPageError(page); 1034 inc_page_count(sbi, F2FS_RD_DATA); 1035 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 1036 __submit_bio(sbi, bio, DATA); 1037 return 0; 1038 } 1039 1040 static void __set_data_blkaddr(struct dnode_of_data *dn) 1041 { 1042 struct f2fs_node *rn = F2FS_NODE(dn->node_page); 1043 __le32 *addr_array; 1044 int base = 0; 1045 1046 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode)) 1047 base = get_extra_isize(dn->inode); 1048 1049 /* Get physical address of data block */ 1050 addr_array = blkaddr_in_node(rn); 1051 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr); 1052 } 1053 1054 /* 1055 * Lock ordering for the change of data block address: 1056 * ->data_page 1057 * ->node_page 1058 * update block addresses in the node page 1059 */ 1060 void f2fs_set_data_blkaddr(struct dnode_of_data *dn) 1061 { 1062 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1063 __set_data_blkaddr(dn); 1064 if (set_page_dirty(dn->node_page)) 1065 dn->node_changed = true; 1066 } 1067 1068 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr) 1069 { 1070 dn->data_blkaddr = blkaddr; 1071 f2fs_set_data_blkaddr(dn); 1072 f2fs_update_extent_cache(dn); 1073 } 1074 1075 /* dn->ofs_in_node will be returned with up-to-date last block pointer */ 1076 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count) 1077 { 1078 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1079 int err; 1080 1081 if (!count) 1082 return 0; 1083 1084 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1085 return -EPERM; 1086 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1087 return err; 1088 1089 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid, 1090 dn->ofs_in_node, count); 1091 1092 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true); 1093 1094 for (; count > 0; dn->ofs_in_node++) { 1095 block_t blkaddr = f2fs_data_blkaddr(dn); 1096 1097 if (blkaddr == NULL_ADDR) { 1098 dn->data_blkaddr = NEW_ADDR; 1099 __set_data_blkaddr(dn); 1100 count--; 1101 } 1102 } 1103 1104 if (set_page_dirty(dn->node_page)) 1105 dn->node_changed = true; 1106 return 0; 1107 } 1108 1109 /* Should keep dn->ofs_in_node unchanged */ 1110 int f2fs_reserve_new_block(struct dnode_of_data *dn) 1111 { 1112 unsigned int ofs_in_node = dn->ofs_in_node; 1113 int ret; 1114 1115 ret = f2fs_reserve_new_blocks(dn, 1); 1116 dn->ofs_in_node = ofs_in_node; 1117 return ret; 1118 } 1119 1120 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) 1121 { 1122 bool need_put = dn->inode_page ? false : true; 1123 int err; 1124 1125 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE); 1126 if (err) 1127 return err; 1128 1129 if (dn->data_blkaddr == NULL_ADDR) 1130 err = f2fs_reserve_new_block(dn); 1131 if (err || need_put) 1132 f2fs_put_dnode(dn); 1133 return err; 1134 } 1135 1136 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index) 1137 { 1138 struct extent_info ei = {0, }; 1139 struct inode *inode = dn->inode; 1140 1141 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1142 dn->data_blkaddr = ei.blk + index - ei.fofs; 1143 return 0; 1144 } 1145 1146 return f2fs_reserve_block(dn, index); 1147 } 1148 1149 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index, 1150 int op_flags, bool for_write) 1151 { 1152 struct address_space *mapping = inode->i_mapping; 1153 struct dnode_of_data dn; 1154 struct page *page; 1155 struct extent_info ei = {0, }; 1156 int err; 1157 1158 page = f2fs_grab_cache_page(mapping, index, for_write); 1159 if (!page) 1160 return ERR_PTR(-ENOMEM); 1161 1162 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 1163 dn.data_blkaddr = ei.blk + index - ei.fofs; 1164 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr, 1165 DATA_GENERIC_ENHANCE_READ)) { 1166 err = -EFSCORRUPTED; 1167 goto put_err; 1168 } 1169 goto got_it; 1170 } 1171 1172 set_new_dnode(&dn, inode, NULL, NULL, 0); 1173 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 1174 if (err) 1175 goto put_err; 1176 f2fs_put_dnode(&dn); 1177 1178 if (unlikely(dn.data_blkaddr == NULL_ADDR)) { 1179 err = -ENOENT; 1180 goto put_err; 1181 } 1182 if (dn.data_blkaddr != NEW_ADDR && 1183 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode), 1184 dn.data_blkaddr, 1185 DATA_GENERIC_ENHANCE)) { 1186 err = -EFSCORRUPTED; 1187 goto put_err; 1188 } 1189 got_it: 1190 if (PageUptodate(page)) { 1191 unlock_page(page); 1192 return page; 1193 } 1194 1195 /* 1196 * A new dentry page is allocated but not able to be written, since its 1197 * new inode page couldn't be allocated due to -ENOSPC. 1198 * In such the case, its blkaddr can be remained as NEW_ADDR. 1199 * see, f2fs_add_link -> f2fs_get_new_data_page -> 1200 * f2fs_init_inode_metadata. 1201 */ 1202 if (dn.data_blkaddr == NEW_ADDR) { 1203 zero_user_segment(page, 0, PAGE_SIZE); 1204 if (!PageUptodate(page)) 1205 SetPageUptodate(page); 1206 unlock_page(page); 1207 return page; 1208 } 1209 1210 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr, 1211 op_flags, for_write); 1212 if (err) 1213 goto put_err; 1214 return page; 1215 1216 put_err: 1217 f2fs_put_page(page, 1); 1218 return ERR_PTR(err); 1219 } 1220 1221 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index) 1222 { 1223 struct address_space *mapping = inode->i_mapping; 1224 struct page *page; 1225 1226 page = find_get_page(mapping, index); 1227 if (page && PageUptodate(page)) 1228 return page; 1229 f2fs_put_page(page, 0); 1230 1231 page = f2fs_get_read_data_page(inode, index, 0, false); 1232 if (IS_ERR(page)) 1233 return page; 1234 1235 if (PageUptodate(page)) 1236 return page; 1237 1238 wait_on_page_locked(page); 1239 if (unlikely(!PageUptodate(page))) { 1240 f2fs_put_page(page, 0); 1241 return ERR_PTR(-EIO); 1242 } 1243 return page; 1244 } 1245 1246 /* 1247 * If it tries to access a hole, return an error. 1248 * Because, the callers, functions in dir.c and GC, should be able to know 1249 * whether this page exists or not. 1250 */ 1251 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index, 1252 bool for_write) 1253 { 1254 struct address_space *mapping = inode->i_mapping; 1255 struct page *page; 1256 repeat: 1257 page = f2fs_get_read_data_page(inode, index, 0, for_write); 1258 if (IS_ERR(page)) 1259 return page; 1260 1261 /* wait for read completion */ 1262 lock_page(page); 1263 if (unlikely(page->mapping != mapping)) { 1264 f2fs_put_page(page, 1); 1265 goto repeat; 1266 } 1267 if (unlikely(!PageUptodate(page))) { 1268 f2fs_put_page(page, 1); 1269 return ERR_PTR(-EIO); 1270 } 1271 return page; 1272 } 1273 1274 /* 1275 * Caller ensures that this data page is never allocated. 1276 * A new zero-filled data page is allocated in the page cache. 1277 * 1278 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and 1279 * f2fs_unlock_op(). 1280 * Note that, ipage is set only by make_empty_dir, and if any error occur, 1281 * ipage should be released by this function. 1282 */ 1283 struct page *f2fs_get_new_data_page(struct inode *inode, 1284 struct page *ipage, pgoff_t index, bool new_i_size) 1285 { 1286 struct address_space *mapping = inode->i_mapping; 1287 struct page *page; 1288 struct dnode_of_data dn; 1289 int err; 1290 1291 page = f2fs_grab_cache_page(mapping, index, true); 1292 if (!page) { 1293 /* 1294 * before exiting, we should make sure ipage will be released 1295 * if any error occur. 1296 */ 1297 f2fs_put_page(ipage, 1); 1298 return ERR_PTR(-ENOMEM); 1299 } 1300 1301 set_new_dnode(&dn, inode, ipage, NULL, 0); 1302 err = f2fs_reserve_block(&dn, index); 1303 if (err) { 1304 f2fs_put_page(page, 1); 1305 return ERR_PTR(err); 1306 } 1307 if (!ipage) 1308 f2fs_put_dnode(&dn); 1309 1310 if (PageUptodate(page)) 1311 goto got_it; 1312 1313 if (dn.data_blkaddr == NEW_ADDR) { 1314 zero_user_segment(page, 0, PAGE_SIZE); 1315 if (!PageUptodate(page)) 1316 SetPageUptodate(page); 1317 } else { 1318 f2fs_put_page(page, 1); 1319 1320 /* if ipage exists, blkaddr should be NEW_ADDR */ 1321 f2fs_bug_on(F2FS_I_SB(inode), ipage); 1322 page = f2fs_get_lock_data_page(inode, index, true); 1323 if (IS_ERR(page)) 1324 return page; 1325 } 1326 got_it: 1327 if (new_i_size && i_size_read(inode) < 1328 ((loff_t)(index + 1) << PAGE_SHIFT)) 1329 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT)); 1330 return page; 1331 } 1332 1333 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type) 1334 { 1335 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1336 struct f2fs_summary sum; 1337 struct node_info ni; 1338 block_t old_blkaddr; 1339 blkcnt_t count = 1; 1340 int err; 1341 1342 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) 1343 return -EPERM; 1344 1345 err = f2fs_get_node_info(sbi, dn->nid, &ni, false); 1346 if (err) 1347 return err; 1348 1349 dn->data_blkaddr = f2fs_data_blkaddr(dn); 1350 if (dn->data_blkaddr != NULL_ADDR) 1351 goto alloc; 1352 1353 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count)))) 1354 return err; 1355 1356 alloc: 1357 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1358 old_blkaddr = dn->data_blkaddr; 1359 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr, 1360 &sum, seg_type, NULL); 1361 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 1362 invalidate_mapping_pages(META_MAPPING(sbi), 1363 old_blkaddr, old_blkaddr); 1364 f2fs_invalidate_compress_page(sbi, old_blkaddr); 1365 } 1366 f2fs_update_data_blkaddr(dn, dn->data_blkaddr); 1367 return 0; 1368 } 1369 1370 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock) 1371 { 1372 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1373 if (lock) 1374 f2fs_down_read(&sbi->node_change); 1375 else 1376 f2fs_up_read(&sbi->node_change); 1377 } else { 1378 if (lock) 1379 f2fs_lock_op(sbi); 1380 else 1381 f2fs_unlock_op(sbi); 1382 } 1383 } 1384 1385 /* 1386 * f2fs_map_blocks() tries to find or build mapping relationship which 1387 * maps continuous logical blocks to physical blocks, and return such 1388 * info via f2fs_map_blocks structure. 1389 */ 1390 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, 1391 int create, int flag) 1392 { 1393 unsigned int maxblocks = map->m_len; 1394 struct dnode_of_data dn; 1395 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1396 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE; 1397 pgoff_t pgofs, end_offset, end; 1398 int err = 0, ofs = 1; 1399 unsigned int ofs_in_node, last_ofs_in_node; 1400 blkcnt_t prealloc; 1401 struct extent_info ei = {0, }; 1402 block_t blkaddr; 1403 unsigned int start_pgofs; 1404 int bidx = 0; 1405 1406 if (!maxblocks) 1407 return 0; 1408 1409 map->m_bdev = inode->i_sb->s_bdev; 1410 map->m_multidev_dio = 1411 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag); 1412 1413 map->m_len = 0; 1414 map->m_flags = 0; 1415 1416 /* it only supports block size == page size */ 1417 pgofs = (pgoff_t)map->m_lblk; 1418 end = pgofs + maxblocks; 1419 1420 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) { 1421 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1422 map->m_may_create) 1423 goto next_dnode; 1424 1425 map->m_pblk = ei.blk + pgofs - ei.fofs; 1426 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); 1427 map->m_flags = F2FS_MAP_MAPPED; 1428 if (map->m_next_extent) 1429 *map->m_next_extent = pgofs + map->m_len; 1430 1431 /* for hardware encryption, but to avoid potential issue in future */ 1432 if (flag == F2FS_GET_BLOCK_DIO) 1433 f2fs_wait_on_block_writeback_range(inode, 1434 map->m_pblk, map->m_len); 1435 1436 if (map->m_multidev_dio) { 1437 block_t blk_addr = map->m_pblk; 1438 1439 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1440 1441 map->m_bdev = FDEV(bidx).bdev; 1442 map->m_pblk -= FDEV(bidx).start_blk; 1443 map->m_len = min(map->m_len, 1444 FDEV(bidx).end_blk + 1 - map->m_pblk); 1445 1446 if (map->m_may_create) 1447 f2fs_update_device_state(sbi, inode->i_ino, 1448 blk_addr, map->m_len); 1449 } 1450 goto out; 1451 } 1452 1453 next_dnode: 1454 if (map->m_may_create) 1455 f2fs_do_map_lock(sbi, flag, true); 1456 1457 /* When reading holes, we need its node page */ 1458 set_new_dnode(&dn, inode, NULL, NULL, 0); 1459 err = f2fs_get_dnode_of_data(&dn, pgofs, mode); 1460 if (err) { 1461 if (flag == F2FS_GET_BLOCK_BMAP) 1462 map->m_pblk = 0; 1463 1464 if (err == -ENOENT) { 1465 /* 1466 * There is one exceptional case that read_node_page() 1467 * may return -ENOENT due to filesystem has been 1468 * shutdown or cp_error, so force to convert error 1469 * number to EIO for such case. 1470 */ 1471 if (map->m_may_create && 1472 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || 1473 f2fs_cp_error(sbi))) { 1474 err = -EIO; 1475 goto unlock_out; 1476 } 1477 1478 err = 0; 1479 if (map->m_next_pgofs) 1480 *map->m_next_pgofs = 1481 f2fs_get_next_page_offset(&dn, pgofs); 1482 if (map->m_next_extent) 1483 *map->m_next_extent = 1484 f2fs_get_next_page_offset(&dn, pgofs); 1485 } 1486 goto unlock_out; 1487 } 1488 1489 start_pgofs = pgofs; 1490 prealloc = 0; 1491 last_ofs_in_node = ofs_in_node = dn.ofs_in_node; 1492 end_offset = ADDRS_PER_PAGE(dn.node_page, inode); 1493 1494 next_block: 1495 blkaddr = f2fs_data_blkaddr(&dn); 1496 1497 if (__is_valid_data_blkaddr(blkaddr) && 1498 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) { 1499 err = -EFSCORRUPTED; 1500 goto sync_out; 1501 } 1502 1503 if (__is_valid_data_blkaddr(blkaddr)) { 1504 /* use out-place-update for driect IO under LFS mode */ 1505 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO && 1506 map->m_may_create) { 1507 err = __allocate_data_block(&dn, map->m_seg_type); 1508 if (err) 1509 goto sync_out; 1510 blkaddr = dn.data_blkaddr; 1511 set_inode_flag(inode, FI_APPEND_WRITE); 1512 } 1513 } else { 1514 if (create) { 1515 if (unlikely(f2fs_cp_error(sbi))) { 1516 err = -EIO; 1517 goto sync_out; 1518 } 1519 if (flag == F2FS_GET_BLOCK_PRE_AIO) { 1520 if (blkaddr == NULL_ADDR) { 1521 prealloc++; 1522 last_ofs_in_node = dn.ofs_in_node; 1523 } 1524 } else { 1525 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO && 1526 flag != F2FS_GET_BLOCK_DIO); 1527 err = __allocate_data_block(&dn, 1528 map->m_seg_type); 1529 if (!err) { 1530 if (flag == F2FS_GET_BLOCK_PRE_DIO) 1531 file_need_truncate(inode); 1532 set_inode_flag(inode, FI_APPEND_WRITE); 1533 } 1534 } 1535 if (err) 1536 goto sync_out; 1537 map->m_flags |= F2FS_MAP_NEW; 1538 blkaddr = dn.data_blkaddr; 1539 } else { 1540 if (f2fs_compressed_file(inode) && 1541 f2fs_sanity_check_cluster(&dn) && 1542 (flag != F2FS_GET_BLOCK_FIEMAP || 1543 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) { 1544 err = -EFSCORRUPTED; 1545 goto sync_out; 1546 } 1547 if (flag == F2FS_GET_BLOCK_BMAP) { 1548 map->m_pblk = 0; 1549 goto sync_out; 1550 } 1551 if (flag == F2FS_GET_BLOCK_PRECACHE) 1552 goto sync_out; 1553 if (flag == F2FS_GET_BLOCK_FIEMAP && 1554 blkaddr == NULL_ADDR) { 1555 if (map->m_next_pgofs) 1556 *map->m_next_pgofs = pgofs + 1; 1557 goto sync_out; 1558 } 1559 if (flag != F2FS_GET_BLOCK_FIEMAP) { 1560 /* for defragment case */ 1561 if (map->m_next_pgofs) 1562 *map->m_next_pgofs = pgofs + 1; 1563 goto sync_out; 1564 } 1565 } 1566 } 1567 1568 if (flag == F2FS_GET_BLOCK_PRE_AIO) 1569 goto skip; 1570 1571 if (map->m_multidev_dio) 1572 bidx = f2fs_target_device_index(sbi, blkaddr); 1573 1574 if (map->m_len == 0) { 1575 /* preallocated unwritten block should be mapped for fiemap. */ 1576 if (blkaddr == NEW_ADDR) 1577 map->m_flags |= F2FS_MAP_UNWRITTEN; 1578 map->m_flags |= F2FS_MAP_MAPPED; 1579 1580 map->m_pblk = blkaddr; 1581 map->m_len = 1; 1582 1583 if (map->m_multidev_dio) 1584 map->m_bdev = FDEV(bidx).bdev; 1585 } else if ((map->m_pblk != NEW_ADDR && 1586 blkaddr == (map->m_pblk + ofs)) || 1587 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) || 1588 flag == F2FS_GET_BLOCK_PRE_DIO) { 1589 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev) 1590 goto sync_out; 1591 ofs++; 1592 map->m_len++; 1593 } else { 1594 goto sync_out; 1595 } 1596 1597 skip: 1598 dn.ofs_in_node++; 1599 pgofs++; 1600 1601 /* preallocate blocks in batch for one dnode page */ 1602 if (flag == F2FS_GET_BLOCK_PRE_AIO && 1603 (pgofs == end || dn.ofs_in_node == end_offset)) { 1604 1605 dn.ofs_in_node = ofs_in_node; 1606 err = f2fs_reserve_new_blocks(&dn, prealloc); 1607 if (err) 1608 goto sync_out; 1609 1610 map->m_len += dn.ofs_in_node - ofs_in_node; 1611 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) { 1612 err = -ENOSPC; 1613 goto sync_out; 1614 } 1615 dn.ofs_in_node = end_offset; 1616 } 1617 1618 if (pgofs >= end) 1619 goto sync_out; 1620 else if (dn.ofs_in_node < end_offset) 1621 goto next_block; 1622 1623 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1624 if (map->m_flags & F2FS_MAP_MAPPED) { 1625 unsigned int ofs = start_pgofs - map->m_lblk; 1626 1627 f2fs_update_extent_cache_range(&dn, 1628 start_pgofs, map->m_pblk + ofs, 1629 map->m_len - ofs); 1630 } 1631 } 1632 1633 f2fs_put_dnode(&dn); 1634 1635 if (map->m_may_create) { 1636 f2fs_do_map_lock(sbi, flag, false); 1637 f2fs_balance_fs(sbi, dn.node_changed); 1638 } 1639 goto next_dnode; 1640 1641 sync_out: 1642 1643 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) { 1644 /* 1645 * for hardware encryption, but to avoid potential issue 1646 * in future 1647 */ 1648 f2fs_wait_on_block_writeback_range(inode, 1649 map->m_pblk, map->m_len); 1650 invalidate_mapping_pages(META_MAPPING(sbi), 1651 map->m_pblk, map->m_pblk); 1652 1653 if (map->m_multidev_dio) { 1654 block_t blk_addr = map->m_pblk; 1655 1656 bidx = f2fs_target_device_index(sbi, map->m_pblk); 1657 1658 map->m_bdev = FDEV(bidx).bdev; 1659 map->m_pblk -= FDEV(bidx).start_blk; 1660 1661 if (map->m_may_create) 1662 f2fs_update_device_state(sbi, inode->i_ino, 1663 blk_addr, map->m_len); 1664 1665 f2fs_bug_on(sbi, blk_addr + map->m_len > 1666 FDEV(bidx).end_blk + 1); 1667 } 1668 } 1669 1670 if (flag == F2FS_GET_BLOCK_PRECACHE) { 1671 if (map->m_flags & F2FS_MAP_MAPPED) { 1672 unsigned int ofs = start_pgofs - map->m_lblk; 1673 1674 f2fs_update_extent_cache_range(&dn, 1675 start_pgofs, map->m_pblk + ofs, 1676 map->m_len - ofs); 1677 } 1678 if (map->m_next_extent) 1679 *map->m_next_extent = pgofs + 1; 1680 } 1681 f2fs_put_dnode(&dn); 1682 unlock_out: 1683 if (map->m_may_create) { 1684 f2fs_do_map_lock(sbi, flag, false); 1685 f2fs_balance_fs(sbi, dn.node_changed); 1686 } 1687 out: 1688 trace_f2fs_map_blocks(inode, map, create, flag, err); 1689 return err; 1690 } 1691 1692 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len) 1693 { 1694 struct f2fs_map_blocks map; 1695 block_t last_lblk; 1696 int err; 1697 1698 if (pos + len > i_size_read(inode)) 1699 return false; 1700 1701 map.m_lblk = F2FS_BYTES_TO_BLK(pos); 1702 map.m_next_pgofs = NULL; 1703 map.m_next_extent = NULL; 1704 map.m_seg_type = NO_CHECK_TYPE; 1705 map.m_may_create = false; 1706 last_lblk = F2FS_BLK_ALIGN(pos + len); 1707 1708 while (map.m_lblk < last_lblk) { 1709 map.m_len = last_lblk - map.m_lblk; 1710 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT); 1711 if (err || map.m_len == 0) 1712 return false; 1713 map.m_lblk += map.m_len; 1714 } 1715 return true; 1716 } 1717 1718 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes) 1719 { 1720 return (bytes >> inode->i_blkbits); 1721 } 1722 1723 static inline u64 blks_to_bytes(struct inode *inode, u64 blks) 1724 { 1725 return (blks << inode->i_blkbits); 1726 } 1727 1728 static int f2fs_xattr_fiemap(struct inode *inode, 1729 struct fiemap_extent_info *fieinfo) 1730 { 1731 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1732 struct page *page; 1733 struct node_info ni; 1734 __u64 phys = 0, len; 1735 __u32 flags; 1736 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 1737 int err = 0; 1738 1739 if (f2fs_has_inline_xattr(inode)) { 1740 int offset; 1741 1742 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), 1743 inode->i_ino, false); 1744 if (!page) 1745 return -ENOMEM; 1746 1747 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false); 1748 if (err) { 1749 f2fs_put_page(page, 1); 1750 return err; 1751 } 1752 1753 phys = blks_to_bytes(inode, ni.blk_addr); 1754 offset = offsetof(struct f2fs_inode, i_addr) + 1755 sizeof(__le32) * (DEF_ADDRS_PER_INODE - 1756 get_inline_xattr_addrs(inode)); 1757 1758 phys += offset; 1759 len = inline_xattr_size(inode); 1760 1761 f2fs_put_page(page, 1); 1762 1763 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED; 1764 1765 if (!xnid) 1766 flags |= FIEMAP_EXTENT_LAST; 1767 1768 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1769 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1770 if (err || err == 1) 1771 return err; 1772 } 1773 1774 if (xnid) { 1775 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false); 1776 if (!page) 1777 return -ENOMEM; 1778 1779 err = f2fs_get_node_info(sbi, xnid, &ni, false); 1780 if (err) { 1781 f2fs_put_page(page, 1); 1782 return err; 1783 } 1784 1785 phys = blks_to_bytes(inode, ni.blk_addr); 1786 len = inode->i_sb->s_blocksize; 1787 1788 f2fs_put_page(page, 1); 1789 1790 flags = FIEMAP_EXTENT_LAST; 1791 } 1792 1793 if (phys) { 1794 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags); 1795 trace_f2fs_fiemap(inode, 0, phys, len, flags, err); 1796 } 1797 1798 return (err < 0 ? err : 0); 1799 } 1800 1801 static loff_t max_inode_blocks(struct inode *inode) 1802 { 1803 loff_t result = ADDRS_PER_INODE(inode); 1804 loff_t leaf_count = ADDRS_PER_BLOCK(inode); 1805 1806 /* two direct node blocks */ 1807 result += (leaf_count * 2); 1808 1809 /* two indirect node blocks */ 1810 leaf_count *= NIDS_PER_BLOCK; 1811 result += (leaf_count * 2); 1812 1813 /* one double indirect node block */ 1814 leaf_count *= NIDS_PER_BLOCK; 1815 result += leaf_count; 1816 1817 return result; 1818 } 1819 1820 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 1821 u64 start, u64 len) 1822 { 1823 struct f2fs_map_blocks map; 1824 sector_t start_blk, last_blk; 1825 pgoff_t next_pgofs; 1826 u64 logical = 0, phys = 0, size = 0; 1827 u32 flags = 0; 1828 int ret = 0; 1829 bool compr_cluster = false, compr_appended; 1830 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size; 1831 unsigned int count_in_cluster = 0; 1832 loff_t maxbytes; 1833 1834 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) { 1835 ret = f2fs_precache_extents(inode); 1836 if (ret) 1837 return ret; 1838 } 1839 1840 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR); 1841 if (ret) 1842 return ret; 1843 1844 inode_lock(inode); 1845 1846 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS; 1847 if (start > maxbytes) { 1848 ret = -EFBIG; 1849 goto out; 1850 } 1851 1852 if (len > maxbytes || (maxbytes - len) < start) 1853 len = maxbytes - start; 1854 1855 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) { 1856 ret = f2fs_xattr_fiemap(inode, fieinfo); 1857 goto out; 1858 } 1859 1860 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { 1861 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len); 1862 if (ret != -EAGAIN) 1863 goto out; 1864 } 1865 1866 if (bytes_to_blks(inode, len) == 0) 1867 len = blks_to_bytes(inode, 1); 1868 1869 start_blk = bytes_to_blks(inode, start); 1870 last_blk = bytes_to_blks(inode, start + len - 1); 1871 1872 next: 1873 memset(&map, 0, sizeof(map)); 1874 map.m_lblk = start_blk; 1875 map.m_len = bytes_to_blks(inode, len); 1876 map.m_next_pgofs = &next_pgofs; 1877 map.m_seg_type = NO_CHECK_TYPE; 1878 1879 if (compr_cluster) { 1880 map.m_lblk += 1; 1881 map.m_len = cluster_size - count_in_cluster; 1882 } 1883 1884 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 1885 if (ret) 1886 goto out; 1887 1888 /* HOLE */ 1889 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) { 1890 start_blk = next_pgofs; 1891 1892 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode, 1893 max_inode_blocks(inode))) 1894 goto prep_next; 1895 1896 flags |= FIEMAP_EXTENT_LAST; 1897 } 1898 1899 compr_appended = false; 1900 /* In a case of compressed cluster, append this to the last extent */ 1901 if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) || 1902 !(map.m_flags & F2FS_MAP_FLAGS))) { 1903 compr_appended = true; 1904 goto skip_fill; 1905 } 1906 1907 if (size) { 1908 flags |= FIEMAP_EXTENT_MERGED; 1909 if (IS_ENCRYPTED(inode)) 1910 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED; 1911 1912 ret = fiemap_fill_next_extent(fieinfo, logical, 1913 phys, size, flags); 1914 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret); 1915 if (ret) 1916 goto out; 1917 size = 0; 1918 } 1919 1920 if (start_blk > last_blk) 1921 goto out; 1922 1923 skip_fill: 1924 if (map.m_pblk == COMPRESS_ADDR) { 1925 compr_cluster = true; 1926 count_in_cluster = 1; 1927 } else if (compr_appended) { 1928 unsigned int appended_blks = cluster_size - 1929 count_in_cluster + 1; 1930 size += blks_to_bytes(inode, appended_blks); 1931 start_blk += appended_blks; 1932 compr_cluster = false; 1933 } else { 1934 logical = blks_to_bytes(inode, start_blk); 1935 phys = __is_valid_data_blkaddr(map.m_pblk) ? 1936 blks_to_bytes(inode, map.m_pblk) : 0; 1937 size = blks_to_bytes(inode, map.m_len); 1938 flags = 0; 1939 1940 if (compr_cluster) { 1941 flags = FIEMAP_EXTENT_ENCODED; 1942 count_in_cluster += map.m_len; 1943 if (count_in_cluster == cluster_size) { 1944 compr_cluster = false; 1945 size += blks_to_bytes(inode, 1); 1946 } 1947 } else if (map.m_flags & F2FS_MAP_UNWRITTEN) { 1948 flags = FIEMAP_EXTENT_UNWRITTEN; 1949 } 1950 1951 start_blk += bytes_to_blks(inode, size); 1952 } 1953 1954 prep_next: 1955 cond_resched(); 1956 if (fatal_signal_pending(current)) 1957 ret = -EINTR; 1958 else 1959 goto next; 1960 out: 1961 if (ret == 1) 1962 ret = 0; 1963 1964 inode_unlock(inode); 1965 return ret; 1966 } 1967 1968 static inline loff_t f2fs_readpage_limit(struct inode *inode) 1969 { 1970 if (IS_ENABLED(CONFIG_FS_VERITY) && 1971 (IS_VERITY(inode) || f2fs_verity_in_progress(inode))) 1972 return inode->i_sb->s_maxbytes; 1973 1974 return i_size_read(inode); 1975 } 1976 1977 static int f2fs_read_single_page(struct inode *inode, struct page *page, 1978 unsigned nr_pages, 1979 struct f2fs_map_blocks *map, 1980 struct bio **bio_ret, 1981 sector_t *last_block_in_bio, 1982 bool is_readahead) 1983 { 1984 struct bio *bio = *bio_ret; 1985 const unsigned blocksize = blks_to_bytes(inode, 1); 1986 sector_t block_in_file; 1987 sector_t last_block; 1988 sector_t last_block_in_file; 1989 sector_t block_nr; 1990 int ret = 0; 1991 1992 block_in_file = (sector_t)page_index(page); 1993 last_block = block_in_file + nr_pages; 1994 last_block_in_file = bytes_to_blks(inode, 1995 f2fs_readpage_limit(inode) + blocksize - 1); 1996 if (last_block > last_block_in_file) 1997 last_block = last_block_in_file; 1998 1999 /* just zeroing out page which is beyond EOF */ 2000 if (block_in_file >= last_block) 2001 goto zero_out; 2002 /* 2003 * Map blocks using the previous result first. 2004 */ 2005 if ((map->m_flags & F2FS_MAP_MAPPED) && 2006 block_in_file > map->m_lblk && 2007 block_in_file < (map->m_lblk + map->m_len)) 2008 goto got_it; 2009 2010 /* 2011 * Then do more f2fs_map_blocks() calls until we are 2012 * done with this page. 2013 */ 2014 map->m_lblk = block_in_file; 2015 map->m_len = last_block - block_in_file; 2016 2017 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT); 2018 if (ret) 2019 goto out; 2020 got_it: 2021 if ((map->m_flags & F2FS_MAP_MAPPED)) { 2022 block_nr = map->m_pblk + block_in_file - map->m_lblk; 2023 SetPageMappedToDisk(page); 2024 2025 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr, 2026 DATA_GENERIC_ENHANCE_READ)) { 2027 ret = -EFSCORRUPTED; 2028 goto out; 2029 } 2030 } else { 2031 zero_out: 2032 zero_user_segment(page, 0, PAGE_SIZE); 2033 if (f2fs_need_verity(inode, page->index) && 2034 !fsverity_verify_page(page)) { 2035 ret = -EIO; 2036 goto out; 2037 } 2038 if (!PageUptodate(page)) 2039 SetPageUptodate(page); 2040 unlock_page(page); 2041 goto out; 2042 } 2043 2044 /* 2045 * This page will go to BIO. Do we need to send this 2046 * BIO off first? 2047 */ 2048 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio, 2049 *last_block_in_bio, block_nr) || 2050 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2051 submit_and_realloc: 2052 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2053 bio = NULL; 2054 } 2055 if (bio == NULL) { 2056 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages, 2057 is_readahead ? REQ_RAHEAD : 0, page->index, 2058 false); 2059 if (IS_ERR(bio)) { 2060 ret = PTR_ERR(bio); 2061 bio = NULL; 2062 goto out; 2063 } 2064 } 2065 2066 /* 2067 * If the page is under writeback, we need to wait for 2068 * its completion to see the correct decrypted data. 2069 */ 2070 f2fs_wait_on_block_writeback(inode, block_nr); 2071 2072 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2073 goto submit_and_realloc; 2074 2075 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA); 2076 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE); 2077 ClearPageError(page); 2078 *last_block_in_bio = block_nr; 2079 goto out; 2080 out: 2081 *bio_ret = bio; 2082 return ret; 2083 } 2084 2085 #ifdef CONFIG_F2FS_FS_COMPRESSION 2086 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret, 2087 unsigned nr_pages, sector_t *last_block_in_bio, 2088 bool is_readahead, bool for_write) 2089 { 2090 struct dnode_of_data dn; 2091 struct inode *inode = cc->inode; 2092 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2093 struct bio *bio = *bio_ret; 2094 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size; 2095 sector_t last_block_in_file; 2096 const unsigned blocksize = blks_to_bytes(inode, 1); 2097 struct decompress_io_ctx *dic = NULL; 2098 struct extent_info ei = {0, }; 2099 bool from_dnode = true; 2100 int i; 2101 int ret = 0; 2102 2103 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc)); 2104 2105 last_block_in_file = bytes_to_blks(inode, 2106 f2fs_readpage_limit(inode) + blocksize - 1); 2107 2108 /* get rid of pages beyond EOF */ 2109 for (i = 0; i < cc->cluster_size; i++) { 2110 struct page *page = cc->rpages[i]; 2111 2112 if (!page) 2113 continue; 2114 if ((sector_t)page->index >= last_block_in_file) { 2115 zero_user_segment(page, 0, PAGE_SIZE); 2116 if (!PageUptodate(page)) 2117 SetPageUptodate(page); 2118 } else if (!PageUptodate(page)) { 2119 continue; 2120 } 2121 unlock_page(page); 2122 if (for_write) 2123 put_page(page); 2124 cc->rpages[i] = NULL; 2125 cc->nr_rpages--; 2126 } 2127 2128 /* we are done since all pages are beyond EOF */ 2129 if (f2fs_cluster_is_empty(cc)) 2130 goto out; 2131 2132 if (f2fs_lookup_extent_cache(inode, start_idx, &ei)) 2133 from_dnode = false; 2134 2135 if (!from_dnode) 2136 goto skip_reading_dnode; 2137 2138 set_new_dnode(&dn, inode, NULL, NULL, 0); 2139 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 2140 if (ret) 2141 goto out; 2142 2143 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR); 2144 2145 skip_reading_dnode: 2146 for (i = 1; i < cc->cluster_size; i++) { 2147 block_t blkaddr; 2148 2149 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2150 dn.ofs_in_node + i) : 2151 ei.blk + i - 1; 2152 2153 if (!__is_valid_data_blkaddr(blkaddr)) 2154 break; 2155 2156 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) { 2157 ret = -EFAULT; 2158 goto out_put_dnode; 2159 } 2160 cc->nr_cpages++; 2161 2162 if (!from_dnode && i >= ei.c_len) 2163 break; 2164 } 2165 2166 /* nothing to decompress */ 2167 if (cc->nr_cpages == 0) { 2168 ret = 0; 2169 goto out_put_dnode; 2170 } 2171 2172 dic = f2fs_alloc_dic(cc); 2173 if (IS_ERR(dic)) { 2174 ret = PTR_ERR(dic); 2175 goto out_put_dnode; 2176 } 2177 2178 for (i = 0; i < cc->nr_cpages; i++) { 2179 struct page *page = dic->cpages[i]; 2180 block_t blkaddr; 2181 struct bio_post_read_ctx *ctx; 2182 2183 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page, 2184 dn.ofs_in_node + i + 1) : 2185 ei.blk + i; 2186 2187 f2fs_wait_on_block_writeback(inode, blkaddr); 2188 2189 if (f2fs_load_compressed_page(sbi, page, blkaddr)) { 2190 if (atomic_dec_and_test(&dic->remaining_pages)) 2191 f2fs_decompress_cluster(dic); 2192 continue; 2193 } 2194 2195 if (bio && (!page_is_mergeable(sbi, bio, 2196 *last_block_in_bio, blkaddr) || 2197 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) { 2198 submit_and_realloc: 2199 __submit_bio(sbi, bio, DATA); 2200 bio = NULL; 2201 } 2202 2203 if (!bio) { 2204 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages, 2205 is_readahead ? REQ_RAHEAD : 0, 2206 page->index, for_write); 2207 if (IS_ERR(bio)) { 2208 ret = PTR_ERR(bio); 2209 f2fs_decompress_end_io(dic, ret); 2210 f2fs_put_dnode(&dn); 2211 *bio_ret = NULL; 2212 return ret; 2213 } 2214 } 2215 2216 if (bio_add_page(bio, page, blocksize, 0) < blocksize) 2217 goto submit_and_realloc; 2218 2219 ctx = get_post_read_ctx(bio); 2220 ctx->enabled_steps |= STEP_DECOMPRESS; 2221 refcount_inc(&dic->refcnt); 2222 2223 inc_page_count(sbi, F2FS_RD_DATA); 2224 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE); 2225 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE); 2226 ClearPageError(page); 2227 *last_block_in_bio = blkaddr; 2228 } 2229 2230 if (from_dnode) 2231 f2fs_put_dnode(&dn); 2232 2233 *bio_ret = bio; 2234 return 0; 2235 2236 out_put_dnode: 2237 if (from_dnode) 2238 f2fs_put_dnode(&dn); 2239 out: 2240 for (i = 0; i < cc->cluster_size; i++) { 2241 if (cc->rpages[i]) { 2242 ClearPageUptodate(cc->rpages[i]); 2243 ClearPageError(cc->rpages[i]); 2244 unlock_page(cc->rpages[i]); 2245 } 2246 } 2247 *bio_ret = bio; 2248 return ret; 2249 } 2250 #endif 2251 2252 /* 2253 * This function was originally taken from fs/mpage.c, and customized for f2fs. 2254 * Major change was from block_size == page_size in f2fs by default. 2255 */ 2256 static int f2fs_mpage_readpages(struct inode *inode, 2257 struct readahead_control *rac, struct page *page) 2258 { 2259 struct bio *bio = NULL; 2260 sector_t last_block_in_bio = 0; 2261 struct f2fs_map_blocks map; 2262 #ifdef CONFIG_F2FS_FS_COMPRESSION 2263 struct compress_ctx cc = { 2264 .inode = inode, 2265 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2266 .cluster_size = F2FS_I(inode)->i_cluster_size, 2267 .cluster_idx = NULL_CLUSTER, 2268 .rpages = NULL, 2269 .cpages = NULL, 2270 .nr_rpages = 0, 2271 .nr_cpages = 0, 2272 }; 2273 pgoff_t nc_cluster_idx = NULL_CLUSTER; 2274 #endif 2275 unsigned nr_pages = rac ? readahead_count(rac) : 1; 2276 unsigned max_nr_pages = nr_pages; 2277 int ret = 0; 2278 2279 map.m_pblk = 0; 2280 map.m_lblk = 0; 2281 map.m_len = 0; 2282 map.m_flags = 0; 2283 map.m_next_pgofs = NULL; 2284 map.m_next_extent = NULL; 2285 map.m_seg_type = NO_CHECK_TYPE; 2286 map.m_may_create = false; 2287 2288 for (; nr_pages; nr_pages--) { 2289 if (rac) { 2290 page = readahead_page(rac); 2291 prefetchw(&page->flags); 2292 } 2293 2294 #ifdef CONFIG_F2FS_FS_COMPRESSION 2295 if (f2fs_compressed_file(inode)) { 2296 /* there are remained comressed pages, submit them */ 2297 if (!f2fs_cluster_can_merge_page(&cc, page->index)) { 2298 ret = f2fs_read_multi_pages(&cc, &bio, 2299 max_nr_pages, 2300 &last_block_in_bio, 2301 rac != NULL, false); 2302 f2fs_destroy_compress_ctx(&cc, false); 2303 if (ret) 2304 goto set_error_page; 2305 } 2306 if (cc.cluster_idx == NULL_CLUSTER) { 2307 if (nc_cluster_idx == 2308 page->index >> cc.log_cluster_size) { 2309 goto read_single_page; 2310 } 2311 2312 ret = f2fs_is_compressed_cluster(inode, page->index); 2313 if (ret < 0) 2314 goto set_error_page; 2315 else if (!ret) { 2316 nc_cluster_idx = 2317 page->index >> cc.log_cluster_size; 2318 goto read_single_page; 2319 } 2320 2321 nc_cluster_idx = NULL_CLUSTER; 2322 } 2323 ret = f2fs_init_compress_ctx(&cc); 2324 if (ret) 2325 goto set_error_page; 2326 2327 f2fs_compress_ctx_add_page(&cc, page); 2328 2329 goto next_page; 2330 } 2331 read_single_page: 2332 #endif 2333 2334 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map, 2335 &bio, &last_block_in_bio, rac); 2336 if (ret) { 2337 #ifdef CONFIG_F2FS_FS_COMPRESSION 2338 set_error_page: 2339 #endif 2340 SetPageError(page); 2341 zero_user_segment(page, 0, PAGE_SIZE); 2342 unlock_page(page); 2343 } 2344 #ifdef CONFIG_F2FS_FS_COMPRESSION 2345 next_page: 2346 #endif 2347 if (rac) 2348 put_page(page); 2349 2350 #ifdef CONFIG_F2FS_FS_COMPRESSION 2351 if (f2fs_compressed_file(inode)) { 2352 /* last page */ 2353 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) { 2354 ret = f2fs_read_multi_pages(&cc, &bio, 2355 max_nr_pages, 2356 &last_block_in_bio, 2357 rac != NULL, false); 2358 f2fs_destroy_compress_ctx(&cc, false); 2359 } 2360 } 2361 #endif 2362 } 2363 if (bio) 2364 __submit_bio(F2FS_I_SB(inode), bio, DATA); 2365 return ret; 2366 } 2367 2368 static int f2fs_read_data_page(struct file *file, struct page *page) 2369 { 2370 struct inode *inode = page_file_mapping(page)->host; 2371 int ret = -EAGAIN; 2372 2373 trace_f2fs_readpage(page, DATA); 2374 2375 if (!f2fs_is_compress_backend_ready(inode)) { 2376 unlock_page(page); 2377 return -EOPNOTSUPP; 2378 } 2379 2380 /* If the file has inline data, try to read it directly */ 2381 if (f2fs_has_inline_data(inode)) 2382 ret = f2fs_read_inline_data(inode, page); 2383 if (ret == -EAGAIN) 2384 ret = f2fs_mpage_readpages(inode, NULL, page); 2385 return ret; 2386 } 2387 2388 static void f2fs_readahead(struct readahead_control *rac) 2389 { 2390 struct inode *inode = rac->mapping->host; 2391 2392 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac)); 2393 2394 if (!f2fs_is_compress_backend_ready(inode)) 2395 return; 2396 2397 /* If the file has inline data, skip readpages */ 2398 if (f2fs_has_inline_data(inode)) 2399 return; 2400 2401 f2fs_mpage_readpages(inode, rac, NULL); 2402 } 2403 2404 int f2fs_encrypt_one_page(struct f2fs_io_info *fio) 2405 { 2406 struct inode *inode = fio->page->mapping->host; 2407 struct page *mpage, *page; 2408 gfp_t gfp_flags = GFP_NOFS; 2409 2410 if (!f2fs_encrypted_file(inode)) 2411 return 0; 2412 2413 page = fio->compressed_page ? fio->compressed_page : fio->page; 2414 2415 /* wait for GCed page writeback via META_MAPPING */ 2416 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr); 2417 2418 if (fscrypt_inode_uses_inline_crypto(inode)) 2419 return 0; 2420 2421 retry_encrypt: 2422 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page, 2423 PAGE_SIZE, 0, gfp_flags); 2424 if (IS_ERR(fio->encrypted_page)) { 2425 /* flush pending IOs and wait for a while in the ENOMEM case */ 2426 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) { 2427 f2fs_flush_merged_writes(fio->sbi); 2428 memalloc_retry_wait(GFP_NOFS); 2429 gfp_flags |= __GFP_NOFAIL; 2430 goto retry_encrypt; 2431 } 2432 return PTR_ERR(fio->encrypted_page); 2433 } 2434 2435 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr); 2436 if (mpage) { 2437 if (PageUptodate(mpage)) 2438 memcpy(page_address(mpage), 2439 page_address(fio->encrypted_page), PAGE_SIZE); 2440 f2fs_put_page(mpage, 1); 2441 } 2442 return 0; 2443 } 2444 2445 static inline bool check_inplace_update_policy(struct inode *inode, 2446 struct f2fs_io_info *fio) 2447 { 2448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2449 unsigned int policy = SM_I(sbi)->ipu_policy; 2450 2451 if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) && 2452 is_inode_flag_set(inode, FI_OPU_WRITE)) 2453 return false; 2454 if (policy & (0x1 << F2FS_IPU_FORCE)) 2455 return true; 2456 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi)) 2457 return true; 2458 if (policy & (0x1 << F2FS_IPU_UTIL) && 2459 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2460 return true; 2461 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) && 2462 utilization(sbi) > SM_I(sbi)->min_ipu_util) 2463 return true; 2464 2465 /* 2466 * IPU for rewrite async pages 2467 */ 2468 if (policy & (0x1 << F2FS_IPU_ASYNC) && 2469 fio && fio->op == REQ_OP_WRITE && 2470 !(fio->op_flags & REQ_SYNC) && 2471 !IS_ENCRYPTED(inode)) 2472 return true; 2473 2474 /* this is only set during fdatasync */ 2475 if (policy & (0x1 << F2FS_IPU_FSYNC) && 2476 is_inode_flag_set(inode, FI_NEED_IPU)) 2477 return true; 2478 2479 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2480 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2481 return true; 2482 2483 return false; 2484 } 2485 2486 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio) 2487 { 2488 /* swap file is migrating in aligned write mode */ 2489 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2490 return false; 2491 2492 if (f2fs_is_pinned_file(inode)) 2493 return true; 2494 2495 /* if this is cold file, we should overwrite to avoid fragmentation */ 2496 if (file_is_cold(inode)) 2497 return true; 2498 2499 return check_inplace_update_policy(inode, fio); 2500 } 2501 2502 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio) 2503 { 2504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2505 2506 /* The below cases were checked when setting it. */ 2507 if (f2fs_is_pinned_file(inode)) 2508 return false; 2509 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 2510 return true; 2511 if (f2fs_lfs_mode(sbi)) 2512 return true; 2513 if (S_ISDIR(inode->i_mode)) 2514 return true; 2515 if (IS_NOQUOTA(inode)) 2516 return true; 2517 if (f2fs_is_atomic_file(inode)) 2518 return true; 2519 2520 /* swap file is migrating in aligned write mode */ 2521 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 2522 return true; 2523 2524 if (is_inode_flag_set(inode, FI_OPU_WRITE)) 2525 return true; 2526 2527 if (fio) { 2528 if (page_private_gcing(fio->page)) 2529 return true; 2530 if (page_private_dummy(fio->page)) 2531 return true; 2532 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) && 2533 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr))) 2534 return true; 2535 } 2536 return false; 2537 } 2538 2539 static inline bool need_inplace_update(struct f2fs_io_info *fio) 2540 { 2541 struct inode *inode = fio->page->mapping->host; 2542 2543 if (f2fs_should_update_outplace(inode, fio)) 2544 return false; 2545 2546 return f2fs_should_update_inplace(inode, fio); 2547 } 2548 2549 int f2fs_do_write_data_page(struct f2fs_io_info *fio) 2550 { 2551 struct page *page = fio->page; 2552 struct inode *inode = page->mapping->host; 2553 struct dnode_of_data dn; 2554 struct extent_info ei = {0, }; 2555 struct node_info ni; 2556 bool ipu_force = false; 2557 int err = 0; 2558 2559 set_new_dnode(&dn, inode, NULL, NULL, 0); 2560 if (need_inplace_update(fio) && 2561 f2fs_lookup_extent_cache(inode, page->index, &ei)) { 2562 fio->old_blkaddr = ei.blk + page->index - ei.fofs; 2563 2564 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2565 DATA_GENERIC_ENHANCE)) 2566 return -EFSCORRUPTED; 2567 2568 ipu_force = true; 2569 fio->need_lock = LOCK_DONE; 2570 goto got_it; 2571 } 2572 2573 /* Deadlock due to between page->lock and f2fs_lock_op */ 2574 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi)) 2575 return -EAGAIN; 2576 2577 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE); 2578 if (err) 2579 goto out; 2580 2581 fio->old_blkaddr = dn.data_blkaddr; 2582 2583 /* This page is already truncated */ 2584 if (fio->old_blkaddr == NULL_ADDR) { 2585 ClearPageUptodate(page); 2586 clear_page_private_gcing(page); 2587 goto out_writepage; 2588 } 2589 got_it: 2590 if (__is_valid_data_blkaddr(fio->old_blkaddr) && 2591 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr, 2592 DATA_GENERIC_ENHANCE)) { 2593 err = -EFSCORRUPTED; 2594 goto out_writepage; 2595 } 2596 /* 2597 * If current allocation needs SSR, 2598 * it had better in-place writes for updated data. 2599 */ 2600 if (ipu_force || 2601 (__is_valid_data_blkaddr(fio->old_blkaddr) && 2602 need_inplace_update(fio))) { 2603 err = f2fs_encrypt_one_page(fio); 2604 if (err) 2605 goto out_writepage; 2606 2607 set_page_writeback(page); 2608 ClearPageError(page); 2609 f2fs_put_dnode(&dn); 2610 if (fio->need_lock == LOCK_REQ) 2611 f2fs_unlock_op(fio->sbi); 2612 err = f2fs_inplace_write_data(fio); 2613 if (err) { 2614 if (fscrypt_inode_uses_fs_layer_crypto(inode)) 2615 fscrypt_finalize_bounce_page(&fio->encrypted_page); 2616 if (PageWriteback(page)) 2617 end_page_writeback(page); 2618 } else { 2619 set_inode_flag(inode, FI_UPDATE_WRITE); 2620 } 2621 trace_f2fs_do_write_data_page(fio->page, IPU); 2622 return err; 2623 } 2624 2625 if (fio->need_lock == LOCK_RETRY) { 2626 if (!f2fs_trylock_op(fio->sbi)) { 2627 err = -EAGAIN; 2628 goto out_writepage; 2629 } 2630 fio->need_lock = LOCK_REQ; 2631 } 2632 2633 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false); 2634 if (err) 2635 goto out_writepage; 2636 2637 fio->version = ni.version; 2638 2639 err = f2fs_encrypt_one_page(fio); 2640 if (err) 2641 goto out_writepage; 2642 2643 set_page_writeback(page); 2644 ClearPageError(page); 2645 2646 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR) 2647 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false); 2648 2649 /* LFS mode write path */ 2650 f2fs_outplace_write_data(&dn, fio); 2651 trace_f2fs_do_write_data_page(page, OPU); 2652 set_inode_flag(inode, FI_APPEND_WRITE); 2653 if (page->index == 0) 2654 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN); 2655 out_writepage: 2656 f2fs_put_dnode(&dn); 2657 out: 2658 if (fio->need_lock == LOCK_REQ) 2659 f2fs_unlock_op(fio->sbi); 2660 return err; 2661 } 2662 2663 int f2fs_write_single_data_page(struct page *page, int *submitted, 2664 struct bio **bio, 2665 sector_t *last_block, 2666 struct writeback_control *wbc, 2667 enum iostat_type io_type, 2668 int compr_blocks, 2669 bool allow_balance) 2670 { 2671 struct inode *inode = page->mapping->host; 2672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2673 loff_t i_size = i_size_read(inode); 2674 const pgoff_t end_index = ((unsigned long long)i_size) 2675 >> PAGE_SHIFT; 2676 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT; 2677 unsigned offset = 0; 2678 bool need_balance_fs = false; 2679 int err = 0; 2680 struct f2fs_io_info fio = { 2681 .sbi = sbi, 2682 .ino = inode->i_ino, 2683 .type = DATA, 2684 .op = REQ_OP_WRITE, 2685 .op_flags = wbc_to_write_flags(wbc), 2686 .old_blkaddr = NULL_ADDR, 2687 .page = page, 2688 .encrypted_page = NULL, 2689 .submitted = false, 2690 .compr_blocks = compr_blocks, 2691 .need_lock = LOCK_RETRY, 2692 .io_type = io_type, 2693 .io_wbc = wbc, 2694 .bio = bio, 2695 .last_block = last_block, 2696 }; 2697 2698 trace_f2fs_writepage(page, DATA); 2699 2700 /* we should bypass data pages to proceed the kworkder jobs */ 2701 if (unlikely(f2fs_cp_error(sbi))) { 2702 mapping_set_error(page->mapping, -EIO); 2703 /* 2704 * don't drop any dirty dentry pages for keeping lastest 2705 * directory structure. 2706 */ 2707 if (S_ISDIR(inode->i_mode)) 2708 goto redirty_out; 2709 goto out; 2710 } 2711 2712 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 2713 goto redirty_out; 2714 2715 if (page->index < end_index || 2716 f2fs_verity_in_progress(inode) || 2717 compr_blocks) 2718 goto write; 2719 2720 /* 2721 * If the offset is out-of-range of file size, 2722 * this page does not have to be written to disk. 2723 */ 2724 offset = i_size & (PAGE_SIZE - 1); 2725 if ((page->index >= end_index + 1) || !offset) 2726 goto out; 2727 2728 zero_user_segment(page, offset, PAGE_SIZE); 2729 write: 2730 if (f2fs_is_drop_cache(inode)) 2731 goto out; 2732 /* we should not write 0'th page having journal header */ 2733 if (f2fs_is_volatile_file(inode) && (!page->index || 2734 (!wbc->for_reclaim && 2735 f2fs_available_free_memory(sbi, BASE_CHECK)))) 2736 goto redirty_out; 2737 2738 /* Dentry/quota blocks are controlled by checkpoint */ 2739 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) { 2740 /* 2741 * We need to wait for node_write to avoid block allocation during 2742 * checkpoint. This can only happen to quota writes which can cause 2743 * the below discard race condition. 2744 */ 2745 if (IS_NOQUOTA(inode)) 2746 f2fs_down_read(&sbi->node_write); 2747 2748 fio.need_lock = LOCK_DONE; 2749 err = f2fs_do_write_data_page(&fio); 2750 2751 if (IS_NOQUOTA(inode)) 2752 f2fs_up_read(&sbi->node_write); 2753 2754 goto done; 2755 } 2756 2757 if (!wbc->for_reclaim) 2758 need_balance_fs = true; 2759 else if (has_not_enough_free_secs(sbi, 0, 0)) 2760 goto redirty_out; 2761 else 2762 set_inode_flag(inode, FI_HOT_DATA); 2763 2764 err = -EAGAIN; 2765 if (f2fs_has_inline_data(inode)) { 2766 err = f2fs_write_inline_data(inode, page); 2767 if (!err) 2768 goto out; 2769 } 2770 2771 if (err == -EAGAIN) { 2772 err = f2fs_do_write_data_page(&fio); 2773 if (err == -EAGAIN) { 2774 fio.need_lock = LOCK_REQ; 2775 err = f2fs_do_write_data_page(&fio); 2776 } 2777 } 2778 2779 if (err) { 2780 file_set_keep_isize(inode); 2781 } else { 2782 spin_lock(&F2FS_I(inode)->i_size_lock); 2783 if (F2FS_I(inode)->last_disk_size < psize) 2784 F2FS_I(inode)->last_disk_size = psize; 2785 spin_unlock(&F2FS_I(inode)->i_size_lock); 2786 } 2787 2788 done: 2789 if (err && err != -ENOENT) 2790 goto redirty_out; 2791 2792 out: 2793 inode_dec_dirty_pages(inode); 2794 if (err) { 2795 ClearPageUptodate(page); 2796 clear_page_private_gcing(page); 2797 } 2798 2799 if (wbc->for_reclaim) { 2800 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA); 2801 clear_inode_flag(inode, FI_HOT_DATA); 2802 f2fs_remove_dirty_inode(inode); 2803 submitted = NULL; 2804 } 2805 unlock_page(page); 2806 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) && 2807 !F2FS_I(inode)->cp_task && allow_balance) 2808 f2fs_balance_fs(sbi, need_balance_fs); 2809 2810 if (unlikely(f2fs_cp_error(sbi))) { 2811 f2fs_submit_merged_write(sbi, DATA); 2812 f2fs_submit_merged_ipu_write(sbi, bio, NULL); 2813 submitted = NULL; 2814 } 2815 2816 if (submitted) 2817 *submitted = fio.submitted ? 1 : 0; 2818 2819 return 0; 2820 2821 redirty_out: 2822 redirty_page_for_writepage(wbc, page); 2823 /* 2824 * pageout() in MM traslates EAGAIN, so calls handle_write_error() 2825 * -> mapping_set_error() -> set_bit(AS_EIO, ...). 2826 * file_write_and_wait_range() will see EIO error, which is critical 2827 * to return value of fsync() followed by atomic_write failure to user. 2828 */ 2829 if (!err || wbc->for_reclaim) 2830 return AOP_WRITEPAGE_ACTIVATE; 2831 unlock_page(page); 2832 return err; 2833 } 2834 2835 static int f2fs_write_data_page(struct page *page, 2836 struct writeback_control *wbc) 2837 { 2838 #ifdef CONFIG_F2FS_FS_COMPRESSION 2839 struct inode *inode = page->mapping->host; 2840 2841 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) 2842 goto out; 2843 2844 if (f2fs_compressed_file(inode)) { 2845 if (f2fs_is_compressed_cluster(inode, page->index)) { 2846 redirty_page_for_writepage(wbc, page); 2847 return AOP_WRITEPAGE_ACTIVATE; 2848 } 2849 } 2850 out: 2851 #endif 2852 2853 return f2fs_write_single_data_page(page, NULL, NULL, NULL, 2854 wbc, FS_DATA_IO, 0, true); 2855 } 2856 2857 /* 2858 * This function was copied from write_cche_pages from mm/page-writeback.c. 2859 * The major change is making write step of cold data page separately from 2860 * warm/hot data page. 2861 */ 2862 static int f2fs_write_cache_pages(struct address_space *mapping, 2863 struct writeback_control *wbc, 2864 enum iostat_type io_type) 2865 { 2866 int ret = 0; 2867 int done = 0, retry = 0; 2868 struct pagevec pvec; 2869 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); 2870 struct bio *bio = NULL; 2871 sector_t last_block; 2872 #ifdef CONFIG_F2FS_FS_COMPRESSION 2873 struct inode *inode = mapping->host; 2874 struct compress_ctx cc = { 2875 .inode = inode, 2876 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size, 2877 .cluster_size = F2FS_I(inode)->i_cluster_size, 2878 .cluster_idx = NULL_CLUSTER, 2879 .rpages = NULL, 2880 .nr_rpages = 0, 2881 .cpages = NULL, 2882 .valid_nr_cpages = 0, 2883 .rbuf = NULL, 2884 .cbuf = NULL, 2885 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size, 2886 .private = NULL, 2887 }; 2888 #endif 2889 int nr_pages; 2890 pgoff_t index; 2891 pgoff_t end; /* Inclusive */ 2892 pgoff_t done_index; 2893 int range_whole = 0; 2894 xa_mark_t tag; 2895 int nwritten = 0; 2896 int submitted = 0; 2897 int i; 2898 2899 pagevec_init(&pvec); 2900 2901 if (get_dirty_pages(mapping->host) <= 2902 SM_I(F2FS_M_SB(mapping))->min_hot_blocks) 2903 set_inode_flag(mapping->host, FI_HOT_DATA); 2904 else 2905 clear_inode_flag(mapping->host, FI_HOT_DATA); 2906 2907 if (wbc->range_cyclic) { 2908 index = mapping->writeback_index; /* prev offset */ 2909 end = -1; 2910 } else { 2911 index = wbc->range_start >> PAGE_SHIFT; 2912 end = wbc->range_end >> PAGE_SHIFT; 2913 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2914 range_whole = 1; 2915 } 2916 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2917 tag = PAGECACHE_TAG_TOWRITE; 2918 else 2919 tag = PAGECACHE_TAG_DIRTY; 2920 retry: 2921 retry = 0; 2922 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2923 tag_pages_for_writeback(mapping, index, end); 2924 done_index = index; 2925 while (!done && !retry && (index <= end)) { 2926 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2927 tag); 2928 if (nr_pages == 0) 2929 break; 2930 2931 for (i = 0; i < nr_pages; i++) { 2932 struct page *page = pvec.pages[i]; 2933 bool need_readd; 2934 readd: 2935 need_readd = false; 2936 #ifdef CONFIG_F2FS_FS_COMPRESSION 2937 if (f2fs_compressed_file(inode)) { 2938 void *fsdata = NULL; 2939 struct page *pagep; 2940 int ret2; 2941 2942 ret = f2fs_init_compress_ctx(&cc); 2943 if (ret) { 2944 done = 1; 2945 break; 2946 } 2947 2948 if (!f2fs_cluster_can_merge_page(&cc, 2949 page->index)) { 2950 ret = f2fs_write_multi_pages(&cc, 2951 &submitted, wbc, io_type); 2952 if (!ret) 2953 need_readd = true; 2954 goto result; 2955 } 2956 2957 if (unlikely(f2fs_cp_error(sbi))) 2958 goto lock_page; 2959 2960 if (!f2fs_cluster_is_empty(&cc)) 2961 goto lock_page; 2962 2963 ret2 = f2fs_prepare_compress_overwrite( 2964 inode, &pagep, 2965 page->index, &fsdata); 2966 if (ret2 < 0) { 2967 ret = ret2; 2968 done = 1; 2969 break; 2970 } else if (ret2 && 2971 (!f2fs_compress_write_end(inode, 2972 fsdata, page->index, 1) || 2973 !f2fs_all_cluster_page_loaded(&cc, 2974 &pvec, i, nr_pages))) { 2975 retry = 1; 2976 break; 2977 } 2978 } 2979 #endif 2980 /* give a priority to WB_SYNC threads */ 2981 if (atomic_read(&sbi->wb_sync_req[DATA]) && 2982 wbc->sync_mode == WB_SYNC_NONE) { 2983 done = 1; 2984 break; 2985 } 2986 #ifdef CONFIG_F2FS_FS_COMPRESSION 2987 lock_page: 2988 #endif 2989 done_index = page->index; 2990 retry_write: 2991 lock_page(page); 2992 2993 if (unlikely(page->mapping != mapping)) { 2994 continue_unlock: 2995 unlock_page(page); 2996 continue; 2997 } 2998 2999 if (!PageDirty(page)) { 3000 /* someone wrote it for us */ 3001 goto continue_unlock; 3002 } 3003 3004 if (PageWriteback(page)) { 3005 if (wbc->sync_mode != WB_SYNC_NONE) 3006 f2fs_wait_on_page_writeback(page, 3007 DATA, true, true); 3008 else 3009 goto continue_unlock; 3010 } 3011 3012 if (!clear_page_dirty_for_io(page)) 3013 goto continue_unlock; 3014 3015 #ifdef CONFIG_F2FS_FS_COMPRESSION 3016 if (f2fs_compressed_file(inode)) { 3017 get_page(page); 3018 f2fs_compress_ctx_add_page(&cc, page); 3019 continue; 3020 } 3021 #endif 3022 ret = f2fs_write_single_data_page(page, &submitted, 3023 &bio, &last_block, wbc, io_type, 3024 0, true); 3025 if (ret == AOP_WRITEPAGE_ACTIVATE) 3026 unlock_page(page); 3027 #ifdef CONFIG_F2FS_FS_COMPRESSION 3028 result: 3029 #endif 3030 nwritten += submitted; 3031 wbc->nr_to_write -= submitted; 3032 3033 if (unlikely(ret)) { 3034 /* 3035 * keep nr_to_write, since vfs uses this to 3036 * get # of written pages. 3037 */ 3038 if (ret == AOP_WRITEPAGE_ACTIVATE) { 3039 ret = 0; 3040 goto next; 3041 } else if (ret == -EAGAIN) { 3042 ret = 0; 3043 if (wbc->sync_mode == WB_SYNC_ALL) { 3044 f2fs_io_schedule_timeout( 3045 DEFAULT_IO_TIMEOUT); 3046 goto retry_write; 3047 } 3048 goto next; 3049 } 3050 done_index = page->index + 1; 3051 done = 1; 3052 break; 3053 } 3054 3055 if (wbc->nr_to_write <= 0 && 3056 wbc->sync_mode == WB_SYNC_NONE) { 3057 done = 1; 3058 break; 3059 } 3060 next: 3061 if (need_readd) 3062 goto readd; 3063 } 3064 pagevec_release(&pvec); 3065 cond_resched(); 3066 } 3067 #ifdef CONFIG_F2FS_FS_COMPRESSION 3068 /* flush remained pages in compress cluster */ 3069 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) { 3070 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type); 3071 nwritten += submitted; 3072 wbc->nr_to_write -= submitted; 3073 if (ret) { 3074 done = 1; 3075 retry = 0; 3076 } 3077 } 3078 if (f2fs_compressed_file(inode)) 3079 f2fs_destroy_compress_ctx(&cc, false); 3080 #endif 3081 if (retry) { 3082 index = 0; 3083 end = -1; 3084 goto retry; 3085 } 3086 if (wbc->range_cyclic && !done) 3087 done_index = 0; 3088 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 3089 mapping->writeback_index = done_index; 3090 3091 if (nwritten) 3092 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host, 3093 NULL, 0, DATA); 3094 /* submit cached bio of IPU write */ 3095 if (bio) 3096 f2fs_submit_merged_ipu_write(sbi, &bio, NULL); 3097 3098 return ret; 3099 } 3100 3101 static inline bool __should_serialize_io(struct inode *inode, 3102 struct writeback_control *wbc) 3103 { 3104 /* to avoid deadlock in path of data flush */ 3105 if (F2FS_I(inode)->cp_task) 3106 return false; 3107 3108 if (!S_ISREG(inode->i_mode)) 3109 return false; 3110 if (IS_NOQUOTA(inode)) 3111 return false; 3112 3113 if (f2fs_need_compress_data(inode)) 3114 return true; 3115 if (wbc->sync_mode != WB_SYNC_ALL) 3116 return true; 3117 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks) 3118 return true; 3119 return false; 3120 } 3121 3122 static int __f2fs_write_data_pages(struct address_space *mapping, 3123 struct writeback_control *wbc, 3124 enum iostat_type io_type) 3125 { 3126 struct inode *inode = mapping->host; 3127 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3128 struct blk_plug plug; 3129 int ret; 3130 bool locked = false; 3131 3132 /* deal with chardevs and other special file */ 3133 if (!mapping->a_ops->writepage) 3134 return 0; 3135 3136 /* skip writing if there is no dirty page in this inode */ 3137 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE) 3138 return 0; 3139 3140 /* during POR, we don't need to trigger writepage at all. */ 3141 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 3142 goto skip_write; 3143 3144 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) && 3145 wbc->sync_mode == WB_SYNC_NONE && 3146 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) && 3147 f2fs_available_free_memory(sbi, DIRTY_DENTS)) 3148 goto skip_write; 3149 3150 /* skip writing in file defragment preparing stage */ 3151 if (is_inode_flag_set(inode, FI_SKIP_WRITES)) 3152 goto skip_write; 3153 3154 trace_f2fs_writepages(mapping->host, wbc, DATA); 3155 3156 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */ 3157 if (wbc->sync_mode == WB_SYNC_ALL) 3158 atomic_inc(&sbi->wb_sync_req[DATA]); 3159 else if (atomic_read(&sbi->wb_sync_req[DATA])) { 3160 /* to avoid potential deadlock */ 3161 if (current->plug) 3162 blk_finish_plug(current->plug); 3163 goto skip_write; 3164 } 3165 3166 if (__should_serialize_io(inode, wbc)) { 3167 mutex_lock(&sbi->writepages); 3168 locked = true; 3169 } 3170 3171 blk_start_plug(&plug); 3172 ret = f2fs_write_cache_pages(mapping, wbc, io_type); 3173 blk_finish_plug(&plug); 3174 3175 if (locked) 3176 mutex_unlock(&sbi->writepages); 3177 3178 if (wbc->sync_mode == WB_SYNC_ALL) 3179 atomic_dec(&sbi->wb_sync_req[DATA]); 3180 /* 3181 * if some pages were truncated, we cannot guarantee its mapping->host 3182 * to detect pending bios. 3183 */ 3184 3185 f2fs_remove_dirty_inode(inode); 3186 return ret; 3187 3188 skip_write: 3189 wbc->pages_skipped += get_dirty_pages(inode); 3190 trace_f2fs_writepages(mapping->host, wbc, DATA); 3191 return 0; 3192 } 3193 3194 static int f2fs_write_data_pages(struct address_space *mapping, 3195 struct writeback_control *wbc) 3196 { 3197 struct inode *inode = mapping->host; 3198 3199 return __f2fs_write_data_pages(mapping, wbc, 3200 F2FS_I(inode)->cp_task == current ? 3201 FS_CP_DATA_IO : FS_DATA_IO); 3202 } 3203 3204 void f2fs_write_failed(struct inode *inode, loff_t to) 3205 { 3206 loff_t i_size = i_size_read(inode); 3207 3208 if (IS_NOQUOTA(inode)) 3209 return; 3210 3211 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */ 3212 if (to > i_size && !f2fs_verity_in_progress(inode)) { 3213 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3214 filemap_invalidate_lock(inode->i_mapping); 3215 3216 truncate_pagecache(inode, i_size); 3217 f2fs_truncate_blocks(inode, i_size, true); 3218 3219 filemap_invalidate_unlock(inode->i_mapping); 3220 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3221 } 3222 } 3223 3224 static int prepare_write_begin(struct f2fs_sb_info *sbi, 3225 struct page *page, loff_t pos, unsigned len, 3226 block_t *blk_addr, bool *node_changed) 3227 { 3228 struct inode *inode = page->mapping->host; 3229 pgoff_t index = page->index; 3230 struct dnode_of_data dn; 3231 struct page *ipage; 3232 bool locked = false; 3233 struct extent_info ei = {0, }; 3234 int err = 0; 3235 int flag; 3236 3237 /* 3238 * If a whole page is being written and we already preallocated all the 3239 * blocks, then there is no need to get a block address now. 3240 */ 3241 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL)) 3242 return 0; 3243 3244 /* f2fs_lock_op avoids race between write CP and convert_inline_page */ 3245 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode)) 3246 flag = F2FS_GET_BLOCK_DEFAULT; 3247 else 3248 flag = F2FS_GET_BLOCK_PRE_AIO; 3249 3250 if (f2fs_has_inline_data(inode) || 3251 (pos & PAGE_MASK) >= i_size_read(inode)) { 3252 f2fs_do_map_lock(sbi, flag, true); 3253 locked = true; 3254 } 3255 3256 restart: 3257 /* check inline_data */ 3258 ipage = f2fs_get_node_page(sbi, inode->i_ino); 3259 if (IS_ERR(ipage)) { 3260 err = PTR_ERR(ipage); 3261 goto unlock_out; 3262 } 3263 3264 set_new_dnode(&dn, inode, ipage, ipage, 0); 3265 3266 if (f2fs_has_inline_data(inode)) { 3267 if (pos + len <= MAX_INLINE_DATA(inode)) { 3268 f2fs_do_read_inline_data(page, ipage); 3269 set_inode_flag(inode, FI_DATA_EXIST); 3270 if (inode->i_nlink) 3271 set_page_private_inline(ipage); 3272 } else { 3273 err = f2fs_convert_inline_page(&dn, page); 3274 if (err) 3275 goto out; 3276 if (dn.data_blkaddr == NULL_ADDR) 3277 err = f2fs_get_block(&dn, index); 3278 } 3279 } else if (locked) { 3280 err = f2fs_get_block(&dn, index); 3281 } else { 3282 if (f2fs_lookup_extent_cache(inode, index, &ei)) { 3283 dn.data_blkaddr = ei.blk + index - ei.fofs; 3284 } else { 3285 /* hole case */ 3286 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE); 3287 if (err || dn.data_blkaddr == NULL_ADDR) { 3288 f2fs_put_dnode(&dn); 3289 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, 3290 true); 3291 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO); 3292 locked = true; 3293 goto restart; 3294 } 3295 } 3296 } 3297 3298 /* convert_inline_page can make node_changed */ 3299 *blk_addr = dn.data_blkaddr; 3300 *node_changed = dn.node_changed; 3301 out: 3302 f2fs_put_dnode(&dn); 3303 unlock_out: 3304 if (locked) 3305 f2fs_do_map_lock(sbi, flag, false); 3306 return err; 3307 } 3308 3309 static int f2fs_write_begin(struct file *file, struct address_space *mapping, 3310 loff_t pos, unsigned len, unsigned flags, 3311 struct page **pagep, void **fsdata) 3312 { 3313 struct inode *inode = mapping->host; 3314 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3315 struct page *page = NULL; 3316 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT; 3317 bool need_balance = false, drop_atomic = false; 3318 block_t blkaddr = NULL_ADDR; 3319 int err = 0; 3320 3321 trace_f2fs_write_begin(inode, pos, len, flags); 3322 3323 if (!f2fs_is_checkpoint_ready(sbi)) { 3324 err = -ENOSPC; 3325 goto fail; 3326 } 3327 3328 if ((f2fs_is_atomic_file(inode) && 3329 !f2fs_available_free_memory(sbi, INMEM_PAGES)) || 3330 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) { 3331 err = -ENOMEM; 3332 drop_atomic = true; 3333 goto fail; 3334 } 3335 3336 /* 3337 * We should check this at this moment to avoid deadlock on inode page 3338 * and #0 page. The locking rule for inline_data conversion should be: 3339 * lock_page(page #0) -> lock_page(inode_page) 3340 */ 3341 if (index != 0) { 3342 err = f2fs_convert_inline_inode(inode); 3343 if (err) 3344 goto fail; 3345 } 3346 3347 #ifdef CONFIG_F2FS_FS_COMPRESSION 3348 if (f2fs_compressed_file(inode)) { 3349 int ret; 3350 3351 *fsdata = NULL; 3352 3353 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode))) 3354 goto repeat; 3355 3356 ret = f2fs_prepare_compress_overwrite(inode, pagep, 3357 index, fsdata); 3358 if (ret < 0) { 3359 err = ret; 3360 goto fail; 3361 } else if (ret) { 3362 return 0; 3363 } 3364 } 3365 #endif 3366 3367 repeat: 3368 /* 3369 * Do not use grab_cache_page_write_begin() to avoid deadlock due to 3370 * wait_for_stable_page. Will wait that below with our IO control. 3371 */ 3372 page = f2fs_pagecache_get_page(mapping, index, 3373 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS); 3374 if (!page) { 3375 err = -ENOMEM; 3376 goto fail; 3377 } 3378 3379 /* TODO: cluster can be compressed due to race with .writepage */ 3380 3381 *pagep = page; 3382 3383 err = prepare_write_begin(sbi, page, pos, len, 3384 &blkaddr, &need_balance); 3385 if (err) 3386 goto fail; 3387 3388 if (need_balance && !IS_NOQUOTA(inode) && 3389 has_not_enough_free_secs(sbi, 0, 0)) { 3390 unlock_page(page); 3391 f2fs_balance_fs(sbi, true); 3392 lock_page(page); 3393 if (page->mapping != mapping) { 3394 /* The page got truncated from under us */ 3395 f2fs_put_page(page, 1); 3396 goto repeat; 3397 } 3398 } 3399 3400 f2fs_wait_on_page_writeback(page, DATA, false, true); 3401 3402 if (len == PAGE_SIZE || PageUptodate(page)) 3403 return 0; 3404 3405 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) && 3406 !f2fs_verity_in_progress(inode)) { 3407 zero_user_segment(page, len, PAGE_SIZE); 3408 return 0; 3409 } 3410 3411 if (blkaddr == NEW_ADDR) { 3412 zero_user_segment(page, 0, PAGE_SIZE); 3413 SetPageUptodate(page); 3414 } else { 3415 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 3416 DATA_GENERIC_ENHANCE_READ)) { 3417 err = -EFSCORRUPTED; 3418 goto fail; 3419 } 3420 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true); 3421 if (err) 3422 goto fail; 3423 3424 lock_page(page); 3425 if (unlikely(page->mapping != mapping)) { 3426 f2fs_put_page(page, 1); 3427 goto repeat; 3428 } 3429 if (unlikely(!PageUptodate(page))) { 3430 err = -EIO; 3431 goto fail; 3432 } 3433 } 3434 return 0; 3435 3436 fail: 3437 f2fs_put_page(page, 1); 3438 f2fs_write_failed(inode, pos + len); 3439 if (drop_atomic) 3440 f2fs_drop_inmem_pages_all(sbi, false); 3441 return err; 3442 } 3443 3444 static int f2fs_write_end(struct file *file, 3445 struct address_space *mapping, 3446 loff_t pos, unsigned len, unsigned copied, 3447 struct page *page, void *fsdata) 3448 { 3449 struct inode *inode = page->mapping->host; 3450 3451 trace_f2fs_write_end(inode, pos, len, copied); 3452 3453 /* 3454 * This should be come from len == PAGE_SIZE, and we expect copied 3455 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and 3456 * let generic_perform_write() try to copy data again through copied=0. 3457 */ 3458 if (!PageUptodate(page)) { 3459 if (unlikely(copied != len)) 3460 copied = 0; 3461 else 3462 SetPageUptodate(page); 3463 } 3464 3465 #ifdef CONFIG_F2FS_FS_COMPRESSION 3466 /* overwrite compressed file */ 3467 if (f2fs_compressed_file(inode) && fsdata) { 3468 f2fs_compress_write_end(inode, fsdata, page->index, copied); 3469 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3470 3471 if (pos + copied > i_size_read(inode) && 3472 !f2fs_verity_in_progress(inode)) 3473 f2fs_i_size_write(inode, pos + copied); 3474 return copied; 3475 } 3476 #endif 3477 3478 if (!copied) 3479 goto unlock_out; 3480 3481 set_page_dirty(page); 3482 3483 if (pos + copied > i_size_read(inode) && 3484 !f2fs_verity_in_progress(inode)) 3485 f2fs_i_size_write(inode, pos + copied); 3486 unlock_out: 3487 f2fs_put_page(page, 1); 3488 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3489 return copied; 3490 } 3491 3492 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length) 3493 { 3494 struct inode *inode = folio->mapping->host; 3495 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3496 3497 if (inode->i_ino >= F2FS_ROOT_INO(sbi) && 3498 (offset || length != folio_size(folio))) 3499 return; 3500 3501 if (folio_test_dirty(folio)) { 3502 if (inode->i_ino == F2FS_META_INO(sbi)) { 3503 dec_page_count(sbi, F2FS_DIRTY_META); 3504 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) { 3505 dec_page_count(sbi, F2FS_DIRTY_NODES); 3506 } else { 3507 inode_dec_dirty_pages(inode); 3508 f2fs_remove_dirty_inode(inode); 3509 } 3510 } 3511 3512 clear_page_private_gcing(&folio->page); 3513 3514 if (test_opt(sbi, COMPRESS_CACHE) && 3515 inode->i_ino == F2FS_COMPRESS_INO(sbi)) 3516 clear_page_private_data(&folio->page); 3517 3518 if (page_private_atomic(&folio->page)) 3519 return f2fs_drop_inmem_page(inode, &folio->page); 3520 3521 folio_detach_private(folio); 3522 } 3523 3524 int f2fs_release_page(struct page *page, gfp_t wait) 3525 { 3526 /* If this is dirty page, keep PagePrivate */ 3527 if (PageDirty(page)) 3528 return 0; 3529 3530 /* This is atomic written page, keep Private */ 3531 if (page_private_atomic(page)) 3532 return 0; 3533 3534 if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) { 3535 struct inode *inode = page->mapping->host; 3536 3537 if (inode->i_ino == F2FS_COMPRESS_INO(F2FS_I_SB(inode))) 3538 clear_page_private_data(page); 3539 } 3540 3541 clear_page_private_gcing(page); 3542 3543 detach_page_private(page); 3544 set_page_private(page, 0); 3545 return 1; 3546 } 3547 3548 static bool f2fs_dirty_data_folio(struct address_space *mapping, 3549 struct folio *folio) 3550 { 3551 struct inode *inode = mapping->host; 3552 3553 trace_f2fs_set_page_dirty(&folio->page, DATA); 3554 3555 if (!folio_test_uptodate(folio)) 3556 folio_mark_uptodate(folio); 3557 BUG_ON(folio_test_swapcache(folio)); 3558 3559 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) { 3560 if (!page_private_atomic(&folio->page)) { 3561 f2fs_register_inmem_page(inode, &folio->page); 3562 return true; 3563 } 3564 /* 3565 * Previously, this page has been registered, we just 3566 * return here. 3567 */ 3568 return false; 3569 } 3570 3571 if (!folio_test_dirty(folio)) { 3572 filemap_dirty_folio(mapping, folio); 3573 f2fs_update_dirty_folio(inode, folio); 3574 return true; 3575 } 3576 return true; 3577 } 3578 3579 3580 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block) 3581 { 3582 #ifdef CONFIG_F2FS_FS_COMPRESSION 3583 struct dnode_of_data dn; 3584 sector_t start_idx, blknr = 0; 3585 int ret; 3586 3587 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size); 3588 3589 set_new_dnode(&dn, inode, NULL, NULL, 0); 3590 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE); 3591 if (ret) 3592 return 0; 3593 3594 if (dn.data_blkaddr != COMPRESS_ADDR) { 3595 dn.ofs_in_node += block - start_idx; 3596 blknr = f2fs_data_blkaddr(&dn); 3597 if (!__is_valid_data_blkaddr(blknr)) 3598 blknr = 0; 3599 } 3600 3601 f2fs_put_dnode(&dn); 3602 return blknr; 3603 #else 3604 return 0; 3605 #endif 3606 } 3607 3608 3609 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block) 3610 { 3611 struct inode *inode = mapping->host; 3612 sector_t blknr = 0; 3613 3614 if (f2fs_has_inline_data(inode)) 3615 goto out; 3616 3617 /* make sure allocating whole blocks */ 3618 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 3619 filemap_write_and_wait(mapping); 3620 3621 /* Block number less than F2FS MAX BLOCKS */ 3622 if (unlikely(block >= max_file_blocks(inode))) 3623 goto out; 3624 3625 if (f2fs_compressed_file(inode)) { 3626 blknr = f2fs_bmap_compress(inode, block); 3627 } else { 3628 struct f2fs_map_blocks map; 3629 3630 memset(&map, 0, sizeof(map)); 3631 map.m_lblk = block; 3632 map.m_len = 1; 3633 map.m_next_pgofs = NULL; 3634 map.m_seg_type = NO_CHECK_TYPE; 3635 3636 if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP)) 3637 blknr = map.m_pblk; 3638 } 3639 out: 3640 trace_f2fs_bmap(inode, block, blknr); 3641 return blknr; 3642 } 3643 3644 #ifdef CONFIG_MIGRATION 3645 #include <linux/migrate.h> 3646 3647 int f2fs_migrate_page(struct address_space *mapping, 3648 struct page *newpage, struct page *page, enum migrate_mode mode) 3649 { 3650 int rc, extra_count; 3651 struct f2fs_inode_info *fi = F2FS_I(mapping->host); 3652 bool atomic_written = page_private_atomic(page); 3653 3654 BUG_ON(PageWriteback(page)); 3655 3656 /* migrating an atomic written page is safe with the inmem_lock hold */ 3657 if (atomic_written) { 3658 if (mode != MIGRATE_SYNC) 3659 return -EBUSY; 3660 if (!mutex_trylock(&fi->inmem_lock)) 3661 return -EAGAIN; 3662 } 3663 3664 /* one extra reference was held for atomic_write page */ 3665 extra_count = atomic_written ? 1 : 0; 3666 rc = migrate_page_move_mapping(mapping, newpage, 3667 page, extra_count); 3668 if (rc != MIGRATEPAGE_SUCCESS) { 3669 if (atomic_written) 3670 mutex_unlock(&fi->inmem_lock); 3671 return rc; 3672 } 3673 3674 if (atomic_written) { 3675 struct inmem_pages *cur; 3676 3677 list_for_each_entry(cur, &fi->inmem_pages, list) 3678 if (cur->page == page) { 3679 cur->page = newpage; 3680 break; 3681 } 3682 mutex_unlock(&fi->inmem_lock); 3683 put_page(page); 3684 get_page(newpage); 3685 } 3686 3687 /* guarantee to start from no stale private field */ 3688 set_page_private(newpage, 0); 3689 if (PagePrivate(page)) { 3690 set_page_private(newpage, page_private(page)); 3691 SetPagePrivate(newpage); 3692 get_page(newpage); 3693 3694 set_page_private(page, 0); 3695 ClearPagePrivate(page); 3696 put_page(page); 3697 } 3698 3699 if (mode != MIGRATE_SYNC_NO_COPY) 3700 migrate_page_copy(newpage, page); 3701 else 3702 migrate_page_states(newpage, page); 3703 3704 return MIGRATEPAGE_SUCCESS; 3705 } 3706 #endif 3707 3708 #ifdef CONFIG_SWAP 3709 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk, 3710 unsigned int blkcnt) 3711 { 3712 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3713 unsigned int blkofs; 3714 unsigned int blk_per_sec = BLKS_PER_SEC(sbi); 3715 unsigned int secidx = start_blk / blk_per_sec; 3716 unsigned int end_sec = secidx + blkcnt / blk_per_sec; 3717 int ret = 0; 3718 3719 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3720 filemap_invalidate_lock(inode->i_mapping); 3721 3722 set_inode_flag(inode, FI_ALIGNED_WRITE); 3723 set_inode_flag(inode, FI_OPU_WRITE); 3724 3725 for (; secidx < end_sec; secidx++) { 3726 f2fs_down_write(&sbi->pin_sem); 3727 3728 f2fs_lock_op(sbi); 3729 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3730 f2fs_unlock_op(sbi); 3731 3732 set_inode_flag(inode, FI_SKIP_WRITES); 3733 3734 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) { 3735 struct page *page; 3736 unsigned int blkidx = secidx * blk_per_sec + blkofs; 3737 3738 page = f2fs_get_lock_data_page(inode, blkidx, true); 3739 if (IS_ERR(page)) { 3740 f2fs_up_write(&sbi->pin_sem); 3741 ret = PTR_ERR(page); 3742 goto done; 3743 } 3744 3745 set_page_dirty(page); 3746 f2fs_put_page(page, 1); 3747 } 3748 3749 clear_inode_flag(inode, FI_SKIP_WRITES); 3750 3751 ret = filemap_fdatawrite(inode->i_mapping); 3752 3753 f2fs_up_write(&sbi->pin_sem); 3754 3755 if (ret) 3756 break; 3757 } 3758 3759 done: 3760 clear_inode_flag(inode, FI_SKIP_WRITES); 3761 clear_inode_flag(inode, FI_OPU_WRITE); 3762 clear_inode_flag(inode, FI_ALIGNED_WRITE); 3763 3764 filemap_invalidate_unlock(inode->i_mapping); 3765 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]); 3766 3767 return ret; 3768 } 3769 3770 static int check_swap_activate(struct swap_info_struct *sis, 3771 struct file *swap_file, sector_t *span) 3772 { 3773 struct address_space *mapping = swap_file->f_mapping; 3774 struct inode *inode = mapping->host; 3775 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3776 sector_t cur_lblock; 3777 sector_t last_lblock; 3778 sector_t pblock; 3779 sector_t lowest_pblock = -1; 3780 sector_t highest_pblock = 0; 3781 int nr_extents = 0; 3782 unsigned long nr_pblocks; 3783 unsigned int blks_per_sec = BLKS_PER_SEC(sbi); 3784 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1; 3785 unsigned int not_aligned = 0; 3786 int ret = 0; 3787 3788 /* 3789 * Map all the blocks into the extent list. This code doesn't try 3790 * to be very smart. 3791 */ 3792 cur_lblock = 0; 3793 last_lblock = bytes_to_blks(inode, i_size_read(inode)); 3794 3795 while (cur_lblock < last_lblock && cur_lblock < sis->max) { 3796 struct f2fs_map_blocks map; 3797 retry: 3798 cond_resched(); 3799 3800 memset(&map, 0, sizeof(map)); 3801 map.m_lblk = cur_lblock; 3802 map.m_len = last_lblock - cur_lblock; 3803 map.m_next_pgofs = NULL; 3804 map.m_next_extent = NULL; 3805 map.m_seg_type = NO_CHECK_TYPE; 3806 map.m_may_create = false; 3807 3808 ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP); 3809 if (ret) 3810 goto out; 3811 3812 /* hole */ 3813 if (!(map.m_flags & F2FS_MAP_FLAGS)) { 3814 f2fs_err(sbi, "Swapfile has holes"); 3815 ret = -EINVAL; 3816 goto out; 3817 } 3818 3819 pblock = map.m_pblk; 3820 nr_pblocks = map.m_len; 3821 3822 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask || 3823 nr_pblocks & sec_blks_mask) { 3824 not_aligned++; 3825 3826 nr_pblocks = roundup(nr_pblocks, blks_per_sec); 3827 if (cur_lblock + nr_pblocks > sis->max) 3828 nr_pblocks -= blks_per_sec; 3829 3830 if (!nr_pblocks) { 3831 /* this extent is last one */ 3832 nr_pblocks = map.m_len; 3833 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section"); 3834 goto next; 3835 } 3836 3837 ret = f2fs_migrate_blocks(inode, cur_lblock, 3838 nr_pblocks); 3839 if (ret) 3840 goto out; 3841 goto retry; 3842 } 3843 next: 3844 if (cur_lblock + nr_pblocks >= sis->max) 3845 nr_pblocks = sis->max - cur_lblock; 3846 3847 if (cur_lblock) { /* exclude the header page */ 3848 if (pblock < lowest_pblock) 3849 lowest_pblock = pblock; 3850 if (pblock + nr_pblocks - 1 > highest_pblock) 3851 highest_pblock = pblock + nr_pblocks - 1; 3852 } 3853 3854 /* 3855 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 3856 */ 3857 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock); 3858 if (ret < 0) 3859 goto out; 3860 nr_extents += ret; 3861 cur_lblock += nr_pblocks; 3862 } 3863 ret = nr_extents; 3864 *span = 1 + highest_pblock - lowest_pblock; 3865 if (cur_lblock == 0) 3866 cur_lblock = 1; /* force Empty message */ 3867 sis->max = cur_lblock; 3868 sis->pages = cur_lblock - 1; 3869 sis->highest_bit = cur_lblock - 1; 3870 out: 3871 if (not_aligned) 3872 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)", 3873 not_aligned, blks_per_sec * F2FS_BLKSIZE); 3874 return ret; 3875 } 3876 3877 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3878 sector_t *span) 3879 { 3880 struct inode *inode = file_inode(file); 3881 int ret; 3882 3883 if (!S_ISREG(inode->i_mode)) 3884 return -EINVAL; 3885 3886 if (f2fs_readonly(F2FS_I_SB(inode)->sb)) 3887 return -EROFS; 3888 3889 if (f2fs_lfs_mode(F2FS_I_SB(inode))) { 3890 f2fs_err(F2FS_I_SB(inode), 3891 "Swapfile not supported in LFS mode"); 3892 return -EINVAL; 3893 } 3894 3895 ret = f2fs_convert_inline_inode(inode); 3896 if (ret) 3897 return ret; 3898 3899 if (!f2fs_disable_compressed_file(inode)) 3900 return -EINVAL; 3901 3902 f2fs_precache_extents(inode); 3903 3904 ret = check_swap_activate(sis, file, span); 3905 if (ret < 0) 3906 return ret; 3907 3908 set_inode_flag(inode, FI_PIN_FILE); 3909 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME); 3910 return ret; 3911 } 3912 3913 static void f2fs_swap_deactivate(struct file *file) 3914 { 3915 struct inode *inode = file_inode(file); 3916 3917 clear_inode_flag(inode, FI_PIN_FILE); 3918 } 3919 #else 3920 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file, 3921 sector_t *span) 3922 { 3923 return -EOPNOTSUPP; 3924 } 3925 3926 static void f2fs_swap_deactivate(struct file *file) 3927 { 3928 } 3929 #endif 3930 3931 const struct address_space_operations f2fs_dblock_aops = { 3932 .readpage = f2fs_read_data_page, 3933 .readahead = f2fs_readahead, 3934 .writepage = f2fs_write_data_page, 3935 .writepages = f2fs_write_data_pages, 3936 .write_begin = f2fs_write_begin, 3937 .write_end = f2fs_write_end, 3938 .dirty_folio = f2fs_dirty_data_folio, 3939 .invalidate_folio = f2fs_invalidate_folio, 3940 .releasepage = f2fs_release_page, 3941 .direct_IO = noop_direct_IO, 3942 .bmap = f2fs_bmap, 3943 .swap_activate = f2fs_swap_activate, 3944 .swap_deactivate = f2fs_swap_deactivate, 3945 #ifdef CONFIG_MIGRATION 3946 .migratepage = f2fs_migrate_page, 3947 #endif 3948 }; 3949 3950 void f2fs_clear_page_cache_dirty_tag(struct page *page) 3951 { 3952 struct address_space *mapping = page_mapping(page); 3953 unsigned long flags; 3954 3955 xa_lock_irqsave(&mapping->i_pages, flags); 3956 __xa_clear_mark(&mapping->i_pages, page_index(page), 3957 PAGECACHE_TAG_DIRTY); 3958 xa_unlock_irqrestore(&mapping->i_pages, flags); 3959 } 3960 3961 int __init f2fs_init_post_read_processing(void) 3962 { 3963 bio_post_read_ctx_cache = 3964 kmem_cache_create("f2fs_bio_post_read_ctx", 3965 sizeof(struct bio_post_read_ctx), 0, 0, NULL); 3966 if (!bio_post_read_ctx_cache) 3967 goto fail; 3968 bio_post_read_ctx_pool = 3969 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS, 3970 bio_post_read_ctx_cache); 3971 if (!bio_post_read_ctx_pool) 3972 goto fail_free_cache; 3973 return 0; 3974 3975 fail_free_cache: 3976 kmem_cache_destroy(bio_post_read_ctx_cache); 3977 fail: 3978 return -ENOMEM; 3979 } 3980 3981 void f2fs_destroy_post_read_processing(void) 3982 { 3983 mempool_destroy(bio_post_read_ctx_pool); 3984 kmem_cache_destroy(bio_post_read_ctx_cache); 3985 } 3986 3987 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi) 3988 { 3989 if (!f2fs_sb_has_encrypt(sbi) && 3990 !f2fs_sb_has_verity(sbi) && 3991 !f2fs_sb_has_compression(sbi)) 3992 return 0; 3993 3994 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq", 3995 WQ_UNBOUND | WQ_HIGHPRI, 3996 num_online_cpus()); 3997 if (!sbi->post_read_wq) 3998 return -ENOMEM; 3999 return 0; 4000 } 4001 4002 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi) 4003 { 4004 if (sbi->post_read_wq) 4005 destroy_workqueue(sbi->post_read_wq); 4006 } 4007 4008 int __init f2fs_init_bio_entry_cache(void) 4009 { 4010 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab", 4011 sizeof(struct bio_entry)); 4012 if (!bio_entry_slab) 4013 return -ENOMEM; 4014 return 0; 4015 } 4016 4017 void f2fs_destroy_bio_entry_cache(void) 4018 { 4019 kmem_cache_destroy(bio_entry_slab); 4020 } 4021 4022 static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 4023 unsigned int flags, struct iomap *iomap, 4024 struct iomap *srcmap) 4025 { 4026 struct f2fs_map_blocks map = {}; 4027 pgoff_t next_pgofs = 0; 4028 int err; 4029 4030 map.m_lblk = bytes_to_blks(inode, offset); 4031 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1; 4032 map.m_next_pgofs = &next_pgofs; 4033 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint); 4034 if (flags & IOMAP_WRITE) 4035 map.m_may_create = true; 4036 4037 err = f2fs_map_blocks(inode, &map, flags & IOMAP_WRITE, 4038 F2FS_GET_BLOCK_DIO); 4039 if (err) 4040 return err; 4041 4042 iomap->offset = blks_to_bytes(inode, map.m_lblk); 4043 4044 /* 4045 * When inline encryption is enabled, sometimes I/O to an encrypted file 4046 * has to be broken up to guarantee DUN contiguity. Handle this by 4047 * limiting the length of the mapping returned. 4048 */ 4049 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 4050 4051 if (map.m_flags & (F2FS_MAP_MAPPED | F2FS_MAP_UNWRITTEN)) { 4052 iomap->length = blks_to_bytes(inode, map.m_len); 4053 if (map.m_flags & F2FS_MAP_MAPPED) { 4054 iomap->type = IOMAP_MAPPED; 4055 iomap->flags |= IOMAP_F_MERGED; 4056 } else { 4057 iomap->type = IOMAP_UNWRITTEN; 4058 } 4059 if (WARN_ON_ONCE(!__is_valid_data_blkaddr(map.m_pblk))) 4060 return -EINVAL; 4061 4062 iomap->bdev = map.m_bdev; 4063 iomap->addr = blks_to_bytes(inode, map.m_pblk); 4064 } else { 4065 iomap->length = blks_to_bytes(inode, next_pgofs) - 4066 iomap->offset; 4067 iomap->type = IOMAP_HOLE; 4068 iomap->addr = IOMAP_NULL_ADDR; 4069 } 4070 4071 if (map.m_flags & F2FS_MAP_NEW) 4072 iomap->flags |= IOMAP_F_NEW; 4073 if ((inode->i_state & I_DIRTY_DATASYNC) || 4074 offset + length > i_size_read(inode)) 4075 iomap->flags |= IOMAP_F_DIRTY; 4076 4077 return 0; 4078 } 4079 4080 const struct iomap_ops f2fs_iomap_ops = { 4081 .iomap_begin = f2fs_iomap_begin, 4082 }; 4083